¹⁰Be IN TERRESTRIAL BAUXITE AND INDUSTRIAL ALUMINUM: AN LDEF FALLOUT

<u>I.C. Gregory</u> The University of Alabama in Huntsville Department of Chemistry Huntsville, AL 35899-2900 Phone: 205/895-6028, Fax: 205/895-6061

A. Albrecht and G. Herzog Rutgers Univerity Department of Chemistry New Brunswick, NJ 08901 Phone: 908/932-3955, Fax: 908/932-5312

J. Klein and R. Middleton University of Pennyslvania Physics Department Philadelphia, PA 19104-6396 Phone: 215/898-8832, Fax: 215/898-2010

B.A. Harmon and T.A. Parnell NASA, Marshall Space Flight Center Space Science Laboratory, ES62 Huntsville, AL 35812 Phone: 205/544-4924, Fax: 205/544-7754

SUMMARY

Work has continued on the search for ¹⁰Be on metals other than aluminum flown on LDEF. Much time-consuming extractive chemistry has been performed at Rutgers University on turnings obtained from the ends of two stainless steel trunnions from LDEF and the prepared samples will be run on the University of Pennsylvania accelerator mass spectrometer.

We have continued to investigate our discovery of naturally-occurring 10 Be contamination in bauxite and industrial aluminums from different sources. Measurements of 10 Be in ores from three different sites, and from four different samples of commercial aluminum have been made. Our investigators indicate that the contamination in commercial aluminum metal originates in its principal ore, bauxite. The levels in some bauxite samples were much greater than the maximum possible for *in situ* production by cosmic ray secondaries. Adsorption of atmospheric 10 Be by surface ores exposed to rainfall is a reasonable explanation.

224-26

 4ρ

INTRODUCTION

The discovery of ⁷Be on front surfaces of LDEF (ref. 1) pointed the way towards an investigation of the possibility of finding other radionuclides produced in the atmosphere (ref. 2). At the present time these appear practically limited to ¹⁰Be and ¹⁴C, though ²⁶Al must certainly be present in very small quantities (from Ar spallation).

¹⁰Be quantification is particularly attractive since its surface and atmospheric chemistry will be virtually identical to that of ⁷Be. The production and sink functions of both nuclides are well known; therefore, if both surface densities were known on the same piece of satellite material, we should obtain a probe of the vertical transport mechanism of the isotopes in the atmosphere. If the process is diffusion-controlled, the different isotope masses should provide clear indication.

The first attempt to obtain this information was foiled by the discovery that much, if not all, commercial aluminum, including that used to make LDEF and A0114 is naturally contaminated with ¹⁰Be. This is not surprising since many bauxite ores are found close to, or on the ground surface, and may be wetted by rainfall which has scrubbed the Be isotopes out of the air.

In this work we describe some measurements of a sampling of several metal samples from different sources (e.g., kitchen foil, shop aluminum and LDEF metal) and of some bauxite ores from different locations. This gave some idea of the variance, but was not a systematic survey.

Table 1 shows the raw data obtained by AMS. The metals showed levels of 40 to $110 \times 10^6 (\pm 10\%)$ atoms of ¹⁰Be per g Al.

Sample	Source	Mass [mg]	MassAl ¹ [mg]	¹⁰ Be/ ⁹ Be [10 ⁻¹⁵]	¹⁰ Be [10 ⁶ atom/g Al]	Normal Be [10 ⁻⁹ g/g Al]
Al AA Sol'n Al foil Al plate	LDEF ² LDEF 9-7 ³ Shop	140.0 327.3 256.7 219.7 315.2	140.0 327.3 256.7 219.7 315.2	63±4 102±7 122±8 101±6 223±22	61±3 41±3 75±3 63±5 111±11	159 58 140
Bauxite Bauxite, Ark. Bauxite, Haiti Blank ⁵ Blank ⁶	NBS 69A A 21485 ⁴	1371.8 361 497.7 2085	381.3 141.5 52.2	$74\pm1048\pm433000\pm2006\pm25\pm1$	22±2 15±2 57200±3800	

Table 1. ¹⁰Be concentrations of aluminous materials.

Notes: 1) Aluminum concentrations in the bauxites from Arkansas and Haiti were determined by DCP analysis to be 39.2% and 10.5%, respectively; NIST bauxite NBS 69A was used as a standard (27.8% Al). 2) Not flown; 3) Flown. 4) Label given by the American Museum of Natural History (New York, NY, USA); 5) Reagent blank; 6) Procedural blank run with stainless steel.

Bauxites, on the other hand, showed values from 20 to $57,000 \times 10^6$ atoms 10 Be per g of Al in the ores. Aluminum and beryllium oxides are chemically quite similar and typical bauxites contain normal ⁹Be at levels of about 10 ppm. During aluminum refining this is reduced by a factor of about 70 times.

Thus, if we take our measured value for typical metal of 5-10 x 10⁷ atoms ¹⁰Be/gAl, this would require a level of $5x10^9$ atoms ¹⁰Be/g Al in the ore. This compares with measured values in ores of $2x10^7$ atoms per g Al in the Arkansas ore and 6×10^{10} atoms per g Al in the Haitian ore (equivalent to 6×10^9 atoms per g of Haitian ore).

Table 2 shows ¹⁰Be densities per gram of soil or ore. The theoretical maximum was estimated from an average U.S. rainfall and assumes the only sink function to be radioactive decay. On this scale the concentration of ¹⁰Be in the Haitian ore seems remarkable, but not impossible.

Table 2. ¹⁰Be atom densities per gram soil or ore

Theoretical max (1m)	1 x 10 ¹⁰ atoms g ⁻¹		
US Typ. soil (surface)	$2 \times 10^8 - 1 \times 10^9$		
NBS and Ark ore Haitian ore	1 x 10 ⁷ 6 x 10 ⁹		

Implications for AMS:

Analysts may wish to determine both ²⁶ Al and ¹⁰Be in a rock, in which case they may add both Be and Al carriers, but 5 mg of modern Al may contain 5 x 10^5 (¹⁰Be atoms), providing a significant unwanted ¹⁰Be background (for comparison, 5g quartz from Bandelier Tuff contains 5 x 10^6 atoms of ¹⁰Be).

- need to use selected carriers
- Al cathodes should not be used for AMS sputtering

CONCLUSIONS

Modern commercial Al contains

 10 Be at the level of 5-10 x 10⁷ atoms/g

and 9 Be at the 50-100 ppb level.

• Bauxite contains ~ 10 ppm 'normal' ⁹Be. About 1% of the Be (both isotopes) makes it through the refining process to Al metal.

- ¹⁰Be was almost certainly produced from atmospheric sources rather than *in situ*.
- ¹⁰Be concentrations in bauxites reveal their exposure histories to rainfall.
- A study of the distribution of ¹⁰Be in an ore body would give more information on Be transport and retention.
- AMS analysts will now take more care with Al carriers used in ²⁶Al and ¹⁰Be assays.

A more complete description of the accelerator mass spectrometry measurements and of rock dating using 26 Al and 10 Be is given by the authors in ref. 3 and references therein.

REFERENCES

- 1. Observation of Be-7 on the Surface of LDEF Spacecraft, Fishman, G.J., Harmon, B.A., Gregory, J.C., Parnell, T.A., Peters, P., Phillips, G.W., King, S.E., August, R.A., Ritter, J.C., Cutchin, J.H., Haskins, P.S., McKisson, J.E., Ely, D.W., Weisenberger, A.G., Piercey, R.B., and Dybler, T.: Nature, 349, 1991, pp678-680.
- 2a. The Interactions of Atmospheric Cosmogenic Radionuclides with Spacecraft Surfaces, J.C. Gregory, G.J. Fishman, B.A. Harmon, and T.A. Parnell, The LDEF First Post-Retrieval Symposium, Orlando, FL; June 1991. NASA Conference Publication 3134, part 1, p. 237-247.
- 2b. Cosmogenic Radioisotopes on LDEF Surfaces, J.C. Gregory, A. Albrecht, G. Herzog, J. Klein, R. Middleton, Abstracts of Second LDEF Post-Retrieval Symposium, San Diego, CA, June 1-5, 1992, NASA Conference Publication 10097, page 25; Proceedings of Second LDEF Post-Retrieval Symposium, NASA Conference Publication 3194, pages 231-238.
- 3. ¹⁰Be in Bauxite and Commercial Aluminum, R. Middleton, J. Klein, B. Dezfouly-Arjomandy, A. Albrecht, S. Xue, G.F. Herzog, J. Gregory, Accepted for publication by Nuclear Instruments & Methods, February 1994.