
N95- 23857

APPLICATION OF A TWO-STREAM RADIATIVE TRANSFER MODEL FOR

LEAF LIGNIN AND CELLULOSE CONCENTRATIONS FROM SPECTRAL

REFLECTANCE MEASUREMENTS (PART 2)

James E. Conel, Jeannette van den Bosch, and Cindy I. Grove

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, California

1. Interpretation of desiccated leaf spectra. Continuing the work described

in Part 1, we next sought to understand structures in the dry extracted and derived

spectra using calculated reflectances of hypothetical simple two-component mixtures.
The reflectances and mixing models used, including the model employed to derive

Rwoo, ultimately require validation; this has not yet been possible beyond certain

qualitative comparisons described here.

In Figure 1 the calculated spectrum Rdo_ is compared with lignin and cellulose

reflectances (from Elvidge, 1990). A simple interpretation of band position in the

desiccated leaf spectrum appears possible in terms of these two end members. We

examined this more closely by calculating reflectances of cellulose-lignin and other

mixtures and comparing band positions between the hypothetical mixes and Rd_o.

Bulk reflectance relationships based on composite scattering and absorption

functions were developed from the KM theory for artificial mixtures of dry constituents

(and liquid water with dry constituents described here). Many idealized configurations

of constituents in single leaves, each individually described by the KM reflectance and

transmittance formulae, seem possible. Each has its own macroscopic mixing formula.

Some simple possibilities are: (1) single layers comprised of well-mixed pure

components, (2) multiple stacked uniform layers of pure end members, and (3) side-by-

side compartments of pure end members arranged in single layers. Here we confine
attention to (1), lacking a definite basis to pursue another option. Since intrinsic

functions of representative major (or minor) pure chemical end members of leaves have

not yet been obtained, the development of mixing relations must proceed approximately,

in the present case as follows. For two components {1,2} the ratio K12/Sl2

c k-2 + c k2 s2

KI 2 _ I Sl 2 S2 Sl (1)

$12 s2
c 1 + c 2-

s t

of a mixture is c t + c2 = 1. Except tbr the ratio s,/s l, the values of the component

k/s-ratios are known from the remission function if the spectral diffuse reflectance Rjo_

for each component j is known. We will calculate an approximate effective composite

ratio Kl2/St2 for the {1,2} mixture by setting s,,/s I = 1 for all wavelengths, and take
the diffuse reflectances of leaf chemical constituents, a number of which have been

measured by Elvidge (1990), to estimate k/s-ratios of end-members. In so doing

effects of possible impurities, nonuniformity in packing, particle size, and finite sample
thickness on reflectances of assumed end members are ignored. The reflectance Rt2oo

of a two-component mix is calculated from Figure 2 and illustrates application of the

model represented by Equation (2) to a mixture of lignin and cellulose, parameterized
as the fraction of cellulose (gm/gm) in the mix. Determination of composition in this
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simple dry system might be made from measurement of band position; best resolved

and clearest to interpret (although unobservable in the residual spectra from green

leaves) is that between 1444 and 1484 nm. This band (reflectance minimum) position is

a non-linear function of cellulose fraction fc, given accurately by ;k(fc) = 1456 + 97.9f c
- 119fe 2 + 54fc 3 - 4.5fc 4, and is very insensitive to changes in lignin concentration for

.5 _g fc < 1.0. For example, suppose the spectral sampling interval A_k is that of
AVIRIS, 10 rim, and that three perfect spectral band determinations are possible at 1484

and 1474 and 1464 nm. The minimum resolvable difference in lignin concentration Af e
is approximately 0.75 between the first pair of these and about 0.10 between the second

pair. A similar relationship, spectrally less well defined, prevails for the complex of
bands between 1650 and 1850 nm.

We return now to interpretation of band positions of Ru_. in Figure 1. From

the regression formula for X(fc) a reflectance minimum at 1460 nm implies a lignin

concentration in the two-component dry mix of 94 %, and a similar abundance from the

band near 1775 nm. This exceeds by far the expected lignin abundance in plant
materials of 10 - 35% dry weight (Crawford, 1981).

Other chemical constituents in addition to lignin and cellulose make spectral

contributions to the desiccated foliar reflectance, and will alter by dilution the relative

abundances of lignin and cellulose present. The nature of the spectral contributions so

introduced will be described qualitatively using hypothetical two-component systems,

cellulose-starch and cellulose-protein (D-ribulose l-5-diphosphate carboxylase),

illustrated in Figures 3 and 4. Combinations with other plant chemical constituents

might be worked out from spectral data given by Elvidge (1990). The admixing of

starch with cellulose displaces the 1485-nm cellulose band to shorter wavelengths,

similar to lignin. The 1775-nm band position is largely unaffected. The admixing of

protein with cellulose produces displacements opposite (but of comparatively small

magnitude) to those of both starch and lignin at 1485 nm and to shorter wavelengths at

1775 nm, also similar to that of lignin. Thus both protein and starch mimic spectrally

the presence of lignin in mixes with cellulose, especially at 1775 nm. The isolation of

lignin concentration from band position alone without knowledge of other end member

concentrations thus seems problematical.

2. Mixing of desiccated and liquid water components. Mixing relationships

employed in the present application of KM theory together with spectral reflectances of
mixtures based thereon have been worked out to isolate signatures of supposed

desiccated leaf components and to aid interpretation of spectral signatures of derived

reflectance residuals. The theory applied to leaf reflectance awaits detailed experimental
validation but offers another set of relationships that suggests its usefulness. We used

the intrinsic k- and s-functions of Figure 1 in Part 1 of this article together with

Equations (1) and (2) to calculate for sweetgum the spectral reflectance of intermediate

mixtures of wet and dry components. These calculations are illustrated in Figure 5. A

comparison with single leaf reflectance data as a function of relative water content given
by Hunt and Rock (1989) is suggestive.

3. Reflectance retrieval from AVIRIS. The previous analysis leading to

plots of residuals given in Figure 4 in Part 1 was based on diffuse spectral reflectance
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measurementsmade under idealized conditions with a laboratory spectrometer. The

largest spectral variations in these residuals amount to approximately 2 % in the
1700-nm region. Reflectance variations are also present below this level. Under field

conditions, using measurements of the upwelling radiance at AVIRIS, an atmospheric

model is ordinarily required to retrieve an effective surface (Lambertian) reflectance,

unless ground targets can be used (Elvidge, 1988). Noise arising from spatial

fluctuations or uncertainties in atmospheric properties and from AVIRIS will contribute

uncertainty to the reflectance values so derived. We carried out numerical experiments

with the LOWTRAN 7 (Kneizys et al., 1983) radiative transfer model to estimate

uncertainties due to atmospheric variations. It proves advantageous to recalibrate

AVIRIS in-flight using local surface targets to eliminate channel-to-channel variations in

radiance that are thought to originate from changes in the radiometric calibration

coefficients between laboratory and in-flight conditions.

For homogeneous, plane-parallel atmospheric conditions over uniform ground

of Lambertian surface reflectance Ps, the radiance at AVIRIS is represented

approximately as

4ff__[ 4p_ ] (3)t'("'_°:) -- s(_t'"°:) * 1 ---_,_ "_°_'rt°:)

In Equation (3) a'F O is the solar irradiance, S(/z,#0,7.) is the atmospheric scattering

function, T0t,#0,7") is the two-way diffuse plus direct atmospheric transmittance, "s is the

hemispherical backscatter function, # and #0 are cosines of the zenith angles of viewing
and solar incidence directions respectively, and 7"is optical depth. Spectral dependence

of the atmospheric and surface quantities is implied. An in-flight calibration experiment
redefines the radiometric calibration in terms of in-flight coefficients _* given by

_,. _ (Lu)¢ (4)

(DN-DNo) c

where DN and DN 0 represent instrument and dark current response for the conditions

of calibration, and (Lm) c is the radiance at AVIRIS obtained from a radiative transfer

model (LOWTRAN and/or MODTRAN) using measured atmospheric conditions. (Lm) c

is given approximately by

(L,,), - _ ÷ (rto)_T¢R,÷ (tto),T:_R2 (5)

With the in-flight calibration factors, the ground reflectance Rg is

R, - _A _ _ * 1 + 2s (DN - DN o) - s O*2(DN - DNo) 2 (6)
B B 2

where (DN - DN 0) represents the dark-current corrected in-flight instrument response,
and

s_
- , B = lxoTF o

A 41.t
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The expression for Rg, Equation (6), is independent of the solar irradiance, but
use of the in-flight calibration coefficients el,* has introduced additional variables

pertaining to atmospheric conditions during calibration and also the calibration target

reflectance Re. We applied standard error propagation formulas to Equation (6) to

evaluate a fractional uncertainty aR IR 8 from fluctuations in all the atmospheric
It, . . .

parameters (taken equal for both cahbratlon and observation experiments) and from the

AVIRIS response parameterized as the signal/noise ratio. The LOWTRAN model
evaluated was midlatitude summer, rural aerosols, surface meteorological range 25 km,

surface reflectance 0.50, and solar zenith angle 22*. 179. The calculated uncertainty as

a function of AVIRIS signal/noise ratio at 1700 nm with prescribed atmospheric

uncertainties, written collectively as asia to represent as/S, etc., is shown in Figure 6.

Values of aR/Rs less than a few percent are achieved only for uniform atmospheric
conditions (asia < .01) and high signal/noise ratios (> 100).

4. Summary. We used the Kubelka-Munk theory of diffuse spectral

reflectance in layers to analyze influences of multiple chemical components in leaves.

As opposed to empirical approaches to estimation of plant chemistry, the full spectral

resolution of laboratory reflectance data was retained in an attempt to estimate lignin or

other constituent concentrations from spectral band positions. A leaf water reflectance

spectrum was devised from theoretical mixing rules, reflectance observations, and

calculations from theory of intrinsic k- and s-functions. Residual reflectance 10ands were

then isolated from spectra of fresh green leaves. These proved hard to interpret for

composition in terms of simple two component mixtures such as lignin and cellulose.
We next investigated spectral and dilution influences of other possible components

(starch, protein). These components, among others, added to cellulose in hypothetical

mixtures, produce band displacements similar to lignin, but will disguise by dilution the

actual abundance of lignin present in a multicomponent system. This renders

interpretation of band positions problematical. Knowledge of end-members and their

spectra, and a more elaborate mixture analysis procedure may be called for (see, for

example, Kortum, 1969, p. 303). Good observational atmospheric and instrumental

conditions and knowledge thereof are required for retrieval of expected subtle

reflectance variations present in spectra of green vegetation.
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Figure 1. Reflectances of lignin, cellulose, and desiccated
L. styraciflua.
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Reflectances of hypothetical mixes of cellulose

and lignin. Curves are for cellulose fractions of

1.0 (pure cellulose), 0.9, 0.8, 0.6, 0.4, 0.2,
and 0.0 (pure lignin).
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Figure 3. Reflectances of hypothetical mixes of cellulose

and starch. See caption Figure 2 for curve
assignments.
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Figure 4. Reflectances of hypothetical mixes of cellulose

and protein. See caption Figure 2 for curve
assignments.
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Figure 5. Reflectances of hypothetical combinations of

desiccated L. styraciflua and leaf liquid water
components.
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