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The acreage of grassland and grassland-savannah is extensive in California, making direct

measurement and assessment logistically impossible. Grasslands cover the entire Central Valley

up to about 1200 m elevation in the Coast Range and Sierra Nevada Range. Kuchler's (1964) map

shows 5.35 M ha grassland with an additional 3.87 M ha in Oak savannah. The goal of this study

was to examine the use of high spectral resolution sensors to distinguish between dry grass and

soil in remotely sensed images. Spectral features that distinguish soils and dry plant material in
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Figure 1: SMA performed on a weighted synthetic spectrum. Figure la shows the composite spectrum to be
unmixed (with a noise term inversely proportional to the atmospheric transmission, above). Figure Ib shows the 3

endmember spectra used for unmixing. Figure lc shows the results of SMA. Figure Id shows the predicted

spectrum from the unmixing and a ratio comparison (above) between the original and the signature predicted from

the SMA.

the shortwave infrared (SWIR) region (Fig. lb) are thought to be primarily caused by cellulose

and lignin, biochemicals which are absent from soils or occur as breakdown products in humid

substances that lack the narrow-band features. We have used spectral mixing analysis (SMA)

combined with Geographic Information Systems (GIS) analysis to characterize plant communities

and dry grass biomass. The GIS was used to overlay elevation maps, and vegetation maps with
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the SMA results. The advantage of non-image data is that it provides an independent source of

information for the community classification.

Test Site

The study area used for this research is located in the Central Coast Range just east of Lake

Berryessa, CA. The area of approximately 80 km 2 includes the University of California's Stebbins

Cold Canyon Preserve (SCCP). The complexity of the terrain results in a mosaic of grazed and

ungrazed grasslands, oak woodlands, chaparral, riparian woodlands, agricultural cultivation, and

other vegetation types. AVIRIS imagery was acquired on August 20, 1991 and August 20, 1992.

Soectral Mixtgi'¢ Analysis

We have assumed that the grasslands represent a reasonable approximation of linear spectral

mixing up to a point of saturation at high biomass amounts. Results from an unconstrained SMA

model using images calibrated to surface reflectance produced better fraction estimates than

constrained reflectance models or unconstrained radiance models (Fig. lc). Atmospheric bands

were included in the SMA by using a weighting factor related to the transmission and scattering of

a typical mid-latitude atmosphere MODTRAN prediction (Air Force Geophysical Laboratory),

Figure 2.
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Figure 2: Weighting factor used for the SMA as a

function of wavelength

The spectral library endmembers were measured

in a Varian Cary 5E spectrometer of soil, dry

grass, and other plant samples (leaves, bark)

collected within the Berryessa study area. The

GPS locations of these materials were included in

our GIS data base. Specifically we used a

Heteromeles arbutifolia (Toyon) leaf as the green

foliar endmember, a Sehom Clay Series soil, and a

mixture of dry annual grass leaves for the dry

grass endmember. Bark from Quercus agrifolia

was used as a "woody" endmember.

We used the ARP and lignin/cellulose analysis program by Gao and Goetz (1990) to compare

against the dry grass endmember fraction. We assumed that the cellulose/lignin estimate was a

reasonable approximation of the biochemistry of dry leaf residues in this study. This analysis

produced images having a more speckled appearance and larger variability between adjacent

pixels then did the SMA results.

Landscaoe Intelzration

Topography data were used to predict "potential vegetation" types based on the landscape of the

area and the physiographic dependence of the vegetation. These types of potential vegetation

maps were combined with the SMA results to classify "actual vegetation" distribution. Digital

Elevation Maps were produced for two USGS 7.5 min transparent overlays (Mt. Vaca and

Monticello Dam). Because we were not able to perform all pans of this study in one package, we

performed various parts of the work in Map and Image Processing System (MIPS), GRASS, and

Arc/Info using both PC's and UNIX workstations. Elevation, aspect, slope, and accumulated

runnoff (R.watershed module in GRASS) were used to define potential vegetation types using a
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Maximum Likelihood Separator (MLS). The SCCP vegetation map (based on ground surveys)

was used for training sites of six vegetation types.

The topographically developed classification scheme does well at separating the grassland from

the oak woodlands, due to their aspect dependance, and also identifies riparian zones using the

accumulation and elevation layers. Rock outcroppings are over-estimated and chaparral, the most

abundant community in the region, is under-represented. This resulted because the initial

chaparral classification was relegated to the areas unoccupied by the more topographically distinct

grasslands and oak woodlands.

The SMA fractions were also used as data layers in the GIS for classification of the SCCP. The

SMA-based MLS classification does a better job separating the dry grasslands from the other

communities. This is not surprising since one of the endmembers selected for the SMA was of

dry grass. Even so, the accuracy of the prediction is striking. The SMA method was less

successful discriminating oak woodlands and riparian woodlands which have similar endmember

fractions. This effect might be improved if a multiple endmember approach like that of Roberts et

al., (1992) were adopted. The rock outcroppings were over-predicted and the chaparral regions

were under-predicted. The lower specificity of chaparral may be due to a varying spectral

signature.

Finally, the DEM layers and the SMA fraction layers were combined to determine a final "actual

vegetation" map. The resulting map is a remarkably good representation of the vegetation type

distributions based on comparisons against the SCCP vegetation map and against aerial

photographs. In fact, the combined map is better at defining the vegetation type distributions than

the more simplified ground-based vegetation map. The grassland predictions suffered slightly,

due to topographic variables driving some predictions toward other vegetation types even when

the dry grass fraction identifies grasslands. However, the chaparral distribution improves in this

map compared to the previous maps. Also, the rock

field-based map. The riparian and oak woodlands are

when compared with the field-based map.
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Figure 3: Dry grass fractions for the larger Berryessa region

(upper curves) and for the grasslands area only (lower curves).

outcrops show closer agreement with the

also well separated and accurately located

The landscape parameter maps developed

for the SCCP subset were then created for

the larger area covered by the two

AVIRIS overflights and the _me

classifications were performed for the

entire region. A significant portion of the

total image was classified as grassland

(Table 1). However, we still require a

map of the spatial variation in dry biomass

to monitor dry grass residues. To

determine biomass distribution in the dry

grasslands, non-grasslands and areas

where grazing is unlikely were masked.

for the whole area and for the areas classified as grassland are shown in Fig. 3.

The histog-ram of dry vegetation fractions
Both the 1991
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and 1992AVIRIS overflightsshowcloseagreement.As seenfrom thefigure,mostpixelshaving
low dry vegetationfractionswereclassifiedasothervegetationtypes. To quantifytherangesof
dry grassbiomass,endmemberfractionsweredividedinto five frequencyclasses. Thesebiomass
classificationsare consistentwith spatial patterns in grasslandbiomassvariation predicted.
Predictedareacoveragefor all vegetationtypesis shownin Table 1.

Table 1. Distribution of areal coverage by vegetation class for the Berryessa Region.

Vegetation Class
Oak Woodland

Chaparral 2076

Riparian 990

RcxzkOutcrops
Grassland/no biomass

Area Coverage (ha)
1262

228

7
Grassland/low biomass 422

Grassland/medium biomass 1282

Grassland/high biomass

Grassland/very high biomass
TOTAL

Conclusion Summary
!.

2.

1516

939
8722

Spectral unmixing provides a good estimation of the spatial distribution of dry grass.

Spatial variation in endmember fractions represent varying proportions of these endmembers

supporting conclusions of other authors (e.g., Gamon et al., 1993).

3. Masking non-grassland areas improves the ability to evaluate spatial variations in dry grass
abundance.

4. Spectral measures alone are insufficient to separating and mapping all vegetation types in these
commu,fities.

5. Combined SMA and DEM data in a GIS produced vegetation maps as good or better then

those based on field surveys.
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