A

-

\,

NASA Contractor Report 196695

New Approaches to Optimization
in Aerospace Conceptual Design

Peter J. Gage

Stanford University

Department of Aeronautics and Astronautics
Stanford, CA 94305

Prepared for
Ames Research Center
CONTRACT NAG2-640
March 1995

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 34035-1000



satet




A cknowledgments

This work was primarily supported by NASA Ames, under Grant NAG 2-640.
Funding was also provided by NASA Langley, particularly under Grant NAG
1-1494 and Grant NAG 1-1558. This support is gratefully acknowledged.
Sincere thanks are due to my adviser, Ilan Kroo, who has always been en-
thusiastic about this work, and ready to discuss any detail of it. I relied on
his insight to clarify difficult issues, and to suggest creative approaches for this
research. Valuable advice and software support have been provided by John
Gallman, at NASA Ames, Bobby Braun at NASA Langley, and Ian Sobieski
at Stanford. Sean Wakayama has rescued me from countless computational
nightmares. Steve Morris has helped to guide the investigation of genetic opti-

mization. I deeply appreciate the contributions of these colleagues.

PRECEDING PAGE BLANK NOT FILMED
i PAGE_!1 __ INTENTIONALLY BLANK



uaied

il

'



Contents

Acknowledgments iii

Table of Contents v

List of Tables ix

List of Figures xi

Glossary XV

1 Introduction 1

1.1 Motivation . . . . . .. .. ... 1

1.2 Integration of Analyses and Optimization Software . . ... .. 2

1.2.1 Analysis Requirements . . . . . .. ... .. ... .... 2

1.2.2 Integration Methods . . .. .. .. .. ... ....... 4

1.3 The Limited Scope of Calculus-Based Optimization . . . . . .. 6

1.4 Fixed Complexity Problem Formulations . . . . .. ... .. .. 8

1.5 Thesis Outline. . . . . . . ... .. .. 8

. 2 A Baseline Optimization System 11

2.1 Quasi-Procedural Method . . . . ... ... . ... ... ... 12

- 2.2 Calculus-Based Optimization . .. ................ 15
2.3 Controlling Calculus-Based Optimization with the Quasi-Procedural

Method . . . . . . .. 18

2.3.1 Efficient Gradient Approximation . . . . ... ... ... 19

v R\ ’
—3 INTENTIONALLY R ANK

PRECEDING PAGE BLAMK NOT FILMER e



2.3.2 Ordering Design Variables . . . . ... ... .......
2.3.3 Removal of Iteration Loops in Analysis Subroutines . . .
2.4 Application of the Baseline System To a Complex Problem . . .
2.4.1 ASampleProblem . ....................
2.4.2 Modification of Analyses for Quasi-Procedural Execution
2.4.3 Performance of the Baseline System . . . . . .. .. ...

25 SUMMATY . .« o v v o ot e vt e e e e

A Simple Genetic Algorithm for Aerospace Design

3.1 The Genetic Search Mechanism . . .. ... ... ... ... ..

3.2 Limitations of Genetic Algorithms . . . . . .. ... .. ... ..

3.3 A Simple Genetic Algorithm . . . . .. ... ... .. .. ...

3.4 Application to Spacecraft Trajectory Design . . . . .. .. ...
341 Background ... ... ... ... ..o
3.42 One-Way Direct EarthtoMars . . ... .. .. .. ...
3.4.3 Roundtrip Earth to Mars, with Optional Venus Swingby
3.4.4 Simultaneous Investigation of Different Mission Types . .

3.5 SUMMATY .« v v v v vt vt e e e e

A Variable-Complexity Genetic Algorithm
4.1 Motivation for Variable-Complexity Optimization . . . .. . ..
4.2 Variable-Length Encodings . . . . . ... ... ... ... ..
421 PriorUse ... ... i
4.2.2 An Encoding Scheme for Conceptual Design . . . . . ..
423 An Extended Encoding Scheme for Varying Constraint
Activity . . . . o . o
4.3 New Genetic Operators . . . . . .« .« v oo v v oo oo
4.4 Application to a Block-Stacking Task . . . ... ... ... ...

24
27
28
28
33
36

38
40
43
45
51
51
53
63
65
67

Topological Design of Structural Trusses for Minimum Weight 83

5.1 Introduction to Structural Optimization ... . .. e e
5.2 Standard Genetic Optimization of Structural Trusses . . . . . .
5.3 Variable-Complexity Genetic Optimization of Structural Trusses

vi

83
85
86



I'L‘\
-,

54 Applications . . . . . ... o o e 89

5.4.1 Nine nodes, one load point. . . . ... ... .... ... 89
5.4.2 Nine nodes, two load points. . . . . . . ... .. .. ... 91
5.4.3 Michell truss. . . . . « v« o i oo e 93
5.5 SUMIMATY .« o« v v v oo v e e e e e e 96
Wing Topology Optimization for Minimum Drag 97
6.1 Motivation for Use of Genetic Optimization . . . ... .. ... 98
6.2 Aerodynamic Analysis of Lifting Surfaces . . . . .. .. .. ... 99
6.3 Genetic Encoding . . . . . . . ..o 100
6.4 Constraint-Handling . . . ... .. ... ... ... .. ..... 101
6.4.1 Geometric Constraints to Permit Analysis . . . .. . .. 101
6.4.2 Lift Constraint . . . . . . . . . .. . 102
6.4.3 Span and Height Constraints. . . . . . .. ... ... .. 106
6.5 Optimization Results . . . ... ... ... .. .......... 108
6.5.1 Minimum Induced Drag . . . . .. .. ... . .. ... 108
6.5.2 Minimum Parasite Drag . . . . .. .. ... .. .. ... 115
6.5.3 Summaryof Results . ... ................ 116
6.6 Comparison with Calculus-Based Optimization. . . . . .. . .. 119
6.7 Summary ... ......... e e e e 121

Genetic Optimization in the Quasi-Procedural Environment 122

7.1 Efficient Evaluation of the Population . . . . . ... .. .. ... 123
7.1.1 Measuring Difference Between Population Members . . . 124
7.1.2 Performance of the Ordering Scheme . . . .. ... ... 125

7.2 Computational Path Generation . . . . .. .. .. ... ... .. 127

Conclusions and Suggestions for Future Work 130

81 Conclusions . . . . .« v v vt v i 131
8.1.1 Integration of Analyses and Optimizers . . . . . . . ... 131
8.1.2 Optimization Algorithms . . . . .. .. .. ... ... .. 131
8.1.3 Flexible Parameterization . . . .. .. ... ... . ... 132

8.2 Suggestions for Future Work . . . . .. ............ .. 133

Vi)



A Technical Details of Quasi-Procedural Architecture
A.1 The Quasi-Procedural Method

A.2 Consistency Maintenance . . . . .. ... ... ..........

...................

B A Genetic Optimization Package
B.1 Operators of Genetic Optimization . . ... ... ... .. ...

B.2 The Optimization Problem

...................

B3 Imputand Output . . . . . ... .. ... ... ... .. .....
B.4 User-Specified Input Parameters . . . . . . .. ... ... . ...

B.5 User-Supplied Subroutines

Bibliography

Viii

...................

A

135
135
137

145
145
151
153
154
156

158



List of Tables

2.1
2.2

3.1
3.2
3.3

6.1
6.2

Al

Optimization efficiency with accurate line-search. . . . .. ...

Optimization efficiency with inaccurate line-search. . . .. . ..

Function evaluations for different search methods. . . . . . . . .
Function evaluations for different problem sizes. . . . . . . . ..

Locating global optima of different type. . . . ... ... .. ..

Function evaluations for different search methods. . . . . . . . .

Levels of parasitedrag. . . . . . . .. . .. .. ...

Summary of consistency information. . . . ... ... ... ...

ix

141






D

List of Figures

1.1 Cost committed and actual funds spent on a typical aircraft project.

(FromRef. [3]) .. .. ... . 3
2.1 Elements of baseline system. . . . . ... ... ... ....... 12
2.2 A simple wing design problem. . . . . . .. ... ... ... 14
2.3 Convergence history for different calculus-based algorithms. . . . 18

2.4 Standard and lazy finite-difference schemes for gradient estimation. 20

2.5 Quasi-procedural savings in gradient estimation for wing design

task. . ... ... e e e e e e e 22
2.6 Quasi-procedural savings in gradient estimation for aircraft syn-

thesistask. . . . . . . . . . ... 25
2.7 Replacement of iteration loop with design variable and constraint. 26
2.8 Optimization of mid-sized transport aircraft. . . . . . . .. ... 29
2.9 Identification of inputs and outputs. . . . . .. .. ... ... .. 30
2.10 Insertion of calls to communicate with the central database. . . 32
2.11 Generation of project file. . . . . . .. ... ... ... ... .. 32
2.12 Relative computation times for complete optimization. . . . . . 34
2.13 Relative computation times for one iteration. . . . . . . .. . .. 36

3.1 The natural evolution of flying devices inspires the development

of a genetic algorithm. . . . .. ... ... ... ....... ... 39
3.2 A standard genetic algorithm, illustrating the roles of selection,
reproduction and crossover. . . . . .. ... ... 43
3.3 Decoding a geneticstring. . . . .. ... ... ... ... 46
3.4 CroSSOVEL. . . v o v i v v e e e e e e e e e 48
xi

PRECEDING PAGE LLANK NOT FILMeD
PAGE.._ A .. INTENTIONAL 1Y B4 awg



3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1

4.2
4.3
4.4
4.5

4.6
4.7

0.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1

Mutation. . . . . . . ...
Earth to Mars mission. . . . . . . ... .. ... .. .......
Design space for Earth to Mars mission. . . ... ... .....
Population distribution, Generation 1 . . . . . . ... ... ...
Population distribution, Generation 10 . . . . . .. .. ... ..
Population distribution, Generation 20 . . . . ... . ... ...
Population distribution, Generation 30. . . . . . .. ... .. ..
Surface mesh of initial mass in LEO, 95% infeasible. . . . . . . .
Population distribution, Generation 30, 95% infeasible. . . . . .
Population distribution, Generation 50, 95% infeasible. . . . . .
Sharing without mating restriction. Generation 30. K = 1.0

Sharing with mating restriction. Generation 30. K=1.0 . .. .
Sharing with mating restriction. Generation 30. K = 0.025 . . .

Natural evolution, like aerospace vehicle design, proceeds from
simple descriptions to complex specialization. . .. .. ... ..
A variable-complexity genetic algorithm . . . .. ... .. ...
Modified crossover operator . . . . .. .. .. ... ... ...,
The block-stacl'c'iﬂnrg problem. . . .. ... ... ..o
Deception makes poorly placed lower blocks appear to provide a
good foundation for further stacking. . . ... ... .. ... ..
Fitness of best individual in population. . . .. ... ... ...
Growth in height of best individual. (40-block maximum height)

Decoding a triplet of the genetic string. . . . . . ... ... ...
Optimization histories for singleend load. . . . .. .. .. ...
Optimization histories for two load points. . . . .. .. ... ..
History of best individual in population. . .. ... .. .. ...
Michell truss for singleend load. . . . . .. .. ... .. ... ...
History of best individual in pbpulation. .............
Final designs from different runs. . . . .. ... ... ... ...

Panel representation of lifting surface. . . . . . .. ... ... .. ,

Xii

70
76
7
78

91

.
; ,lt



6.2
6.3
6.4
6.5

6.6

6.7

6.8
6.9
6.10
6.11
6.12

6.13
6.14

7.1

7.2

Al
A2
A3
A4
A5

A6
AT

Influence of penalty weight . . . . . .. .. ... ... 103
Wing topology design with span and height constraints. . . . . . 106
Decoding the extended genetic string. . . . . . .. ... .. ... 107
History of best individual in population for standard genetic al-

gorithm. . . . ... .. .. ............ I 109
History of best individual in population for variable-complexity

algorithm with regular encoding. . . . . ... ... .. .. ... 111

History of best individual in population for variable-complexity

algorithm with extended encoding. . . . ... .. ... .. ... 112
Superposition of all right half-wings in population.. . . . . ... 113
Optimization histories for minimum induced drag. Ca, = 0.000 . 114
Optimization histories. Case 1. C4, =0.004 . . .. .. .. ... 116
Optimization histories. Case 2. C4, =0.010 . . .. . ... ... 117
Comparison of optimal topologies for different levels of parasite

drag. . .« .« o 118
Calculus-based optimizer is trapped at local minima. . . . . .. 120
Final refinement by gradient-based optimizer. . ... ... ... 120

Best arrangement of variables to minimize computation required
to evaluate the population. . . . . . . . .. .. ... 126
Alternative computation paths for MinStability depend on spec-
ification of WingPosition. . . . . . . . .« . .. 128

Quasi-procedural method may be triggered by user or subroutine. 135
Quasi-procedural method executes only the necessary subroutines. 136
Flow diagram for the GET subroutine. . . ... ... ... ... 138
Recursive calls to the GET subroutine during path construction. 139
Consistency information is developed for the shaded subroutines

and associated variables. . . . . .. .. .. e e e e e 140
Partial dependence in quasi-procedural consistency maintenance. 142
Updating consistency information when input variable VarMod

has been modified. . . . . . . . .. oo 144

Xiii



Flow diagram for genetic software. . . . ... ... ... .. .. 146

Pseudo-code for decoding a genetic string. . . . . ... .. ... 147

Pseudo-code for tournament selection. . . . . ... .. .. ... 148

Pseudo-code for crossover. . . . . . . . . ... o o 149

Pseudo-code for mutation. . . . . . .. ... ... ... ... .. 150
Xiv

R BN



Glossary

Building block: Substrings (sections of genetic string) which correlate strongly
with above-average fitness. A genetic string containing a good building block

should produce a design of relatively high fitness.

Calculus-based: An optimization method which uses gradient information to

guide the search for improvement.

Candidate design: A particular design, or set of values for the design pa-

rameters, which is evaluated during optimization.

Constraint: An equality or inequality relation which must be satisfied by

solutions to an optimization task.

Convergence: A sequence of optimizer steps converges when iteration 7 + 1

produces the same output as iteration z.

Crossover: A genetic operator which recombines sections of the genetic string
from two parent designs, to produce a new design which includes features from

both parents.

Deceptive: A design space where combination of building blocks from differ-
ent parents, expected to produce offspring with improved performance, actually

degrades fitness.
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Design‘space: The N-dimensional space (where N is the number of design

variables) in which the optimizer searches for the best design.

Design variable: One of the parameters used to describe the design, the value

of which can be varied by the optimizer during search for improvement.

Encoding: A mapping between the phenotype (particular design) and geno-
type(genetic string). The genetic string is decoded to produce the actual design.

Environment: The conditions in the region of a particular design, charac-
terized according to constraint activity and to the sensitivity of the objective

function to changes in design variable values.

Epistasis: Coupling of design variables. Appropriate value for one design
variable depends on value for another variable. Epistasis produces a nonlinear

search space.
Evolution: Continuous genetic adaptation of organisms to the environment.

Evolution strategy: A search algorithm based on the operators observed in

natural evolution. Minimal set of operators includes selection and mutation.

Expert system: A set of rules which formalizes the expertise of a human,
represented in a computer so that the problem-solving ability of the expert can

be approximated by the automated system.

Expression: The decoding of a section of a genetic string. Information con-

tained in the genetic string, but not decoded, is not expressed.

Extended encoding: A genetic string which contains several values for each

variable. Only one of the alternative values is expressed.

Feasible: A design which satisfies all constraints.

Xvi



Generation: The group of candidate designs produced by an iteration of a

genetic algorithm. Each iteration produces a new generation.

Genetic algorithm: A search algorithm based on the operators observed in
natural evolution. Minimal set of operators includes selection, mutation and

CTOSSOVeT.
Genetic string: A concatenated list of encoded design variables.

Global optimum: The point in design space which has the best value of the

objective function while satisfying all constraints.

Gradient-based: An optimization method which uses gradient information

to guide the search for improvement.
Infeasible: A design which violates one or more constraints.

Local optimum: A design point which has a better value of the objective

function than all neighboring points, and satisfies all constraints.

Mating restriction: A restriction on recombination of genetic strings from

different designs. Some designs are prevented from mating with each other.

Mutation: A modification of the value at a locus (or several loci) in a genetic

string.

Natural selection: The survival of the relatively fit, resulting in the adapta-

tion of a species to its environment.
Objective function: A scalar figure of merit, used to rank alternative designs.

Optimization: A formal process for seeking improvement by modifying the

values of design variables.
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Parameterization: The modeling of a physical design by a set of parameters.
The chosen parameters are used as input variables for analysis software which

estimates performance parameters for the design.

Penalty function: A function which reflects violation of a constraint. Penalty
functions are appended to the objective function, so that a constrained problem

is described as an unconstrained problem with a modified objective.

Population: A group of candidate designs which exist together. Members of

the population compete to participate in reproduction.

Recombination: The collection of sections of genetic encoding from different

parent strings, and the assembly of those sections into a new genetic string.

Repair: A constraint-handling scheme, in which the values of design variables
are systematically modified to ensure constraint satisfaction prior to evaluation

of the objective function.

Reproduction: Selected genetic strings participate in the creation of a new

generation of candidate designs.

Roulette-wheel selection: The probability of a given design being selected
for reproduction is given by the ratio of its fitness value to the sum of fitness

values for the entire population.

Schema: Similarity template describing a subset of genetic strings which share

identical values at specified loci in the string.

Selection: The choosing of a design from the current population. Selection

criteria are related to the fitness of competing designs.

Xviii
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Sharing function: A function used to degrade the fitness of a candidate de-
sign when other candidate designs are very similar (nearby in design space).
These functions are used to encourage the formation of separate sub-populations,

by penalizing a tight cluster of many population members.

Simulated annealing: A randomized search method based on analogy with
the annealing of metals. Modifications to the current design are randomly di-
rected, but the maximum change is reduced as the number of iterations increases,

according to an artificial annealing, or cooling, schedule.

Species formation: The formation of distinct subpopulations, which cluster

around different local minima in the design space.
Termination criteria: Conditions for terminating optimizer search.
Topology: The geometry of the design space.

Topological optimization: Optimization of the set of parameters describ-
ing a design, rather than optimization of the shape and size of a fixed set of

parameters.

Tournament selection: A selection scheme in which several population mem-
bers are randomly selected to participate in a tournament. The candidate design

with highest fitness wins the tournament, and is selected.

Variable-complexity parameterization: The number of parameters used
to describe a design can change during optimization, which corresponds to a

change in complexity of the design being described.

Variable-length string: A genetic string which can change length. This
means that the amount of encoded information can change during optimization,

and the complexity of candidate designs can vary.
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Chapter 1

Introduction

1.1 Motivation

The standard methodology used in aerospace design is, in a broad sense, an
optimization process. A parametric description of a concept is generated, and
informed judgement is used to estimate appropriate initial values for the pa-
rameters. A merit function is defined, and minimum performance requirements
are specified. The proposed design is evaluated by analysis, and improvement
is sought by systematic modification of the parameters.

The suitability of a formal optimization approach to aerospace design has
long been recognized. When Ashley surveyed aeronautical uses of optimization
in 1981 (1], more than 8000 relevant journal articles, reports and dissertations
were found. One conclusion from that survey was: “At the preliminary design
stage, optimization has great potential as a sound way of choosing among al-
ternative concepts”. Hundreds of academic publications related to aeronautical
optimization continue to be produced each year, yet multidisciplinary optimiza-
tion remains underutilized by industry [2]. In this chapter, the following three
issues that have restricted the effectiveness of automatic search for design im-

provement are discussed:

e Integration of analyses and optimizers



o The need of calculus-based optimization algorithms for accurate gradient

information and a smooth search space
o Fixed parameterization of the design

These issues are discussed in the next three sections of this introduction. New
approaches which address these deficiencies of existing systems are introduced
in the thesis. Each new development is compared with existing methodology,
by application to tasks for which optimization results have been reported in the
literature. These applications include aircraft synthesis studies, interplanetary
trajectory design, structural design of trusses, and aerodynamic design of lifting
surfaces. They demonstrate the advanced search capability of the new system,

and its suitability for diverse design studies.

1.2 Integration of Analyses and Optimization
Software

Large assemblies of complex analysis modules are required for adequate as-
sessment of proposed aeronautical configurations. The system that links them
together should permit introduction of new modules to assess advanced tech-
nologies. The environment should be flexible, to allow the user to explore freely
a wide range of concepts. Efficient execution of analyses is also vital, because
thousands of performance evaluations are required for large optimization tasks.
In this section, the necessity for a complex system is first explained, and then
methods for integrating the system components and controlling their interaction

are discussed.

1.2.1 Analysis Requirements

Analysis methods that predict performance with great precision are essential
tools for aircraft designers. Development costs for aerospace designs are huge,

and most of the outlay is committed very early in the design process (Fig. 1.1).



New aircraft designs often have only a narrow expected competitive advantage
over existing alternatives. It can be financially disastrous if it is found, at the
detailed design stage (or later), that the predicted performance advantage was
due to inaccuracies in the preliminary assessment, and cannot be realised in the

final product.

Cumulative Percentage
3

30.
20.

Life Cycle Cost Committed
(assuming project conlinues

1o production)
10. — ===~ Actual Funds Spent
0 P L | - 1 1 1 L 1 1 L 1
0. 1. 2. 3. 4, 5. 6. 7. 8. 9. 10.
Years

Figure 1.1: Cost committed and actual funds spent on a typical aircraft project.
(From Ref. [3])

The requirement for accurate analysis is complicated by the tight coupling
of aircraft components, which makes it difficult to isolate the influence of any
single departure from an existing configuration. The importance of exhaustive
analysis is strikingly demonstrated in a study of the joined wing concept. Gall-
man [4] found that a joined-wing designed for cruise alone could produce 11%
better performance than a conventional configuration designed for cruise alone,
but takeoff rotation constraints caused the joined-wing, optimized for the full
mission, to be marginally worse than a standard configuration.

Historically, the need for rapid assessment of the entire aircraft has meant

that analysis methods must be quite simple, so algebraic and statistical relations

3



have been commonly applied [5, 6, 7). These statistical methods incorporate em-
pirical knowledge from previous, similar aircraft. The predictive accuracy of the
tools is thereby improved, but their range of application is severely limited.
Novel concepts cannot be evaluated with similar precision, and the consequent
development risks are too great to justify serious investigation beyond the con-
ceptual design phase. The complexity of analysis tools for preliminary assess-
ment of aerospace concepts has rapidly increased, in step with the explosive
growth in computational capacity available to designers. It is now possible to
construct a multidisciplinary system that uses analyses based more on physical
principles rather than simple statistical correlations. This broadens the range
of concepts that can be accurately assessed, but increases the complexity of a

system that must be integrated, yet flexible, extensible, and efficient.

1.2.2 Integration Methods

Management of the complex analysis modules used in aerospace design is a chal-
lenging task. Various approaches have been proposed, and several of them are
incorporated in existing systems. A categorization of integration architectures
is described here, and the merits of different methods are discussed.

Techniques for linking independent programs are categorized in four groups:
close-coupled interfacing, close-coupled integration, loose-coupled interfacing
and loose-coupled integration [8]. Close-coupling fixes the execution path at
compilation, whereas loose-coupling allows execution to be adapted at run-time,
as analysis requirements are altered. Interfacing uses intermediate files to com-
municate between modules, while integration uses shared memory to transfer
information.

Close-coupled integration provides efficient execution, but it produces inflex-
ible systems that are difficult to extend. Synthesis programs that are developed
for a single task, and are small enough to be created and maintained by an
individual, can use this approach. Modern systems for general aerospace design
rely on loose-coupling to link independent analysis modules 8, 9, 10, 11]. In-

terfacing is used when the source code for an existing module is not available,

1



because knowledge of the internal structure of the module is not required [9, 10].
When the source code of the analysis modules is available, integration provides
a more efficient method for transferring information. It requires the insertion of
additional code into each existing source module, to permit direct communica-
tion with a central database which contains all data shared between modules.
Automated procedures to guide the insertion of additional code into a complex
existing program should be provided [8], but they are often not included with
the database system.

Although loose-coupled integration allows the execution path through the
synthesis program to be modified, most executives require the user to supply the
relevant procedure. The user must have detailed knowledge of the dependencies
between modules, to avoid executing subroutines before their input variables
have been computed by another routine. The flexibility of the system is increased
by automatic generation of the necessary computational path.

Paper-Airplane [14, 15] uses a non-procedural constraint-propagation method
to control execution of modules. It is limited by the need for invertible functions,
and the need for user-specified design functions, which describe the sequence of
operations that compute each database variable. The procedures generated by
this executive can be inefficient, because they update all variables invalidated
by a modification to the database, even when the user is interested only in a
few outputs.

The quasi-procedural program architecture [16, 17, 18], employs a consis-
tency maintenance scheme to control execution. The user simply requests the
value of any variable that can be computed, and the system identifies and runs
only the modules needed to make that result valid. Execution efficiency of the
analyses is thereby maximized, although the consistency maintenance scheme
contributes some additional overhead for the database system. A synthesis sys-
tem that links algebraic and statistical analyses with a simple calculus-based
numerical optimizer, and is controlled by the quasi-procedural executive, was

developed and tested by Takai [16]. Impressive performance was achieved for



several design tasks. Similar efficiency for large-scale design systems, and incor-
poration of existing complex analyses in this database framework, is reported in
this thesis, to assess the general practicality of this integration method.

1.3 The Limited Scope of Calculus-Based Op-
timization

Most aerospace design programs use calculus-based optimization algorithms.
These techniques have a well-established mathematical basis. Convergence con-
ditions are well-specified, so termination criteria are easily checked. Calculus-
based algorithms search efficiently, and they are guaranteed to locate an opti-
mum when the search domain is appropriate.

Unfortunately, the restrictions on acceptable search domains cause severe
difficulties for practical engineering applicatibﬁs of these algorithms. Their ef-
ficiency derives from the use of gradient information to guide the search, but
accurate gradient information is often unavailable. Variation of calculated out-
put may not be smooth due to numerical inaccuracy. Linear interpolation of
tabular data, or piecewise linear functions such as the standard atmosphere, can
produce sudden changes in gradient value. The gradient is not even defined for
discrete-valued variables, such as number of engines or number of passengers.

Analytic derivatives are rarely available in complex engineering programs,
so finite-differencing is used to estimate gradients. The cost of these estimates
scales with the number of design variables, so finite-differencing becomes expen-
sive for large problems. The limited precision of estimated derivatives can also
affect the accuracy of search.

Calculus-based optimization algorithms tend to have difficulty when the
initial design is far from the optimum [19], particularly when constraints are
severely violated. They search from a single point, and use local information to
choose the direction of improvement. They are not guaranteed to find a global
optimum, and in multi-modal domains they will generally be trapped in a local

optimum close to the starting point.
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Some limitations of calculus-based optimization can be alleviated using ex-
pert knowledge of the domain and the search algorithm. Several investiga-
tors [10, 16, 20, 21] have introduced expert systems to help inexperienced de-
signers to generate reasonable starting points for the numerical optimizer, or to
provide advice when the optimizer terminates at an unacceptable point. These
goals have been satisfactorily achieved in a number of design environments, but
the degree of success depends on the quality of the rules tailored for each domain.
They are similar to the statistical correlations used in simple analyses, because
the rules are generally based on practical experience with existing designs and
are consequently less useful when applied to new configurations. Expert systems
also do not help when gradient information is not available.

Alternative search techniques are required for multi-modal problems, non-
smooth (even discontinuous) topologies, and domains in which the data are
noisy. Genetic algorithms provide an alternative methodology for these cir-
cumstances [22]. There have been several aeronautical applications of genetic
algorithms, and mixed results have been obtained. Significant success in control
system optimization by genetic methods has been achieved by Krishnakumar
and co-authors [23, 24]. Hajela [25] has performed structural optimization in
nonconvex spaces, although convergence was very slow even for problems with
only a few design variables, and difficulties with constraint-handling were noted.
Bramlette and Cusic [26] used a genetic method for the parametric design of
aircraft, but its performance was generally inferior even to simulated annealing
unless a special mutation operator was introduced. Crispin [27] used a genetic
algorithm for aircraft conceptual optimization, but the populations seemed to
converge prematurely to a sub-optimal design. Tong [9, 10] has employed a ge-
netic algorithm in the preliminary design of turbines, although the method was
applied only when gradient techniques had stalled. Even then it simply shifted
the system away from constraint boundaries, so that gradient methods could be
effectively resumed. The various outcomes of these applications indicate that

the use of a genetic algorithm is not universally appropriate. A more general



investigation into the potential role of genetic search in aerospace conceptual

design is conducted in this thesis.

1.4 Fixed Complexity Problem Formulations

The design space available to automated search algorithms is prescribed by the
user’s formulation of the problem. For numerical optimization, the space is de-
fined by the parameters chosen as design variables. Parameters that describe
general functional components, such as lifting surface, permit investigation of a
wider range of concepts than parameters that refer to specific physical compo-
nents, such as wing and tail. Object-oriented formulations have been introduced
in recently-developed design systems [13, 15], to allow a wider range of configu-
rations to be investigated.

Even when a general parameterization is used, standard optimization algo-
rithms operate on a fixed set of design variables. They are able to locate the
best values for those variables, but they cannot change the set. The design
description has constant complexity throughout the optimization process, even
if the analysis complexity is changed [28]. A sequence of separate optimiza-
tion studies can be performed, with the complexity being increased for each
run, but a richer algorithm would allow the description of candidate designs to
be altered during optimization. Successful features can be identified in simple
designs, which subsequently evolve into designs of greater complexity. This is
similar to the process used by designers, who generally determine parameters
such as wing area and span before choosing airfoil sections. Development of an
algorithm with this capability, which considerably extends the range of design

tasks handled by automated search, is reported in this work.

1.5 Thesis Outline

The current investigation of optimization for aerospace conceptual studies be-

gins with the development of a baseline analysis management and optimization
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system, which incorporates the best features from programs described in this
chapter. When the performance of this system has been established, new opti-
mization methods, based on evolutionary strategies, are introduced. They are
shown to significantly expand the range of design tasks that can be addressed
by formal optimization approaches. Integration with the quasi-procedural exec-
utive improves flexibility of operation and efficiency of execution for these new
methods.

Chapter 2 begins by briefly describing the key features of the quasi-procedural
architecture. A survey of calculus-based optimizers is presentéd, and a sequen-
tial quadratic programming algorithm is chosen for the baseline system. Imple-
mentation details of the optimizer are modified to exploit the efficiency of the
quasi-procedural method. The structure of the analysis subroutines is shown to
have a strong impact on optimizer performance. Complex analyses, including
a vortex-lattice aerodynamic model and a finite element structural model, are
integrated into the system. A comparison is made between the quasi-procedural
executive and a standard procedural method.

A standard genetic algorithm is studied in Chapter 3, because this class
of optimizer has been claimed to be robust and effective in a wide range of
domains. Critical evaluation of the statistical mechanism at the heart of ge-
netic optimization reveals that these methods are sensitive to the topology of
the design space and to the details of specific problem implementation. Appli-
cations to spacecraft trajectory development demonstrate the influence of the
constraint-handling method on optimizer performance. Non-standard specia-
tion and mating restriction operators increase the utility of the basic genetic
algorithm.

Calculus-based methods and standard genetic algorithms all operate on a
fixed set of design variables. A description of all possible elements must be ex-
plicitly included in the genetic string throughout the optimization process, even
when the best parameter set is not known a priori. A modifed genetic algo-
rithm is developed, to permit the number of design variables to change during



optimization. The new algorithm is described in Chapter 4, and an applica-
tion to a simple block-stacking problem illustrates the fundamental advantage
of increasing complexity during optimization.

Standard genetic algorithms have been used by several researchers for topo-
logical design of trusses. In Chapter 5, the performance of the variable-complexity
algorithm is directly compared with earlier results in this domain. The new al-
gorithm allows the use of a simpler encoding, which greatly reduces the search
effort required to reach the optimum. A calculus-based optimizer is used to
identify the best values of continuous variables each time a candidate design is
evaluated by the genetic algorithm.

Chapter 6 describes the application of the variable-complexity genetic algo-
rithm to aerodynamic design of wings. Careful constraint-handling is essential
to avoid premature convergence to a sub-optimal design. A new encoding of
the variables in the genetic string allows adaptation in response to changing
constraint activity during optimization. The algorithm successfully identifies
the nature of the optimal design, but final convergence to the exact solution is
better achieved by switching to a gradient-based method.

The influence of the quasi-procedural executive on the genetic optimizers is
explored in Chapter 7. The flexibility of operation is enhanced, just as it was
for calculus-based methods. Execution efficiency improves when the population
is arranged so that similar designs are evaluated consecutively.

The key requirements for successful optimization in the conceptual design
environment are summarized in Chapter 8. Emphasis is given to the new capa-
bilities introduced in this thesis. The benefits of combining different algorithms
into hybrid optimization methods are discussed. Finally, suggestions are pro-
vided for further investigation into the role of automated search in the design

process.
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Chapter 2
A Baseline Optimization System

The primary goal of this chapter is to develop a system that provides a con-
venient and efficient environment for design studies using optimization. The
importance of flexible and extensible integration of analyses was discussed in
the introduction, and the quasi-procedural architecture, developed by Takai and
Kroo [16, 17, 18], was identified as an executive that provided these features. Im-
provements to the pilot version of this architecture are described in this chapter,
and the enhanced executive is included in the baseline optimization system.

A survey of calculus-based optimization methods is included here. NPSOL [31],
an implementation of the sequential quadratic programming algorithm, is se-
lected as the best available software. Minor modifications to the optimizer are
introduced, to exploit the efficiency of the quasi-procedural executive.

Complex analyses for the design of a medium-range commercial transport
aircraft are incorporated in the system to demonstrate its capability. Existing
modules, which use vortex-lattice modelling for aerodynamic prediction and
finite-element analysis for structures, and were previously close-coupled, must
be modified to communicate through the database. The key steps required to
automate this modification are presented. The computational efficiency and
overhead cost of the quasi-procedural executive are compared with standard
procedural execution. This study establishes that the baseline design system

provides an excellent environment for optimization.
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2.1 Quasi-Procedural Method

The quasi-procedural method differs from conventional programming architec-
tures in that the program is not strictly procedural. While a conventional pro-
gram proceeds from all of the inputs to all of the outputs, a quasi-procedural
program invokes only the subroutines required to produce a valid value for an
output variable requested by the user. The necessary sequence of subroutines is
constructed in reverse order, starting with the subroutine to be executed last,
and stepping back to the subroutine to be executed first. The quasi-procedural
method is named for this automated construction of an efficient computational
path, which precedes procedural execution. A more detailed description of the
path generation is included in Appendix A.

A design system that uses the quasi-procedural method has three parts:
analysis subroutines, a database to store the parameters that define the design
task, and an executive system that integrates the analyses and controls their

execution. Automatic search tools and a user interface are included in the

executive.
i [
: User Interface
Input File Ay
Parameters Quasi-Procedural Subroutines
for database Executive
Automated |
Search Tools |

TASK- GENERIC DOMAIN-

SPECIFIC SPECIFIC

Figure 2.1: Elements of baseline system.
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The analysis subroutines, or modules, are written in standard Fortran77,
except that inputs and outputs are passed to and from the central database
using simple calls to executive subroutines. Details of these communication
subroutines, and the structure of the database, are described in Appendix A.
The central database holds the inputs and outputs of the analysis subroutines. It
acts as a buffer between individual modules, so that changing a single subroutine
does not require modification of routines with which it shares information. It
also reduces the number of interfaces between program modules. For n analysis
modules, there are n interfaces with the database (one for each module). If
modules are connected directly, each might be connected to all others, so the
number of interfaces increases as n(n—1)/2. The maintenance of large collections
of complex analyses is greatly simplified by communicating through a central
database.

The executive controls interactions between analyses and the database, and
monitors the validity of variables. A subroutine is only run when an output is
required in a calculation, but the value in the database is not valid. At that
point, the executive looks up the name of the analysis routine that produces
the required output, and issues a command to run the routine. In contrast to
a conventional program which runs top down, from all of the inputs to all of
the outputs, a quasi-procedural program uses the database to build a sequence
of routines that will produce the required outputs given the available inputs.
In the event that no such path is available, the system will indicate the extra
_inputs that must be provided.

Figure 2.2(a) illustrates a simple wing design task. The goal is to maintain
high theoretical span efficiency, u, at the desired lift coefficient, CL,q, while

achieving a relatively uniform loading, Ci(y). The objective function is:

J = () + (Clreg = G + 201~ 23
L

A vortex-lattice representation is used to describe the wing. Bound vortices are
located at the quarter-chord line, and a control point lies at the semi-span and

three-quarter-chord point of each panel.
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Figure 2.2(b) indicates the computational path. The boxes represent analysis
modules, with AICS calculating aerodynamic influence coefficients, DECOMP
decomposing the system of linear equations, and FORCES calculating the aero-
dynamic forces produced by a specified incidence distribution. The computa-
tional path is indicated by the arrows that connect the boxes, and the design
variables (Taper, Incidence and o [angle-of-attack]) are shown as inputs to
the routines that they affect. The subroutines called by the quasi-procedural
method depend on the validity of the different inputs. If a Incidence input is
modified, only FORCES is called, but if Taper is modified, AICS and DECOMP

must also be invoked.

Bound vortex
Taper
AICS
Design Variables
Taper Control points ‘
o
20 Panel Incidences DECOMP
{Incidences}
Objective o \
Maximize theoretical span efficiercy, u FORCES
Constraints ‘
CL= 1.0 c L () u
C | = constant
(a)Vortex-lattice representation (b) Computational path

Figure 2.2: A simple wing design problem.

This is convenient for coding, because the programmer is not responsible for
calling subroutines in the correct sequence. The method is also efficient, because
it updates only the outputs invalidated by changes to inputs. Any output that
is unaffected by new input values is recognised as valid, so it is not recomputed.
During preliminary design it is common to perform calculations repeatedly, with

14
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only small modifications to the input set for each new calculation. These op-
erations are exactly the type most efficiently handled by the quasi-procedural
system. Takai demonstrated the efficiency of the basic quasi-procedural exec-
utive for preliminary design calculations. The interaction between executive
and optimizer is examined carefully here, to ensure that maximum efficiency is
achieved. Calculus-based algorithms are surveyed in the next section, to identify
the best available optimization method, and the chosen implementation is then

modified to enhance its efficiency.

2.2 Calculus-Based Optimization

The next step in building the baseline system is the selection and incorporation of
an appropriate optimizer. The mechanism of gradient-based search is described
here, and the relative merits of several algorithms are discussed. The sequential
quadratic programming method, which handles constraint gradient information
directly, outperforms the variable metric method used by Takai, which uses
penalty functions to handle constraint violations.

Numerical optimization proceeds by evaluating a sequence of points in design
space, using information from previous evaluations to guide selection of new
designs. Each candidate point is characterized by a number of design variables,
which are selected from the input variables of the analysis system. The merit
of each design is measured by an objective function and constraint functions,
which are outputs of the analysis system.

Calculus-based optimizers have two distinct phases in each iteration: they
select a search direction, and then perform a line search in that direction, from
the current design to a new design with superior performance. This process is
repeated until no direction of improvement can be found. The gradient infor-
mation is used in the selection of the search direction.

A variable metric algorithm, which is recommended for general engineer-
ing design applications [19] was used previously in conjunction with the quasi-
procedural architecture [16]. This method uses gradient information, and also

15



builds an approximation to the Hessian (curvature information) as the search
continues. The problem with the current implementation of this algorithm is
that the constraints are handled by application of an exterior quadratic penalty

function. This means that the descent function is:
J = Juncon + PenWt x C(x)TC(x)

Here, J is the objective value, Junem is the unconstrained objective value,
PenW't is a user-specified weighting factor, and C(z) is the constraint viola-
tion function. The efficiency of the algorithm depends strongly on the choice of
the penalty weight [19]. The weight should be increased as optimization pro-
ceeds, but not too rapidly, because a current design that violates constraints
may be trapped outside the feasible region, making convergence to the optimum
impossible. Numerical difficulties may arise as the value of the penalty param-
eter increases, because the Hessian becomes ill-conditioned (the curvature near
the constraint boundary becomes very large as the penalty parameter increases).

Interior penalty functions may be used to prevent the solution from being
trapped in the infeasible region, but they require a feasible starting point, and do
not permit the use of equality constraints. Extended interior penalty functions
combine interior and exterior penalties to overcome some limitations of each
penalty type. However, interior and extended interior methods require that the
penalty being applied should increase as the optimization proceeds, so problems
due to ill-conditioning of the Hessian arise for these methods, too [33].

The penalty method described above is an example of a transformation
method, in which the constrained problem is converted to an unconstrained
one. There are several standard algorithms that directly use information about
the constraint gradients when calculating new search directions. These include
sequential linear programming, sequential quadratic programming, feasible di-
rection methods and reduced gradient methods. All of these methods are widely
discussed in the literature [19, 35, 33, 34]. One of the most promising of these
methods is sequential quadratic programming, which has been encoded in the
NPSOL software package developed at Stanford Univerity’s Optimization Labo-

ratory [31]. This method searches for stationary points of a Lagrangian function.
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The Lagrangian may be augmented by the addition of a penalty term, which
ensures that the system searches for a minimum point. When accurate Lagrange
multipliers are used, the penalty weight need not be large, which means that
the problem can be better-conditioned than a formulation which relies purely
on penalty functions [33].

As suggested by the name of the method, the search for the minimum of
the Lagrangian involves a sequence of quadratic programming problems. Each
subproblem is formed from a quadratic approximation to the cost function, and
linear approximations to the constraints. This approximation is chosen because
the Kuhn-Tucker first-order necessary conditions for the approximation are sat-
isfied by the solution of a system of linear equations. The quadratic program-
ming subproblem produces a new search direction and updated estimates for
the Lagrange multipliers. A line search is performed in the direction suggested
by the quadratic subproblem, and new approximations for the objective and
constraints are made at the new design point. The process is continued until
convergence is achieved, at which point the line search indicates that no move
should be made.

The NPSOL optimizer, which implements the sequential quadratic program-
ming algorithm, has been added to the quasi-procedural preliminary design sys-
‘tem. It searches more efficiently than the variable metric method used previ-
ously. Convergence history for an aircraft synthesis task, with 10 variables and
5 constraints, is shown in Fig. 2.3.

NPSOL took 613 seconds, on a Macintosh IIci computer, to converge to
the optimum, whereas the variable metric method required 3856 seconds. Both
optimizers were started at the same point, and both converged to the same op-
timum. The two optimizers have different starting points on the chart because
they penalize constraint violations in different ways. They reach the same opti-
mum because there are no violations at the optimum, and hence no penalties.
The sequential quadratic programming method is used for optimization in the

remainder of this chapter.
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Figure 2.3: Convergence history for different calculus-based algorithms.

2.3 Controlling Calculus-Based Optimization
with the Quasi-Procedural Method

The quasi-procedural method is advantageous in optimization, because the pro-
cess involves repeated updates of the same output variables in response to mod-
ification of a subset of inputs. The aim here is to identify possibilities for manip-
ulating the optimization process to exploit the quasi-procedural efficiency. Such
manipulations will involve reductions in the number of inputs being modified at
each step.

Recall that calculus-based optimizers have two distinct phases in each it-
eration: the gradient is computed to choose a direction of search, and then a
line search is performed in that direction. In complex engineering problems, it
is common to estimate gradient components using finite-difference approxima-
tions. Each variable is perturbed in turn, to isolate its influence on the objective
and constraints. On the other hand, the line search usually requires all design

variables to be modified at once. Thus, the quasi-procedural method has greater
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impact on the gradient calculations than on the line search. For most problems,
this is the dominant computational expense.

Consider the wing design problem investigated by Takai, which was described
in Section 2.1 and illustrated in Fig. 2.2. In the line search, the design variable
Taper is modified at every function evaluation and so subroutines AICS, DE-
COMP, and FORCES are always called. In this phase of optimization, the
quasi-procedural method does not avoid subroutine calls. However, many calls
are avoided during the gradient estimation phase, because only one component
of the Jacobian (the gradient with respect to T'aper) requires the invocation of
AICS and DECOMP.

The percentage of calculation time that is saved by the quasi-procedural
method depends on the details of the optimization algorithm being used. Takai
found a 73% improvement when using the variable metric algorithm, with central-
difference estimation of the gradient. Using NPSOL [31], with forward-difference
gradients, the quasi-procedural system achieved a saving of about 60%. The dif-
ference is due to a reduction in the expense of the gradient estimation, because
forward-differencing is faster than central-differencing, while the cost of line-
search is unchanged.

This shift in relative expense hints at an indirect influence that the quasi-
procedural method exerts on the line-search. When gradient estimation is ex-
pensive, it is common to use an accurate line-search, so that fewer gradient
estimations are performed. With the less expensive gradient estimation, it can
be beneficial to reduce the accuracy of the line-search. The results presented in
the next section indicate the effect of line-search accuracy on optimizer perfor-

marnce.

2.3.1 Efficient Gradient Approximation

The large benefit of the quasi-procedural method for finite-differencing motivates
a closer look at how this operation is performed. The standard finite-differencing
method requires two variables to be modified for the calculation of each column

of the Jacobian. The new variable must be perturbed, and the variable that was
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previously perturbed must be restored to its original value. This restoration to
the unperturbed value ensures that the change in objective value is due entirely

to the modification of a single variable.

Figure 2.4: Standard and lazy finite-difference schemes for gradient estimation.

An alternative “lazy” method avoids the restoration of previously perturbed
variables to their original value as illustrated in Fig. 2.4. The search direction
calculated using this gradient estimation is not the same as the one given by
the previous method, because the gradient differs by a second order term. The
new method rha's produced successful convergern:cre for all problems on which it
has been tested, but it sometimes requireé a different number of line searches to
reach the optimum. The line-search accuracy should again be matched to the
gradient estimation technique being used.

Figure 2.5 indicates the computations required for gradient estimation, for
different finite-differencing schemes. A grid is constructed, with each column
associated with a design variable, and each row associated with an analysis
subroutine. The shading of each box in the grid indicates whether the analysis
routine of that row needs to be executed when estimating the gradient for that
column.

A standard procedural executive requires all analyses to be run whenever
any design variable is modified. Hence, all boxes in the grid for Fig. 2.5(a),

which shows the necessary computations for procedural execution, are shaded.
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When the quasi-procedural executive is used, subroutines AICS and DECOMP
are not run when the gradient with respect to Incidence is estimated. However,
these subroutines are executed when the gradient with respect to a is computed,
because the perturbed value of Taper is returned to its original value. Hence,
Fig. 2.5(b) includes lightly shaded boxes to indicate that the need to run these
subroutines is associated with restoration of a previously perturbed variable to
its original value. Figure 2.5(c) shows that this work is avoided by the lazy finite-
differencing scheme. Figure 2.5(d) demonstrates that it can alternatively be
avoided by re-arranging the columns of the Jacobian. This re-ordering approach
is described further in the next section.

The change in gradient estimation usually produces only a small increase
in the savings provided by the quasi-procedural method, and this is true for
the wing design problem. However, the effect is problem-dependent. If the
incidence variables were excluded from the example, the original formulation
would not be affected by the quasi-procedural method. The savings due to the
new gradient estimation technique would then be a much higher percentage of
the total computation. For the aircraft optimization problem considered by
Takai, gradient estimation time was reduced by 10% relative to the standard

estimation technique.

2.3.2 Ordering Design Variables

The lazy gradient estimation technique does not restore variables to their unper-
turbed values because it is costly to do so. The lazy finite-differencing scheme
would not be attractive if there were no cost associated with the restoration.
Consequently, it is useful to arrange the design variables to minimize the cost
of restoration. This means that the previously perturbed variable should only
invalidate a subset of the routines invalidated by the next variable. This inval-
idation information is available in the quasi-procedural method, so it is simple
to sort the variables such that the set of invalidations caused by modification of
the value for variable 7 — 1 is a subset of the invalidations caused by changing

variable j. The result for the wing design example is shown in Fig. 2.5(d). The
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Figure 2.5: Quasi-

procedural savings in gradient estimation for wing design task.
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# Line- Computer | & Saving
Searches Time
No Quasi-
5 8.97 -
Procedural ! 18.9
Quasi- 15 8.62 55
Procedural
Difference
Ordering of 15 8.02 58
Variables

Table 2.1: Optimization efficiency with accurate line-search.

# Line- Computer % Saving
Searches Time
No Quasi-
o 18 21.12
Quasi- 18 8.14 61
Procedural
Lazy Finite- 19 7.63 64
Difference
Ordering of 18 743 65
Variables

Table 2.2: Optimization efficiency with inaccurate line-search.

Taper variable is shifted to be modified last, because the invalidations due to
modification of a are a subset of the invalidations caused by Taper.

Computational savings achieved during gradient estimation are similar to
those observed for the lazy finite-difference scheme. As shown in Table 2.1 and
Table 2.2, overall optimizer performance for the wing design problem is greatest
when this technique is employed, because the number of line-searches required
to reach the optimum is not affected by the order in which the variables are
arranged. The results also indicate that the accuracy of the line search should
be reduced as the cost of each gradient estimation is reduced.

Fig*ufe 2.6 shows the computation required to estimate gradients for an air-
craft design example. There are ten columns in the grid, each corresponding to

a design variable. As in Fig. 2.5, the shading of each square indicates whether
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a particular subroutine must be executed to estimate gradients with respect
to a given design variable. The worst ordering of design variables, shown in
Fig. 2.6(a), produces the maximum number of invalidations caused by restora-
tion of a previously perturbed variable to its original value. The best ordering,
shown in Fig. 2.6(b), minimizes these invalidations. This example illustrates that
the variables cannot always be arranged in a sequence that produces a strictly
increasing number of invalidations for each design variable, but the number of
unnecessary computations can be reduced significantly. Here, the number of sub-
routines executed due to restoration of previously perturbed variables is reduced
from 38 to 6. There is a 10% difference in computation time for the worst-order
case and the best-order case, which is the same as the saving associated with
the lazy finite-difference scheme for this problem.

Variable ordering is important for optimization techniques that do not use
gradient information. When using a response surface technique, the sample
points should be evaluated in a sequence that minimises the number of vari-
ables modified between consecutive points. In a genetic algorithm, ordering the
population so that individuals with similar characteristics are evaluated consec-
utively can reduce the time required for that evaluation. Ordering is less useful
in this case, because it has to be rgpeéted at each generation, as the population
changes. The cost of ordering must be balanced against the cost of evaluating
each individual, but when evaluation is expénsive, optimizer efficiency improves.

This issue is considered further in Chapter 7.

2.3.3 Removal of Iteration Loops in Analysis Subrou-

tines
Many engineering analyses contain feedback loops, in which estimates of a
certain parameter are successively refined through iteration until the value is
converged to within a specified tolerance. A gradient-based optimizer requires

smooth functions, so the tolerance must be small compared with the finite differ-

ence step size. This can require many iterations, particularly when convergence
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Figure 2.6: Quasi-procedural savings in gradient estimation for aircraft synthesis
task.
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is weak. The iteration may be replaced by an equality constraint, which must
be satisfied at an optimum design point [32].

Such constraints have been implemented in the TASOP preliminary design
code [12], and provided dramatic improvement in both reliability and speed of
optimization, but the observed benefits for a wing optimization were problem-
dependent [36]. The influence of the different program structures depends on the
cost of the extra design variable compared with the savings of avoided iterations.
The only iteration loop in the analysis used in the simple aircraft configuration
problem is on zero fuel weight. It is strongly convergent, so only a few cheap
iterations are required. Optimization with the extra variable and equality con-
straint is not significantly faster than optimization with the iteration loop (their
relative performance varies depending on the point in design space from which
the optimization is started). However, each iteration on zero-fuel-weight re-
quired substantial computation in the more complex problem described in the
next section. The analysis that replaces the iteration with a design variable and

constraint takes half the time of the original analysis to reach the optimum.

Geometry GeomeuﬂGFW VGQ

WingWt WingWt
ZFW J {
MaxTOW MaxTOW
| ¥
Range Cost Range Cost ZFWcon

Figure 2.7: Replacement of iteration loop with design variable and constraint.

While the net benefit of loop removal depends on the sensitivity of the com-
puted result to the estimated initial value, the role of the quasi-procedural

method is clear. It minimises the work associated with the introduction of
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an extra design variable, and thus maximises any computational savings that

might accrue.

2.4 Application of the Baseline System To a

Complex Problem

The effectiveness of the quasi-procedural method was demonstrated in some
simple applications by Takai [16, 17, 18]. A wing design problem (20 panel in-
cidence variables, 1 angle of attack, 1 taper ratio) produced a 73% reduction
in computation time. A complete aircraft synthesis (10 design variables, 5 con-
straints) required 22% less computation time than the conventional method.
Preliminary studies for aircraft design may, however, involve much more com-
plex analyses, and much larger sets of data, than these sample problems. The
full-mission optimization of a transport aircraft is considered here, to check that
the quasi-procedural method continues to perform well when optimization runs
take minutes on a supercomputer rather than minutes on a personal computer,
and the central database has thousands rather than hundreds of entries.

To handle problems of this magnitude, several small changes have been made
to the quasi-procedural system. The executive routines are now written in
machine-independent Fortran, which has allowed them to be run on the Cray
Y-MP and several workstations. Additional routines have been introduced to
control the transfer of vector and array variables between the analyses and the
database. The method for assembling a computational path has been modified
to improve the extensibility of systems involving many analysis routines. Previ-
ously, data files associated with each analysis routine were required for building
the path, but now the user need only supply a single project file. It is now pos-
sible to provide more than one analysis to compute the same output variable,
and the appropriate method for a given situation can be selected by the user.
This last modification allows the optimizer to use approximate analyses along
with detailed analyses, which has been shown to be advantageous in situations

where the detailed analysis is computationally expensive or non-smooth [28].
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2.4.1 A Sample Problem

The problem chosen for consideration is the full-mission optimization of a trans-
port aircraft, using the method developed by Gallman and Kroo [30]. Aerody-
namic loads are calculated using a vortex-lattice model. Induced drag is found
by integration in the Trefftz-plane. The aircraft model includes fuselage, wing
(two spanwise elements, so inboard twist may differ from outboard twist), en-
gines and pylons, vertical tail and horizontal tail. It also captures the effects
on load distribution of flap and elevator deflection. Wing and tail structural
weights are computed using beam theory applied to a structural box that is
sized to resist the maximum applied loads from five different flight conditions.
‘An iteration loop is used in this sizing, because the loads and the weights de-
pend on each other. At each iteration, the lift coefficient is calculated using an
assumed weight, and the aircraft is trimmed to ensure that the load distribution
is realistic. Iteration continues until the calculated weight matches the assumed
weight. The twelve design variables, nine constraints and the objective function
for the chosen problem are shown in Fig. 2.8. Previous optimization using these
analyses has required about 200 seconds CPU on a Cray Y-MP.

2.4.2 Modification of Analyses for Quasi-Procedural Ex-

ecution

While the central motivation for this work is to check the performance of the
quasi-procedural system, it is also important to deal with the modification of
existing procedural analyses. Difficulties in this area would have ramifications
for the usefulness of the system in terms of extensibility, because new analyses
must be able to interact with existing routines. Although integration of sim-
ple analyses with the quasi-procedural executive is trivial, experience with this
larger code, which has 8000 executable lines and uses 20000 variables, suggests
that the modification process should be automated as a precompilation step.

The key issues encountered during modification are discussed below.
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Figure 2.8: Optimization of mid-sized transport aircraft.
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It is important to note that the difficulties with the original code are re-
stricted to the passing of variables between routines. Hence, the first job is sim-
ply to identify all the inputs and outputs of each subroutine. The second task is
to replace the commands that send them to (or get them from) other routines
with commands that send them to (or get them from) the central database.

Programming tools can be developed to identify the inputs and outputs of
analysis routines. All variables appearing in common blocks and calling state-
ments may be communicated between subroutines. Inputs are distinguished
from outputs by the way they are used in the current routine. The highlighted
variables in Fig. 2.9 provide examples of the three classes of variables that must

be distinguished.

SUBROUTINE StatM

Real Data{1000), Cref, CL, CM
Common Data, Cref, CL, CM

XCGaft =Data(521)

Alpha = 1.0

ElvDEL = 0.0

Winc = 0.0

CALL AEROAlpha.ElvyDLfL,Winc XCGaft
CLf =CL

CMf = CM

SM = - ({CMs-CMf)Cref/ (CLs-CLf)
Data(555) = SM

RETURN

END

Key: Input to this routine.
Qutput to routlpne called

by thia routine,
Output to routine which

called this routine.

Figure 2.9: Identification of inputs and outputs.

It is often necessary to introduce new variable names for inputs or outputs,
because a single name was used for several variables in the original code. This
difficulty arose in the joined-wing code because a common block used in aerody-

narnics routines contained variable names that also appeared in a common block
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used in structural routines, but the names referred to different variables. The
problem also occurred because angle-of-attack was both an input and an output
for the subroutine used to trim the aircraft, and because elevator deflection was
output by several routines. This requirement for unique names may seem to
complicate the modification process, but they can easily be automatically gen-
erated. In the example of code modification presented in Fig. 2.9 and Fig. 2.10,
the variable CL, originally in a common block, is changed to CL-AERQo in
the database. The suffix indicates that it is an output of the AERO routine,
and thereby distinguishes it from CL calculated in any other routine. The new
names make it easier to trace each variable in the source code, which enhances
the extensibility and understandability of the system.

The code that transfers information between routines is replaced by calls to
quasi-procedural executive routines, with a different routine being used for each
of the three different classes of variables being communicated. For inputs, a call
to subroutine GET is inserted prior to the line in which the variable is first used.
For outputs that are used by a routine being called by the current routine, a
call to subroutine PUSH replaces the regular call. All other outputs are sent to
the database by introducing a PUT command at the end of the current routine.
(The distinction between PUSH and PUT is that PUSH temporarily assigns
a value in the database, while PUT makes a permanent assignment.) These
modifications are illustrated in Fig. 2.10. All communications to and from the
analysis routine appear explicitly as calls to these executive routines, aiding the
programmer in understanding the flow of information.

A project file that lists all database entries can be written while the inputs
and outputs are being identified. Whenever a new variable is found, it should be
added to the file. If it is output to be used by a routine that called the current
routine, the current routine should be listed as the analysis routine. In Fig. 2.11,
each variable carries the default value of 9999., because the source code being
modified does not provide the actual value.

Hence, an automated precompilation procedure should generate source code

and an input file that are suitable for use with the quasi-procedural executive

31



SUBROUTINE StatM

call GET( XCGaft ,'XaftCG' )
Alpha = 1.0
E1vDfL

= 0.0
Winc = 0.0

call GET(CLf, 'CL-AEROo' )
call GET(CMf, 'CM-AEROo' )

call GET{ Cref ,'Cref' )

SM = - (CMs-CMf)*Cref/(CLs-CLf)
call PUT( SN ,'StaticMargin’ )
RETURN

END

Figure 2.10: Insertion of calls to communicate with the central database.

_XaftCG 9999.
_alpha 9999.
_elvdfl 9999.
_winc-delf 9999.
_cgposition 9999.
_CL-AERO0O 9999.
ANALYSIS: AERO
_CM-AEROO 9999.
ANALYSIS: AERO
_Cref 9999.
_StaticMargin 9999.

ANALYSIS: STATM

Figure 2.11: Generation of project file.
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routines. It should be noted that automatically generated code will not always
fully exploit the quasi-procedural method, because it is sometimes beneficial to
break existing routines into smaller units. Sometimes logical tests have been
included in the original code to avoid some unnecessary calls. These will not be

removed automatically, and can expand the database unnecessarily.

2.4.3 Performance of the Baseline System

The performance of the quasi-procedural method has been assessed by direct
comparison with the system used by Gallman and Kroo for the optimization
of transport aircraft. The computations performed in each subroutine were
not modified, to ensure that any differences in performance would be entirely
attributable to the quasi-procedural control of subroutine execution. In some
cases, however, large subroutines were split into smaller routines. This allowed
the system to avoid calculation of outputs that were not specifically requested.
Both systems used NPSOL for optimization, with the same settings of optional
parameters and the same scaling of variables. Tests were performed on an IBM
RS6000 workstation, and on a Cray Y-MP supercomputer.

The impact of variable order and finite-difference scheme on optimizer per-
formance is similar to that quoted for the simple aircraft optimization discussed
earlier. The results presented in this section for the new system are for the best
ordering of design variables, and for the standard finite-differencing scheme,
because best performance is achieved with these choices.

The baseline system successfully handled this optimization task, reaching
the same optimum point as the standard analysis system. This solution was
consistently produced for optimization runs from several different initial design
points. These results confirm the effectiveness of the new executive routines,
and they verify the accuracy of the modified analysis routines.

Optimization with the quasi-procedural system reduced the time spent on
the analysis routines. The reduction in analysis subroutine calls for this op-
timization problem is important, because care had been taken in the original

routines to prevent unnecessary computation. For example, design variables
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that affect the expensive AICS subroutine were identified in an input file, so
that it would not be called during the calculation of all gradient components.
The quasi-procedural system handled this automatically, but also identified un-
necessary calls to inexpensive routines that were repeated thousands of times.
The impact of these routines on total computation time is more difficult to

handle by handcrafting, but it is also much more significant.

200
; ard Total time : 598 sec
8&%}{2 Total time : 688 sec
150 QPM, no ZFW loop Total time : 355 sec
)
3
< 100
(8]
g
=
50
0 %

Aero Beam Interp Forces GetQPM GetV
Subroutines

Figure 2.12: Relative computation times for complete optimization.

The overhead associated with the quasi-procedural control of the analyses
increased the total time of optimization, so that it required slightly more compu-
tation than the standard system. Examination of the most expensive executive
routines reveals the aspects of the method that are expensive.

GetQPM is the subroutine that generates and checks the computational path
for the system. Almost all of the time spent in this routine is used in the first pass
through the analyses, when the path is built. Figure 2.13 shows that GetQPM is
less costly in later iterations. As the number of iterations is increased, GetQPM

takes a smaller fraction of the total time. The expense of path generation is
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not really part of the optimization, because it could be built and saved prior
to beginning the optimization run. When the same analyses are used for many
optimization problems, it is possible to re-use the dependency information, in
a manner similar to the re-use of Hessian information when warm-starting an
optimizer. Consequently, it is reasonable to account for the bulk of the time
spent in GetQPM as development time, because the programmer is relieved of
the burden of explicitly coding the subroutine calls.

Much of the overhead time is devoted to writing vectors to and from the
database, as local variables are kept separate from global variables. This cost
is less significant on the multi-processor Cray Y-MP than on the workstation,
but programmers should be aware that it is expensive to transfer vectors to
subroutines that are called often. In the example, the AERO routine is called
60,000 times during an optimization, and it uses GETV 28 times at each call,
which accounts for 70% of the cost of getting vectors from the database. Alter-
ation of the structure of this single routine, to limit the number of vectors being
transferred, leads to a substantial reduction in the cost of optimization.

The remaining overhead is chiefly devoted to identifying which database
variables are to be associated with local variables, and to tracking the validity
of database variables as inputs are modified. Both of these tasks are strongly
affected by the structure of the analyses, because loops require modification
of inputs at every iteration. A method for replacing an iteration on zero-fuel-
weight with an extra design variable and a constraint was described earlier, and
it was noted that the total optimization time was reduced by 48%. Analysis ar-
chitecture has a dramatic influence on the overhead cost of the quasi-procedural
method, with the simpler structure reducing path generation time by 75%. This
suggests that further effort should be devoted to developing more general meth-

ods for handling non-linear program architectures.
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Figure 2.13: Relative computation times for one iteration.

2.5 Summary

This chapter has described the development and validation of a baseline design
system that combines a quasi-procedural executive with a sequential quadratic
programming optimizer. Standard Fortran subroutines have been modified so
that they can be controlled by this system, and a technique for automating
the conversion process has been outlined. The system has performed success-
fully on a computer-intensive optimization task. Its flexibility and extensibility
become more apparent as the complexity of the analysis increases. The suit-
ability of this architecture for controlling aerospace optimization systems has
been confirmed. It is now being used for preliminary design studies at the Boe-
ing Aircraft Company [37], where an automated software conversion tool is also
being developed [38].

Investigation of the role of the quasi-procedural method in calculus-based

optimization reveals that the influence of the system is greatest when a small
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number of inputs are modified at each pass through the computation. Conse-
quently, it is significant when gradients are estimated using finite-differences,
but it is less important during the line-search. An investigation of the impact
of the method when automatic differentiation [39, 40] is used to compute gra-
dients is in progress, but preliminary results indicate that it provides significant
benefits [41].

The best formulation of the optimization task is affected by the interaction
between the executive and the optimizer. The quasi-procedural method has been
shown to reduce the cost associated with extra design variables and constraints
that are introduced to replace iteration loops. Coupling variables and constraints
can be used, in similar fashion, to split a large problem into components that
execute in parallel. (When an output parameter from one routine is an input
to a second routine, the input variable can be made a design variable so the
routines can execute independently. The dependence is captured by a constraint
requiring the output of the first routine to match the design variable input to the
second routine at the completion of optimization). Work on this decomposition
method, and on parallel optimization with the quasi-procedural architecture, is

being conducted by other members of the aircraft design group at Stanford [42].
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Chapter 3

A Simple Genetic Algorithm for

Aerospace Design

The range of problems that can be considered in the baseline system is limited
by the calculus-based optimizer’s need for gradient information, which is not
available in many aerospace design tasks. A more general automated search
capability can be attained through integration of optimization algorithms which
do not use gradients. One such method, a genetic algorithm, is studied in this
chapter.

Figure 3.1, taken from Ref. [43], displays several complex and highly-refined
flying creatures that have evolved naturally. These biological designs are com-
pared with man-made flying machines with similar features, to illustrate that
human designers have often been inspired by biological precedent. Useful analo-
gies are not limited to the designs themselves, but can extend to the process by
which they were developed. Genetic algorithms belong to a class of optimization
methods known as evolution strategies, which use operators similar to those of
natural evolution to guide their search for improved performance. The basic
search mechanism of genetic optimizers is described in this chapter.

Genetic optimization occupies a gap in the range of available techniques,
lying between gradient-based methods and random search [22]. It can be used

in multi-modal domains, or when the search space is discontinuous or noisy.
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Figure 3.1: The natural evolution of flying devices inspires the development of
a genetic algorithm.
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Successful applications of genetic algorithms have been reported in many disci-
plines, including pattern recognition [44], layout [45], scheduling [46], and par-
titioning [47]. These achievements suggest that the genetic algorithm provides
a robust, general purpose search capability, but their use is not universally ap-
propriate. The optimizer must be able to exploit some structure in the search
space to guide the generation of improved designs. Expert knowledge can be
used to shape a domain so that it possesses this necessary structure. Optimizer
parameters can be selected so that the genetic algorithm can detect it.

In this chapter, several features that can limit optimizer performance are
discussed. Applications in spacecraft trajectory design demonstrate that imple-
mentation details strongly influence optimizer behavior. They also show that

the genetic algorithm provides new search efficiency in this design domain.

3.1 The Genetic Search Mechanism

All optimizers search for improvement of an objective function. Calculus-based
methods use gradient information as their guide, as described in Section 2.2, but
evolution strategies mimic the natural evolutionary process. Genetic algorithms
form one class of evolution scheme, and are distinguished by the basic set of
genetic operators they use to seek improvement. A number of evolutionary
schemes are described here, and the essential features of genetic algorithms are
identified.

Natural selection is sometimes simplistically described as “survival of the
fittest”, but it is more accurate to say “survival of the genetic code of the
fittest”. Similarly, in a genetic optimizer it is an encoding of the relatively fit
candidate that survives. A parametric description of the design is developed, and
the optimizer is used to identify appropriate values for the parameters. Each
individual is represented by a genetic string, which is a concatenation of the
values of the design variables. The entire string is analogous to a chromosome,

with genes for the different features (or variables).
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The simplest search process is purely random. A single starting point is
chosen, and a sequence of undirected mutations, or modifications, is made. The
performance of each design is recorded, but information about previously evalu-
ated designs is not used to guide the development of new designs. Convergence
to an optimum is only guaranteed if the design space is exhaustively evaluated.

The earliest artificial evolution scheme was developed by Rechenberg in
1964 [48]. It adds selection to the purely random search. When a single design
is randomly mutated, or modified, to generate a new design, the two designs
are compared. The design with higher performance is selected, and used as the
starting point for further modification. This sequence of random modification
and selection is repeated for many iterations. Improvement is achieved whenever
the mutation produces a design with superior performance, but the new design
is rejected when its performance is inferior. Although progress is not guaranteed
at every step, it can be accumulated after many iterations.

This scheme out-performs random search when it is better to make ran-
dom modifications from one point rather than another. This is true when the
search domain is regular, because higher performance is expected in the neigh-
borhood of the design with superior fitness. A maximum mutation step should
be specified, so that the mutation operation can only reach points in the neigh-
borhood of the current design. The requirement for regularity restricts the range
of applications for which this search is appropriate, but it is not unreasonable
for an evolutionary algorithm. Dawkins [49] stresses that complex biological
designs are the result of accumulating a large number of small changes, with
improvement in performance at each change. (It is worth noting, in passing,
that simulated annealing algorithms [50] are similar to this mutation-selection
sea.rch scheme, except in the details of selection, and in the criterion used to size
the maximum mutation step.)

The simple mutation-selection evolutionary algorithm performs a series of
local searches, which are similar to, but less efficient than, the iterated line
searches of gradient-based optimization methods. In multi-modal doamins, these

searches can terminate at a locally optimal point. Parallel searches from several
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points are more likely to identify the global optimum. Consequently, a popula-
tion of candidate designs which are considered simultaneously has more robust
performance than a search from a single point.

When a population of candidate designs is available, the optimizer does not
need to conduct a number of independent local searches. Different population
members can share information to improve search efficiency. Evolutionary search
from a single point must be asexual, and is limited to a mutation operation.
Genetic search from a population of points permits sexual reproduction, meaning
that offspring can be formed by recombining elements from two parents. This is
done in a crossover operation, which takes different pieces of the genetic string
from different parents, and recombines them to form viable offspring.

A crossover operator is much more powerful than a random mutation opera-
tion when the search domain has a structure that provides correlations between
parts of the genetic string (genotype) and the performance of the individual
it represents (phenotype). Substrings, or building blocks, which appear in the
description of above-average phenotypes are likely to survive into the next gener-
ation, even if the genotype is broken up by the action of crossover and mutation.
Short, low-order building blocks are retained and combined to form higher-order
building blocks, with the process repeating over many generations until the best
design is found.

Figure 3.2 illustrates the essential features of a genetic algorithm. A pop-
ulation of candidate designs is generated. Each design is described by a set of
variables, which are encoded in a genetic string. The performance of each mem-
ber is evaluated by computing values for the objective and constraint functions.
Designs with high performance are selected to participate in reproduction. The
crossover operator recombines elements of the genetic encoding of each parent,
to produce a new encoding for a new design that inherits features from each
parent. The mutation operator may also modify elements of the new individual,
so that new features not present in either parent can be introduced. Thus, the

basic operators of selection, crossover and mutation permit both exploitation of
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the best features in the current population, and exploration for features that are

not currently represented.

Population
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Figure 3.2: A standard genetic algorithm, illustrating the roles of selection,
reproduction and crossover.

The crossover operator distinguishes genetic algorithms within the range
of evolution schemes. This operator increases search efficiency, but requires
a search domain which contains building blocks that can be recognized and
exploited through recombination. Although formal gradients are not required,
some trend information should be available. These limitations of genetic search

are discussed further in the next section.

3.2 Limitations of Genetic Algorithms

The genetic algorithm is unlikely to be successful in domains where low-order
building blocks do not combine to form superior higher-order blocks. This may

occur when the different variables are decoupled, so that the optimal value of
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each variable is independent of the values of other variables. Davidor [51] dis-
cusses the importance of epistasis (coupling of design variables) on the perfor-
mance of genetic algorithms. More significantly, above-average low-order build-
ing blocks may combine to form below-average higher-order blocks [22]. When
this occurs, the domain is called deceptive, because the attractive building blocks
are misleading.

Difficulties can arise even in domains that are not deceptive, if the bet-
ter building blocks are not recognised, or they are not retained. Liepins and
Vose [52] note that genetic algorithms may fail if the chosen embedding (repre-
sentation of the variables in the genetic string) is bad, if sampling error gives un-
reliable estimates of the relative utility of building blocks, or if crossover breaks
up building blocks of high utility. These potential problems are described below.

Encodings that allow description of infeasible solutions increase the work for
a genetic algorithm, because they increase the size of the total search space,
and reduce the proportion of useful building blocks in the population. Use of
a precedence matrix in a sequencing task allows the description of candidate
orderings that are logically inconsistent (eg A precedes B, B precedes C, C pre-
cedes A) [53]. With only 8 items to be placed in sequence, 99.98% of all possible
strings describe impossible orderings, and a randomly-generated initial popula-
tion is unlikely to contain any feasible candidates. Permutation encodings used
in conjunction with re-ordering operators are much more successful in problems
of this type [42].

The population is a small sample of all possible designs in the domain. An
ideal sample includes all the important features of the domain, but if some help-
ful building blocks are not present the representation is not accurate, and the
sample has some error. Population size has a strong effect on sampling error,
with the error reduced in large populations where building blocks are more likely
to be represented. Goldberg has presented theoretical results for optimal popu-

lation size for serial genetic algorithms which suggest that total computation can
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vary anywhere from logarithmically to exponentially with problem size, depend-
ing on the choice of population size [54]. As the size of the problem increases, the
population should also increase, but the required size will be domain-dependent.

Crossover is likely to disrupt useful building blocks when the components of
those blocks lie far apart in the string, because the probability of the crossover
point falling between the components is high. Expert knowledge of the domain
can help to prevent crossover disruption. In aircraft design, a good encoding
would place wing sweep and thickness-to-chord ratio close together in the genetic
string. They are very tightly coupled, so they will form a useful building block
which is unlikely to be broken up by crossover if they are consecutive entries in
the string.

In function optimization by genetic methods, the standard method for han-
dling constraints is the application of penalty functions to the objective [22]. It
is desirable to use graded penalties that reflect the extent of constraint violation,
rather than applying a harsh penalty in an attempt to avoid the infeasible region
entirely [55, 56], but it is difficult to grade these penalties when evaluation of the
performance is impossible. If a fixed penalty is applied, the genetic optimizer
can converge prematurely, to a point that is simply feasible rather than optimal.
When many members of the population are unable to be analyzed, and conse-
quently share a very poor rating, it is difficult to correlate the building blocks
with performance, and sampling error is increased. An alternative approach for
handling constraint violations is to perform some sort of repair to correct the
infeasibility [57], and to evaluate the performance of the repaired design.

3.3 A Simple Genetic Algorithm

The genetic algorithm used in this research is based on Goldberg’s SGA (Simple
Genetic Algorithm), which is listed in Ref. [22]. The operators are slightly
modified to handle real-valued or binary encodings. Roulette-wheel selection is
replaced by tournament selection, and advanced operators for species formation

and mating restriction are introduced. The software developed for this thesis is
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described in Appendix B. The general features of the algorithm are described
here.

An example of a string to be used in genetic optimization of a wing is pre-
sented in Fig. 3.3, along with the candidate design that it represents. Each
feature (dihedral angle) is given a binary representation in the example, but
integer or real representations are also possible [58]. The form of the encoding
distinguishes genetic algorithms from genetic programming, where the string

contains the parse tree of a program [59].

Variables: Dibedral of each element

222 Clibed3

dibedl = 12.0 degrees

Genetic string: dibedl : dihed2 : dibed3
8 bit coding: 10000100:01111100:10010101
Integer Range:

0->255 116

Real Range: )

-180 -> 180 -180 + (136/255) * 360

Decoded value: 12.0

Figure 3.3: Decoding a genetic string.

Selection is the essential element of an evolutionary scheme. Some perfor-
mance metric must be chosen to rate the relative fitness of different population
members. This fitness measure is used to select high performance individuals
to participate in reproduction. The idea of fitness is natural in optimization:
any algorithm compares the performance of different candidates, and chooses

higher performance. The standard statement of an optimization task requires
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minimization of an objective function, whereas the genetic algorithm favors max-
imum fitness. Hence, an appropriate fitness function will be inversely related to

the regular objective.
1

=177
where f denotes fitness and J represents the objective value. For J > 0, this
guarantees fitness values in the range [0,1].

Selection of individuals to participate in reproduction is performed using a
tournament scheme. Each time a parent is needed, k members of the current
population are selected at random, where k is the tournament size. Their fitness
is compared, and the highest fitness individual becomes the parent. With this
scheme, it is expected that the best individual will be a parent k times per gener-
ation (it will participate in k tournaments and win them all), with linear decline
in expectation of reproduction to the worst individual, which cannot win a tour-
nament. A tournament size of two (k = 2) is used in this research. This method
is introduced to replace roulette-wheel selection, which is susceptible to prema-
ture convergence when a poorly scaled fitness domain allows one individual to
dominate reproduction. Ranking schemes prevent such dominance, because they
are not affected by the margin of superiority of higher-fitness individuals. Tour-
nament schemes perform a local ranking at each selection operation, without
ever requiring the entire population to be sorted.

Raw selection only produces clones of the current best in the population.
Improvement requires modification of their genetic code. The genetic algorithm
needs reproduction operators, such as crossover and mutation, that alter the
selected encodings to create offspring of higher fitness.

In crossover, two individuals swap part of the string, so two new individuals
are formed as combinations of parts of the old strings. An example of the effect
of crossover is shown in Fig. 3.4. A crossover point is randomly chosen along the
string, and is the same for both parents. When one parent has above-average
building blocks in one part of the string, and the other has good building blocks
in another part of the string, the offspring receives useful building blocks in both

sections, and should have fitness superior to either parent. The operation shown
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is a single-point crossover, meaning that each parent string is broken at only one
point. It is used in preference to multi-point crossover, which has been found
to be effective in some applications [60], but can be excessively disruptive when

building blocks are large.

Parent 1 ' Parent 2
v "'\\
4 .
J' *
Pie \‘~
Crossover Point Crossover Point
10010100:100001310:10110110 01100110:01011011:01110011
28.9 9.2 s 76.9 -36.0 : -51.5 : -17.6
10010100:10011011:01110011 01100110:01000110:10110110
28.9 : 38.0 : -17.6 -36.0 s -73.1 1 76.9
% VY
Offspring 1 Offspring 2

Figure 3.4: Crossover.

If a real-valued encoding is used, crossover occurs at a variable rather than
between two binary bits. The variables in the genetic string are copied from
one parent before the crossover point, and the other parent after the crossover

point. The value of the crossover variable is mutated:
Valog = Valp; + Rand x (Valp; — Valps)

Here, Off denotes offspring, while P1 and P2 refer to Parents 1 and 2 respec-
tively. Rand is a random number in the range [-1,1]. This mimics the effect of
the operator for the binary string, where one variable generally changes value
(because the crossover point lies withing the substring representing that vari-
able).
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Crossover can disrupt existing building blocks in the quest for new combi-
nations of features. The crossover probability should be chosen to balance the
number of new designs introduced each generation against the possibility of los-
ing high-fitness individuals from previous generations. Although Grefenstette
recommends crossover probabilities of 0.6 - 0.8 [61], the accuracy of the tourna-
ment selection scheme reduces the likelihood of losing high-performance designs,
and a crossover rate of 0.9 is used in the applications described later.

A mutation operation allows modification of elements of the new individual,
so that new features that were not present in either parent can be introduced.
Pointwise mutation is a very simple operator that allows individual bits of the
string to be changed. This produces corresponding changes to a design variable,
as shown in Fig. 3.5. Mutation rate is generally quite low, so that random new
features are introduced in only a few members of the population. If a mutation is
advantageous, it can be exploited in subsequent generations through the action
of selection and crossover.

Mutation

Point *
10010100:10000110:10110110
28.9 9.8 : 77.3

Before Mutation

Mutation
Point
\/10010100:10000110:10010110
28.9 9.8 : 32.3

After Mutation
Figure 3.5: Mutation.

A basic genetic algorithm is unable to maintain sub-populations at several
local minima without the introduction of some mechanism to induce diversity.
A sharing function, added to a standard genetic algorithm, can help to identify

several local minima by allowing the formation of several ‘species’. Information
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about several near-optimal alternatives is useful at the preliminary design stage.
A final choice between them can be made after more detailed analysis, or by
considering factors not modelled in the optimization task.

Goldberg and Richardson have reviewed several proposed schemes [62], and
conclude that a sharing function is effective. This sharing function has been used
successfully by KrishnaKumar et al to identify multiple near-optimal solutions
for a structural control problem [23]. The function simply penalises population
members that are close together in the search space, by degrading fitness accord-

ing to the distance between them. The distance between ith and jth population

n 2
doi = E T — Tk,j
gy =
k=1 Tk maz — Tk,min

where z is the vector of design variables, and k denotes each element of the

members is

vector (from 1 to n, where n is the number of design variables). The sharing

function is
Kx(1-9%) ifd<o
S(dy) = { 0 )

The sharing strength, K, is a parameter provided by the user. The maximum

otherwise

sharing distance, o, depends on the dimension of the search space and the num-

ber of assumed minima, g, which is another user-selected parameter.

, 1
o= {/-
q
The adjusted fitness is then given by
fi
Fi=5——
>_S(dy)
j=1

Note that the denominator is always > 1, because S(d;;) = 1, so fitness can only
be degraded by sharing.

When several sub-populations are clustering around different local optima,
crossover of two parents from different clusters is unlikely to produce offspring of

higher performance, because they are likely to be far from either local optimum.
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Deb and Goldberg have investigated several schemes for restricting mating be-
tween sub-populations, or species [63]. They report that it can be helpful to
allow mating only between parents with separation < o.

Genetic algorithms do not have convergence criteria analogous to the Karush-
Kuhn-Tucker conditions exploited by gradient-based methods, so the number of
function evaluations required to find a solution depends on the user-selected
termination criteria. For the results in this chapter, a specified number of gen-
erations is used as the only termination criterion. For each optimization task,
the algorithm is run several times to check that results are consistent, because

performance can vary due to the probabilistic nature of the genetic operators.

3.4 Application to Spacecraft Trajectory De-
sign

Although genetic algorithms can be applied to a wide variety of problems, sat-
isfactory performance often requires very careful implementation. Selection of
constraint handling technique can be critical, because the choice exerts a strong
influence on the topology of the design space. The importance of these issues
is demonstrated in the applications that are described in the remainder of this

chapter.

3.4.1 Background

The investigation of interplanetary trajectories is a typical design problem. A
large number of potential solutions are initially considered, with relatively simple
analysis techniques. A few of the most promising alternatives are then chosen
as starting points for more detailed design. Effective preliminary studies must
identify the best alternatives rapidly and accurately.

Initial analysis of potential interplanetary trajectories is often performed us-
ing patched-conic techniques, in which the spacecraft is assumed to be solely

influenced by the gravitational attraction of the Sun during its heliocentric
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transfer. Interplanetary transfer legs are specified by (1) the departure date
and body, and (2) the arrival date and body. Complete trajectories are de-
scribed by a sequence of interplanetary legs. In the preliminary design phase, a
variety of mission types may be investigated (composed of different interplane-
tary legs) and a range of departure and arrival dates must be assessed for each
leg.

The interplanetary trajectory design space is typically characterized by nu-
merous minima separated by infeasible regions. Consequently optimization by
standard methods is difficult. Some patched-conic analysis programs include a
gradient-based optimization method [64, 65, 66], but only the local minimum
closest to the starting point is discovered by these methods. Programs that do
include a gradient-based optimizer typically have a grid search option and sug-
gest its use during initial mission studies. In the grid search, the program steps
through the departure and arrival date ranges for each leg of the mission, and
every potential trajectory is simulated [64, 67]. The grid must be fine enough
to detect local minima. Hence, for missions with many planetary encounters or
large ranges of dates, the number of function evaluations grows very quickly.

For this application, a standard genetic algorithm has been added to the
IPREP (Interplanetary PREProcessor) program, which is part of the IPOST
(Interplanetary Program to Optimize Simulated Trajectories) package [64]. This
allows the genetic algorithm performance to be compared directly with the grid
search method already available in IPREP. The sharing function and mating
restriction scheme described in the previous section are available as optional
extensions to the basic algorithm, so that their effect on optimizer performance
can also be evaluated.

The IPREP grid search option allows the user to specify a range of starting
dates for a mission, and a range of duration times for each interplanetary leg.
The genetic algorithm uses those dates and times as design variables, with the
same minimum and maximum values. The genetic string is simply a concatena-

tion of these floating point variables. Although schemata theory suggests that
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binary strings are more efficient, floating point codings often work well in prac-
tice [68]. They are preferred here because the encoding is more natural than a

binary representation.

3.4.2 One-Way Direct Earth to Mars

The first problem used to verify the effectiveness of the genetic algorithm is a
one-way direct mission from Earth to Mars (Fig. 3.6). A 6000 kilogram payload
must be delivered to a 1 Sol parking orbit (period of 24.6 hours) about Mars.

The objective is to minimize the initial mass in low-Earth orbit.

Mars
arrival

Objective:
Minimize spacecraft initial mass

Design variables:
Earth departure date

Mars arrival date

Figure 3.6: Earth to Mars mission.

Earth departure date and Mars arrival date are the only two variables, so
the complete design space can be represented graphically (Fig. 3.7). There are
~ eight local optima (located at the bottom of the valleys). Four of them have
objective values within 5% of the global optimurﬁ (71 7700 Ib). Infeasible points
are assigned a nominal large initial mass (100000 1b), so infeasible regions appear

as a plateau in the mesh plot.
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Figure 3.7: Design space for Earth to Mars mission.
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[ Search Method [ Function Evaluations |

Genetic Algorithm 3000
Coarse grid
followed by 13564
local fine grid (1-day step)
Fine grid (1-day step) 1346400

Table 3.1: Function evaluations for different search methods.

The genetic algorithm readily solves this problem to within a day of the
exact optimum, in fewer than 3000 function evaluations (30 generations, each
with population size of 100). Further refinement of the solution is inappropriate
for these mission feasibility studies, as it exceeds the accuracy of patched-conic
theory. The efficiency of the genetic algorithm compares favorably with grid
search, as shown in 3.1. The step size for the grid search has to be chosen
carefully, because too large a step may jump over the true optimum. Usually a
coarse grid is used to locate promising regions, and subsequently a fine grid is
used in those regions. For this problem the initial grid has a 5-day step size for
launch date and a 20-day step size for duration of the interplanetary leg. The
local grid has a step size of 1 day, to match the accuracy attained by the genetic
algorithm. :

For the genetic algorithm, the distribution of the population in the design
space evolves over the generations, as indicated in Figs. 3.8, 3.9, 3.10, 3.11. The
location of each population member is marked by a cross on the contour plot
of the design space. The members of the first generation are randomly chosen
by the optimizer. The original population is largely infeasible, but there are
members in each of the feasible regions. Most of the population in Generation
10 is feasible. By Generation 20 the population is clustering around the two
best local optima. At Generation 30 the entire population is clustered around
the global optimum.

When most of the design space is infeasible, and all infeasible points are
assigned the same fixed value of the objective function, it is difficult to correlate

parts of the genetic string with performance. Most strings produce identical
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Figure 3.8: Population distribution, Generation 1
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Figure 3.9: Population distribution, Generation 10
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Figure 3.11: Population distribution, Generation 30.
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objective values, so selection pressure is very low. Search is worse than random
until feasible points are found, because infeasible points are chosen for repro-
duction instead of new random points being tried.

The effect of large infeasible regions can be demonstrated in this domain by
modifying the objective function, so that any trajectory with initial mass larger
than 20000 1b is considered infeasible. This shifts the infeasible plateau, shown
in the surface mesh plots, from 100000 Ib (Fig. 3.7) to 20000 1b (Fig. 3.12). The

new design space is 95% infeasible.

Inital
mass

Earth departure date

Figure 3.12: Surface mesh of initial mass in LEO, 95% infeasible.

Figure 3.13 indicates that this new space is indeed more difficult for the
genetic algorithm. After 30 generations, by which time the previous example
had fully converged, most of the population is still infeasible. A few members
have located a local minimum. Members from this small feasible region quickly
dominate the reproductive process, and by Generation 50 (Fig. 3.14) the entire
population has shifted to this minimum. The other feasible regions were never
located, and a global minimum in one of those regions would be missed.

This example confirms that large flat areas in the design space should be
avoided. The infeasible region should be graded so that points that are nearly
feasible are more likely to reproduce than points that are far from feasible. This
is not always possible, but one example is provided later in this chapter, where a
quadratic penalty is applied to violations of the constraint on total trip duration.
The extent of infeasibility is of no interest in grid search, because information
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Figure 3.13: Population distribution, Generation 30, 95% infeasible.
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Figure 3.14: Population distribution, Generation 50, 95% infeasible.
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from current points does not guide the selection of future points. This distinction
should be noted when developing a problem description, and the solution method
should influence the design of the search space topology. Genetic algorithms can
handle large regions of constant objective value, but when they occupy more
than 90% of the design space, grid search may be competitive.

The history of population distribution presented in Fig. 3.8 to Fig. 3.11
showed that the population in a basic genetic algorithm ultimately clusters
around a single optimum point. It would be preferable to preserve informa-
tion about several local minima, so that the misson planner can select one of
them for reasons not included in the statement of the optimization problem. A
sharing function that can preserve subpopulations at several local minima was
described earlier in this chapter. This function is added to the basic genetic
algorithm, and its influence on optimizer behavior is now investigated. The
number of expected minima, ¢, is set to be 5. This is not the actual number
of minima present in this space. The resulting performance is representative of
behavior in a design space of unknown topology.

When a sharing function is applied without a mating restriction, any popu-
lation member can mate with any other. The effect on convergence is shown in
Fig. 3.15. At Generation 30, when the standard algorithm had fully converged,
there are population members retained at each local minimum, but there are
still many infeasible designs.

Offspring can take some features from a parent in one feasible region, and
different features from a parent in another feasible region, and end up with a
combination that is infeasible. The poor performance of these offspring makes
them unlikely to reproduce, but they are replaced each generation by new ofi-
spring produced in a similar manner. Without a mating restriction, there will
always be a significant number of infeasible designs in the population.

The introduction of a mating restriction successfully resolves this difficulty
with the sharing function. A restriction suggested by Deb and Goldberg [63]
limits crossover between separate feasible regions. Figure 3.16 indicates that the

population is well distributed in each feasible region. The value for expected
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number of minima was not critical to the success of the sharing function, because
the algorithm is not forced to find exactly that number of minima.

The influence of the sharing strength parameter, K, can be observed by com-
paring Fig. 3.16 with Fig. 3.17. Lower sharing strength allows tighter clusters
to form. Thus, Fig. 3.17 shows sub-populations around the four minima that
are within 5% of the global minimum, and a few members near three other local
minima. In general, it is useful to reduce the sharing strength as population size

increases. Choosing K = 0 eliminates the effect of the sharing function.

' ‘ I ﬁ
m———
20001 ;—/‘.

1500+ 1

1000%{2_2;- ]

Earth Departure Date, days past 2/18/90

Transfer Time, days

Figure 3.17: Sharing with mating restriction. Generation 30. K = 0.025

The introduction of a sharing function and a mating restriction allows the
genetic algorithm to retain more information about the design space. This
is achieved without significant increase in the function evaluations required to
reach the optimum. Consequently these features are retained in the genetic al-
gorithm, and are used in the more difficult optimization tasks that are described

next.
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3.4.3 Roundtrip Earth to Mars, with Optional Venus
Swingby

The performance and behavior of genetic algorithms has been established for a
two-variable problem. Now several potential opposition-class roundtrip manned
missions to Mars are investigated. They include direct and Venus-swingby (in-
bound, outbound and double) interplanetary transfers. The number of design
variables varies from 3 to 5, depending on the number of Venus-swingby legs in
the mission. These tasks allow comparison of genetic algorithm and grid search
performance for a range of problem sizes.

Total trip time is limited to 2 years with a 60-day stay at Mars. Earth de-
parture in the 2010-2025 time span is considered because this design space has
been previously investigated using grid search techniques [69, 70, 71, 72]. For
this study, missions employing nuclear thermal propulsion (Isp = 925 sec) are
evaluated. All missions begin and return to a 500 km circular, 28.5 degree incli-
nation, Earth orbit. Upon Mars arrival, the interplanetary spacecraft inserts into
a 1 Sol parking orbit with a periapsis of 500 km. Earth-return is accomplished
with minimal propulsion using a reentry capsule. All vehicle mass estimates
used in this analysis are chosen to be consistent with References [73, 74, 75, T76].

The summary of results presented in Table 3.2 clearly indicates that the ge-
netic algorithm is more efficient than grid search for all problem sizes considered.
This superiority is more marked for the larger problems. The population size
must be sufficiently large to accurately sample the search space. As the total
search space increases, population size is also increased.

The difference in performance for the outbound swingby and inbound swingby
cases, both 4-variable problems, is due to the different topology of the search
spaces. The importance of representation of infeasible regions, which was dis-
cussed earlier in this chapter, is demonstrated by the relative performance of
two strategies used in the solution of the double swingby case. This representa-
tion issue is particularly important for the double swingby case because it has
the largest infeasible space. The total duration of the return mission to Mars

is limited to two years. Satisfaction of the constraint on total duration of the
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Mission Design GA Grid
Type Variables | Function | Function
Evals Evals
(N x Gens)
Direct 3 4000 8000
200 x 20
Inbound 4 12000 64000
swingby 300 x 40
Outbound 4 18000 64000
swingby 300 x 60
Double
swingby, 5 120000 512000
fixed 1500 x 80
penalty
Double
swingby, 5 50000 512000
quadratic 500 x 100
penalty

Table 3.2: Function evaluations for different problem sizes.

return mission to Mars becomes more difficult as the total number of legs is
increased. For the double swingby mission, with the chosen ranges of allowable
duration for each leg, only 25% of the missions that can be described have a
total duration of less than two years. Many of these missions are infeasible for
other reasons, so just 2% of the entire space is feasible.

The standard method for representing infeasible points in IPREP is to as-
sign a fixed performance value. This produces an infeasible region with a flat
topology, that gives no information about the proximity of infeasible points to
feasible regions. A simple alteration to this representation allows the true per-
formance of the mission to be calculated, and the constraint violation is handled

by adding a quadratic penalty that grows as the extent of infeasibilty increases.
J = Juncon + PenWt X (t — tmaz)?

Here, J is the objective value, Jyncon is the unconstrained objective value,

PenWt is a user-specified weighting factor, t is the trip duration, and tme is the
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maximum allowable trip time. The use of this method for penalizing excessive
trip duration does not reduce the number of infeasible points, but it reflects the
extent of infeasibility. The smoother search space can be accurately modelled
with a much smaller population, and total work for the genetic algorithm is
reduced by almost 60%.

3.4.4 Simultaneous Investigation of Different Mission

Types

The various optimization tasks considered in the previous sections are really all
sub-tasks in a larger optimization problem. The ultimate goal is to find the
best way to get to Mars and return safely. According to standard practice,
the best example of each mission type is found independently, and then these
examples are compared to find the best mission. The genetic algorithm offers
the opportunity to solve the entire problem in a single optimization run.

A description of the full problem must provide enough degrees of freedom
to characterize a mission that includes all possible legs. Each leg is identified
by the planetary encounter at its end point. Thus the general candidate for
the Mars return problem allows legs for launch, outbound Venus swingby, Mars
arrival, inbound Venus swingby, and Earth arrival. (Mars departure is not a
variable, because it is fixed at 60 days after arrival.) Extra variables are added
to this set, to indicate whether optional legs should be included in a particular
candidate. These variables switch between ‘Include’ and ‘Not include’ values.
When these variables have the ‘Not include’ value, the variable describing the
duration of that leg is ignored. For the Mars mission, only the Venus swingby
legs are optional. Hence, there are two switching variables, taking the total
number of variables to 7.

It has been suggested that these extra variables might be avoided by simply
adding a zero value to the set of allowable duration values for an interplanetary
leg. However, the set of allowable values should be continuous between the
lower and upper bounds. If a leg exists, the lower bound is always much larger

than zero, because an interplanetary leg will never have a duration of only a
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Start of | Optimal GA Grid Search
Launch Mission Function Function
Window Type Evaluations | Evaluations

April 26 | Outbound 140000 648000
2015 Swingby | 2000 x 70
Sept 28 | Double 160000 648000

2019 Swingby | 2000 x 80

Table 3.3: Locating global optima of different type.

few days. Moving the lower bound to zero would cause description of many
more infeasible designs. This has been shown to cause difficulty for the genetic
algorithm. Hence, it is better to retain the lower bound, and introduce the
separate variable.

The switching variables used here are not binary, because missions includ-
ing and excluding optional legs should not be equally represented. Candidate
mission types with more legs occupy a larger fraction of the total search space
than missions with fewer legs. The randomly generated initial population should
provide an accurate sample of the entire space, so most of its members should
include optional legs. In these studies, the switching variables are weighted to
give a 95% chance that each optional leg will be included in members of the
initial population.

The duration of a good Mars artival leg that originated on Earth is generally
not appropriate for a leg that originated at a Venus swingby. Crossover between
missions with different numbers of Venus swingby legs is therefore unlikely to
produce offspring of improved performance. Consequently, the inclusion of the
sharing function and mating restriction is very helpful in this domain.

Table 3.3 shows the results of running the complete optimization problem for
two different launch opportunities, each of 100 days. These opportunities were
chosen because the optimum missions were known to be different types [72, 73].
Identification of different mission types indicates that the success is not due to
the method favoring a single type. In each case, the genetic algorithm located

the global optimum more efficiently than a sequence of separate grid searches,
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with less intervention required of the user. The benefits in both efficiency and

convenience are expected to be even more marked for larger problems.

3.5 Summary

Successful applications of a genetic algorithm to several optimization tasks, rang-
ing in size from 2-variable to 7-variable problems, have been reported in this
chapter. Genetic optimization is both more efficient and more convenient than
the grid search technique commonly used for interplanetary trajectory design,
particularly with the introduction of sharing and mating functions that allow
simultaneous identification of several distinct local optima. These results con-
firm that genetic algorithms can play an important role in preliminary design,
but they should be used judiciously.

The performance of the genetic algorithm is influenced by the topology of the
search space. Consequently, the user should ensure that the objective function
distinguishes the fitness of different designs wherever possible. The introduc-
tion of graded penalties that reflect the extent of infeasibility, rather than a
fixed fitness value for any constraint violation, helps significantly in this regard.
Modification of the size of the search space, through disqualification of strings
that cannot be analyzed or through repair of infeasible candidates, can also
" increase efficiency of the genetic algorithm.

Special switching variables, which refer to the existence or absence of possi-
ble components of a candidate design, can be included in the genetic encoding.
This allows simultaneous assessment of designs of varying complexity, because
different population members can have different numbers of components. In the
interplanetary trajectory application, automatic selection of mission type pro-
duces a significant reduction in the interface work required during optimization.
The ability to explore a space that includes designs of varying complexity is
explored further in the next chapter.
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Chapter 4

A Variable-Complexity Genetic
Algorithm

The search mechanism used by genetic algorithms relies on the identification
of high-performance building blocks in candidate designs, which are then re-
combined so that promising features from different designs are collected in new
candidates. Despite the suggestion of growth, the morphology of candidate de-
signs remains static throughout the conventional optimization process. However,
the building block description can be extended to allow the nature of candidates
to change during optimization. In this chapter, a new genetic algorithm that
provides this capability is introduced. Application to a simple block-stacking

task demonstrates the fundamental advantage of the new algorithm.

4.1 Motivation for Variable-Complexity Opti-
mization

The scope of the search capability provided by standard optimization algorithms
is limited by the need for a fixed parameterization of the problem - one that must
be specified a priori. The concept must be fully developed by the designer, and
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the algorithm simply finds the best values for the chosen variables. When sev-
eral alternative configurations are being considered, each candidate must be de-
scribed and optimized independently. Furthermore, re-optimization is required
whenever the designer changes the description of a particular concept.

A more flexible algorithm would automatically alter the parameterization
during optimization. Successful features can be identified in simple designs, and
subsequently refined as the algorithm increases the complexity of the parame-
terization. This progression is familiar to aeronautical designers, who generally
select approximate values for global features such as wing area and span, béfore
concentrating on more specific aspects such as the airfoil sections at different
stations along the wing. The ability to modify the parameterization can extend
the role of optimization beyond automated analysis of prescribed configurations
to automated design of new concepts.

Natural evolution does not limit improvement by operating on the values
of a fixed number of parameters. Dawkins [49] defines a complex object as
one which ‘could not have come into existence in a single act of chance’. He
acknowledges that it might be developed by an intentional designer (as aircraft
are), but stresses that complexity can also result from cumulative selection (as
it does in biological systems). Figure 4.1 suggests that the analogy with natural
evolution should be extended to include the evolution of complexity.

The standard genetic algorithm possesses a limited capability for assessment
of different concepts, because the encoding can include variables that describe
the existence or absence of optional features. One such scheme, used to simulta-
neously examine different interplanetary trajectory concepts, was described in
the previous chapter. Several researchers have used similar schemes for genetic
solution of structural optimization tasks [78, 79, 80, 81, 82]. These encodings
grow very rapidly as the number of possible elements is increased. The popula-
tion size required to avoid a deceptive sample of the design space can become
prohibitively large. The members of the initial, randomly-generated population
will, on average, include half of all possible elements. When the best design uses

only a small fraction of all possible elements, the genetic algorithm is forced to
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proceeds from sim-

Figure 4.1: Natural evolution, like aerospace vehicle design,

ple descriptions to complex specialization.
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consider designs of unnecessary complexity, which reduces the efficiency of the
search. '

The existence or absence of possible elements can be described implicitly, by
using a genetic string that carries information only about elements that actually
appear in the design. Elements in the string exist, elements not in the string
are absent. This encoding requires a variable-length genetic string, because the
length of the string reflects the complexity of the design. Although variable-
length encodings are unusual in genetic search, several investigators have been
attracted by their expressive power. They have been used for development of
rule sets [83], for automatic generation of computer programs [59], and for func-
tion optimization [86, 87]. Important prior implementations of variable-length
strings, and the current scheme, are briefly discussed in the next section. Mod-
ifications to the standard genetic operators are introduced, and then a simple

application demonstrates the power of the variable-complexity algorithm.

4.2 Variable-Length Encodings

4.2.1 Prior Use

Smith developed a learning system, LS-1, that uses genetic operators to evolve
high-performance rule sets of varying size [83]. Each individual in the popu-
lation is a set of rules, and the recombination of rules from different parents
generates new rule sets of superior performance. This representation contrasts
with the classifier system developed by Holland et al., where individuals are
isolated rules, and the entire population constitutes the rule set. The classifier
system relies on competition between population members during performance
evaluation to generate useful groups of rules, whereas LS-1 uses genetic search to
identify both individual rules and groups of rules. (De Jong notes that Smith’s
formulation outperforms classifier systems when extensive exploration is permis-
sible and radical changes are acceptable [85]. This observation indicates that
the variable-length representation is appropriate for conceptual design, while
fixed complexity classifier systems might be more appropriate for the detailed
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design phase.) The size of the best group of rules is not known a priori, so rule
sets of varying size are permitted. For LS-1, individuals that contain different
numbers of rules must use encodings of different length. To validate the use of
genetic search with variable-length strings, Smith performed a hyperplane anal-
ysis. It shows that promising building blocks are appropriately retained and
recombined, provided that a steady state average length is achieved. This anal-
ysis is an extension of Holland’s schema theorem, which provides a theoretical
basis for the genetic search mechanism applied to fixed-length strings [84].

In genetic programming, the individuals in the population are computer pro-
grams. The user specifies a set of terminals (parameters and constants) and a
set of functions (e.g. arithmetic, mathematical, logical, domain-specific), and
random combinations are chosen to compose the programs(of varying length)
for the initial population. Thereafter, selection and crossover are used to re-
combine features from relatively fit programs to produce offspring of higher
performance. Koza cites the empirical evidence of successful applications in a
variety of fields as proof that genetic adaptation of variable-length strings is a
valid search mechanism [59].

Messy genetic algorithms have been developed by Goldberg et al. [86, 87]
for use in function optimization. Variable-length strings are introduced in an
attempt to avoid deception that can arise when promising building blocks have a
large defining length in the chosen encoding. By removing position-dependence
from the encoding scheme, and allowing each variable to occur anywhere along
the string, the genetic operators are able to discover strings that arrange the
building blocks in a non-deceptive order. The variable-length strings may have
several representations of some parameters, and no representation of other pa-
rameters. A simple conflict resolution scheme is used to choose a single value
for overspecified parameters, and ‘competitive templates’ are used to provide
values for underspecified variables. This means that the decoding scheme al-
ways provides values for a fixed set of parameters that describe all candidate
solutions, and messy genetic algorithms do not provide the variable complexity

that is sought for the preliminary design system.

72



4.2.2 An Encoding Scheme for Conceptual Design

The present scheme provides the functionality of genetic programming for func-
tion optimization, but the genetic string is a list of parameters, rather than a
composition of functions and terminals. The initial population is constructed by
selecting random combinations of parameters from a user-specified set, and the
solution is a set of parameters rather than a computer program. In contrast to
messy genetic algorithms, there is no template used during decoding to produce
designs of standard form. Candidates of variable complexity are admitted.

There is position dependence in this encoding, but it is relative position
rather than absolute position that is important. Each new parameter influ-
ences the design that has been constructed from previous parameters, either by
adding el‘ements to the design or modifying existing elements. The decoding
of each parameter therefore depends on the decoding of parameters that occur
earlier in the string. Similar position dependence occurs in the construction of
computer programs, where the operation of each instruction is influenced by
prior instructions.

Variable-length strings make it easier to recognize promising building blocks
in the design problem. The initial population has random values for each vari-
able, so the likelihood of a poor value for at least one variable increases as the
number of variables increases. In problems where a single poor variable radically
affects the performance of the entire design (as is likely in aircraft design, which
is known to be very tightly coupled), random long strings are unlikely to look
attractive. If the genetic algorithm starts with short strings, the population is
more likely to include members that have reasonable values for all variables.
Once these building blocks of short defining length have been identified, the
string can be extended to describe more complex designs. This parallels the
motivation for messy genetic algorithms, where deception is avoided by using
short strings that omit variables that would otherwise extend the defining length
of promising building blocks. The competitive template used with the messy
genetic algorithm is not required here, because strings of any length describe

complete individuals that can be evaluated.
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4.2.3 An Extended Encoding Scheme for Varying Con-
straint Activity

When individuals of different complexity are allowed in the population, and
there is a trend toward increasing complexity, it is possible for constraints that
are initially inactive for the most promising individuals to become active in later
generations. If variables have been selected without regard to a constraint that
has been inactive, they may have converged to values that are inappropriate
when the constraint is active. Without diversity, the population is unable to
adapt to the changed conditions.

Biological precedent suggests an approach by which adaptation can be en-
couraged [77]. Only a small fraction of the genetic material in biological systems
is used to construct the organism. The locations along the string where decoding
starts and stops are controlled by regulatory genes, which respond to environ-
mental influences when determining whether their piece of the genetic string
should be decoded or not. A switch in activity of even a single regulatory gene
can have profound influence on the final organism.

There are two important aspects of this system to be incorporated in the de-
coding of variable-length genetic strings: unexpressed sections, and a switching
mechanism affected by the environment to control the expression and suppres-
sion of different sections. In the simplest form of this scheme, the genetic string
is extended to carry two values for each design variable. Selection of the copy
to be expressed is controlled by constraint activity. Initially, the first value is
expressed, and selection of promising building blocks proceeds as usual. There
is no selection pressure on the unexpressed values, so they remain randomly
distributed. When expression of the first value causes a constraint to become
active, the value is ignored, and selection operates on the second value. The first
value is retained, because it can be expressed in future generations if it is read
when the constraint is not active. The extended genotype is able to produce dif-

ferent phenotypes in different environmental circumstances. The structure built
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from early sections of the string causes environmental changes that affect the ac-
tivity of later sections of the string. This influence of environment on expression

of each part of the genetic string is a special case of position dependence.

4.3 New Genetic Operators

The modified genetic algorithm, which permits the use of variable-length encod-
ings, is illustrated in Fig. 4.2. The basic operators for selection and mutation
that are used in the standard genetic algorithm do not need to be changed for
application to variable-length strings. The selection operator is not directly re-
lated to the string, because it works with the fitness value, which is calculated
after decoding. Tournament selection is used, as described in Chapter 3. The
mutation operator is applied at every location along the string, with a constant
small chance of causing a change at each point. Consequently, the number of
points in the string does not affect the mutation operation, but it does change the
likelihood of a modification occurring somewhere along the string (with longer
strings being more likely to be modified).

The key change is the introduction of a new crossover operator, which is
modelled on the one used in genetic programming ([59]. It is similar to single
point crossover, because each parent is broken at only one point. The important
distinction is that the crossover point may be different for each structure, so two
parents of equal length may produce offspring that are longer or shorter. This
allows the individuals to grow and shrink. If a new string produced by unequal
crossover exceeds the maximum allowed length, it is truncated at the maximum
length.

A little careis required to ensure that offspring produced by unequal crossover
are viable, partiéuiéﬂy for a binary repfésentatioh. The crossover point in the
second parent is not completely free. It may occur in any substring, but within
the substring it must match the location of the first crossover point. This re-
striction ensures that offspring contain regular substrings that can be decoded
correctly. Thus, in the example shown in Fig. 4.3, the second crossover point
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Figure 4.2: A variable-complexity genetic algorithm

can occur in the first, second, or third substring, but it must occur after the
second bit of the substring, so that the substrings in the offspring all have eight
bits.

The sharing and mating restriction operators, which were described in Chap-
ter 3, use a distance measure between pairs of individuals in the population to
determine their mutual influence. With variable-length strings, the distance is
not defined when strings do not contain matching sets of variables. The metric
for determining mutual influence must be modified if a sharing function is to be
used in the new algorithm. Further investigation of these advanced operators
is not included in this thesis. A genetic algorithm with only the fundamen-
tal operators of selection, crossover and mutation is used in conjunction with

variable-length encodings.

76



Parent 1 Parent 2

’,"‘\
L4 \Y
’ 1Y
" \.
Crossover Point 1 Crossover Point 2
10010100:10{00110:10110110 01100110:01011011:01110011
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Offspring 1 Offspring 2

Figure 4.3: Modified crossover operator
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4.4 Application to a Block-Stacking Task

The new genetic algorithm is first tested in a block-stacking problem. This
example is selected because the candidate designs are constructed from many
similar elements, so it is convenient to vary the complexity of the candidate
designs simply by varying the number of elements. Function evaluations are
inexpensive, so the efficiency of the method can be quickly evaluated.

The aim in this problem is to maximize the horizontal overhang r of a stack
of blocks of height y, as shown in Fig. 4.4. The tower can collapse if the
upper blocks are located too far beyond their supports, and performance is
assessed for the stack that remains after toppling occurs. This objective is
chosen because it makes the problem difficult for gradient-based methods by
making the design space discontinuous. There are sudden jumps in objective

value when incremental movement of blocks causes toppling.

Target

Figure 4.4: The block-stacking problem.

The block-stacking problem is difficult for a standard genetic algorithm also,
as Fig. 4.5 illustrates. The stack that achieves significant overhang near the base
is difficult to improve, because any shift toward the target will cause toppling. Its
relatively high performance is deceptive, because it contains low-order building
blocks that will combine to produce higher-order building blocks of low merit.

The modified genetic algorithm is able to counteract this effect, because the

candidate individuals are not required to use all the blocks. Elements of the
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(a) Ideal five-block
stack

Target

*

(b) Deceptive five-block stack.
Bottom three blocks poorly
placed, but performance is good.

Target

(c) Bottom three blocks ideally
placed, 4th block causes toppling,
hence lower performance.

Figure 4.5: Deception makes poorly placed lower blocks appear to provide a
good foundation for further stacking.
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best solution may be developed in different short stacks, which can combine to
form complete stacks later in the optimization. The new algorithm did not have
any great advantage when the optimal stack was short, because there was little
scope for the upper blocks to cause deception. The results presented here are for
stacks that have a maximum height of 40 blocks, and the variable-length stacks
are clearly superior. Figure 4.6 shows three histories for both algorithms, each

starting from a different randomly generated population.
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Figure 4.6: Fitness of best individual in population.

The algorithm with variable-length strings processes the building blocks of
this problem more efficiently than with fixed length strings. A history of the
growth of the best individual shows a strong trend towards a monotonic in-
crease in size. Improvement occurs when stacks of intermediate fitness crossover

unevenly to generate a longer string.
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A large part of the success in this particular problem arises from the capa-
bility of the system to shift building blocks to different locations in the string.
In the exact solution, the top of the stack always looks the same, because top-
pling is only influenced by what lies above a particular block. The crossover
mechanism allows the top of a small stack to end up on top of a larger stack.
Figure 4.6 indicates that the performance of the variable-length stacks is supe-
rior even in the initial random population. A random short stack is less likely
to topple than a random long stack, and the performance of untoppled short
stacks exceeds the performance of toppled longer stacks. Figure 4.7 shows that
rapid progress is possible once stacks exceed a height of about fifteen blocks.
The base blocks for stacks of this height are close to vertical, with most of the
horizontal distance being covered in the top few blocks. Unequal crossover that
oceurs close to the base can increase the height of the stack without being likely

to cause toppling.
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Figure 4.7: Growth in height of best individual. (40-block maximum height)
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This growth mechanism indicates that this stacking problem is ideally suited
to solution using a crossover operator that shifts the location of building blocks
within the genetic string. The operator should prove useful in other applications
in which complexity arises from the combination of many similar elements. In
the next chapter, it is applied to the optimization of structural trusses, which are
large assemblies of simple bars. In Chapter 6, the variable-complexity algorithm

is used to minimize the drag of a wing that is modelled by a set of lifting elements.
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Chapter 5

Topological Design of Structural
Trusses for Minimum Weight

The variable-complexity genetic algorithm is now applied to the topological
design of structural trusses. Other researchers have previously used standard
genetic algorithms in this domain, so the performance of the new algorithm is
directly compared with their results. A variable-length encoding that includes
expert knowledge of the domain restricts the search space to the feasible re-
gion, so near-optimal truss topologies are efficiently discovered. A hybrid search
scheme, with a calculus-based method to search the smooth subspaces, further

improves the efficiency of optimization.

5.1 Introduction to Structural Optimization

The structural optimization literature identifies three kinds of structural de-
sign problems: sizing, shape and topological optimization [88]. At the simplest
level, a sizing problem varies only the cross-sectional areas of a fixed number of
compornents. A shape problem may add variables describing the Jocation of com-
ponents, so the proportions of each component in the fixed set may be altered.

A topological problem must also include variables that refer to the existence or
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absence of components, so that candidate structures use different subsets of the.
set of all possible components.

For sizing and shape optimization, gradient-based techniques are often ap-
propriate. It is possible to treat topological design as a sizing optimization task
by starting with a ground structure that includes all available elements, and
allowing some of them to vanish [89, 90]. For complex tasks, the computa-
tional burden of sizing large numbers of elements soon becomes unacceptable.
Furthermore, this formulation generally produces a design space that includes
many local minima, so convergence to the global optimum is problematic. Stan-
dard genetic algorithms have been used to address both of these difficulties, but
the variable-comple;city algorithm can further reduce the computational burden
associated with unnecessarily complex candidate designs.

Although the variable-complexity method can be applied to optimization of
general structures, attention is restricted here to trusses, because the analysis
of these assemblies of pin-jointed bar elements is relatively straightforward. A
plane truss structure is typically described by a set of nodes connected by pin-
jointed bars that can be loaded only in tension or compression. Some nodes are
prescribed to have zero displacement while others are acted upon by specified
external loads. An optimum truss has minimum total weight, while satisfying
stress constraints on the members, and displacement constraints on the nodes.

A finite-element method is used to compute the stresses in the bars, and the
displacements of the nodes. The method is described in most modern textbooks
on structural analys1s (e. g [ 1]). A global stiffness matrix is assembled using
the local stiffness matrix of each element, and specified external loads and node
constraints are included in the relevant vectors. The force displacement rela-
tion is used to solve for unknown loads and displacements. The weight of the

structure is found by summing the volume of material of all elements.
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5.2 Standard Genetic Optimization of Struc-

tural Trusses

The earliest application of genetic techniques to truss design was performed by
Goldberg and Samtani [92]. They optimized the areas of a ten-member truss,
with stress constraints for each member applied as quadratic exterior penalty
functions. Their solutions on three separate runs, each performing 6400 function
evaluations and starting from a different randomly-generated initial population,
were within 2% of the optimum attained by a gradient method. Although the
genetic algorithm was effective for this sizing task, it was not efficient, and the
gradient method is really more appropriate.

More recently, Sakamoto and Oda [78] introduced a hybrid technique for truss
design, with a genetic algorithm used for layout design and a simple gradient
method used for sizing the cross-sectional areas. They found that the hybrid
method had greater practical reliability than a member elimination strategy,
where they defined practical reliability as the likelihood of finding a design with
performance within 20% of the global optimum. The member elimination strat-
egy often became stuck at local optima that were unnecessarily complex.

The genetic string used by Sakamoto and Oda for topological design is a
concatenation of single bits, each representing the existence or absence of a
possible element. Several other researchers have used similar schemes for genetic
solution of structural optimization tasks [79, 80, 81, 82]. This means that the
string length grows very rapidly as the number of nodes (and hence the number of
possible elements) is increased. The population size required to avoid a deceptive
sample of the design space can become prohibitively large.

Candidate designs generated by a genetic algorithm may be incomplete struc-
tures or mechanisms. Sakamoto and Oda identified these candidates and gave
them fitness equal to the minimum in the population. This makes it difficult to
identify useful building blocks, because it creates large regions with no grada-
tion in fitness [55, 56, 57]. It is preferable to avoid description of mechanisms

by employing an encoding scheme that generates only feasible candidates. Such
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a scheme is clearly biased, because it precludes description of many instances
in the feature space. However, Mitchell [93] claims that biases that include fac-
tual knowledge of the domain (that candidates should not be mechanisms), and

biases that favor simplicity, are useful aids to the learning process.

5.3 Variable-Complexity Genetic Optimization

of Structural Trusses

The variable-complexity genetic algorithm provides an alternative approach for
topological design. The genetic string need only carry information about mem-
bers that actually appear in the design. They are described as general truss
members with particular endpoints, rather than particular truss members with
known endpoints. This approach is more flexible and efficient than exhaustive
representation of all possible members when a large number of nodes is available.
In the encoding scheme chosen for truss design tasks, candidate solutions
start from a baseline design and the genetic string describes modifications to
be made. The baseline is a non-mechanism (a structure that does not collapse
under the applied load) that uses the minimum possible number of members
to attach all loaded nodes. Where several alternatives use the same number of
members, the description with minimum total length of members is selected.
Each modification to the existing structure is described by a set of three
variables. The first variable identifies an existing member that is to be split
into two members. The endpoints of this member are retained as endpoints of
the two new members, but a new endpoint must also be specified. The second
va.riAable identifies this new endpoint. When an existing member is replaced by
two members in this manner, it is possible that the new structure is a mechanism,
and therefore unable to support the applied load. A mechanism can be avoided
by adding a new member to brace the structure, connecting the new node with
a second node that is already connected to the structure. The third variable
identifies a second node. If this node is not appropriately connected, a repair

scheme shifts it to the nearest attached point.
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The genetic string that encodes the series of changes to the baseline struc-
ture is a concatenation of sets of three variables, with each triplet describing a
potential modification. Complexity of the structure increases as the length of
the genetic string is increased, because each triplet splits an existing member
into two, and adds an additional member. The decoding operation is shown
in Fig. 5.1, which shows the effect of a single triplet on the baseline design.
The number of nodes is fixed (TotalNodes = 9 in this example, represented
by small squares in the figure). The number of elements (Nelem), or truss
members, changes as decoding proceeds. The first variable in the triplet has a
value between 0 and 1, and it is multiplied by Nelem to find which member
should be modified. The second and third variables have values between 1 and
Total Nodes, and they refer directly to particular nodes in the grid.

Figure 5.1(a) shows the baseline structure to support a single load at Node2,
with Node7 and Node9 as constrained supports. Variablel is decoded to show
that Memberl is to be modified. Decoding Variable2, as shown in Fig. 5.1(b),
indicates that the new endpoint for the two members which replace Memberl
is Node6. The member connecting Node9 and Node6 is now Memberl, while
the connection between Node6 and Node2 is Member3. An extra member must
still be introduced to ensure that the structure will not collapse. Figure 5.1(c)
shows that Variable3 is decoded to suggest Node8 as the new endpoint, but
this node is not connected to the structure. The effect of the repair scheme is
illustrated in Fig. 5.1(b), with the new endpoint shifted to the nearest attached
point (Node7) to form a viable structure. The connection between Node6 and
NodeT is labelled as Member4.

This decoding scheme is an example of a ‘shape grammar’. Shape grammars
provide a formal method for generating topologies. A particular grammar is
defined by a set of shapes (straight truss members), labels (each member is
numbered as it is added to the structure), shape rules (the repair scheme avoids
mechanisms) and an initial shape(the simplest shape that supports the specified
load). Reddy and Cagan [94] have used a different shape grammar in conjunction

with a simulated annealing algorithm to develop complex truss topologies.
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Triplet {Member : Node 1 : Node 2}
{ 04 : 63 : 87}

a) Member
= int(Var1¥* Nelem)+1

=int(0.4*2)+1
=1

b) Nodel = int(Var2)
=6

c) Node2 = int(Var3)
=8

d) Repair Node2
Shift to nearest
attached node=7

Figure 5.1: Decoding a triplet of the genetic string.
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When the topology of the candidate structure has been determined by de-
coding the string, a gradient-based optimizer is used to size the members. Stress
constraints for the members and displacement constraints for the nodes are han-
dled efficiently by a sequential quadratic programming algorithm. In a hybrid
scheme, the cost of each function evaluation for the genetic algorithm depends
directly on the time spent on optimization in the smooth subspace. The work
required for sizing increases linearly with the number of members (quadratically
if finite-differences are used to produce gradient information). The variable-
complexity algorithm typically generates candidates with a small number of
members, so the time spent sizing them is greatly reduced.

This genetic scheme has been applied to a series of truss design tasks. The
first two are used to provide direct comparison with the hybrid method em-
ployed by Sakamoto and Oda. The third allows comparison with an analytically-

determined optimum for a Michell truss.

5.4 Applications

5.4.1 Nine nodes, one load point.

The first optimization task is to find a minimum weight truss to support an
end load of 1000 Newtons, with a vertical deflection of 0.015 mm at the load
point. A 3 x 3 grid of nodes is provided, with horizontal spacing of 100 mm
and vertical spacing of 50 mm. The number of possible elements is 36 (for n
nodes, the number of possible elements is n[n — 1]/2), and Young’s Modulus is
prescribed to be 200 GPa. The density used to calculate truss weight is 0.0079
g/mm3.

This task is quite simple for the variable-complexity algorithm. Only two
triplets in the genetic string are required to shift from the baseline, which has two
members connecting the load point and fixed nodes, to the optimal configuration,
which has six members. The results of 5 trials, from different random starting

populations, are shown in Fig. 5.2.

89



2000.
Baseline

1900. -
%0 1800. 1000 N Optimum
S
Q
% 1700. 1000 N
E T H
= 1600.

Run i\ Runt \Run4 ‘iRunS
&Run2\ 3% /
1500. 3 3
1400.
0. 5. 10. 15. 20. 25. 30.
Generation

Figure 5.2: Optimization histories for single end load.

A population size of 50 is used, and the genetic algorithm is allowed to run
for 30 generations. The true optimum is found within 500 function evaluations.
In every trial using the variable-complexity algorithm, some members of the
initial random population have one useful triplet. The optimum is reached as
soon as a mating with unequal crossover is performed between two parents with
different useful triplets, producing offspring that combine the best features of
both parents. : ,

Sakamoto andOda reached a practical thjmlim in 96% of their trials, but
even the two-member design used as a starting point for the variable- complexity
algorithm satisfies their criterion for practical optimality. They are essentially
reporting a success rate for finding a feasible design, whereas the encoding used
here reduces the search space by guaranteeing feasibility. The average candidate
design in their starting population has 18 members (half the bits in an average
random string of length 36 will be ‘). Consequently, each function evaluation

for their genetic algorithm is more expensive, because there are more members
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to be sized. The variable-complexity algorithm provides superior performance
at lower computational expense.

5.4.2 Nine nodes, two load points.

In the second example, the 3 x 3 grid of nodes and the material properties of the
members are retained. Two nodes are loaded, as shown in Figure 5.3. Vertical
deflection at the load points is again constrained to a maximum of 0.015 mm.
The baseline truss now needs four members to connect the loaded nodes to the
supports.

2500.

2400.| N

2300.

Truss Weight (g)

2000. Run 4

0. S. 10. 15. 20. 25. 30.
Generation

Figure 5.3: Optimization histories for two load points.

As in the first example, only two triplets are required to move from the
baseline to the optimum, but there are more baseline members that can be
modifed. The variable-complexity algorithm requires more function evaluations
to locate the optimum in this problem, but still finds it within 2500 function
evaluations for all trials. The hybrid method of Sakamoto and Oda has more
difficulty in this problem, finding a practical optimum in only 80% of trials.
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As before, candidate designs have extra members, so the sizing portion of the
hybrid algorithm must do more work than is needed for the variable-complexity
algorithm.

A history for the best population member for a sequence of generations
shows the variety of designs encountered during optimization (Fig. 5.4). The
trusses up to Generation 20 are built with a single modification of the baseline
structure, while the trusses in later generations are built using two triplets in the
genetic string. The optimum combines the modifications of Generation 2 and
Ceneration 20. Once again the variable-complexity algorithm combines building
blocks from simple parents to produce more complex offspring that have higher

performance.
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Figure 5.4: History of best individual in population.
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5.4.3 Michell truss.

For a single vertical end-load that produces a force and a couple resisted by
a supporting circle, the optimal truss topology is known. First described by
Michell [95], the members lie along lines of principal strain, forming a series of
spirals that intersect orthogonally, as shown in Fig. 5.5. The optimal members
are curved, while straight bars are used in practice.

The optimal solution can be approached by providing a grid of reasonable
density, so that several straight bars approximate the theoretical spirals. A 7 x
5 grid of nodes is used in this example, as indicated in Fig. 5.6. The base circle
is approximated by prescribing zero displacement for 3 nodes. (The base circle
is represented in Fig. 5.6 for completeness, but it is not directly modelled in the

analysis).

/ Specified

d load
Built-in end foa
circular base

Curved
structural
members

Figure 5.5: Michell truss for single end load.

The variable-complexity algorithm starts with a baseline structure that has
two members, connecting the upper and lower supports to the loadpoint. Stress
constraints are now imposed on all members, instead of displacement constraints
on the load point, to allow direct comparison with Michell’s theoretical solution.

The outer shape of the truss exerts a strong influence on the total weight of
the truss, and a history of the best member in the population shows that trusses
of maximum height are quickly found. Details of the internal structure are not
completely determined when the algorithm is stopped after 150 generations. The
final designs from five different runs are shown in Fig. 5.7. The result from Run
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Figure 5.6: History of best individual in population.
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5 is a simple, near-optimal truss that uses only ten bars. It is observed during
every run. The first four runs produce designs that include up to four additional
elements, which improve performance by up to 0.5%. No single design produced
by the genetic algorithm includes all the features that appear in different runs.
The designer is able to combine these features to seek superior performance. The
last truss shown in Fig. 5.7 is generated in this fashion, and it yields a further
0.5% performance improvement. It uses eighteen bars, and closely approximates
the shape of the curved optimal truss. Its weight is within 15% of Michell’s

solution.

Run3 W=16673g Combination W =1659.2 g

Figure 5.7: Final designs from different runs.

A problem of this magnitude has not been solved using a standard encoding
with a fixed length genetic algorithm. With 595 bits required to represent all
possible members, a population of several thousand candidates would be needed

to provide an adequate sample of the search space. Average candidates in the
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first generation would include 297 bars, an order of magnitude more complex
than anything considered by the variable-complexity algorithm in the entire
optimization procedure. The algorithm described here is far better suited to

tasks of genuine engineering interest.

5.5 Summary

Genetic algorithms are slow to converge to exact optima. Solutions generated
by the variable-complexity algorithm are often slightly simpler than the true
optimum, but they capture its essential nature. Results of genetic optimization
are most useful when several near-optimal designs are produced. The designer
can combine features from different designs, or may prefer a slightly sub-optimal
design due to considerations not modelled in the problem description. Gradient-
based optimizers can be used in conjunction with a genetic algorithm, to achieve
tighter convergence in smooth subspaces.

The encoding language used by a genetic algorithm can strongly influence its
performance. Biases that reflect factual knowledge of the domain can prevent
description of infeasible designs, and thereby restrict the search space to man-
ageable size. Encodings of variable length, which are available to the variable-
complexity algorithm, allow a bias towards simplicity. This generally reduces
the cost of each function evaluation. The smaller search space and less ex-
pensive function evaluations both significantly improve the efficiency of genetic
optimization, so that previously intractable tasks can be managed by the new
variable-complexity genetic algorithm. Future work will include implementation
of the shape grammar for truss development defined by Reddy and Cagan [94].
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Chapter 6

Wing Topology Optimization

for Minimum Drag

Several applications of genetic optimization to aerodynamic design of wings are
presented in this chapter. These examples demonstrate that careful constraint-
handling is critically important for location of the optimum. Penalty methods,
repair methods, and analytic satisfaction methods are all used in this domain.
When geometric constraints are imposed on the span and height of a non-planar
wing, fixed-complexity representations converge to suboptimal designs. The geo-
metric constraints are satisfied by folding the structure into the allowable space,
and the details of the folding are strongly dependent on the initial topology.
Successful identification of the optimum by the variable-complexity algorithm
requires an extended encoding of the variables in the genetic string. This encod-
ing allows adaptation in response to changes in constraint activity, as explained
in Chapter 4. Although calculus-based methods do not produce optimal topolo-
gies when used alone, they can be helpful for final refinement of designs produced

by the genetic optimizer.
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6.1 Motivation for Use of Genetic Optimiza-
tion

Systems for preliminary synthesis studies have traditionally used algebraic rela-
tionships and heuristic rules to size aircraft components [3, 5, 6, 7]. With steady
increases in the computational power available to designers, it has been possi-
ble to introduce panel methods for more accurate aerodynamic estimates at the
preliminary design stage [4, 28, 96, 97]. It has been observed that the drag pre-
dicted by these methods is strongly influenced by panel geometry. If continuous
variation of the width of each panel is permitted, the aerodynamic response can
be noisy, and estimation of gradients for calculus-based optimization becomes
difficult.

Gallman [4] smooths the drag prediction by constraining all panels to have
the same width. This is effective, but it limits the choice of variables, because
parameters such as fuselage width and wing span are no longer independent.
Unger and Hall [99] have attempted to smooth the gradient estimation by us-
ing automatic differentiation, but found that convergence difficulties were not
completely resolved. Giunta et al [98] have introduced response surface approxi-
mations for the same purpose, but note that the number of function evaluations
required to provide data for curve-fitting can be prohibitive for large problems.
No such efforts to eradicate noise from the aerodynamic analysis are required
when genetic optimization is employed, because gradient information is not re-
quired.

In recent years there has been significant interest in highly nonplanar geome-
tries for very large aircraft. When the total arc-length of the wing is greater than
the maximum allowable span, the wing must be folded to satisfy the geometric
constraints. If the arc-length is fixed throughout optimization, the folding is
generally not optimal. If the arc-length can be increased during optimization,
folding occurs only when the wing encounters a conétréjnt, and is therefore more
likely to be appropriate. The variable-complexity genetic algorithm provides the
flexibility to alter the arc-length in this manner.
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6.2 Aerodynamic Analysis of Lifting Surfaces

A vortex-lattice code [100] is used to calculate the loads on the wing, with drag
being computed by integration in the Trefftz plane. In this code, the wing is
represented by a number of panels, with a bound vortex located at the quarter-
chord of each panel. The system solves for the vortex strengths that produce zero
normal flow at control points, located at the three-quarter-chord. The panels are
grouped into elements, with all panels in an element sharing the same incidence
and dihedral. Figure 6.1 shows a wing of eight rectangular elements, with the
control point of each panel shown at the three-quarter chord point, and the

bound vortices lying along the quarter-chord line.

Figure 6.1: Panel representation of lifting surface.

The aerodynamic model solves the linear system of equations:

[AICSH{T} = Uo{6}

The aerodynamic influence coefficients [AICS] are computed using the Biot-
Savart law, and represent the strength of the downwash at control point ¢ due
to the existence of a unit strength vortex at panel j.

All the design tasks that are explored in this chapter require the calculation
of both lift and drag, but no consideration is given to wing weight. The objective

is always to minimize drag while generating specified lift. Later examples also
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have geometric constraints on span and height of the non-planar wing. The
design variables all relate to the geometry of the lifting surfaces. Dihedral is
used in all problems. Incidence is also a variable, unless the constraint-handling
scheme solves for it directly (as explained in the next section). Number of
panels per element is used when a span constraint is introduced. The chord of
each element becomes a design variable when parasite drag is included in the
objective function. The size of the optimization task scales with the number of

elements used to describe the wing.

6.3 Genetic Encoding

The genetic string is a concatenation of sets of variables, with each set describing
a lifting element. Dihedralis always included in the set, while Incidence, Number
of panels and Chord are added as required. To ensure viable decoding when
unequal crossover is performed, the crossover point in the second parent must
lie at the same point within an element description as the crossover point in the
first parent. Thus, when the first crossover occurs at a Dihedral variable, the
second must occur at Dihedral rather than, say, Number of panels.

The decoding of the genetic string assumes that the elements are attached
end-to-end. The position of each new element is determined by the position
and orientation of elements decoded before it. The assumption of connectivity
reduces the chance of non-viable candidates being described. The search space
is thereby reduced, so the population size required to provide a useful sample of
the domain is also reduced.

Each set of variables in the genetic string can be decoded to modify an
existing element or to add a new element. Modification of existing structure is
permitted so that near-optimal topologies described by a few large elements can
be refined by providing more detailed description of each element. When parasite
drag is important, for example, performance improvement can be achieved by

splitting a single element with constant chord into two elements with differing
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chord. A negative value for the Number of panels variable indicates that old
panels are to be adjusted, while a positive value causes new panels to be added.

An extended genetic string is used for problems that include constraints on
span and height. It carries three alternative values for each parameter, but only
one is expressed. The motivation for a string with unexpressed sections was
discussed in Chapter 4. The mechanism for controlling expression of alternative

values is described in the next section of this chapter.

6.4 Constraint-Handling

6.4.1 Geometric Constraints to Permit Analysis

Some arrangements of lifting surfaces are difficult to analyze using panel meth-
ods. When vortices approach control points too closely, the matrix of influence
coefficients can become ill-conditioned. If two panels lie directly on top of each
other (as happens, for example, when the dihedral of consecutive elements is
different by 180 degrees) the system is no longer independent, and there is no
unique solution. These limitations require the introduction of extra constraints
on the geometry of the candidate planform. Prior to aerodynamic analysis, the
geometry is checked to ensure that vortices and control points are well-separated,
that panels do not lie on top of each other, and that panels do not cross over
each other. Candidate designs that fail these checks cannot be analyzed by the
vortex-lattice code, so an alternative method must be used to assess their fitness.
It is possible to assign a fixed value to all non-analyzable designs, but correlation
of strings with performance becomes difficult if much of the population shares
the same fitness. In this situation, the designs that cannot be analyzed are dis-
carded from the population, and reproduction is continued until the population
is filled with candidates that have been analyzed.
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6.4.2 Lift Constraint

The requirement for fixed lift cannot be handled by excluding from consideration
those designs which violate it. It is extremely unlikely that a wing with randomly
chosen incidence values would satisfy this constraint, so the search for feasible
members of the initial population would be extremely inefficient. Exclusion from
the population is not required, because techniques are available for analyzing
the infeasible candidates, and then either supplying a performance measure that
reflects the extent of infeasibility, or repairing the design to make it feasible.

Several possibilities are considered in this section.

Penalty Method

The standard method for handling constraint violations is to modify the objec-
tive function by appending a penalty that grows as the extent of infeasibilty

increases.
J = Juncon + PenWt x (L — Leeg)®

Here, J is the objective value, Juncon is the unconstrained objective value,
PenW't is a user-specified weighting factor, L is the lift generated by the candi-
date design, and L., is the required lift.

Numerical investigations show that when penalties are used to enforce the
lift constraint, the stre