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ABSTRACT

W_ present a new multidomain spectral collocation method that uses staggered grids for

the solution of compressible flow problems. The solution unknowns are defined at the nodes

of a Gauss quadrature rule. The fluxes are evaluated at the nodes of a Gauss-Lobatto rule.

The method is conservative, free-stream preserving and exponentially accurate. A significant

advantage of the method is that subdomain corners are not included in the approximation,

making solutions in complex geometries easier to compute.
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1 Introduction

Standard Chebyshev spectral methods applied to compressible flow problems

have some severe restrictions [7]. The computational domain must be simple enough to

map onto a square, in two space dimensions, or a cube in three. To increase spatial

resolution the polynomial approximation order must be increased. For high orders, the

derivative approximations must be performed with Fast Fourier Transform methods to be

efficient. If matrix multiplication is used instead, the work grows too rapidly with the

number of degrees of freedom to be practical. Finally, the time step restrictions are

severe since the time step decreases asymptotically as the square of the order of the

approximating polynomials.

The basic premise of a multidomain method is that these restrictions can be

reduced by subdividing the computational domain into multiple zones, called

subdomains, on which the spectral approximation is applied. As a result, the method can

be used on more complex geometries. The use of lower order approximating

polynomials in each subdomain means that matrix multiplication can be both efficient

and accurate, and the time step restrictions need not be as severe. A discussion of the

advantages of multidomain methods over the single domain method was presented in [24]

and has been updated in [19].

Less than a decade after they were first introduced[24], the bulk of the spectral

multidomain methods for that have been proposed compressible flows or similar

hyperbolic problems still define the solution unknowns at the nodes of the Gauss-Lobatto

quadrature, just as in a single domain method. Examples include [33], [25], [29] and [3]

for general hyperbolic problems, and [26] for the Euler gas-dynamics equations.

Methods for the advective terms of the compressible Navier-stokes equations were

presented in [18] and [19]. An interesting method for coupled acoustic and elastic wave

interactions was proposed in [ 1].



ThemaindifferencesbetweentheLobattogrid methodsarewhethertheequations

are written in conservativeor non-conservativeform, and the manner in which the

interfacesare treated.Theconservativeform of the equationswasused,for example,in

the methodspresentedby [18] and[4]. Non-conservativeforms wereconsideredin [33],

[26] and [1]. We will showbelow that theuseof theconservativeform of theequations

doesnot guaranteethatthemethodis globally conservative,sincetheinterfacetreatment

mayleadto lossof conservation.

Two approacheshavebeenusedat subdomaininterfacesto ensurethat waves

propagateproperly through them. The two methodswere contrastedin [25] and are

consideredin more detail in [3]. At least two valuesof the normal derivative are

availableaninterfacepoint, dependingon thenumberof subdomainsthathavethat point

in common. Oneinterfacemethodintegratesa differentialcompatibility equationfor the

points alongthe interface[24], [33], [18], [3]. Derivativesarechosenfrom appropriate

subdomainsso that wave componentsare "upwinded". The other approachusesa

correction procedure([25], [26], [1], [4]). To implement the correction method, the

interior point approximationis integratedeverywhere,including at theboundaries.As a

result,multiple solution valuesare availableat eachinterfacepoint. A characteristic

combinationof thesesolutionsis thenmadeto correctthesolutionfor thepropagationof

wavesacrosstheinterface.

Eachinterfacetreatmenthas its advantagesanddisadvantages.Integratingthe

differential equationmeansthatthe solutioncanbeapproximatedto anyorderaccuracy

in time,dependingon thechoiceof thetime integrationscheme.Implicit timeintegration

schemescan also be used[3]. The serious disadvantageis that the tangential space

derivativesmust be continuousacrosssubdomaininterfacesin more thanone space

dimension.This requirementseverelyrestrictsthe typesof geometriesonwhichsolutions

can be computed,since it meansthat the Jacobiansof the transformations of the

mappings between the subdomainsand the unit squaremust be continuous across
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subdomain interfaces. The correction scheme,on the other hand, does not require

smoothnessof the grids, sinceonly the solution valuesare required at the interfaces.

However,the temporalaccuracyof thecorrectionmethodis limited to first order. (C.f.

[7], page245.)

A disadvantage shared by the two interface treatments is their complexity. Either

method is simple to apply in one space dimension. In two space dimensions a choice

must be made at corners to determine from which subdomains the solution bi-

characteristics must be computed. Special algorithms can be developed for the

approximations at the comers of subdomains [26], but if more than four subdomains meet

at a single point, the choice can be even more complex.

A very different multidomain approximation is based on the Chebyshev cell

averaged grid originally proposed by Cai et al. [5]. In this method, "cell" averaged

quantities are defined on the Gauss-Chebyshev grid, while fluxes are defined at the more

usual Lobatto points [35], [15], [16]. The cell averaged method avoids many of the

disadvantages of the methods just described. It is fully conservative, and it can be

approximated to any temporal order of accuracy. It is also geometrically flexible because

it does not require continuity of the transformations across interfaces. In more than one

space dimension, the method does require special attention at the corners of subdomains.

Currently, a simple average of the multiple solutions is computed and broadcast to all

contributing subdomains [ 16].

In this paper, we present a new multidomain spectral collocation method for the

solution of compressible flow problems. The new method is based on a staggered grid,

analogous to fully staggered grids often used with finite difference methods. The

solutions are defined at the nodes of a Gauss quadrature rule, and the fluxes are evaluated

at the nodes of a Gauss-Lobatto rule. Staggered-grid spectral approximations were first

proposed for the solution of the incompressible Navier-Stokes equations. (C.f. [7], page

234.) Our grid will be identical to the fully staggered grid of Bemardi and Maday [2].



The staggeredgrid multidomainmethodfor compressibleflow problemshasall

thedesirablefeaturesfoundin themethodsdiscussedabove. First, like thecell averaged

method it is conservative. Thus, it should be possible to apply shock capturing

techniquesto the approximation.Subdomainscan be defined independentlyof their

neighbors, so the method is geometrically flexible. The interface condition can be

computedto the sametemporalaccuracyasthe interiors. However, in multiple space

dimensionsthe methoddoesnot include (the Gaussrules being open) the corners of

subdomains.Thusthecodingof themethoddoesnot requirespecialcasesat corners,and

anynumberof subdomainscanmeetat a pointwithout difficulty.

Thepaperis dividedasfollows. Thealgorithmis presentedin thenextsectionfor

problemsin onespacedimension,alongwith definitions of thenotationusedthroughout

thepaper. We show that thestaggeredgrid methodis conservative,while methodsthat

upwind derivatives are not. A scalar problem and a linear system will be used as

examplesto show that the methodis exponentially convergentfor smoothproblems.

Thoughwe will beconcernedin thispaperprimarily with steadyproblems,anexampleis

includedto showthat high ordertemporalaccuracycanalsobeobtained. In Section3,

we describethe algorithm in two spacedimensions.We showthat themethodremains

conservativeandis alsofree-streampreserving.Section4 providesthreeexamplesof the

useof the methodfor two-dimensionalproblems. The first problem is that of a point

sourceflow, for which thereis anexactsolution. We showthat exponentialaccuracyis

obtainedfor this problem. Thesecondproblemis a subsonicflow overacircular bump

in a channel,and weshowthat theentropyerrorsdecayexponentiallyfast. Finally, we

solvea transonicflow in anaxisymmetricconverging-divergingnozzleandcomparethe

resultsto experimentaldata. Concludingremarksarethenmadein theSection5.



2 The Staggered Grid Approximation in One Space
Dimension.

2.1 Notation

The staggered grid approximation uses two grids to compute the solution values

and advective fluxes. Unlike the common Chebyshev approximation [7], which uses

only the nodes of the Gauss-Lobatto quadrature as collocation points, the new method

uses both the Gauss and the Gauss-Lobatto points. We denote the points on the two grids

by the Lobatto points, Xj, and the Gauss points, Xi+_, 2,

N

(1)

Xj._n= 1-cos 2N+2 rt j=0,1 ..... N-1

In (1), we have mapped the usual collocation points defined on [-1,1] to the more

convenient unit interval. The overbar and half point notations for the Gauss points are

used only for their value as an analogy to staggered grid finite difference methods. It

must be understood that the Gauss points do not lie halfway between the Lobatto points

[7].

Two polynomial approximations are defined, one for each grid. Let the space of

polynomials of degree less than or equal to N be denoted PN. Let gj(_) _ P_v be the

Lagrange interpolating polynomial

_j(_) = _( _-X__ -'Xi) (2a)

defined on the Lobatto grid. On the Gauss grid, we define hi÷_j2 ePN__ to be the

polynomial

(2b)
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Finally, let Qj be a grid point value on the Lobatto grid and Qj+m be a value defined on

the Gauss grid. Then we write the polynomials that interpolate these values as

N

Q(X)= ___Q_gj(x) (3a)
)--0

N-1

O(x)- (3b)
d--O

2.2 The One .Dimensional Staggered Grid Approximation for Scalar Equations

To motivate the staggered grid approximation, we consider the approximation of

scalar problems of the form

u, +L(u)--0

u(x,O) = Uo(X)

u(a, t) = g(t)

3f13u >O,x _[a,b],t> 0

(4)

The interval [a,b] is subdivided into multiple, non-overlapping subdomains, Y2k =[ak,bk],

k = 1,2 .... ,K, which are ordered left to right. A simple linear transformation can be made

to the unit interval, so that on each subdomain we solve the problem

u, +l fx(u)=O X _[0,1], t > 0 (5)
XX

On each subdomain is placed the staggered grid defined by (1). For convenience,

we will assume that the same number of points is used in each subdomain, but this is not

required by the method. We then let D_ (X)E PN-t, defined by (3b), approximate the

exact solution, u on O k. Similarly, the flux is approximated by the polynomial

F k (X) e PN, defined by (3a). Substitution of these approximations into (5) gives

10Fa(X)
_k+ -Re(X) k=l,2 ..... K (6)

x x _X
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To obtaintheequationsthatdefinethesolutionunknownsat theGausspoints,we require

that the residual,R, be zero at the Gauss points of the subdomain. This leads to the

collocation approximation

dff]+_,2 1 o3Fk(Xj÷lp)
-_ " =0 j=0,1 ..... N-I (7)

dt x x OX

The spatial derivative operation in (7) can be evaluated as the multiplication of the

vector of flux values by a derivative matrix, D. From (3a), we see that

OF (Xj+ln) u iv
19X - E _; (X_*'2)F"k = ZdJ" F_ (8)

n=O n=O

so we write

I N
0Fk = (DFk)j+l,z = Edj.F_ "
_X i÷m ,,=o

(9)

Thus, (7) can be written in vector form as

e-E 
_+DF k=0 k=l,2 ..... K (10)

dt

k Hk Ir _k =[Fok Ft* ... p_]rwhere U k = [U(_2 U_2 .... u-l,2j ,-

To compute the flux values on the Lobatto grid, we use the following

reconstruction procedure. We first evaluate the interpolant Uk(X)e PN-1 at the Lobatto

points by multiplying the vector of solution values by an interpolation matrix, I.

N-I N-1

ff(X_) = ___ff,+_,2h,+l,z(Xi)= Zi_.,+_/y--,+m (11)
n=0 n=0

The family of characteristics of (5) runs left to right. Thus, we expect the use of the

solution extrapolated to the left subdomain boundary to lead to an unstable procedure. To

provide the proper characteristic domain of dependence, we use the boundary condition

to define the j = 0 value on the furthest left subdomain. At subdomain interfaces, where

two values 0 -_-_ (1), ffk (0) are available, we choose the value computed from the left side
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of the interface. The result is an upwind evaluatedapproximation at both the left

boundaryandtheinterfaces.The fluxes,Fj, are thencomputedfrom thesolutionvalues

on theLobattogrid.

The methodimposesthe boundaryconditions,weakly, throughthe definition of

the flux, since the discretesolution values are not useddirectly at the boundary or

interfaces. To seethis,considerthesingledomainapproximationof (4) for f= u. Then

we can write the flux F(X)= U(X)EPN in terms of the interpolant U(X) and the

boundary condition as

u(x) = u (x) + [g- U (a)leo(x),

so that the polynomial U(X) satisfies

U(X:) j=1,2 ..... N
U(Xj)=[g j=0

Then (7) can be written as

dU: +it2 + 1U"(Xj+It,)

dt xx "
= J--[U'(zo) - g]e,;(xj+:_)

XX

(12)

(13)

j=0,1 ..... N-1. (14)

At 10U'" I
2 x x OX i+:-

1 o3Fk'"+l:: I
x x OX j+l/=

j=0,1 ..... N-1

j =0,1 ..... N-1

(15)

_]k,n+l _k,n
+in = U]+ln - At

"_jk.n+l/2 _k.n
+1/2 : Uj+I/2

have used a mid-point rule,

Thus, the boundary condition is imposed indirectly at each collocation point through the

penalty term on the right.

Equation (10) is a system of ordinary differential equations that must be

integrated in time to get the approximate solution values at the Gauss points. In principle,

any common integration procedure can be used. We have chosen to use low storage

Runge-Kutta methods that require only 2-N storage locations. For the computation of

steady-state problems, for which the time discretization is only an iterative procedure, we



This methodappearsto havea goodbalancebetweenthetime stepthatcanbeusedand

temporal damping introduced by the scheme. With additional knowledge of the

eigenvaluestructureof thedifferentiationmatrices,otherchoicesmight includeschemes

optimizedfor rapidconvergenceto steady-state,suchasthosediscussedin [11], [ 10]and

[91.

Fortime dependentproblems,wehaveusedthethird order2-N storagemethodof

Williamson[39], andthemorerecentfourth orderschemeof Carpenterand Kennedy[8].

We note that it shouldalsobe advantageousto use the new low storageRunge-Kutta

methodsderived by Hu et al. [21], which are optimized to minimize the phase and

dissipation error introduced by the temporal approximation.

To summarize the staggered grid procedure, we present the following algorithm

for the scalar problem described above:

Algorithm I. (Staggered Grid, Scalar, 1D)

I. Interpolate U=[_I/z,_3/_ ..... U_,__1/2] r tO the Lobatto points:

Compute the matrix-vector product U k = lkU k defined by (11) for each subdomain

2.Compute the flux values at internal points on Lobatto Grid:

F k =f(U_) j=1,2 ..... N,k=l,2 ..... K

3 .Apply boundary and interface conditions:

F_', = f (g)

F_=f(U_ <) k=2,3 ..... K

4.Differentiate Flux and evaluate on Gauss grid by subdomain:

Compute the matrix-vector product DkF k k = 1,2 ..... N by eq. (9).

5. Update the solution by subdomain:

Integrate (10) by the chosen ODE solver, repeating Steps 1-4, as necessary.

6. Repeat 1-5 until done.
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We note that the method requires two matrix-vector products per Runge-Kutta

stage. This is twice the work of a Lobatto grid method, or of the cell-averaged method.

Thus, there is no speed advantage for the method in one space dimension.

A desirable feature of the staggered grid approximation, (7), is that it is

conservative. To show conservation, we define the quadrature

I N-1

[. F(X)dX = E FJ+,,2wJ+,,2 VF _P,v-,
0 j=0

1 (16)

wi+l/2 = I hJ +m(X)dX
0

For each j, we multiply (7) by XxW_+m . The sum over all points and all subdomains is

___.,Zw._+,,2 xkx_+ F;+,, 2 =0. (17)
k=_i=0 dt

Now, 0-k (X), F'k(X) _ PN-_, and x X is a polynomial of degree zero, so we can replace the

sum overj by integrals to get

(18)

Upon integrating the flux derivatives, the interface contributions cancel, and

d U'k(X)xxdX = f_(O) FK(1) (19)

dt ( k=l a_ j

In contrast, a multidomain method defined on the Lobatto points, where the

upwind value of the flux derivative is used at the interface (e.g., [18]) is not truly

conservative. To show this, it is sufficient to consider two subdomains, O L and O R for

which x X = 1. Using the upwind derivatives at the interface, one integrates the following

system of equations
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U_=g

dt =-Fff

do7
dr =-F'JR

_ dr: _
dt dt

dt

j=l,2 ..... N-1

j=l,2 ..... N-1

(20)

We then multiply each equation by its associated Clenshaw-Curtis weight [7] and sum to

get

N dU_ N R

_ s' dU___Z_,w R =.= dt w_ + _=o dt J

L(,.,L dg)_ U
L rpL _ ,R_tR

- -Wolf N -ro" ] (21)
- j=0

Eq. (21) shows that there is a contribution at the interface proportional to the jump in the

derivative across the interface. For smooth enough functions, this is not expected to be a

problem, since the difference between the derivatives should go to zero exponentially

fast, while the coefficient decays as O(1/N2).

As an example of solutions computed using Algorithm I, we compute a steady

solution of the equation u, + u_ = f x _ [0,2],t > 0. Scalar examples of one dimensional

time dependent problems can be found in [27]. Comparisons to a variety of finite

difference methods can be found in [37]. The initial and boundary conditions were

chosen so that the exact steady solution is u(x) = tanh((x- 1.5) / 2). Fig. 1 shows the

solution computed using three subdomains and eight points per subdomain.

11



1

0

I o_ Computed-I_ Exact ]

-1 1.5 2
0 0.5 1

X

Fig. 1. Steady solution of a scalar wave equation

Convergence of the error is exponential for this problem. Fig. 2 shows the error

plotted as a function of the Gauss polynomial order for the subdivision shown in Fig.1.

For comparison, we have also plotted the error of the single grid multidomain method

(20). We see that the staggered grid approximation is at least as accurate as the non-

staggered grid approximation, and sometimes more accurate by a factor of four.
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Polynomial Order

Fig. 2. Convergence of the error for the staggered grid multidomain method compared to

a non-staggered multidomain approximation.

2.3 The One -Dimensional Staggered Grid Approximation for Systems

Algorithm I can be easily extended to systems of hyperbolic equations of the form

Q, + F_,(Q) = 0 xe[a,b],t>O
Q(x,0) = Qo(x) (22)

where Q and F are m-vectors. We assume that the system is hyperbolic, that is, the

Jacobian matrix A = OF / OQ = ZAZ -z, where A is a real diagonal matrix. We further

assume, as is the case for the Euler gas-dynamics equations, that the flux can be written
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as F = A Q. To complete (22), we assume that appropriate dissipative boundary

conditions are applied.

The approximation of the system follows that of the scalar equation, except for

the treatment of boundary and interface conditions. At an interface between subdomains

k- 1 and k, there are two vector values of the interpolated solution available, Qk-_ and Q_0-

The computed flux must use these two values to allow waves to propagate through the

interfaces. For constant coefficient linear problems, we can write

F = AQ = ZAZ-_Q = ZA÷Z-IQ + ZA-Z-_Q (23)

where A-+= A + IAI.The first term represents waves moving left to right, and the second

represents waves moving right to left. An upwind approximation chooses Q_¢-_ for the

right going components, and Qk0 for the left going components to give

k-I k + -1 k-I

f_-_=F_=Y(Q_ ,Q0)-ZAZ QN +ZA-Z-_Q_0- (24)

Characteristic decompositions for nonlinear flux vectors have been addressed

extensively in the finite difference community (Ref. [20]). We have considered flux

vector splitting and flux difference splitting.

The resolution of the jump at the subdomain interfaces can be easily viewed using

flux vector splitting. The flux is decomposed into a right going and a left going flux,

F(Q) = F÷(Q)+ F-(Q). The splitting is done so that the Jacobian matrix of F ÷ has only

positive eigenvalues and the Jacobian of F- has only negative eigenvalues. Examples are

the Van Leer [38] splitting and the more recent splitting of Liou and Steffen [30]. Using

flux vector splitting, the positive flux is evaluated using the solution from the left, the

negative flux is computed using the value from the right

F:_-t=/:: = .q'(QN ,Qo) = F+(Q_r-')+

Van Leer's Flux vector splitting was used in [18] to compute the flux derivatives at

interfaces for the advective part of the Navier-Stokes equations.
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As an interfacetreatment,flux vectorsplitting hasthe desirablefeaturethat the

positiveandnegativefluxescanbecomputedwithin a subdomainwithout regardto the

neighbors.The final flux computation,(25),requiresonly asimplesumof the boundary

fluxes. However, we found that the Van Leer splitting applied to the staggeredgrid

schemewasunstablefor somelongtimeintegrations.

As analternativemethodto computetheinterfaceflux, wehavechosento usean

approximate Riemann solver. This approachwas also taken by Giannakourosand

Karniadakis[15]. Severalsolverchoicesarepossible,butwe haveusedRoe's [34] solver

with theentropyfix. Formally,giventhetwo statesQ_-IandQ_0,we write

k 2( 1RIAIR-_(Q__Qk_-l) (26)-

where R is the matrix of the right eigenvectors of the Jacobian of F, computed using the

Roe-average of Q_-_ and Qk0. The eq. (26) is modified to correct the entropy across sonic

points [20].

Boundaries can be considered as interfaces between the computed solution and

the solution assumed to exist outside the computational region, if fully known. Thus, we

can compute the boundary flux by

F_=y(Q(a,t),Q_o) (27a)

on the left, and

F_ = _T(Q_u,Q(b,t)) (27b)

on the right, where Q(a, t) and Q(b, t) represent the exterior solution at the boundaries.

Other ways to compute the boundary flux when the full exterior solution is not known

will be described in regard to specific problems in Section 4.

In summary, for systems of equations, we have the following algorithm:
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Algorithm ll. (Staggered Grid, System, ID)

l.Interpolate the Gauss-point solution values to the Lobatto

points:

Computethe ma_ix-vectorproduct Qk=lkQkbyeq.(ll)_reachsubdomain.

2. Compute

3. Apply the

3. Apply

the interior point fluxes:

k = F(Q_j)j=l,2 ..... N,k = 1,2 ..... KFj

interface conditions :

F_ -_=v_=_q- N ,Qo

boundary conditions at left and right

4. Compute spatial derivatives at Gauss points:

Compute the matrix-vector product by eq. (9).

5. Update the solution at the Gauss points

--k

dQJ+I'2+F_k+I/_=0 j=0,1 .... N-l,k=l,2 ..... K,
dt

repeating Steps 1-4 for each Runge-Kutta stage.

6. Repeat Steps 1-5 until done

As an example of the application of Algorithm II, we solve the problem

Q,+F,=0 x_[-1,4],t>0

(28)

Further examples that model unsteady acoustic propagation, including acoustic

propagation in a quasi-one-dimensional nozzle, can be found in [27]. The initial

condition for (28) was chosen to be a Gaussian pulse with the peak at x = 1

Q(x,0) = ] (29)

We specify boundary conditions so that the waves pass through the boundaries without

reflection,
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u(-l,t) - v(-1,t) = e -12('-2>2

u(4,t) + v(4,t) = e -I2(3-3')2

(30)

The solution was computed using four subdomains of equal length and with the

same number of points within each subdomain. For the time discretization, we have used

both the Williamson [39] 3rd order and the Carpenter and Kennedy [8] 4th order schemes.

Fig. 3 shows the solution at time t = 0.75. For a small enough time step, spectral decay

of the error is observed, as shown in Fig. 4. To study the temporal accuracy, we

computed the solution on the finest grid, N = 25, so that the spatial accuracy was close to

rounding error. A plot of the errors as a function of At for the third and fourth order

methods is shown in Fig. 5. A least squares fit to the errors indicates a slope of 2.995 for

the third order and 3.998 for the fourth order method, so the expected high order temporal

accuracy is obtained. We also see that over the At range shown, the fourth order method

is about two orders of magnitude more accurate than the third. This is consistent with the

observations of [8].

0.5

>
=- 0

-0.5

-1 0 1 2 3 4
X

Fig. 3. Solution of the system (27) at t = O. 75 using four subdomains
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Fig. 4. Decay of the spatial error of the system (28).

-4

E= -6

" -4.5 -4 -3.5 -3 -2.5 -2

Iog10 (At)

Fig. 5. Decay of the temporal error of the system (28)
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3 The Two-dimensional Approximation.

We now describe the approximation of the Euler equations of gas-dynamics in

conservative form,

0Q _F _G

a, =°'

where Q is the vector of solution unknowns and F(Q) and G(Q) are the advective flux

(31a)

vectors

Q= pu F= P + pu 2 puv

[pv] puv | G= p+pv2 I. (31b)
pe u(pe + p)J v(pe + p)]

We assume 7 = 1.4 and that pe = p / (},- 1) + (u 2 + v 2) / 2. For axisymmetric problems,

such as the transonic flow in the converging-diverging nozzle discussed later, we

interpret x as the axial coordinate and y as the radial coordinate. We then add to the right

hand side of (31a) the vector

= -/ 2 (32)
Y/ pv

Lv(pe + p)

3.1 Mapping in two space dimensions.

In two space dimensions, we subdivide a computational domain, f_, into

quadrilateral subdomains, ilk, k = 1,2 ..... K. Figure 6 shows an example of a division of a

region into four subdomains. We make three assumptions about the subdivision in this

paper. First, we allow subdomains to intersect only at a point or along an entire side.

Second, we assume that the approximation is conforming, so that grid lines coincide

across subdomain interfaces. Finally, we assume that the subdomain boundaries do not

move in time. In the discussion that follows, we will make the assumption that the same

polynomial order is used in each space direction and for each subdomain. In practice, the
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number grid points can vary, as long as the approximation remains conforming at

subdomaininterlaces.

_ i i i / . "/2

/

f

/

I
,/

Fig 6. Diagram of a subdomain decomposition in 2D

Subdomains are mapped onto the unit square by an isoparametric mapping. Let

the vector function g(s), 0< s <1 define a parametric curve. Define also the polynomial of

degree N that interpolates g at the Gauss-Lobatto points to be

N

F(s)= _ g(sj)f_(s). (33)
j=0

Four such polynomial curves, Fro(s), m = 1,2,3,4, counted counter-clockwise, bound each

subdomain. We map each subdomain onto the unit square by the linear blending formula

xN (X,Y) = (1 - Y)F_(X) + YF3(X ) + (1 - X)F4(Y) + XI-'2 (Y)
, (34)

-xl(1 - X)(1 - Y)- x2X(1 - Y)- x3XY

where the xj's represent the locations of the corners of the subdomain, counted counter-

clockwise.

Under the mapping f_: _ [0,I]×[0,1] given by (34), the Euler equations (31)

become

where

a-7.,,LAX =o (35a)
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= - =-yxF+xxG

J(X,Y) N N U U= XX Yr -- Xy YX
(35b)

Since we assume here that the subdomain boundaries do not move in time, we can write

(35a) as

_Q _F'(Q) _(_(Q)
+ + - 0 (36)

Ot 3X 3Y

where 1_ = JQ and the fluxes are still defined by (35b).

3.2. The staggered grid

A fully staggered grid is used in two space dimensions. A schematic of the grid

on a single subdomain is shown in Fig. 7. The grid is the same as the staggered grid

proposed by Bemardi and Maday [2] for the solution of the incompressible Navier-Stokes

equations. In what follows, we will ignore superscripts that denote which subdomain is

being considered, unless necessary.

Y
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Fig. 7. Diagram of the fully staggered grid in two space dimensions.

Points of type "a" in Fig. 7 represent the Gauss/Gauss points

(,_÷l_2,Y_+l/2),i,j =0,1 ..... N-1. The grid that results from these points is the tensor

product of the one dimensional Gauss grid defined in (1). We approximate the solution
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and the transformation Jacobian at the Gauss/Gausspoints, and denote them by

"Oi+ll2,j+ll2 and Ji+lJ2,j+ll2 = J(X-i+ll2,j.ll2,Yii+ll2.j+ll2) ° From these, we compute the Gauss

point values (_i÷l/2,j÷m = _÷l/2,j+mQi+l/2,j+_/2. Finally, the interpolant of the solution

through the Gauss points is a polynomial in P_v-_,u-_ = PN-_ ® P_v-_"

N-IN-1

(_( X, Y) = ___'_ (_,._/2,j+_:2h,÷_,2 ( X)h_÷_/2 ( Y) (37)
i=O j=0

The points of type "b" in Fig. 7 form the Lobatto/Gauss grid

(X_,Yj+tn), i,j = 0,1,...,N. On this grid are evaluated the horizontal flux vector, F and

the metric terms yy and xy. The metric terms are computed as _yU(Xi,Y:+a/2) /_Y and

bxU(X_,_+vz)/_Y. At points interior to a subdomain, the horizontal flux is computed

by

-- . (38)

where Q is a polynomial of the type (37) that passes through the values

I)_÷_n,j+_, 2 / .7_+_/2.j+_,2. The computation of the flux at boundary and interface points is

described in the next sub-section.

The vertical flux and the derivatives Yx

Gauss/Lobatto grid, marked by "c" on Fig. 7.

and xx are computed on the

The points on this grid are

(X_+_/2, Yj), i, j = 0,1 ..... N - 1. The metric terms are computed as OyX (_÷_/2, Yj) / OX and

3xN (_+_:2, Yj ) / OX. The vertical flux is computed at interior points by

(3_÷_:_,j =-yUx(X_+_,z,Yj)F(Q(X_+_:_,Y_))+ x_(X,+,/z,Y:)G('Q(X,.÷_n,Y:) ) (39)

and at boundary points as described in Section 3.3.

It may appear that to define quantities on three different grids would lead to a

significantly more complicated method than a single grid Lobatto approximation, This

turns out not to be the case. The definitions of the fluxes on the staggered grid by (38)

and (39) mean that the reconstruction procedure, i.e., the interpolation of the solution
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neededto computethefluxesat theLobatto points,is not a two-dimensionaloperation.

Rather,it is the lessexpensivesequenceof one-dimensionalinterpolations,givenby (11).

Thevaluesof thesolutionvectorrequiredtocomputetheflux vectorsareactually

N-1N-t

-Q(Xi,Fj+U2)'-- ZZ-Qi+ll2,j+u2hi+ll2(Xi)hj+ll2(Fj+u2)

i=0 j=0

N-I (40a)

i=0

and

N-IN-1

Q(X,+,2.Yj) = ZZ-O,÷_,2.j+,2h,+_,2(K+_,2)h2._,2(Y i)
i=0 j=0

N-1

j=O

(4Oh)

since, by construction,

h_+l,2 (_'i+1,2) = _.,i

3.3 Interface and boundary treatment.

To describe how we compute the interface and boundary conditions using the

staggered grid approximation, we will refer to Fig. 8, which schematically represents four

subdomains and the locations at which solution and flux values are computed. Only the

collocation points near the boundaries are marked. The circles represent the solution

values, which are located on the Gauss/Gauss grid. The locations of the horizontal flux

values, _'_._+1/2 , are represented by solid squares. The locations of the vertical flux

values, (_+1/2.j, are marked by hollow squares. From the diagram, we see that along the

interfaces between subdomains 1 and 2 and between subdomains 3 and 4, only the

horizontal fluxes need to be computed. Along horizontal interfaces, like those between

subdomains 1 and 3, only the vertical flux needs to be computed. Because the grid is

fully staggered, the coupling is through subdomain faces only, not through the corners.
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Fig. 8. Diagram of four subdomains showing locations near interfaces where solutions

and fluxes are computed. Symbols: • solution; • ,F; [],G

Fig. 8 indicates a significant advantage of the fully staggered grid over an

unstaggered grid. In the unstaggered approximation, for example as described in [26],

special comer algorithms must be devised to ensure correct propagation of waves through

the corners. Each special case must be coded separately. Also, the choice of hi-

characteristics that determines the domains of dependence becomes more complex as the

number of subdomains/boundaries that come together at a point increases, making the

derivation of these special cases more difficult. The staggered approximation does not

include subdomain comers, so conditions do not have to be specified at comer points.

Any number of subdomains can come together at a point without the need for special

point approximations. No special code is required even for very complex subdomain

topologies.

The interpolation of the solution by (40) produces two solution values at an

interface point, one from each of the two contributing subdomains. As in the one
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dimensionalcase,wedo not expectthesetwo valuesto coincide,exceptin the limit of

infinite resolution. A single flux is calculated,as describedfor the one-dimensional

problem,exceptthat we only considerwavespropagatingnormal to the interface. This

normalwaveapproximationis commonfor finite differenceapproximations[20] andhas

beenusedin [18], [16] and[4] for spectralapproximations.We note,however,thatother

two-dimensionalwavedecompositionsarepossible,like thosesurveyedin [32].

Physicalboundariescanbeviewedasinterfacesbetweentheexternalflow andthe

computationalregion.Wall boundariescanbecomputedby imposinganopposingflow

that enforceszeronormal momentumflux acrossthe interface. Subsonicinflow and

outflow boundariescanbe computedby replacingthe solution that would have come

from aneighboringsubdomainby the free-streamvalues,if they areknown. If the full

stateof the exterior flow is not known, the known quantitiescanbe specifiedand the

remaining quantitiescan be computedby a characteristicmethod.Onceall solution

quantitiesareknown on the boundary,the flux canbecomputed. An exampleof this

approachis provided in Section4.3. Supersonicoutflow boundariesrequire no extra

conditions.

3.4 Discretization of the equations.

Once the fluxes are computed, the spatial discretization can be made. From the

discrete flux values are defined the polynomials

N N-I

i=o 1=o (41)
N-1 N

¢(x.r) = X),:j(Y)
i=0 j=o

Derivatives of the interpolating polynomials are then evaluated at the Gauss/Gauss grid

points. Like the reconstruction procedure, the differentiation of (41) can also be done as

a sequence of one-dimensional operations
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N
-'_+1,2,j+112 n=O ' -

(42)

Because both interpolation and differentiation operations must be performed at

each step, the total work of the staggered grid method is twice that of a method that only

uses the Lobatto grid. The new method requires the same amount of work, however, as

the cell averaged method [16]. The reconstruction procedure in two space dimensions for

the cell averaged method is more complex than in one, and requires the same amount of

work as both the interpolation and differentiation operations here.

Finally, from the definitions (37)-(42), the semi-discrete approximation for the

solution unknowns can be written as

"QI +Fo +o l =0, i=0,i ..... N-I (43)laX aY| 1=0,1 .... N-l
-'_ i+112,j+112 t_ -li+112,j+112

Eq. 43 can be integrated in time as described in Section 2.2.

3.5 Properties of the staggered grid approximation.

The staggered grid approximation is both conservative and free-stream preserving.

A net gain or loss of (_ is determined only by the flux through the exterior boundaries. If

the solution is constant in space, then the solution must remain constant in time, even in

the presence of a spatially varying mapping.

We first show that the staggered grid approximation is conservative. It is

sufficient to consider the four subdomains shown in Fig. 8. Let the quadrature weights

w_+_/2,r/j+_/2 be defined so that

1 1 N-I N-I

0 0 i=0 j=0

VP _ PN-I,N-1 (44)
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By exactnessof thequadrature,thesumof eq.(43) times wi+m r/j÷m over all the points

within a subdomain is

f dQaxdv=
o ao dt 4=0 li+1/2,)+1/2

: LI"_V -I- _i+1/20j+1/2

i Ji+ll2,j+ll2

11FO ' -

or]

(45)

Thus, for each subdomain,

I 1

: -I F(1, Y)dY + IF(O,Y)dY
0 0

1 1

-IC.(X,1)dX + f G(X,O)dX
0 0

(46)

When (46) is summed over all subdomains, the interior integrals cancel so that only the

boundary contributions remain:

d 4 1 1 1 1

-_t2_ f OkdXdY = f (_" (0, Y)+ F3(O,Y))dY- S (_': (1, y)+ F4(1, Y))dy
k=l 0 0 0 0

1 l

I(G3(X,0) "_ G4(X,O))dX--_(GI(X,1)-_-G2(X, 1))dX

o o

(47)

The staggered grid approximation is also free-stream preserving, which means

that the isoparametric spatial mappings do not introduce false source terms. It is

sufficient to consider the approximation within one subdomain, since all derivatives are

computed locally by subdomain. If we take F(Q) = G(Q) = 1, then the approximation

(43) becomes

+1 y_ - x_)+ N =
_tt i+1/2,j+1/2 i+112,j+112

(48)

Since x N _ PN,N,
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sothat,

N

, k.l=O

d-_li+ll2,j+tl2

= OYk. OX )_+_/2.j+l,z (49)

=0 i=0,1 ..... N-1 (50)
j =0,1 ..... N-1

4. Examples

In this section, we use the staggered grid approximation to compute three steady

flow problems. The first problem is subsonic flow from a point source, which has an

exact, analytic solution. We use this solution to show that exponential convergence is

obtained. The second problem is a subsonic flow over a circular bump in a channel.

Although there is no exact solution for this problem, we show that the errors due to

entropy generated along the curved wall decay exponentially fast. The final problem

computes a transonic flow in an axisymmetric converging-diverging nozzle. That

solution is compared to experimental data.

4.1 Subsonic Point Source Flow

As our first example, we consider the flow of a steady, irrotational flow exiting

from a point. This flow can be solved exactly by a hodograph transformation [12]. The

streamlines are radial, and level curves of the Mach number, pressure and density are

circles centered on the source. We will compute this flow in two geometries. The first

represents a flow in an expanding duct, where two streamlines are chosen as walls of the

duct. The second geometry, a square with five circles cut out of its interior, is included to

show that the method can be used to compute a flow in a complex, multiply connected

geometry.

The first geometry represents steady flow in an expanding two-dimensional duct

with straight walls. The lower wall was chosen to be the line y = 0 and the upper wall was
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the line y = x tan(n/6), for x between 1 and 1.5. The exact solution chosen sets the Mach

number at the lower left corner of the domain to be M = 0.6.

We examine solutions for three subdomain decompositions, each having four

subdomains. Fig. 9 shows the three decompositions. In the first (Grid I), the subdomain

boundaries are straight lines so that the mappings defined by (34) become bi-linear

transformations. The second and third decompositions are included to study the effect of

curved subdomains. Both perturb the Grid I by a sine wave of amplitude 0.1 into

"bulging" (Grid II) and "wedging" (Grid III) decompositions, named so in [36].

ljJ

J 11

/ ,"1 II1_ /

__..!! ! ii

g l iiii i I
i i |

Fig. 9. Three subdomain decompositions for the diverging duct problem.

Wall conditions, applied as described in the previous section, are specified on the

top and bottom boundaries. The left boundary is a subsonic inflow boundary. For that,

we specify the exact solution as the incoming condition for the Riemann solver. The

right boundary is a subsonic outflow boundary, and again the exact solution is used to

specify the external flow. A perturbation of the exact solution was used as the initial

condition.

Fig. 10 shows the computed, steady Mach number contours for Grid I. In that

figure, and in those following, contour lines are plotted using solution values interpolated

from the Gauss points to the Lobatto points using (37). The grids in Fig. 9 show those

Lobatto points. The solutions are represented interior to each "cell" bounded by the grid

lines. The interpolation is done for display reasons, since a plot using the Gauss points
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would show gapsbetweenthe subdomains,a result of the fact that the solution is not

definedat the interfaces.Plotting theinterpolantdoesgive somevisual indicationof the

sizeof thesolutionjumps at the interfaces.

Fig. 10. Mach contours for flow in a diverging duct.

The staggered grid approximation is exponentially convergent for the point source

flow in the duct. For Grids I-III, Fig. 11 shows the weighted L 2 error in the density as a

function of the polynomial order used in each subdomain. The most marked observation

is that for this problem, the error and the convergence rate are not sensitive to the

presence of curved interfaces. In fact, the convergence rate for the "bulged"

decomposition is slightly higher than for the straight sided subdomains. This contrasts

strongly with the observations of [36], which considered the approximation of second

order problems. There, the presence of even slightly curved interfaces increased the error

by orders of magnitude.

30



..... I'''1'''1' ''1'''1'''1'''

-4

O

0_ -6
CXl
_.1
v

°-7

O

...I -8

-9

-10
4

•-..o- Grid I

...c}-.. Grid II

--o-- Grid III

|nn I|l on|m ain i allu | ui||_lJl !

6 8 10 12 14 16 18

Polynomial Order

Fig. 11. Convergence of the error for the three grids of Fig. 9.

As our last example of the point source flow, we use the grid shown in Fig. 12.

The geometry, a square with five circles cut out of its interior, was chosen to show that

the method can be used to compute on a complex, multiply connected region. Twenty-

four subdomains were used to cover the computational domain. Up to seven subdomains

share a common corner point without difficulty, because such points are not included in

the discrete approximation.
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Fig. 12. Grid for point source problem.

The boundary conditions were chosen so that the exact steady solution was radial

flow with the point source at the center of the middle circle of Fig. 12. The center cutout

circle was specified as an inflow boundary, with the conditions chosen so that the Mach

number of the incoming flow was M = 0.6. The boundary conditions along the remaining

cutout circles were either inflow or outflow, depending on the direction of the normal

velocity. The square outer boundary was an outflow boundary. For all inflow/outflow

boundaries, the exact solution was used to provide the external flow values required by

the Riemann solver.

In Fig. 13, we plot the exact and computed Mach number contours for the solution

of the point source flow. For the grid shown in Fig. 12, the contour lines of the exact

solution, which are plotted with dashed lines, are coincident with the solid contour lines

of the computed solution.
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Fig. 13. Solution of the point source flow for the goemetry shown in Fig. 12. The exact

solution is plotted with dashed lines, the computed with solid lines.

The approximation on the grid of Fig. 12 converges exponentially. Fig. 14 shows

the maximum error in the density as a function of the polynomial order in each

subdomain. We see that doubling the number of points per subdomain causes the error to

decay by approximately two orders of magnitude.

4.2 Subsonic Flow Over a Circular Bump in a Channel

The second example is that of a Mach 0.3 subsonic flow over a circular bump in a

channel. The geometry and grid with N = 9 is shown in Fig. 16. Wall boundaries were

specified at the top and the bottom. At the left and right boundaries, the uniform flow

free stream solution was specified as input to the Riemann solver. Initially, the free

stream solution was specified everywhere, and then the boundary conditions were

imposed. This problem does not have an exact analytic solution. However, since the

incoming flow was chosen to be irrotational and isentropic, the entropy should be zero

everywhere. The fact that this is not the case can be the result of the spatial
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approximationand to the normalwave modelusedat the interfacesandboundariesfor

calculatingtheflux [32].

-5

468 10121416

N

Fig. 14. Convergence of the density error for the solution shown in Fig. 13.

Solution contours of the Mach number for the grid shown in Fig. 15 are presented

in Fig. 16. The wall pressure along the bottom, plotted as the pressure coefficient

Cp = (p - 1) / 7, is shown in Fig. 17. Finally, a convergence study of the entropy errors

as a function of N is shown in Fig. 18. In that figure, we plot the maximum value of the

quantity]_ = p/pr _ 1, which should be zero everywhere. We see that the error due to

entropy generation converges exponentially fast.
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Fig. 15. Geometry. and grid for N = 9for the flow over a circular bump in a channel.

Fig. 16. Mach number contours for the flow over a circular bump in a channel.
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Fig. 17. Graph of the wall pressure along the bottom bounda_ of Fig. 17.
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Fig. 18. Convergence of the entropy generated by the staggered grid approximation.

4.3 Transonic Flow in a Converging-Diverging Nozzle

As an example of a transonic problem, we compute the flow in an axisymmetric

converging-diverging nozzle. We have chosen the nozzle used in the experimental

investigation of Cuffel et al. [13], which was designed to show significant two

dimensional effects. The nozzle consists of a converging section with half angle of 45 °

and a diverging section with half angle of 15 o. The experimental tests were done in air

with a stagnation temperature of 540 R and stagnation pressure of 70 psia. The nozzle

geometry and the grid that were used in our computations are shown in Fig. 19. Note that

we have varied the number of points per subdomain in this problem.

To match the experimental conditions, we scaled the equations (31) and (32) by

P = P */P,o,,P = P */P,o,, where the '*' represents the dimensional quantity. Under this

scaling, the temperature and entropy are T = T" / T,o,,S,o , = 0. The initial condition for

the computation was the exact solution of the quasi-one-dimensional nozzle that has same
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areaas the two-dimensionalnozzle. For the inflow condition at the left boundary,we

specifiedthat thetangentialvelocity bezero,theentropybezero,andthetemperaturebe

unity. At the right boundary,theoutflow is supersonic,sothatno boundaryconditionis

necessary.
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Figure 19. Grid for the 45°-15 ° converging-Diverging Nozzle

Since not all of the external flow values are known at the left boundary,

particularly the inflow velocity, it is not convenient to use (26) to impose the boundary

condition. Instead, we use the following characteristic-like method that allows us to

specify only the parameters that are known. The fact that the inflow condition sets v = 0

means that the flow is essentially one dimensional. Then we can write a left-going

Riemann invariant for the flow. In terms of the Mach number, M, and the sound speed, a,

that invariant must satisfy

a(M y-R1]=Rcompme d =- ac°mp( Mc°mp )/--12]' (51)

where the computed quantities represent values interpolated to the boundary by the

reconstruction procedure. The boundary conditions fix the total temperature and the
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= ff_. Thenentropy. With the scaling given above, this fixes the total sound speed at a,o,

the scaled sound speed and the Mach number are related by

a= _1+--_-1M22

Combining (51) and (52), an equation for the Mach number at the boundary can be

written

2 11 = Rjom ,, . (53)

Equation (53) can be written as a quadratic equation in the Mach number and

solved directly. Once the inflow Mach number is known, the sound speed can be

computed using (52). From the Mach number, the sound speed, tangential velocity and

the entropy, all remaining variables can be computed. From the full state on the

boundary, the boundary flux can be evaluated.

Results computed for the nozzle are shown in Figs. 20 - 23. Contours for the

pressure are shown in Fig. 20. A comparison of the Mach contours and measured Mach

number in the neighborhood of the nozzle throat is shown in Fig. 21. We see good

agreement between the computed Mach contours and the measured values for Mach

numbers up to about 1.6. We note that the discrepancies between the computed and

measured Mach numbers are consistent with the discrepancies observed with the

solutions of the inviscid flow solvers reported in [13]. Finally, in Figs. 22 and 23, we

show a comparison between the computed and measured values of the pressure and Mach

numbers along the upper wall of the nozzle.
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Fig. 20. Pressure and Mach contours for the nozzle flow.
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Figure 21. Comparison of computed and measured Mach contours
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5 Concluding Remarks.

We have presented a new, staggered-grid Chebyshev spectral multidomain

method for the solution of inviscid compressible flow problems. The solutions are

defined at the nodes of a Gauss quadrature rule, while the fluxes are evaluated at the

nodes of a Gauss-Lobatto rule. We have applied the method to one and two dimensional

problems, but it should extend directly to three dimensions.

The staggered grid multidomain method for compressible flow problems has

many desirable features. These features include

• Conservation.

Mass, momentum and energy are conserved globally

• Free-stream preservation.

A uniform, steady flow stays uniform and steady even for complex

subdomain shapes.

• Temporal accuracy.

• Geometric Flexibility.

The domain need only be decomposable into quadrilaterals.

• Programming simplicity.

Corners of subdomains are not included as part of the approximation.

Special cases do not need to be coded. Subdomains have at most four

neighbors in two space dimensions and six in three space dimensions.

Boundary conditions require no special comer treatments.

While the new method is flexible, there remain a few limitations. We have

assumed that the approximation is conforming. Thus, subdomains must meet at a point

or along a full side. Along a side, the points at which the fluxes are computed must

coincide with their neighbors. Also, the domain must be decomposable into
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quadrilaterals.We expectthat thefirst restrictioncanbeeliminatedby consideringnon-

conformingapproximations[31].

We havenot consideredthe approximationof shocksin this paper. Methodsfor

shockcapturing with spectralmethodsthat havebeenproposedto date include direct

filtering [22], removal of the discontinuityplus filtering [6], Flux CorrectedTransport

methods[15], [16] and weak filtering with post-processing,[14], [17]. Shock fitting

shouldalso be possible[23], [28]. A thoroughstudyof the bestoptions is beyondthe

scopeof thispaper.

We have emphasizedsteady-statecomputationsin this paper. However, the

methodis applicableto time dependentproblems. Someonedimensionalexamplesare

includedhereandin [27].

The new methodis a factor of two moreexpensivethanmethodsthat compute

both thesolutionandthefluxesonthe Lobattogrid. This is dueto theextra interpolation

from the Gausspoints to the Gauss-Lobattopoints. FFT techniquescannotbeusedto

computeeitherthe interpolationor differentiationoperationswith thenewmethod. Thus,

theapproximationorderwithin thesubdomainsmustbekept low enoughto wherematrix

multiplication is moreefficient thanFFTs,a valuethatvariesfrom machineto machine.

However,while theLobatto grid methodsrequirepoint operationsat subdomaincorners,

the new method requiresvector operationsonly. We believe that the flexibility and

programmingeaseof thenewmethodcompensatesfor theadditionalwork.

The newmethoddiffers from thecell averagemethodproposedin [35], [15], and

[16]. The cell averagemethod requiresa pointwise procedureto be performed at

subdomain corners that is not required by this method. The reconstruction and

differentiation operationsperformedare different. In one spacedimensionthe work

requiredby thestaggeredgrid methodis twice thatof thecell averagemethod.However,

the reconstruction procedure for the cell averagemethod in two spacedimensions

requires two matrix multiplication operationsper line in each direction, as does the

42



staggeredgrid method,sothework is equivalentin two spacedimensions.In threespace

dimensions,thestaggeredgrid methodwill requireonly two thirds the work of thecell

averagemethod,makingit moreefficient in thatcase.
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