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Chapter 1

Introduction

The Ada 9X Language Precision Team (LPT) was formed in 1990 to study portions of the design of
Ada 9X from a mathematical perspective. The first LPT project studied small parts of the language
in isolation, formulating fairly simple models to explore the ramifications of the design. The idea
was to avoid spending time studying the conventional parts of the language (where, we felt, little
would be gained by the analysis) and to focus on the novel proposals such as the object-oriented
features, overload resolution, and exception mechanismms. The results of this first project appear in
two reports [9, 2].

The second LPT project had two separate goals. The first, similar in approach to the first
project, was to study the rules of allowed optimizations. The second goal was rather different.
Instead of defining many unrelated small models, and studying new features in depth, the plan was
to formulate a broad model to cover a large part of the language. In this way, we hoped to find
problems arising from the interactions between different features.

The level of effort of the project was clearly insufficient to define a complete model of the language,
and our plan was not to make a complete model. Instead, we planned to define the framework for
such a model, and to fill in the details of the framework only in certain areas. Furthermore, the
framework was not intended to be complete; we did not expect to be able to describe concurrency or
distributed programming. We did, however, hope for the framework to cover most of the sequential
features.

Our expectation was not that the resulting incomplete model would necessarily be useful to
anyone (although we hope that it could be extended to form the basis for analysis tools). Instead,
we expected that the activity of making this model would allow us to influence the design of Ada
9X by identifying problems with specific language features or with the interactions between different
features, or by suggesting improvements in the ways that parts of the language are described. As
the design of Ada 9X was nearing completion when our project began, it was important to move
as quickly as possible. So, the model is quite sketchy in areas. Moreover, the formal definition
presented in this report omits several partial models that we built in the course of the project, as
we did not have the time to integrate them with the overall framework. None the less, these models
have played a useful role in helping us to understand and comment on various language features,
and to influence (however slightly) the design of Ada 9X.

This report is organized as follows. The method used for defining the model is described in
Chapter 2. A discussion of the model also appears there. The model itself appears in two parts. The
“domains” (sets describing the values assumed by different entities in the language) are described in
Chapter 3. The “judgements” describing possible executions of a program are described in Chapter 4.
Our study of the optimization freedoms described in [11.6] does not fit into the main framework; it
1s described separately in Chapter 5. Conclusions are drawn in Chapter 6.

Two appendices give some additional information. Appendix A lists the official language com-



ments that were submitted by the LPT; most of these apply to Version 4.0 of the Draft Standard [3],
and several have resulted in changes that appear in Version 5.0 [4]. Appendix B describes the inter-
mediate syntax that resuits from overload resolution (and other static checks).

References to the Ada 83 Reference Manual [10] appear in the form [RM-83 c.s(p)], where ¢
is the chapter number, s the section number, and p the paragraph number. References to version
5.0 of the Annotated Draft Standard for Ada 9X [4] appear in the form [c.s(p)]; this standard as a
whole is often referred to as “the Reference Manual”.



Chapter 2

Method of Description

The “broad semantic framework” is defined using Natural Semantics [5]. The general idea of natural
semantics is to define semantics as one or more relations between syntactic phrases and semantic
values. These relations are defined using axioms and rules of inference. As a trivial example, a
simple language of arithmetic expressions can be defined by the grammar

expression ::= numeral | <expression> "plus" <expression>

We can define the semantics of these expressions using a relation (between expressions and numbers)
of “evaluates to”, which we will write as ezpression = value, and a relation (between numerals and
numbers) of “denotes”, which we will write as numeral — value.

‘Two rules suffice to define the semantics of expressions (although additional rules not shown here
are needed to define the “denotes” relation). The first covers the base case of numerals:

n—v
[n € numeral ]
n=7v

The second gives the semantics of sums:

el = vl €2 = v2

el plus e2 = v1 + v2

The method is easily able to handle nondeterminism, where a phrase can have many possible
results. If we extend the expression grammar above to include ranges, with the meaning that any
number in the range is allowed, we have the grammar

expression ::= numeral
| <expression> "plus" <expression>
P
| <expression> ".." <expression>

Only one additional semantic rule is needed:

el = vl e2 = v2
[vl <v<02]

el..e2=> v

Using these rules, we can deduce

(0..2) plus (10..20) = =



for any z between 10 and 22 inclusive.

In practical applications of Natural Semantics, the judgements used are often more complex than
in this simple example. Usually, there is a certain amount of contextual information (such as the
definitions of functions or procedures); this is represented by an environment. Often a store is used
to record the values of variables. Furthermore, the evaluation of a phrase may have an effect on the
environment or store. So the judgements often have many components, and there are a number of
auxiliary domains of semantic values. We write most judgements in a standardized form

S,El-ptp:>v,...,

where S is a store, E is an environment, p is a phrase, the subscript pt gives the kind of phrase
(e.g., whether p is a declaration, statement, expression, or name), v is a possible result of executing
(or evaluating or elaborating) p, and the “.. 7 are any other results that the execution may have.
Usually, there is a final state that reflects any side-effects that the execution may have had.

We describe the domains of semantic values using the Z notation [8], which furnishes a standard
toolkit of notations for sets, functions, relations, and “freely constructed” sets.

The Natural Semantics definitions have been written in a machine-readable form in Prolog.
Judgements are represented directly as Prolog predicates, and semantic rules as Prolog rules. There
is a slight difficulty in transcribing uses of functions, but a simple translation to relations is possible.
The Prolog representation has two main advantages. Firstly, we were able to apply a type-checking
package developed by Reddy and Lakshman [7] to the definition; this found a number of simple errors
in the rules. Secondly, we are able to run the Prolog and determine what outcomes are predicted
by the semantic definition. This allows the semantics definition to be tested on small examples.

Several aspects of Ada 9X are tricky to define properly. In the remainder of this chapter, some of
the awkward parts of the language and some of the more intricate aspects of the Natural Semantics
definition will be explained. Not everything described below has been implemented in the Natural
Semantics; some of the discussion describes our plan for dealing with a feature even though we did
not have time to include that feature in the semantics definitions.

2.1 External Effects and Nonterminating Programs

Ultimately, the meaning of an Ada program is defined in terms of its sequence of “external effects”,
as described in [1.1.3(8)]. We can readily define several types of external effects, such as operations
on files using the standard 1/O packages, propagation of an exception, or return from the main
program. Other effects are not covered. 7

An outside observer can see these external effects during the execution of a program, and does
not need to wait until (and if) the program terminates. Therefore, we use a small trick to allow
the semantics to assert that a certain sequence of external effects can be viewed whether or not the
program terminates. We use a special incomplete condition that is treated like an exception that
cannot be handled. For any operation having an external effect, one possible result is to “raise” this
condition. The semantic definition then propagates this condition out of the main call. Thus, we
are able to infer judgements of the form

Library b program_name = ¢,

where e is a sequence of external effects, for every sequence e that might be observed during a run
of the program.

2.2 Semantic Simplifications

Some language features appear to be very difficult to incorporate into this model. For these features,
we have introduced a notion of an unpredicted result. When our definition allows the deduction that



unpredicted is a possible result of an execution, it means that the particular program includes a
language feature, or encounters a situation, that we decided not to account for in our model. This
is similar to erroneous executions, where the language standard does not predict the results of a
program.

For example, Section [11.6] of the Ada 9X Reference Manuals allows implementations to produce
results at variance with the language rules described elsewhere in the manual (in situations where
a language-defined check would fail if those rules were followed). The freedoms allowed by Section
[11.6) appear to be very difficult to incorporate into the model defined here. Therefore, we have kept
the model simple by treating the failure of a language-defined check as an unpredicted execution.

There are some rules new to Ada 9X that constrain the result of an execution that Ada 83
classes as erroneous. These bounded error situations can be difficult to model. For example, reading
the value of an uninitialized scalar variable is erroneous in Ada 83. In Ada 9X, it is a bounded
error, which can result in an exception or an implementation-defined result. Version 4.0 of the
proposed Standard introduced the concept of invalid values to describe these results. Unfortunately,
the introduction of invalid values complicates the semantics of the language considerably, as it
is necessary to provide rules'for computing with these values. The draft standard does not always
provide the complete details of these rules. For example, what is the result of a comparison involving
invalid values? Are the ordering operators transitive, even when applied to invalid values? We
decided to keep our model simple, and to avoid these questions, by refusing to predict the outcome
of a program that reads an uninitialized scalar variable. Version 5.0 of the Standard has changed the
description of this situation, but once again the exact rules are vague. Therefore, we are continuing
to use the simple model that refuses to predict the outcome of a program in these situations.

2.3 Static Checks and Overload Resolution

It is conventional to process Ada in two (or more) steps; the first step checking syntax, applying all
of the “legality” checks, and resolving any overloading. We planned to define the semantic model in
a similar way, with two distinct definitions. The first static semantics takes Ada source text, and
produces a program in intermediate syntaz. The intermediate syntax differs from Ada source text
in several significant ways:

e Intermediate syntax is in the form of a tree, rather than a linear string of characters. Therefore
intermediate syntax does not need to be parsed.

e Overloading has been resolved. Identifiers, characters, and operator names have been replaced
by intermediate identifiers (in the set Id) in such a way that no two distinct declarations declare
the same intermediate identifier. Any use of an identifier, character literal, or operator name
has been replaced by a use of the appropriate element of Id. (Some names using selection, e.g.,
package components, are also replaced by intermediate identifiers.)

e Many of the notational conveniences of Ada have been eliminated. For example, infix operators
are replaced by function calls.

o Generics are eliminated. Generic instantiations are expanded to a sequence of declarations.

e Some additional information is included. For example, a completing declaration is explicitly
marked as such.

The intermediate syntax is described in Appendix B.
We have not formally defined the static analysis, although we believe that a Natural Semantics
formulation of the static rules is possible.



2.4 Environments, Entities, and Stores

The Natural Semantics definition is faithful to the Reference Manual in its treatment of entities.
We use several different sorts of “entity locations”, which serve as unique names or references for
entities. When a declaration is elaborated, new names are generated for any of the entities that
need to be “created”, and the environment is updated to reflect the association of the declared Id
with a view of one of these entities. The store is a collection of mappings indexed by these different
entity locations, which associates a value or meaning with each entity.

This indirect representation, using references to entity locations rather than the meanings of
entities, makes it fairly easy to handle situations where an entity has a declaration that is separate
from its definition. Between the declaration and definition, any references to the entity cannot make
use of the definition (because it is not yet known). The location associated with the entity is known,
and can be used.

2.5 Ordering

The Ada Standard gives implementations considerable freedom to select the order in which actions
are performed. For example, in evaluating a sum, either the left or the right operand might be
evaluated first. It is easy to write a program that gives different results depending on which order
is chosen.

In order to write a concise description of the possible effects of the evaluation of constructs
allowing a choice of orders, we define a set of actions, and several ways of combining actions. One
combination, written by enclosing the actions in braces, allows the actions to be carried out in an
arbitrary order; another, written by enclosing the actions in square brackets, requires the actions to
be carried out in strict sequential order.

Actions are similar to judgements, except that the states do not appear explicitly. When actions
are executed in some order, suitable states are added and the corresponding judgement is used. We
write the actions in a notation that makes obvious the judgement for the corresponding execution.
For example, corresponding to the judgement 51, E by Stm = 53 1s an action written as 'E bym
Stm ='; corresponding to the judgement S, E F.;p Ezp = V, S5 is an action written as 'E Fezp
Ezp = V'.

We also use states, which are combinations of stores and control flow information (for example,
whether an exception has been raised, whether a return command has been executed, whether
execution is normal.) The rules defining the execution of a combined action check the control flow
information to skip some actions if that is appropriate. For example, in executing “a followed by
b”, if the execution of “a” propagates an exception, the action “b” is not executed.

One advantage to this approach is that the actions themselves look simpler than the correspond-
ing judgements, because the flow of control through them is described by the way they are combined.
For example, in defining the possible results of a sum using explicit ordering, we would need several
judgements, including

§, E Fegp el = 0], 51
81, B b ozp €2 = 02,52

85, EFerp el +e2= vl4 02,52
and

$, B Ferp 2= 02,51
s1, E topp el = vl, 52

8, E Ferp el + €2 = vl 4 02,52




and others to account for exceptions. Instead, using actions, we can write

'E Fegp el = 01/
Sif { "E Fezp €2 = 02/ 52

St Elerp el + €2 = v1 4+ 92,5,

which accounts for the different possible orders of evaluation and for the propagation of an exception
from one of those evaluations. (We still need something extra to account for an overflow in the
addition.)

2.6 Types

It is awkward to define a domain of “type values” that describe types, because the exact character-
istics of a type can change through its scope. For example, a type may be limited in some parts
of its scope, and nonlimited in other parts (such as the body of a package defining the type of a
component); a type can be private in some places and not in others. Furthermore, an incompletely
defined type can be used in various ways (such as a record component or designated type of an
access type); the characteristics of the using type can change after the incompletely defined type’s
full definition.

In order to simplify the treatment of these situations, types are described by descriptors that
refer to other types by their locations (see Section 2.4), rather than by their descriptors. This has
the disadvantage that descriptors are not meaningful in isolation, but only with respect to the store
that associates descriptors with type locations. However, it has several advantages:

e it gives a simple characterization of when types are the same; each type location represents a
distinct type;

e when the characteristics of a type of a component change, that change can be reflected in just
one descriptor; and

e circularities in type descriptors are easily handled (without needing any tricky domains allowing
for infinite data structures).

An example illustrating these advantages is

type A;
type B is access A;
type A is access B;

2.7 Values

We expected it to be easy to describe the domain of values that objects might assume. It was
surprising that this was not so. As mentioned above, the addition of invalid values to scalar types
adds several complications, as the nature of such values is not completely specified. The latest
version (5.0) of the proposed Standard no longer uses the term “invalid value”; instead, a variable
may have an “invalid representation” [13.9.1].

We also argued whether “abnormal” values would be needed in order to model the concept of
abnormal objects. We were able to avoid this, since the circumstances that can lead to abnormal
objects are being treated as unpredictable executions.

There are a few situations where it is difficult to determine the set of values associated with a
type. For example, given the declaration



subtype Void is Integer range 1 .. 0; -- an empty range
type R is record

v: Void

end R;

There are no values of subtype Void. However, there are values of type R. For example, a variable
of type R can be declared, and it is not an error to “read” the value of such a variable, or to assign
this value to a second variable of type R.

The problems with this type are related to those for uninitialized scalar variables, and we adopt a
simple approach to solve them. We use a special indicator to denote an uninitialized scalar value. A
scalar subcomponent of an object can have this value. If this “uninitialized” value is read, execution
is unpredicted.

The set of values of an enumeration type is not obvious. Given the declarations

type E is (red, greemn);
for E use (red => 1; green => 100);

version 4.0 of the Draft Standard suggested that there were two “valid values” of type E, and (at
least) 98 “invalid values” between them. The number of elements in an array indexed by E, then, is
open to question. Are there elements corresponding to the invalid members of the base range?

Types declared with per-object constraints do not have obvious sets of values (since the constraint
applied to a subcomponent might depend on the specific object of the type). Our model simply does
not cover the kinds of per-object constraints that lead to this difficulty.

Our model for values uses integers to represent discrete values (even if the value is of an enu-
meration type). This means that the values of different types are not necessarily different. It would
certainly be possible to mark values in such a way that no value belongs to more than one type,
but there seems to be no benefit to doing so. An Ada program cannot directly compare values of
different types, so there is no way for this detail to influence the outcome of a program.

2.8 Objects

It is normal in semantic definitions to use location semantics for variables, but different approaches
can be used in accounting for structured (composite) variables and their components.

The approach that seems most convenient for us is to associate locations with entire variables
(that is, variables that are not subcomponents of other variables). Every object is characterized by
its location and a selector indicating which component of the entire variable it is.

2.8.1 Actual Subtypes

The actual subtype of an object is sometimes different from the nominal subtype in its declaration.
This is an issue for assignments [5.2(11)] and formal parameters of mode in out or out that are
passed by copy [6.4.1(17)]. So it is important only for variables.

The actual subtype of a variable differs from its nominal subtype in the following circumstances:

e the object is a declared object, and is constant, aliased, or has an indefinite nominal subtype
[3.3.1(9)).

e the object is a formal parameter. [6.4.1(16)] states

A formal parameter of mode in out or out with discriminants is constrained if either
its nominal subtype or the actual parameter is constrained.

[6.4.1(12-15) gives additional rules for out parameters.



o the object is a generic formal object of mode in out. [12.4(8)] states that the nominal subtype
is Laken from the declaration of the formal, while the actual subtype is taken from the actual.

e the object is declared by an allocator, and the designated type of the result subtype of the
allocator is indefinite or has discriminants ([3.3(23) and [3.10(9)]).

e the object is a view of another object., and the subtype of the view is indefinite [3.3(23)].

This leads to the question of how the actual subtype of an object is determined, and where,
H needed, the actual subtype information is stored. ‘I'here are two reasonable choices: the actual
subtype might be associated with the object, or with cach view of the object. However, two views
ol an ohject need not have the same type. Obviously, in such a case the actual subtypes must be
different. Morcover, in a procedure call, the actual subtype of the view denoted by the formal can
be different from the actual subtype of the actual parameter, even when the views have the same
type. For example, the actual might be of an unconstrained discriminated type and the formal
conslrained. Therefore, we have decided to store the actual subtype as part of every view of an
object.,

2.8.2 Initialization

The caleulation of the implicit initial value for an object is difficult to describe, as there is consid-
erable freedom in the order of evaluation of defanlt. expressions used to initialize subcomponents.
1ois particularly awkward for subcomponents with discriminants; discriininants must be evaluated
before any subcomponent. that depends on them, hut other subcomponents may have their initial
vilues evaluated hefore then. So, given the declarations

type T(a: D := e0, b: D := el) is record
u: Integer := e2;
v: U(a) := e3;
w: U(b) := e4d;
x: S(a,b) := eS5;
end record;

y: T,

we must evaduate €0 before €3 and e5, and el belore e4 and e5. 'The order of evaluation is otherwise
unrestricted (unless references to a or b occur in 2, e3, or e4.)

i order to accommodate this flexibility, we use a variation on the “in some order” rules described
in Section 2.5, We add an additional datum to the left and right of the turnstile; this datum records
which discriminants have had their initializing expressions evaluated (and what the resulting value
is). The individual actions record their prerequisites {that is, which discriminants must be evaluated
hefore the action can he exceuted).

In the record of evaluated discriminants, we eannot simply use the name of the discriminant,
ax two subcomponents might. have the same type, and thus have discriminants of the same name.
Instead, for cach discriminant subcomponent to be evaluated we generate a unique identifier. A “dis-
criminant environment™, associating discriminant. identifiers with discriminant names, is therefore
also used in the judgements for initialization.

Another diflienlty in deseribing the initialization of objects concerns per-object constraints. Ada 9X
allows the name of a type to be used in its own definition, in which case it stands for the “current
instance™ of the wype. Thus, a constraint on a component can refer to the containing object. De-
seribing this formally can be difficult: the object might not exist. until its subtype can be determined
(whiclk imvolves elaborating per-object constraints), yet the elaboration of a per-object constraint.
iy refer to the objeet. We decided not to consider per-object constraints that refer to the “current
istance” (bt we allow them o refer to diseriminants).



2.9 Aliasing

Some rules concerning aliasing look difficult to model. [6.2(12)] states

If one name denotes a part of a formal parameter, and a second name denotes a part
of a distinct formal parameter or an object that is not a formal parameter, then the
two names are considered distinct access paths. If an object is of a type for which the
parameter passing mechanism is not specified, then it is a bounded error to assign to the
object via one access path, and then read the value of the object via a distinct access path
while the first access path still exists. The possible consequences are that Program_Error
is raised, or the newly assigned value is read, or some old value of the object is read.

If we are to allow for accurate predictions of the effects of procedure calls (or to refuse to predict
the outcome of calls that might involve aliasing), we need to be able to recognize, at a minimum,
when the above rule might apply. It is not enough just to say that parameters of certain types may
be passed by copy or by reference at the whim of an implementation, because the above paragraph
allows for results that might not be produced under either of the two passing mechanisms. We might
refuse to predict the result of any call with aliasing, but that can be hard to recognize if access values
are used. Unfortunately, the notion of “access paths” is not well defined by the Reference Manual,
and the precise meaning of the aliasing rule is unclear.

We have submitted several official comments on the aliasing rules, and had some discussions
with the Mapping Team on possible interpretations of these rules. One model that may work can
be sketched as follows: we would define a function access_path on names, which gives an element
of optional Id. This “access path” gives the Id associated with the declaration of some variable
denoting the object denoted by the name. This might be the declaration that created the object, or
might be the name of a formal parameter. If the object was dynamically created, the access path is
null.

In most cases, the definition of access_path is simple, e.g.,

access_path(Id) = some(Id) if Id is not declared by a renaming declaration
access_path(Nam.Id) = access_path(Nam)

access_path(Nam(exp, ...)) = access_path(Nam)

access_path(Nam.all = none

For Ids declared by renaming declarations, we would want to use the access path of the renamed
object.

In order to state the rule of 6.2(12), we would associate a “last update path” with every object
(including subobjects). Whenever an object is updated by an assignment, the access path of the
name used in the assignment statement is recorded in the object (and every subobject and containing
object). In addition, formal parameter objects are updated in a call with the formal parameter Id
as the last update path, and after a call, any in out or out parameter objects are updated by
the access paths of the corresponding actual parameter names. It would be a bounded error to
evaluate a name denoting all or part of a formal parameter for which the parameter passing mode is
unspecified, if the access path differs from the last update path of the object it denotes. Similarly,
it would be a bounded error to evaluate a name if the last update path of the object it denotes is a
formal parameter for which the parameter passing mode is not specified.

These rules account for most of the situations described by 6.2(12), but probably need refinement
to deal properly with access values created by Access attributes.
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Chapter 3

Semantic Domains

In this chapter, we define the domains of values used in the semantics. These sets describe the values
assumed by the various entities of Ada 9X.

These definitions have been used as the basis for the Prolog representation of the Natural Se-
mantics definitions presented in Chapter 4. However, some of the definitions defined here have not
yet been incorporated into the Natural Semantics definition, and some small inconsistencies between
the two definitions have not yet been eliminated.

3.1 Basic Notations .

In this section, we define some basic notions that will be used in the model.

An association provides a finite function with an enumeration of its domain. It is convenient to
represent such a function by enumerating (domain, range) pairs; the finite function is then the range
of the sequence.

X3 Y=={s:seqX x Y{rans € X + Y Aftrans = #s }

Functions adom and aran give the domain and range of an association. Function _ - _ is used to
apply an association to an argument (as though it were a finite function).

=[X, Y]
adom_: (X > Y)=PX
aran_: (X S Y)-PY

i (X3Y)xX+Y

Va:X 3 Y eadom a = dom(ran a)
Va: X2 Ye aran a = ran(ran a)

(Ayz)edom_ - _<z € adom A

r€adom A=A z = (rana) z

We sometimes use optional values:
optional X ::= none | some{(X))

Function mazimal returns the set of maximal values of an arbitrary relation, where a maximal
value of the relation R : X «— X is defined as an element z of X such that no y # z satisfies zRy.
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= [X]
mazimal : (X -« X)->PX

mazimal(R) = X \ dom(R \ id X)

Function restrict restricts both the domain and the range of a relation to some given set.

= [X]
restrict : (P X x (X « X)) — (X < X)

restrict(S,R) = (S x S)N R

Equivalently,

restrict(S,R) = (S < R)> S

3.2 Entities and the Environment

After overload resolution, every occurrence of an identifier in an Ada program can be replaced by
an Id, so that each Id has at most one declaration in the program.

The elaboration of a declaration creates an entity, and the Id of the declaration then denotes a
view of this entity. A declaration might be elaborated many times (e.g., if it appears in a subprogram
body), denoting a different entity each time.

Environment == Id -+ View

A view identifies an entity and provides some characteristics that affect the use of the entity.
For example, there can be several views of the same subprogram, each having different parameter
names and default expressions. Views refer to entities by using locations of various types.

[ Type_location, Subtype_location, Object_location, Subprogram_location]

There are no views associated with packages or generic declarations. Packages are significant
in their provision of information hiding and modularization, but those aspects concern the static
semantics, not the dynamic semantics. Generic declarations are expanded by the static semantics,
so that only ordinary (non-generic) declarations appear in the intermediate syntax.

Exceptions are unusual entities. No matter how often an exception declaration is elaborated, the
same exception is denoted. This exception is represented by an Ezception_Id that is determined
by the static semantics. (The Ezception_Id could be chosen to be the Id of the declaration, for
example).

View ::= object_view{{ Object_location x Subtype))
| subtype_view{{Subtype_location))
| subprogram_view({Subprogram_location x Profile})
| exception{{Ezception_Id))
| constant{{ Value))

Most kinds of entity are held in a store. Assigning a location to refer to the entity, and placing
an entity at that location in the store, corresponds to what the Reference Manual calls “creating”
the entity. This activity happens when a declaration is elaborated.

Several kinds of entities are used in the semantics definition:

e objects, which have values;

12



e subtypes, with their associated type, constraint, and attributes;
® types, with descriptors and optional parents;

e subprograms, with formals and bodies; and

operations (representing the “predefined operations” of the Reference Manual).

Store
types : Type_location + Type

subtypes : Subtype_location + Subtype

objects : Object_location + Value

subprograms : Subprogram_location + SubprogramOrQOp

SubprogramOrOp ::= subprogram({ Environment x (seqld) x Dcl x Stm))
| operation({...)

The different sorts of entities are described in the following sections.

Evaluation is defined in terms of a state, which (usually) includes a store, as well as certain
control information. States are defined below in Section 3.6. Function the_store, giving the store
associated with a state, is used in some of the definitions below.

3.3 Thunks

In several situations it is necessary to record an expression together with the environment in which it
appears, so that the expression can be evaluated in some other context. The environment is retained
so that any Ids appearing in the expression have their correct denotation. We call this combination
of an expression and an environment a thunk.

Thunk == Exp x Environment

Thunks appear in record type descriptors (where they describe the initializing values of any
explicitly initialized components), and in parameter lists (where they describe any default values for
parameters).

3.4 Values

There are several kinds of values of interest:
e discrete values (represented by integers)
e real values (represented by rationals)
¢ access values (represented by views of objects or of subprograms)
o record values (represented by partial functions)
e array values (represented by partial functions)

It 1s possible to use a model where the values of each type are distinct; however, the benefit of
doing so is not completely clear. The rules of the language do not allow for comparisons of values
of different types, so there is no way of telling whether these sets are disjoint.

13



3.4.1 Ranges

Ranges have two bounds, and determine a set of values of a scalar type.

Range =:= discrete_range((Z x Z)) | real_range({(Rational x Rational))
Discrete_range == ran discrele_range

Real_range == ran real_range

(The definition of the bounds functions contains a forward reference to functions discrete_value
and real_value, defined in Section 3.4.5.)

low_bound, high_bound : Range — Value

low_bound(discrete_range(l, b)) = discrete_value(l)
high_bound(discrete_range(l, k)) = discrete_value(h)

low_bound(real_range(l, h)) = real_value(l)
high_bound(real_range(l, k)) = real_value(h)

make_range : Value x Value + Range
make_range(discrete_value(v), discrete_value(v')) = discrete_range(v, v')

make_range(real_value(v), real_value(v')) = real_range(v, v')

_ belongs_to _: Value — Range
values_of _range : Range — P Value
_ is_included_in _: Range — Range

v belongs_to R & v € values_of _range(R)
values_of _range(discrete_range(l, b)) = discrete_value(l . . k)

values_of _range(real_range(l, b)) = real_value(l .. k|

R is_included_in R’ <> values_of _range(R) C values_of _range(R')

3.4.2 Index Ranges

Arrays are indexed by sequences of discrete values. Index ranges are determined by a sequence of
discrete ranges.

Array_bounds == seq, (Discrete_range)
Each sequence of bounds determines a set of indices:

indices : Array_bounds — P(seq; Value)

V B : Array_bounds e indices(B) = { s € seq, Value |
#s=#B AVn € doms e s(n) belongs_to B(3) }

3.4.3 Tags

We use a set of tags. The precise nature of this set is immaterial.

[Tag]
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3.4.4 Bindings

Bindings are simply partial mappings from Ids to values. Most often these Ids are the names of
record fields or discriminants.

Binding == Id + Value

3.4.5 Values

Although it seems redundant, we include the bounds as part of an array value. This is because two
arrays with no components (thus, with the same mapping function) can have different bounds.
Record values are furnished with optional tags, discriminants, and other components. This allows
the descriptions of the various language rules concerning tagged records, discriminated records, and
normal records to be combined.
A special value, uninitialized_value, is used for uninitialized scalar objects. This is used to detect
when such an object is read (in which case the result of the execution is unpredicted).

Value ::= uninitialized_value
| discrete_value((Z))
| real_value{{ Float))
| access_value{{optional View x optional SubprogramLabel)
| record_value({(optional Tag) x Binding x Binding))
| array_value(({ B : Array_bounds, v : (seq Value) + Value | dom v = indices(B) }))

We can define various sets of values referred to in the language rules:

Discrete_value == ran discrete_value

Real_value == ran real_value

Access_value == ran access_value

Scalar_value == Discrele_values U Real_values
FElementary_value == Scalar_values U Access_values

Composite_value == ran record_value U ran array_value

3.5 Types and Subtypes

Every type has an associated {ype descriptor giving the characteristics of the type (and possibly
referring to other types via their type locations).
The descriptors are defined here, but described in the sections that follow.

Type_Descriptor ::= enumeration_dsc{{N,))
| signed_integer_dsc((Z x T x Z x 1))
| modular_integer_dsc({(N;))
| universal_integer_dsc{{Z x Z))
| float_dsc((N; x Rational x Rational x Float_Implementation))
| ...(something for fixed-point types)
| array_dsc{{(seq; Subtype) x Subtype))
| record_dsc{({(optional Tag) x Discriminani_descriptor x Component_list_descriptor))
| class_dsc{{ Type_location))
| access_dsc{{Subtype_location x Access_Mode))
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A type is then a combination of an optional parent (in case the type was derived) plus a descrip-
tor.

Type ::= (optional Type_location) x Type_Descriptor

For each kind of type in Ada 9X, we define a type descriptor. Additionally, for each descriptor
we define the set of values of the type:

] descriptor_values : Type_Descriptor x State + P| Value
Function type_values gives the set of values associated with a type location given a state:

type_values : Type_location x State — P Value

V{: Type_location; S : State o type_values(l,5) =
descriptor_values(snd(the_store(S).types(u)), S)

Note that these sets of values might change over time as the information about a type is updated.

3.5.1 Subtypes and Constraints

A subtype is a combination of a type, a constraint, and certain attributes [3.2(8)]. There are in fact
two sorts of subtypes; we will call them “partial” subtypes and “true” subtypes. Partial subtypes can
contain unevaluated per-object consiraints, for example, references to discriminants. These partial
subtypes appear as the subtypes of components of a record with discriminants. When an object of a
subtype is created, some of these per-object constraints are elaborated and the true subtype of the
object and its components is determined.

There are several cases where a partial subtype cannot be elaborated: in a variant record, per-
object constraints in initially unused components are not elaborated; in an initialized object, none
of the per-object constraints are elaborated. The Reference Manual is not completely clear on this
point, and for now we will only consider per-object constraints that are references to discriminants.

Partial subtypes appear only as the subtypes of components of types with discriminants; named
subtypes, and the subtypes of objects, will always be “true” subtypes.

The Reference Manual identifies three kinds of constraints: range constraints, index constraints,
and discriminant constraints. In fact, the last two can also be applied indirectly, to an access
type having a designated subtype to which the constraint would apply directly. (Only one level of
indirection is allowed; given

type Al is access String;
type A2 is access Al;

an index constraint can be applied to A1, but not to A2.) We may find it useful to distinguish these
indirect constraints from their direct counterparts.

Constraint ::= no_constraint
| range_constraint{{Range))
| indez_constraint{(seq, Discrete_range))
| discriminant_constraint{{ Binding))
| indirect_indez_consiraint({seq, Discrete_range))
| indirect_discriminant_constraint({ Binding))

Some values satisfy a constraint:
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_ satisfies _: Value — Constraint

Vv : Value o v satisfies no_constraint
Vv : Value @ v satisfies range_consiraint(R) < v belongs_to R
array_value(B, a) satisfies index_constraini(S)<> B =5

record_value(t, d, r) satisfies discriminant_constraint(d') & d = d'

Now we can define subtypes:

Subtype
lype : Type_location
constraint : Constraint
attributes : Attribules

For every subtype, there is an associated set of values, namely the values of the associated type
that satisfy the constraint.

subtype_values : Subtype — State — P Value

VS : State; s : Subtype | s.type € dom the_store(S).types o
subtype_values(s, S) = { v : Value | v € type_values(s.type, S) A v satisfies s.constraint }

We use function subtype to create subtype values:

subtype : Type_location x Constrainl x Atlributes — Subtype

subtype(1, c, a).type =1
subtype(l, ¢, a).constraint = ¢
subtype(l, ¢, a).atiributes = a

3.5.2 Partial Subtypes

Partial constraints are similar to constraints, except they may contain references to discriminants
in place of values.

Partial_value = value({ Value)) | discriminant_ref (Id))
Partial_discrete_range == Partial_value x Partial_value
Partial_constraint no_constraint

range_consiraint{{ Partial_discrete_range))
indez_constrainit{(seq, Partial_discrete_range))
discriminant_constraint{{Id + Partial_value))
indirecl_index_constraint(seq, Partial_discrete_range))
indirect_discriminant_constraint{{Id + Partial_value))

A partial subtype combines a subtype and a partial constraint. (Using the subtype allows us
to do a “dependent compatibility check” at the right time, and also gives us the needed attributes
when we actualize.)

Partial_subtype == Subiype x Partial_consiraini

Given a mapping from discriminant names to values, a partial constraint can be turned into a
true constraint.
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actualize_value : Binding — Partial_value +~ Value
actualize_partial_range : Binding — Partial_discrete_range -+ Range
actualize_constraini : Binding — Partial_constraint +~ Constrainl
actualize_subtype : Binding — Partial_subtype + Subtype

actualize_value f (value v) = v
actualize_value f (discriminant_ref n) = f(n)

actualize_partial_range f (I, h) =
discrete_range(actualize_value f I, actualize_value f h)

actualize_constraint f no_constraint = no_constraint

actualize_constraint f (range_constraint(l, h)) =
range_constraint(actualize_partial_range f (I,h))

actualize_constraint f (indez_constraint s) =
indez_constraint((actualize_partial_range f) o s)

actualize_constraint f (discriminani_constraint d) =
discriminani_constraint((actualize_value f) o d)

actualize_constraint f (indirect_indez_constraint s) =
indirect_index _constraint({ actualize_partial_range f) o s)

actualize_constraint f (indireci_discriminant_constraint d) =
indirect_discriminant_constraint((actualize_value f) o d)

actualize_sublype f s =
1 Subtype | type = s.type A
constraint = actualize_constraint f s.constraint A
atiributes = s.attributes

3.5.3 Derived Types and Classes

A derived type is a new entity, but it generally uses a copy of the parent descriptor. The set of
values of the derived type is then the same as the set of values of the parent type. However, when
a derived type definition furnishes new discriminants or defines a type extension, a new descriptor

is needed.
The store records some information about derivation, by recording the (optional) parent type

[3.4(1)] of every known type.

parent : State — ( Type_location + Type_location)
parent(S) = { t,t' : Type_location | fst(the_store(S).types(t)) = some(t') }
Type extensions are considered in Section 3.5.8. Abstract types are considered in Section 3.5.8.1.

3.5.3.1 Derivation Classes

The descriptor for a class_wide type has the form class_dsc(t), where ¢ is the Type_location of the
root of the class. The values of this type are the values of all types derived (directly or indirectly)
from t:

descriptor_values(class_dsc(t), S) =
U{ ¥ : Type_location | (v', u) € parent(S)* e descriptor_values(t’,S) }

The notions of [3.4.1(10)] are easily defined:
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descendant, ancestor : State — (Type_location —~ Type_location)

ultimate_ancestor : State x Type_location Type_location

ancestor(S) = parent(S)*
descendant(S) = ancestor(S)=!

t € dom the_store(S).types =
ultimate_ancestor(S,t) = ((ran parent(S)) <€ ancestor(S)) 1

3.5.4 Scalar Types

Every scalar type records a base range, in addition to any other needed information.
| base_range : Type_Descriptor + Range

Scalar types are either discrete types or real types. A value of discrete type is simply an integer;
a value of a real type is a rational number.
Each scalar subtype determines a range, as specified in (3.5(6)]:

range_of _subtype : Subtype x Store + Range

o.constraint = range_constraint(R) = range_of _subtype(o, S)=R
o.consiraint = no_constraint =

range_of _sublype(o, 5) = base_range(snd(the_store(S).types(o.type)))
3.5.4.1 Enumeration Types

The type descriptor for an enumeration type has the form enumeration_dsc(n), where n : N gives
the number of enumerands.

The base range of the enumeration is the set of discrete values with position numbers between 0
and n — 1 (inclusive). The values of an enumeration type are the values in the base range.

base_range(enumeration_dsc(n)) = discrete_range(0,n — 1)

descriptor_values(enumeration_dsc(n), S) = discrete_value(l0 .. n — 1)

3.5.4.2 Character Types

Character types are simply enumeration types.

3.5.4.3 Boolean Types

Boolean types are simply enumeration types.

3.5.4.4 Integer Types
There are three descriptors for integer types:
o signed_integer_dsc(bf, bl, f, 1), with bf bl f,1:2 satisfying (according to [3.5.4(7)]),

L b <0< bl
2. bf + bl € {~1,0}, and
3. {f,1} Cbf . bl
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The base range of this type is bf .. bl.
o modular_integer_dsc(m), with m : Ni. (The base range is 0 .. (m —1) [3.5.4(7)].

e universal_integer_dsc(bf, bl) for bf, bl : Z (although the base range seems to be irrelevant
here).

root_integer is just a particular signed integer type.
In every case, the set of valid values of the type consists of all discrete values [3.5.4(6)].

descriptor_values(signed_integer_dsc(bf, bl, f, 1), 5) = discrete_value(Z)) U Invalid_value
descriptor_values(modular_integer_dsc(m), §) = discrete_value(Z]) U Invalid_value
descriptor_values(universal-integer_dsc(bf, bl), S) = discrete_value(Z)) U Invalid_value
base_range(signed_integer_dsc(bf , bl, f, 1)) = discrete_range(bf, bl)

base_range(modular_integer_dsc(m)) = discrete_range(0, m — 1)

base_range(universal_integer_dsc(bf, bl)) = discrete_range(bf, bl)

3.5.4.5 Floating Point Types

As acknowledged in the Ada 9X Rationale, the core language leaves the semantics of floating point
operations largely unspecified. By contrast, the floating point annex (Annex G) is quite precise—
though some flaws in the annex will be noted below. Therefore our model has two parts, one for the
core and the other for Annex G.

The semantics of the Reference Manual refers to the underlying machine values and operations,
and makes features of them visible, for example, in the values of attributes. We have attempted to
model this semantics directly, so that it will be clear how to tell whether an actual implementation
satisfies the semantic rules. This provides a model from the point of view of the implementor. It
would have been easier (and from some points of view, perhaps, preferable) to make a model from the
user’s point of view: e.g., take the values of the attributes as given and simply state axiomatically, in
terms of the attributes, the resulting constraints on the values returned by the predefined operations.
The user’s model is, of course, a consequence of the implementor’s model.

The descriptor for a floating point type has four components:

float_dsc{(N; x Rational x Rational X Implementation))

The first three components are provided directly by the type’s definition: the requested precision and
the bounds of its constraint. The fourth component characterizes the chosen implementation of the
type. The descriptor for an integer type contains a component with analogous information, namely,
the bounds of the underlying base type. We could represent the fourth component in a finitary way
by listing the values of a large number of floating point attributes determined by the implementation.
Instead, this component of the descriptor will consist of a model of the implementation itself, from
which the attributes can be calculated.

descriptor_values(float_dsc(n, v, v', imp), S} = real_value( Float|)
base_range(float_dsc(n,v,v',imp)) = inf (imp.ma.numbers) .. sup(imp.ma.numbers)

3.5.4.6 The core model of floating point

The values of a floating point type are rationals, with the possible addition of some extra things like
signed zeroes or NaN’s. For now these extra possibilities are ignored.
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Float == Rational U . ..

There is a problem in the Reference Manual: The possibility of signed zeroes or NaN’s is incom-
patible with [RM-83 3.5.7(8)], which says that the set of values for a floating point type is the set
of rational numbers.

3.5.4.6.1 Machine arithmetics Elaboration of a floating point type declaration includes the
choice of an appropriate Implementation (from some predefined non-empty finite set of them) to
model the type. One component of an implementation is a machine arithmetic, which consists of a
radix, a set of machine numbers, and relations modeling the predefined binary and unary floating
point operations. Floating point operations will be modeled not as functions but as relations, in order
to model their potential non-determinism. Some of the predefined binary floating point operations
return floats and some return booleans; all unary operations return floats. It is convenient to add a
special “return value,” overflow, to represent the possibility of overflow:

FloatResult ::= overflow | result{{ Float))
BinOpFloat == Float®? — FloatResult
BinOpBool == Float? — Boolean

UnOp == Float — FloalResult

It will also be handy to have an operation that extracts the (non-overflow) Floal values from a set
of FloatResults:

floats_of : P FloatResult — Floal
floats_of (X)) = result™(X)
In schema MachineArithmetic:

e radiz is the radix of the machine representation

e numbers is the set of machine numbers—that is, the set of storable values that will “fit” in
any variable of the type.

e plus, equals, ..., are relations modeling the predefined floating point operations; convert rep-
resents type conversion of an arbitrary real value to a machine number of this arithmetic.

Notice that operations like plus are not restricted to returning machine numbers of the type as
values. The machine numbers represent the storable values of the type, but operations may return,
e.g., extra-precision values that are not immediately rounded.
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__MachineArithmetic
radiz : Ny

numbers : F Float
plus : BinOpFloat

equals : BinOpBool
uminus : UnOp

convert : UnOp
float _outcomes : P Float

float_outcomes =
numbers U floats_of (ran plus) U . .. U floats_of (ran convert)
(float_outcomes)? C dom plus

(float_outcomes)? C dom equals
float_outcomes C dom uminus
Float C dom convert

ran convert C ma.numbers
sup(numbers) < —inf(numbers)

The axioms involving floal_outcomes are technical conditions guaranteeing that the (non-overflow)
results of any operation can legitimately be passed as arguments to any of the others.
The concluding inequality is all we can represent formally of paragraph 3.5.7(8):

The base range (see 3.5) of a floating point type is symmetric around zero, except that
it can include some extra negative values in some implementations.

Note: It would probably be reasonable to suppose that the machine numbers are (roughly) sym-
metric in a stronger sense: the set of machine numbers between —sup(numbers) and sup(numbers)
is closed under additive inverse. The Reference Manual does not require this.

Note: This definition could be shortened if we simply assumed that the relations modeling all
the predefined operations were total. One reason for not making that assumption is the desire
that there be an obvious relation between this definition and actual floating point implementations.
In representing an actual implementation as a machine arithmetic two principles apply: First, the
plus relation modeling an actual implementation of + should contain ((z,y), z) if z is the actual
result (presumably computed by the hardware in some register) of summing z and y; and should
also include ((z, y), z') for every possible “perturbation” 2z’ of z obtained by moving z to and from
registers of other precisions or to and from storage. (Similar considerations apply to all other
operations.) Second, it is sound to model an implementation by using relations that are supersets
of this “minimal” model.

3.5.4.6.2 Parameters of floating point implementations We need two kinds of specifica-
tions for describing aspects of floating point implementations: A MachineParam is a specification
requiring that certain floating point numbers actually be machine numbers of an implementation. It
does not constrain the semantics of the floating point operations. The “representation-oriented at-
tributes” of a type will be defined to return, essentially, the “strongest” MachineParam satisfied by
the type’s implementation. (Strictly speaking, we will define what it means for a machine arithmetic
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to satisfy a MachineParam, and a machine arithmetic is only one component of an implementation.)
An AccurParam does constrain the behavior of the floating point operations. Annex G will define
the “model-oriented attributes” of a type to return, essentially, the strongest AccurParam satisfied
by the type’s implementation. The core of the Reference Manual says very little about the relation
between the implementation and these model attributes.

3.5.4.6.3 Machine parameters A MachineParam is a triple whose elements are interpreted
as, respectively, a mantissa length, a minimum exponent, and a maximum exponent.

MachineParam
mantissa : Nj
emin:{i:N|]i<0}
emaz : N

A machine arithmetic satisfies a Machine Param if all the canonical numbers defined in terms of
these parameters (and of the machine arithmetic’s radix) are machine numbers:

sat_float_param : MachineArithmetic « MachineParam

(ma, fp) € sat_floal_param &
BoundedCanonical(ma.radiz, fp.mantissa, fp.emin, fp.emar) C ma.numbers

The BoundedCanonical numbers are defined in Section 3.5.4.6.4. Note that sai_floal_param does
not constrain the operations of the machine arithmetic in any way.

A first MachineParam is “improved by” a second if the second is at least as restrictive a specifi-
cation as the first.

_tmproved_by_ : MachineParam — MachineParam

(p1, eminy, emazy ) tmproved_by (p2, eming, emaz,) &
1 < p2 A eminy > eming A emaz; < emazs

A MachineParam fp for ma is maximal if ma satisfies fp but satisfies no strict improvement of
fp. The function maz_mach_params(ma) returns the set of all maximal MachineParams satisfied
by ma.

maz_mach_params : MachineArithmetic — F MachineParam

maz_mach_params(ma) =
mazimal(resirict({ matir | sat_float_param(ma, matir) },
—improved_by_))

The generic constant mazimal returns the set of maximal values of a relation. The generic constant
restrict returns the result of restricting both the domain and range of a relation to the same set.
These constants are defined in Section 3.1.

There is a problem in the Reference Manual: [RM-83 A.5.3] defines the representation-oriented
attributes of a floating point type. They are intended, collectively, to denote a “best” MachineParam
satisfied by the machine arithmetic of the type, but the definitions given there are not quite right.
In particular, if ma is the machine arithmetic chosen to implement type T, the rules of the Reference
Manual do not guarantee that

ma sai_floai_param (T'machine_mantissa, T'machine_emin, T'machine_emax)

although this is surely one intended consequence of the rules.
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3.5.4.6.4 Representations of floating point The canonical representions of floating point
numbers are defined in the core semantics, Appendix A.

Our definitions will represent fractions with radix r and mantissa length m by length-m sequences
of the “digits” 0, ..., r— 1. A normal representation is a representation whose first element is non-
zero, or which consists solely of zeroes.

reps : Nj X Ny — Pseq(N)
normal_reps : N; X N; — Pseq(N)

reps(r,m)=1..m —0..(r—1)
s € normal_reps(r, m) < s € reps(r, m) A
s(1)=0=Vi:dom(s)es(i) =0

The operation fraction_value returns the fraction represented by the sequence s in radix r—that
is, the “decimal” .s(1)s(2)...s(m), understood as a literal in base r.

fraction_value : Ny x seq(N;) — Rational
fractions : N; x N; — P Rational
normal_fractions : N; x N; — P Rational

fraction_value(r, s) = L¥* s(i) x r—*

fractions(r, m) = fraction_value(jreps(r, m)|
normal_fractions(r, m) = fraction_value(normal_reps(r, m))

The model floating point numbers are those suitably definable in scientific notation, i.e., as
fractions times powers of the radix.

make_floats : P Rational x Z x N; — P Rational

make_floats(fracs, exps, rad) =
{ f : Rational,e : Ny | f € fracs A e € ezps ® £f * rad® }

We are principally interested in two classes of “canonical” floating point numbers:

Canonical : Ny x N1 x Ny — P Rational
BoundedCanonical : Niy x N; x Ny x Ny — P Rational

Canonical(rad, mant, emin) =
make_floats(normal_fractions(rad, mant),{ i : Z | emin < i }, rad)
BoundedCanonical(rad, mant, emin, emaz) =
make_floats(normal_fractions(rad, mant),
{i:Z]|emin <i< emaz },
rad)

3.5.4.6.5 Implementations An Implementaiion consists of a machine arithmetic, a MachineParam
modeling the representation-oriented attributes of the arithmetic, and a boolean indicating the re-
sponse to numeric overflow. The properties of the machine arithmetic do not uniquely determine
the appropriate MachineParam.

__ Implementation
ma : MachineArithmetic
machine_attr : MachineParam
overflows : Boolean

machine_attr € maz_mach_params(ma)
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An AccurParam is a 6-tuple whose elements are interpreted as a radix, a mantissa length, a
minimum exponent, the bounds for a safe interval, and an indication of whether overflows are to
be reported. (The constraints defined by the other parameters are interpreted more strictly if the
“overflows” flag is true.)

AccurParam
radiz, mantissa : N,
emin: {i:N|i<0}
sfirst, slast : Float
overflows : Boolean

It is convenient to have an abbreviation for the set of safe numbers that an AccurParam defines.

safe : AccurParam — P Float

safe(ap) = ap.sfirst .. ap.slast

We will formalize an essential notion of Annex G with _has_accuracy_, which says what it means
for an implementation to satisfy an AccurParam. From the core model, we can extract only some
minimal properties of this relation, expressed in the weaker notion ~has_weak_acc_:

~has_weak_acc_ : Implementation — AccurParam
—has_accuracy_ : Implementation — AccurParam

imp has_weak_acc ap &
ap.radiz = imp.ma.radiz A
ap.mantissa < imp.machine_atir. mantissa A
ap.emin > imp.machine_attr.emin A
{ ap.sfirst, ap.slast } C ma.numbers A
imp.overflows = ap.overflows

imp has_accuracy ap = imp has_weak_acc ap

For any implementation imp, in Annex defines model_atir(imp), a unique “best” AccurParam
satisfied by an implementation. All we can say in the core semantics is that imp satisfies the weak
accuracy requirements imposed by model_attr(imp).

model_atir : Implementation — AccurParam
1mp has_weak_acc model_attr(imp)

More precisely, Annex G defines model_atir(imp) to be a particular maximal ap such that tmp
has_accuracy ap.

'The maximum number of decimal digits of accuracy is uniquely determined by the model-oriented
attributes of the implementation.

digils : Implementation — N,

tmp.radiz = 10 = digits(imp) = model_attr(imp).mantissa
wmp.radiz # 10 =
digits(imp) = ceiling(
(model_attr(imp).mantissa * log(10)/log(imp.ma.radiz)) + 1
)

There is a problem in the Reference Manual: This definition of “digits” is not given anywhere in
the Reference Manual. It is surely the intended one, but it does not seem to follow from anything
in the Reference Manual.
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There is a problem in the Reference Manual: Section A.5.3(67-68) defines the value of S’Model_Mantissa
in incompatible ways, depending on whether or not the implementation “supports” Annex G. The
same is true for S’Model _Emin. In consequence, an implementation can be valid for Core+G but not
valid for the Core alone. (By contrast, the core semantics makes the semantics of the model-oriented
attributes *Safe_First and ’Safe_Last upward compatible by leaving them implementation-defined.)

The definitions of S’Model Mantissa and S’Model Emin given here are weaker than those of the
core semantics. We require only that

S'Machine_Mantissa
S'Machine_Emin

S'Model_Mantissa

<
S'Model_Emin >
(See the definition of _has_weak_acc_.)

These definitions make the core semantics compatible with Annex G. In addition, they capture
the only information that the present version of the Reference Manual allows a user to rely on across
all implementations.

3.5.4.6.6 Satisfaction of a type definition A floating point declaration supplies a requested
precision (a value of N) and, optionally, a constraint (two Rationals). The accuracy of the type’s
implementation must be at least as great as the requested precision and the safe range of the
implementation must include the interval defined by the constraint. This requirement is captured
by the definition of sat_float_def.

The Reference Manual says that any such implementation may be chosen. We represent the
particular strategy that the implementation uses for choosing the implementation (such as choosing
the coarsest acceptable implementation type) by the relation implements_float_def. 'The judgement
defining elaboration of a type definition selects an implementation satisfying implements_float_def.
All the reference manual requires of this relation is that it be consistent with sat_float_def:

sat_float_def, implements_float_def :
Implementation — (N x Rational X Rational)

(imp,(n, L, R)) € sat_float_def =
L .. R C model_attr(imp).sfirst .. model_attr(imp).slast A
m < digits(imp)
implements_float_def C sat_float_def

3.5.4.6.7 Attributes If impisthe implementation chosen for type T, then the basic implementation-
oriented attribute values of T are given as follows, where we let imp.machine_atir = (mant, emin, emaz):

T’Machine_Radix = imp.ma.radiz
T’Machine._Mantissa = mant

T’Machine _Emin = emin

T’Machine_Emax = emaz

T’Base’First = min(imp.ma.numbers)
T’Base’Last = maz(imp.ma.numbers)

The limits of the base range are the least and greatest machine numbers. This follows from 3.5(6)

The base range of a scalar type is the range of finite values of the type that can be
represented in every unconstrained object of the type

and from 3.5.7(8)

The machine numbers of a floating point type are the values of the type that can be
represented exactly in every unconstrained variable of the type.
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The basic model-oriented attribute values of an implementation imp are given as follows (where
we let model_attr(imp) = (Mant, Emin, sfirst, slast)):

T’Model_Mantissa = Mant
T’Model_Emin = Emin
T’Safe_First = sfirst
T’Safe_Last = slast
T’Base’Digits = digits(imp)

The definition of T’Base’Digits is something of a guess.
Note: The definitions of various attributes, such as S’Model (for floating point subtypes) and
S’Machine (for fixed and floating point subtypes) say that the value returned is obtained “by
rounding or truncating” the operand “to either one of the adjacent” model or machine numbers, as
appropriate. It is not clear from this language whether these operations are non-deterministic.

3.5.4.7 Annex G

Annex G defines some more precise constraints on the floating point operations.

3.5.4.7.1 Model numbers and accuracy An accuracy parameter determines a set of model
intervals (intervals bounded by the associated canonical real numbers) and associates a model interval
with each bounded set (namely, the smallest model interval that contains it):

Modellntervals . AccurParam — P Float
ModellntOf : P Float x AccurParam -+ P Float

u € Modellntervals(ap) &
3o, hi: Float e
u=1lo.. hi A
{ lo, hi } C Canonical(ap.radiz, ap.mantissa, ap.emin)
ModelIntOf (X, ap) = N{ u € Modellntervals(ap) | X C u }

Given a “paradigm” operation f and an accuracy specification ap, we define for each z the set of
results that approximate f(z) to within the demands of ap—namely, the model interval of the set
that results from applying f to the model interval of z. (The same applies, mutatis mutandis, to the
binary operations.) All definitions follow the same pattern, but the type restrictions of Z require us
to provide separate definitions for unary operations, binary operations returning floats, and binary
operations returning booleans.

ResultUnOp : (Float — Float) x AccurParam — (Float — P Float)
ResultBinOpFloat : (Float? — Float) x AccurParam — (Float? — P Float)
ResultBinOpBool : (Float® — Bool) x AccurParam — (Float? — P Bool)

ResuliUnOp(f, ap) =
Az : Float e
ModellntOf (f( ModellntOf ({z}, ap)), ap)
ResultBinOpFloat(f,ap) =
Az,y: Float e
ModelIntOf (f(|ModellntOf ({z}, ap) x ModellntOf ({y}, ap)), ap)
ResultBinOpBool(f, ap) =
Az,y: Float e
ModellntOf (f(ModellntOf ({z}, ap) x ModelIntOf ({y}, ap)), ap)

Operands are “safe for” a paradigm operation if they and all their approximate results are safe.
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SafeForUnOQp : (Float — Float) x AccurParam — P Float
SafeForBinOpFloat : (Float? — Float) x AccurParam — P Float?
SafeForBinOpBool : (Float? — Bool) x AccurParam — P Float?

SafeForUnOp(f, ap) =
{ z € safe(ap) | ResultUnOp(f, ap)(z) C safe(ap) }
SafeForBinOpFloat(f, ap) =
{ (2,7) € (safe(ap))? | ResultBinOpFioat(f, ap)(z,y) C safe(ap) }
SafeForBinOpBool(f, ap) =
{ (z,y) € (safe(ap))? | ResultBinOpFloai(f, ap)(z,y) C safe(ap) }

A UnOp approximates a “paradigm” function to within some accuracy specification if it associates
all operands with results that are acceptable approximations to that function. The same goes for
BinOpFloats and BinOpBools. In particular, safe operands may not return an overflow; and if the
“overflows” flag is true, unsafe operands must return either an approximately correct result or the
overflow token.

_Approz UnOp_. : UnOp — (Float — Float) X AccurParam
_Approz BinOpFloat_ : BinOpFloat — (Float? — Float) x AccurParam
_Approz BinOpBool_ : BinOpBool « (Float? — Float) x AccurParam

op Approz UnOp (f, ap) &
Vz €domope
(z € SafeForUnOp(f, ap) =
overflow ¢ op({ z })

A
floats_of (op({ z }) C ResultUnOp(f, ap)(z))
A
(ap.overflows = true =
Roats_of (op(l{ = })) C ResultUnOp(f, ap)(z))
op Approz BinOpFloat (f, ap) &
Y(z,y) € domop e
((z,y) € SafeForBinOpFloal(f, ap) =
overflow ¢ op({ (z,¥) })
A
floats_of (op({ (z,y) }D) C ResultBinOpFloai(f, ap)(z,y))
A
(ap.overflows = true =>
floats_of (op({ (z,¥) }D) C ResultBinOpFloat(f, ap)(z, y))
op Approz BinOpBool (f, ap) &
Y(z,y) € domop e
((z,y) € SafeForBinOpBool(f, ap) =
overflow & op({ (z,¥) })
A
floats_of (op({ (z,y) })) C ResultBinOpBool(f, ap)(z,y))
A
(ap.overflows = true =>

floats_of (op({ (z,y) })) C ResultBinOpBool(f, ap)(z, y))

We can now define the property _has_accuracy.. as the assertion that each machine operation
approximates the appropriate paradigm function to within the given accuracy parameters:
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imp has_accuracy ap &
imp has_weak_acc ap A
imp.ma.plus Approz BinOpFloat (+,ap) A

imp.ma.equals Approz BinOpBool (=, ap) A

tmp.ma.convert Approz UnOp (id Float, ap)

3.5.4.7.2 Model-oriented attributes To define model_atir we choose a particular maximal
AccurParam satisfied by an implementation. (Note: The definitions below do not follow the defini-
tion in version 5.0, which is incorrect, but Ken Dritz’s subsequent reworking of version 5.0.)

best_mant : P AccurParam — P AccurParam
best_emin : P AccurParam — P AccurParam
best_first : P AccurParam — P AccurParam
best_last : P AccurParam — P AccurParam
best_ap : P AccurParam — P AccurParam

best_ap(X) =
best-last(best_ﬁrst(best_emin(best_mant(X))))
model_atir(imp) =
pap : AccurParam e ap € best,p(ap’ : AccurParam | imp has_accuracy ap’)ap € best_mant(X) <
ap € X AVap’': X e ap.mantissa > ap'.mantissa
ap € best_emin(X) &
ap € X AVap': X e ap.emin < ap’.emin
ap € best_first(X) &
ap € X AVap': X e ap.sfirst < ap’.sfirst
ap € best_last(X) &
ap € X AVap': X e ap.slast > ap’.slast

There is, of course, exactly one best_ap:

#best_ap({ ap : AccurParam | imp has_accuracy ap}) = 1

3.5.5 Array Types

The descriptor for an array type has the form array_dsc(i, c), where i : seq Subtype is a sequence of
discrete subtypes (the inder subtypes) , and c : Subtype is the component subtype.

descriptor_values(array_dsc(i, c),S) =
{ B : Index_bounds, v : (seq Value) + subtype_values(c, S)
| Array(B,v) € Value A B = range_of _subtype o i
e Array(B,v) }
3.5.5.1 String Types

String types are just particular array types.

3.5.6 Discriminants

Discriminants are specialized components of some composite types. We incorporate discriminants
(which might be null) into the descriptor for every type that can have discriminants, in order to
avoid a tedious duplication of definitions in similar cases.
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This model does not account for access discriminants.

Discriminani_descriptor == Id <, Subtype x optional Thunk

discriminani_values : Discriminani_descriptor x State — P Binding

discriminant_values(d, S) =
{ f:adomd — Values |V n € adomd e f(n) € subtype_values(first(d - n), S)}

3.5.7 Record Types

It seems like a waste of effort to describe records with discriminants separately from records without
discriminants, as there is a good deal of overlap in the two cases. Thus, we give every record type
descriptor discriminants (which may be null).

Similarly, it seems like a big duplication of effort to describe tagged record types separately.
Thus, we will give every record descriptor a tag (which may be null in the case of an untagged
record).

Component_list_descriptor ==
(Id > Partial_subtype X optional Thunk) x optional Variani_descriptor

A record type descriptor consists of a description of the discriminants (if any), and a component
list description. The values of such a descriptor are records with fields for the discriminants, and
fields for the other components. The subtypes of these Jatter fields (and even the exact fields present)
may depend on a value of a discriminant.

descm’ptor_values(record__dsc(i, DA, CL),S) =
{ d,r: Binding | d € discriminant_values(DA, p) A r € CL_values(CL, d,S)
e record(t,d, ) }

A binding giving the values of the discriminants is given to function CL_values, so that the actual
subtype of each component can be determined.

CL_values : Component_list_descriptor X Binding x State — P Binding

CL_values((A, V), d,S) ={f,v: Binding | dom f = adom A A
(Vn € domf e f(n) € Subtype_values(actualize_subtype(first(A - n), d), S))
v € Variant_values(V,d, S)

sfUv}

3.5.7.1 Variant Parts and Discrete Choices

A variant descriptor has the Id of the discriminant of the variant part, and a mapping from the
possible values of this discriminant to component list descriptors.

Variani_descriptor == Id x (Discrete_value + Componcnt_Iist_descriptor)

Variant_values : (optional Variani_descriptor) x Binding x State — P Binding
Variani_values(none, d, S) = {3}

d(n) € domf = Variant_values(some(n,f), d,S) = CL_values(f(d(n)), d,S)
d(n) ¢ domf = Variant_values(some(n, f), d,5) = {@}
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3.5.8 Tagged Types and Type Extensions
The model for tagged types has not yet been developed.

3.5.8.1 Abstract Types and Subprograms

[AARM 3.9.3(8.a)] asserts that there are no values of an abstract type. But it is possible to have
subprograms for such subtypes, and for non-abstract descendents to inherit them. If we want to say
something about the meanings of such subprograms, we probably need to talk about the values of
the parameters. (In some sense, these are parameters of type T’Class.)

On the whole, it probably seems easiest to use a model of values as though the type were not
abstract; we can also treat abstract subprograms as though their bodies raised Program_Error.

3.5.9 Access Types

The descriptor for an access type has the form access_dsc(s, m), where s : Subtype_location describes
the designated subtype of the access type, and m : Access_mode describes the access mode.

Access_Mode ::= constant_access | all_access | pool_access

A value of an access-to-object type is either a null value, or a view of an object of the designated
subtype:

descriptor_values(access_dsc(s, m}), S) =
{access_value(none)}U
{ access_value(some(object_view(l, s’))) |
the_store(S).objects(l) € subtype_values(the_store(S).subtypes(s),S) }

3.5.9.1 Incomplete Type Declarations

The descriptor incomplete describes an incomplete type. When the full type definition for the type
is elaborated, the type environment is updated to reflect the appropriate descriptor for the type.
Note that there is an issue about the first subtype of an incomplete type; it is constrained if
there is no discriminant part. However, the first subtype corresponding to the full definition may
be unconstrained. (See comment 94-3901.c.)
There are no values of an incomplete type.

3.6 States

A state combines a store, an external state, and control flow information (in the usual cases), or is
erroneous or unpredicted. We use the state unpredicted in those cases where our semantic definition,
in the interests of simplicity, makes no prediction about the effect of a program (even though the
Standard defines the effect, or calls it implementation-defined).

State ::= normal{{Store))

exception{( Ezceptionld x Store))
| exit{Loop_Id x Store})
| proc_return{{Store))
| func_return{{ Value x Store))
| intermediate({Store))
| erroneous
| unpredicted

Function the_store gives the store associated with a state.
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Chapter 4

Judgements

This section summarizes the domains and judgements used in the definition of Ada 9X seman-
tics. The details of the domain definitions are given in Chapter 3. The formal definitions of these
judgements are given in later sections.

4.1 Domains

The definition is based on the concepts, domains and support functions, introduced in Chapter 4.
Specifically, it uses the domains listed in Table 4.1

All of these domains are generated by term algebras (subject to the constraints defined in Chap-
ter 3). Constructors for these domains are given below. In addition, the domains of component
associations and cnvironments are defined as follows:

CompAssoc = list((Id x (Subtype x optional( Thunk))))

Environment = (Id + View)

Also the signatures for all functions (other than contructors) and predicates are given. Note that
these signatures are those used in the Prolog representation of judgements and may differ from those
given in Chapter 3.

4.1.1 Types

The structure of a type is given by a type descriptor of the form:

type Type
enum_type : integer — Type
modular_type : integer — Type
signed_integer_type : inleger X integer X inleger X integer — Type
universal_integer_type : inleger X inleger — Type
array_type : list(Subtype) x Subtype — Type
class_type : Type_location — Type
access_type : Subtype_localion x Access_modifier — Type
func_profile : (Id 2 Parameter) x Subtype — Type
proc_profile : (Id = Parameter) — Type
incomplete_type : Discriminant — Type
record_type : optional( Type_location) x Discriminant X Record_fields — Type
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Access_modifier
Action
Attributes

Bool

Choice
Constraint
Discriminant
Ezid
Record_fields
LValue

Loopld

Mode
Object_location
Object_mode
Partial_constraint
Partial_subtype
Partial_value
Parameter
Range

State

Store
Subprogram
Subprogram_label
Subprogram_location
Subtype
Subtype_location
Thunk

Type
Type_location
Value

Variant

View

access (type) modifier

executable actions

subtype attributes

truth values (non-Ada)

choices

constraints

discriminants

internal names for exception identifiers
record fields including variants
L-values (addresses)

internal names for loop identifiers
parameter modes

addresses of top-level objects
indication of constancy and aliasing
partial constraints

partial subtypes

partial values

formal parameters

discrete and real ranges

state of a computation

model of memory

subprogram values

unique tags for subprogram access values
addresses for subprogram values
subtypes

addresses for subtypes

an expression with its declaration environment
type descriptors

address space for type information
runtime values

variants

views

Table 4.1: Domains used in the judgements
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Descriptors of this form are stored in the state and are accessed by unique addresses of sort
Type_location. A derived type is represented by a new name for an existing type descriptor. The
use of type names has the advantage that it is easy to deal with cyclic types and type completion.
It has the disadvantage that types can be understood only in the context of a state.

The domain Type_location contains constants that represent the predefined types of the language:

type Type_location
boolean_tn : Type_location
character_tn : Type_location
universal_integer_tn : Type_location
universal_real_tn : Type_location
root_integer_tn : Type_location

In the case of tagged types, values of Type_location are used as unique tags. The optional
Type_location component of a record type descriptor defines the tag of the parent type. Values of

sort Type_location are related by the ancestor relation which represents both the derivation and class

hierarchy:
ancestor(State, Type_location, Type_location)

descendant(State, Type_location, Type_location)
ultimate_ancestor(State, Type_location, Type_location)

Access modifiers are used in the descriptors of access types with the obvious meaning.

type Access_modifier
constant_access : Access_modifier
all_access : Access_modifier
pool_access : Access_modifier

Discriminants are represented as follows:

type Discriminant
discr : (Id = (Subtype x optional( Thunk)}) — Discriminant
() : Discriminant

Two discriminants can be combined using:
discriminant_union : Discriminant x Discriminant — Discriminant
A thunk represents an expression together with its declaration environment.

type Thunk
thunk : Environment x Exp — Thunk

A component list represents actualized record fields, i.e., record fields that do not contain partial

information that depends on discriminant values.

type CompAssoc = list((Id x (Subtype x optional( Thunk))))
The fields of a, possibly discriminated, record type are represented by the domain

type Record_fields .
fields : (Id 2 (Partial_subtype x optional( Thunk))) x optional({Id x Variant)) — Record_fields

which includes the proper fields (maybe partial) as well as any variant.
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Component associations can be constructed from discriminant values and partial component lists
or variants:

actualized_complist : (Id + Value) x list((Id x (Partial_subtype x optional( Thunk)))) — CompAssoc
actualized_components : (Id + Value) x Record_fields — CompAssoc

actualized_variants : (Id -~ Value) x (Id x Variant) — CompAssoc)

append_components : CompAssoc x CompAssoc — CompAssoc

A variant part is represented by a pair (Id x Variant) where the identifier specifies the name of
the discriminant and the second component represents the actual fields:

type Variant
variant : list(( Choice x Record_fields)) — Variant
() : Variant

Given a discriminant value, the actual record fields of a variant are defined by the predicate
the_variant( Variant, Value, Record_fields).
Variant parts are combined using function
variant_union : optional(Id x Variant) x optional(Id x Variant) — optional(Id x Variant).

‘The representation of subprogram access types uses parameter descriptors of the form:

type Parameter
formal : Mode x Subtype x optional( Thunk) — Parameter

where modes are given by:
type Mode
in_mode : Mode
out_mode : Mode
in_out_mode : Mode

The following predicates define the set of values of a given type (descriptor):

cl_value(State, Record_fields, (Id -+ Value), (Id + Value))
discriminant_value( State, Discriminant, (Id + Value))
variant_values(State, optional((Id x Variant)), (Id - Value), (Id + Value))
descriptor_value( State, Type, Value)

4.1.2 Values

The representation of values is straightforward using the definition

type Value
invalid_val : Value
discrete_val : integer — Value
real_val : real — Value
access_val : View x optional( Subprogram_label) — Value
null: Value
record_val : optional( Type_location) x (Id + Value) x (Id -+ Value) — Value
array_val : list( Range) x (list( Value) + Value) — Value
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The term access_val(...) is used for access to object and access to subprogram values. In the
latter case, each time a subprogram access is computed a new unique subprogram label

type Subprogram_label

is generated. This label is needed to properly model equality of access to subprogram values.

Note that access values are views. This representation is used to determine the actual subtype
of an access value.

Ranges are represented as pairs of values in the obvious way.

type Range
discrete_rng : integer X integer — Range
real_rng : real x real — Range

The following functions are defined for ranges.

low_bound : Range — Value
high_bound : Range — Value
make_range : Value x Value — Range
base_range : State x Type — Range
indices : list( Range) — set(list( Value))

The latter function defines the set of all index vectors that fit a list of (index) ranges.
Sets of (scalar) values are represented using the domain

type Choice
choice_range : Range — Choice
choice_value : Value — Choice
choice_lIst : list( Choice) — Choice
choice_default : Chotce

The following are predicates on values

access_value( Value)
array_value( Value)
belongs_to( Value, Range)
composite_value( Value)
covers( Value, Choice, Bool)
discrete_value( Value)
elementary._value( Value)
real_value( Value)

satisfies( Value, Constrain)
scalar_value( Value)

4.1.3 Subtypes
The definition of subtypes follows the description provided by the Reference Manual:

type Sublype
subtype : Type_location x Constraint x Attributes — Sublype

Access to the underlying type is indirect through a type location. The present version of the
semantics does not use any subtype attributes.

type Attributes
not_used : Attributes
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Functions defined for subtypes are

range_of_subtype : State x Subtype — Range
ranges_of_subtypes : State x list(Subtype) — list(Range)
type_struct : State x Subtype — Type

Constraints are

type Constraint
no_constraint : Constraint
range_constraint : Range — Constraint
index_constraint : list( Range) — Constraint
discriminant_constraint : (Id -+ Value) — Constraint
indirect_index_constraint : list( Range) — Constraint
indirect_discriminant_constraint : (Id + Value) — Constraint

In the case of discriminated record types, component subtypes can be partial if they depend
on discriminant values. This leads to the following definitions of partial counterparts of values,
constraints, and subtypes.

type

type

type

Partial_value
p_value : Value — Partial_value
discriminant_ref : Id — Partial_value

Partial_constraint

p_no_constraint : Partial_constraint

p_range_constraint : ( Partial_value x Partial_value) — Partial_constraint
p_index_constraint : list(( Partial_value x Partial_value)) — Partial_constraint
p_discriminant._constraint : (Id + Partial_value) — Partial_constraint
p_indirect_index_constraint : list(( Partial_value x Partial_value)) — Partial_constraint
p_indirect_discriminant_constraint : (Id -+ Partial_value) — Partial_constraint

Partial_subtype
p_subtype : Subtype x Partial_constraint — Partial_subtype

Given a discriminant constraint, partial entities can be actualized. This process is defined by the
functions:

actualized_partial_range : (Id + Value) x (Partial_value x Partial_value) — Range
actualized_range_list : (Id + Value) x list(( Partial_value x Partialvalue)) — list( Range)
actualized_value : (Id + Value) x Partial value — Value

actualized_constraint : (Id + Value) x Partial_constraint — Consiraint
actualized_binding_list : binding(Id + Value) x list((Id x Partial_value)) — list((Id x Value))
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The following predicates on subtypes define the taxonomy of RM 3.2:

is_access_to_object_type(State, Subtype)
is_access_to_subprogram_type(State, Subtype)
is_access_type( State, Subtype)
is_array_type(State, Subtype)
is_boolean_type(State, Subtype)
is_by_copy_type(State, Sublype)
1s_by_reference_type( State, Subtype)
is_character_type(State, Subtype)
is_composite_type(State, Subtype)
is_discrete_type( State, Subtype)
is_elementary_type( State, Subtype)
is_enumeration_type(State, Subtype)
is_integer_type( State, Subtype)
is—modular_integer_type(State, Subtype)
is—protected_type( State, Sublype)
is_real_type(State, Subtype)
is_record_type(State, Subtype)
is_scalar_type(State, Subtype)
1s_signed_integer_type( State, Subtype)
is_string_type(State, Subtype)
is..tagged_type(State, Sublype)
is_task_type(State, Subtype)

Other predicates used in the semantics are

component_type((Id - Value), Type, Id, Subtype)
convert_return_value( State, View, Subtype, View)
range_constraints(State, list( Subtype), list( Range))
select_component_type({Id + Value), Record_fields, Id, Subtype)
subtype_value(State, Subtype, Value)

test_in(State, Value, Subtype)

type_constraint( Environment, Sublype, Constraint, Type)
null range(Range)

included_in{ Range, Range)

values_in_range( Range, set( Value))

discrete_range( Range)

real_range( Range)

Finally, the following predicates describe state transformers related to various checks and con-
versions related to subtypes.

slice_check(State, Range, Range, State)
view_convert(State, Environment, Subtype, View, View, State)
subtype_convert({ State, Environment, Subtype, Value, Value, State)
index_list( State, list( Range), list( Value), list( Value), State)
return_check(State, Subtype, State)

4.1.4 Environments and Views

Environments map identifiers to views.

type Environment = (Id + View)
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An environment is updated using the usual syntax for bindings.
—[-+_] : Environment x Id x View — Environment

Note that identifiers are assumed to be unique and that all overloading and qualified names have
been resolved to unique identifiers.
The lookup of an identifier I in an environment E is written as

E Flookup I=V
A view describes entities denoted by identifiers as follows:

type View
object_view : LValue x Subtype x Object_mode — View
loop_view : Id — View
constant_view : Value — View
subtype_view : Subtype_location — View
subprogram_view : Subprogram_location x (Id & Parameter) x optional(Subtype) — View
undefined_view : View

Object views include a mode description of the form:

type Objeci_mode
variable_object : Object_mode
constant_object : Object_mode
aliased_object : Object_mode

Whether or not an object may be assigned to depends on its mode:
assignable( Object_mode)
Loop views are used in defining exit from named and unnamed loops.

type Loopld
unnamed : Loopld
loop_id : Id — Loopld

The following predicate defines how the bindings of a parameter association are added to an
environment creating the environment in which a subprogram body is executed. Note that the
names used in the given parameter association may differ from the names of the formal parameters
(due to renaming). The names of the formals are provided by a separate argument.

bind_actuals( Environment, (Id % View), list(Id), Environment)

The following constants of sort Ezld denote the language-defined exceptions (others may be
added).

type FEzld
constraint_error : Exld
program_error : Fzld
ex_id : Id — Ezld

New unique names for user-defined exceptions are introduced by static semantics.
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4.1.5 Memory Model

Values of sort Store describe the current binding of addresses to Ada run-time values (of sort Value).
In our model, there are four different types of addresses (locations). They include type location (see
above) as well as locations for objects, subprograms and subtypes.

type Object_location
loc : integer — QObject_location

type Subprogram_location

type Subtype_location

Object locations are associated only with objects that are not components of other objects.
Components are specified by the address of the containing object together with a selector sequence.
An address together with a selector sequence is a L-value (sort LValue).

type LValue
Jocation : Object_location — LValue
array_component : LValue X list( Value) — LValue
array_slice : LValue x Range — LValue
record_component : LValue x Id — LValue

Thus, the domain of stores is defined as a 4-tuple as follows:

type Store
(L,— =) : (Object_location -~ Value) x
(Subprogram_location + Subprogrem) x
(Type_location + (optional( Type_location) x Type)) %
(Subtype_location + Subtype) — Store

Individual components of a store can be updated using the following notation:

_[_+=1 -] : Store x Object_location x Value — Store

_[-+=2 ] : Store x Subprogram_location x Subprogram — Store

_[-+=3 -] : Store x Type_location X (optional( Type_location) x Type) — Store
_] : Store x Subtype_location x Subtype — Store

.

Values of sort State describe a current store, together with the current status of program execu-
tion. A state may represent the propagation of an exception, exit from a subprogram, or exit from

a loop.

type State
exception : Ezld x Store — State
exit : Loopld x Store — State
proc_return : Store — State
func_return : View x Store — State
normal : Store — State
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The following functions are defined to access and manipulate the store embedded in a state.

—[—+1 -] : State x Object_location x Value — State

-2 _]: State x Subprogram_location x Subprogram — State

[ 3] : State x Type_location x (optional( Type_location) x Type) — State
—[- 4 _] : State x Subtype_location x Subtype — State

~°%[_] : State x Object_location — Value

~*P9[_] : State x Subprogram_location — Subprogram

_WP[_] : State x Type_location — (optional( Type_location) x Type)

—**P[] : State x Subtype_location — Subtype

make_state : State x Store — State

the_store : State — Store

The allocation of new location of the four different kinds is defined by the predicates:

new_type(State, (optional( Type_location) x Type), Type_location, State)
new_subtype(State, Subtype, Subtype_location, State)

new_object(State, Value, Object_location, State)
new_subprogram(State, Subprogram, Subprogram_location, State)

For a given state and L-value, the following predicate defines the current value. The definition
of this predicate includes access of the appropriate subobjects denoted by an L-value.

content(State, LValue, Value)

States are classified as normal or abnormal. Abnormal states will, in general, alter the control

flow.
abnormal state(State)

normal_state(State)

The return from a subprogram may be indicated by an abnormal state. The following predicates
deal with the cases of procedure and function returns, respectively.

proc_exit(State, State)
return_value(State, View, State)

Values stored in the subprogram component of a store are of the form:

type Subprogram
subprogram : Environment x list’(Id) x Del x Stm — Subprogram
operator : Operator — Subprogram
unelaborated : Subprogram

A user-declared subprogram is represented by the declaration environment, the names of the
formal parameters and the declarations and statements that comprise the body. Predefined operators
of the language are enumerated by a domain Operator. The definition of the semantics of the
operators is not covered. An attempt to execute a subprogram of the form unelaborated will raise
program error.

4.1.6 Other Predicates

The following predicates deal with the selection of elements from parameter lists and record com-
ponent associations.

the_parameter(list(Pss), Id, Nam)

given_parameter(list( Pss), Id, Exp)

find_component(Id, list(Rca), Exp)
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4.2 Judgements

Judgements for various syntactic domains define the effect of the elaboration or execution of language
phrases of this domain. In most cases, the effect of a phrase depends on the current state and the
current environment. The effect typically consists of a change in state and the possible return of
a result. Depending on the kind of phrase, the result may be a value, a type, a new environment
and so on. The meaning of some phrases depends on additional context beyond the state and the
environment. For instance, the meaning of a type definition depends on the discriminant (which is
part of the enclosing type declaration).

The general form of a judgement is

state, environment, context t language-phrase = result, new-state

The following is a list of the judgements used in the definition. For each syntactic domain, the
signature of the judgement is given together with an informal rationale.

If the evaluation of a construct raises an exception then the final state represents this information.
The propagation of exceptions is described as part of the sequencing of actions described below.

The following conventions are used throughout the description of judgements:

Sy : State — The initial state.
E : Environment - The environment.
So ¢ State -~ The final state.

4.2.1 Declarations

The effect of elaborating a (sequence of) declaration(s) is to add bindings corresponding to the newly
introduced identifiers to the environment. The elaboration of a declaration may also affect the state.

S1, E, b et Del = Fo, Sa

E, : Environment -~ The initial environment
Dcl : Dcl — A declaration.
E, : Environment - A possibly modified environment.

4.2.2 Parameter lists

Elaboration of subprogram declarations is defined in terms of the judgements

S1, E,Fpas Pas = A, 52

Pas : Pms" - Formal parameter list.
A Id-% Parameter - Parameter signature.
and
b mod Mod = M
Mod : Mde - Parameter mode.
M : Mode - Mode representation.

The latter judgement uses neither states nor the environment.
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4.2.3 Type Definitions

A type definition is elaborated in the context of a (possible) discriminant association. The resuit
is the first-named subtype. Elaborating a type definition may affect the state and the environment
because subexpressions may have side-effects and new internal type names may be bound in the
environment.

Sl,El,Df'tdf Tdf = T,E,, Sy .
D : Discriminant - The discriminant.
Tdf . Tdf - A type definition.
T : Subtype —  The resulting subtype.
By : Environment ~ The modified environment.

4.2.4 Variant Parts
S, E,DFyp Vin=> V., 55

D : Discrtiminant - A discriminant.
Vrn - Vat* — A list of variant clauses.
V : Variant —~  The resulting variant.

The judgement always uses a discriminant that may be empty.

4.2.5 Discriminant Parts

The evaluation of a discriminant part results in an association that maps discriminant identifiers
into their subtype and optional initialization. As with record component lists, the initialization is
represented by a thunk.

S, EFgec Dep = D, Sy
Dcp : Dcp — A discriminant part.
D : Discriminant - The resulting association.
4.2.6 Component Lists

The result of evaluating a record component list is an association that maps each component identifier
into a pair consisting of the component’s subtype and an optional initialization. The initialization
is given by a thunk that represents the initialization expression, together with the environment in
which this expression is to be evaluated.

S1, EFemp Cmp = C, 5

Cmp: Cmp - A component list.
C : CompAssoc - The result.

4.2.7 Subtype Indications

There are three flavors of judgements dealing with subtype indications. The normal case is covered
by the declaration:

Sl, E |‘s,'f Sid = T,Sg
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Sid : Sid — A subtype indication.
T : Subtype -~ The denoted subtype.

A special case is needed for subtype indications that appear inside discriminated records because
the result will be a partial subtype.

Sl, El,D |“ps,' Sid = T, Ey, Sg

D : Discrtminant - A discriminant.
Sid : Sid — A subtype indication.
T : Partial subtype - The denoted partial subtype.

Finally, a third form of this judgement is needed to deal with access types to allow references to
incomplete types. Instead of a subtype, this judgement returns a subtype location.

51, E I_"fi Sid = L, Sz

Sid : Sid - A subtype indication.
L : Subtype - A subtype location.

A completing type declaration will initialize the subtype location.

4.2.8 Statements
The execution of a statement only affects the state and has no result.

S1, E Fem Stm = 5,

Stm: Stm - A statement.

4.2.9 Elsif Clauses

An elsif-clause consists of a condition and a sequence of statements. The judgement for this construct
describes the evaluation of the condition followed by the conditional execution of the statements.
There is a boolean result that indicates whether the condition was true. This result is used in the
definition of cascaded elsif clauses.

Sl, E "elf Eif = B, Sz

Eif : Eif - An elsif clause.
B : Bool - 'The boolean result.

4.2.10 Case Alternatives

The evaluation of a list of case alternatives depends on the value of the case selector:

S,E, Vg At = B, S

V : Value - The value of the case selector.
Alt : Alt - A sequence of case alternatives.
B : Bool - True, if one of the alternatives has matched the case selector.

The boolean result indicates whether one of the alternatives has been executed. The execution
of the enclosing case statement will have to terminate in an exception if this result is false.
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4.2.11 Discrete Choice Lists

Discrete choice lists are used in variant, array aggregates and case statements. The following judge-
ment describes the evaluation of a list of choices. The result is a representation of the choices.

Sl, FE "chc Dch = C,Sg
Dch : Dch® - A discrete choice list.

C : Choice — The representation of the choice list.

4.2.12 Expressions

The evaluation of an expression results in a value and possible side-effects. In certain cases the
meaning of an expression depends on the expected type (e.g., the evaluation of aggregates and
string literals). Rather than adding this type information to the judgement, the abstract syntax
provides such information where necessary.

S1,Eb ey Exp= V, S

Exp : Exp - An expression.
V : Value - The resulting value.

The judgement for conditions differs from that for expressions by returning a truth value.
51, EFina Cnd = V,52
Cnd: Cnd - A condition.
B : Bool - A truth value.

4,2.13 Names

The evaluation of a name results in a view of the named entity.

Sl,E Frnam Nam = W,Sz

N : Nam - A name.
W : View ~ The view denoted by the name.

The evaluation of certain kinds of names cannot have side-effects (e.g., subtype indications).
Rather than defining a separate judgement for this case the definition will require that the initial
and final states are identical in these cases.

4.2.14 Ranges

The following judgement defines the evaluation of ranges. In the abstract syntax ranges include
discrete subtype definitions. The judgement also deals with the definition of the range attribute.

Sl, E }_rny Rng = R,S

Rng : Rng - A range or discrete subtype definition.
R : Range ~ The resulting range value.
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4.2.15 Record Aggregates

The following judgement defines the value of a record or extension aggregate.

51, E, C}—aggr Agg = V,5

C : CompAssoc - The expected components of the aggregate.
Agg . Agg —~ The aggregate.
V : Id + Value - The resulting binding.

The expected type for the aggregate is provided in the abstract syntax by allowing only qualified
aggregates. Qualification is added by static analysis where necessary.

4.2.16 Array Aggregates

A separate judgement is used for array aggregates. It has an additional sequence of index ranges as
context.

SI)E)R)T}—aag Agg: V752

R : list(Range) - The index ranges of the aggregate.
T : Subtype - The type of the elements.

Agg : Agg — An array aggregate.

V : Value —  The array value.

4.2.17 Attributes

The following judgement defines the values of (parameterless) attributes as defined in Appendix A
of the Reference Manual.

S1,E, Wikgaeld=> W, 5

W, . View - A view.
Id: Id —  The attribute name.
W, : View —- The view of the attribute.

All core language-defined attributes are free of side-effects. This means that the final state will
always equal the initial state. Note that some attributes return a subprogram view which, when
called, may have a side-effect or raise an exception. But the effect of such calls is not part of
evaluating the attribute itself.

In the case of the range attribute, the signature differs as follows:

S1, E, Wi Fae, range => R, Sy
W : View - A view.
R : Range - A range.

4.3 Actions

A sequence of statements is executed by sequentially executing each statement in the sequence.
Execution is abandoned if one of the statements raises an exception or causes some other change in
the flow of control. In the case of expressions, the language specifies that, in certain cases, several
expressions are evaluated in arbitrary order.
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In order to systematically define different kinds of order of execution of program parts, the notion
of an action is introduced. An action can be viewed as a representation of a judgement without the
state. Consider, for instance, the judgement for statements:

Sl, E I",gm Stm = Sz
The corresponding action is a term
statement_fn( E, Stm)

that represents the environment and the statement. For convenience, we shall write actions just like
judgements with the initial and final state omitted. In this case, the action is written as

E }"sgm Stm =

Given an action A4, it is meaningful to talk about the effect of executing the action in a given state
So. This is expressed by the predicate run:

run(.S'o, A, 51)

holds if and only if the execution of action A in state So results in state 5.
Using run it is possible to define different orders of evaluation of sets and sequences of actions.
The notation
Ay

Sl ... | S
An

means that the actions A; through A, are to be executed sequentially starting in state So and
leading to 5. The definition of this notation needs to consider the propagation of exceptions by any
of the actions.

Similarly, the notation

means that the actions A, through A, are to be executed in arbitrary order.

The set of actions (sort Action) is given by the following terms. There is one action constructor
for each judgement.
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type Action

then : list(Action) — Action
new_object_fn : Value x Object_location — Action
attribute_fn : Environment x View x Id x View — Action
param_attribute_fn : Environment x View x Id x Value x View — Action
case_alternative_fn : Environment x Value x Alt x Bool — Action
choices_fn : Environment x Dch_Ist x Choice — Action
component_list_fn: Environmenix

Discriminantx

Cmp_lstx

(Id > (Partialsubtype x optional( Thunk))) — Action
constraint_fn : Environment x Subtype x Cns x Constraint — Action
compatible_fn : Environment x Subtype x Constraint — Action
declaration_fn : Environment X Dcl X Environment — Action
default_value_fn : Environment x Sublype x Value — Action
discr_assoc_fnn : Environment x Subtype x Dca x Constraint — Action
discriminant_part_fn : Environment x Dcp X Discriminant — Action
elsif_clause_fn : Environment x Eif x Bool — Action
expression_fn : Environment X Exp x Value — Action
name_fn : Environment x Nam x View — Action
new_type_fn : (optional( Type_location) x Type) x Type_location — Action
range_fn : Environment x Rng x Range — Action
subtype_indication_fn : Environment x Sid x Sublype — Action
p_subtype_indication_fn : Environment x Discriminant x Sid x Partialsubtype — Action
type_definition_fn : Environment x Discriminant x Tdf x Subtype x Environment — Action
variant_list_fn : Environment x Discriminant X Vnt_Ist x Variant — Action
variant_part_fn : Environment x Discriminant x Vrp x optional((Id x Variant)) — Action
subtype_convert_fn : Environment x Subtype x Value x Value — Action
view_convert_fn : Environment x Sublype x View x View — Action
content_fn : LValue x Value — Action
assign_fn : Environment x Subtype x LValue x Value — Action
raw_assign_fn : LValue x Value — Action
finalize_fn : Environment x Subtype x Value — Action
value_split_fn : Environment x Subtype x Value — Action
discrete_type_fn : Environment x Subtype x Bool — Action
covers_fn : Value x Chotce x Bool — Action
statement_fn : Environment x Stm — Action
arb_fn : list(Action) — Action
subprogram_body_fn : (Id % View) x View — Action

The following predicates define a sequence of actions for a variety of different syntactic constructs:

component_actions( Environment, CompAssoc, list(Rca), list((Id x Value)), list( Action))
expression_list( Environment, list( Exp), list( Value), list(Action))

index_actions( Environment, list(Sid), (Subtype), list(Action))

parameter_action( Environment, list(Pss), (Id x Parameter), (Id x View), Action)
parameter_list( Environment, list(Pss), (Id % Parameter), (Id 2 View), list(Action))
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4.4 State

Values of sort State describe a current store, together with the current status of program execution.
A state may represent the propagation of an exception, exit from a subprogram, or exit from a loop.

4.4.1 Classification of States

States are classified as normal or abnormal. The following judgements define the classification.

abnormal_state{exception(I,, N))
abnormal state(exit(I;, N))
abnormal_state(proc_return(N))
abnormal_state(func_return( W, N))

normal_state(normal(N))

4.4.2 Accessing the Store of a State

The following judgements describe the store associated with different states:

the_store(exception(I4, N)) = N
the_store(exit(Iy, N)) = N
the_store(proc_return(N)) = N
the_store(func_return(W,N)) = N
the_store(normal(N)) = N

The following judgements describe the construction of states:

make_state(exception(I4, N), N1) = exception(I4, Ny)
make_state(exit(Iq, N), N1) = exit(I, M)
make_state(proc_return(N), N1) = proc_return(Ny)
make_state(func_return(W, N), N1) = func_return( W, N)

make_state(normal(N'), N1) = normal(N,)
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4.4.3 Reading and Writing the Store

the_store(S) = (B,?,7,7)
SoU[I] = B(I]

the_store(S) = (7, 8,7, 7)
§*#9[I] = BlI]

the_store(S) = (7,7, B,7)
Stve[I] = BlI)

the_store(S) = (?,7,7, B)
SetP(I} = B[I]

$y[I —1 V] = make_state(5i, the_store(S1)[I —1 V1)
Si[I 2 V] = make_state(S:, the_store(S51)[I —2 V)
$1(I —3 V] = make_state(S51, the_store(S))[I —3 V)
Si[I 4 V] = make_state(S), the_store(S51)[I 4 %)
(Bo, Bp, B, Bs)[1 1 V] = (Bo[l V1, By, By, Bs)
(B, Bo, By, BYU w2 V] = (Bo, Boll — V], B, Bs)
(B, Bp, Bo, B)I 3 V] = (Bo, By, Boll — V], Bs)
(B, By, Be, Bo)lI =4 V] = (Bo, By, Be, Boll = V])

4.4.4 The Content of a Location

This function differs from stored_value because it works on a state rather than a store and because
it allows L-values rather than just locations. In the case of a structured L-value, the appropriate
component of a compound object will be returned.

S + content(location(I)) = S°¥ (1]

S v content(L,) = array_val(R;, B)
ST content(array_component(Ly, Vs)) = B[V

S + content(L,) = array_val([ R1], B)
ST content(array_slice(Ly, R)) = array_val([ k], B)

S+ content(L,) = record_val( Ty, Dy, Ci)
S F content(record_component(Ly, 1)) = Ci[l4]

the_store(S;) = (B,7,7,7)
—I € dom(B)
new_object(5,, V, I, 51[I —1 V])
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the_store(S$,) = (7, B,?,7)
—[ € dom(B)

new_subprogram(S;, V, I, S,[I —» V])

the_store(So[I —3 T,]) = (7,7, B,7)
—~J € dom(B)
new_type(So, Te, U, So[l —3 Te])

the_store(So[l —4 T.)) = (?,7,7, B)
-1 € dom(B)
new_subtype(Sy, T., U, SolI 4 T.}) -

4.5 Order of Execution

4.5.1 Sequential Execution

sQs

run(normal(N), Ao, S2)

Ay
So| ... | S
An

Ag
Ay
normal(N) S3
A,
abnormal_state(S)

Ay
Sl ... |S§
An
4.5.2 Arbitrary Order Execution
S{}s

abnormal_state(S)

A,
S¢ ... S
An

pick(A, A,;, A,)
run(normal( N), A;, 1)
Ay
S e 2 82
Atn

A
normal(N)< ... } S,
An
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pick(A - A,, A, A,)

ijk(Asy AI) At)
pick(A - A;, Az, A- Ay)

4.5.3 Executing Individual Actions

Note that there are predicates that do not involve state. They are included as a matter of conve-
nience. It is possible to include the appropriate terms in a sequential or arbitrary order execution
where this makes the definition more readable.

Ay
S| .- |5
A

run(Sy, then(A), S2)

new_object(51, V, L, S2)
run(S,, new_object_fn(V, L), 52)

S, E,V Foae Clt = B, S,
run(Sl, E, Ve Clt = B,Sz)

S, Bt epe Che= C, 59
run(S1, E Fepe Che = C S2)

ShE l'_crnp D= Cmva
run(S;,E' Femp D = Cmp, 52)

S1, B1 Faa Dcl = Es, 52
run(Sl, El I_dcl Dcl = Eg, 52)

S1, E b Eif = R, 5
run(Sy, E Fey Ef = R, S2)

S, E }_ezp Exp = V,S,
run(S1, E Fezp Exp = V, Sa)

51, E Fnam Nam = D, 5,
run(Sy, E Fram Nam = D, Sa)

S1,EFrng Rng = R, 5,
run(Sy, £ Frng Rng = R, S2)

Sl, E }_stm Stm = Sz
run(S1, E Faem Stm =, 52)

51, Ey, D l‘gdf Tdf = Sy, Eq, S2
run(Sl, B, D }_tdf Tdf = St, Es, 52)

S1, B, S, \ subtype_convert( Vi) = Va, 5
run(S1, B, St subtype_convert( Vi) = V3, 52)

S, E, S b subtype_convert(W) = W3, 5,
run(S1, E,S: + subtype_convert( W) = Wa, S3)
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S content(L,) = V
run(S,F content(L,) = V,S)

A
S1¢8 ... 35
A
run(Sl,{ },Sg)
An

subprogram_body(S;, A, W, S;)
run(Sy, subprogram_body_fn(A, W), 53)

4.6 Values

4.6.1 Ranges

discrete_range(discrete_rng( 1, I2))
real_range(real_rng(Ry, R3))
low_bound(discrete_rng(1,?)) = discrete_val(1)
low_bound(real_rng(R,?)) = real_val(R)
high_bound(discrete_rng(?, 1)) = discrete_val(I)
high_bound(real_rng(?, R)) = real_val(R)
make_range(discrete_val(1;), discrete_val(I,)) = discrete_rng( I, )

make_range(real_val(R, ), real_val(Ry)) = real_rng(R;, R2)

R <R
R <R,
belongs_to(real_val(R), real_rng(R;, R>))

L<I
I<h
belongs_to(discrete_val(T), discrete_rng( 1, I2))

h2>21l
i > I
included_in(discrete_rng(Iy, I2), discrete_rng(I3, Iy))

I > 12
null_range(discrete_rng(1,, I))
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R, > R,
null_range(real_rng(R,, R2))

values_in_range(discrete_rng(1, I'), set_of([ discrete_val(I) )

IL > L
values_in_range(discrete_rng(I1, I2), set_of([ ]))

values_in_range(discrete_rng(I, + 1, I), set_of Vs))

values_in_range{discrete_rng(1y, I2), set_of{ discrete_val(I;) - V;))

4.6.2 Index Ranges
indices([ ]) = set_of([ )
values_in_range(R, V)

index_pairing( V,, indices(R;), V)
indices(R - Rs) =V

index_pairing(set_of{[ ]), V1, set_of([[ ]]))

index_pairing(set_of( V,.), V1, V)
prefix_set_with_element(V, V1, Vy)
index_pairing(set_ofl V - V), Vi, Vo U Vy)

prefix_set_with_element( V', set_of([ ]}, set_of [ ]))

prefix_set_with_element(V , set_of{ ), set_of( £y))
prefix_set_with_element(V , set_of E1 - E,), set_of{ V - Ey - Ep))

4.6.3 Predicates of Values

discrete_value(discrete_val( X))
real_value(real_val( X))

access_value(access_val( X, 7))

discrete_value( V)
scalar_value( V)

real_value( V)
scalar_value( V)

scalar_value( V)
elementary_value( V')
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access_value( V)
elementary_value( V)

composite_value(record_val( X, Y, Z))

composite_value(array_val(X, Y))

dom( V) = indices(B)
array_value(array_val( B, V))

4.7 Types

4.7.1 Type Descriptors

SP(U] = (7 x T,)
type_struct(S, subtype(U,?,7)) = T,

4.7.2 Ancestry Relation
ancestor(S, U, U)
SYP[U] = (some( Uy)x7)

ancestor(S, Uz, U;)
ancestor(S, U, Uy)

ancestor(S, Uy, Uy)
descendant(S, Uy, U,)

S%P[U] = (nonex?)
ultimate_ancestor(S, U, U)

StP[U] = (some( U)x?)
ultimate_ancestor(S, Uy, Us)
ultimate_ancestor(S, U, Us)

4.7.3 Ranges of Scalar Types

base_range(S, enum_type(N)) = discrete_rng(0, N)
base_range(S, modular_type(N)) = discrete_rng(0, N, —,1)
base_range(S, signed_integer_type(By, By,?,?)) = discrete_rng( By, B))
base_range(S5, universal_integer_type( By, By)) = discrete_rng( By, B))
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S, = subtype( U, no_constraint, A)
range_of subtype(S, S;) = base_range(S, type_struct(S, St))

range_of_subtype(S, subtype( U, range_constraint(R), A)) = R
ranges_of_subtypes(S,[]) =[]

ranges_of_subtypes(S, S\ - S;) = range_of_subtype(S5, S1) - ranges_of_subtypes(S, S-)

4.7.4 Values of a Type

ancestor(S, U, Up)
SWP[Up) = (7 x Ty)
descriptor_value(S, Ty, V)
descriptor_value(S, class_type(U), V)

belongs._to( V, base_range(S, enum_type(N)))
descriptor_value(S, enum_type(N ), V)

descriptor_value( S, enum_type(N), invalid_val)

belongs_to( V, base_range( S, modular_type(N)))
descriptor_value(S, modular_type(N), V)

descriptor_value(S, modular_type( N ), invalid_val)
descriptor_value(S, signed_integer_type( By, By, F, L), discrete_val(N))
descriptor_value(S, signed_integer_type(By, By, F, L), in valid_val)
descriptor_value(S, universal_integer_type( By, Bi), discrete_val(N))

descriptor_value( S, universal_integer_type( By, B), invalid_val)

array_value(array_val(ranges_of_subtypes(S, I), B))
~descn'ptor_valms(S ,array_type(I, C), array_val(ranges_of_subtypes(S, 1), B))

N € set_ofladom(D))
D[N] = (S x Th)
subtype_value(S, Sy, B[N])
discriminant_value(S, discr(D), B)

discriminant_value(S, D,, Dy)
cl_value(S, Cy, Dy, Cy)
descriptor_value(S, record_type( Ty, Da, Ci), record_val Ty, Dy, Cv))

56



dom(F) = set_of{adom(A))

A[]d] = (P_, X T).)
subtype_value(S, actualize(D,, P,), F[I,))
variant._values(S, V,, Dy, F,)
cl_value(S, fields(A, V,), D,, F & F,)

variant_values(S, none, Dy, [ ])

the_variant(F, D,[14], C)
cl_value(S, C, D, V)
variant_values(S, some((I3 x F)), Dy, V)

4.7.5 Record Fields

The following definitions are useful to deal with the types of record fields. Binding B represented
the values of the discriminants.

Da[Id] = (St X Tk)
component_type(B, record_type( Ty, discr(D,), C1), I4, S¢)

select_component_type( B, Ci, 14, S;)
component_type(B, record_type(T,, Dy, C1), I, St)

Ca[]d] = (P, x T)
select_component_type(B, fields(C,,?), 14, actualize(B, P,))

Since component names have to be unique, we can quantify over values V in the following rule.

the_variant(Vy, V, C))
select_component_type(B, Cy, 14, S;)
select_component_type( B, fields(C,, some((I, x Vi), 1a, St)

covers(X, C, true)
the_variant(variant((C x Cy) - L), X, C))

covers(X, C, false)
the_variant(variant(L), X, C)
the_variant(variant((C x C)) - L), X, Cy)

4.7.6 Classification of Types

is_scalar_type(S, T,)
is_elementary_type(S, T,)

is_access_type(S, T)
1s_elementary_type(S, Ty)

is_array_type(S, T,)
1s_composite_type(S, T,)
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is_record_type(S, Ty)
is_composite_type(S, Ty)

is_tagged_type(S, Ty)
is_composite_type(S, Ty)

is_protected_type(S, Ty)
is_composite_type(S, Ty)

is_discrete_type(S, T)
is_scalar_type(S, Ty)

is_real_type(S, T)
is_scalar_type(S, Ty)

is_access_to_object_type(S, T,)
is_access_type(S, Ty)

is_access_to_subprogram_type(S, Ty)
is_access_type(S, Ty)

is_enumeration_type(S, Ty)
is_discrete_type(S, Ty)

is_integer_type(S, Ty)
is_discrete_type(S, Ty)

type_struct(S, T,) = enum_type(N)
is_enumeration_type(S, Ty)

is_boolean_type(S, subtype(boolean_tn, 7, i)

is_character_type(S, subtype(character_tn,?, )

is_signed_integer_type(S, Ty)
is_integer_type(S, Ty)

is_modular_integer_type(S, Ty)
is_integer_type(S, Ty)

is_signed_integer_type(S, subtype(root_integer_tn,?, 7))

type_struct(S, T,) = modular_type(?)
is_modular_integer_type(S, Ty)

not yet defined
is_real_type(S, Ty)

type_struct(S, Ty) = access_type(St, Am)
is_access_to_object_type(S, Ty)

type_struct(S, Ty) = func_profile(Pa, St)
is_access_to_subprogram_type(S, Ty)
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type_struct(S, T,) = proc_profile(P,)
is_access_to_subprogram_type(S, Ty)

typestruct(S, T,) = array_type(C, B)
is_array_type(S, Ty)

not yet defined
is_string_type(S, Ty)

type_struct(S, Ty) = record_type(Ty, D, C)
is_record_type(S, Ty)

type_struct(S, T,) = record_type(some(l;), D, C)
is_tagged_type(S, Ty)

not yet defined
is_task_type(S, Ty)

not yet defined
is_protected_type(S, Ty)

is_elementary_type(S, T)
is_by_copy_type(S, Ty)

is_tagged_type(S, Ty)
is_by_reference_type(S, Ty)

is_task_type(S, Ty)
is_by_reference_type(S, Ty)

is_protected_type(S, Ty)
is_by_reference_type(S, Ty)

4.8 Subtypes
4.8.1 Constraint Satisfaction

satisfies( V , no_constraint)

belongs_to( V, R)
satisfies(V , range_constraint(R))

satisfies(array_val( B, A), index_constraint(B))

satisfies(record_val( T,, D, R), discriminant_constraint(D))
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4.8.2 Values of a Subtype

S9PU] = (P x T,)
descriptor_value(S, Ty, V)
satisfies(V, C)
subtype_value(S, subtype(U, C, A), V)

4.8.3 Actualization
4.8.3.1 Values
actualized_value( B, p_value(V)) = V

actualized_value( B, discriminant_ref(I)) = B{I]

4.8.3.2 Ranges

actualized_value(B, L) = discrete_val(L,)
actualized_value(B, H) = discrete_val(H,)
actualized_partial range(B,(L x H)) = discrete_rng(La, H,)

actualized_range_list(B,[]) =[]

actualized_range_list(B, R - R,) = actualized_partial range( B, R) - actualized_range_list(B, R;)

4.8.3.3 Binding Lists
actualized_binding list( B,[]) =[]

actualized_binding list(B, (I x V')-R) = (I x actualized_value( B, V'))- actualized_binding_list( B, R)

4.8.3.4 Constraints

actualized_constraint( B, p-no_constraint) = no_constraint
actualized_constraint( B, p_range_constraint(R)) = range_constraint(actualized_partial_range(B, R))

actualized_constraint( B, p_index_constraint(S)) = index_constraint(actualized_range_list( B, S))

C = discriminant_constraint(actualized_binding_list( B, S))
actualized_constraint( B, p_discriminant_constraint(S)) = C

C = indirect_index_constraint(actualized_range_list( B, S))
actualized_constraint( B, p_indirect_index_constraint(S)) = C

C = indirect_discriminant_constraint(actualized_binding_list( B, S))
actualized_constraint( B, p_indirect_discriminant_constraint(S)) = C
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4.8.3.5 Subtypes

actualize( B, p_subtype(subtype( U, C, A), P.)) = subtype(U, actualized_constraint(B, P.), A)

4.8.3.6 Components
A1+ A= A + A,

actualized_components(B, fields(C,, some( V))) = actualized_complist(B, Ca)+actualized_variants(B, V,)

actualized_components(B, fields( C,, none)) = actualized_complist(B, C,)

4.8.3.7 Component Lists

actualized_complist(B,[]) =[]

actualized_complist(B, A) = A,
actualized_complist(B, (I x P,)- A) = (I x actualize(B, Py))- A,

the_variant(V,, B[I], C})
actualized_variants(B, (I x V,)) = actualized_components(B, C))

4.9 Declarations

4.9.1 Declarations

4.9.2 Types and Subtypes
4.9.2.1 Type Declarations

The semantics of a type definition are determined in the context of a discriminant association. For
types without discriminant, this association is empty

S1,E1, () Feag Tdf = S, E,, S,
new_subtype(S,, S;, Ly, S3)
51, B\ k4. type Ig is Tdf; = Ey[I; — subtype_view(L,)], S3

s [ ElieeDep= D 5,

E,D l'tdj Tdf = Sg, E,
new_subtype(S,, S;, L,, S3)
51, E Faci type |y Dep is Tdf; = Ey[l; — subtype_view(L,)], Sa

For a given type descriptor, the following rule creates a new unique type name and constructs a
first sublype.
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4.9.2.2 Subtype Declarations

A subtype indication may be a named subtype or a subtype with a constraint. In the former case,
evaluation of the subtype indication cannot have side-effects.

31, E Foam Nam = subtype_view(Ls), Si
51, E '_sid Nam = S;‘p[.Ls], Sl

S, E bpam Nam = subtype_view(L;), 51
Si, E, S [Ls] Fens Csn = C, Sz
compatible(E, 8;F[L,), C)
$;*P[L,] = subtype(U, Ci, A)

S1, E Fyiqa Nam Cns = subtype(U, C, A), 52

51, E Fagm Nam = subtype_view(L,), S

S1, E, D Fpsi Nam = p_subtype(S;F[L,}, p-no_constraint), 5y

51, E Fngm Nam = subtype_view(L,), 51
p_constraint(Sy, E, D, S5®[L,],Csn, P, S2)
compatible(E, 5 [L,], C)
S:*P[L,] = subtype(U, C1, A)
Sy, E, Dty Nam Cns = p_subtype(subtype( U, no_constraint, A), P), 5

The following syntax represents ranges in a discrete subtype definition. It applies only to con-
strained array type definitions.

not yet defined
51, E Fyiq Rng = subtype(U, C,A), S

Sy, By bsid Sid = S, S
new_subtype(Sz, S¢, Ls, Sa)
51, By Fgci subtype |y is Sid; = E1[I4 — subtype_view(L,)], 53

4.9.3 Objects and Named Numbers
4.9.3.1 Object Declarations

[ Ei byig Sid = S, )
new_object_fn(invalid_val, L)
default_value_fn(E1, S, V)
assign_fn( Ey, S, location(L), V)
S1, E1 Fac by : Sid; = B [Ig object_view(location(L), St, variable)], Sa

] Ey b Sid = S, W
new_object_fn(invalid_val, L)
default_value_fn(Ey, S¢, V)
assign_fn(Ey, S, location(L), V)
S1, E1 Faci 1y : constant Sid; = Ey[lg— object_view(location(L), St, constant)], Sz

E; byig Sid = S, T
new_object_fn(invalid_val, L)
Eybemp ExXp=> V
assign_fn( E, S, location(L), V)
S1, By Fact lg : Sid := Exp; = B [I4 — object_view(location(L), St, variable)|, S2

51 52

Sl SZ

Sl SZ
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( Eybyiq Sid = St ]
S new_object_fn(invalid_val, L) S

1 EykFep Exp=> V 2
assignfn(E,, S;, location(L), V)
d := Exp; = Ey[I4 — object_view(location(L), S;, constant)], S,

51, E1 b gq ly - constant Si

El "sid Sid = St ]
S new_object_fn(invalid_val, L) S

! default_value_fn(E,, S;, V) 2
assign_fn( £y, S, location(L), V)
51, E1 by ly : aliased Sid; = Ey[I; — object_view(location(L), S,, aliased)], S,

Ey boq Sid = S, ]
s new_object_fn(invalid_val, L) s

1 default_value_fn(E,, S;, V) 2
assign_fn( E,, S;, location(L), V)
Sty By Fyei |y « aliased constant Sid; = E;[I; — object_view(location(L), S,, constant)], S

[ E Fga Sid = St T
s new_object_fn(invalid_val, L) S

! EiFerpp Exp=> V 2
assign_fn( £y, S, location(L), V)
S1, By Faar Iy - aliased Sid := Exp; => E)[I4 — object_view(location(L), S, aliased)], 5>

E) Fq Sid = S,
S new_object_fn(invalid_val, L) s
1 EyFerp Exp = V 2
assign_fn(Ey, S, location(L), V)
St, By Fger 1y - aliased constant Sid := Exp; = E; (1a — object_view(location(L), S, constant)], S

4.9.3.2 Number Declarations

S1,EyFep Exp =2 V, S
new_object(S;, V, L, S5)
E3 = Ey\[14 — object_view(location(L), subtype(universal_real_tn, no_constraint, not_used), constant)]
S1, Ey Faa l4 : constant := Exp; = E3, 5,

S1,E1 Fesp Exp=> V, Sy
new_object(S;, V, L, S5)
E3 = E\[l4 — object_view(location(L), subtype(universal_integer_tn, no_constraint, not_used), constant))
51, Ey Fgq ly - constant := Exp; = F3, S,

4.9.4 Derived Types and Classes

So, Ey ’-std Sid = subtype(P, C, A), 51
S{¥[P] = (Pp x T))
new_type(5, (some(P) x Ty), U, S3)
So, E;, Dy l'_tdj new Sid > subtype( v,C, A), Es, Sy
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4.9.5 Scalar Types

Etep Expp = V3
$1 { Etezp Expy = Vo 5

S1, E Frng Expy..Expy = make_range( Vi, V3), 52

S1, E Fpam Nam = W, S5,
abnormal_state(S;)
Si, E Fng Nam'range = R, Ss

S1, E Fram Nam=> W, 5,
normal_state(Ss)
Sz, B, W b as, range = R, 53
51, E Frng Nam'range = R, S3

not yet defined
S1, E Frng Nam'range(Exp) = R, 52

4.9.5.1 Enumeration Types
4.9.5.2 Character Types
4.9.5.3 Boolean Types
4.9.5.4 Integer Types

Sy, By Fegp Expy = discrete_val( V1), 5
S1, Ey Fezp Expp = discrete_val( V3), 51
new_type(Si, (some(root_integer_tn) x signed_integer_type( Vi, Vo, V1, V2)), U, Sa)

$1, Ey, () Feas range Expy..Expy = subtype(U, no_constraint, not_used), E1, 5

S1, By Fegp Exp = discrete.val( V), 51
new_type(S;, (some(root_integer_tn) x modular_type(V)), U, S2)
S1, E1, () Feaf mod Exp = subtype( U, no_constraint, not_used), 1, 52

4.9.5.5 Operations of Discrete Types
4.9.5.6 Real Types
4.9.5.7 Floating Point Types

not yet defined
S1, Ev, D by digits Exp Cns = S;, E», S

not yet defined
S1, B, D bap digits Exp = S, E,, 5

4.9.5.8 Operations of Floating Point Types
4.9.5.9 Fixed Point Types

not yet defined
Sy, Ey, D Fig delta Exp digits Exp Cns = S, 3, 5

not yet defined
S1, E1, D by delta Exp digits Exp = S;, £, Sq
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not yet defined
S1, By, D br4p delta Exp Rng = Sy, E», S,

4.9.5.10 Operations of Fixed Point Types
4.9.6 Array Types

The evaluation of a subtype mark has no side-effect. Therefore, the evaluation of lists of subtype
marks is defined sequentially.

S,E"su()#[]

S, E Fnam Namg = subtype_view(L,), S
S,E Fgsy (Nam,..) = S,
S, E Fsy (Namg, Nam, ...) = §*?[L,] - S,

index_actions(E, ( ),[],{])

index_actions(E, (Sid, .. .), S;, A.)
index_actions(E, (Sidg, Sid, .. .), Sty - S;, E 4 Sidg = Sty - A,)

range_constraints(S,{],[])

type_constraints(S, Sy, R)
range_constraints(S, subtype(?, range_constraint(Rg),?) - S¢, Ro - R)

not yet defined
S1, B1, D k4 array(Rng_lst)of aliased Sid = S;, Ea, 5o

not yet defined
S1, Ey, D &4 array(Namg, Nam, .. )of aliased Sid = S;, F», S,

index_actions(E | ldx, S;, A;)
Ey Fq Sid = S

Acl

Sy Sa

ACﬂ
range_constraints(Ss, S;, R)
new_type(S;, (none x array_type(S;, St)), U, S3)
S1, E1, () Frar array(ldx)of Sid = subtype( U, index_constraint(R), not_used), E,, S3

Sl, Ey bgy ldx = S;
Sl, E, }‘,,'d Sid = St, Sz
new_type(Sy, (none x array_type(S;, S¢)), U, S3)
S1, By, {) beay array(ldx)of Sid => subtype(U, no_constraint, not_used), £y, Ss
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4.9.7 Discriminants
4.9.8 Record Types

Etcmp D= Cmp
Sy E,D Forn Vrp =V S
new_type_fn((none x record_type(none, D, fields(C, V))), U)
51, E, D ¥4y Cmp = subtype( U, no_constraint, not_used), E, S,

Etemp D= Cmp
S E, Dby Vip=2> V S
new_type_fn((none x record_type(some(U), D, fields(C, V))), U)
Si, E, D 4 tagged Cmp = subtype(U, no_constraint, not_ used ), E, S -

S,EFemp D= (), []

not yet defined
S1, EFemp D = ldn : aliased Sid; Cmp ..., A

E, Dt py Sid = P,
51 Etimpy D= Cmp ] 52
S1, E bemp D = ldn 2 Sid; Cmp . 1[Idn — (Ps x none)]

not yet defined
S1, E Femp D = ldn - aliased Sid := Exp; Cmp ..., A

E, D tp,i Sid = P
Sl[ ElFemp D= Cmp .. ]Sz
S1, EFemp D = 1dn : Sid := Exp; Cmp .

4.9.8.1 Variant Parts and Discrete Choices

S,E,D f‘urn = none,S

51, E,DFyrn Vnt = B, 5,
S1,E,DF,, case ldn is Vnt end case; = some((ldn x B)), S,

() = variant([ ])
S, E,DFurn () = (), S

S1, E Fepe Dch = Gy, 54
EFcmp D= Cmp
Sy E Dty Vep=2>V S,
E, Dty Vnt; ... = variant(B;)

S1, E, D Fyrn when Dch => CmpVrp; Vnt; ... = variant((C, x fields(C, V)) - By), 52
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4.9.9 Tagged Types and Type Extensions
4.9.9.1 Type Extensions

So, By Fyiq Sid = subtype( P, C, A), 51
S/¥P(P] = (Pp x record_type(some(Uy), Dy, fields( Cy, V1)))
Ey Femp Dg = Cmp
51 Ey,Dybyen Vrp=> Vo
new_type_fn((some(U,) x record_type(some( U), discriminant_union(Dy, D, ), fields(C1 @ Cz, V1 & V2))), U)

So, E1, Do Fras new Sid with Cmp => subtype( U, no_constraint, not_used), E, S

none® V=V
V®none=V

discriminant_union(discr(A;), discr(A3)) = discr(A, ® A3)

4.9.10 Access Types

S],El "'S-d,- Sid = L,, Sz
new_type(S,, (none x access__type(L,, pool_access)), U, S3)
Si, Ev, D b4 access Sid = subtype( U, no_constraint, not_used), Ey, Sa

S, Fy "‘Sid,- Sid = L,, S
new_type( Sy, (none x access_type(L,, all_access)), U, S3)
51, E1, D Fraf access all Sid = subtype(U, no_constraint, not_used), E1, S3

Si, By '_Sidi Sid = L;, 52
new_type(S», (none x access_type(L,, constant_access)), U, Sa)
S1, By, D b4 access constant Sid = subtype( U, no_constraint, not_used), E;, S3

S], FE }'pas Pms => A, S,
S1, E, () Fray access procedure Pms => subtype( U, no_constraint, not_used), E, Sa[proc_profile{ A) 3 U]

Sl, E I_pas Pms = A, Sz
Sa, E Fpam Nam = subtype_view(S5;), So

51, E1, () Fear access function Pms => subtype( U, no_constraint, not_used), E3, Sa[func_profile(A, S5P[S1) w3 U]

4.9.10.1 Incomplete Type Declarations

In the case of access type definitions, a subtype indication may denote an incomplete type.

S1, E Fram Nam = subtype_view(L,), 5
Sl,E l'Sid, Nam = L,,Sl

St, E Fyam Nam = subtype_view(L;), S
S1,E,SS®[L,) Fens Csn = C, S,
compatible(E, 5;"[L,], C)
S}*P(L,] = subtype(U, Cy, A)
new_subtype(S;, subtype(U, C, A), L, S3)
51, Etsig; Nam Cns = L,, 53

67



() = discr({])

For incomplete type declarations, a new incomplete type descriptor carries the discriminant infor-
mation.

new_type(So, (none x incomplete_type(())), U, 51)
new_subtype(S,, subtype( U, no_constraint, not_used), L, 52)
So, Bt Fac type ly; = Ei[lq — subtype_view(Ls)], 52

S1,EyFase Dep = D, Sy
new_type(S2, (none x incomplete_type(D)), U, S3)
new_subtype(Sa, subtype( U, no_constraint, not_used), L;, Sa)
S1, E1 Fac type Iy Dep; = Ey[Iy subtype_view(L,)], S3

Completing type declarations have their own abstract syntax.

Ey Flookup Ig = subtype_view(L,)
S1, By, () Feap Tdf = 5, B2, 52
51, Ey Fao completetype Iy is Tdf; = Ez, $3[L, 4 St

Ey Flookup |4 = subtype_view(L,)
s EtgeDep=>D s
| B, Dby Tdf = S, Es |72
S1, By Faci completetype |y Dep is Tdf; = Ey, S3[Ls =4 St

4.10 Expressions

4.10.1 Names

E Flookup ldn = W
S, E Fram ldn = W, S

s E Fnem Nam = object_view(Ly, 5, 7) s
! I content(L;) = access_val(W,7) 2
S1, E From Nam.all = W, 5,

4.10.1.1 Indexed Components

The function expression_list computes a sequence of actions that corresponds to the evaluation of a
sequence of expressions.

expression_list(E,[ ],[1,[])

expression. list( E, Exs, V, A,)
A=Ebrep Exp> V
expression_list(E, Exp - Exs, V - V,, A Ay)

index_list(S,[],[],[],S)
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belongs_to( V, R)
index_list(S1, R, Vs, 15, S2)
index_list(S;,R- R,, V- V,, V- I,, $,)

—belongs_to( V, R)
index_list(normal(N), R - Ry, V - Vy, I - I,, exception(constraint_error, N'))

expression_list(E, Exs, V;, A,)
E Fpam Prefix = object_view(Ly, Sy, ?)

Sl Asl 52
A!ﬂ
abnormal_state(S;)
Si, E Frnam Prefix(Exs, . ..) = undefined_view, S;

expression_list(E, Exs, Vi, A,)
E Fpam Prefix = object_view(Ly, S;, C)

Asy

51 S2

Asn
normal_state(Sy)
type_struct(Ss, S¢) = array_type(?, B)
Sy b content(L,) = array_val(R, A,)
index_list(Ss, R, V;, I, Sa)

81, E Fram Prefix(Exs, .. .) = object_view(array_component(Ly, Ir), B, C), S3

4.10.1.2 Slices

null_range(R,)
slice_check(S, R, R4, S)

included_in(R,, R;)
slice_check(S, Rs, Ra, S)

—null_range(R,)
—included_in(R,, R,)
slice_check(normal(N), R,, Rq, exception(constraint_error, N))

s, { E Fpam Prefix = W S

E Fyng Rng = R,
abnormal_state(Ss)
51, E Fram Prefix(Rng) = undefined_view, S,

s { E tpam Prefix = object_view(Ly, St, C) } S
! EFrg Rng = R, 2
normal_state(S>)
Sy I content(L,) = array_val([ R, ], Ay)
constrain(S;, range_constraint(R,), S;)
slice_check(Ss, Rs, R, S3)
51, E Frum Prefix(Rng) = object_view(array_slice(L,, R,), Sq, C), 53
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4.10.1.3 Selected Components

S1, E bpam Nam = W, S5,
abnormal_state(S;)
S1, E Fpam Nam.ldn = undefined_view, So

S1, E Fpam Nam = object_view(L,, S¢,7), S2
component_type( Dy, type_struct(Sz, St), ldn, 54)
Sy b content(L,) = record_val(Ty, D, Cy)
new_object(S,, D, [ldn], L, S3)
S1, E Fpam Nam.ldn = object_view(location(L), S,, constant), 53

51, E Fnam Nam = object_view(L,, S¢, C), Sz
Sa F content(L,) = record_val( Ty, D,, Cy)
component_type(D,, type_struct(Sz, S;), ldn, S.)
51, E Frnam Nam.ldn = object_view(record_component(L,, ldn), S;, C), 52

S, E bpam Nam = object_view(L,, S¢,?), normal( N)
~component_type(B, type_struct(normal(N), S;), ldn, 5.)
S, E Fam Nam.ldn = undefined_view, exception(constraint_error, N')

4.10.1.4 Expanded Names
4.10.1.5 Attributes

S Etpem Nam=> W s
W E, Wikayldn= W |2
51, E Frnam Nam’ldn = W, S,

S, E |_ezp EXP = V,5
s [ E Fpam Nam = W, ]S
| E, Wi, Vg, ldn> W |72
S, E Fpam Nam'ldn(Exp) = W, S

Note that the abstract syntax distinguishes N'I(E) for static expression E from N'I{(E) where N’I
is a function-valued attribute.

4.10.2 Literals
S, E Fegp null = null, S

In the abstract syntax, the representation of character literals is given by the numeric value of the
position of the character.

S,E Fegp 'C' = discrete_val(C), S
S, E Fezp R = real_val(R), S

S, E Fegp N = discrete_val(N), S
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4.10.3 Aggregates

Only explicitly qualified aggregates are defined. Static semantics adds qualification where needed.
We assume a normalized representation using named associations. This is possible because of
[4.3.1(14)).
51, E Fnam Nam = subtype_view(L,), S
type_struct(S, S;*[L,]) = record_type( Ty, discr(L), Ci)
S;*P[L,] = subtype(?, no_constraint, ?)
S1,E, L f‘agg Agg = B4, S,
52, E, actualized_components(Bg, Ci) & 4o Agg = B, 53
S1, E ¥ ezp Nam'Agg = record_val( Tq, B4, B;), S3

S1, £ Fnam Nam = subtype_view(L,), 5
type_struct(Sy, ;" [L,]) = record_type( Ty, Da, C)
S;*®[Ls] = subtype(?, discriminant_constraint(Bg), ?)
51, E, actualized_components(Bq, C) Fag, Agg => B, S,
S1, E b ezp Nam'Agg = record_val(T,, Bq, B.), S2

find_component(I4, others => Exp - Rca, Exp)

member(Iy,Lst)
find_component(I4, Lst, ... => Exp - Rca, Exp)

component_actions(E,[],Reca,[],[])

find_component(14, Rea, Exp)
component_actions(E, B, Rea, B., A,)
component_actions(E, (1ax?) - B,Rea,(I4 x V) B, Eborp Exp = V - Ay)

~find_component(l4, Rca, ?)
component_actions(E, B, Rea, B, A,)
component_actions(E,(I4x?) - B,Reca,(Ig X V) - Bc, Ey Fogp Exp = V - Ay)

component_actions(E, A,Rca, B, A,)

Asl
S R %
Asn

51,E, Abayy (Rea,...) = B, S,

S,E,[]Fagg (null record) =[], S

not yet defined
S\, F, R,, C, }"agg (Expl, Exp2, .. ) = V,S

not yet defined
51, E, R, C, Fagg (Expy, Expy, ..., others => Exp) = V, S,

not yet defined
51, E, R, C, l‘agy (Acal,Aca2, .. ) = V,Sz

not yet defined
$1, E, Ry, Cs Fagg (Expp, Expy, ..., others => Exp) = V, 5,
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4.10.4 Operators and Expression Evaluation

It is assumed that static semantics has resolved all operators into function calls as defined in [4.5)
with the following exceptions:

e short-circuit operators

e in and not in operators

4.10.4.1 Logical Operators and Short-circuit Control Forms

s Etorp Expy = discrete_val(1) S
1 Etep Expp =2 V 2
51, E Fesp Expp and then Expy = V,S

S1, E b esp Expp = discrete_val(0), S
51, E Fezp Expy and then Expy = discrete_val(0), S

g E Fezp Expy = discrete_val(0) g
! Etesp Expp = V 2
S, F I—?IP Expy or else Expy = V,S,

S, E Fesp Expp = discrete_val(1), Sz
51, E Fezp Expy or else Expy = discrete_val(1), Sa

4.10.4.2 Relational Operators and Membership Tests

51, E Frngm Nam = subtype_.view( L), 51
S1,ElFep Exp =2 V, 5,
belongs_to( V, range_of_subtype(S1, S;7 [Ls]))
S1, E Ferp Exp in Nam = discrete_val(1), S

51, E Fram Nam = subtype_view( L), S1
Sl,E }_cxp EXP = V,Sz
~belongs_to( V , range_of_subtype(Sa, Sy ®[L,]))
51, E Fezp Exp in Nam = discrete_val(0), S»

s, Etyng Rng = R }52

EtepExp=>V
belongs_to( V, R)
S1, E Fezp Exp in Rng = discrete_val(1), S

Etyn Rng= R
Sl{ EbempExp=> V 5

-belongs_to( V', R)
51, E Fegp Exp in Rng = discrete_val(0), S»

-is_tagged_type(S, St)
S; = subtype(U, C,7)
satisfies(V, C)
test_in(S, V, 51)
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St = subtype(U,C,7)
satisfies(V, C)
V = record_val(some(T,),?,?)
ancestor(S, U, T,)
test_in(S, V, S¢)

51, E Fpam Nam = subtype_view(L,), S,
Sx, E "e:cp Exp =V, So
test_in(Ss, V, S{*P[L,))

S1, £ Fezp Exp In Nam = discrete_val(1), S,

S1, E Fnam Nam => subtype_view(L,), $;
S1,Ebep Exp = V, 5
~test_in(Sy, V, S;P[L,])

S1, E Fezp Exp in Nam = discrete_val(0), S,

51, E Fezp Exp in Nam = discrete_val(1), S,
51, E Fexp Exp not in Nam = discrete_val(0), S,

51, E & ogp Exp in Nam = discrete_val(0), S,
S1, E Fezp Exp not in Nam = discrete_val(1), S,

S1, E Ferp Exp in Rng = discrete_val(1), S»
51, E Fesp Exp not in Rng = discrete_val(0), 52

51, E F.sp Exp in Rng = discrete_val(0), S,
S1, E Fexp Exp not in Rng = discrete_val(1), S,

Si, E Fezp Exp in Nam = discrete_val(1), S,
S1, E'Fezp Exp not in Nam = discrete_val(0), Sy

S1, E ¥ ezp Exp in Nam = discrete_val(0), S,
Sy, E Fezp Exp not in Nam = discrete_val(1), S,

4.10.5 Type Conversions

51, E Fraam Nam = subtype_view(L,), S
s [ EbgapExp=> Wy

Y| E, S$™[L,]F subtype_convert(Vy) = V, ] S

Sl, E I"e,;p Nam(Exp) = Vs, Sq

51, E Fpaam Namy = subtype_view(L,), $;
s E Fpam Namg = W, g
'| E,S"[L,) F subtype_convert(W,) = W, | 2

Sl,E Fram Naml(Namz) = Wy, 5
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4.10.6 Qualified Expressions

Si, E Fnam Nam = subtype_view(L;), $i
S, F |'-ezp Exp=> V, Sa
abnormal_state(S;)

S, E }-exp Nam'(Exp) =V, S

Si, E Fram Nam = subtype_view(L,), 5
S7*P(L,] = subtype(?, C,?)

S, F '_e.‘z:p Exp = V,S;
normal_state(S,)
satisfies(V, C)

51, E Fezp Nam'(Exp) = V, 52

S1, E Fnam Nam = subtype_view(L,), $
5*(L,) = subtype(?, C,7)
S1,Ebep Exp= V, normak N)
-satisfies(V, C)
51, E Fesp Nam'(Exp) = V, exception(constraint_error, N)

4.10.7 Allocators

Ebew Exp= V
1[ p =XP Sy

new_object_fn(invalid_val, L)

S1, £ Fezp new Exp = access_val(object_view(location(L), ?, aliased), none), Sy

not yet defined
S, E Fegp new Sid = V, S

4.11 Statements
4.11.1 Statement Sequences

E }—stm Stml =
SO [ Ei—,ngtmz . lsl

So, E "'_,gm Stml Stm2 . S]

S,Elbgm =S

S,E "',gm Stm=> S
S, E Fgm << Nam >> Stm = S

S, Ebgpmmnull; = S
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4.11.2 Assignment Statements
assignable( variable)

assignable( aliased)

S E Frnom Nam = object_view(L, S;, M) S
0 Etep Exp=2> V 1
assignable( M)

E, S, + subtype_convert(V) => Vy
F content(L) = V,

S1 finalize_fn(E, S;, V) S,
assign_fn(E, S;, L, V1)
value_split_fn(E, S;, V1)

So, E Fyym Nam := Exp = 5,

S E Fpam Nam = object_view(L, S;, variable) } S
0 EtopExp=>V 1
not yet defined
So, E Fggm Nam := Exp = 5,

4.11.3 If Statements

S [ E b.zp Exp = discrete_val(1) | s
! E }‘stm Stml = 2

81, E Fgm if Exp then Stmj Eif else Stm) end if; = 5,

S [ E Fozp Exp = discrete_val(0) ] S
! E F.y Eif = true 2

51, E Fytm if Exp then Stmy Eif else Stmy end if; = 5,

[ E t..p Exp = discrete_val(0) ]
S1 E +eip Eif = false Sy
E Fym Stmo =

S, E by if Exp then Stm; Eif else Stmy end if; = S

Et.zp Exp = discrete_val(1)
5 [ EFsm Stmy = 52
51, £ Fstm if Exp then Stmy Eif end if; = 55

s E V.zp Exp = discrete_val(0) S
1 E ¥y Eif = true 2
S1, E Fym if Exp then Stmy Eif end if; = S,

s E F.zp Exp = discrete_val(0) s
! E b,y Eif = false 2
51, E Fgem if Exp then Stmy Eif end if; = 5,

S, E by () = false, S

S1, E by Eify = true, S,
S, F |‘,1f Eifl Eif2 ...=> true, Sy
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E by Eif] = false
5 [ EbgsEify ... =R 52
Sy, E Foy Eif Eify ...=> R, 5

S E F rp Exp = discrete_val(1) S
! E Fym Stm = ?
S, E by elsif Exp then Stm = true, S,

Sy, E Fegp Exp = discrete_val(0), S
Sy, E by elsif Exp then Stm = false, S,

Elep Exp=> V
51 [ E,V o Alt = true l 52
S, E Fym case Exp is Alt end case; = S

4.11.4 Case Statements
normal(N),E, V ko () = R, exception(constraint_error, N)

51, E, V Fo Alty = true, Sq
S1, E, Vo Alty Alty ... => true, 53

E, V Fo Alty = false
51 [ E,VFka Aty ...=> R ]52
S, E VFg Alt] Alty ... = R, 5,

EtegcDch=C ]
Sy | covers_fa(V, C,true) [ Sz
E by Stm =
Si, E, VFo when Dch => Stm = true, Sy

s [ EfacDch=>C g
11 covers_fn(V, C, false) 2
S, E, VF. . when Dch => Stm = false, Sy

S, E Fgm Stm = exit(unnamed, N)
S, E Fytm loop Stm end loop; = normal(N)

4.11.4.1 Choices
$1,Ebmg Rng = R, 5,
S, E Fche Rng = choice_range(R), S

S1,EFep Exp = V, 5,
S1, E Fene Exp = choice_value( V), S,

S, E tp. others = choice_default, S
S, E Fepe () = choice_Ist([ ]), S

Si, Etne DCh1 = 01,52
Sa, E Fche Dchy | ... = choice_Ist(Ca), S
S1, E Fene Dchl | Dch2 |...=> Choice.]St(C1 . Cz), S3
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covers( V', choice_value( V'), true)

N £ Ny
covers(discrete_val( Ny ), choice_value(discrete_val( N3 )), false)

belongs_to(V, R)
covers( V, choice_range( R), true)

~belongs_to( V, R)
covers( V, choice_range( R), false)

covers(V, choice_default, true)

covers( V, choice_Ist([ ]), false)

covers(V, Cy, true)
covers( V, choice_Ist(C) - C3), true)

covers( V, C), false)
covers( V, choice_Ist(Cy), R)
covers( V, choice_Ist(C - C3), R)

4.11.5 Loop Statements

S Etgam Stm = s
'| Et,m loop Stm end loop; = | 2
51, E Fym loop Stm end loop; = 5,

unique(X)
Si, By [ldn — loop_view(X )] F,;,, loop Stm end loop; = normal(N)
51, E1 Fy¢m ldn : loop Stm end loop; = normal(N)

unique(X)
S1, E1[ldn v loop_view(X )] F 41, loop Stm end loop; = exit(loop_id(X), N)
Si, E1 Fytm 1dn : loop Stm end loop; = normal(N)

P E F.zp Exp = discrete_val(1)
ElFypm Stm=
S, E ¥4 while Exp loop Stm end loop; = normal(N)

E F.zp Exp = discrete_val(1)
S] S2

] exit(unnamed, N)

Ebgm Stm =
E F4m while Exp loop Stm end loop; =
S, £ Fm while Exp loop Stm end loop; = S,

51, E F..p Exp = discrete_val(0), S»
51, E F4tm while Exp loop Stm end loop; = 5,

unique(X)
S1, Ey[ldn v+ loop_view( X)) t-,m while Exp loop Stm end loop; = normal(N)

51, By Fyym ldn - while Exp loop Stm end loop; = normal(N)
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unique(X)
S1, Ex[ldn + loop_view(X )] F5tm while Exp loop Stm end loop; = exit(loop_id(X), N)

51, E1 Fsim ldn : while Exp loop Stm end loop; = normal(N)

4.11.6 Block Statements

S1, E Fgm Hsm = S,
51, E Fym begin Hsm end; = S,

S1, E Fyn Hsm = 55
51, E Fytm Nam : begin Hsm end; = 5,

s [El'_ddDd:}Ez]S
'l EybumHsm=> |2
Sy, Ey ﬁnahze(B) = 53
51, By Fstm declare Del begin Hsm end; = S3

S E; }’dcl Dcl = E, S
Yl EyFgm Hsm= |72
Sa, Eq & finalize( B) = 53

51, B1 st Nam : declare Dcl begin Hsm end; = S5

4.11.7 Exit Statements

normal(N), E by, exit; = exit(unnamed, N)

S, E Fpam Nam = loop_view(X ), normal(N)
S, E Fym exit Nam; = exit(loop_id(X), N)

S, E' tezp Exp = discrete_val(1), normal(N)
S, E Fgm exit when Exp; = exit(unnamed, N)

51, E }_exp EXP = B,Sg
51, F by exit when Exp; = 5,

s E Frnam Nam = loop_view(X)
E Forp Exp = discrete_val(1)
S, E Fsm exit Nam when Exp; = exit(loop_id(X), N)

| normai)

g E Fpam Nam = loop_view(X) S
W E Fezp Exp = discrete_val(0) 2
S1, E Fym exit Nam when Exp; = S,
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4.12 Subprograms

4.12.1 Subprogram Declarations
S1, B Fpas Pms = A, S,
new_subprogram(S,, unelaborated, U, S3)
51, Er Facr procedure ldn Pms; = Ej[ldn +— subprogram_view(U, A, none)], 53

51, By Fpas Pms = A, S,
S2, By Fnam Nam = subtype_view(S$)), S,
new_subprogram(5,, unelaborated, U, S3)
51, By Facr function ldn Pms; = E,[ldn — subprogram_view(U, A, some(S;[S}]))], Ss

51, E f‘pﬂs Pms = A, Sz
E Figokup ldn = subprogram_view(U, A, none)
51, £ k4 procedure Idn Pms is Dcl begin Stm end; = E, 5;[U 3 subprogram(E, adom(A), Dcl, Stm)]

S1,Ebpes Pms = A, S,
53, E Fpam Nam = subtype_view(S;), S,
E Fiookup 1dn => subprogram_view(U, A, some(S;?[S]))
51, E b 4.t function ldn Pms is Dcl begin Stm end; = E, S,

S, EFpes ) = [),5

not yet defined
S, E Fpqs ldn : access Nam; Pms; ...

=>AS

not yet defined
S, E Fpas ldn : access Nam := Exp; Pms; ..

.= A, S

Fmod Mde = M
51, E Fram Nam = subtype_view(S)), $;
S, F ’_P“" Pms; o> AL S,
51, E Fpas 1dn : Mde Nam := Exp; Pms; ... = A;[ldn + formal(M, $;™[S}], some(thunk(E, Exp)))], S

Fmod Mde = M
51, E Fpam Nam => subtype_view(S)), S;
51, E bpas Pms; ... Ay, 5,
S, E Fpas ldn : Mde Nam; Pms; ... => A S

4.12.2 Formal Parameter Modes
Fmod In = in_mode

Fmoa IN out = in_out_mode
Fmod = in_mode

Fimoa out = oui_mode
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4.12.3 Subprogram Bodies

There are no semantics associated with subprogram bodies. The declarations and the statement
part of a subprogram body, together with the declaration environment, are stored as a subprogram
value. The rules given below define the effect of executing a subprogram value.

The following definition creates an environment for the execution of a procedure body by binding
the formal parameter names to the views of the actual parameters. The actual parameters are given
as an association but, due to renaming, the names in the association may differ from those of the
formal parameters.

bind_actuals(E,[ ],[], E)

bind_actuals(E;[I; — Wi], P, lds, E3)
bind_actuals(El, (Pl X Wl) . P, Il . |d5, Eg)

proc_exit(exception(X, N), exception(X, N))

not yet defined
proc_exit(exit(?, N),7)

not yet defined
proc_exit(func_return(?, N),7)

proc_exit(proc_return(N'), normal(N'))

proc_exit(normal( N '), normal( N ))

S;P9[L) = subprogram(Ey, Ids, Del, Stm)
bind_actuals(Ey, A, Ids, E2)
S [ ng—dchc|=>E'3 ]S
Y By Fyem Stm = 2
proc_exit(Sy, S3)
subprogram_body(51, A, subprogram_view(L, A, none), S3)

return_check(exception(X, N), S, exception(X, N))

not yet defined
return_check(exit(?, N), St, S)

not yet defined
return_check(proc_return(N), S;, S)

convert_return_value(normal(N), Wy, Sy, Wa)
return_check(func_return(Wy, N), S, func_return( W2, N'))

return_check(normal(N), S, exception(program _error, N))
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$;P9[L) = subprogram(E;, lds, Dcl, Stm)
bind_actuals(E), A, Ids, E5)
s E, Faci Del = E3
| Esbgm Stm=>
return..check(S, St, Sa)
subprogram_body(S,, A, subprogram_view(L, Ay, some(5;)), 53)

Appropriate rules need to be defined for all predefined operators.

S;P9[L] = operator(Opn)
not yet defined
subprogram_body(S;, A, subprogram_view(L, Ay, ?), 52)

A call to an unelaborated subprogram raises program error.

normal( N )*P?[L] = unelaborated
subprogram_body(normal(N), A, subprogram_view(L, Ay, 7), exception(program._error, N))

4.12.4 Subprogram Calls

The rules given here are incomplete and do not describe subtype and view conversions that are part
of a call.

return_value(func_return(W, N), W, normal(N'))

return_value(exception(X, N), ?, exception(X, N))

parameter_list(E, Pss, Ay, Aq, P)
W = subprogram_view(?, A, 7)
Etrpaom Nam=> W
P
Sh e Sy
P
subprogram_body_fn(A,, W)
return_value(S2, Wy, S3)
51, E Frnam Nam(Pss,...) => W, 53

parameter_list(E, Pss, Ay, Aq, P)
W = subprogram_view(?, Af,7)
ElFnpem Nam=> W
Py
Py
subprogram_body_fn(A,, W)
S1, E Fsem Nam(Pss,...); = S
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4.12.4.1 Parameter Assoclations
parameter_{ist(£,Pss, [ ],[1,[])
parameter_list(E,Pss, F, R, A)

parameter_action(E, Pss, Fi, Ry, A;)
parameter_list(E,Pss, Fy - F, Ry - R, A; - A)

—~given_parameter(Pss, ldn, 7)

parameter_action(F, Pss, (Idn x formal(in_mode, S, some(thunk(E1,Exp)))), (Idn X constant_view(V)), E; Fozp Exp -

given_parameter(Pss, Idn, Exp)
parameter_action(E, Pss, (Idn x formal(in_mode, S, 7)), (Idn x constant_view(V)), E F.,p Exp = V)

the_parameter(Pss, Idn, Nam)
parameter_action(E, Pss, (ldn x formal(out_mode, S;, 7)), (ldn x W), E'F 4., Nam = W)

the_parameter(Pss, ldn, Nam)
parameter_action(E, Pss, (Ildn x formal(in_outi_mode, S;,7}), (ldn x W), E F .., Nam = W)

given_parameter(ldn => Exp - Pss, Idn, Exp)

ldny # Idny
given_parameter(Pss, Idn,, Exp)
given_parameter(ldn; =>7 . Pss, ldn,, Exp)

the_parameter(ldn => Nam - Pss, [dn, Nam)

Idn; # Idn,
the_parameter(Pss, ldn,, Nam)
the_parameter(ldn] =>7 - Pss, [dn,, Nam)

4.12.5 Return Statements

normal(N), E &, return; = proc_return(N)

51, £ Ferp Exp = V,normal(N)
51, E Fsm return Exp; = func_return(constant_view(V), N)

The following needs to be defined to describe the rules of [6.5(6)] through [6.5(21)].

not yet defined
convert_return_value(S, Wy, S, Ws)
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4.13 Attributes

is_scalar_type(Sy, 5[ Ls])
low_bound(range_of_subtype(S,, S;**[L,])) = V
new_object(S1, V, L, S3)

S1, £, subtype_view(L;) b4y, first = object_view(L, S;P[L], constant), S,

is_scalar_type(Sy, Sy [L;])
high_bound(range_of_subtype(S,, S;*?[L,])) = V
new_object(S1, V, L, S?)

51, E, subtype_view(Ls) k4 last = object_view(L, Sftp[Ls], constant), S

SPPIL,] = subtype(U, C, A)
is.scalar_type( S}, subtype(U, C, A))
new_subtype(S,, subtype( U, no_constraint, A), L,, S3)
S1, E, subtype_view( L) b 4; base = subtype_view(L,), Sa

St™[L,] = subtype(?, index_constraint(R - R,),?)
new_object(S;, low_bound(R), L, S5)
51, E, subtype_view(L,) 44 first = object_view(L, S, constant), S,

S;*P(L,] = subtype(?, index_constraint(R - R,),?)
new_object(S:, high_bound(R), L, S»)
51, E, subtype_view( L) ko last = object_view(L, S, constant), S,

Sy (Ls) = subtype(?, index_constraint(R - R),?)
low_bound(R) = discrete_val( N)
St = subtype(universal_integer_tn, no_constraint, ?)
high_bound(R) = discrete_val(Ny)
new_object(S), discrete_val{ Nh — Nl + 1), L, S,)
51, E,subtype_view(L) b4 length = object_view(L, S;, constant), S,

S1, E, W b a first = object_view(L1,7,7), S»
Sa, E, W ka4 last = object_view(Ls,?7,7), S3
S3 F content(Ly) = V)

S3 | content(Ly) = V,

S1, E, W kase, range = make_range(Vy, V), S3
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Chapter 5

Exceptions and Optimization

5.1 Introduction

Version 5.0 of the Annotated Draft Ada 9X reference manual [4] contains language that obviates
many of the problems associated with section 11.6 of the Ada 83 reference manual [10]. The purpose
of this chapter is twofold. The first is to examine the Ada revision as represented by Version 5.0
in light of the earlier Language Precision Team work in this area as published in the LPT Task 1
report [9]. The second is to discuss the consequences of the remaining problems that the semantics
of Ada 9X present in the areas of predictability and to offer suggestions for accommodating them
in practice. The report concludes with a brief commentary on the Annotated Draft used to support
this research.

5.2 The Ada 9X revision of 11.6

Section 11.6 of the Ada 83 reference manual contained explicit permissions to reorder operations
or to omit some checks that might propagate predefined exceptions. In Ada 83 the notion of the
“effect” of a program or of an operation was not as clearly defined as it is in Ada 9X and the language
of the section gave rise to endless discussions such as those captured in AI-315.

As revised, [11.6] contains two substantive paragraphs, (5) and (7). The first gives permission to
avoid raising exceptions under some circumstances. The second permits more extensive reordering
of operations than was generally considered permissible in Ada 83 by relaxing the requirements for
state predictability when an exception handler is entered.

5.2.1 [11.6(5)]

This paragraph allows the implementation to avoid raising exceptions in the face of failures of
predefined language exceptions under some circumstances. In the context of a clearer notion of
“cffect,” it is somewhat of an improvement over the language of Ada 83. Even so, the language used
in [11.6] is less clear than it might be. Consider the language of [RM-83 11.6(7)):

A predefined operation need not be invoked at all, if its only possible effect is to
propagate a predefined exception. Similarly, a predefined operation need not be invoked if
the removal of subsequent operations by the above rule renders this invocation ineffective.

In Ada 83 the term effect is not defined! and the meaning of the term is the subject of considerable
discussion in AI-315 and elsewhere. The gist of many of the discussions concerns the case in which the

Y The index entry for “effect” in [RM-83 Appendix I] is “[see: elaboration has no other effect].”
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programmer has apparently written an operation that is sure to raise an exception as a “shorthand”
for a raise statement. While this should be considered to be poor programming style, suppressing
the operation leads to surprising effects.

We note that Chapter 14 of the Ada 83 rationale? which deals with exceptions does not discuss
the material contained in [RM-83 11.6] and a search through the text of the rationale for the root
string “optimiz” does not provide any appropriate insight.

From the discussions contained in AI-315 it appears that the primary need that the language of
[RM-83 11.6(7)] is attempting to capture is the desire to remove code that is dead along its normal
execution path even if executing it may (or is certain to) raise an exception due to the failure of a
language-defined check. According to [11.6(7.f)], the language of [RM-83 11.6(7)] is now reflected in
paragraph [11.6(5)] which reads:

An implementation need not always raise an exception when a language-defined check
fails. Instead, the operation that failed the check can simply yield an undefined result.
The exception need be raised by the implementation only if, in the absence of raising
it, the value of this undefined result would have some effect on the external interactions
of the program. In determining this, the implementation shall not presume that an
undefined result has a value that belongs to its subtype, nor even to the base range of
its type, if scalar. [Having removed the raise of the exception, the canonical semantics
will in general allow the implementation to omit the code for the check, and some or all
of the operation itself.]

5.2.1.1 Defining undefined

Unfortunately, the index for Version 5.0 contains exactly one entry for undefined result, 1.e., [11.6(5)].
Although this reference purports to define undefined result, we are given no useful semantics to
associate with the term. Thus we are left to attempt to define exactly what is meant by the phrase
through other means. A search of the source text for Version 5.0 yields several additional uses of
the word undefined. The ones that appear to be related to its use in [11.6(5)] are:

13.9.1 NOTES

19 Objects can become abnormal due to other kinds of actions that directly update the
object’s representation; such actions are generally considered directly erroneous, however.
Wording Changes From Ada 83

In order to reduce the amount of erroneousness, we separate the concept of an
undefined value into objects with invalid representation (scalars only) and abnormal
objects.

Reading an object with an invalid representation is a bounded error rather than
erroneous; reading an abnormal object is still erroneous. In fact, the only safe thing
to do to an abnormal object is to assign to the object as a whole.

3.8.1 e The discrete_choice others covers all values of its expected type that are not covered by
previous discrete_choice_lists of the same construct.

Ramification:For case_statements, this includes values outside the range of
the static subtype (if any) to be covered by the choices. It even includes values
outside the base range of the case expression’s type, since values of numeric types
(and undefined values of any scalar type?) can be outside their base range.

7.4 Extensions to Ada 83

2This document may be obtained by anonymous ftp from ajpo.sei.cmu.edu in the directory public/rationale.
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The rules for too-early uses of deferred constants are modified in Ada 9X to
allow more cases, and catch all errors at compile time. This change is necessary in
order to allow deferred constants of a tagged type without violating the principle
that for a dispatching call, there is always an implementation to dispatch to. It has
the beneficial side-effect of catching some Ada-83-erroneous programs at compile
time. The new rule fits in well with the new freezing-point rules. Furthermore,
we are trying to convert undefined-value problems into bounded errors, and we were
having trouble for the case of deferred constants. Furthermore, uninitialized deferred
constants cause trouble for the shared variable / tasking rules, since they are really
variable, even though they purport to be constant. In Ada 9X, they cannot be
touched until they become constant.

The first item seems to be the key. The remaining two items use the word undefined in ways that
seem to confirm the impressions given by [13.9.1] as a whole. Thus, we see that undefined either
applies to a scalar object with an invalid representation or to an abnormal object. Abnormal objects
can either be produced by disrupted assignments (with a reference from [13.9.1(5)] back to [11.6],
presumably to [11.6(6)]) or (for non-scalars) by a return from a call to either a language defined
input procedure or to an imported procedure. It is, perhaps, stretching things to call the latter an
operation in the sense of the discussion of [3.2].

Discussion: An operation is a program entity that operates on zero or more
operands to produce an effect, or yield a result, or both.

It seems more likely that the operations referred to are akin to the primitive operations partially
defined in 3.2

A type is characterized by a set of values, and a set of primitive operations which
implement the fundamental aspects of its semantics.

This leads us to consider the invalid values that can be associated with scalar objects and the
predefined operations on scalar types. These are discussed in general in [4.5] where the relevant
language appears in [4.5(9)-4.5(12)].

For each form of type definition, certain of the above operators are predefined; that is,
they are implicitly declared immediately after the type definition. For each such implicit
operator declaration, the parameters are called Left and Right for binary operators; the
single parameter is called Right for unary operators. [ An expression of the form X op
Y, where op is a binary operator, is equivalent to a function_call of the form “op”(X,
Y). An expression of the form op Y, where op is a unary operator, is equivalent to a
function_call of the form “op”(Y). The predefined operators and their effects are described
in subclauses 4.5.1 through 4.5.6. ]

Dynamic Semantics

[ The predefined operations on integer types either yield the mathematically cor-
rect result or raise the exception Constraint_Error. The predefined operations on
real types yield results whose accuracy is defined in Annex G, or raise the exception
Constraint_Error. ]

To be honest: Predefined operations on real types can “silently” give
wrong results when the Machine_Overflows attribute is false, and the compu-
tation overflows.

Implementation Regquirements
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The implementation of a predefined operator that delivers a result of an integer or
fixed point type may raise Constraint_Error only if the result is outside the base range
of the result type.

The implementation of a predefined operator that delivers a result of a floating point
type may raise Constraint_Error only if the result is outside the safe range of the result

type.

Unfortunately, there is a reading of this language that would make it impossible for a predefined
operation on integer types to produce an invalid value. Paragraph (10) requires the operation to
either yield the mathematically correct result or to raise Constraint_error. Paragraph (11) states
that the implementation of the predefined operation may raise Constraint_error only if the result
is outside the base range of the result type. Now, if we assume that “result” in paragraph (11) is
the value produced by the implementation, it is almost certainly the case that this result will be
within the range of the base type; it just will not be mathematically correct. It is likely that what
is intended is

The implementation of a predefined operator that delivers a result of an integer or
fixed point type may raise Constraint_Error only if the [mathematically correct] result
[of the operation] is outside the base range of the result type.

As the language is currently defined, there is a direct contradiction between the language of
[4.5(10-11)] and that of [11.6(5)]

If we assume the revised interpretation, then we have a class of operations that can produce
results that are not mathematically correct though they will typically be precisely defined by the
implementation. If 11.6(5) is to have any reasonable meaning, it must be the case that results of this
kind are the undefined results referred to. If this is the case, we have extended the notion of invalid
to include representations of scalar objects that do represent values of the object’s subtype but are
not the mathematically correct values that would be produced without the violated constraint.3
This is a fairly serious extension and deserves more consideration. We will return to this
shortly.

5.2.1.2 Use of undefined results

The implementation note associated with [11.6(5)] seems to raise two distinct points. One, allowing
the removal of dead code, is fairly obvious and seems to be the only clear-cut case. The other
discusses implementation assumptions and seems to involve the extension noted above.

Implementation Note: This permission is intended to allow normal “dead code re-
moval” optimizations, even if some of the removed code might have failed some language-
defined check. However, one may not eliminate the raise of an exception if subsequent
code presumes in some way that the check succeeded. For example:

if X * Y > Integer’Last then
Put_Line("X * Y overflowed");
end if;

3 Addition in a 2's complement n bit machine produces a result that is either a mathematically correct integer
result or the mathematically correct integer result minus 2™. Consider a 2 bit, 2's complement machine. Its value set
is given as

i 110 +100(0) o01(1) 10(-2) 11(1)
00 0 00(0) [ 00(0) o01(1) 10(2) 11(1)
01 1 and + definedas 01 (1) | 01 (1) 10(-2) 11(-1) 00{(0) where the values in italics are not
10 -2 10(-2) | 10(-2) 11(1) o00(06) o01(1)
11 -1 11(-1) | 11(-1) 00(0) o01(1) 10(-2)

mathematically correct integer results but are both well-defined and have a valid integer representation.
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exception
when others =>
Put_Line("X * Y overflowed");

If X*Y does overflow, you may not remove the raise of the exception if the code that does
the comparison against Integer’Last presumes that it is comparing it with an in-range
Integer value, and hence always yields False.

As another example where a raise may not be eliminated:

subtype Str10 is String(1..10);
type P10 is access Stri0;
X : P10 := null;
begin
if X.all’Last = 10 then
Put_Line("Oops");
end if;

In the above code, it would be wrong to eliminate the raise of Constraint_Error on the
«X.all” (since X is null), if the code to evaluate "Last always yields 10 by presumning that
X.all belongs to the subtype Str10, without even “looking.”

The first point is that if the result of an operation is not subsequently used, then we can ignore the
possibility that execution of an operation might have raised an exception. Examples that illustrate
this situation are somewhat contrived since programmers generally do not try to write code that is
not useful. For example, we might illustrate the permission by writing something like:

subtype Stxr10 is String(1..10);
X : Str1Q := " ",
begin
X := "2 01",
Put_line(X);
X := "8 012345667";
Put_line(X);
X := "10 0123456789";
exception
when others =>
Put_Line("0OOPS");
end;

Since the scope of X does not extend beyond the end of the block, the value produced by the last
assignment has no effect along the normal path of execution. [11.6(5)] gives permission to ignore the
possibility (in this case, a certainty) that the assignment will raise Constraint_Error. This, in turn,
allows the elision of the entire assignment statement using conventional, “dead code” elimination
techniques.

Note that without the extra permission of [11.6(5)], the code for the last assignment is not dead
since there is a a well-defined “effect” along the exceptional? path. The extra permission allows
the implementation to restrict its analysis to the normal path. This is important since exception
handlers are dynamically bound and an analysis that shows that an operation is dead along 1ts
exceptional path is generally intractable, while one that shows that the operation is dead along its
normal path may require only local analysis.

While the example is contrived, the situation that it presents appears fairly frequently as the
result of other transformations during code generation and optimization. For example, unrolling

4See the definitions of exceptional and normal paths below.
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a loop may well leave dead code in the final iteration, e.g., the code intended to initialize the
next iteration. Value propagation and common subexpression elimination also serve to create dead
variables and dead code to manipulate them.

The language of [11.6(5)] does not ensure that the obviously intended meanings of some realistic
examples will be preserved. For example, in AI-315, Robert Dewar presents the following example:

function Add_overflows(4, B: Integer) return Boolean is
T: Integer
begin
T := A + B;
return False;
exception
when Constraint_Error => return True;
end Add_Overflows;

The writer of code like this might hope to detect a potential overflow situation and, perhaps,
use the knowledge to invoke an alternate more robust computation, however, it appears that the
permissions of [11.5] would allow the constraint_error to be ignored, rendering the assignment dead
and allowing its elimination permitting the function to always return False. This could cascade,
if for example, the function were to be inlined, eliminating the code for the alternate computation
which would also appear dead.

Note that both Dewar’s example and the example of [11.6(5.€)] have the same intent, the detection
of overflow. They differ in minor details with respect to the way the overflow is detected. It is
probably unreasonable to expect a casual (or even experienced) user of the language to detect the
subtleties. Indeed, the casual observer ought to come to the conclusion that the example of [11.6(5.¢)]
cannot work because the implementation result (as opposed to the mathematically correct result) of
X * Y cannot possibly be larger than Integer’Last so that the first Put_Line cannot appear. This
would lead the user towards an example similar to Dewar’s which apparently will not work. It is
not clear that there is any easy fix. The approach offered with respect to code motion in [11.6(6)], a
compromise that allows local code motion with local analysis, but does not insist on global analysis
to ensure that the permitted code motion does not disrupt the canonical semantics might also
apply here. This would require that analysis proceed along both the normal and exceptional paths
following from an operation if there were an exception handler for the exception potentially raised
by the operation associated with the innermost sequence of statements containing the operation.

The examples given in (5.e) and (5.g) raise more subtle points. In the absence of [11.6(5)],
Ada’s exception model is similar to that of Gypsy. If we use a Gypsy-like model to specify the
Ada operations, we get a possibility of two execution paths from each operation [6]. We will call
these paths the normal and exceptional paths. If none of the language-defined checks fail during
the performance of the operation, execution proceeds along the normal path. If performance of the
operation causes a language-defined check to fail, execution proceeds along the exceptional path.
Associated with each operation is an entry specification which is assumed® to be true when the
operation is invoked. Associated with each exit path is an exit specification which is guaranteed to
hold if the path is followed.

For example, the implementation of the integer multiplication operation on a given machine
might be specified as follows:

function Machine_Mul(X, Y : Machine_Integer)
return Machine_Integer
entry

““Assumed” is with respect to the operator definition. The implementation is required to “prove” that the as-
sumption holds every time the operation is invoked. In the case of operations such as Machine_Mul and Machine CMP
all possible bit patterns represent valid values of Machine_Integer and the entry condition is trivially satisfied.
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X, Y in (Machine_Integer’First .. Machine_Integer’Last);
normal exit

Machine_Mul(X, Y) = Integer_Mul(X, Y) and

Machine_Mul(X, Y) in

(Machine_Integer’'First .. Machine_Integer’Last);

exceptional exit

Machine_Mul(X, Y) != Integer_Mul(X, Y) and

Machine_Mul(X, Y) in

(Machine_Integer’First .. Machine_Integer’Last) and
Integer_Mul(X, Y) not in
(Machine_Integer’First .. Machine_Integer’Last);

This says that for some (possibly empty) set of input values, machine multiplication is equivalent
to abstract integer multiplication and that execution will proceed along the normal path when this
is the case. When machine and integer multiplication do not produce the same result, we are told
that the true result is not representable as a Machine_Integer but that some result® representable
as a machine integer is produced.” Now, if we look at a possible specification for the comparison
operator, >, we see a potential problem with the language of the note.

function Machine_CMP(X, Y : Machine_Integer)
return Machine_CC

entry

X, Y in (Machine_Integer’First .. Machine_Integer’Last);
normal exit

Machine_CMP(X, Y) = GT implies Integer_GT(X, Y) and

. -- Specifications for other return values

exceptional exit

false;

In this case, we assume a comparison instruction at the machine level that sets some condition
codes to indicate the results of the comparison. GT is a condition code value that indicates the first
operand, interpreted as an abstract integer, was greater than the second operand, also interpreted
as an abstract integer. Note that the only entry condition assumes that the inputs are machine
integers. This condition is satisfied by the exit condition of the multiply operation under either its
normal or exceptional execution. Note also that this operation is defined to always exit normally.

We note that, in program verification, an operational semantics that allows exceptions to be
raised when a language-defined check fails is, in a sense a dual of an operational semantics that
produces an undefined result under the same circumstances. In the absence of a way to effect a
meaningful recovery from failed checks,® we must show that the exceptional path is not taken. The
proofs involved are exactly those that are required to show that operations do not produce undefined
results. Languages such as Euclid and Verdi (and C for that matter) use an undefined semantics
while Ada (in the absence of [11.6]) and Gypsy use an exception-based semantics.

For formal reasoning, the differences are largely matters of style. From an implementation
standpoint, unless it can be shown that a given program will not have effects based on undefined
results, the choice is between being able to detect a departure from normal execution and not.
[11.6(5)] requires that exceptions not be suppressed if suppressing them would lead to a visible

6 For most machines, we could specify exactly what this result is, i.e., how to compute it as a function of X and Y.
It is not undefined in the sense that we know nothing about it.

" The first conjunct is redundant since it could be deduced from the other two.

8By a meaningful recovery, we mean undoing or overcoming the failed operation in such a way that computation
can resume execution along the normal path, satisfying all the implicit and explicit assumptions of that path. In
practice, this is extremely difficult unless the specification of the normal computation is extremely weak.

90

BN



effect due to the subsequent use of an undefined result. We will examine the process of substituting
operator definitions that produce “undefined” results for those that raise exceptions.

The stated assumptions associated with the example of [11.6(5.€)] are not sufficiently strong. In
most machines, the result of an integer operation that fails an Ada implementation-defined check
will be a valid value of the base type of the operation’s result and, in many cases, it will be a valid
value of the appropriate subtype as well. Thus, the values supplied to the comparison operation
will always be “in-range integer value”s. The value is not the issue. If we allow the operation to
omit its exception check, we must consider the result to be more than a value for the purposes of
analysis. In the abstract, the result of an operation that yields an undefined result must be seen as
a object having two attributes, *value and *defined. *value is of the base type of the result of the
operation while *defined is boolean.

Under this view, multiply and compare might be defined as follows:

function Machine_Mul(X, Y : Machine_Integer)
return Machine_Integer
entry
X’value, Y’value
in (Machine_Integer’First .. Machine_Integer’Last) and
X’defined and Y’defined;
exit
if Machine_MUL’defined then
Machine_Mul’value(X, Y) = Integer_Mul(X, Y) and
Machine_Mul’value(X, Y) in
(Machine_Integer’First .. Machine_Integer’Last) and
else
Machine_Mul’value(X, Y) != Integer_Mul(X, Y) and
Machine_Mul’value(X, Y) In

(Machine_Integer’First .. Machine_Integer’Last) and
Integer_Mul(X, Y} not in
(Machine_Integer’First .. Machine_Integer’Last);
end if

function Machine_CMP(X, Y : Machine_Integer)
return Machine_CC

entry
X, Y in (Machine_Integer’First .. Machine_Integer’Last) and
X’defined and Y’defined;

exit
Machine_CMP’defined(X, Y) and
(Machine_CMP’value(X, Y) = GT implies Integer_GT(X, Y) and

. -- Specifications for other return values)

Under this view of operational semantics, the obligation to take appropriate action in the case
of exceptional operations has shifted from the operation making the check to the operation using
the result. The substitution of “undefined” semantics for “exception” semantics might be done as
follows:

1. Tentatively replace an operation using “exception” semantics with the equivalent operation
using “undefined” semantics. Note that this substitution is dependent on being able to prove
the stronger entry specification of the latter.®

9In the implementation of a language using the “undefined” semantics, we note that there is, in general, no way
to determine by inspection that a given bit string represents an “undefined” value. A two’s complement machine
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2. If it is possible to prove that the ’defined attribute of the operation’s result is always true
then the substitution is permitted (see the ramification [11.6(5.a)}) and no further analysis is
required.

3. Locate all uses of the result of the replaced operation. If there are none, the substitution is
permitted. If there are any, substitute the corresponding “undefined” semantics operation,
if necessary, and check the entry specification for references to the ’defined attribute of the
result in question. If any using operation assumes that the defined attribute of the result is
true, the substitution cannot be made.

If the substitution can be made, the net effect is to remove from further consideration the
execution path arising from the exception exit of the replaced operator definition. This, in turn,
should enable additional program transformations, including removal of the replaced operation since
it is known to be without an externally visible effect. The removal of the exception path may permit
additional removals since dependencies along the path no longer require consideration. Removal of
the operation may permit additional operations to be removed since its inputs are now referenced
at fewer places.

Note that this is an analytical approach, not an implementation. Typically, there is no practical
way to tag values with an indication that they represent an “undefined” result. When this is the case
there is no way for subsequent operations in an implementation to check explicitly for the undefined
property. In addition, the amount of analysis required to detect all uses of a result may require
extensive reasoning about the values of index expressions, etc., when the values are components of
arrays or other composite structures.

Implicit in the assumption of the last paragraph of [11.6(5.¢)] appears to be an additional assump-
tion that the values being compared are also the mathematically correct results of the operations
that produced them, i.e., that they are not undefined.

It is probably the case that the only permission actually granted by {11.6(5)] is the removal of
code that is “dead” along its normal exit path regardless of any effects along its exceptional exit
path.

5.2.1.3 Bounded errors and erroneous executions

The Ada 9X revision has made a serious attempt to reduce the number and types of circumstances
under which a program’s execution can become erroneous. Since an erroneous execution can exhibit
arbitrary behavior, this change is highly desirable. Recognizing that most implementations do
reasonable things in the face of program errors that violate language semantics, the notion of a
bounded error has been introduced. The bounded errors associated with invalid representations are

discussed in [13.9.1]
Bounded (Run-Time) Errors

If the representation of a scalar object does not represent a value of the object’s
subtype (perhaps because the object was not initialized), the object is said to have an
invalid representation. It is a bounded error to read the value of such an object. If
the error is detected, either Constraint_Error or Program_Error is raised. Otherwise,
execution continues using the invalid representation. The rules of the language outside
this subclause assume that all objects have valid representations. The semantics of
operations on invalid representations are as follows:

e If the representation of the object represents a value of the object’s type, the value
of the type is used.

addition, for example, operating on two n bit long bit strings interpreted as integers produces an n bit long bit string
that can be interpreted as an integer congruent to the mathematically correct integer result modulo 2™. Because of
this, the entry specifications cannot be executed but must be reasoned about.
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e If the representation of the object does not represent a value of the object’s type,
the semantics of operations on such representations is implementation-defined, but
does not by itself lead to erroneous or unpredictable execution, or to other objects
becoming abnormal.

Erroneous Erxecution

A call to an imported function or an instance of Unchecked_Conversion is erroneous
if the result is scalar, and the result object has an invalid representation.

Ramification: In a typical implementation, every bit pattern that fits in
an object of an integer subtype will represent a value of the type, if not of
the subtype. However, for an enumeration or floating point type, there are
typically bit patterns that do not represent any value of the type. In such
cases, the implementation ought to define the semantics of operations on the
invalid representations in the obvious manner (assuming the bounded error is
not detected): a given representation should be equal to itself, a representation
that is in between the internal codes of two enumeration literals should behave
accordingly when passed to comparison operators and membership tests, etc.
We considered reguiring such sensible behavior, but it resulted in too much
arcane verbiage, and since implementations have little incentive to behave
irrationally, such verbiage is not important to have.

If a stand-alone scalar object is initialized to a an [sic] in-range value, then
the implementation can take advantage of the fact that any out-of-range value
has to be abnormal. Such an out-of-range value can be produced only by things
like unchecked conversion, input, and disruption of an assignment due to abort
or to failure of a language-defined check.

This depends on out-of-range values being checked before assignment (that
is, checks are not optimized away unless they are proven redundant).

The language of the Ramification sounds reasonable, but it flies in the face of the conventions
used in many of the logics used to reason about program behavior. Typically, undefined is a loaded
term in these logics. Undefined is used to represent a distinguished value about which nothing can
be proven. Thus lf undefined = undefined. This is too strong for implementation semantics in most
cases. In any implementation in which evaluating z is free of side effects that could change its value,
z = z is true even if x has an invalid representation or is undefined so long as the implementation
of = simply involves comparing bit patterns. In the absence of a requirement to actually evaluate
z, it should be unconditionally ok to substitute true for the equality.

On the other hand, this language seems to have the potential for conflicts with semantics of
“undefined” results discussed above in connection with [11.6(5)]. The relationship between undefined
as used in [13.9.1] and [11.6(5)] should be further clarified.

5.2.2 [11.6(7)]

This paragraph allows fairly arbitrary reordering of actions within the scope of an exception handler
by reducing the expectations that the programmer may have concerning the state of the computation
at the time that the handler is entered. This is essentially the “Undefined” execution order of [9,
section 2.6.5]. We note that the only effective actions that a programmer can take when an exception
handler is entered in the face of this kind of reordering is to assign normal values to all variables
that might have become abnormal due to operations disrupted by the exception.

The first sentence of this paragraph is complex and convoluted and calls out to be simplified or
clarified. The following discussion may aid in finding more suitable language. An exception_handler 1s
optionally associated with a handled _sequence_of_statements which contains a sequence_of_statements
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and is, among other things, the operational portion of a task_body. When an exception is raised, it
will either be handled or cause the containing task_body to terminate. In either case, all that the
user can expect to know is that the exception was raised somewhere in the code of the sequence_of_
statements component of the handled_sequence_of_statements that contains the exception_handler
just entered or that constitutes the operational part of the task being terminated. The reordering
that can be done is limited in two respects.

1. The operation that raises the exception due to a failed language—defined check cannot have
been moved into the code of an independent subprogram, and

2. The operation that raises the exception due to a failed language—defined check cannot have
been moved into the code of some abort-deferred operation.

Just breaking up the sentence may help. Instead of

e If an exception is raised due to the failure of a language-defined check, then upon reaching the
corresponding exception_handler (or the termination of the task, if none), the external inter-
actions that have occurred need reflect only that the exception was raised somewhere within
the execution of the sequence_of_statements with the handler (or the task_body), possibly ear-
lier (or later if the interactions are independent of the result of the checked operation) than
that defined by the canonical semantics, but not within the execution of some abort-deferred
operation or independent subprogram that does not dynamically enclose the execution of the
construct whose check failed.

perhaps language similar to the following would be more understandable.

e If an exception is raised due to the failure of a language-defined check, then upon reaching
the corresponding exception_handler (or the termination of the containing task, if no handler
is present), the external interactions that have occurred need reflect only that the exception
was raised somewhere within the execution of the sequence_of_statements associated with the
handler (or the task_body). It may appear that the exception was raised earlier than defined
by the canonical semantics (or later if the interactions are independent of the result of the
checked operation). It may not appear as if the exception were raised within the execution
of some abort-deferred operation or within the execution of an independent subprogram that
does not dynamically enclose the execution of the construct whose check failed.

5.3 Living with the “Canonical Semantics”

The canonical semantics define a potentially very large family of valid executions. This is due to the
numerous places in which the language definition allows operations to be performed in an arbitrary
order. An implementation is free to select any order under these circumstances. In the absence of
order dependencies and tasking considerations, all canonical executions should produce the same
externally visible effect. Order-dependent side effects, including exceptions raised due to the failure
of language-defined checks, can affect the effect of the program. The problem is twofold:

1. Reducing the potential effect space of the program, and
2. Determining which execution the implementation has selected.

First of all, it is worth noting that this kind of problem is not unique to Ada (both Ada 83
and Ada 9X). Most programming languages, including C and C++, admit similar behaviors, either
implicitly or explicitly. Ada is more explicit about them. In general, the failure of languages to
define or enforce restrictive canonical executions is attributed to a need for flexibility in order to
achieve run-time efficiency. There is tension between this need and the requirements for predictable
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program behavior, which are imposed by small segments of the user community, typically those users
associated with safety and security critical applications. Predictable behavior is usually defined as
having a rigorous semantic definition that allows the formal verification of programs written in the
language, preferably using mechanical aids.

In theory, one could reason about Ada programs by enumerating the set of possible executions
and reasoning individually about each one. A program could then be said to shown to exhibit a
given property if each of its possible executions could be shown to exhibit the property. In practice,
the combinatorics of potential execution choices are likely to render this approach infeasible for any
non-trivial program. [f we assume that a compiler conforming to the language standard produces
code that follows one of the set of canonical executions of a given program, it seems a waste of time to
prove properties of the set as a whole unless there is a need to guarantee the behavior of the program
under all possible conforming implementations. This is seldom the case. Further complications arise
when it is possible to show that some, but not all, members of the canonical execution set exhibit
the desired property. In this case, it is essential to determine whether the implementation being
considered exhibits the property.

There are several possibilities. The first is to attempt to reduce the size of the set of canonical
executions to a tractable size and possibly to a single member. The second is to discover the member
of the canonical execution set that has been chosen by a particular implementation and to reason
about that execution alone.

5.3.1 Restricting the execution set size

The size of the canonical execution set about which one must reason can be reduced by one of
two methods; reducing the choices available to the implementation or finding equivalence classes
within the set, or by some combination of the two. Ada 9X provides some means for imposing
order. For example, the order of the association of operands with a sequence of operators of the
same precedence can be controlled by the explicit use of parentheses. The introduction of explicit
intermediate variables and assignments should have a similar effect. For example, suppose that
side effects exist such that the value resulting from the evaluation of <expi> depends on whether
it is evaluated before or after <exp2>, but that there are no other order dependencies between the
expressions. Further assume that the evaluations produce results of some integer subtype.

A = <expl> + <exp2>;

Either of the possible results is a member of the canonical execution set for this fragment. If we
want to ensure that <exp1> is evaluated first, we might write:

Al := <expl>;
A2 := <exp2>;
A = Al + A2;

It is not clear that the additional freedoms to reorder operations granted by [11.6(6)] allow an
implementation to ignore structuring of this kind, but aggressive optimizations in compilers for
other languages are known to do so in some cases. Presumably, the dependency between the two
expressions either becomes explicit or the implementation will be forced to recognize that it cannot
assume independence because the expressions invoke separately compiled routines and it will be
forced to produce the intended result!®.

Note that the explicitly ordered code may still exhibit a family of canonical executions. In the
expression Al + A2, the language allows A1 or A2 to be “evaluated” first. We claim that given

101f the expressions are sufficiently complex and the dependencies between them limited, it may be possible to
interleave their evaluations. This would be permitted under the general freedoms noted in [11.6(3)]
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appropriate type declarations (and barring some pathological implementation of +) that both orders
will be equivalent and trivial.

By a combination of these two techniques, forcing orders where order makes a difference and cre-
ating situations where it is easy to show that, at least locally, all canonical executions are equivalent,
it should be possible to reduce the number of canonical executions associated with a program to a
tractable number. In most cases, the analysis of the remaining canonical executions should show
that language-defined checks will not fail, rendering moot the freedoms of [11.6]. The utility of this
approach depends on the implementation or implementations of interest ensuring that the canonical
semantics are honored.

If the notion of a subset of Ada 9X for High Integrity systems, as recently proposed by Brian
Wichmann, is accepted, the subset definition could restrict the ordering freedoms permitted by the
primary language definition. This approach would necessitate subset compilers to enforce the re-
strictions, but would offer a higher degree of assurance than the use of general purpose compilers.
If a subset is adopted with the notion of supporting mechanical verification, it is not unreason-
able to expect that integrated environments will be developed in which both the verification and
implementation tools are based on the same semantic assumptions.

5.3.2 Discovering the execution

Another approach to the problem of a canonical execution set is the determination of the actual
execution produced for a given program by a given implementation. This requires that the compiler
output its object code in a form that allows the user to determine the actual execution that will occur
when the program is executed. Implementations conforming to the Safety and Security Annex, in
particular to section [H.3], will provide this kind of information. With an appropriate transformation
of the object code back into an appropriate Ada or Ada-like source form, it should be possible to
perform source level analysis or verification on the program while maintaining confidence that the
results are, in fact, applicable to the compiled program.

It is clear that this approach requires facilities that are not present in many, if not all, existing
compilers, but the Annex should encourage development of this facility.

5.4 Observations on the Reference Manual

In the course of using the Reference Manual in the preparation of this chapter, a number of general
shortcomings have been observed. These have more to do with presentation than with substance
and can be fixed prior to the release of the final document.

First of all, we wish to compliment the Mapping/Revision Team on the content and style of the
manual. Not only i1s the wording a substantial improvement over the Ada 83 Reference Manual,
but the inclusions of the annotations provide useful and substantive insight into the workings of the
language. It is to be hoped that the annotated version will be maintained along with its “official”
subcomponents and that it will see widespread use by serious students of Ada 9X.

This said, there are ways in which the the Reference Manual could be further improved.

1. The index is not sufficiently comprehensive. On a number of occasions, an attempt to trace the
consequences of a definition found that the defining occurrence was the only reference in the
index. Fortunately, the source files are available and can be searched as necessary; however,
any term important enough to be marked as a definition is important enough to have the
consequences of that definition tracked. A presentation similar to that used in the index for
syntactic constructs should be adapted for defined terms, i.e., a defining reference followed by
using references.

2. The index does not appear to cover the annotations. Extending it to this level would greatly
aid in the use of the annotated manual.
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3. The Syntax Cross-Reference would be much more useful if references for the defining occurrence
as well as the using occurrences were given. For example, we find from the cross-reference that
a task_body is used in the definition of a proper_body in [3.11], but we must go to the main index
to discover that a task_body is defined in [9.1(6)]. Extending the indexing to the numbered
paragraph level as is done in the index would also be useful.

4. The marginal paragraph numbering is incomplete and inconsistent. For example, the para-
graphs following the example codes of [11.6(5.¢)] and [11.6(5.g)] are not numbered while similar
paragraphs elsewhere, e.g., [8.3(29.0)] are. There is a similar problem in (13.9.1(12.b)] as well.
This is probably the result of the mechanical approach taken to inserting the annotating scribe
commands. In preparing the I¥TEX source for the Annotated version of the Ada 83 reference
manual, I found it necessary to insert this material manually.

5. In some cases, precision seems to have been sacrificed for readability. This occurs when 1t
is difficult to determine the antecedents for pronouns or where the same noun appears in an
ambiguous context. An example is [4.5(11)] discussed in Section 5.2.1.1 on page 87 above.
More liberal use of the @Redundant (or a similar) construct might alleviate this problem in
the annotated version.
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Chapter 6

Conclusions

We did not expect to formulate a complete semantic definition (even for the sequential part of Ada)in
this project; there were simply not enough resources to do so. What we did expect was to gain some
insights into the structure of the language, and to identify some problems either with the description
in the Reference Manual or in the design of the language itself, and to contribute to the development
of Ada 9X by suggesting improvements to the description or design. Those expectations were met
to some degree; for example, we identified some flaws (that have now been fixed) in the design in
the area of per-object constraints; we identified some conceptual and some wording problems in the
area of floating point and developed a model that was used in the development of new wording for
the Reference Manual; and we identified some incompleteness in the description of actual subtypes.

However, we did not make as much progress in the natural semantics definition as we had
originally hoped. It was more difficult to understand the supposedly trivial parts of the language
than we had imagined. Large-scale languages like Ada do not have neat, independent parts; rather,
each feature is affected in some measure by the others. For example, the type system is affected by
the concurrency mechanism (e.g., task types), by the packaging mechanism (e.g., private types), and
in several ways by the object-oriented features (e.g., access discriminants, per-object expressions,
class-wide types). So, indeed, there are no really trivial aspects of the language. In the original
LPT project, we had felt that it would be a waste of effort to develop a formal model for things
that “everyone understands”. Our recent efforts, however, have shown us that there are interesting
problems lurking at the fringes of even these areas.

Even though there are serious gaps in the definition, a considerable amount of groundwork
has been done. We have identified most of the basic semantic domains that must be used in a
full definition, we developed structuring mechanisms for the definition that allow us to describe
many of the implementation freedoms, and we have several tools (such as the type checker for the
Prolog representation of the definition, and the tool that derives IATEX source from the Prolog
representation) that help in the production and documentation of the definition. So, we feel that
we have made a good start in the direction of a complete description of the sequential part of the
language.

We are not sure how easily our framework could be adapted to deal with concurrency. The
influence of tasking in DDC’s formal definition of Ada 83 [1] is pervasive, and we suspect that
incorporating concurrency into our definition would similarly affect every part of the model.

6.1 Implementation Freedoms

One impediment to writing a formal definition like ours is the high degree of underspecification
in the Reference Manual. This allows implementations considerable freedom to choose orders of
actions, accuracy of results, base ranges of types, and so on. These freedoms can be difficult to
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model; where an implementation need only produce one acceptable result, our semantics tries to
describe all acceptable results.

Modeling these freedoms sometimes forces our formal model to differ in significant ways from an
implementation (and to use representations that no implementation is likely to use). For a simple
example, consider the following rule about access-to-subprogram values:

Two access-to-subprogram values are equal if they are the result of the same evalu-
ation of an Access attribute_reference, or if both are equal to the null value of the
access type. Two access-to-subprogram values are unequal if they designate different
subprograms. It is unspecified whether two access values that designate the same sub-
program but are the result of distinct evaluations of Access attribute_references are
equal or unequal.

In order to model this, we are forced to use a representation of access-to-subprogram values that
consists of both a reference to the designated subprogram and an “instance” value that tells which
cvaluation of an Access attribute gave the access value. Each evaluation of an Access attribute
increments this instance value, so that we can determine whether two access values derive from the
same evaluation or not. Qur definition of the equality function checks both the subprogram reference
and the instance number, and can give a result of equal, unequal, or unknown. Such a representation
is unlikely to be used in any implementation of Ada 9X.

An implementor of the language need not be concerned with all these freedoms; just one particular
implementation choice needs to be made and the existence of other possible choices is irrelevant.
A programmer does not necessarily need to be concerned about all the alternative orders; it is
ustially possible to write programs in such a way that the specific choice made by an implementation
does not matter (for example, by avoiding side effects in functions, restricting the statements in a
package_body to affect only variables local to the package, and so on). On the other hand, anyone
trying to read an Ada program may indeed be concerned ahout the different possible outcomes of
an execution (especially if the writer has not been careful to avoid situations where the different
orders matter). So, our model, while unnatural if compared to an implementation, is quite natural
as a description of the complexities that careful readers must deal with.

6.2 Notation and Tools

The natural semantics framework seems to have worked fairly well, although there were a few
awkward aspects to our formalization of the language semantics. In particular, our need to introduce
explicit sequencing and arbitrary-order combinations of actions (in two slightly different variations)
seems somewhat artificial.  However, this mechanism of actions allows us to present reasonably
concise descriptions of many language features.

The use of Prolog to make the definition executable (and type-checkable) was a great help. We
have been able to execute parts of the definition to confirm that it expresses what we intended. The
type checker was able to find a number of trivial errors in our semantics. There is some price to
be paid, hovever; it is sometimes inconvenient to express a rule in a manner acceptable to Prolog.
This 1s particularly evident in the descriptions of the various semantic domains and the primitive
functions acting over those domains. Prolog does not support defined functions {instead, relations
must be used). We used a program to convert the Prolog code into the IXTEX source used for this
report. This program is able to introduce functional notation in places where we have instructed
it to, so at least our published form of the rules can use a more expressive notation than Prolog.
But this is still rather unsatisfactory. It is possible that other tools might be able to provide better
nmiechanical support.
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6.3 Bounded Errors

A number of rules and concepts were added to Ada 83 in order to make programs more predictable.
For example, many situations leading to erroneous executions in Ada 83 have been made into
bounded errors. For these errors, a range of possible outcomes is described. This seems like a
beneficial change. However, there is a price to be paid for this benefit: the model for a feature
using bounded errors can be substantially more complex than a model using erroneous executions.
For example, in order to change the evaluation of an uninitialized scalar variable from erroneous
to a bounded error, it was necessary to introduce the notion of “invalid representations” of scalar
objects. The addition of this notion has an influence on a number of other areas of the language
(e.g., relational operators, membership tests, and type conversions). So, the formal model is more
complex, which means that formal predictions about programs are harder to derive. On the other
hand, the execution of programs is more predictable in the sense that these executions are more
constrained (the old rules allowed any behavior, whereas the new rules are more specific).

6.4 Structure of Models

It does not seem possible, using our methods, to formulate a model for Ada 9X that is simultaneously
concise, comprehensible, broad, and accurate. Accounting for all the special cases of features adds
so much detail to the model that it becomes unusable.

Textbook writers face a similar dilemma,; if too much detail is presented, readers will find the
text impenetrable. Therefore, authors present simplified descriptions of parts of the language. These
simplified descriptions, even when they lead the reader to draw incorrect conclusions about the
behavior of some programs, are nevertheless useful to readers who are first learr'l'ing the language.
In a later part of a book, an author may elaborate on some of these missing details, and may need
to contradict some of his earlier oversimplified assertions.

We do not know exactly how to make layered formal models using a similar structure. In most
formal notations, it is not possible to override an earlier assertion with a more detailed assertion.
Even if this were allowed, it is unclear how a user of such a layered formal model would know when
the simpler part of model was applicable.

In the model developed in this report, we have tried to approach this ideal of structured models
in a very modest way through our use of the “unpredicted” outcomes to simplify the formal model;
we can certainly imagine a more complex version of this model that would, in fact, make predictions
where this simpler model refuses to. However, we have not had the resources to develop the more
complex model.
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Appendix A

Official comments submitted

This appendix lists the official comments submitted by the LPT. For each comment, we give its
official “key” number, its title, and a short description of the comment or its effect on the Standard.

Comment 93-3209.a: Too much extra permission to remove checks. The conceptual framework
of section 11.6 has been changed.

Comment 93-3398.a: per-object constraints and the “current instance”. A new rule [3.8(13)] has
been added to avoid the problem described.

Comment 93-3511.a: What is the base range of an enumeration type?.

Comment 93.3547.a: constants that aren’t. The problem described has been identified as an
erroneous execution in [13.9.1(13)]

Comment 93-3547.b: subcomponents that are constrained by their initial value.. A new legality
rule {3.6(11)] was added.

Comment 93-3547.c: conversion to a type with aliased components. A new legality rule [3.6(11)]
was added.

Comment 93-3574.a: interleaving evaluation and conversion. Several paragraphs have been mod-
ified to clarify the rules.

Comment 93-03574.b: reassociation of sequences of predefined operators. A note [4.5(13.b)] has
been added to the Annotated Reference Manual. It is unclear, however, that the note clarifies the
issue raised in this comment.

Comment 93-3575.a: aliased subcomponents with per-object constrainis. A new legality rule
[3.6(11)] was added.

Comment 94-3621.a: Initialize a discriminant before any subcomponents that depend on it. This
clause has been added to the rules of {3.3.1(20)].

Comment 94-3760.a: Phraseology. An inaccurate statement has been reworded in [M(1)].

Comment 94-3761.a: Phraseology. Some wording in [3.3] has been improved.

Comment 94-3762.a: Phraseology.

Comment 94-3763.a: Phraseology. The wording of [3.2.3] has been clarified.

Comment 94-3764.a: Phraseology. A clarifying cross-reference was added.

Comment 94-3765.a: Phraseology.

Comment 94-3901.a: Are first sublypes of enumeration iypes constrained?. A clause has been
added to [3.5.1(10)] to answer this question.

Comment 94-3901.b: First subtlypes of discriminaied types are unconstrained. This clause has
been added to [3.7(26)].

Comment 94.3901.c: First subtypes of incomplete types. A new note in the [3.10.1(10.a)] Anno-
tated Reference Manual argues that this issue is unimportant.

Comment 94.3901.d: Predefined operators and invalid scalar components. The entire discussion
of “invalid” scalars has been modified in version 5.0 of the Reference Manual. This comment and
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the following two are cited in the changes.

Comment 94-4045.a: Model for valid and invalid values. See above.

Comment 94-4054.a: Model for valid and invalid values. See above.

Comment 94-4064.a: What is the actual sublype of a formal object?. The question has been
answered in {6.4.1(15)].

Comment 94-4065.a: Normalizing composite objects. An explicit statement about restoring ob-
jects to normal state appears in [13.9.1(7)].

Comment 94-4149.a: Incomplete definition of ‘expected profile’ and ’corresponding parameter’.
Some rules have been clarified

Comment 94-4171.a: Actual subtypes and aliased views. The rules in [3.10(9)] have been re-
worded.

The remaining comments were sent too late to affect version 5.0 of the Reference Manual. Some
of them are addressed in the electronically-distributed version 5.3, as noted below. Furthermore, the
floating-point annex is under revision to address some of the comments on the floating-point model.

Comment 94-4448.a: Signed zeroes not permiited as floating point values.

Comment 94-4454.a: Model-oriented floating poini attributes.

Comment 94-4455.a: Relation between requested precision and model numbers.

Comment 94-4481.a: Inappropriale references to Annex G.

Comment 94-4482.a: Are S’Model, S’Machine deterministic?.

Comment 94-4486.a: Symmetry of floating point types.

Comment 94-4489.a: Derivation from a floating point type.

Comment 94-4535.a: Derived types with new discriminants are extensions. A sentence has been
added.

Comment 94-4535.b: Discriminants used in constraints in derived type definitions.

Comment 94-4535.c: Incorrect rules for uses of new discriminants in constraint on parent. A
new rule has been added.

Comment 94-4535.d: Current instance of a derived type. A note has been added in a “to be
honest” section of the AARM.

Comment 94-4572.a: An object that is noi {a part of} a formal parameter.

Comment 94-4572.b: For aliasing, the type of the formal, not the part, matters.

Comment 94-4572.c: When does an access path exist?.

Comment 94-4587.a: Incompatibility between semantics of the core and anner G?.

Comment 94-4796.a: reading a compostle with an uninitialized scalar component. The wording
of this rule has been changed.
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Appendix B

Intermediate Syntax

This appendix describes the decorated abstract syntax representation of Ada 9X programs. This
representation includes all static semantic information needed for defining the dynamic semantics.

One approach, not taken here, is to define a representation of semantic information such as types,
subtypes, and overload information and defining necessary tree attributes. Instead of using semantic
attributes we chose to give a purely syntactic representation of necessary information by introducing
new kinds of tree nodes and new synthetic names.

For instance, the results of overload resolution are captured by the introduction of new unique
names and suitable renaming of overloaded entities and their use. Crucial type information is
represented using existing syntax for qualified expressions. Thus the result of static semantic analysis
is a normalized abstract syntax tree. The details of this normalization are described below.

Declarations that introduce multiple names are replaced by static analysis with multiple decla-
rations introducing single names where this is legal.

Constructs for which no abstract syntax is provided are either not treated in this definition
(e.g., tasking) or have not significance for the dynamic semantics (e.g., generics).

B.1 Syntactic Domains

The following is a complete listing of the term algebra used to represent abstract syntax trees. The
constructors are grouped by sorts and are arranged alphabetically.

B.1.1 Component Associations (Aca)

array_comp3assoc : Dch*, Exp — Aca

B.1.2 Aggregates (Agg)

extSagg : Exp, Rca® — Agg
named_array$agg : Aca® — Agg

null ext$agg : Exp — Agg
null_record$agg : — Agg
other_array$agg : Exp*, Exp — Agg
pos_array$agg : Exp® — Agg
record$agg : Rea® — Agg
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B.1.3 Case Alternatives (Alt)

Alt3lst :  list(Alt) — Alt
case$Alt : Dch*, Stm — Alt

B.1.4 Choice Lists (Ccl)

list$choice : id* — Ccl
others$choice : — Cel

B.1.5 Context Items (Cit)

with$context : Nam™ — Cit

B.1.6 Component Declarations (Cmp)

aliased_comp$decl : Id, Sid — Cmp
compd$dec] : Id, Sid — Cmp
init_aliased _comp$decl : Id, Sid, Exp — Cmp
init_comp$dec] : Id, Sid, Exp — Cmp

B.1.7 Compilation Units (Cmp)

lib$unit : Cit*, Dcl — cmu
private$unit : C’it*, Dcl — cmu
sub$unit : Cit*, Nam, Dcl — ecmu

B.1.8 Conditions (Cnd)
Exp$condition : Exp — Cnd

B.1.9 Constraints (Cns)

constr_delta$constr :  Exp, Cns — Cns
constr_digits$constr :  Exp, Cns — Cns
delta$constr : Exp — Cns
digits$constr : Exp — Cns
discr$constr : Dca* — Cns
index$constr : Rng* — Cns
range$constr : Rng — Cns

B.1.10 Discriminant Associations (Dca)

named8assoc : Id, Exp — Dca

B.1.11 Discrete Choices (Dch)

discr_other$choice : — Dch
exp3choice : Exp — Dch
range$choice : Rng — Dch
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B.1.12 Declarations (Dcl)

dcl$lst : list(Dcl) — Dcl
a_c_i_obj$decl : Id, Sid, Exp — Dcl
a_c_obj$decl : Id, Sid — Dcl

a_i_obj$decl : Id, Sid, Exp — Dcl
a.obj$decl : Id, Sid — Dcl
c_i_obj$decl : Id, Sid, Exp — Dcl
c_obj$decl : Id, Sid — Dcl

real_const®decl : Id, Exp — Dcl
int_const$decl :  Id, Exp — Dcl
d_ext$decl : Id, Dcp, Sid — Dcl
d_i_type$decl : Id, Dcp — Dcl

d_type$decl : Id, Dcp, Tdf — Dcl

exception$renaming : Id, Nam — Dcl

excpt$decl : Id — Dcl

ext$decl : Id, Sid — Dcl
i_obj$decl : Id, Sid, Exp — Dcl
itype$decl : Id — Dcl

obj$decl : Id, Sid — Dcl

object$renaming : Id, Nam, Nam — Dcl
s_subp$spec : Sps — Dcl
subp$body : Sps, Dcl, Stm — Dcl
subp$renaming : Sps, Nam — Dcl
subp$spec : Sps — Dcl
subtypeS$decl : Id, Sid — Dcl
type$decl : Id, Tdf — Dcl
c_type$decl : Id, Tdf — Dcl

c.d_type$decl :  Id, Tdf, Dcp— Dcl

B.1.13 Discriminant Parts (Dcp)

box$discr :  — Dcp
list$discr :  Des™ — Dcp

B.1.14 Discriminant Specifications (Dcs)

acc®discr : Id, Nam — Dcs
acc_init$discr : Id, Nam, Exp — Dcs
init$discr : Id, Nam, Exp — Dcs

simple$discr :  Id, Nam — Dcs

B.1.15 Exception Choices (Ech)

named$excpt : Nam — Ech
others$excpt : — Ech
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B.1.16 Else-If Clauses (Eif)

eif$lst :
elsif$clause :

B.1.17 Expressions (Exp)

and_then$Exp :

Eif = Eif
Cnd, Stm — Eif

Exp, Exp — Exp

exp$alloc : Exp — Exp
in_name$exp : Exp, Nam — Exp
in_range$exp : Exp, Rng — Exp
in_type$exp : Exp, Nam — Exp
name$exp : Nam — Exp
not_in_name$exp : Exp, Nam — Exp
not_in_range$exp : Exp, Rng — Exp
not_in_type$exp :  Exp, Nam — Exp
null$exp : — Exp
integer$exp : integer — Exp
real$exp : real — Exp
char$exp : integer — Exp
or_else$exp : Exp, Exp — Exp
paren$exp : Exp — Exp
qual$aggregate :  Nam, Agg — Exp
qual$exp : Nam, Exp — Exp
typeSalloc : Sid — Exp
typeSconversion ;: Nam, Exp — Exp
B.1.18 Modes (Mde)
in$mode : — Mde
in_out$mode : ~ Mde
no$mode : — Mde
out$mode : — Mde

B.1.19 Names (Nam)

access$attr : Nam — Nam
delta$attr : Nam — Nam
digits$attr : Nam — Nam
deref$name : Nam — Nam
direct$name : Id — Nam
func$call : Nam, Pss* — Nam
Id$attr : Nam, Id — Nam
indexed$comp : Nam, Exp* — Nam

name_type$conversion : Nam, Nam — Nam

param$attr : Nam, Id, Exp — Nam
selected$comp : Nam, Id — Nam
sliceSop : Nam, Rng — Nam
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B.1.20 Parameter Specifications (Pms)

access$param : Id, Nam — Pms
access_default$param : Id, Nam, Exp — Pms
default$param : Id, Mde, Nam, Exp — Pms
normal$param : Id, Mde, Nam — Pms

B.1.21 Pragmas (Prg)
param$pragma : Id, Pss* — Prg
simple$pragma : Id — Prg

B.1.22 Parameter Associations (Pss)
named_exp$arg : Id, Exp — Pss

named_name$arg : Id, Nam — Pss

B.1.23 Record Component Associations (Rca)

choice$assoc :  Ccl, Exp — Rca

B.1.24 Ranges (Rng)

attr¥range : Nam — Rng

explicit$range : Exp, Exp — Rng

parm._attrrange : Nam, Exp — Rng
B.1.25 Subtype Indications (Sid)

constrained$subtype : Nam, Cns — Sid

named$subtype : Nam — Sid

subtype$range : Rng — Sid
B.1.26 Subprogram Specifications (Sps)

function$spec : Id, Pms*, Nam— Sps

procedure$spec : Id, Pms*— Sps

B.1.27 Statements (Stm)

stm$lst : list(Stm) — Stm
agg_code$stm : Nam, Agg — Stm
assign$stm : Nam, Exp — Stm
call$stm : Nam, Pss* — Stm
case$stm : Exp, Alt — Stm
cond$exit : Cnd — Stm
declare$block : Dcl, Stm — Stm
exp-code$stm : Nam, Exp — Stm
for$loop : Id, Rng, Stm — Stm

func_return$stm : Exp — Stm
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goto$stm : Nam — Stm

if$stm : Cnd, Stm, Eif — Stm
if_else$stm : Cnd, Stm, Eif, Stm — Stm
labled$stm : Id, Stm — Stm
name$exit : Nam — Stm
name_cond$exit : Nam, Cnd — Stm
named$block : Id, Stm — Stm
named$loop : Id, Stm — Stm
named_declare$block : Id, Dcl, Stm — Stm
named_for$loop : Id, Id, Rng, Stm — Stm

named_reverse§loop :  Id, Id, Rng, Stm — Stm

named_while$loop : Id, Cnd, Stm — Stm

null$stm : — Stm

plain$exit : — Stm

plain$loop : Stm — Stm

raise$stm : Nam — Stm

reraise$stm : — Stm

return$stm : — Stm

reverse$loop : Id, Rng, Stm — Stm

simple$block : Stm — Stm

while$loop : Cnd, Stm — Stm

handled$statement : Stm, Xhd* — Stm

unhandled$statement : Stm — Stm

B.1.28 Type Definitions (Tdf)

access$type : Sid — Tdf
aliased_array$type : Rng*, Sid — Tdf
aliased_uc_array$type : Nam*, Sid — Tdf
all_access$type : Sid — Tdf
array$type : Rng*, Sid — Tdf
const_access$type : Sid — Tdf
const_dec_fixed$type : Exp, Exp, Cns — Tdf
const_float$type : Exp, Cns — Tdf
dec_fixed$type : Exp, Exp — Tdf
der$type : Sid — Tdf
enum$type : Id¥ — Tdf
ext$type : Sid, red — Tdf
float$type : Exp — Tdf
func$type : Pms*, Nam— Tdf
int$type : Exp, Exp — Tdf
mod$type : Exp — Tdf
named$type : Sid — Tdf
ord_fixed$type : Exp, Rng — Tdf
proc8type : Pms*— Tdf
record$type : Cmp*, Vrp— Tdf

t_record$type : Cmp®, Vrp— Tdf
uc_array$type : Nam*, Sid — Tdf
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B.1.29 Variants (Vnt)

variant$clause : Dch*, Cmp*, Vrp — Vnt

B.1.30 Variant Parts (Vrp)

no$variant : Vrp
variant$part : Nam, Vat® — Vrp

B.1.31 Exception Choices (Xhd)
choice$handler : Id, Ech*, Stm — Xhd
exptShandler :  Ech®, Stm — Xhd
B.2 Lexical Elements

prgama =
pragma identifier [ ( pragma_argument_association { , pragma_argument_association} ) ]:

param$pragma : Id, Pss* — Prg
simple$pragma : pragma, Id — Prg

pragma._argument_association ::=
[ identifier => ] name
| [identifier => ] expression

named_exp$arg : Id, Exp — Pss
named_nameS$arg : Id, Nam — Pss

B.3 Declarations and Types

B.3.1 Declarations

basic_declaration ::=
type_declaration
| subtype_declaration
| object_declaration
| number_declaration
| subprogram_declaration
| abstract_subprogram._declaration
| package_declaration
| renaming_declaration
| exception_declaration
| generic_declaration
| generic_instantiation

It is convenient to treat sequences of declarations as a single declaration.
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DcBlst :  Del® — Del

defining_identifier ::=
identifier

B.3.2 Types and Subtypes
B.3.2.1 Type Declarations

type_declaration ::=
full_type_declaration
| incomplete_type_declaration
| private_type_declaration
| private_extension_declaration

full_type_declaration ::=
type defining_identifier [ known_discriminant_part ] is type_definition ;

| task_type_declaration
| protected_type_declaration

d_typeS$decl : Id, Dcp, Tdf — Dcl
type$decl : Id, Tdf — Decl

type_definition ::=
enumeration_type_definition
| integer_type._definition
| real_type_definition
| array_type_definition
| record_type_definition
| access_type_definition
| derived_type_definition

B.3.2.2 Subtype Declarations

subtype_declaration ::=
subtype defining_identifier is subtype_indication ;

subtype$decl : Id, Sid — Dcl

subtype_indication ::=
subtype_mark [ constraint ]

subtype_mark ::=
name
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constrained$subtype : Nam, Cns — Sid
named$subtype : Nam — Sid
subtype$range : Rng — Sid

The form subtype$range applies only to discrete subtype definitions.

constraint ;1=
scalar_constraint
| composite_constraint

scalar_constraint ;1=
range_constraint
| digits_constraint
| delta_constraint

composite_constraint ;1=
index_constraint
| discriminant_constraint

B.3.2.3 Classification of Operations

B.3.3 Objects and Named Numbers
B.3.3.1 Object Declarations

object_declaration ::=
defining_identifier_list : [ aliased ] [ constant ] subtype_indication [ := expression ] ;
| defining_identifier_list : [ aliased ] [ constant ] array_type_definition [ := expression ] ;
| single_task_declaration
| single_protected_declaration

a_c_iobj$decl : Id, Sid, Exp — Dcl
a_c_obj$decl : Id, Sid — Dcl
a_i_obj$decl : Id, Sid, Exp — Dcl

a_obj$decl : Id, Sid — Dcl
c_i_obj$decl : Id, Sid, Exp — Dcl
c_obj$decl : Id, Sid — Dcl
i_obj$decl : Id, Sid, Exp — Dcl
obj$decl : Id, Sid — Dcl

All forms of object declarations are normalized such that each declaration defines exactly one
name. This is always possible by [3.3.1].

defining_identifier_list ::=
defining_identifier { , defining_identifier }
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B.3.3.2 Number Declarations

number_declaration ::=
defining_identifier_list : constant := expression

real_const$decl : Id, Exp — Dcl
int_const$decl :  Id, Exp — Decl

Number declarations are disambiguated by static analysis into real and integer number declara-
tions.

B.3.4 Derived Types and Classes

derived_type_definition ::=
[ abstract ] new subtype_indication [ record_extension_part ]

der$type : Sid — Tdf
ext$type :  Sid, red — Tdf

B.3.4.1 Derivation Classes
B.3.5 Scalar Types

range_constraint ;1=
range range

range$constr : Rng — Chns

range ::=
range_attribute_reference
| simple_expression .. simple_expression

attr¥range : Nam — Rng
explicit$range : Exp, Exp — Rng
parm_attr$range : Nam, Exp — Rng

B.3.5.1 Enumeration Types

enumeration_type_definition ::=
( enumeration_literal_specification { , enumeration_literal_specification } )

enum$type : Id* — Tdf

enumeration_literal_specification ::=
defining_identifier
| defining_character_literal
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defining_character_literal ::=
character_literal

char$enum : char — Id
id$enum : Id — Id

B.3.5.2 Character Types
B.3.5.3 Boolean Types
B.3.5.4 Integer Types

integer_type_definition 1=
signed_integer_type_definition
| modular_type_definition

signed_integer_type_definition ::=
range simple_expression .. simple_expression

int$type : Exp, Exp — Tdf

modular_type_definition ::=
mod expression

mod$type : Exp — Tdf

B.3.5.5 Operations of Discrete Types
B.3.5.6 Real Types

real_type_definition ::=
floating_point_definition
| fixed_point_definition

B.3.5.7 Floating Point Types

floating_point_definition 1=
digits expression [ real_range_specification ]

float$type : Exp — Tdf
const_float$type : Exp, Cns — Tdf

real_range_specification ::=
range simple_expression .. simple_expression

See scalar types (3.5).
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B.3.5.8 Operations of Floating Point Types
B.3.5.9 Fixed Point Types

fixed_point_definition ::=
ordinary_fixed_point_definition
| decimal_fixed _pointq_definition

ordinary_fixed _point_definition ::=
delta expression real_range_specification

ord_fixed$type : Exp, Rng — Tdf

decimal_fixed_point_definition ::=
delta expression digits expression [ real_range_specification ]

const_dec_fixed$type : Exp, Exp, Cns — Tdf
dec_fixed$type : Exp, Exp — Tdf

decimal_digits_constraint ::=
digits expression [ range_constraint ]

constr_digits$constr :  Exp, Cns — Cns
digits$constr : Exp — Cns

B.3.5.10 Operations of Fixed Point Types
B.3.6 Array Types

array_type_definition ::=
unconstrained _array_definition
| constrained_array_definition

unconstrained_array_definition ::=
array ( index_subtype_definition { , index_subtype_definition } ) of component_definition

aliased_uc_array$type : Nam®, Sid — Tdf
uc_array$type : Nam®*, Sid — Tdf

index_subtype_definition ::=
subtype_mark range <>

constrained_array_definition ::=
array ( discrete_subtype_definition { , discrete_subtype_definition } ) of component_definition
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aliased_array$type : Rng*, Sid — Tdf
array$type : Rng", Sid — Tdf

discrete_subtype_definition ::=
subtype_indication
| range

Discrete subtype definitions are subsumed under subtype indications (Sid).

component_definition ::=
[ aliased ] subtype_indication

B.3.6.1 Index Constraints and Discrete Ranges

index_constraint ;1=
( discrete_range { , discrete_range } )

index$constr : Rng™ — Cns

discrete_range ::=
subtype_indication
| range

B.3.6.2 Operations of Array Types
B.3.6.3 String Types

B.3.7 Discriminants

discriminant_part ::=
unknown_discriminant_part
| known_discriminant_part

unknown_discriminant_part ::=
(<>)

known_discriminant_part ::=
( discriminant_specification { ; discriminant_specification } )

box$discr :  — Dcp
list$discr :  Des* — Dcp

discriminant_specification ::=
defining_identifier_list : subtype_mark [ := default_expression ]
| defining_identifier_list : access_definition [ := default_expression ]
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default_expression ::=
expression

acc¥discr : Id, Nam — Decs
acc_init$discr :  Id, Nam, Exp — Dcs
init$discr : Id, Nam, Exp — Dcs
simple$discr : Id, Nam — Dcs

B.3.7.1 Discriminant Constraints

discriminant_constraint ::=
( discriminant_association { , discriminant_association } )

. *
discr$constr : Dca — Cns

discriminant_association ::=
[ selector_name { | selector_name } => ] expression

named$assoc :  Id, Exp — Dca

B.3.7.2 Operations of Discriminated Types
B.3.8 Record Types

record_type_definition ::=
[ [ abstract ] tagged ] [ limited ] record_definition

record$type : Cmp”, Vrp— Tdf
t—record$type : Cmp*, Vrp— Tdf

record_definition 1=
record
component__list
end record
{ null record

component_list ;.=
component_declaration { component_declaration }
| { component_declaration } variant_part
| null;

component_declaration ::=
defining_identifier_list : component_definition [ := default_expression ] ;
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aliased_comp$decl : Id, Sid — Cmp
comp$decl : Id, Sid — Cmp
init_aliased_comp$decl : Id, Sid, Exp — Cmp
init_comp$decl : Id, Sid, Exp — Cmp

Component declarations with multiple identifiers are replaced by multiple component declara-
tions.

B.3.8.1 Variant Parts and Discrete Choices

variant_part ;1=
case direct_name is
variant
{ variant }
end case ;

no$variant: Vrp
variant$part :  Nam, Vat* — Vip

variant ;=
when discrete_choice_list =>
component_list

variant$clause : Dch*, Cmp*, Vrp — Vnt

discrete_choice_list ::=
discrete_choice {
| discrete_choice }

discrete_choice ::=
expression
| discrete_range
| others

discr_other$choice : — Dch
Exp$choice : Exp — Dch
range$choice : Rng — Dch

B.3.9 Tagged Types and Type Extensions
B.3.9.1 Type Extensions

record_extension_part ::=
with record_definition
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B.3.9.2 Dispatching Operations of Tagged Types
B.3.9.3 Abstract Types and Subprograms

B.3.10 Access Types

access_type_definition ::=
access_to._object_definition
| access_to_subprogram_definition

access_to_object_definition ::=
access [ general_access_modifier ] subtype_indication

general_access_modifier ::=
all
| constant

access$type : Sid — Tdf
all_access$type : Sid — Tdf
const_access$type : Sid — Tdf

access_to_subprogram_definition ::=
access [ protected ] procedure parameter_profile
access [ protected ] function parameter_and_result_profile

func$type : Pms*, Nam— Tdf
proc$type : Pms — Tdf

access_definition 1=
access subtype_mark

B.3.10.1 Incomplete Type Declarations

incomplete_type_declaration ::=
type defining_identifier [ discriminant_part ] ;

d.i_type$decl : Id, Dcp — Dcl
i_typeS$decl : Id — Dcl

B.3.10.2 Operations of Access Types
B.3.11 Declarative Parts

declarative_part ::=
{ declarative_item}
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declarative_item ::=
basic_declarative_item
| body

basic_declarative_item ::=
basic_declaration
| representation_clause
| use_clause

body ::=
proper_body
| body_stub

proper_body 1=
subprogram_body
| package_body
| task_body
| protected_body

B.3.11.1 Completions of Declarations
B.4 Names and Expressions

B.4.1 Names

name I=

direct_name
explicit_dereference
indexed _component
slice
selected_component
attribute_reference
type_conversion
function_call
character_literal

String and character literals that denote operators are included as direct names. String literals
that denote string values are represented as aggregates.

char$Exp : integer — Exp

direct_name ;:=
identifier
| operator_symbol

direct$name : Id — Nam
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Names that are represented as strings, character literals, and identifiers are all treated uniformly
as elements of type Id

prefix ;1=
name
| implicit_dereference

explicit_dereference ::=
name . all

deref$name : Nam — Nam

The abstract syntax for dereferencing includes explicit as well as implicit dereferencing.

implicit_dereference ::=
name

B.4.1.1 Indexed Components

indexed_component ::=
prefix ( expression { , expression } )

indexed$comp : Nam, Exp* — Nam

B.4.1.2 Slices

shice :1=
prefix ( discrete_range )

sliceSop : Nam, Rng — Nam

B.4.1.3 Selected Components

selected_component 1=
prefix . selector_name

selected$comp : Nam, Id — Nam

Static semantics separates expanded names from selected components.

selector_name ::=
identifier

| character_literal

| operator_symbol
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B.4.1.4 Attributes

attribute_reference ::=
prefix ' attribute_designator

attribute_designator ::=
identifier [ ( expression ) ]
| access
| delta
| digits

range_attribute_reference ;.=
prefix ' range_attribute_designator

range_attribute_designator ::=
range [ ( expression ) ]

Id$attr : Nam, Id — Nam
param$attr : Nam, Id, Exp — Nam

There is special abstract syntax needed for attributes that are reserved words.

B.4.2 Literals
B.4.3 Aggregates

aggregate ;1=
record_aggregate
| extension_aggregate
| array_aggregate

B.4.3.1 Record Aggregates

record_aggregate ::=
( record_component_association_list )

record_component_association_list ::=
record_component_association { , record_component_association}
| mnull record

nullrecord$Agg : — Agg
record$Agg : Rca* — Agg

record_component_association ::=
[ component_choice_list => ] expression
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choice$assoc : Ccl, Exp — Rca

Positional parameter associations have been eliminated by static analysis and are represented
with an explicit choice list. This normalization is possible since, by [4.3.1], discriminant values that
determine variants are required to be static.

component_choice_list ::=
selector_name { | selector_name }
| others

list$choice : Id* — Cel
others$choice : — Ccl

B.4.3.2 Extension Aggregates

extension_aggregate ;1=
( expression with record_component_association_list )

ext$Agg Exp, Rca® — Agg
null_ext$Agg : Exp — Agg

B.4.3.3 Array Aggregates

array_aggregate ;1=
positional_array_aggregate
| named_array_aggregate

positional_array_aggregate ::=
( expression , expression { , expression} )
| ( expression { , expression} , others => expression )

named_array_aggregate ;=
( array_component_association { , array_component_association} )

named_array$Agg : Aca* — Agg
other_array$Agg : Exp*, Exp — Agg
pos_array$Agg Exp* — Agg

array_component_association ::=
discrete_choice_list => expression

array_comp3assoc : Dch*, Exp — Aca
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B.4.4 Expressions

expression 1=
relation { and relation }
| relation { and then relation }
| relation { or relation }
| relation { or else relation }
| relation { xor relation }

and_then$Exp: Exp, Exp — Exp
or_else$Exp : Exp, Exp — Exp

Short-circuit operators are non-strict and require explicit representation.

relation 1=
simple_expression [ relational_operator simple_expression ]
| simple_expression [ not ] in range
| simple_expression [ not ] in subtype_mark

in_name$Exp : Exp, Nam — Exp
in_range$Exp : Exp, Rng — Exp
in_type$Exp : Exp, Nam — Exp

not_in.name$Exp : FExp, Nam — Exp
not_in_range$Exp : Exp, Rng — Exp
not_in_type$Exp:  Exp, Nam — Exp

Static semantics distinguishes between membership tests where the name denotes an object and
those where the name denotes a subtype.

simple_expression ::=
[ unary_adding_operator ] term { binary_adding_operator term }

term 1=
factor { multiplying_operator factor }

factor ::=
primary [ ** primary ]
| abs primary
| mnot primary

primary 1=
numeric_literal

| null

| string_literal

| aggregate

| name

| qualified_expression

| allocator

| ( expression )
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paren$Exp : Exp — Exp
qual$aggregate : Nam, Agg — Exp

name$Exp : Nam — Exp
null$Exp : — Exp
integer$Exp : integer — Exp
real$Exp : real — Exp

All aggregates are assumed to be qualified by static analysis. String literals are represented
as qualified aggregates. It may be necessary for static analysis to introduce new type names for
aggregates of anonymous array types.

Numeric literals are separated into integer and real literals.

B.4.5 Operators and Expression Evaluation

All strict operators on ordinary values are represented in the abstract syntax as function calls.
As with other function calls, the function designators specify the unique overload that applies.
Non-strict operators or operators that take subtypes as arguments (e.g., in) have an explicit repre-
sentation given below.

logical_operator ::=
and
| or
| xor

relational_operator ::=

V\/{I\/\TII

binary_adding_operator ::=
+
‘ -
| &

unary_adding_operator 1=

| +
multiplying_operator ;1=
*

|/

| mod
| rem
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highest_precedence_operator ::=
ok

| abs
| not

B.4.5.1 Logical Operations and Short-Circuit Control Forms
B.4.5.2 Relational Operators and Membership Tests

B.4.5.3 Binary Adding Operators

B.4.5.4 Multiplying Operators

B.4.5.5 Highest Precedence Operators

B.4.6 Type Conversions

type_conversion 1=
subtype_mark ( expression )
| subtype_mark ( name )

type$conversion : Nam, Exp — Exp
name_type$conversion : Nam, Nam — Nam

B.4.7 Qualified Expressions

qualified_expression ::=
subtype_mark’ ( expression )
| subtype_mark ' aggregate

qual$Exp: Nam, Exp — Exp

The abstract syntax for qualified aggregates is covered under aggregates.

B.4.8 Allocators

allocator ::=
new subtype_indication
| new qualified_expression

Exp$alloc: FExp — Exp
type$alloc : Sid — Exp
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B.4.9 Static Expressions and Static Subtypes
B.4.9.1 Statically Matching Constraints and Subtypes

B.5 Statements

B.5.1 Simple and Compound Statements — Sequences of Statements

sequence_of_statements ;1=
statement { statement }

Sequences of statements can be treated as single statements.

Stm$lst :  Stm* — Stm

statement ::=
{ label } simple_statement
| {label } compound_statement

labeld$stm :  Id, Stm — Stm

simple_statement ::=
null_statement

| assignment_statement
| exit_statement
| goto_statement
| procedure_call_statement
| return_statement
| entry_call_statement
| requeue_statement
| delay_statement
| abort_statement
| raise_statement
| code_statement

compound_statement 1=
if_statement
| case_statement
| loop_statement
| block_statement
| accept_statement
| select_statement

null_statement ;=
null ;

null$stm : — Stm
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label ::=
<< statement_identifier >>

statement_identifier ::=
direct_name

B.5.2 Assignment Statement

assignment_statement ::=
name := expression

assign$stm :  Nam, Exp — Stm

B.5.3 If Statements

if_statement ::=
if condition then
sequence_of_statements
{ elsif condition then
sequence_of_statements}

Cnd, Stm, Eif — Stm
Cnd, Stm, Eif, Stm — Stm
Eif* — Eif

Cnd, Stm — Eif

[ else
sequence_of_statements ]
end if ;
if$stm :
if_else$stm :
Eif$lst :
elsif$clause :
condition ::=
expression

Exp$condition : Exp — Cnd

B.5.4 Case Statements

case_statement ;==
case expression is
case_statement_alternative
{ case_statement_alternative }
end case ;

case$stm :

Exp, Alt — Stm
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case_statement_alternative ::=
when discrete_choice_list =>
sequence_of_statements

AltSlst :  Alt™ — Alt
case$Alt Dch*, Stm — Alt

B.5.5 Loop Statements

loop_statement ::=
[ statement_identifier : |
[ iteration_scheme ] loop
sequence_of_statements
end loop [ identifier | ;

iteration_scheme ::=
while condition
| for loop_parameter_specification

loop_parameter_specification ::=
defining_identifier in [ reverse ] discrete_subtype_definition

named_for$loop : Id, Id, Rng, Stm — Stm
named_reverse$loop : Id, Id, Rng, Stm — Stm
named_while$loop :  Id, Cnd, Stm — Stm

named$loop : Id, Stm — Stm
for$loop : Id, Rng, Stm — Stm
reverse$loop : Id, Rng, Stm — Stm
while$loop : Cnd, Stm — Stm
plain$loop : Stm — Stm

B.5.6 Block Statements

block_statement ::=
[ statement_identifier : ]
[ declare
declarative_part ]
begin
handled_sequence_of_statements
end [ identifier ] ;

simple$block : Stm — Stm
declare$block : Dcl, Stm — Stm
named$block : Id, Stm — Stm

named_declare$block : Id, Dcl, Stm — Stm
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B.5.7 Exit Statements

exit_statement ;=
exit [ name ] [ when condition ] ;

name3exit :

plain$exit :
cond$exit :

name_cond$exit :

Nam — Stm
Nam, Cnd — Stm
— Stm

Cnd — Stm

B.5.8 Goto Statements

goto_statement ;=
goto name ;

goto$stm :

Nam — Stm

B.6 Subprograms

B.6.1 Subprogram Declarations

subprogram_declaration ::=
subprogram_specification ;

subp$spec :

Sps — Dcl

abstract_subprogram_declaration ::=
subprogram_specification is abstract ;

subp$spec :

Sps — Dcl

subprogram_specification ::=

procedure defining_program_unit_name parameter_profile
| function defining_designator parameter_and_result_profile

Id, Pms*, Nam— Sps
Id, Pms"— Sps

function$spec :
procedure$spec :
designator ::=
[ parent_unit_name . ] identifier
| operator_symbol

defining_designator ::=
defining_program_unit_name
| defining_operator_symbol
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defining_program_unit_name ::=

[ parent_unit_name . ] defining_identifier

operator_symbol ::=
string_literal

defining_operator_symbol ::=
operator_symbol

parameter_profile ::=
[ formal_part ]

no$params :
param$list :

— Psig

Pms* — Psig

parameter_and_result_profile ::=
[ formal_part ] return subtype_mark

formal_part ;=

( parameter_specification { ; parameter_specification } )

parameter_specification ::=

defining_identifier_list : mode subtype_mark [ := default_expression ]
| defining_identifier_list : access_definition [ := default_expression ]

access$param : Id, Nam — Pms
access_default$param : Id, Nam, Exp — Pms
default$param : Id, Mde, Nam, Exp — Pms
normal$param : Id, Mde, Nam — Pms
mode =
[in ]
| in out
| out
in$mode : — Mde
in_out$mode : — Mde
no$mode : — Mde
out$mode : — Mde
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B.6.2 Formal Parameter Modes
B.6.3 Subprogram Bodies

subprogram_body ::=
subprogram_specification is
declarative_part
begin
handled_sequence_of_statements
end [ designator ] ;

subp$body : Sps, Dcl, Stm — Dcl

B.6.3.1 Conformance Rules
B.6.3.2 Inline Expansion of Subprograms
B.6.4 Subprogram Calls

procedure_call_statement ::=
name
| prefix actual_parameter_part ;

call$stm : Nam, Pss® — Stm

function_call ::=
name
| prefix actual_parameter_part

func$call : Nam, Pss* — Nam

actual_parameter_part ::=
( parameter_association { , parameter_association } )

parameter_association ;1=
[ selector_name => ] explicit_actual_parameter

explicit_actual_parameter ::=
expression
| name

named_expSarg : Id, Exp — Pss
named.name$arg : Id, Nam — Pss
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B.6.4.1 Parameter Associations
B.6.5 Return Statements

return_statement ::=
return [ expression ] ;

func_return$stm : Exp — Stm
return$stm : — Stm

B.6.6 Overloading of Operators
B.7 Packages

B.7.1 Package Specifications and Declarations

package_declaration ;=
package_specification ;

package_specification ;=
package defining_program_unit_name is
{basic_declarative_item}
[ private
{basic_declarative_item} ]
end [ [ parent_unit_name . ] identifier |

B.7.2 Package Bodies

package_body ::=
package body defining_program_unit_name is
declarative_part
[ begin
handled_sequence_of_statements
end [ [ parent_unit_name . ] identifier | ;

B.7.3 Private Type and Private Extensions

private_type_declaration ::=
type defining_identifier [ discriminant_part ] is [ [ abstract ] tagged ] [ limited ] private ;

private_extension_declaration ::=
type defining_identifier [ discriminant_part ] is
[ abstract ] new subtype_indication with private :

d_ext3decl : Id, Dcp, Sid — Del
ext$decl : Id, Sid — Dcl
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B.7.3.1 Operations of Private Types and Private Extensions

B.7.4 Deferred Constants
B.7.5 Limited Types

B.7.6 User-Defined Assignment and Finalization
B.7.6.1 Completion and Finalization

B.8 Visibility Rules

B.8.1 Declarative Region
B.8.2 Scope of Declarations
B.8.3 Visibility

B.8.4 Use Clauses

use_clause ;=
use_package_clause
| use_type_clause

use_package_clause ::=
use name { , name } ;

use$clause : Nam* — Dcl

use_type_clause ::=
use type subtype_mark { , subtype_mark };

use_type$clause : Nam® — Ddl

B.8.5 Renaming Declarations

renaming_declaration ::=
object_renaming_declaration
| exception_renaming_declaration
| package_renaming._declaration
| subprogram_renaming_declaration
| generic_renaming_declaration

B.8.5.1 Object Renaming Declarations

object_renaming_declaration ::=
defining_identifier : subtype_mark renames name ;

object$renaming : Id, Nam, Nam — Dcl
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B.8.5.2 Exception Renaming Declarations

exception_renaming_declaration ::=
defining_identifier : exception renames name ;

exception$renaming : Id, Nam — Dcl

B.8.5.3 Package Renaming Declarations

package_renaming_declaration ::=
package defining_program_unit_name renames name ;

B.8.5.4 Subprogram Renaming Declarations

subprogram_renaming_declaration ::=
subprogram_specification renames name ;

subp$renaming : Sps, Nam — Dcl

B.8.5.5 Generic Renaming Declarations

generic_renaming._declaration ::=
generic package defining_program_unit_name renames name ;
| generic procedure defining_program_unit_name renames name ;
| generic function defining_program_unit_name renames name ;

B.8.6 The Context of Overload Resolution
B.9 Tasks and Synchronization

B.9.1 Task Units and Task Objects

task_type_declaration ;1=
task type defining_identifier [ known_discriminant_part ] [ is task definition ] ;

single_task_declaration ::=
task defining_identifier [ is task definition ] ;

task_definition ::=
{ task_item }
[ private
{task_item} ]
end [ identifier ]
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task_item ;1=
entry_declaration
| representation_clause

task_body ::=
task body defining_identifier is
declarative_part
begin
handled_ sequence_of_statements
end [ identifier ] ;

B.9.2 Task Execution — Task Activation
B.9.3 Task Dependence — Termination of Tasks
B.9.4 Protected Units and Protected Objects

protected_type_declaration ::=
protected type defining_identifier [ known_discriminant_part ] is protected_definition ;

single_protected_declaration ::=
protected defining_identifier is protected_definition ;

protected_definition ::=
{ protected_operation_declaration }
[ private
{protected_element_declaration} ]
end [ identifier ]

protected_operation_declaration ::=
subprogram_declaration
| entry_declaration

protected_element_declaration ::=
protected_operation_declaration
| component_declaration

protected_body ::=
protected body defining_identifier is
{protected_operation_item}
end [ identifier ] ;

protected_operation_item ::=
subprogram_declaration
| subprogram_body
| entry_body
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B.9.5 Intertask Communication

entry_declaration ::=
entry defining_identifier [ ( discrete_subtype_definition ) ] parameter_profile ;

accept_statement ::=
accept direct_name [ ( entry_index ) ] parameter_profile [ do
handled_sequence_of_statements
end [ identifier ] ] ;

entry_index ::=
expression

entry_body ::=
entry defining_identifier entry_body._formal_part entry_barrier is
declarative_part
begin
handled_sequence _of_statements
end [ identifier ] ;

entry_body_formal_part ::=
[ ( entry_index_specification ) Jparameter_profile

entry_barrier ;1=
when condition

entry_index_specification ::=
for defining_identifier in discrete_subtype_definition

entry_call_statement ::=
name [ actual_parameter_part ] ;

requeue_statement ;.=
requeue name [ with abort ] ;

B.9.6 Delay Statements, Duration, and Time

delay _statement ::=
delay_until_statement
| delay_relative_statement

delay_until_statement ::=
delay until expression ;
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delay_relative_statement ::=
delay expression ;

B.9.7 Select Statements

select_statement ::=
selective_accept
| timed_entry_call
| conditional_entry_call
| asynchronous_select

B.9.8 Selective Accept

selective_accept 1=

select

[ guard ] select_alternative
[or

[ guard ] select_alternative ]
[ else

sequence_of_statements ]
end select ;

guard
when condition =>

select_alternative ;1=
accept_alternative
| delay_alternative
| terminate_alternative

accept_alternative ;1=
accept_statement [ sequence_of_statements ]

delay_alternative ::=
delay_statement [ sequence_of_statements ]

terminate_alternative ::=
terminate ;

B.9.9 Timed Entry Calls

timed_entry_call ::=
select
entry_call_alternative
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or
delay_alternative
end select ;

entry_call_alternative ::=
entry_call_statement [ sequence_of_statements ]

B.9.10 Conditional Entry Calls

conditional_entry_call ::=

select

entry_call_alternative
else

sequence_of_statements
end select ;

B.9.11 Asynchronous Transfer of Control

asynchronous_select ::=
select
triggering_alternative
then abort
abortable_part
end select ;

triggering_alternative ::=
triggering_statement [ sequence_of_statements ]

triggering_statement ::=
entry_call_statement
| delay_statement

abortable_part ::=
sequence_of_statements

B.9.12 Abort of a Task — Abort of a Sequence of Statements

abort_statement =
abort name { , name} ;
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B.9.13 Task and Entry Attributes
B.9.14 Shared Variables
B.9.15 Example of Tasking and Synchronization

B.10 Program Structure and Compilation Issues

B.10.1 Separate Compilation
B.10.1.1 Compilation Units — Library Units

compilation 1=
{compilation_unit}

compilation_unit ;1=
context_clause library_item
| context_clause subunit

library_item ::=
[ private ] library_unit_declaration
| library_unit_body

library_unit_declaration ::=
subprogram_declaration
| package_declaration
| generic_declaration
| generic_instantiation
| library_unit_renaming_declaration

library_unit_renaming_declaration ::=
package_renaming_declaration
| generic_renaming_declaration

| subprogram_renaming_declaration

library_unit_body ::=
subprogram_body
| package_body

parent_unit_name ::=
name

lib$unit : Cit*, Del — cmu
private$unit : Cit*, Dcl — cmu
sub$unit : Cit*, Nam, Dcl — cmu

Renaming of library units is dealt with in static semantics.
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B.10.1.2 Context Clauses - With Clauses

context_clause ::=
{ context_item}

context_item ::=

with_clause
| use_clause
with_clause ::=

with name { , name } ;

with$context :

Nam® — Cit

B.10.1.3 Subunits of Compilation Units

body_stub ::=
subprogram_body_stub
| package_body_stub
| task_body_stub
| protected_body_stub

subprogram_body_stub ::=

subprogram_specification is separate :

package_body_stub ::=

s_subp$spec :

Sps — Dcl

package body defining_identifier is separate :

task_body_stub ::=

task body defining_identifier is separate :

protected_body_stub ::=

protected body defining_identifier is separate :

subunit ::=

separate ( parent_unit_name ) proper_body
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B.10.1.4 The Compilation Process
B.10.1.5 Pragmas and Compilations
B.10.1.6 Environment-Level Visibility Rules

B.10.2 Program Execution
B.10.2.1 Elaboration Control

B.11 Exceptions
B.11.1 Exception Declarations

exception_declaration ::=
defining_identifier_list : exception ;

excpt$decl :  Id — Dcl

As with object declarations, only a single name is defined by each exception declaration.

B.11.2 Exception Handlers

handled_sequence_of_statements ::=
sequence_of_.statements
[ exception
exception_handler
{ exception_handler } ]

handled$statement : Stm, Xhd® — Stm
unhandled$statement : Stm — Stm

exception_handler ::=
when [ choice_parameter_specification : ] exception_choice { | exception_choice } =>
sequence_of_statements

choice$handler :  Id, Ech*, Stm — Xhd
expt$handler : Ech*, Stm — Xhd

choice_parameter_specification ::=
defining_identifier

exception_choice ::=
name
| others

named$excpt : Nam — Ech
others$excpt : — Ech
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B.11.3 Raise Statements

raise_statement ::=
raise [ name ] ;

raise$stm : Nam — Stm
reraise$stm : — Stm

B.11.4 Exception Handling
B.11.5 Suppressing Checks
B.11.6 Exceptions and Optimization

B.12 Generic Units

B.12.1 Generic Declarations

generic_declaration ::=
generic_subprogram_declaration
| generic_package_declaration

generic_subprogram_declaration ::=
generic_formal_part subprogram_specification ;

generic_package_declaration ::=
generic_formal_part package_specification ;

generic_formal_part ::=
generic { generic_formal_parameter_declaration
| use_clause }

generic_formal_parameter_declaration ::=
formal_object_declaration
| formal_type_declaration
| formal_subprogram_declaration
| formal_package_declaration

B.12.2 Generic Bodies

B.12.3 Generic Instantiation

generic_instantiation ::=
package defining_program_unit_name is
new name [ generic_actual_part ] ;
| procedure defining_program_unit_name is
new name [ generic_actual_part ] ;
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| function defining_designator is
new name [ generic_actual_part | ;

generic_actual_part ::=
( generic_association { , generic_association } )

generic_association ::=
[ selector_name => ] explicit_generic_actual_parameter

explicit_generic_actual_parameter ::=
expression
| name
| subtype_mark

B.12.4 Formal Objects

formal_object_declaration ::=
defining_identifier_list : mode subtype_mark [ := default_expression 1

init_formal$ob) : Id*, Mde, Nam, Exp — Gpd
formal$obj : Id*, Mde, Nam — Gpd

B.12.5 Formal Types

formal_type_declaration ::=
type defining_identifier [ discriminant_part ] is formal_type_definition ;

formal_type_definition 1=

formal_private_type_definition

| formal_derived_type_definition

| formal_discrete_type_definition

| formal_signed_integer_type_definition

| formal_modular_type_definition

| formal_floating point_definition

| formal_ordinary_fixed_point_definition

| formal_decimal_fixed_point_definition

| formal_array_type_definition

| formal_access_type_definition

B.12.5.1 Formal Private and Derived Types

formal_private_type_definition ::=
[ [ abstract ] tagged ] [ limited ] private
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formal_derived_type_definition ::=
[ abstract ] new subtype_mark [ with private ]

B.12.5.2 Formal Scalar Types

formal_discrete_type_definition ::=
(<>)

formal_signed_integer_type_definition ::=
range <>

formal_modular_type_definition ::=
mod <>

formal_floating_point_definition ::=
digits <>

formal_ordinary_fixed_point_definition ::=
delta <>

formal_decimal _fixed_point_definition ::=
digits <> delta <>

B.12.5.3 Formal Array Types

formal_array_type_definition ::=
array_type_definition

B.12.5.4 Formal Access Types

formal_access_type_definition ::=
access_type_definition

B.12.6 Formal Subprograms

formal_subprogram_declaration ::=
with subprogram_specification [ is subprogram_default ] ;

subprogram_default ::=
default_name
| <>

default_name ;=
name
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B.12.7 Formal Packages

formal_package_declaration ::=
with package defining_identifier is new name formal_package_actual_part ;

formal_package_actual_part ::=
(<>)
| [ generic_actual_part ]

B.12.8 Example of a Generic Package

B.13 Representation Clauses and Implementation—-Dependent
Features

representation_clause ::=
attribute_definition_clause
| enumeration_representation _clause
| record_representation_clause
| atclause

attribute_definition_clause ::=

for direct_name ' attribute_designator use expression ;
| for direct_name ' attribute_designator use name ;

enumeration_representation_clause ::=
for direct_name use enumeration_aggregate ;

enumeration_aggregate ::=
array_aggregate

record_representation_clause ::=
for direct_name use
record [ mod_clause ]
{component_clause}
end record ;

component_clause ::=
component_clause_component_name at position range first_bit .. last_bit ;

component_clause_component_name ::=
direct_name
| direct_name ' attribute_designator
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position ::=
expression

first_bit ::=
simple_expression

fast_bit ::=
simple_expression

code_statement ::=
qualified_expression ;

agg codeS$stm :
exp-code$stm :

Nam, Agg — Stm
Nam, Exp — Stm

restriction ;=
identifier
| identifier => expression

delta_constraint ::=
delta expression [ range_constraint ]

delta$constr :

constr_delta$constr :

Exp, Cns — Cns
Exp — Cns

at_clause ::=
for directed_name use at expression ;

mod._clause ::=
at mod expression ;

B.14 Ada 9X Input-Output
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