

Towards a Formal Semantics for Ada 9X

David Guaspari, John McHugh, Wolfgang Polak, and Mark Saaltink Odyssey Research Associates, Inc., Ithaca, New York

(NASA-CR-195037) TOWARDS A FORMAL	N95-24634	
SEMANTICS FOR Ada $9 \times$ Final Report		
(Odyssey Research Associates)		
158 p		Uncles

Contract NAS1-18972
March 1995

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virigina 23681-0001

Contents

1 Introduction 1
2 Method of Description 3
2.1 External Effects and Nonterminating Programs 4
2.2 Semantic Simplifications 4
2.3 Static Checks and Overload Resolution 5
2.4 Environments, Entities, and Stores 6
2.5 Ordering 6
2.6 Types 7
2.7 Values 7
2.8 Objects 8
2.8.1 Actual Subtypes 8
2.8.2 Initialization 9
2.9 Aliasing 10
3 Semantic Domains 11
3.1 Basic Notations 11
3.2 Entities and the Environment 12
3.3 Thunks 13
3.4 Values 13
3.4.1 Ranges 14
3.4.2 Index Ranges 14
3.4.3 Tags 14
3.4.4 Bindings 15
3.4.5 Values 15
3.5 Types and Subtypes 15
3.5.1 Subtypes and Constraints 16
3.5.2 Partial Subtypes 17
3.5.3 Derived Types and Classes 18
3.5.4 Scalar Types 19
3.5.5 Array Types 29
3.5.6 Discriminants 29
3.5.7 Record Types 30
3.5.8 Tagged Types and Type Extensions 31
3.5.9 Access Types 31
3.6 States 31
4 Judgements 32
4.1 Domains 32
4.1.1 Types 32
4.1.2 Values 35
4.1.3 Subtypes 36
4.1.4 Environments and Views 38
4.1.5 Memory Model 40
4.1.6 Other Predicates 41
4.2 Judgements 42
4.2.1 Declarations 42
4.2.2 Parameter lists 42
4.2.3 Type Definitions 43
4.2.4 Variant Parts 43
4.2.5 Discriminant Parts 43
4.2.6 Component Lists 43
4.2.7 Subtype Indications 43
4.2.8 Statements 44
4.2.9 Elsif Clauses 44
4.2.10 Case Alternatives 44
4.2.11 Discrete Choice Lists 45
4.2.12 Expressions 45
4.2.13 Names 45
4.2.14 Ranges 45
4.2.15 Record Aggregates 46
4.2.16 Array Aggregates 46
4.2.17 Attributes 46
4.3 Actions 46
4.4 State 49
4.4.1 Classification of States 49
4.4.2 Accessing the Store of a State 49
4.4.3 Reading and Writing the Store 50
4.4.4 The Content of a Location 50
4.5 Order of Execution 51
4.5.1 Sequential Execution 51
4.5.2 Arbitrary Order Execution 51
4.5.3 Executing Individual Actions 52
4.6 Values 53
4.6.1 Ranges 53
4.6.2 Index Ranges 54
4.6.3 Predicates of Values 54
4.7 Types 55
4.7.1 Type Descriptors 55
4.7.2 Ancestry Relation 55
4.7.3 Ranges of Scalar Types 55
4.7.4 Values of a Type 56
4.7.5 Record Fields 57
4.7.6 Classification of Types 57
4.8 Subtypes 59
4.8.1 Constraint Satisfaction 59
4.8.2 Values of a Subtype 60
4.8.3 Actualization 60
4.9 Declarations 61
4.9.1 Declarations 61
4.9.2 Types and Subtypes 61
4.9.3 Objects and Named Numbers 62
4.9.4 Derived Types and Classes 63
4.9.5 Scalar Types 64
4.9.6 Array Types 65
4.9.7 Discriminants 66
4.9.8 Record Types 66
4.9.9 Tagged Types and Type Extensions 67
4.9.10 Access Types 67
4.10 Expressions 68
4.10.1 Names 68
4.10.2 Literals 70
4.10.3 Aggregates 71
4.10.4 Operators and Expression Evaluation 72
4.10.5 Type Conversions 73
4.10.6 Qualified Expressions 74
4.10.7 Allocators 74
4.11 Statements 74
4.11.1 Statement Sequences 74
4.11.2 Assignment Statements 75
4.11.3 If Statements 75
4.11.4 Case Statements 76
4.11.5 Loop Statements 77
4.11.6 Block Statements 78
4.11.7 Exit Statements 78
4.12 Subprograms 79
4.12.1 Subprogram Declarations 79
4.12.2 Formal Parameter Modes 79
4.12.3 Subprogram Bodies 80
4.12.4 Subprogram Calls 81
4.12.5 Return Statements 82
4.13 Attributes 83
5 Exceptions and Optimization 84
5.1 Introduction 84
5.2 The Ada 9 X revision of 11.6 84
$5.2 .1 \quad[11.6(5)]$ 84
5.2.2 [11.6(7)] 93
5.3 Living with the "Canonical Semantics" 94
5.3.1 Restricting the execution set size 95
5.3.2 Discovering the execution 96
5.4 Observations on the Reference Manual 96
6 Conclusions 98
6.1 Implementation Freedoms 98
6.2 Notation and Tools 99
6.3 Bounded Errors 100
6.4 Structure of Models 100
Bibliography 101
A Official comments submitted 102
B Intermediate Syntax 104
B. 1 Syntactic Domains 104
B.1.1 Component Associations (Aca) 104
B.1.2 Aggregates (Agg) 104
B.1.3 Case Alternatives (Alt) 105
B.1.4 Choice Lists (Ccl) 105
B.1.5 Context Items (Cit) 105
B.1.6 Component Declarations (Cmp) 105
B.1.7 Compilation Units (Cmp) 105
B.1.8 Conditions (Cnd) 105
B.1.9 Constraints (Cns) 105
B.1.10 Discriminant Associations (Dca) 105
B.1.11 Discrete Choices (Dch) 105
B.1.12 Declarations (Dcl) 106
B.1.13 Discriminant Parts (Dcp) 106
B.1.14 Discriminant Specifications (Dcs) 106
B.1.15 Exception Choices (Ech) 106
B.1.16 Else-If Clauses (Eif) 107
B.1.17 Expressions (Exp) 107
B.1.18 Modes (Mde) 107
B.1.19 Names (Nam) 107
B.1.20 Parameter Specifications (Pms) 108
B.1.21 Pragmas (Prg) 108
B.1.22 Parameter Associations (Pss) 108
B.1.23 Record Component Associations (Rca) 108
B.1.24 Ranges (Rng) 108
B.1.25 Subtype Indications (Sid) 108
B.1.26 Subprogram Specifications (Sps) 108
B.1.27 Statements (Stm) 108
B.1.28 Type Definitions (Tdf) 109
B.1.29 Variants (Vnt) 110
B.1.30 Variant Parts (Vrp) 110
B.1.31 Exception Choices (Xhd) 110
B. 2 Lexical Elements 110
B. 3 Declarations and Types 110
B.3.1 Declarations 110
B.3.2 Types and Subtypes 111
B.3.3 Objects and Named Numbers 112
B.3.4 Derived Types and Classes 113
B.3.5 Scalar Types 113
B.3.6 Array Types 115
B.3.7 Discriminants 116
B.3.8 Record Types 117
B.3.9 Tagged Types and Type Extensions 118
B.3.10 Access Types 119
B.3.11 Declarative Parts 119
B. 4 Names and Expressions 120
B.4.1 Names 120
B.4.2 Literals 122
B.4.3 Aggregates 122
B.4.4 Expressions 124
B.4.5 Operators and Expression Evaluation 125
B.4. 6 Type Conversions 126
B.4.7 Qualified Expressions 126
B.4.8 Allocators 126
B.4.9 Static Expressions and Static Subtypes 127
B. 5 Statements 127
B.5.1 Simple and Compound Statements - Sequences of Statements 127
B.5.2 Assignment Statement 128
B.5.3 If Statements 128
B.5.4 Case Statements 128
B.5.5 Loop Statements 129
B.5.6 Block Statements 129
B.5.7 Exit Statements 130
B.5.8 Goto Statements 130
B. 6 Subprograms 130
B.6.1 Subprogram Declarations 130
B.6.2 Formal Parameter Modes 132
B.6.3 Subprogram Bodies 132
B.6.4 Subprogram Calls 132
B.6.5 Return Statements 133
B.6.6 Overloading of Operators 133
B. 7 Packages 133
B.7.1 Package Specifications and Declarations 133
B.7.2 Package Bodies 133
B.7.3 Private Type and Private Extensions 133
B.7.4 Deferred Constants 134
B.7.5 Limited Types 134
B.7.6 User-Defined Assignment and Finalization 134
B. 8 Visibility Rules 134
B.8.1 Declarative Region 134
B.8.2 Scope of Declarations 134
B.8.3 Visibility 134
B.8.4 Use Clauses 134
B.8.5 Renaming Declarations 134
B.8.6 The Context of Overload Resolution 135
B. 9 Tasks and Synchronization 135
B.9.1 Task Units and Task Objects 135
B.9.2 Task Execution - Task Activation 136
B.9.3 Task Dependence - Termination of Tasks 136
B.9.4 Protected Units and Protected Objects 136
B.9.5 Intertask Communication 137
B.9.6 Delay Statements, Duration, and Time 137
B.9.7 Select Statements 138
B.9.8 Selective Accept 138
B.9.9 Timed Entry Calls 138
B.9.10 Conditional Entry Calls 139
B.9.11 Asynchronous Transfer of Control 139
B.9.12 Abort of a Task - Abort of a Sequence of Statements 139
B.9.13 Task and Entry Attributes 140
B.9.14 Shared Variables 140
B.9.15 Example of Tasking and Synchronization 140
B. 10 Program Structure and Compilation Issues 140
B.10.1 Separate Compilation 140
B.10.2 Program Execution 142
B. 11 Exceptions 142
B.11.1 Exception Declarations 142
B.11.2 Exception Handlers 142
B.11.3 Raise Statements 143
B.11.4 Exception Handling 143
B.11.5 Suppressing Checks 143
B.11.6 Exceptions and Optimization 143
B. 12 Generic Units 143
B.12.1 Generic Declarations 143
B.12.2 Generic Bodies 143
B.12.3 Generic Instantiation 143
B.12.4 Formal Objects 144
B.12.5 Formal Types 144
B.12.6 Formal Subprograms 145
B.12.7 Formal Packages 146
B.12.8 Example of a Generic Package 146
B. 13 Representation Clauses and Implementation-Dependent Features 146
B. 14 Ada 9X Input-Output 147
Index 148

Chapter 1

Introduction

The Ada 9X Language Precision Team (LPT) was formed in 1990 to study portions of the design of Ada 9X from a mathematical perspective. The first LPT project studied small parts of the language in isolation, formulating fairly simple models to explore the ramifications of the design. The idea was to avoid spending time studying the conventional parts of the language (where, we felt, little would be gained by the analysis) and to focus on the novel proposals such as the object-oriented features, overload resolution, and exception mechanisms. The results of this first project appear in two reports [9, 2].

The second LPT project had two separate goals. The first, similar in approach to the first project, was to study the rules of allowed optimizations. The second goal was rather different. Instead of defining many unrelated small models, and studying new features in depth, the plan was to formulate a broad model to cover a large part of the language. In this way, we hoped to find problems arising from the interactions between different features.

The level of effort of the project was clearly insufficient to define a complete model of the language, and our plan was not to make a complete model. Instead, we planned to define the framework for such a model, and to fill in the details of the framework only in certain areas. Furthermore, the framework was not intended to be complete; we did not expect to be able to describe concurrency or distributed programming. We did, however, hope for the framework to cover most of the sequential features.

Our expectation was not that the resulting incomplete model would necessarily be useful to anyone (although we hope that it could be extended to form the basis for analysis tools). Instead, we expected that the activity of making this model would allow us to influence the design of Ada 9 X by identifying problems with specific language features or with the interactions between different features, or by suggesting improvements in the ways that parts of the language are described. As the design of Ada 9 X was nearing completion when our project began, it was important to move as quickly as possible. So, the model is quite sketchy in areas. Moreover, the formal definition presented in this report omits several partial models that we built in the course of the project, as we did not have the time to integrate them with the overall framework. None the less, these models have played a useful role in helping us to understand and comment on various language features, and to influence (however slightly) the design of Ada 9X.

This report is organized as follows. The method used for defining the model is described in Chapter 2. A discussion of the model also appears there. The model itself appears in two parts. The "domains" (sets describing the values assumed by different entities in the language) are described in Chapter 3. The "judgements" describing possible executions of a program are described in Chapter 4. Our study of the optimization freedoms described in [11.6] does not fit into the main framework; it is described separately in Chapter 5. Conclusions are drawn in Chapter 6.

Two appendices give some additional information. Appendix A lists the official language com-
ments that were submitted by the LPT; most of these apply to Version 4.0 of the Draft Standard [3], and several have resulted in changes that appear in Version 5.0 [4]. Appendix B describes the intermediate syntax that results from overload resolution (and other static checks).

References to the Ada 83 Reference Manual [10] appear in the form [RM-83 c.s(p)], where c is the chapter number, s the section number, and p the paragraph number. References to version 5.0 of the Annotated Draft Standard for Ada 9X [4] appear in the form [c.s(p)]; this standard as a whole is often referred to as "the Reference Manual".

Chapter 2

Method of Description

The "broad semantic framework" is defined using Natural Semantics [5]. The general idea of natural semantics is to define semantics as one or more relations between syntactic phrases and semantic values. These relations are defined using axioms and rules of inference. As a trivial example, a simple language of arithmetic expressions can be defined by the grammar

```
expression ::= numeral | <expression> "plus" <expression>
```

We can define the semantics of these expressions using a relation (between expressions and numbers) of "evaluates to", which we will write as expression \Rightarrow value, and a relation (between numerals and numbers) of "denotes", which we will write as numeral \rightarrow value.

Two rules suffice to define the semantics of expressions (although additional rules not shown here are needed to define the "denotes" relation). The first covers the base case of numerals:

$$
\frac{n \rightarrow v}{n \Rightarrow v} \quad[n \in \text { numeral }]
$$

The second gives the semantics of sums:

$$
e 1 \Rightarrow v 1 \quad e 2 \Rightarrow v 2
$$

$$
e 1 \text { plus } e 2 \Rightarrow v 1+v 2
$$

The method is easily able to handle nondeterminism, where a phrase can have many possible results. If we extend the expression grammar above to include ranges, with the meaning that any number in the range is allowed, we have the grammar

```
expression ::= numeral
    | <expression> "plus" <expression>
    | <expression> ".." <expression>
```

Only one additional semantic rule is needed:

$$
\frac{e 1 \Rightarrow v 1 \quad e 2 \Rightarrow v 2}{e 1 \ldots e 2 \Rightarrow v} \quad[v 1 \leq v \leq v 2]
$$

Using these rules, we can deduce

$$
(0 . .2) \text { plus }(10 \ldots 20) \Rightarrow x
$$

for any x between 10 and 22 inclusive.
In practical applications of Natural Semantics, the judgements used are often more complex than in this simple example. Usually, there is a certain amount of contextual information (such as the definitions of functions or procedures); this is represented by an environment. Often a store is used to record the values of variables. Furthermore, the evaluation of a phrase may have an effect on the environment or store. So the judgements often have many components, and there are a number of auxiliary domains of semantic values. We write most judgements in a standardized form

$$
S, E \vdash_{p t} p \Rightarrow v, \ldots,
$$

where S is a store, E is an environment, p is a phrase, the subscript $p t$ gives the kind of phrase (e.g., whether p is a declaration, statement, expression, or name), v is a possible result of executing (or evaluating or elaborating) p, and the "..." are any other results that the execution may have. Usually, there is a final state that reflects any side-effects that the execution may have had.

We describe the domains of semantic values using the Z notation [8], which furnishes a standard toolkit of notations for sets, functions, relations, and "freely constructed" sets.

The Natural Semantics definitions have been written in a machine-readable form in Prolog. Judgements are represented directly as Prolog predicates, and semantic rules as Prolog rules. There is a slight difficulty in transcribing uses of functions, but a simple translation to relations is possible. The Prolog representation has two main advantages. Firstly, we were able to apply a type-checking package developed by Reddy and Lakshman [7] to the definition; this found a number of simple errors in the rules. Secondly, we are able to run the Prolog and determine what outcomes are predicted by the semantic definition. This allows the semantics definition to be tested on small examples.

Several aspects of Ada 9X are tricky to define properly. In the remainder of this chapter, some of the awkward parts of the language and some of the more intricate aspects of the Natural Semantics definition will be explained. Not everything described below has been implemented in the Natural Semantics; some of the discussion describes our plan for dealing with a feature even though we did not have time to include that feature in the semantics definitions.

2.1 External Effects and Nonterminating Programs

Ultimately, the meaning of an Ada program is defined in terms of its sequence of "external effects", as described in [1.1.3(8)]. We can readily define several types of external effects, such as operations on files using the standard I/O packages, propagation of an exception, or return from the main program. Other effects are not covered.

An outside observer can see these external effects during the execution of a program, and does not need to wait until (and if) the program terminates. Therefore, we use a small trick to allow the semantics to assert that a certain sequence of external effects can be viewed whether or not the program terminates. We use a special incomplete condition that is treated like an exception that cannot be handled. For any operation having an external effect, one possible result is to "raise" this condition. The semantic definition then propagates this condition out of the main call. Thus, we are able to infer judgements of the form

$$
\text { Library } \vdash \text { program_name } \Rightarrow e
$$

where e is a sequence of external effects, for every sequence e that might be observed during a run of the program.

2.2 Semantic Simplifications

Some language features appear to be very difficult to incorporate into this model. For these features, we have introduced a notion of an unpredicted result. When our definition allows the deduction that
unpredicted is a possible result of an execution, it means that the particular program includes a language feature, or encounters a situation, that we decided not to account for in our model. This is similar to erroneous executions, where the language standard does not predict the results of a program.

For example, Section [11.6] of the Ada 9X Reference Manuals allows implementations to produce results at variance with the language rules described elsewhere in the manual (in situations where a language-defined check would fail if those rules were followed). The freedoms allowed by Section [11.6] appear to be very difficult to incorporate into the model defined here. Therefore, we have kept the model simple by treating the failure of a language-defined check as an unpredicted execution.

There are some rules new to Ada 9 X that constrain the result of an execution that Ada 83 classes as erroneous. These bounded error situations can be difficult to model. For example, reading the value of an uninitialized scalar variable is erroneous in Ada 83. In Ada 9X, it is a bounded error, which can result in an exception or an implementation-defined result. Version 4.0 of the proposed Standard introduced the concept of invalid values to describe these results. Unfortunately, the introduction of invalid values complicates the semantics of the language considerably, as it is necessary to provide rules for computing with these values. The draft standard does not always provide the complete details of these rules. For example, what is the result of a comparison involving invalid values? Are the ordering operators transitive, even when applied to invalid values? We decided to keep our model simple, and to avoid these questions, by refusing to predict the outcome of a program that reads an uninitialized scalar variable. Version 5.0 of the Standard has changed the description of this situation, but once again the exact rules are vague. Therefore, we are continuing to use the simple model that refuses to predict the outcome of a program in these situations.

2.3 Static Checks and Overload Resolution

It is conventional to process Ada in two (or more) steps; the first step checking syntax, applying all of the "legality" checks, and resolving any overloading. We planned to define the semantic model in a similar way, with two distinct definitions. The first static semantics takes Ada source text, and produces a program in intermediate syntax. The intermediate syntax differs from Ada source text in several significant ways:

- Intermediate syntax is in the form of a tree, rather than a linear string of characters. Therefore intermediate syntax does not need to be parsed.
- Overloading has been resolved. Identifiers, characters, and operator names have been replaced by intermediate identifiers (in the set Id) in such a way that no two distinct declarations declare the same intermediate identifier. Any use of an identifier, character literal, or operator name has been replaced by a use of the appropriate element of Id. (Some names using selection, e.g., package components, are also replaced by intermediate identifiers.)
- Many of the notational conveniences of Ada have been eliminated. For example, infix operators are replaced by function calls.
- Generics are eliminated. Generic instantiations are expanded to a sequence of declarations.
- Some additional information is included. For example, a completing declaration is explicitly marked as such.

The intermediate syntax is described in Appendix B.
We have not formally defined the static analysis, although we believe that a Natural Semantics formulation of the static rules is possible.

2.4 Environments, Entities, and Stores

The Natural Semantics definition is faithful to the Reference Manual in its treatment of entities. We use several different sorts of "entity locations", which serve as unique names or references for entities. When a declaration is elaborated, new names are generated for any of the entities that need to be "created", and the environment is updated to reflect the association of the declared Id with a view of one of these entities. The store is a collection of mappings indexed by these different entity locations, which associates a value or meaning with each entity.

This indirect representation, using references to entity locations rather than the meanings of entities, makes it fairly easy to handle situations where an entity has a declaration that is separate from its definition. Between the declaration and definition, any references to the entity cannot make use of the definition (because it is not yet known). The location associated with the entity is known, and can be used.

2.5 Ordering

The Ada Standard gives implementations considerable freedom to select the order in which actions are performed. For example, in evaluating a sum, either the left or the right operand might be evaluated first. It is easy to write a program that gives different results depending on which order is chosen.

In order to write a concise description of the possible effects of the evaluation of constructs allowing a choice of orders, we define a set of actions, and several ways of combining actions. One combination, written by enclosing the actions in braces, allows the actions to be carried out in an arbitrary order; another, written by enclosing the actions in square brackets, requires the actions to be carried out in strict sequential order.

Actions are similar to judgements, except that the states do not appear explicitly. When actions are executed in some order, suitable states are added and the corresponding judgement is used. We write the actions in a notation that makes obvious the judgement for the corresponding execution. For example, corresponding to the judgement $S_{1}, E \vdash_{s t m} S t m \Rightarrow S_{2}$ is an action written as ${ }^{\prime} E \vdash_{s t m}$ Stm $\Rightarrow{ }^{\prime}$; corresponding to the judgement $S_{1}, E \vdash_{\exp } \operatorname{Exp} \Rightarrow V, S_{2}$ is an action written as ${ }^{\prime} E \vdash_{\text {exp }}$ Exp $\Rightarrow V^{\prime}$.

We also use states, which are combinations of stores and control flow information (for example, whether an exception has been raised, whether a return command has been executed, whether execution is normal.) The rules defining the execution of a combined action check the control flow information to skip some actions if that is appropriate. For example, in executing "a followed by b ", if the execution of " a " propagates an exception, the action " b " is not executed.

One advantage to this approach is that the actions themselves look simpler than the corresponding judgements, because the flow of control through them is described by the way they are combined. For example, in defining the possible results of a sum using explicit ordering, we would need several judgements, including

$$
\begin{aligned}
& s, E \vdash_{\exp } e 1 \Rightarrow v 1, s 1 \\
& s 1, E \vdash_{\exp } e 2 \Rightarrow v 2, s 2 \\
& \hline s, E \vdash_{\exp } e 1+e 2 \Rightarrow v 1+v 2, s 2
\end{aligned}
$$

and

$$
\begin{aligned}
& s, E \vdash_{\exp } e 2 \Rightarrow v 2, s 1 \\
& s 1, E \vdash_{\text {exp }} e 1 \Rightarrow v 1, s 2 \\
& \hline s, E \vdash_{\text {exp }} e 1+e 2 \Rightarrow v 1+v 2, s 2
\end{aligned}
$$

and others to account for exceptions. Instead, using actions, we can write

$$
\frac{S_{1} \vdash\left\{\begin{array}{c}
\prime E \vdash_{e x p} e 1 \Rightarrow v 1^{\prime} \\
\prime E \vdash_{e x p} \\
e 2 \Rightarrow v 2^{\prime}
\end{array}\right\} S_{2}}{S_{1}, E \vdash_{e x p} e 1+e 2 \Rightarrow v 1+v 2, S_{2}}
$$

which accounts for the different possible orders of evaluation and for the propagation of an exception from one of those evaluations. (We still need something extra to account for an overflow in the addition.)

2.6 Types

It is awkward to define a domain of "type values" that describe types, because the exact characteristics of a type can change through its scope. For example, a type may be limited in some parts of its scope, and nonlimited in other parts (such as the body of a package defining the type of a component); a type can be private in some places and not in others. Furthermore, an incompletely defined type can be used in various ways (such as a record component or designated type of an access type); the characteristics of the using type can change after the incompletely defined type's full definition.

In order to simplify the treatment of these situations, types are described by descriptors that refer to other types by their locations (see Section 2.4), rather than by their descriptors. This has the disadvantage that descriptors are not meaningful in isolation, but only with respect to the store that associates descriptors with type locations. However, it has several advantages:

- it gives a simple characterization of when types are the same; each type location represents a distinct type;
- when the characteristics of a type of a component change, that change can be reflected in just one descriptor; and
- circularities in type descriptors are easily handled (without needing any tricky domains allowing for infinite data structures).

An example illustrating these advantages is

```
type A;
type B is access A;
type A is access B;
```


2.7 Values

We expected it to be easy to describe the domain of values that objects might assume. It was surprising that this was not so. As mentioned above, the addition of invalid values to scalar types adds several complications, as the nature of such values is not completely specified. The latest version (5.0) of the proposed Standard no longer uses the term "invalid value"; instead, a variable may have an "invalid representation" [13.9.1].

We also argued whether "abnormal" values would be needed in order to model the concept of abnormal objects. We were able to avoid this, since the circumstances that can lead to abnormal objects are being treated as unpredictable executions.

There are a few situations where it is difficult to determine the set of values associated with a type. For example, given the declaration

```
subtype Void is Integer range 1 .. 0; -- an empty range
type R is record
    v: Void
    end R;
```

There are no values of subtype Void. However, there are values of type R. For example, a variable of type R can be declared, and it is not an error to "read" the value of such a variable, or to assign this value to a second variable of type R.

The problems with this type are related to those for uninitialized scalar variables, and we adopt a simple approach to solve them. We use a special indicator to denote an uninitialized scalar value. A scalar subcomponent of an object can have this value. If this "uninitialized" value is read, execution is unpredicted.

The set of values of an enumeration type is not obvious. Given the declarations

```
type E is (red, green);
for E use (red => 1; green => 100);
```

version 4.0 of the Draft Standard suggested that there were two "valid values" of type E, and (at least) 98 "invalid values" between them. The number of elements in an array indexed by E, then, is open to question. Are there elements corresponding to the invalid members of the base range?

Types declared with per-object constraints do not have obvious sets of values (since the constraint applied to a subcomponent might depend on the specific object of the type). Our model simply does not cover the kinds of per-object constraints that lead to this difficulty.

Our model for values uses integers to represent discrete values (even if the value is of an enumeration type). This means that the values of different types are not necessarily different. It would certainly be possible to mark values in such a way that no value belongs to more than one type, but there seems to be no benefit to doing so. An Ada program cannot directly compare values of different types, so there is no way for this detail to influence the outcome of a program.

2.8 Objects

It is normal in semantic definitions to use location semantics for variables, but different approaches can be used in accounting for structured (composite) variables and their components.

The approach that seems most convenient for us is to associate locations with entire variables (that is, variables that are not subcomponents of other variables). Every object is characterized by its location and a selector indicating which component of the entire variable it is.

2.8.1 Actual Subtypes

The actual subtype of an object is sometimes different from the nominal subtype in its declaration. This is an issue for assignments [5.2(11)] and formal parameters of mode in out or out that are passed by copy $[6.4 .1(17)]$. So it is important only for variables.

The actual subtype of a variable differs from its nominal subtype in the following circumstances:

- the object is a declared object, and is constant, aliased, or has an indefinite nominal subtype [3.3.1(9)].
- the object is a formal parameter. [6.4.1(16)] states

A formal parameter of mode in out or out with discriminants is constrained if either its nominal subtype or the actual parameter is constrained.
[6.4.1(12-15) gives additional rules for out parameters.

- the object is a generic formal object of mork in out. $[12.4(8)]$ states that the nominal subtype is taken from the declaration of the fomal, while the aclual subtype is taken from the actual.
- the object is declared by an allocator, and the designated type of the result subtype of the allocator is indelinite or has discriminants ([3.3(23) and [3.10(9)]).
- the object is a view of another object, and the subtype of the view is indefinite [3.3(23)].
'This leads to the question of how the actual subtype of an object is determined, and where, if neded, the actual subtype information is stored. There are two reasonable choices: the actual sublype might be associated with the object, or with each view of the object. However, two views of an object neod not have the same type. Obviously, in such a case the actual subtypes must be dillerent. Moreover, in a procedure call, the actual sublype of the view denoted by the formal can be different from the actual subtype of the actual parameter, even when the views have the same type. For example, the actual might be of an unconstrained discriminated type and the formal consimaned. 'Therefore, we have decided to store the actual subtype as part of every view of an objeced.

2.8.2 Initialization

'The calculation of the implicit initial value for an object is difficult to describe, as there is considcable freedom in the order of evaluation of defant expressions used to initialize subcomponents. It is particularly awkward for subcomponents with discriminants; discriminants must be evaluated before any subcomponent that depends on ihem, but other subeomponents may have their initial values evaluated before then. So, given the dectarations

```
type \(T(a: D:=e 0, b: D:=e 1)\) is record
    u : Integer :=e2;
    \(\mathrm{v}: \mathrm{U}(\mathrm{a}):=\mathrm{e} 3\);
    w: U(b) := e4;
    \(x: S(a, b):=e 5\);
    end record;
\(\mathrm{y}: \mathrm{T}\);
```

wr must cvaluatc eo before e3 and e5, and e 1 before e4 and e5. The order of evaluation is otherwise unrestricted (unless references to a or b occur in e2, e3, or e4.)

In order to accommodate this flexibility, we use a variation on the "in some order" rules described in Section 2.5. We add an additional datum to the left and right of the turnstile; this datum records wheh discriminants have had their initializing expressions evaluated (and what the resulting value is). The individnal actions record their prerequisites (that is, which discriminants must be evaluated before the action can be executed).

In i.le record of evaluated discriminants, we cammot simply use the name of the discriminant, as two subcomponents might have the same type, and thus have discriminants of the same name. listoad, for cach discriminant subcomponent to be evaluated we generate a mique identifier. A "discriminant enviromment", associating discriminamt identifiers with discriminant names, is therefore alsn used in the fudgements for initialization.

Another difliculty in deseribing the initialization of objects concerns per-object constraints. Ada 9 X allows the natue of a type to be used in its own defintion, in which case it stands for the "current. instance" of the type. 'Thus, a constraint on a component can refer to the containing object. Deseribing this formally can be dilficult: the object might not exist until its subtype can be determined (which involves claborating per-object constrants), yet the daboration of a per-object constraint maty refer to the object. We decided not to comsider per-object constraints that refer to the "current instance" (but wr allow them to refer to discriminants).

2.9 Aliasing

Some rules concerning aliasing look difficult to model. [6.2(12)] states
If one name denotes a part of a formal parameter, and a second name denotes a part of a distinct formal parameter or an object that is not a formal parameter, then the two names are considered distinct access paths. If an object is of a type for which the parameter passing mechanism is not specified, then it is a bounded error to assign to the object via one access path, and then read the value of the object via a distinct access path while the first access path still exists. The possible consequences are that Program_Error is raised, or the newly assigned value is read, or some old value of the object is read.
If we are to allow for accurate predictions of the effects of procedure calls (or to refuse to predict the outcome of calls that might involve aliasing), we need to be able to recognize, at a minimum, when the above rule might apply. It is not enough just to say that parameters of certain types may be passed by copy or by reference at the whim of an implementation, because the above paragraph allows for results that might not be produced under either of the two passing mechanisms. We might refuse to predict the result of any call with aliasing, but that can be hard to recognize if access values are used. Unfortunately, the notion of "access paths" is not well defined by the Reference Manual, and the precise meaning of the aliasing rule is unclear.

We have submitted several official comments on the aliasing rules, and had some discussions with the Mapping Team on possible interpretations of these rules. One model that may work can be sketched as follows: we would define a function access_path on names, which gives an element of optional Id. This "access path" gives the Id associated with the declaration of some variable denoting the object denoted by the name. This might be the declaration that created the object, or might be the name of a formal parameter. If the object was dynamically created, the access path is null.

In most cases, the definition of access_path is simple, e.g.,
access_path $(I d)=$ some $(I d)$ if Id is not declared by a renaming declaration
access_path (Nam.Id) = access_path (Nam)
access_path $(\operatorname{Nam}(\exp , \ldots))=$ access_path (Nam)
access_path (Nam.all = none
For Ids declared by renaming declarations, we would want to use the access path of the renamed object.

In order to state the rule of $6.2(12)$, we would associate a "last update path" with every object (including subobjects). Whenever an object is updated by an assignment, the access path of the name used in the assignment statement is recorded in the object (and every subobject and containing object). In addition, formal parameter objects are updated in a call with the formal parameter Id as the last update path, and after a call, any in out or out parameter objects are updated by the access paths of the corresponding actual parameter names. It would be a bounded error to evaluate a name denoting all or part of a formal parameter for which the parameter passing mode is unspecified, if the access path differs from the last update path of the object it denotes. Similarly, it would be a bounded error to evaluate a name if the last update path of the object it denotes is a formal parameter for which the parameter passing mode is not specified.

These rules account for most of the situations described by $6.2(12)$, but probably need refinement to deal properly with access values created by Access attributes.

Chapter 3

Semantic Domains

In this chapter, we define the domains of values used in the semantics. These sets describe the values assumed by the various entities of Ada 9X.

These definitions have been used as the basis for the Prolog representation of the Natural Semantics definitions presented in Chapter 4. However, some of the definitions defined here have not yet been incorporated into the Natural Semantics definition, and some small inconsistencies between the two definitions have not yet been eliminated.

3.1 Basic Notations

In this section, we define some basic notions that will be used in the model.
An association provides a finite function with an enumeration of its domain. It is convenient to represent such a function by enumerating (domain, range) pairs; the finite function is then the range of the sequence.

$$
X \xrightarrow{a} Y==\{s: \operatorname{seq} X \times Y \mid \operatorname{ran} s \in X \rightarrow Y \wedge \# \operatorname{ran} s=\# s\}
$$

Functions adom and aran give the domain and range of an association. Function.$_{-}$is used to apply an association to an argument (as though it were a finite function).

$$
\begin{aligned}
& =[X, Y] \Longrightarrow \\
& \text { adom }-:(X \xrightarrow{a} Y) \rightarrow \mathbf{P} X \\
& \operatorname{aran}_{-}:(X \xrightarrow{a} Y) \rightarrow \mathbf{P} Y \\
& \text { _- _ }(X \xrightarrow{a} Y) \times X \rightarrow Y \\
& \forall a: X \xrightarrow{a} Y \bullet a d o m a=\operatorname{dom}(\operatorname{ran} a) \\
& \forall a: X \xrightarrow{a} Y \bullet \operatorname{aran} a=\operatorname{ran}(\operatorname{ran} a) \\
& (A, x) \in \operatorname{dom}_{-} \cdot \Leftrightarrow x \in \operatorname{adom} A \\
& x \in \operatorname{adom} A \Rightarrow A \cdot x=(\operatorname{ran} a) x
\end{aligned}
$$

We sometimes use optional values:

$$
\text { optional } X::=\text { none } \mid \text { some }\langle\langle X\rangle
$$

Function maximal returns the set of maximal values of an arbitrary relation, where a maximal value of the relation $R: X \leftrightarrow X$ is defined as an element z of X such that no $y \neq z$ satisfies $z R y$.

```
[ [X]=
    maximal(R)=X\\operatorname{dom}(R\id X)
```

Function restrict restricts both the domain and the range of a relation to some given set．

$$
\begin{aligned}
= & {[X] \xlongequal{\text { restrict }:(\mathbf{P} X \times(X \leftrightarrow X)) \rightarrow(X \leftrightarrow X)} } \\
& \operatorname{restrict}(S, R)=(S \times S) \cap R,
\end{aligned}
$$

Equivalently，

$$
\operatorname{restrict}(S, R)=(S \triangleleft R) \triangleright S
$$

3．2 Entities and the Environment

After overload resolution，every occurrence of an identifier in an Ada program can be replaced by an $I d$ ，so that each $I d$ has at most one declaration in the program．

The elaboration of a declaration creates an entity，and the Id of the declaration then denotes a view of this entity．A declaration might be elaborated many times（e．g．，if it appears in a subprogram body），denoting a different entity each time．

$$
\text { Environment }==I d \rightarrow \text { View }
$$

A view identifies an entity and provides some characteristics that affect the use of the entity． For example，there can be several views of the same subprogram，each having different parameter names and default expressions．Views refer to entities by using locations of various types．

［Type＿location，Subtype＿location，Object＿location，Subprogram＿location］

There are no views associated with packages or generic declarations．Packages are significant in their provision of information hiding and modularization，but those aspects concern the static semantics，not the dynamic semantics．Generic declarations are expanded by the static semantics， so that only ordinary（non－generic）declarations appear in the intermediate syntax．

Exceptions are unusual entities．No matter how often an exception declaration is elaborated，the same exception is denoted．This exception is represented by an Exception＿Id that is determined by the static semantics．（The Exception＿Id could be chosen to be the Id of the declaration，for example）．

```
View ::= object_view《Object_location \times Subtype\)
    | subtype_view《Subtype_location》
    |ubprogram_view 《SSubprogram_location }\times\mathrm{ Profile》
    exception\\langleException_Id\rangle
    constant《\Value\)
```

Most kinds of entity are held in a store．Assigning a location to refer to the entity，and placing an entity at that location in the store，corresponds to what the Reference Manual calls＂creating＂ the entity．This activity happens when a declaration is elaborated．

Several kinds of entities are used in the semantics definition：
－objects，which have values；

- subtypes, with their associated type, constraint, and attributes;
- types, with descriptors and optional parents;
- subprograms, with formals and bodies; and
- operations (representing the "predefined operations" of the Reference Manual).

$$
\begin{aligned}
& \text { Store } \\
& \text { types : Type_location } \rightarrow \text { Type } \\
& \text { subtypes : Subtype_location } \rightarrow \text { Subtype } \\
& \text { objects : Object_location } \rightarrow \text { Value } \\
& \text { subprograms : Subprogram_location } \rightarrow \text { SubprogramOrOp }
\end{aligned}
$$

$$
\begin{aligned}
\text { Subprogram } O r O p & :=\text { subprogram }(\langle\text { Environment } \times(\mathrm{seq} I d) \times D c I \times S t m\rangle) \\
& \mid \text { operation }\langle\langle\ldots\rangle\rangle
\end{aligned}
$$

The different sorts of entities are described in the following sections.
Evaluation is defined in terms of a state, which (usually) includes a store, as well as certain control information. States are defined below in Section 3.6. Function the_store, giving the store associated with a state, is used in some of the definitions below.

3.3 Thunks

In several situations it is necessary to record an expression together with the environment in which it appears, so that the expression can be evaluated in some other context. The environment is retained so that any Ids appearing in the expression have their correct denotation. We call this combination of an expression and an environment a thunk.

Thunk $==\operatorname{Exp} \times$ Environment
Thunks appear in record type descriptors (where they describe the initializing values of any explicitly initialized components), and in parameter lists (where they describe any default values for parameters).

3.4 Values

There are several kinds of values of interest:

- discrete values (represented by integers)
- real values (represented by rationals)
- access values (represented by views of objects or of subprograms)
- record values (represented by partial functions)
- array values (represented by partial functions)

It is possible to use a model where the values of each type are distinct; however, the benefit of doing so is not completely clear. The rules of the language do not allow for comparisons of values of different types, so there is no way of telling whether these sets are disjoint.

3.4.1 Ranges

Ranges have two bounds, and determine a set of values of a scalar type.

```
Range ::= discrete_range \\langle\mathbb{Z}\times\mathbf{Z}\rangle\rangle|\mathrm{ real_range }\langle\langle\mathrm{ Rational }\times\mathrm{ Rational }\rangle\rangle
```

Discrete_range $==$ ran discrete_range
Real_range $==$ ran real_range
(The definition of the bounds functions contains a forward reference to functions discrete_value and real_value, defined in Section 3.4.5.)

```
low_bound, high_bound: Range \(\rightarrow\) Value
    low_bound \((\) discrete_range \((l, h))=\) discrete_value \((l)\)
    high_bound \((\) discrete_range \((l, h))=\) discrete_value \((h)\)
    low_bound (real_range \((l, h))=\) real_value \((l)\)
    high_bound \((\) real_range \((l, h))=\) real_value \((h)\)
    make_range : Value \(\times\) Value \(\rightarrow\) Range
    make_range \(\left(\operatorname{discrete\_ value}(v)\right.\), discrete_value \(\left.\left(v^{\prime}\right)\right)=\operatorname{discrete\_ range}\left(v, v^{\prime}\right)\)
    make_range \(\left(\right.\) real_value \(\left.(v), r e a l \_v a l u e\left(v^{\prime}\right)\right)=\) real_range \(\left(v, v^{\prime}\right)\)
    _ belongs_to _ : Value \(\leftrightarrow\) Range
    values_of_range \(:\) Range \(\rightarrow \mathbf{P}\) Value
    _ is_included_in _ : Range \(\leftrightarrow\) Range
    \(v\) belongs_to \(R \Leftrightarrow v \in\) values_of_range \((R)\)
    values_of_range \((\) discrete_range \((l, h))=\) discrete_value (l..\(h)\)
    values_of_range (real_range \((l, h))=\) real_value \((l \ldots h)\)
    \(R\) is_included_in \(R^{\prime} \Leftrightarrow v a l u e s \_o f \_r a n g e(R) \subseteq v a l u e s \_o f \_r a n g e\left(R^{\prime}\right)\)
```


3.4.2 Index Ranges

Arrays are indexed by sequences of discrete values. Index ranges are determined by a sequence of discrete ranges.

$$
\text { Array_bounds }==\operatorname{seq}_{1}(\text { Discrete_range })
$$

Each sequence of bounds determines a set of indices:

```
indices : Array_bounds \(\rightarrow \mathbf{P}\left(\mathrm{seq}_{1}\right.\) Value \()\)
\(\forall B:\) Array_bounds \(\bullet\) indices \((B)=\left\{s \in \operatorname{seq}_{1}\right.\) Value \(\mid\)
    \(\# s=\# B \wedge \forall n \in \operatorname{dom} s \bullet s(n)\) belongs_to \(B(i)\}\)
```


3.4.3 Tags

We use a set of tags. The precise nature of this set is immaterial.
[Tag]

3．4．4 Bindings

Bindings are simply partial mappings from Ids to values．Most often these Ids are the names of record fields or discriminants．

$$
\text { Binding }==I d \rightarrow \text { Value }
$$

3．4．5 Values

Although it seems redundant，we include the bounds as part of an array value．This is because two arrays with no components（thus，with the same mapping function）can have different bounds．

Record values are furnished with optional tags，discriminants，and other components．This allows the descriptions of the various language rules concerning tagged records，discriminated records，and normal records to be combined．

A special value，uninitialized＿value，is used for uninitialized scalar objects．This is used to detect when such an object is read（in which case the result of the execution is unpredicted）．

```
Value ::= uninitialized_value
    | discrete_value\\langleZ\\rangle
    | real_value\\langleFloat\rangle\rangle
    access_value\<optional View }\times\mathrm{ optional SubprogramLabel\》
    record_value\\langle(optional Tag) }\times\mathrm{ Binding }\times\mathrm{ Binding }
    array_value\<{ B:Array_bounds,v:(seq Value) }->\mathrm{ Value | dom v=indices(B) }>>
```

We can define various sets of values referred to in the language rules：

```
Discrete_value \(==\) ran discrete_value
Real_value \(==\) ran real_value
Access_value \(==\) ran access_value
Scalar_value \(==\) Discrete_values \(\cup\) Real_values
```

Elementary_value $==$ Scalar_values \cup Access_values
Composite_value $==$ ran record_value \cup ran array_value

3．5 Types and Subtypes

Every type has an associated type descriptor giving the characteristics of the type（and possibly referring to other types via their type locations）．

The descriptors are defined here，but described in the sections that follow．

```
Type_Descriptor::= enumeration_dsc}\langle\langle\mp@subsup{\mathbf{N}}{1}{}\rangle
    | signed_integer_dsc}\langle\langle\mathbf{Z}\times\mathbf{Z}\times\mathbf{Z}\times\mathbf{Z}\rangle
    | modular_integer_dsc}\langle\langle\mp@subsup{\mathbf{N}}{1}{}\rangle
    | universal_integer_dsc}\langle\langle\mathbf{Z}\times\mathbf{Z}\rangle
    float_dsc}\langle\langle\mp@subsup{\mathbf{N}}{1}{}\times\mathrm{ Rational }\times\mathrm{ Rational }\times\mathrm{ Float_Implementation }
    | ...(something for fixed-point types)
    array_dsc\((seq}1,Subtype) \times Subtype \)
    record_dsc|((optional Tag) }\times\mathrm{ Discriminant_descriptor }\times\mathrm{ Component_list_descriptor)}
    class_dsc\\langleType_location\rangle\rangle
    | access_dsc《\Subtype_location }\times\mathrm{ Access_Mode》)
    | ...
```

A type is then a combination of an optional parent (in case the type was derived) plus a descriptor.

$$
\text { Type }::=(\text { optional Type_location }) \times \text { Type_Descriptor }
$$

For each kind of type in Ada 9X, we define a type descriptor. Additionally, for each descriptor we define the set of values of the type:
\mid descriptor_values : Type_Descriptor \times State $\leftrightarrow \mathbf{P}_{1}$ Value
Function type_values gives the set of values associated with a type location given a state:

```
type_values:Type_location }\times\mathrm{ State }->\mathbf{P}\mathrm{ Value
    \foralll:Type_location; S : State - type_values(l,S)=
    descriptor_values(snd(the_store(S).types(u)),S)
```

Note that these sets of values might change over time as the information about a type is updated.

3.5.1 Subtypes and Constraints

A subtype is a combination of a type, a constraint, and certain attributes [3.2(8)]. There are in fact two sorts of subtypes; we will call them "partial" subtypes and "true" subtypes. Partial subtypes can contain unevaluated per-object constraints, for example, references to discriminants. These partial subtypes appear as the subtypes of components of a record with discriminants. When an object of a subtype is created, some of these per-object constraints are elaborated and the true subtype of the object and its components is determined.

There are several cases where a partial subtype cannot be elaborated: in a variant record, perobject constraints in initially unused components are not elaborated; in an initialized object, none of the per-object constraints are elaborated. The Reference Manual is not completely clear on this point, and for now we will only consider per-object constraints that are references to discriminants.

Partial subtypes appear only as the subtypes of components of types with discriminants; named subtypes, and the subtypes of objects, will always be "true" subtypes.

The Reference Manual identifies three kinds of constraints: range constraints, index constraints, and discriminant constraints. In fact, the last two can also be applied indirectly, to an access type having a designated subtype to which the constraint would apply directly. (Only one level of indirection is allowed; given

```
type A1 is access String;
type A2 is access A1;
```

an index constraint can be applied to A1, but not to A2.) We may find it useful to distinguish these indirect constraints from their direct counterparts.

```
Constraint ::= no_constraint
    | range_constraint\\langleRange\rangle\rangle
    | index_constraint \\langleseq}\mp@subsup{|}{1}{Discrete_range\rangle\rangle
    | discriminant_constraint \< Binding\rangle)
    | indirect_index_constraint \\langleseq}\mp@subsup{|}{1}{}\mathrm{ Discrete_range \>
    | indirect_discriminant_constraint \<Binding\rangle\rangle
```

Some values satisfy a constraint:

```
_ satisfies _ : Value }\leftrightarrow\mathrm{ Constraint
    \forallv:Value - v satisfies no_constraint
    v:Value \bullet v satisfies range_constraint (R)\Leftrightarrowv belongs_to R
    array_value( }B,a)\mathrm{ satisfies index_constraint (S)}\LeftrightarrowB=
    record_value(t,d,r) satisfies discriminant_constraint ( }\mp@subsup{d}{}{\prime})\Leftrightarrowd=\mp@subsup{d}{}{\prime
```

Now we can define subtypes:

```
Subtype
type :Type_location
constraint : Constraint
attributes:Attributes
```

For every subtype, there is an associated set of values, namely the values of the associated type that satisfy the constraint.

```
subtype_values:Subtype \(\rightarrow\) State \(\rightarrow \mathbf{P}\) Value
\(\forall S:\) State; \(s:\) Subtype \(\mid\) s.type \(\in\) dom the_store \((S)\).types •
    subtype_values \((s, S)=\{v:\) Value \(\mid v \in\) type_values \((\) s.type,\(S) \wedge v\) satisfies s.constraint \(\}\)
```

We use function subtype to create subtype values:

```
subtype : Type_location \(\times\) Constraint \(\times\) Attributes \(\rightarrow\) Subtype
subtype \((t, c, a)\). type \(=t\)
subtype \((t, c, a)\).constraint \(=c\)
subtype \((t, c, a) \cdot\) attributes \(=a\)
```


3.5.2 Partial Subtypes

Partial constraints are similar to constraints, except they may contain references to discriminants in place of values.

```
PartiaLvalue ::= value}\langle\langleV=\lue\rangle\rangle|discriminant_ref \\langleId\rangle
PartiaLdiscrete_range == PartiaLvalue }\times\mathrm{ PartiaLvalue
Partialconstraint ::= no_constraint
    | range_constraint \<PartiaL_discrete_range\rangle\rangle
    | index_constraint \\langleseq q PartiaL_discrete_range\rangle\rangle
    | discriminant_constraint\\langleId + PartiaLvalue\rangle\rangle
    | indirect_index_constraint(\seq}\mp@subsup{|}{1}{}PartiaL_discrete_range\rangle
    | indirect_discriminant_constraint \<Id ↔PartiaLvalue\rangle)
```

A partial subtype combines a subtype and a partial constraint. (Using the subtype allows us to do a "dependent compatibility check" at the right time, and also gives us the needed attributes when we actualize.)

```
PartiaLsubtype== Subtype }\times\mathrm{ PartiaLconstraint
```

Given a mapping from discriminant names to values, a partial constraint can be turned into a true constraint.

```
actualize_value: Binding }->\mathrm{ Partial_value }->\mathrm{ Value
actualize_partial_range : Binding }->\mathrm{ PartiaLdiscrete_range }->\mathrm{ Range
actualize_constraint : Binding }->\mathrm{ PartiaLconstraint }->\mathrm{ Constraint
actualize_subtype: Binding }->\mathrm{ PartiaLsubtype }->\mathrm{ Subtype
actualize_value f (value v)=v
actualize_value f(discriminant_ref n)=f(n)
actualize_partial_range f (l,h)=
    discrete_range(actualize_value f l,actualize_value f h)
actualize_constraint f no_constraint = no_constraint
actualize_constraint f(range_constraint (l,h))=
    range_constraint(actualize_partial_range f(l,h))
actualize_constraint f(index_constraint s)=
    index_constraint((actualize_partial_range f)\circs)
actualize_constraint f(discriminant_constraint d)=
    discriminant_constraint((actualize_value f)\circd)
actualize_constraint f(indirect_index_constraint s)=
        indirect_index_constraint((actualize_partial_range f)\circs)
actualize_constraint f(indirect_discriminant_constraint d)=
    indirect_discriminant_constraint((actualize_value f)\circd)
actualize_subtype f s=
    \muSubtype | type = s.type ^
        constraint = actualize_constraint f s.constraint ^
        attributes = s.attributes
```


3.5.3 Derived Types and Classes

A derived type is a new entity, but it generally uses a copy of the parent descriptor. The set of values of the derived type is then the same as the set of values of the parent type. However, when a derived type definition furnishes new discriminants or defines a type extension, a new descriptor is needed.

The store records some information about derivation, by recording the (optional) parent type [3.4(1)] of every known type.

$$
\begin{aligned}
& \text { parent : State } \rightarrow(\text { Type_location } \rightarrow \text { Type_location }) \\
& \hline \text { parent }(S)=\left\{t, t^{\prime}: \text { Type_location } \mid \text { fst }(\text { the_store }(S) . \text { types }(t))=\operatorname{some}\left(t^{\prime}\right)\right\}
\end{aligned}
$$

Type extensions are considered in Section 3.5.8. Abstract types are considered in Section 3.5.8.1.

3.5.3.1 Derivation Classes

The descriptor for a class_wide type has the form class_dsc (t), where t is the Type_location of the root of the class. The values of this type are the values of all types derived (directly or indirectly) from t :

$$
\left.\begin{array}{l}
\text { descriptor_values }(\text { class_dsc }(t), S)= \\
\bigcup \bigcup\left\{t^{\prime}: T y p e _l o c a t i o n ~\right.
\end{array}\left(u^{\prime}, u\right) \in \operatorname{parent}(S)^{*} \bullet \text { descriptor_values }\left(t^{\prime}, S\right)\right\} \text { \} }
$$

The notions of [3.4.1(10)] are easily defined:

```
descendant, ancestor : State \(\rightarrow\) (Type_location \(\leftrightarrow\) Type_location)
ultimate_ancestor : State \(\times\) Type_location \(\rightarrow\) Type_location
\(\operatorname{ancestor}(S)=\operatorname{parent}(S)^{*}\)
descendant \((S)=\operatorname{ancestor}(S)^{-1}\)
\(t \in\) dom the_store \((S)\).types \(\Rightarrow\)
    ultimate_ancestor \((S, t)=((\operatorname{ran} \operatorname{parent}(S)) \notin \operatorname{ancestor}(S)) t\)
```


3.5.4 Scalar Types

Every scalar type records a base range, in addition to any other needed information.

```
base_range:Type_Descriptor }->\mathrm{ Range
```

Scalar types are either discrete types or real types. A value of discrete type is simply an integer; a value of a real type is a rational number.

Each scalar subtype determines a range, as specified in [3.5(6)]:

$$
\begin{aligned}
& \text { range_of_subtype }: \text { Subtype } \times \text { Store } \rightarrow \text { Range } \\
& \sigma . \text { constraint }=\text { range_constraint }(R) \Rightarrow \text { range_of_subtype }(\sigma, S)=R \\
& \sigma . \text { constraint }=n o _c o n s t r a i n t ~
\end{aligned} \Rightarrow \text { range_of_subtype }(\sigma, S)=\text { base_range }(\text { snd }(\text { the_store }(S) . t y p e s(\sigma . t y p e))) \text {) } l
$$

3.5.4.1 Enumeration Types

The type descriptor for an enumeration type has the form enumeration_dsc(n), where $n: \mathbf{N}_{1}$ gives the number of enumerands.

The base range of the enumeration is the set of discrete values with position numbers between 0 and $n-1$ (inclusive). The values of an enumeration type are the values in the base range.

```
base_range(enumeration_dsc(n)) = discrete_range(0,n-1)
descriptor_values(enumeration_dsc( }n),S)=\mathrm{ discrete_value( (0 . n n-1D
```


3.5.4.2 Character Types

Character types are simply enumeration types.

3.5.4.3 Boolean Types

Boolean types are simply enumeration types.

3.5.4.4 Integer Types

There are three descriptors for integer types:

- signed_integer_dsc(bf,bl,f,l), with bf,bl,f,l:Z satisfying (according to [3.5.4(7)]),

1. $b f \leq 0 \leq b l$,
2. $b f+b l \in\{-1,0\}$, and
3. $\{f, l\} \subseteq b f \ldots b l$.

The base range of this type is $b f \ldots b l$.

- modular_integer_dsc(m), with $m: \mathbf{N}_{1}$. (The base range is $0 \ldots(m-1)$ [3.5.4(7)].
- universal_integer_dsc(bf,bl) for $b f, b l: \mathbb{Z}$ (although the base range seems to be irrelevant here).
root_integer is just a particular signed integer type.
In every case, the set of valid values of the type consists of all discrete values [3.5.4(6)].
descriptor_values $($ signed_integer_dsc $(b f, b l, f, l), S)=$ discrete_value $(\mathbb{Z}) \cup$ Invalid_value
descriptor_values(modular_integer_dsc(m),S)=discrete_value $(\mathbb{Z}) \cup$ Invalid_value
descriptor_values(universal_integer_dsc $(b f, b l), S)=$ discrete_value $(\mathbb{Z}) \cup I n v a l i d _v a l u e$
base_range $($ signed_integer_dsc(bf $, b l, f, l))=$ discrete_range $(b f, b l)$
base_range $($ modular_integer_dsc $(m))=$ discrete_range $(0, m-1)$
$b a s e_{-} r a n g e\left(u n i v e r s a l _i n t e g e r _d s c(b f, b l)\right)=$ discrete_range $(b f, b l)$

3.5.4.5 Floating Point Types

As acknowledged in the Ada 9X Rationale, the core language leaves the semantics of floating point operations largely unspecified. By contrast, the floating point annex (Annex G) is quite precisethough some flaws in the annex will be noted below. Therefore our model has two parts, one for the core and the other for Annex G.

The semantics of the Reference Manual refers to the underlying machine values and operations, and makes features of them visible, for example, in the values of attributes. We have attempted to model this semantics directly, so that it will be clear how to tell whether an actual implementation satisfies the semantic rules. This provides a model from the point of view of the implementor. It would have been easier (and from some points of view, perhaps, preferable) to make a model from the user's point of view: e.g., take the values of the attributes as given and simply state axiomatically, in terms of the attributes, the resulting constraints on the values returned by the predefined operations. The user's model is, of course, a consequence of the implementor's model.

The descriptor for a floating point type has four components:

float_dsc $\left\langle\left\langle\mathbf{N}_{1} \times\right.\right.$ Rational \times Rational \times Implementation $\left.\rangle\right\rangle$

The first three components are provided directly by the type's definition: the requested precision and the bounds of its constraint. The fourth component characterizes the chosen implementation of the type. The descriptor for an integer type contains a component with analogous information, namely, the bounds of the underlying base type. We could represent the fourth component in a finitary way by listing the values of a large number of floating point attributes determined by the implementation. Instead, this component of the descriptor will consist of a model of the implementation itself, from which the attributes can be calculated.
descriptor_values $\left(\right.$ float_dsc $\left.\left(n, v, v^{\prime}, i m p\right), S\right)=$ real_value (IFloat)
base_range (float_dsc(n,v, $\left.\left.v^{\prime}, i m p\right)\right)=\inf (i m p . m a . n u m b e r s) \ldots s u p(i m p . m a . n u m b e r s)$

3.5.4.6 The core model of floating point

The values of a floating point type are rationals, with the possible addition of some extra things like signed zeroes or NaN's. For now these extra possibilities are ignored.

```
Float == RationalU...
```

There is a problem in the Reference Manual: The possibility of signed zeroes or NaN's is incompatible with [RM-83 3.5.7(8)], which says that the set of values for a floating point type is the set of rational numbers.
3.5.4.6.1 Machine arithmetics Elaboration of a floating point type declaration includes the choice of an appropriate Implementation (from some predefined non-empty finite set of them) to model the type. One component of an implementation is a machine arithmetic, which consists of a radix, a set of machine numbers, and relations modeling the predefined binary and unary floating point operations. Floating point operations will be modeled not as functions but as relations, in order to model their potential non-determinism. Some of the predefined binary floating point operations return floats and some return booleans; all unary operations return floats. It is convenient to add a special "return value," overflow, to represent the possibility of overflow:

```
FloatResult ::= overflow|result \(\langle\langle\) Float \(\rangle\rangle\)
BinOpFloat \(==\) Float \(^{2} \leftrightarrow\) FloatResult
BinOpBool \(==\) Float \(^{2} \leftrightarrow\) Boolean
UnOp \(==\) Float \(\leftrightarrow\) FloatResult
```

It will also be handy to have an operation that extracts the (non-overflow) Float values from a set of FloatResults:

floats_of $: \mathbf{P}$ FloatResult \rightarrow Float
floats_of $(X)=$ result $\sim(X)$

In schema MachineArithmetic:

- radix is the radix of the machine representation
- numbers is the set of machine numbers--that is, the set of storable values that will "fit" in any variable of the type.
- plus, equals, ..., are relations modeling the predefined floating point operations; convert represents type conversion of an arbitrary real value to a machine number of this arithmetic.

Notice that operations like plus are not restricted to returning machine numbers of the type as values. The machine numbers represent the storable values of the type, but operations may return, e.g., extra-precision values that are not immediately rounded.

```
MachineArithmetic
radix: N
numbers: F F Float
plus: BinOpFloat
equals : BinOpBool
uminus:UnOp
convert: UnOp
float_outcomes:P Float
float_outcomes =
    numbers \cupfloats_of(ran plus) \cup . .\cup floats_of(ran convert)
(float_outcomes)}\mp@subsup{}{}{2}\subseteq\operatorname{domplus
(float_outcomes)}\mp@subsup{)}{}{2}\subseteq\mathrm{ dom equals
float_outcomes \subseteq domuminus
Float \subseteqdom convert
ran convert \subseteqma.numbers
sup(numbers) \leq -inf(numbers)
```

The axioms involving float_outcomes are technical conditions guaranteeing that the (non-overflow) results of any operation can legitimately be passed as arguments to any of the others.

The concluding inequality is all we can represent formally of paragraph 3.5.7(8):
The base range (see 3.5) of a floating point type is symmetric around zero, except that it can include some extra negative values in some implementations.

Note: It would probably be reasonable to suppose that the machine numbers are (roughly) symmetric in a stronger sense: the set of machine numbers between - sup(numbers) and sup(numbers) is closed under additive inverse. The Reference Manual does not require this.
Note: This definition could be shortened if we simply assumed that the relations modeling all the predefined operations were total. One reason for not making that assumption is the desire that there be an obvious relation between this definition and actual floating point implementations. In representing an actual implementation as a machine arithmetic two principles apply: First, the plus relation modeling an actual implementation of + should contain $((x, y), z)$ if z is the actual result (presumably computed by the hardware in some register) of summing x and y; and should also include ($(x, y), z^{\prime}$) for every possible "perturbation" z^{\prime} of z obtained by moving z to and from registers of other precisions or to and from storage. (Similar considerations apply to all other operations.) Second, it is sound to model an implementation by using relations that are supersets of this "minimal" model.
3.5.4.6.2 Parameters of floating point implementations We need two kinds of specifications for describing aspects of floating point implementations: A MachineParam is a specification requiring that certain floating point numbers actually be machine numbers of an implementation. It does not constrain the semantics of the floating point operations. The "representation-oriented attributes" of a type will be defined to return, essentially, the "strongest" MachineParam satisfied by the type's implementation. (Strictly speaking, we will define what it means for a machine arithmetic
to satisfy a MachineParam, and a machine arithmetic is only one component of an implementation.) An AccurParam does constrain the behavior of the floating point operations. Annex G will define the "model-oriented attributes" of a type to return, essentially, the strongest AccurParam satisfied by the type's implementation. The core of the Reference Manual says very little about the relation between the implementation and these model attributes.
3.5.4.6.3 Machine parameters A MachineParam is a triple whose elements are interpreted as, respectively, a mantissa length, a minimum exponent, and a maximum exponent.

```
MachineParam
mantissa: N}\mp@subsup{\mathbf{N}}{1}{
emin:{i:N |i<0}
emax:(N
```

A machine arithmetic satisfies a MachineParam if all the canonical numbers defined in terms of these parameters (and of the machine arithmetic's radix) are machine numbers:

$$
\begin{array}{|l}
\text { sat_float_param }: \text { MachineArithmetic } \leftrightarrow \text { MachineParam } \\
\hline(\text { ma,fp }) \in \text { sat_float_param } \Leftrightarrow \\
\text { BoundedCanonical }(\text { ma.radix,fp.mantissa,fp.emin,fp.emax }) \subseteq \text { ma.numbers }
\end{array}
$$

The BoundedCanonical numbers are defined in Section 3.5.4.6.4. Note that sat float param does not constrain the operations of the machine arithmetic in any way.

A first MachineParam is "improved by" a second if the second is at least as restrictive a specification as the first.

$$
\begin{gathered}
\text {-improved_by_: MachineParam } \leftrightarrow \text { MachineParam } \\
\hline\left(p_{1}, \text { emin }_{1}, \text { emax } x_{1}\right) \text { improved_by }\left(p_{2}, \min _{2}, \text { emax } \max _{2}\right) \Leftrightarrow \\
p_{1} \leq p_{2} \wedge \operatorname{cmin}_{1} \geq e \min _{2} \wedge e \max _{1} \leq e \max _{2}
\end{gathered}
$$

A MachineParam $f p$ for $m a$ is maximal if $m a$ satisfies $f p$ but satisfies no strict improvement of $f p$. The function max_mach_params (ma) returns the set of all maximal MachineParams satisfied by $m a$.

```
max_mach_params : MachineArithmetic \(\rightarrow\) F MachineParam
    \(m a x_{-} m a c h \_p a r a m s(m a)=\)
    maximal( restrict \((\{\) mattr \(\mid\) sat_float_param(ma, mattr) \},
    _improved_by_))
```

The generic constant maximal returns the set of maximal values of a relation. The generic constant restrict returns the result of restricting both the domain and range of a relation to the same set. These constants are defined in Section 3.1.

There is a problem in the Reference Manual: [RM-83 A.5.3] defines the representation-oriented attributes of a floating point type. They are intended, collectively, to denote a "best" MachineParam satisfied by the machine arithmetic of the type, but the definitions given there are not quite right. In particular, if $m a$ is the machine arithmetic chosen to implement type T, the rules of the Reference Manual do not guarantee that

```
ma sat_float_param (T'machine_mantissa, T'machine_emin, T'machine_emax)
```

although this is surely one intended consequence of the rules.
3.5.4.6.4 Representations of floating point The canonical representions of floating point numbers are defined in the core semantics, Appendix A.

Our definitions will represent fractions with radix r and mantissa length m by length- m sequences of the "digits" $0, \ldots, r-1$. A normal representation is a representation whose first element is nonzero, or which consists solely of zeroes.

```
reps: \(\mathbf{N}_{1} \times \mathbf{N}_{1} \rightarrow \mathbf{P} \operatorname{seq}(\mathbf{N})\)
normal_reps \(: \mathbf{N}_{1} \times \mathbf{N}_{1} \rightarrow \mathbf{P} \operatorname{seq}(\mathbf{N})\)
\(\operatorname{reps}(r, m)=1 \ldots m \rightarrow 0 \ldots(r-1)\)
\(s \in\) normal_reps \((r, m) \Leftrightarrow s \in \operatorname{reps}(r, m) \wedge\)
    \(s(1)=0 \Rightarrow \forall i: \operatorname{dom}(s) \bullet s(i)=0\)
```

The operation fraction value returns the fraction represented by the sequence s in radix r-that is, the "decimal" . $s(1) s(2) \ldots s(m)$, understood as a literal in base r.

```
fraction_value : N}\mp@subsup{\mathbf{N}}{1}{}\times\operatorname{seq}(\mp@subsup{\mathbf{N}}{1}{})->\mathrm{ Rational
fractions:}\mp@subsup{\mathbf{N}}{1}{}\times\mp@subsup{\mathbf{N}}{1}{}->\mathbf{P}\mathrm{ Rational
normal_fractions: N}\mp@subsup{\mathbf{N}}{1}{}\times\mp@subsup{\mathbf{N}}{1}{}->\mathbf{P}\mathrm{ Rational
fraction_value(r,s)=\mp@subsup{\Sigma}{i=1}{#s}s(i)*\mp@subsup{r}{}{-i}
fractions(r,m)=fraction_value(|reps(r,m))
normal_fractions(r,m)= fraction_value(|normal_reps(r,m))
```

The model floating point numbers are those suitably definable in scientific notation, i.e., as fractions times powers of the radix.

$$
\begin{aligned}
& \text { make_floats : P Rational } \times \mathbf{Z} \times \mathbf{N}_{1} \rightarrow \mathbf{P} \text { Rational } \\
& \text { make_floats }(\text { fracs, exps, rad })= \\
& \left\{f: \text { Rational, } e: \mathbf{N}_{1} \mid f \in \text { fracs } \wedge e \in \text { exps } \bullet \pm f * \text { rad }^{e}\right\}
\end{aligned}
$$

We are principally interested in two classes of "canonical" floating point numbers:

```
Canonical: }\mp@subsup{\mathbf{N}}{1}{}\times\mp@subsup{\mathbf{N}}{1}{}\times\mp@subsup{\mathbf{N}}{1}{}->\mathbf{P}\mathrm{ Rational
BoundedCanonical: }\mp@subsup{\mathbf{N}}{1}{}\times\mp@subsup{\mathbf{N}}{1}{}\times\mp@subsup{\mathbf{N}}{1}{}\times\mp@subsup{\mathbf{N}}{1}{}->\mathbf{P}\mathrm{ Rational
Canonical(rad, mant, emin)=
    make_floats(normal_fractions(rad,mant),{i:Z|emin\leqi},rad)
BoundedCanonical(rad, mant, emin, emax)=
    make_floats(normal_fractions(rad,mant),
        {i:\mathbb{Z}|emin \leqi\leqemax },
        rad)
```

3.5.4.6.5 Implementations An Implementation consists of a machine arithmetic, a MachineParam modeling the representation-oriented attributes of the arithmetic, and a boolean indicating the response to numeric overflow. The properties of the machine arithmetic do not uniquely determine the appropriate MachineParam.

```
_Implementation
    ma:MachineArithmetic
    machine_attr : MachineParam
    overflows: Boolean
    machine_attr }\in\mathrm{ max_mach_params(ma)
```

An AccurParam is a 6 -tuple whose elements are interpreted as a radix, a mantissa length, a minimum exponent, the bounds for a safe interval, and an indication of whether overflows are to be reported. (The constraints defined by the other parameters are interpreted more strictly if the "overflows" flag is true.)

```
_AccurParam
    radix, mantissa: N
    emin:{i:N |i<0}
    sfirst, slast: Float
    overflows: Boolean
```

It is convenient to have an abbreviation for the set of safe numbers that an AccurParam defines.

$$
\begin{array}{|c|}
\text { safe : AccurParam } \rightarrow \mathbf{P} \text { Float } \\
\hline \text { safe }(\text { ap })=\text { ap.sfirst } \ldots \text { ap.slast }
\end{array}
$$

We will formalize an essential notion of Annex G with _has_accuracy_, which says what it means for an implementation to satisfy an AccurParam. From the core model, we can extract only some minimal properties of this relation, expressed in the weaker notion _has_weak_acc_:

```
_has_weak_acc__ : Implementation }\leftrightarrow\mathrm{ AccurParam
_has_accuracy_ : Implementation }\leftrightarrow\mathrm{ AccurParam
imphas_weak_acc ap \Leftrightarrow
    ap.radix = imp.ma.radix ^
    ap.mantissa \leqimp.machine_attr.mantissa ^
    ap.emin \geqimp.machine_attr.emin }
    {ap.sfirst,ap.slast }\subseteqma.numbers ^
    imp.overflows = ap.overflows
imphas_accuracy ap => imphas_weak_acc ap
```

For any implementation imp, in Annex defines model_attr(imp), a unique "best" AccurParam satisfied by an implementation. All we can say in the core semantics is that imp satisfies the weak accuracy requirements imposed by model_attr(imp).

```
    model_attr : Implementation }->\mathrm{ AccurParam
    imphas_weak_acc model_attr(imp)
```

More precisely, Annex G defines model_attr(imp) to be a particular maximal ap such that imp has_accuracy ap.

The maximum number of decimal digits of accuracy is uniquely determined by the model-oriented attributes of the implementation.

```
digits : Implementation \(\rightarrow \mathbf{N}_{1}\)
imp.radix \(=10 \Rightarrow \operatorname{digits}(i m p)=\) model_attr \((i m p) \cdot \operatorname{mantissa}\)
imp.radix \(\neq 10 \Rightarrow\)
    \(\operatorname{digits}(\operatorname{imp})=\operatorname{ceiling}(\)
        \((\) model_attr \((i m p) . m a n t i s s a * \log (10) / \log (i m p . m a . r a d i x))+1\)
    )
```

There is a problem in the Reference Manual: This definition of "digits" is not given anywhere in the Reference Manual. It is surely the intended one, but it does not seem to follow from anything in the Reference Manual.

There is a problem in the Reference Manual: Section A.5.3(67-68) defines the value of S'Model_Mantissa in incompatible ways, depending on whether or not the implementation "supports" Annex G. The same is true for S^{\prime} Model Emin. In consequence, an implementation can be valid for Core+G but not valid for the Core alone. (By contrast, the core semantics makes the semantics of the model-oriented attributes 'Safe_First and 'Safe_Last upward compatible by leaving them implementation-defined.)

The definitions of S'Model Mantissa and S'Model Emin given here are weaker than those of the core semantics. We require only that

```
S'Model_Mantissa \leq S'Machine_Mantissa
    S'Model_Emin \geq S'Machine_Emin
```

(See the definition of _has_weak_acc_.)
These definitions make the core semantics compatible with Annex G. In addition, they capture the only information that the present version of the Reference Manual allows a user to rely on across all implementations.
3.5.4.6.6 Satisfaction of a type definition A floating point declaration supplies a requested precision (a value of \mathbf{N}) and, optionally, a constraint (two Rationals). The accuracy of the type's implementation must be at least as great as the requested precision and the safe range of the implementation must include the interval defined by the constraint. This requirement is captured by the definition of sat_float_def.

The Reference Manual says that any such implementation may be chosen. We represent the particular strategy that the implementation uses for choosing the implementation (such as choosing the coarsest acceptable implementation type) by the relation implements_float_def. The judgement defining elaboration of a type definition selects an implementation satisfying implements_foat_def. All the reference manual requires of this relation is that it be consistent with sat_float_def:

```
sat_float_def,implements_float_def:
    Implementation }\leftrightarrow(\mathbf{N}\times\mathrm{ Rational }\times\mathrm{ Rational )
    (imp,(n,L,R))\in sat_float_def }
    L..R\subseteqmodel_attr(imp).sfirst . . model_attr(imp).slast ^
    m\leqdigits(imp)
implements_float_def \subseteqsat_float_def
```

3.5.4.6.7 Attributes If $i m p$ is the implementation chosen for type T, then the basic implementationoriented attribute values of T are given as follows, where we let imp.machine_attr $=($ mant, emin, emax $)$:

T'Machine_Radix	$=$ imp.ma.radix
T'Machine_Mantissa	$=$ mant
T'Machine_Emin	$=$ emin
T'Machine_Emax	$=$ emax
T'Base'First	$=$ min(imp.ma.numbers $)$
T'Base'Last	$=$ max (imp.ma.numbers $)$

The limits of the base range are the least and greatest machine numbers. This follows from 3.5(6)
The base range of a scalar type is the range of finite values of the type that can be represented in every unconstrained object of the type
and from 3.5.7(8)
The machine numbers of a floating point type are the values of the type that can be represented exactly in every unconstrained variable of the type.

The basic model-oriented attribute values of an implementation imp are given as follows (where we let model_attr (imp $)=($ Mant, Emin, sfirst, slast $)$):

T'Model_Mantissa	$=$ Mant
T'Model_Emin	$=$ Emin
T'Safe_First	$=$ sfirst
T'Safe_Last	$=$ slast
T'Base'Digits	$=$ digits $(i m p)$

The definition of T'Base'Digits is something of a guess.
Note: The definitions of various attributes, such as S'Model (for floating point subtypes) and S'Machine (for fixed and floating point subtypes) say that the value returned is obtained "by rounding or truncating" the operand "to either one of the adjacent" model or machine numbers, as appropriate. It is not clear from this language whether these operations are non-deterministic.

3.5.4.7 Annex G

Annex G defines some more precise constraints on the floating point operations.
3.5.4.7.1 Model numbers and accuracy An accuracy parameter determines a set of model intervals (intervals bounded by the associated canonical real numbers) and associates a model interval with each bounded set (namely, the smallest model interval that contains it):

```
ModelIntervals : AccurParam }->\mathbf{P}\mathrm{ Float
ModelIntOf:\mathbf{P Float }\times\mathrm{ AccurParam }->\mathbf{P}\mathrm{ Float}
```

```
u}\in\mathrm{ ModelIntervals(ap) }
```

u}\in\mathrm{ ModelIntervals(ap) }
\existslo,hi:Float *
\existslo,hi:Float *
u=lo..hi^
u=lo..hi^
{lo,hi}\subseteqCanonical(ap.radix, ap.mantissa, ap.emin)
{lo,hi}\subseteqCanonical(ap.radix, ap.mantissa, ap.emin)
ModelIntOf(X,ap)=\bigcap{u\inModelIntervals(ap)|X\subsetequ}

```
ModelIntOf(X,ap)=\bigcap{u\inModelIntervals(ap)|X\subsetequ}
```

Given a "paradigm" operation f and an accuracy specification $a p$, we define for each x the set of results that approximate $f(x)$ to within the demands of ap-namely, the model interval of the set that results from applying f to the model interval of x. (The same applies, mutatis mutandis, to the binary operations.) All definitions follow the same pattern, but the type restrictions of Z require us to provide separate definitions for unary operations, binary operations returning floats, and binary operations returning booleans.

```
ResultUnOp:(Float }->\mathrm{ Float ) x AccurParam }->(\mathrm{ Float }->\mathbf{P}\mathrm{ Float )
    ResultBinOpFloat : (Float }\mp@subsup{}{}{2}->\mathrm{ Float })\times\mathrm{ AccurParam }->(\mathrm{ Float }\mp@subsup{}{}{2}->\mathbf{P}\mathrm{ Float }
    ResultBinOpBool:(Float }\mp@subsup{}{}{2}->\mathrm{ Bool })\times\mathrm{ AccurParam }->(\mp@subsup{F}{\mathrm{ Float }}{}\mp@subsup{}{}{2}->\mathbf{P}\mathrm{ Bool }
    ResultUnOp(f,ap)=
    \lambdax: Float \bullet
        ModelIntOf(f(|ModelIntOf({x},ap)D,ap)
ResultBinOpFloat(f,ap)=
    \lambdax,y:Float -
        ModelIntOf(f(|ModelIntOf({x},ap)\timesModelIntOf({y},ap)D,ap)
ResultBinOpBool(f,ap)=
    \lambdax,y : Float -
    ModelIntOf(f(M)ModelIntOf ({x},ap)\timesModelIntOf({y},ap)D,ap)
```

Operands are "safe for" a paradigm operation if they and all their approximate results are safe.

```
SafeForUnOp:(Float }->\mathrm{ Float ) }\times\mathrm{ AccurParam }->\mathbf{P}\mathrm{ Float
SafeForBinOpFloat : (Float }\mp@subsup{}{}{2}->\mathrm{ Float ) x AccurParam }->\mathbf{P Float }\mp@subsup{}{}{2
SafeForBinOpBool:(\mp@subsup{Float }{}{2}->\mathrm{ Bool ) }\times\mathrm{ AccurParam }->\mathbf{P}\mp@subsup{\mathrm{ Float }}{}{2}
SafeForUnOp(f,ap)=
```



```
SafeForBinOpFloat(f,ap)=
    {(x,y)\in(safe(ap))}\mp@subsup{)}{}{|}|\operatorname{ResultBinOpFloat (f,ap)(x,y)\subseteqsafe(ap)}
SafeForBinOpBool(f,ap)=
    {(x,y)\in(safe(ap))}\mp@subsup{)}{}{|}|\operatorname{ResultBinOpFloat (f,ap)(x,y)\subseteqsafe(ap)}
```

A UnOp approximates a "paradigm" function to within some accuracy specification if it associates all operands with results that are acceptable approximations to that function. The same goes for BinOpFloats and BinOpBools. In particular, safe operands may not return an overflow; and if the "overflows" flag is true, unsafe operands must return either an approximately correct result or the overflow token.

```
_ApproxUnO\mp@subsup{p}{-}{\prime}:UnOp}\leftrightarrow(\mathrm{ Float }->\mathrm{ Float ) × AccurParam
ApproxBinOpFloat_ : BinOpFloat }\leftrightarrow(\mp@subsup{\mathrm{ Float }}{}{2}->\mathrm{ Float })\times\mathrm{ AccurParam
ApproxBinOpBool_ : BinOpBool }\leftrightarrow(\mp@subsup{\mathrm{ Float }}{}{2}->\mathrm{ Float )}\times\mathrm{ AccurParam
```

op Approx UnOp $(f, a p) \Leftrightarrow$
$\forall x \in$ dom $o p$ -
$(x \in \operatorname{SafeForUnOp}(f, a p) \Rightarrow$
overflow $\notin \operatorname{op}(\{\{x\})$
\wedge
floats_of $(o p(\{\{x\} D) \subseteq \operatorname{Result} U n O p(f, a p)(x))$
\wedge
(ap.overflows $=$ true \Rightarrow
floats_of $(o p(\{\{x\} D) \subseteq \operatorname{ResultUnOp}(f, a p)(x))$
op Approx BinOpFloat $(f, a p) \Leftrightarrow$
$\forall(x, y) \in$ dom $o p$ •
$((x, y) \in \operatorname{SafeForBinOpFloat}(f, a p) \Rightarrow$
overflow \notin op $(\{(x, y)\} 0$
\wedge
floats_of $(o p(\{\{(x, y)\} 0 \subseteq \operatorname{ResultBinOpFloat}(f, a p)(x, y))$
\wedge
(ap.overflows $=$ true \Rightarrow
floats_of $(o p(\{\{(x, y)\} D) \subseteq \operatorname{ResultBinOpFloat}(f, a p)(x, y))$
op Approx BinOpBool $(f, a p) \Leftrightarrow$
$\forall(x, y) \in \operatorname{dom} o p$.
$((x, y) \in \operatorname{SafeForBinOpBool}(f, a p) \Rightarrow$
overflow $\notin \operatorname{op}(\{(x, y)\})$
\wedge
floats_of $(o p \backslash\{(x, y)\} D) \subseteq \operatorname{ResultBinOpBool}(f, a p)(x, y))$
\wedge
(ap.overflows $=$ true \Rightarrow
floats_of $(o p(\{(x, y)\} \emptyset) \subseteq \operatorname{ResultBinOpBool}(f, a p)(x, y))$

We can now define the property _has_accuracy_ as the assertion that each machine operation approximates the appropriate paradigm function to within the given accuracy parameters:

```
imphas_accuracy ap \Leftrightarrow
    imphas_weak_acc ap ^
    imp.ma.plus Approx BinOpFloat (+,ap)^
    imp.ma.equals Approx BinOpBool(=, ap) ^
    ...
    imp.ma.convert Approx UnOp(id Float,ap)
```

3.5.4.7.2 Model-oriented attributes To define modelattr we choose a particular maximal AccurParam satisfied by an implementation. (Note: The definitions below do not follow the definition in version 5.0, which is incorrect, but Ken Dritz's subsequent reworking of version 5.0.)

```
best_mant : \(\mathbf{P}\) AccurParam \(\rightarrow \mathbf{P}\) AccurParam
best_emin : \(\mathbf{P}\) AccurParam \(\rightarrow \mathbf{P}\) AccurParam
best_first : \(\mathbf{P}\) AccurParam \(\rightarrow \mathbf{P}\) AccurParam
best_last : \(\mathbf{P}\) AccurParam \(\rightarrow \mathbf{P}\) AccurParam
best_ap : \(\mathbf{P}\) AccurParam \(\rightarrow \mathbf{P}\) AccurParam
best_ap \((X)=\)
    best_last(best_first(best_emin(best_mant \((X)))\) )
model_attr \((i m p)=\)
    \(\mu a p:\) AccurParam \(\bullet a p \in\) best \(_{a} p\left(a p^{\prime}:\right.\) AccurParam |imphas_accuracy ap \(\left.{ }^{\prime}\right) a p \in\) best_mant \((X) \Leftrightarrow\)
    \(a p \in X \wedge \forall a p^{\prime}: X \bullet a p . m a n t i s s a \geq a p^{\prime}\). mantissa
\(a p \in \operatorname{best} \_\)emin \((X) \Leftrightarrow\)
    \(a p \in X \wedge \forall a p^{\prime}: X \bullet a p . e m i n \leq a p^{\prime} . e m i n\)
\(a p \in\) best_first \((X) \Leftrightarrow\)
    \(a p \in X \wedge \forall a p^{\prime}: X \bullet a p . s f i r s t \leq a p^{\prime}\). sfirst
\(a p \in \operatorname{best\_ last}(X) \Leftrightarrow\)
    \(a p \in X \wedge \forall a p^{\prime}: X \bullet a p . s l a s t \geq a p^{\prime}\). slast
```

There is, of course, exactly one best_ap:

```
\#best_ap \((\{a p:\) AccurParam \(\mid\) imphas_accuracy \(a p\})=1\)
```


3.5.5 Array Types

The descriptor for an array type has the form array_dsc(i,c), where i : seq Subtype is a sequence of discrete subtypes (the index subtypes), and c : Subtype is the component subtype.

```
descriptor_values(array_dsc(i,c),S)=
    {B:Index_bounds,v:(seq Value) }->\mathrm{ subtype_values(c,S)
            | Array (B,v) \in Value ^ B= range_of_subtype ○ i
            - Array(B,v)}
```


3.5.5.1 String Types

String types are just particular array types.

3.5.6 Discriminants

Discriminants are specialized components of some composite types. We incorporate discriminants (which might be null) into the descriptor for every type that can have discriminants, in order to avoid a tedious duplication of definitions in similar cases.

This model does not account for access discriminants.

```
Discriminant_descriptor ==Id \xrightarrow{}{a}\mathrm{ Subtype }\times\mathrm{ optional Thunk}
discriminant_values : Discriminant_descriptor }\times\mathrm{ State }->\mathbf{P}\mathrm{ Binding
discriminant_values(d,S)=
    {f:adomd->Values}|\foralln\in\mathrm{ adom d }\bulletf(n)\in\operatorname{subtype_values(first (d\cdotn),S)}
```


3.5.7 Record Types

It seems like a waste of effort to describe records with discriminants separately from records without discriminants, as there is a good deal of overlap in the two cases. Thus, we give every record type descriptor discriminants (which may be null).

Similarly, it seems like a big duplication of effort to describe tagged record types separately. Thus, we will give every record descriptor a tag (which may be null in the case of an untagged record).

```
Component_list_descriptor \(==\)
    (Id \(\xrightarrow{a}\) Partial_subtype \(\times\) optional Thunk) \(\times\) optional Variant_descriptor
```

A record type descriptor consists of a description of the discriminants (if any), and a component list description. The values of such a descriptor are records with fields for the discriminants, and fields for the other components. The subtypes of these latter fields (and even the exact fields present) may depend on a value of a discriminant.

```
descriptor_values \((\) record_dsc \((t, D A, C L), S)=\)
    \(\left\{d, r:\right.\) Binding \(\mid d \in\) discriminant_values \((D A, \rho) \wedge r \in C L \_\)values \((C L, d, S)\)
                        - \(\operatorname{record}(t, d, r)\}\)
```

A binding giving the values of the discriminants is given to function $C L_{-}$values, so that the actual subtype of each component can be determined.

```
CL_values: Component_list_descriptor \(\times\) Binding \(\times\) State \(\rightarrow \mathbf{P}\) Binding
    \(C L_{\text {_values }}((A, V), d, S)=\{f, v:\) Binding \(\mid \operatorname{dom} f=\operatorname{adom} A \wedge\)
    \(\left(\forall n \in \operatorname{dom} f \bullet f(n) \in S u b t y p e \_v a l u e s(\right.\) actualize_subtype \(\left.(f i r s t(A \cdot n), d), S)\right)\)
    \(v \in \operatorname{Variant} t_{-}\)values \((V, d, S)\)
    - \(f \cup v\}\)
```


3.5.7.1 Variant Parts and Discrete Choices

A variant descriptor has the Id of the discriminant of the variant part, and a mapping from the possible values of this discriminant to component list descriptors.

```
Variant_descriptor \(==I d \times(\) Discrete_value \(\rightarrow\) Component_list_descriptor \()\)
    Variant_values : (optional Variant_descriptor) \(\times\) Binding \(\times\) State \(\rightarrow \mathbf{P}\) Binding
    Variant_values(none, \(d, S)=\{\varnothing\}\)
    \(d(n) \in \operatorname{dom} f \Rightarrow \operatorname{Variant\_ values}(\operatorname{some}(n, f), d, S)=C L \_v a l u e s(f(d(n)), d, S)\)
    \(d(n) \notin \operatorname{dom} f \Rightarrow \operatorname{Variant\_ values}(\operatorname{some}(n, f), d, S)=\{\varnothing\}\)
```


3．5．8 Tagged Types and Type Extensions

The model for tagged types has not yet been developed．

3．5．8．1 Abstract Types and Subprograms

［AARM 3．9．3（8．a）］asserts that there are no values of an abstract type．But it is possible to have subprograms for such subtypes，and for non－abstract descendents to inherit them．If we want to say something about the meanings of such subprograms，we probably need to talk about the values of the parameters．（In some sense，these are parameters of type T＇Class．）

On the whole，it probably seems easiest to use a model of values as though the type were not abstract；we can also treat abstract subprograms as though their bodies raised Program＿Error．

3．5．9 Access Types

The descriptor for an access type has the form access＿dsc（ s, m ），where $s:$ Subtype＿location describes the designated subtype of the access type，and m ：Access＿mode describes the access mode．

```
Access_Mode \(::=\) constant_access \(\mid\) all_access \(\mid\) pool_access
```

A value of an access－to－object type is either a null value，or a view of an object of the designated subtype：

```
descriptor_values(access_dsc \((s, m), S)=\)
    \(\{\) access_value(none) \(\} \cup\)
    \(\left\{\right.\) access_value(some(object_view(l, \(\left.s^{\prime}\right)\) )) |
        the_store \((S)\).objects \((l) \in \operatorname{subtype}\) values \((\) the_store \((S) . \operatorname{subtypes}(s), S)\}\)
```


3．5．9．1 Incomplete Type Declarations

The descriptor incomplete describes an incomplete type．When the full type definition for the type is elaborated，the type environment is updated to reflect the appropriate descriptor for the type．

Note that there is an issue about the first subtype of an incomplete type；it is constrained if there is no discriminant part．However，the first subtype corresponding to the full definition may be unconstrained．（See comment 94－3901．c．）

There are no values of an incomplete type．

3．6 States

A state combines a store，an external state，and control flow information（in the usual cases），or is erroncous or unpredicted．We use the state unpredicted in those cases where our semantic definition， in the interests of simplicity，makes no prediction about the effect of a program（even though the Standard defines the effect，or calls it implementation－defined）．

```
State ::= normal\<Store\rangle
    | exception\\langleExceptionId \times Store\rangle\rangle
    | exit《\Loop_Id \times Store》
    | proc_return\\Store\rangle
    | func_return\\langleValue }\times\mathrm{ Store》)
    | intermediate\\langleStore\rangle\rangle
    | erroneous
    | unpredicted
```

Function the＿store gives the store associated with a state．

Chapter 4

Judgements

This section summarizes the domains and judgements used in the definition of Ada 9 X semantics. The details of the domain definitions are given in Chapter 3. The formal definitions of these judgements are given in later sections.

4.1 Domains

The definition is based on the concepts, domains and support functions, introduced in Chapter 3. Specifically, it nses the domains listed in Table 4.1

All of these domains are generated by term algebras (subject to the constraints defined in Chapter 3). Constructors for these domains are given below. In addition, the domains of component associations and -wiromments are defined as follows:

$$
\begin{aligned}
\text { CompAssoc } & =\operatorname{list}((I d \times(\text { Subtype } \times \text { optional }(\text { Thunk })))) \\
\text { Emironment } & =(I d \rightarrow \text { View })
\end{aligned}
$$

Also the signatures for all functions (other than contructors) and predicates are given. Note that these signatures are those used in the Prolog representation of judgements and may differ from those given in Chapter 3.

4.1.1 Types

The structure of a type is given by a type descriptor of the form:

```
type Type
    enum-type: integer }->\mathrm{ Type
    modular_type : integer }->\mathrm{ Type
    signed_integer_type : integer }\times\mathrm{ integer }\times\mathrm{ integer }\times\mathrm{ integer }->\mathrm{ Type
    universal_integer_type:integer }\times\mathrm{ integer }->\mathrm{ Type
    array_type : list(Subtype) }\times\mathrm{ Subtype }->\mathrm{ Type
    class_type:Type_location }->\mathrm{ Type
    access_type:Subtype_location }\times\mathrm{ Access_modifier }->\mathrm{ Type
    func_profile: (Id \xrightarrow{}{a}\mathrm{ Parameter ) x Subtype }->\mathrm{ Type}
    proc_profile: (Id 足Parameter) }->\mathrm{ Type
    incomplete_type: Discriminant }->\mathrm{ Type
    record_type: optional(Type_location) }\times\mathrm{ Discriminant }\times\mathrm{ Record_fields }->\mathrm{ Type
```

Access_modifier	access (type) modifier
Action	executable actions
Attributes	subtype attributes
Bool	truth values (non-Ada)
Choice	choices
Constraint	constraints
Discriminant	discriminants
ExId	internal names for exception identifiers
Record_fields	record fields including variants
LValue	L-values (addresses)
LoopId	internal names for loop identifiers
Mode	parameter modes
Object_location	addresses of top-level objects
Object_mode	indication of constancy and aliasing
PartiaLconstraint	partial constraints
PartiaLsubtype	partial subtypes
Partial_value	partial values
Parameter	formal parameters
Range	discrete and real ranges
State	state of a computation
Store	model of memory
Subprogram	subprogram values
Subprogram_label	unique tags for subprogram access values
Subprogram_location	addresses for subprogram values
Subtype	subtypes
Subtype_location	addresses for subtypes
Thunk	an expression with its declaration environment
Type	type descriptors
Type_location	address space for type information
Value	runtime values
Variant	variants
View	views

Table 4.1: Domains used in the judgements

Descriptors of this form are stored in the state and are accessed by unique addresses of sort Type_location. A derived type is represented by a new name for an existing type descriptor. The use of type names has the advantage that it is easy to deal with cyclic types and type completion. It has the disadvantage that types can be understood only in the context of a state.

The domain Type_location contains constants that represent the predefined types of the language:

```
type Type_location
    boolean_tn : Type_location
    character_tn: Type_location
    universal_integer_tn : Type_location
    universal_real_tn:Type_location
    root_integer_tn:Type_location
```

In the case of tagged types, values of Type_location are used as unique tags. The optional Type_location component of a record type descriptor defines the tag of the parent type. Values of sort Type_location are related by the ancestor relation which represents both the derivation and class hierarchy:

```
ancestor(State, Type_location,Type_location)
descendant(State,Type_location,Type_location)
ultimate_ancestor(State, Type_location, Type_location)
```

Access modifiers are used in the descriptors of access types with the obvious meaning.

```
type Access_modifier
    constant_access : Access_modifier
    all_access : Access_modifier
    pooLaccess:Access_modifier
```

Discriminants are represented as follows:

$$
\begin{array}{ll}
\text { type } & \text { Discriminant } \\
& \text { discr: }(\text { Id } \xrightarrow[\rightarrow]{\rightarrow}(\text { Subtype } \times \text { optional }(\text { Thunk }))) \rightarrow \text { Discriminant } \\
\text { (): Discriminant }
\end{array}
$$

Two discriminants can be combined using:

$$
\text { discriminant_union : Discriminant } \times \text { Discriminant } \rightarrow \text { Discriminant }
$$

A thunk represents an expression together with its declaration environment.

```
type Thunk
    thunk : Environment \(\times\) Exp \(\rightarrow\) Thunk
```

A component list represents actualized record fields, i.e., record fields that do not contain partial information that depends on discriminant values.
type $\operatorname{CompAssoc}=\operatorname{list}((I d \times($ Subtype $\times \operatorname{optional}($ Thunk $))))$
The fields of a, possibly discriminated, record type are represented by the domain

type Record_fields

fields $:(I d \xrightarrow{a}($ PartiaL_subtype \times optional $(T h u n k))) \times$ optional $((I d \times$ Variant $)) \rightarrow$ Record_fields
which includes the proper fields (maybe partial) as well as any variant.

Component associations can be constructed from discriminant values and partial component lists or variants:

```
actualized_complist : \((I d \rightarrow\) Value \() \times \operatorname{list}((I d \times(\) PartiaLsubtype \(\times\) optional \((\) Thunk \()))) \rightarrow\) CompAssoc
actualized_components: \((I d \rightarrow\) Value \() \times\) Record_fields \(\rightarrow\) CompAssoc
actualized_variants : \((I d \rightarrow\) Value \() \times(I d \times\) Variant \() \rightarrow\) CompAssoc \()\)
append_components : CompAssoc \(\times\) CompAssoc \(\rightarrow\) CompAssoc
```

A variant part is represented by a pair (Id \times Variant) where the identifier specifies the name of the discriminant and the second component represents the actual fields:

```
type Variant
    variant : list((Choice }\times\mathrm{ Record_fields)) }->\mathrm{ Variant
    \): Variant
```

Given a discriminant value, the actual record fields of a variant are defined by the predicate
the_variant(Variant, Value, Record_fields).

Variant parts are combined using function

$$
\text { variant_union : optional }(I d \times \text { Variant }) \times \text { optional }(I d \times \text { Variant }) \rightarrow \text { optional }(I d \times \text { Variant })
$$

The representation of subprogram access types uses parameter descriptors of the form:

```
type Parameter
    formal : Mode \(\times\) Subtype \(\times\) optional \((\) Thunk) \(\rightarrow\) Parameter
```

where modes are given by:

$$
\begin{array}{ll}
\text { type } & \text { Mode } \\
& \text { in_mode : Mode } \\
& \text { out_mode : Mode } \\
& \text { in_out_mode : Mode }
\end{array}
$$

The following predicates define the set of values of a given type (descriptor):

```
cl_value(State, Record_fields, \((I d \rightarrow\) Value \(),(I d \rightarrow V a l u e))\)
discriminant_value(State, Discriminant, (Id \(\rightarrow\) Value) )
variant_values(State, optional((Id \(\times\) Variant \()),(I d \rightarrow\) Value \(),(I d \rightarrow\) Value \())\)
descriptor_value(State, Type, Value)
```


4.1.2 Values

The representation of values is straightforward using the definition

```
type Value
    invalid_val: Value
    discrete_val: integer }->\mathrm{ Value
    real_val: real }->\mathrm{ Value
    access_val: View }\times\mathrm{ optional(Subprogram_label) }->\mathrm{ Value
    null: Value
    record_val: optional(Type_location) }\times(Id->\mathrm{ Value )}\times(Id ->Value) -> Value
    array_val: list (Range) }\times(\mathrm{ list }(\mathrm{ Value })->\mathrm{ Value })->\mathrm{ Value
```

The term access_val(...) is used for access to object and access to subprogram values. In the latter case, each time a subprogram access is computed a new unique subprogram label

type Subprogram_label

is generated. This label is needed to properly model equality of access to subprogram values.
Note that access values are views. This representation is used to determine the actual subtype of an access value.

Ranges are represented as pairs of values in the obvious way.

```
type Range
    discrete_rng : integer \(\times\) integer \(\rightarrow\) Range
    real_rng : real \(\times\) real \(\rightarrow\) Range
```

The following functions are defined for ranges.

$$
\begin{aligned}
& \text { low_bound }: \text { Range } \rightarrow \text { Value } \\
& \text { high_bound }: \text { Range } \rightarrow \text { Value } \\
& \text { make_range }: \text { Value } \times \text { Value } \rightarrow \text { Range } \\
& \text { base_range }: \text { State } \times \text { Type } \rightarrow \text { Range } \\
& \text { indices }: \operatorname{list}(\text { Range }) \rightarrow \text { set }(\text { list }(\text { Value }))
\end{aligned}
$$

The latter function defines the set of all index vectors that fit a list of (index) ranges.
Sets of (scalar) values are represented using the domain

$$
\begin{array}{ll}
\text { type } & \text { Choice } \\
& \text { choice_range : Range } \rightarrow \text { Choice } \\
& \text { choice_value : Value } \rightarrow \text { Choice } \\
& \text { choice_lst : list }(\text { Choice }) \rightarrow \text { Choice } \\
& \text { choice_default : Choice }
\end{array}
$$

The following are predicates on values

> access_value(Value)
> array_value(Value)
> belongs_to(Value, Range)
> composite_value(Value)
> covers(Value, Choice, Bool)
> discrete_value(Value)
> elementary_value(Value)
> real_value(Value)
> satisfies(Value, Constraint)
> scalar_value(Value)

4.1.3 Subtypes

The definition of subtypes follows the description provided by the Reference Manual:
type Subtype
subtype : Type_location \times Constraint \times Attributes \rightarrow Subtype
Access to the underlying type is indirect through a type location. The present version of the semantics does not use any subtype attributes.

```
type Attributes
    not_used: Attributes
```

Functions defined for subtypes are

```
range_of_subtype : State \(\times\) Subtype \(\rightarrow\) Range
ranges_of_subtypes: State \(\times\) list (Subtype) \(\rightarrow\) list (Range)
type_struct : State \(\times\) Subtype \(\rightarrow\) Type
```

Constraints are

```
type Constraint
    no_constraint: Constraint
    range_constraint: Range }->\mathrm{ Constraint
    index_constraint : list(Range) }->\mathrm{ Constraint
    discriminant_constraint: (Id }->\mathrm{ Value) }->\mathrm{ Constraint
    indirect_index_constraint : list(Range) }->\mathrm{ Constraint
    indirect_discriminant_constraint: (Id }->\mathrm{ Value) }->\mathrm{ Constraint
```

In the case of discriminated record types, component subtypes can be partial if they depend on discriminant values. This leads to the following definitions of partial counterparts of values, constraints, and subtypes.

```
type PartiaLvalue
    p_value:Value }->\mathrm{ PartiaLvalue
    discriminant_ref:Id }->\mathrm{ Partial_value
type Partialconstraint
    p_no_constraint: PartiaL_constraint
    p_range_constraint : (PartiaLvalue }\times\mathrm{ PartiaL_value) }->\mathrm{ PartiaLconstraint
    p_index_constraint : list((PartiaLvalue }\times\mathrm{ PartiaLvalue ) ) }->\mathrm{ PartiaLconstraint
    p_discriminant_constraint : (Id }->\mathrm{ Partial_value ) }->\mathrm{ PartiaLconstraint
    p_indirect_index_constraint : list((Partial_value }\times\mathrm{ PartiaL_value))}->\mathrm{ Partial_constraint
    p_indirect_discriminant_constraint : (Id }->\mathrm{ PartiaLvalue ) }->\mathrm{ PartiaLconstraint
type PartiaLsubtype
    p_subtype:Subtype }\times\mathrm{ PartiaLconstraint }->\mathrm{ PartiaLsubtype
```

Given a discriminant constraint, partial entities can be actualized. This process is defined by the functions:

```
actualized_partial_range : (Id \(\rightarrow\) Value \() \times(\) PartiaLvalue \(\times\) Partial_value \() \rightarrow\) Range
actualized_range_list \(:(I d \rightarrow\) Value \() \times \operatorname{list}((\) PartiaLvalue \(\times\) PartiaLvalue \()) \rightarrow \operatorname{list}(\) Range \()\)
actualized_value : (Id \(\rightarrow\) Value \() \times\) PartiaLvalue \(\rightarrow\) Value
actualized_constraint : \((I d \rightarrow\) Value \() \times\) Partial_constraint \(\rightarrow\) Constraint
actualized_binding_list: binding \((I d \rightarrow\) Value \() \times \operatorname{list}((I d \times\) PartiaLvalue \()) \rightarrow \operatorname{list}((I d \times\) Value \())\)
```

The following predicates on subtypes define the taxonomy of RM 3.2:

```
is_access_to_object_type(State, Subtype)
is_access_to_subprogram_type(State, Subtype)
is_access_type(State,Subtype)
is_array_type(State,Subtype)
is_boolean_type(State, Subtype)
is_by_copy_type(State, Subtype)
is_by_reference_type(State, Subtype)
is_character_type(State, Subtype)
is_composite_type(State, Subtype)
is_discrete_type(State, Subtype)
is_elementary_type(State, Subtype)
is_enumeration_type(State, Subtype)
is_integer_type(State, Subtype)
is_modular_integer_type(State, Subtype)
is_protected_type(State, Subtype)
is_real_type(State, Subtype)
is_record_type(State, Subtype)
is_scalar_type(State, Subtype)
is_signed_integer_type(State, Subtype)
is_string_type(State, Subtype)
is_tagged_type(State, Subtype)
is_task_type(State, Subtype)
```

Other predicates used in the semantics are

```
component_type((Id }->\mathrm{ Value), Type, Id, Subtype)
convert_return_value(State, View, Subtype, View)
range_constraints(State, list(Subtype), list(Range))
select_component_type((Id ↔ Value), Record_fields, Id, Subtype)
subtype_value(State, Subtype, Value)
test_in(State, Value, Subtype)
type_constraint(Environment, Subtype, Constraint, Type)
nulL_range(Range)
included_in(Range, Range)
values_in_range(Range, set(Value))
discrete_range(Range)
real_range(Range)
```

Finally, the following predicates describe state transformers related to various checks and conversions related to subtypes.

```
slice_check(State, Range, Range, State)
view_convert(State, Environment, Subtype, View, View, State)
subtype_convert(State, Environment, Subtype, Value, Value, State)
index_list(State, list(Range), list(Value), list(Value), State)
return_check(State, Subtype,State)
```


4.1.4 Environments and Views

Environments map identifiers to views.

$$
\text { type Environment }=(I d \rightarrow \text { View })
$$

An environment is updated using the usual syntax for bindings.

$$
-\left[-\mapsto_{-}\right] \text {Environment } \times I d \times \text { View } \rightarrow \text { Environment }
$$

Note that identifiers are assumed to be unique and that all overloading and qualified names have been resolved to unique identifiers.

The lookup of an identifier I in an environment E is written as

$$
E \vdash_{\text {lookup }} I \Rightarrow V
$$

A view describes entities denoted by identifiers as follows:
type View
object_view : LValue \times Subtype \times Object_mode \rightarrow View
loop_view : Id \rightarrow View
constant_view : Value \rightarrow View
subtype_view : Subtype_location \rightarrow View
subprogram_view : Subprogram_location $\times($ Id $\xrightarrow{\text { a }}$ Parameter $) \times$ optional $($ Subtype $) \rightarrow$ View undefined_view : View

Object views include a mode description of the form:

$$
\begin{array}{ll}
\text { type } & \text { Object_mode } \\
\text { variable_object: Object_mode } \\
\text { constant_object : Object_mode } \\
\text { aliased_object : Object_mode }
\end{array}
$$

Whether or not an object may be assigned to depends on its mode:
assignable(Object_mode)

Loop views are used in defining exit from named and unnamed loops.

```
type LoopId
    unnamed: LoopId
    loop_id: Id }->\mathrm{ LoopId
```

The following predicate defines how the bindings of a parameter association are added to an environment creating the environment in which a subprogram body is executed. Note that the names used in the given parameter association may differ from the names of the formal parameters (due to renaming). The names of the formals are provided by a separate argument.

$$
\text { bind_actuals(Environment, }(I d \xrightarrow{a} \text { View }), \operatorname{list}(I d), \text { Environment })
$$

The following constants of sort ExId denote the language-defined exceptions (others may be added).

```
type ExId
    constraint_error : ExId
    program_error: ExId
    ex_id:Id}->\mathrm{ ExId
```

New unique names for user-defined exceptions are introduced by static semantics.

4.1.5 Memory Model

Values of sort Store describe the current binding of addresses to Ada run-time values (of sort Value). In our model, there are four different types of addresses (locations). They include type location (see above) as well as locations for objects, subprograms and subtypes.

```
type Objectlocation
    loc:integer }->\mathrm{ Object_location
type Subprogram_location
type Subtype_location
```

Object locations are associated only with objects that are not components of other objects. Components are specified by the address of the containing object together with a selector sequence. An address together with a selector sequence is a L -value (sort LValue).

```
type LValue
    location: Object_location }->\mathrm{ LValue
    array_component: LValue }\times\mathrm{ list(Value) }->\mathrm{ LValue
    array_slice: LValue }\times\mathrm{ Range }->\mathrm{ LValue
    record_component : LValue }\timesId->LValu
```

Thus, the domain of stores is defined as a 4-tuple as follows:

```
type Store
    (-,-,-,-) : (Object_location }->\mathrm{ Value) }
    (Subprogram_location }->\mathrm{ Subprogram)}
    (Type_location }->\mathrm{ (optional(Type_location) }\times\mathrm{ Type))}
    (Subtype_location }->\mathrm{ Subtype) }->\mathrm{ Store
```

Individual components of a store can be updated using the following notation:

$$
\begin{aligned}
& -\left[-\mapsto_{1}-\right]: \text { Store } \times \text { Object_location } \times \text { Value } \rightarrow \text { Store } \\
& -\left[-\mapsto_{2}\right]: \text { Store } \times \text { Subprogram_location } \times \text { Subprogram } \rightarrow \text { Store } \\
& -\left[-\mapsto_{3}\right]: \text { Store } \times \text { Type_location } \times(\text { optional }(\text { Type_location }) \times \text { Type }) \rightarrow \text { Store } \\
& -\left[-\mapsto_{4}-\right]: \text { Store } \times \text { Subtype_location } \times \text { Subtype } \rightarrow \text { Store }
\end{aligned}
$$

Values of sort State describe a current store, together with the current status of program execution. A state may represent the propagation of an exception, exit from a subprogram, or exit from a loop.

$$
\begin{array}{ll}
\text { type } & \text { State } \\
& \text { exception }: \text { ExId } \times \text { Store } \rightarrow \text { State } \\
& \text { exit : LoopId } \times \text { Store } \rightarrow \text { State } \\
& \text { proc_return }: \text { Store } \rightarrow \text { State } \\
& \text { func_return }: \text { View } \times \text { Store } \rightarrow \text { State } \\
& \text { normal }: \text { Store } \rightarrow \text { State }
\end{array}
$$

The following functions are defined to access and manipulate the store embedded in a state.

```
\(-\left[-\mapsto_{1}-\right]:\) State \(\times\) Object_location \(\times\) Value \(\rightarrow\) State
\(-\left[-\mapsto_{2}\right]\) : State \(\times\) Subprogram_location \(\times\) Subprogram \(\rightarrow\) State
\(-\left[-\mapsto_{3}\right]\) : State \(\times\) Type_location \(\times(\) optional \((\) Type_location \() \times\) Type \() \rightarrow\) State
\(-[-\mapsto 4-]:\) State \(\times\) Subtype_location \(\times\) Subtype \(\rightarrow\) State
- \({ }^{\text {bj] }\left[\_\right]: \text {State } \times \text { Object_location } \rightarrow \text { Value }}\)
\(-^{\text {spg }}[-]\) : State \(\times\) Subprogram_location \(\rightarrow\) Subprogram
\(-_{\text {-typ }}^{\text {ty }}[-]:\) State \(\times\) Type_location \(\rightarrow\) (optional(Type_location) \(\times\) Type)
_stp \(^{s_{p}[-]: S t a t e} \times\) Subtype_location \(\rightarrow\) Subtype
make_state : State \(\times\) Store \(\rightarrow\) State
the_store : State \(\rightarrow\) Store
```

The allocation of new location of the four different kinds is defined by the predicates:

```
new_type(State,(optional(Type_location) x Type), Type_location,State)
new_subtype(State, Subtype,Subtype_location,State)
new_object(State, Value,Object_location,State)
new_subprogram(State, Subprogram, Subprogram_location,State)
```

For a given state and L-value, the following predicate defines the current value. The definition of this predicate includes access of the appropriate subobjects denoted by an L-value.
content(State, LValue, Value)

States are classified as normal or abnormal. Abnormal states will, in general, alter the control flow.

$$
\begin{aligned}
& \text { abnorma } L \text { state (State) } \\
& \text { norma } L \text { state (State) }
\end{aligned}
$$

The return from a subprogram may be indicated by an abnormal state. The following predicates deal with the cases of procedure and function returns, respectively.

$$
\begin{aligned}
& \text { proc_exit(State, State) } \\
& \text { return_value(State, View, State) }
\end{aligned}
$$

Values stored in the subprogram component of a store are of the form:

```
type Subprogram
    subprogram: Environment \(\times\) list \((I d) \times\) Dcl \(\times\) Stm \(\rightarrow\) Subprogram
    operator: Operator \(\rightarrow\) Subprogram
    unelaborated: Subprogram
```

A user-declared subprogram is represented by the declaration environment, the names of the formal parameters and the declarations and statements that comprise the body. Predefined operators of the language are enumerated by a domain Operator. The definition of the semantics of the operators is not covered. An attempt to execute a subprogram of the form unelaborated will raise program error.

4.1.6 Other Predicates

The following predicates deal with the selection of elements from parameter lists and record component associations.

$$
\begin{aligned}
& \text { the_parameter(list } \left.\left(P_{s s}\right), I d, \text { Nam }\right) \\
& \text { given_parameter(list } \left.\left(P_{s s}\right), I d, \operatorname{Exp}\right) \\
& \text { find_component }(I d, \operatorname{list}(\text { Rca }), \operatorname{Exp})
\end{aligned}
$$

4.2 Judgements

Judgements for various syntactic domains define the effect of the elaboration or execution of language phrases of this domain. In most cases, the effect of a phrase depends on the current state and the current environment. The effect typically consists of a change in state and the possible return of a result. Depending on the kind of phrase, the result may be a value, a type, a new environment and so on. The meaning of some phrases depends on additional context beyond the state and the environment. For instance, the meaning of a type definition depends on the discriminant (which is part of the enclosing type declaration).

The general form of a judgement is

$$
\text { state, environment, context } \vdash \text { language-phrase } \Rightarrow \text { result, new-state }
$$

The following is a list of the judgements used in the definition. For each syntactic domain, the signature of the judgement is given together with an informal rationale.

If the evaluation of a construct raises an exception then the final state represents this information. The propagation of exceptions is described as part of the sequencing of actions described below.

The following conventions are used throughout the description of judgements:

$S_{1}:$ State	- The initial state.
$E:$ Environment	- The environment.
$S_{2}:$ State	- The final state.

4.2.1 Declarations

The effect of elaborating a (sequence of) declaration(s) is to add bindings corresponding to the newly introduced identifiers to the environment. The elaboration of a declaration may also affect the state.

$$
S_{1}, E_{1} \vdash_{d c l} \mathrm{Dcl} \Rightarrow E_{2}, S_{2}
$$

E_{1} : Environment - The initial environment
Dcl : Dcl - A declaration.
E_{2} : Environment - A possibly modified environment.

4.2.2 Parameter lists

Elaboration of subprogram declarations is defined in terms of the judgements

$$
\begin{gathered}
\qquad S_{1}, E, \vdash_{p a s} \text { Pas } \Rightarrow A, S_{2} \\
\text { Pas : Pms } \\
A: I d \xrightarrow{*} \text { Parameter }
\end{gathered}-\text { Formal parameter list. }
$$

and

$$
\begin{gathered}
\vdash_{\text {mod }} \text { Mod } \Rightarrow M \\
\text { Mod : Mde }- \text { Parameter mode. } \\
M: \text { Mode }- \text { Mode representation. }
\end{gathered}
$$

The latter judgement uses neither states nor the environment.

4.2.3 Type Definitions

A type definition is elaborated in the context of a (possible) discriminant association. The result is the first-named subtype. Elaborating a type definition may affect the state and the environment because subexpressions may have side-effects and new internal type names may be bound in the environment.

\[

\]

4.2.4 Variant Parts

$$
\text { - A list of variant clauses. }
$$

The judgement always uses a discriminant that may be empty.

4.2.5 Discriminant Parts

The evaluation of a discriminant part results in an association that maps discriminant identifiers into their subtype and optional initialization. As with record component lists, the initialization is represented by a thunk.

$$
\begin{aligned}
& \qquad S_{1}, E \vdash_{d s c} \mathrm{Dcp} \Rightarrow D, S_{2} \\
& \text { Dcp : Dcp } \\
& D: \text { A discriminant part. } \\
& D \text { Discriminant }
\end{aligned}
$$

4.2.6 Component Lists

The result of evaluating a record component list is an association that maps each component identifier into a pair consisting of the component's subtype and an optional initialization. The initialization is given by a thunk that represents the initialization expression, together with the environment in which this expression is to be evaluated.

$$
\begin{gathered}
S_{1}, E \vdash_{c m p} C \mathrm{mp} \Rightarrow C, S_{2} \\
C \mathrm{mp}: \mathrm{Cmp}-\mathrm{A} \text { component list. } \\
C: \text { CompAssoc }- \text { The result. }
\end{gathered}
$$

4.2.7 Subtype Indications

There are three flavors of judgements dealing with subtype indications. The normal case is covered by the declaration:

$$
S_{1}, E \vdash_{\text {sif }} \mathrm{Sid} \Rightarrow T, S_{2}
$$

$$
\begin{array}{lll}
\text { Sid : Sid } & - & \text { A subtype indication. } \\
T: \text { Subtype } & - & \text { The denoted subtype. }
\end{array}
$$

A special case is needed for subtype indications that appear inside discriminated records because the result will be a partial subtype.

$$
S_{1}, E_{1}, D \vdash_{p s i} \text { Sid } \Rightarrow T, E_{2}, S_{2}
$$

D: Discriminant	- A discriminant.
Sid:Sid	- A subtype indication.
$T:$ Partial subtype	- The denoted partial subtype.

Finally, a third form of this judgement is needed to deal with access types to allow references to incomplete types. Instead of a subtype, this judgement returns a subtype location.

$$
S_{1}, E \vdash_{s i f_{i}} \text { Sid } \Rightarrow L, S_{2}
$$

$$
\begin{aligned}
& \text { Sid : Sid }- \text { A subtype indication. } \\
& L: \text { Subtype }- \text { A subtype location. }
\end{aligned}
$$

A completing type declaration will initialize the subtype location.

4.2.8 Statements

The execution of a statement only affects the state and has no result.

$$
\begin{gathered}
S_{1}, E \vdash_{s t m} \text { Stm } \Rightarrow S_{2} \\
\text { Stm }: S t m-\text { A statement. }
\end{gathered}
$$

4.2.9 Elsif Clauses

An elsif-clause consists of a condition and a sequence of statements. The judgement for this construct describes the evaluation of the condition followed by the conditional execution of the statements. There is a boolean result that indicates whether the condition was true. This result is used in the definition of cascaded elsif clauses.

$$
\begin{gathered}
\qquad S_{1}, E \vdash \text { elf } \text { Eif } \Rightarrow B, S_{2} \\
\text { Eif : Eif }- \text { An elsif clause. } \\
B: \text { Bool }- \text { The boolean result. }
\end{gathered}
$$

4.2.10 Case Alternatives

The evaluation of a list of case alternatives depends on the value of the case selector:

$$
S_{1}, E, V \vdash_{c l t} \text { Alt } \Rightarrow B, S_{2}
$$

V : Value - The value of the case selector.
Alt : Alt - A sequence of case alternatives.
$B: B o o l-\quad$ True, if one of the alternatives has matched the case selector.
The boolean result indicates whether one of the alternatives has been executed. The execution of the enclosing case statement will have to terminate in an exception if this result is false.

4.2.11 Discrete Choice Lists

Discrete choice lists are used in variant, array aggregates and case statements. The following judgement describes the evaluation of a list of choices. The result is a representation of the choices.

$$
S_{1}, E \vdash_{c h c} \text { Dch } \Rightarrow C, S_{2}
$$

Dch: Dch ${ }^{*}$ - A discrete choice list.
C :Choice - The representation of the choice list.

4.2.12 Expressions

The evaluation of an expression results in a value and possible side-effects. In certain cases the meaning of an expression depends on the expected type (e.g., the evaluation of aggregates and string literals). Rather than adding this type information to the judgement, the abstract syntax provides such information where necessary.

$$
\begin{gathered}
S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V, S_{2} \\
\operatorname{Exp}: \operatorname{Exp}-\text { An expression. } \\
V: \text { Value }- \text { The resulting value. }
\end{gathered}
$$

The judgement for conditions differs from that for expressions by returning a truth value.

$$
\begin{gathered}
S_{1}, E \vdash_{\text {cnd }} \text { Cnd } \Rightarrow V, S_{2} \\
\text { Cnd: Cnd }- \text { A condition. } \\
B: \text { Bool }- \text { A truth value. }
\end{gathered}
$$

4.2.13 Names

The evaluation of a name results in a view of the named entity.

$$
\begin{aligned}
& S_{1}, E \vdash_{\text {nam }} \text { Nam } \Rightarrow W, S_{2} \\
& N: \text { Nam }- \text { A name. } \\
& W: \text { View }- \text { The view denoted by the name. }
\end{aligned}
$$

The evaluation of certain kinds of names cannot have side-effects (e.g., subtype indications). Rather than defining a separate judgement for this case the definition will require that the initial and final states are identical in these cases.

4.2.14 Ranges

The following judgement defines the evaluation of ranges. In the abstract syntax ranges include discrete subtype definitions. The judgement also deals with the definition of the range attribute.

$$
\begin{aligned}
& S_{1}, E \vdash_{\mathrm{rng}} \mathrm{Rng} \Rightarrow R, S_{2} \\
& \text { Rng : Rng } \text { A range or discrete subtype definition. } \\
& R: \text { Range }- \text { The resulting range value. }
\end{aligned}
$$

4.2.15 Record Aggregates

The following judgement defines the value of a record or extension aggregate.

$$
S_{1}, E, C \vdash_{a g g_{r}} \mathrm{Agg} \Rightarrow V, S_{2}
$$

$C:$ CompAssoc - The expected components of the aggregate.
Agg : Agg - The aggregate.
$V: I d \leftrightarrow$ Value - The resulting binding.
The expected type for the aggregate is provided in the abstract syntax by allowing only qualified aggregates. Qualification is added by static analysis where necessary.

4.2.16 Array Aggregates

A separate judgement is used for array aggregates. It has an additional sequence of index ranges as context.

$$
S_{1}, E, R, T \vdash_{a a g} \mathrm{Agg} \Rightarrow V, S_{2}
$$

$R: \operatorname{list}($ Range $) \quad-\quad$ The index ranges of the aggregate.
T: Subtype -- The type of the elements.
Agg : Agg - An array aggregate.
V : Value - The array value.

4.2.17 Attributes

The following judgement defines the values of (parameterless) attributes as defined in Appendix A of the Reference Manual.

$$
\begin{aligned}
& \qquad S_{1}, E, W_{1} \vdash_{\text {att }} \text { Id } \Rightarrow W_{2}, S_{2} \\
& W_{1}: \text { View } \\
& \text { Id }: \text { A view. } \\
& W_{2}: \text { View }
\end{aligned}
$$

All core language-defined attributes are free of side-effects. This means that the final state will always equal the initial state. Note that some attributes return a subprogram view which, when called, may have a side-effect or raise an exception. But the effect of such calls is not part of evaluating the attribute itself.

In the case of the range attribute, the signature differs as follows:

$$
\begin{gathered}
S_{1}, E, W_{1} \vdash_{\text {att }} \text { range } \Rightarrow R, S_{2} \\
W: \text { View }- \text { A view } . \\
R: \text { Range }- \text { A range } .
\end{gathered}
$$

4.3 Actions

A sequence of statements is executed by sequentially executing each statement in the sequence. Execution is abandoned if one of the statements raises an exception or causes some other change in the flow of control. In the case of expressions, the language specifies that, in certain cases, several expressions are evaluated in arbitrary order.

In order to systematically define different kinds of order of execution of program parts, the notion of an action is introduced. An action can be viewed as a representation of a judgement without the state. Consider, for instance, the judgement for statements:

$$
S_{1}, E \vdash_{s t m} \mathrm{Stm} \Rightarrow S_{2}
$$

The corresponding action is a term

$$
\text { statement_fn }(E, S t m)
$$

that represents the environment and the statement. For convenience, we shall write actions just like judgements with the initial and final state omitted. In this case, the action is written as

$$
E \vdash_{s t m} \operatorname{Stm} \Rightarrow
$$

Given an action A, it is meaningful to talk about the effect of executing the action in a given state S_{0}. This is expressed by the predicate run:

$$
\operatorname{run}\left(S_{0}, A, S_{1}\right)
$$

holds if and only if the execution of action A in state S_{0} results in state S_{1}.
Using run it is possible to define different orders of evaluation of sets and sequences of actions.
The notation

$$
S_{0}\left[\begin{array}{l}
A_{1} \\
\ldots \\
A_{n}
\end{array}\right] S_{1}
$$

means that the actions A_{1} through A_{n} are to be executed sequentially starting in state S_{0} and leading to S_{1}. The definition of this notation needs to consider the propagation of exceptions by any of the actions.

Similarly, the notation

$$
S_{0}\left\{\begin{array}{c}
A_{1} \\
\ldots \\
A_{n}
\end{array}\right\} S_{1}
$$

means that the actions A_{1} through A_{n} are to be executed in arbitrary order.
The set of actions (sort Action) is given by the following terms. There is one action constructor for each judgement.

```
type
Action
then \(: \operatorname{list}(\) Action \() \rightarrow\) Action
new_object_fn : Value \(\times\) Object_location \(\rightarrow\) Action
attribute_fn: Environment \(\times\) View \(\times I d \times\) View \(\rightarrow\) Action
param_attribute_fn: Environment \(\times\) View \(\times I d \times\) Value \(\times\) View \(\rightarrow\) Action
case_alternative_fn: Environment \(\times\) Value \(\times\) Alt \(\times\) Bool \(\rightarrow\) Action
choices_fn : Environment \(\times\) Dch_lst \(\times\) Choice \(\rightarrow\) Action
component_list_fn: Environment \(\times\)
Discriminantx
Cmp_lst \(\times\)
\((I d \xrightarrow{a}(\) PartiaLsubtype \(\times\) optional \((\) Thunk \())) \rightarrow\) Action
constraint_fn : Environment \(\times\) Subtype \(\times\) Cns \(\times\) Constraint \(\rightarrow\) Action
compatible_fn : Environment \(\times\) Subtype \(\times\) Constraint \(\rightarrow\) Action
declaration_fn : Environment \(\times\) Dcl \(\times\) Environment \(\rightarrow\) Action
default_value_fn : Environment \(\times\) Subtype \(\times\) Value \(\rightarrow\) Action
discr_assoc_fn : Environment \(\times\) Subtype \(\times\) Dca \(\times\) Constraint \(\rightarrow\) Action
discriminant_part_fn : Environment \(\times\) Dcp \(\times\) Discriminant \(\rightarrow\) Action
elsif_clause_fn : Environment \(\times\) Eif \(\times\) Bool \(\rightarrow\) Action
expression_fn : Environment \(\times\) Exp \(\times\) Value \(\rightarrow\) Action
name_fn : Environment \(\times\) Nam \(\times\) View \(\rightarrow\) Action
new_type_fn : (optional (Type_location) \(\times\) Type \() \times\) Type_location \(\rightarrow\) Action
range_fn : Environment \(\times\) Rng \(\times\) Range \(\rightarrow\) Action
subtype_indication_fn : Environment \(\times\) Sid \(\times\) Subtype \(\rightarrow\) Action
p_subtype_indication_fn : Environment \(\times\) Discriminant \(\times\) Sid \(\times\) PartiaLsubtype \(\rightarrow\) Action
type_definition_fn: Environment \(\times\) Discriminant \(\times\) Tdf \(\times\) Subtype \(\times\) Environment \(\rightarrow\) Action
variant_list_fn : Environment \(\times\) Discriminant \(\times\) Vnt_lst \(\times\) Variant \(\rightarrow\) Action
variant_part_fn : Environment \(\times\) Discriminant \(\times\) Vrp \(\times\) optional \(((I d \times\) Variant \()) \rightarrow\) Action
subtype_convert_fn : Environment \(\times\) Subtype \(\times\) Value \(\times\) Value \(\rightarrow\) Action
view_convert_fn : Environment \(\times\) Subtype \(\times\) View \(\times\) View \(\rightarrow\) Action
content_fn: LValue \(\times\) Value \(\rightarrow\) Action
assign_fn : Environment \(\times\) Subtype \(\times\) LValue \(\times\) Value \(\rightarrow\) Action
raw_assign_fn : LValue \(\times\) Value \(\rightarrow\) Action
finalize_fn : Environment \(\times\) Subtype \(\times\) Value \(\rightarrow\) Action
value_split_fn : Environment \(\times\) Subtype \(\times\) Value \(\rightarrow\) Action
discrete_type_fn : Environment \(\times\) Subtype \(\times\) Bool \(\rightarrow\) Action
covers_fn : Value \(\times\) Choice \(\times\) Bool \(\rightarrow\) Action
statement_fn : Environment \(\times\) Stm \(\rightarrow\) Action
arb_fn \(: \operatorname{list}(\) Action \() \rightarrow\) Action
subprogram \(\_\)body_fn \(:(I d \xrightarrow{a}\) View \() \times\) View \(\rightarrow\) Action
```

The following predicates define a sequence of actions for a variety of different syntactic constructs:
component_actions(Environment, CompAssoc, list(Rca), list((Id \times Value $)), \operatorname{list}($ Action $))$
expression_list(Environment, list(Exp), list(Value), list(Action))
index_actions(Environment, list(Sid), (Subtype), list(Action))
parameter_action(Environment, list $(P s s),(I d \times$ Parameter $),(I d \times$ View $)$, Action $)$
parameter_list (Environment, list $($ Pss $),(I d \xrightarrow{a}$ Parameter $),(I d \xrightarrow{a}$ View $), \operatorname{list}($ Action $))$

4.4 State

Values of sort State describe a current store, together with the current status of program execution. A state may represent the propagation of an exception, exit from a subprogram, or exit from a loop.

4.4.1 Classification of States

States are classified as normal or abnormal. The following judgements define the classification.

```
abnormaL_tate(exception(I}\mp@subsup{I}{e}{},N)
    abnormaLstate(exit( (Is,N))
abnormal_state(proc_return(N))
abnormaL_state(func_return( W,N))
    normaLstate(normal(N))
```


4.4.2 Accessing the Store of a State

The following judgements describe the store associated with different states:

$$
\begin{gathered}
\text { the_store }\left(\text { exception }\left(I_{d}, N\right)\right)=N \\
\text { the_store }\left(\operatorname{exit}\left(I_{d}, N\right)\right)=N \\
\text { the_store }(\text { proc_return }(N))=N \\
\text { the_store }\left(f u n c _r e t u r n(W, N)\right)=N \\
\text { the_store }(\operatorname{normal}(N))=N
\end{gathered}
$$

The following judgements describe the construction of states:

$$
\begin{gathered}
\text { make_state(exception } \left.\left(I_{d}, N\right), N_{1}\right)=\operatorname{exception}\left(I_{d}, N_{1}\right) \\
\text { make_state(exit } \left.\left(I_{d}, N\right), N_{1}\right)=\operatorname{exit}\left(I_{d}, N_{1}\right) \\
\text { make_state(proc_return } \left.(N), N_{1}\right)=\operatorname{proc_ return}\left(N_{1}\right) \\
\text { make_state(func_return } \left.(W, N), N_{1}\right)=\text { func_return }\left(W, N_{1}\right) \\
\text { make_state(normal } \left.(N), N_{1}\right)=\text { normal }\left(N_{1}\right)
\end{gathered}
$$

4.4.3 Reading and Writing the Store

$$
\begin{aligned}
& \frac{\text { the_store }(S)=\langle B, ?, ?, ?\rangle}{S^{o b j}[I]=B[I]} \\
& \frac{\text { the_store }(S)=\langle ?, B, ?, ?\rangle}{S^{s p g}[I]=B[I]} \\
& \frac{\text { the_store }(S)=\langle ?, ?, B, ?)}{S^{\text {typ }}[I]=B[I]} \\
& \frac{\text { the_store }(S)=\langle ?, ?, ?, B\rangle}{S^{s t p}[I]=B[I]} \\
& S_{1}\left[I \mapsto_{1} V\right]=\text { make_state }\left(S_{1}, \text { the_store }\left(S_{1}\right)\left[I \mapsto_{1} V\right]\right) \\
& S_{1}\left[I \mapsto_{2} V\right]=\text { make_state }\left(S_{1}, \text { the_store }\left(S_{1}\right)\left[I \mapsto_{2} V\right]\right) \\
& S_{1}\left[I \mapsto_{3} V\right]=\text { make_state }\left(S_{1}, \text { the_store }\left(S_{1}\right)\left[I \mapsto_{3} V\right]\right) \\
& S_{1}\left[I \mapsto_{4} V\right]=\text { make_state }\left(S_{1}, \text { the_store }\left(S_{1}\right)\left[I \mapsto_{4} V\right]\right) \\
& \left\langle B_{0}, B_{p}, B_{t}, B_{s}\right\rangle[I \mapsto 1 V]=\left\langle B_{0}[I \mapsto V], B_{p}, B_{t}, B_{s}\right\rangle \\
& \left\langle B_{o}, B_{0}, B_{t}, B_{s}\right\rangle\left[I \mapsto_{2} V\right]=\left\langle B_{o}, B_{0}[I \mapsto V], B_{t}, B_{s}\right\rangle \\
& \left\langle B_{o}, B_{p}, B_{0}, B_{s}\right\rangle\left[I \mapsto_{3} V\right]=\left\langle B_{o}, B_{p}, B_{0}[I \mapsto V], B_{s}\right\rangle \\
& \left\langle B_{o}, B_{p}, B_{t}, B_{0}\right\rangle[I \mapsto 4 V]=\left\langle B_{o}, B_{p}, B_{t}, B_{0}[I \mapsto V]\right\rangle
\end{aligned}
$$

4.4.4 The Content of a Location

This function differs from stored value because it works on a state rather than a store and because it allows L -values rather than just locations. In the case of a structured L -value, the appropriate component of a compound object will be returned.

$$
\begin{gathered}
S \vdash \text { content }(\text { location }(I)) \Rightarrow S^{o b j}[I] \\
\frac{S \vdash \text { content }\left(L_{v}\right) \Rightarrow \operatorname{array_ val}\left(R_{s}, B\right)}{S \vdash \text { content }\left(\operatorname{array_ component}\left(L_{v}, V_{s}\right)\right) \Rightarrow B\left[V_{s}\right]} \\
S \vdash \text { content }\left(L_{v}\right) \Rightarrow \operatorname{array_ val}\left(\left[R_{1}\right], B\right) \\
\hline S \vdash \text { content }\left(\text { array_slice }\left(L_{v}, R\right)\right) \Rightarrow \operatorname{array_ val([R],B)} \\
\frac{S \vdash \text { content }\left(L_{v}\right) \Rightarrow \text { record_val }\left(T_{s}, D_{v}, C_{l}\right)}{S \vdash \text { content }\left(\text { record_component }\left(L_{v}, I_{d}\right)\right) \Rightarrow C_{t}\left[I_{d}\right]} \\
\text { the_store }\left(S_{1}\right)=\langle B, ?, ?, ?\rangle \\
\frac{\neg \in \operatorname{dom}(B)}{\text { new_object }\left(S_{1}, V, I, S_{1}\left[I \mapsto_{1} V\right]\right)}
\end{gathered}
$$

$$
\begin{gathered}
\text { the_store }\left(S_{1}\right)=\langle ?, B, ?, ?\rangle \\
\neg I \in \operatorname{dom}(B) \\
\hline \text { new_subprogram }\left(S_{1}, V, I, S_{1}\left[I \mapsto_{2} V\right]\right) \\
\text { the_store }\left(S_{0}\left[I \mapsto_{3} T_{e}\right]\right)=\langle ?, ?, B, ?\rangle \\
\neg I \in \operatorname{dom}(B) \\
\hline \text { new_type }\left(S_{0}, T_{e}, U, S_{0}\left[I \mapsto_{3} T_{e}\right]\right) \\
\text { the_store }\left(S_{0}\left[I \mapsto_{4} T_{e}\right]\right)=\langle ?, ?, ?, B\rangle \\
\neg I \in \operatorname{dom}(B) \\
\hline \text { new_subtype }\left(S_{0}, T_{e}, U, S_{0}\left[I \mapsto_{4} T_{e}\right]\right) .
\end{gathered}
$$

4.5 Order of Execution

4.5.1 Sequential Execution

$$
S] S
$$

$\frac{\text { abnormal_state }(S)}{S\left[\begin{array}{l}A_{1} \\ \cdots \\ A_{n}\end{array}\right] S}$

4.5.2 Arbitrary Order Execution

$$
S\} S
$$

$$
\frac{\text { abnormal_state }(S)}{S\left\{\begin{array}{c}
A_{1} \\
\cdots \\
A_{n}
\end{array}\right\} S}
$$

$$
\operatorname{pick}\left(A, A_{j}, A_{t}\right)
$$

$$
\operatorname{run}\left(\operatorname{normal}(N), A_{j}, S_{1}\right)
$$

$$
\begin{gathered}
\operatorname{pick}\left(A \cdot A_{s}, A, A_{s}\right) \\
\frac{\operatorname{pick}\left(A_{s}, A_{x}, A_{t}\right)}{\operatorname{pick}\left(A \cdot A_{s}, A_{x}, A \cdot A_{t}\right)}
\end{gathered}
$$

4.5.3 Executing Individual Actions

Note that there are predicates that do not involve state. They are included as a matter of convenience. It is possible to include the appropriate terms in a sequential or arbitrary order execution where this makes the definition more readable.

$$
\begin{aligned}
& \frac{S_{1}\left[\begin{array}{l}
A_{1} \\
\ldots \\
A_{n}
\end{array}\right] S_{2}}{\operatorname{run}\left(S_{1}, \operatorname{then}(A), S_{2}\right)} \\
& \text { new_object }\left(S_{1}, V, L, S_{2}\right) \\
& \frac{\text { new_object }\left(S_{1}, V, L, S_{2}\right)}{\operatorname{run}\left(S_{1}, \text { new_object_fn }(V, L), S_{2}\right)} \\
& \frac{S_{1}, E, V \vdash_{c l t} \mathrm{Clt} \Rightarrow B, S_{2}}{\operatorname{run}\left(S_{1}, E, V \vdash_{\text {clt }} \mathrm{Clt} \Rightarrow B, S_{2}\right)} \\
& \frac{S_{1}, E \vdash_{c h c} \mathrm{Chc} \Rightarrow C, S_{2}}{\operatorname{run}\left(S_{1}, E \vdash_{c h c} \mathrm{Chc} \Rightarrow C, S_{2}\right)} \\
& \frac{S_{1}, E \vdash_{c m p} \mathrm{D} \Rightarrow \mathrm{Cmp}, A}{\operatorname{run}\left(S_{1}, E \vdash_{c m p} \mathrm{D} \Rightarrow \mathrm{Cmp}, S_{2}\right)} \\
& \frac{S_{1}, E_{1} \vdash_{d c l} \mathrm{Dcl} \Rightarrow E_{2}, S_{2}}{\operatorname{run}\left(S_{1}, E_{1} \vdash_{d c l} \mathrm{Dcl} \Rightarrow E_{2}, S_{2}\right)} \\
& \frac{S_{1}, E \vdash_{\text {elf }} \text { Elf } \Rightarrow R, S_{2}}{\operatorname{run}\left(S_{1}, E \vdash_{\text {elf }} \text { Elf } \Rightarrow R, S_{2}\right)} \\
& \frac{S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V, S_{2}}{\operatorname{run}\left(S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V, S_{2}\right)} \\
& \frac{S_{1}, E \vdash_{\text {nam }} \mathrm{Nam} \Rightarrow D, S_{2}}{\operatorname{run}\left(S_{1}, E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow D, S_{2}\right)} \\
& \frac{S_{1}, E \vdash_{r n g} \operatorname{Rng} \Rightarrow R, S_{2}}{\operatorname{run}\left(S_{1}, E \vdash_{r n g} \operatorname{Rng} \Rightarrow R, S_{2}\right)} \\
& \frac{S_{1}, E \vdash_{\text {stm }} \mathrm{Stm} \Rightarrow S_{2}}{\operatorname{run}\left(S_{1}, E \vdash_{s t m} \mathrm{Stm} \Rightarrow, S_{2}\right)} \\
& \frac{S_{1}, E_{1}, D \vdash_{t d f} \mathrm{Tdf} \Rightarrow S_{t}, E_{2}, S_{2}}{\operatorname{run}\left(S_{1}, E_{1}, D \vdash_{t d f} \mathrm{Tdf} \Rightarrow S_{t}, E_{2}, S_{2}\right)} \\
& \begin{array}{l}
\frac{S_{1}, E, S_{t}+\text { subtype_convert }\left(V_{1}\right) \Rightarrow V_{2}, S_{2}}{\operatorname{run}\left(S_{1}, E, S_{t} \vdash \text { subtype_convert }\left(V_{1}\right) \Rightarrow V_{2}, S_{2}\right)} \\
\frac{S_{1}, E, S_{t}+\text { subtype_convert }\left(W_{1}\right) \Rightarrow W_{2}, S_{2}}{\operatorname{run}\left(S_{1}, E, S_{t}+\text { subtype_convert }\left(W_{1}\right) \Rightarrow W_{2}, S_{2}\right)}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\frac{S \vdash \operatorname{content}\left(L_{v}\right) \Rightarrow V}{\operatorname{run}\left(S, \vdash \operatorname{content}\left(L_{v}\right) \Rightarrow V, S\right)} \\
\frac{S_{1}\left\{\begin{array}{c}
A_{1} \\
\ldots \\
A_{n}
\end{array}\right\}}{} \begin{array}{l}
\operatorname{run}\left(S_{1},\left\{\begin{array}{c}
A_{1} \\
\ldots \\
A_{n}
\end{array}\right\}, S_{2}\right) \\
\frac{\operatorname{subprogram} _b o d y\left(S_{1}, A, W, S_{2}\right)}{\operatorname{run}\left(S_{1}, \operatorname{subprogram} \text { body_fn }(A, W), S_{2}\right)}
\end{array}
\end{gathered}
$$

4.6 Values

4.6.1 Ranges

$$
\begin{aligned}
& \text { discrete_range(discrete_rng(} \left.I_{1}, I_{2}\right) \text {) } \\
& \text { real_range(real_rng } \left.\left(R_{1}, R_{2}\right)\right) \\
& \text { low_bound(discrete_rng(} I, ?) \text {) }=\text { discrete_val }(I) \\
& \text { low_bound(real_rng(} R, \text { ? }) \text {) }=\text { real_val }(R) \\
& \text { high_bound(discrete_rng(?, } I))=\text { discrete_val(}(I) \\
& \text { high_bound(real_rng(?, } R))=\text { real_val }(R) \\
& \text { make_range }\left(\text { discrete_val }\left(I_{1}\right) \text {,discrete_val }\left(I_{2}\right)\right)=\text { discrete_rng }\left(I_{1}, I_{2}\right) \\
& \text { make_range }\left(\text { real_val }\left(R_{1}\right) \text {, real_val }\left(R_{2}\right)\right)=\text { real_rng }\left(R_{1}, R_{2}\right) \\
& R_{1} \leq R \\
& R \leq R_{2} \\
& \text { belongs_to(real_val(} \left.R \text {), real_rng }\left(R_{1}, R_{2}\right)\right) \\
& I_{1} \leq I \\
& I \leq I_{2} \\
& \text { belongs_to(discrete_val(}\left(\text {), discrete_rng }\left(I_{1}, I_{2}\right)\right. \text {) } \\
& I_{1} \geq I_{3} \\
& I_{4} \geq I_{2} \\
& \text { included_in(discrete_rng(} \left.\left.I_{1}, I_{2}\right) \text {, discrete_rng }\left(I_{3}, I_{4}\right)\right) \\
& \frac{I_{1}>I_{2}}{\text { null_range(discrete_rng } \left.\left(I_{1}, I_{2}\right)\right)}
\end{aligned}
$$

$$
\begin{gathered}
\frac{R_{1}>R_{2}}{\text { null_range }\left(\text { real_rng }\left(R_{1}, R_{2}\right)\right)} \\
\text { values_in_range(discrete_rng(} I, I), \text { set_of }[\text { discrete_val }(I)])) \\
\frac{I_{1}>I_{2}}{\text { values_in_range(discrete_rng } \left.\left(I_{1}, I_{2}\right), \text { set_of }([])\right)} \\
\frac{\text { values_in_range }\left(d i s c r e t e _r n g\left(I_{1}+1, I_{2}\right), \text { set_of }\left(V_{s}\right)\right)}{\text { values_in_range(discrete_rng } \left.\left.\left(I_{1}, I_{2}\right), \text { set_of(discrete_val }\left(I_{1}\right) \cdot V_{s}\right)\right)}
\end{gathered}
$$

4.6.2 Index Ranges

$$
\begin{gathered}
\text { indices }([])=\text { set_of }([]) \\
\frac{\text { values_in_range }\left(R, V_{r}\right)}{\text { index_pairing }\left(V_{r}, \text { indices }\left(R_{s}\right), V\right)} \\
\text { indices }\left(R \cdot R_{s}\right)=V \\
\text { index_pairing(set_of } \left.([]), V_{1}, \text { set_of }([[]])\right) \\
\frac{\text { index_pairing }\left(\operatorname{set} \text { _of }\left(V_{r}\right), V_{1}, V_{x}\right)}{\text { prefix_set_with_element }\left(V, V_{1}, V_{y}\right)} \\
\text { index_pairing }\left(\text { set_of }\left(V \cdot V_{r}\right), V_{1}, V_{x} \cup V_{y}\right) \\
\text { prefix_set_with_element }(V, \text { set_of }([]), \text { set_of }([])) \\
\text { prefix_set_with_element }\left(V, \text { set_of }\left(E_{r}\right), \text { set_of }\left(E_{p}\right)\right) \\
\hline \text { prefix_set_with_element }\left(V, \text { set_of }\left(E_{1} \cdot E_{r}\right), \text { set_of }\left(V \cdot E_{1} \cdot E_{p}\right)\right)
\end{gathered}
$$

4.6.3 Predicates of Values

$$
\begin{gathered}
\text { discrete_value(discrete_val }(X)) \\
\text { real_value(real_val(} X) \text {) } \\
\text { access_value(access_val }(X, ?)) \\
\frac{\text { discrete_value }(V)}{\text { scalar_value }(V)} \\
\frac{\text { real_value }(V)}{\text { scalar_value }(V)} \\
\frac{\text { scalar_value }(V)}{\text { elementary_value }(V)}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\text { access_value }(V)}{\text { elementary_value(} V)} \\
\text { composite_value(record_val }(X, Y, Z)) \\
\text { composite_value(array_val }(X, Y)) \\
\frac{\operatorname{dom}(V)=\text { indices }(B)}{\operatorname{array_ value}\left(\operatorname{array_ val}(B, V)\right)}
\end{gathered}
$$

4.7 Types

4.7.1 Type Descriptors

$$
\frac{S^{t y p}[U]=\left(? \times T_{y}\right)}{\text { type_struct }(S, \operatorname{subtype}(U, ?, ?))=T_{y}}
$$

4.7.2 Ancestry Relation

$$
\begin{gathered}
\text { ancestor }(S, U, U) \\
\begin{array}{c}
S^{\text {typ }}[U]=\left(\operatorname{some}\left(U_{2}\right) \times ?\right) \\
\text { ancestor }\left(S, U_{2}, U_{1}\right) \\
\hline \text { ancestor }\left(S, U, U_{1}\right) \\
\frac{\text { ancestor }\left(S, U_{2}, U_{1}\right)}{\text { descendant }\left(S, U_{1}, U_{2}\right)} \\
\frac{S^{\text {typ }}[U]=(\text { nonex? })}{\text { ultimate_ancestor }(S, U, U)} \\
S^{\text {typ }[U]=\left(\operatorname{some}\left(U_{2}\right) \times ?\right)} \\
\text { ultimate_ancestor }\left(S, U_{1}, U_{2}\right) \\
\hline \text { ultimate_ancestor }\left(S, U, U_{2}\right)
\end{array}
\end{gathered}
$$

4.7.3 Ranges of Scalar Types

```
    base_range(S, enum_type(N)) = discrete_rng(0,N)
    base_range(S,modular_type(N)) = discrete_rng(0, N, -, 1)
base_range(S,signed_integer_type( }\mp@subsup{B}{f}{},\mp@subsup{B}{l}{},?,?))=\operatorname{discrete_rng(}\mp@subsup{B}{f}{},\mp@subsup{B}{l}{}
base_range(S, universal_integer_type( }\mp@subsup{B}{f}{\prime},\mp@subsup{B}{l}{}))=\operatorname{discrete_rng( }\mp@subsup{B}{f}{},\mp@subsup{B}{l}{}
```

$$
\begin{gathered}
\frac{S_{t}=\operatorname{subtype}(U, \text { no_constraint, } A)}{\operatorname{range_ of_ subtype}\left(S, S_{t}\right)=\text { base_range }\left(S, \text { type_struct }\left(S, S_{t}\right)\right)} \\
\text { range_of_subtype }(S, \operatorname{subtype}(U, \text { range_constraint }(R), A))=R \\
\text { ranges_of_subtypes }(S,[])=[] \\
\operatorname{ranges_ ofsubtypes~}\left(S, S_{1} \cdot S_{r}\right)=\operatorname{range_ of_ subtype}\left(S, S_{1}\right) \cdot \operatorname{ranges_ ofsubtypes}\left(S, S_{r}\right)
\end{gathered}
$$

4.7.4 Values of a Type

$$
\begin{gathered}
\text { ancestor }\left(S, U, U_{p}\right) \\
S^{\text {typ }}\left[U_{p}\right]=\left(? \times T_{y}\right) \\
\frac{\text { descriptor_value }\left(S, T_{y}, V\right)}{\text { descriptor_value(} S, \text { class_type }(U), V)} \\
\frac{\text { belongs_to }(V, \text { base_range }(S, \text { enum_type }(N)))}{\text { descriptor_value }(S, \text { enum_type }(N), V)} \\
\text { descriptor_value }(S, \text { enum_type }(N), \text { invalid_val }) \\
\text { belongs_to }(V, \text { base_range }(S, \text { modular_type }(N))) \\
\text { descriptor_value }(S, \text { modular_type }(N), V) \\
\text { descriptor_value }(S, \text { modular_type }(N), \text { invalid_val })
\end{gathered}
$$

$$
\text { descriptor_value }\left(S, \text { signed_integer_type }\left(B_{f}, B_{l}, F, L\right), \text { discrete_val }(N)\right)
$$

$$
\text { descriptor_value(} S, \text { signed_integer_type }\left(B_{f}, B_{l}, F, L\right) \text {, invalid_val) }
$$

$$
\text { descriptor_value }\left(S, \text { universal_integer_type }\left(B_{f}, B_{l}\right) \text {, discrete_val }(N)\right)
$$

$$
\text { descriptor_value(} \left.S, \text { universal_integer_type }\left(B_{f}, B_{l}\right) \text {, invalid_val }\right)
$$

$$
\begin{gathered}
\frac{\text { array_value }(\text { array_val(ranges_of_subtypes }(S, I), B))}{\text { descriptor_value }(S, \text { array_type }(I, C), \text { array_val(ranges_of_subtypes }(S, I), B))} \\
N \in \text { set_of }(\text { adom }(D)) \\
D[N]=\left(S_{t} \times T_{h}\right) \\
\frac{\text { subtype_value }\left(S, S_{t}, B[N]\right)}{\text { discriminant_value }(S, \operatorname{discr}(D), B)} \\
\frac{\text { discriminant_value }\left(S, D_{a}, D_{v}\right)}{\text { cl_value }\left(S, C_{l}, D_{v}, C_{v}\right)} \\
\text { descriptor_value }\left(S, \text { record_type }\left(T_{g}, D_{a}, C_{l}\right), \text { record_val }\left(T_{g}, D_{v}, C_{v}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{dom}(F)=\operatorname{set_ of(\operatorname {adom}(A))} \\
& A\left[I_{d}\right]=\left(P_{s} \times T_{h}\right) \\
& \text { subtype_value }\left(S, \text { actualize }\left(D_{v}, P_{s}\right), F\left[I_{d}\right]\right) \\
& \text { variant_values }\left(S, V_{r}, D_{v}, F_{v}\right) \\
& \text { cl_value }\left(S, \text { fields }\left(A, V_{r}\right), D_{v}, F \oplus F_{v}\right) \\
& \text { variant_values }\left(S, \text { none, } D_{v},[]\right) \\
& \text { the_variant }\left(F, D_{v}\left[I_{d}\right], C_{l}\right) \\
& \text { cl_value }\left(S, C_{l}, D_{c}, V_{v}\right) \\
& \text { variant_values }\left(S, \operatorname{some}\left(\left(I_{d} \times F\right)\right), D_{v}, V_{v}\right)
\end{aligned}
$$

4.7.5 Record Fields

The following definitions are useful to deal with the types of record fields. Binding B represented the values of the discriminants.

$$
\begin{gathered}
\frac{D_{a}\left[I_{d}\right]=\left(S_{t} \times T_{k}\right)}{\text { component_type }\left(B, \text { record_type }\left(T_{g}, \operatorname{discr}\left(D_{a}\right), C_{l}\right), I_{d}, S_{t}\right)} \\
\frac{\text { select_component_type }\left(B, C_{l}, I_{d}, S_{t}\right)}{\text { component_type }\left(B, \text { record_type }\left(T_{g}, D_{a}, C_{l}\right), I_{d}, S_{t}\right)} \\
\frac{C_{a}\left[I_{d}\right]=\left(P_{s} \times T_{k}\right)}{\text { select_component_type }\left(B, \text { fields }\left(C_{a}, ?\right), I_{d}, \text { actualize }\left(B, P_{s}\right)\right)}
\end{gathered}
$$

Since component names have to be unique, we can quantify over values V in the following rule.
the_variant $\left(V_{b}, V, C_{l}\right)$
select_component_type $\left(B, C_{1}, I_{d}, S_{t}\right)$
select_component_type $\left(B\right.$, fields $\left.\left(C_{a}, \operatorname{some}\left(\left(I_{v} \times V_{b}\right)\right)\right), I_{d}, S_{t}\right)$
$\frac{\operatorname{covers}(X, C, \text { true })}{\text { the_variant }\left(\text { variant }\left(\left(C \times C_{l}\right) \cdot L\right), X, C_{l}\right)}$
covers $(X, C$, false $)$
the_variant $\left(\right.$ variant $\left.\left(\left(C \times C_{l}\right) \cdot L\right), X, C_{l}\right)$

4.7.6 Classification of Types

$$
\begin{gathered}
\frac{\text { is_scalar_type }\left(S, T_{y}\right)}{\text { is_elementary_type }\left(S, T_{y}\right)} \\
\text { is_access_type }\left(S, T_{y}\right) \\
\hline \text { is_elementary_type }\left(S, T_{y}\right) \\
\text { is_array_type }\left(S, T_{y}\right) \\
\hline \text { is_composite_type }\left(S, T_{y}\right)
\end{gathered}
$$

$$
\begin{gathered}
\frac{\text { is_record_type }\left(S, T_{y}\right)}{\text { is_composite_type }\left(S, T_{y}\right)} \\
\frac{\text { is_tagged_type }\left(S, T_{y}\right)}{\text { is_composite_type }\left(S, T_{y}\right)} \\
\frac{\text { is_protected_type }\left(S, T_{y}\right)}{\text { is_composite_type }\left(S, T_{y}\right)} \\
\frac{\text { is_discrete_type }\left(S, T_{y}\right)}{\text { is_scalar_type }\left(S, T_{y}\right)} \\
\frac{\text { is_real_type }\left(S, T_{y}\right)}{\text { is_scalar_type }\left(S, T_{y}\right)} \\
\text { is_access_to_abject_type }\left(S, T_{y}\right) \\
\hline \text { is_access_type }\left(S, T_{y}\right) \\
\text { is_access_to_subprogram_type }\left(S, T_{y}\right) \\
\hline \text { is_access_type }\left(S, T_{y}\right) \\
\text { is_enumeration_type }\left(S, T_{y}\right) \\
\text { is_discrete_type }\left(S, T_{y}\right) \\
\text { is_integer_type }\left(S, T_{y}\right) \\
\text { is_discrete_type }\left(S, T_{y}\right) \\
\text { type_struct }\left(S, T_{y}\right)=e n u m _t y p e(N) \\
\text { is_enumeration_type }(S, T y)
\end{gathered}
$$

is_boolean_type(S, subtype(boolean_tn,?,?))
is_character_type(S, subtype(character_tn, ?, ?))

$$
\text { is_signed_integer_type }\left(S, T_{y}\right)
$$

$$
\text { is_integer_type }\left(S, T_{y}\right)
$$

$$
\text { is_modular_integer_type }\left(S, T_{y}\right)
$$

$$
\text { is_integer_type }\left(S, T_{y}\right)
$$

is_signed_integer_type(S, subtype(root_integer_tn,?,?))

$$
\begin{gathered}
\frac{\text { type_struct }\left(S, T_{y}\right)=\text { modular_type }(?)}{\text { is_modular_integer_type }\left(S, T_{y}\right)} \\
\frac{\text { not yet defined }}{\text { is_real_type }\left(S, T_{y}\right)} \\
\frac{\text { type_struct }\left(S, T_{y}\right)=\text { access_type }\left(S_{t}, A_{m}\right)}{\text { is_access_to_object_type }\left(S, T_{y}\right)} \\
\text { type_struct }\left(S, T_{y}\right)=\text { func_profile }\left(P_{a}, S_{t}\right)
\end{gathered}
$$

$$
\begin{gathered}
\frac{\text { type_struct }\left(S, T_{y}\right)=\text { proc_profile }\left(P_{a}\right)}{\text { is_access_to_subprogram_type }\left(S, T_{y}\right)} \\
\begin{array}{c}
\text { type_struct }\left(S, T_{y}\right)=\text { array_type }(C, B) \\
\text { is_array_typee }\left(S, T_{y}\right) \\
\frac{\text { not yet defined }}{\text { is_string_type }\left(S, T_{y}\right)} \\
\text { type_struct }\left(S, T_{y}\right)=\text { record_type }\left(T_{y}, D, C\right) \\
\text { is_record_type }\left(S, T_{y}\right) \\
\text { type_struct }\left(S, T_{y}\right)=\text { record_type }\left(\text { some }\left(I_{t}\right), D, C\right) \\
\text { is_tagged_type }\left(S, T_{y}\right) \\
\frac{\text { not yet defined }}{\text { is_task_type }\left(S, T_{y}\right)} \\
\frac{\text { not yet defined }}{\text { is_protected_type }\left(S, T_{y}\right)} \\
\frac{\text { is_elementary_type }\left(S, T_{y}\right)}{\text { is_by_copy_type }\left(S, T_{y}\right)} \\
\frac{\text { is_tagged_typee }\left(S, T_{y}\right)}{\text { is_by_reference_type }\left(S, T_{y}\right)} \\
\frac{\text { is_task_type }\left(S, T_{y}\right)}{\text { is_by_reference_type }\left(S, T_{y}\right)} \\
\frac{\text { is_protected_type }\left(S, T_{y}\right)}{\text { is_by_reference_type }\left(S, T_{y}\right)}
\end{array}
\end{gathered}
$$

4.8 Subtypes

4.8.1 Constraint Satisfaction

satisfies (V, no_constraint)
$\frac{\text { belongs_to }(V, R)}{\operatorname{satisfies}(V, \text { range_constraint }(R))}$ satisfies(array_val($B, A)$, index_constraint (B))

4.8.2 Values of a Subtype

$$
\begin{gathered}
S^{\text {typ }}[U]=\left(P \times T_{y}\right) \\
\text { descriptor_value }\left(S, T_{y}, V\right) \\
\text { satisfies }(V, C)
\end{gathered}
$$

4.8.3 Actualization

4.8.3.1 Values

$$
\begin{gathered}
\text { actualized_value }\left(B, p _ \text {value }(V)\right)=V \\
\text { actualized_value }(B, \text { discriminant_ref }(I))=B[I]
\end{gathered}
$$

4.8.3.2 Ranges

$$
\begin{gathered}
\begin{array}{c}
\text { actualized_value }(B, L)=\text { discrete_val }\left(L_{a}\right) \\
\text { actualized_value }(B, H)=\text { discrete_val }\left(H_{a}\right)
\end{array} \\
\hline \text { actualized_partial_range }(B,(L \times H))=\text { discrete_rng }\left(L_{a}, H_{a}\right) \\
\text { actualized_range_list }(B,[])=[]
\end{gathered}
$$

actualized_range_list $\left(B, R \cdot R_{s}\right)=$ actualized_partiaL_range $\left.(B, R) \cdot \operatorname{actualized_ range_ list(~} B, R_{s}\right)$

4.8.3.3 Binding Lists

$$
\text { actualized_binding_list }(B,[])=[]
$$

actualized_binding_list $(B,(I \times V) \cdot R)=\left(I \times \operatorname{actualized_ value}(B, V)\right) \cdot$ actualized_binding_list (B, R)

4.8.3.4 Constraints

$$
\text { actualized_constraint }\left(B, p _n o _c o n s t r a i n t\right)=\text { no_constraint }
$$

actualized_constraint $\left.\left(B, p_{_} r a n g e _c o n s t r a i n t(~ R)\right)=r a n g e _c o n s t r a i n t\left(\operatorname{actualized_ partial_ range(~} B, R\right)\right)$

$$
\text { actualized_constraint } \left.\left(B, p _ \text {index_constraint }(S)\right)=\text { index_constraint(actualized_range_list }(B, S)\right)
$$

$$
\left.\begin{array}{c}
\frac{C=\text { discriminant_constraint(actualized_binding_list }(B, S))}{\text { actualized_constraint }(B, \text { p_discriminant_constraint }(S))=C} \\
\left.\frac{C=\text { indirect_index_constraint(actualized_range_list }(B, S))}{\text { actualized_constraint }\left(B, p _i n d i r e c t _i n d e x _c o n s t r a i n t ~\right.}(S)\right)=C \\
C=\text { indirect_discriminant_constraint(actualized_binding_list }(B, S)) \\
\hline \text { actualized_constraint }\left(B, p _i n d i r e c t _d i s c r i m i n a n t _c o n s t r a i n t ~\right.
\end{array}(S)\right)=C,
$$

4.8.3.5 Subtypes

$\operatorname{actualize}\left(B\right.$, p_subtype $\left.\left(\operatorname{subtype}(U, C, A), P_{c}\right)\right)=\operatorname{subtype}\left(U, \operatorname{actualized_ constraint}\left(B, P_{c}\right), A\right)$

4.8.3.6 Components

$$
A_{1}+A_{2}=A_{1}+A_{2}
$$

actualized_components $\left(B\right.$, fields $\left.\left(C_{a}, \operatorname{some}\left(V_{p}\right)\right)\right)=\operatorname{actualized_ complist}\left(B, C_{a}\right)+$ actualized_variants $\left(B, V_{p}\right)$
actualized_components $\left(B\right.$, fields $\left(C_{a}\right.$, none $\left.)\right)=\operatorname{actualized_ complist}\left(B, C_{a}\right)$

4.8.3.7 Component Lists

actualized_complist $(B,[])=[]$
$\frac{\text { actualized_complist }(B, A)=A_{a}}{\text { actualized_complist }\left(B,\left(I \times P_{s}\right) \cdot A\right)=\left(I \times \text { actualize }\left(B, P_{s}\right)\right) \cdot A_{a}}$
$\frac{\text { the_variant }\left(V_{a}, B[I], C_{l}\right)}{\text { actualized_variants }\left(B,\left(I \times V_{a}\right)\right)=\text { actualized_components }\left(B, C_{l}\right)}$

4.9 Declarations

4.9.1 Declarations

4.9.2 Types and Subtypes

4.9.2.1 Type Declarations

The semantics of a type definition are determined in the context of a discriminant association. For types without discriminant, this association is empty

$$
\begin{gathered}
S_{1}, E_{1},() \vdash_{t d f} \operatorname{Tdf} \Rightarrow S_{t}, E_{2}, S_{2} \\
\text { new_subtype }\left(S_{2}, S_{t}, L_{s}, S_{3}\right) \\
\frac{S_{1}, E_{1} \vdash_{d c l} \text { type } I_{d} \text { is } \operatorname{Tdf} ; \Rightarrow E_{2}\left[I_{d} \mapsto \text { subtype_view }\left(L_{s}\right)\right], S_{3}}{} \\
S_{1}\left[\begin{array}{c}
E \vdash_{d s c} \operatorname{Dcp} \Rightarrow D \\
E, D \vdash_{t d f} \operatorname{Tdf} \Rightarrow S_{t}, E_{2}
\end{array}\right] S_{2} \\
S_{1}, E \vdash_{d c l} \text { type } I_{d} \text { Dcp-subtype }\left(S_{2}, S_{t}, L_{s}, S_{3}\right)
\end{gathered}
$$

For a given type descriptor, the following rule creates a new unique type name and constructs a first subtype.

4.9.2 2 Subtype Declarations

A subtype indication may be a named subtype or a subtype with a constraint. In the former case, evaluation of the subtype indication cannot have side-effects.

$$
\begin{aligned}
& \frac{S_{1}, E \vdash_{\text {nam }} \text { Nam } \Rightarrow \text { subtype_view }\left(L_{s}\right), S_{1}}{S_{1}, E \vdash_{\text {sid }} \operatorname{Nam} \Rightarrow S_{1}^{s t p}\left[L_{s}\right], S_{1}} \\
& S_{1}, E \vdash_{\text {nam }} \text { Nam } \Rightarrow \text { subtype_view }\left(L_{s}\right), S_{1} \\
& S_{1}, E, S_{1}^{s t p}\left[L_{s}\right] \vdash_{c n s} \text { Csn } \Rightarrow C, S_{2} \\
& \text { compatible }\left(E, S_{1}^{s t p}\left[L_{s}\right], C\right) \\
& \frac{S_{1}^{s t p}\left[L_{s}\right]=\operatorname{subtype}\left(U, C_{1}, A\right)}{S_{1}, E \vdash_{\text {sid }} \operatorname{Nam} \text { Cns } \Rightarrow \operatorname{subtype}(U, C, A), S_{2}} \\
& \frac{S_{1}, E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow \operatorname{subtype} \text { view }\left(L_{s}\right), S_{1}}{S_{1}, E, D \vdash_{p s i} \operatorname{Nam} \Rightarrow \text { p_subtype }\left(S_{1}^{s p p}\left[L_{s}\right], p-\text { no_constraint }\right), S_{1}} \\
& S_{1}, E \vdash_{\text {nam }} \text { Nam } \Rightarrow \text { subtype_view }\left(L_{s}\right), S_{1} \\
& p_{-} \text {constraint }\left(S_{1}, E, D, S_{1}^{s t p}\left[L_{s}\right], C \operatorname{cn}, P, S_{2}\right) \\
& \text { compatible }\left(E, S_{1}^{s t p}\left[L_{s}\right], C\right) \\
& S_{1}^{s t p}\left[L_{s}\right]=\operatorname{subtype}\left(U, C_{1}, A\right) \\
& S_{1}, E, D \vdash_{p s i} \text { Nam Cns } \Rightarrow \text { p_subtype(subtype(} U, \text { no_constraint, } A \text {), } P \text {), } S_{2}
\end{aligned}
$$

The following syntax represents ranges in a discrete subtype definition. It applies only to constrained array type definitions.

$$
\begin{gathered}
\frac{\text { not yet defined }}{} \begin{array}{c}
S_{1}, E \vdash_{s i d} \text { Rng } \Rightarrow \text { subtype }(U, C, A), S_{2} \\
S_{1}, E_{1} \vdash_{\text {sid }} \text { Sid } \Rightarrow S_{t}, S_{2} \\
\text { new_subtype }\left(S_{2}, S_{t}, L_{3}, S_{3}\right)
\end{array} \\
\hline S_{1}, E_{1} \vdash_{d c l} \text { subtype } I_{d} \text { is Sid; } \Rightarrow E_{1}\left[I_{d} \mapsto \operatorname{subtype} \text { Siew }\left(L_{s}\right)\right], S_{3}
\end{gathered}
$$

4.9.3 Objects and Named Numbers

4.9.3.1 Object Declarations

$S_{1}, E_{1} \vdash_{d c l} I_{d}:$ aliased constant Sid; $\Rightarrow E_{1}\left[I_{d} \mapsto\right.$ object_view(location $(L), S_{t}$, constant $\left.)\right], S_{2}$

$$
S_{1}\left[\begin{array}{c}
E_{1} \vdash_{\text {sid }} \text { Sid } \Rightarrow S_{t} \\
\text { new_object_fn }(\text { invalid_val, } L) \\
E_{1} \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V \\
\text { assign_fn }\left(E_{1}, S_{t}, \text { location }(L), V\right)
\end{array}\right] S_{2}
$$

$S_{1}, E_{1} \vdash_{d c l} I_{\mathrm{d}}:$ aliased Sid $:=\operatorname{Exp} ; \Rightarrow E_{1}\left[I_{d} \mapsto\right.$ object_view(location $(L), S_{t}$, aliased $\left.)\right], S_{2}$

$$
S_{1}\left[\begin{array}{c}
E_{1} \vdash_{\text {sid }} \text { Sid } \Rightarrow S_{t} \\
\text { new_object_fn }(\text { invalid_val, } L) \\
E_{1} \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V \\
\text { assign_fn }\left(E_{1}, S_{t}, \text { location }(L), V\right)
\end{array}\right] S_{2}
$$

$S_{1}, E_{1} \vdash_{d c l} I_{d}:$ aliased constant Sid $:=$ Exp; $\Rightarrow E_{1}\left[I_{d} \mapsto\right.$ object_view(location $(L), S_{t}$, constant $\left.)\right], S_{2}$

4.9.3.2 Number Declarations

$$
S_{1}, E_{1} \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V, S_{2}
$$

new_object $\left(S_{1}, V, L, S_{2}\right)$
$E_{3}=E_{1}\left[I_{d} \mapsto\right.$ object_view(location (L), subtype(universal_real_tn, no_constraint, not_used), constant) $]$
$S_{1}, E_{1} \vdash_{d c l} I_{d}:$ constant $:=$ Exp $; \Rightarrow E_{3}, S_{2}$
$S_{1}, E_{1} \vdash_{\exp } \operatorname{Exp} \Rightarrow V, S_{2}$
new_object (S_{1}, V, L, S_{2})
$E_{3}=E_{1}\left[I_{d} \mapsto\right.$ object_view(location (L), subtype(universal_integer_tn, no_constraint, not_used), constant)]
$S_{1}, E_{1} \vdash_{d c i} I_{d}:$ constant $:=$ Exp $; \Rightarrow E_{3}, S_{2}$

4.9.4 Derived Types and Classes

$$
\begin{gathered}
S_{0}, E_{1} \vdash_{s i d} \operatorname{Sid} \Rightarrow \operatorname{subtype}(P, C, A), S_{1} \\
S_{1}^{\text {typ }}[P]=\left(P_{p} \times T_{y}\right) \\
\text { new_type }\left(S_{1},\left(\operatorname{some}(P) \times T_{y}\right), U, S_{2}\right) \\
\hline S_{0}, E_{1}, D_{0} \vdash_{t d f} \text { new Sid } \Rightarrow \operatorname{subtype}(U, C, A), E_{2}, S_{2}
\end{gathered}
$$

4.9.5 Scalar Types

$$
\begin{gathered}
S_{1}\left\{\begin{array}{c}
E \vdash_{\text {exp }} \operatorname{Exp}_{1} \Rightarrow V_{1} \\
E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V_{2}
\end{array}\right\} S_{2} \\
\hline S_{1}, E \vdash_{r n g} \operatorname{Exp}_{1} \ldots \operatorname{Exp}_{2} \Rightarrow \text { make_range }\left(V_{1}, V_{2}\right), S_{2} \\
S_{1}, E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow W, S_{2} \\
\text { abnormal_state }\left(S_{2}\right)
\end{gathered}
$$

4.9.5.1 Enumeration Types

4.9.5.2 Character Types

4.9.5.3 Boolean Types

4.9.5.4 Integer Types

$$
\begin{gathered}
S_{1}, E_{1} \vdash_{\text {exp }} \operatorname{Exp}_{1} \Rightarrow \text { discrete_val }\left(V_{1}\right), S_{1} \\
S_{1}, E_{1} \vdash_{\text {exp }} \operatorname{Exp}_{2} \Rightarrow \text { discrete_val }\left(V_{2}\right), S_{1} \\
\text { new_type }\left(S_{1},\left(\text { some }(\text { root_integer_tn }) \times \text { signed_integer_type }\left(V_{1}, V_{2}, V_{1}, V_{2}\right)\right), U, S_{2}\right) \\
\hline S_{1}, E_{1},\langle \rangle \vdash_{\text {tdf }} \text { range Exp } . . \operatorname{Exp}_{2} \Rightarrow \text { subtype }(U, \text { no_constraint, not_used }), E_{1}, S_{2} \\
S_{1}, E_{1} \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow \text { discrete_val }(V), S_{1} \\
\frac{\text { new_type }\left(S_{1},(\text { some }(\text { root_integer_tn }) \times \text { modular_type }(V)), U, S_{2}\right)}{S_{1}, E_{1},() \vdash_{t d f} \text { mod Exp } \Rightarrow \operatorname{subtype}(U, \text { no_constraint, not_used }), E_{1}, S_{2}}
\end{gathered}
$$

4.9.5.5 Operations of Discrete Types

4.9.5.6 Real Types

4.9.5.7 Floating Point Types

$$
\begin{gathered}
\frac{\text { not yet defined }}{S_{1}, E_{1}, D \vdash_{t d f} \text { digits Exp Cns } \Rightarrow S_{t}, E_{2}, S_{2}} \\
\frac{\text { not yet defined }}{S_{1}, E_{1}, D \vdash_{t d f} \text { digits Exp } \Rightarrow S_{t}, E_{2}, S_{2}}
\end{gathered}
$$

4.9.5.8 Operations of Floating Point Types

4.9.5.9 Fixed Point Types

not yet defined

$$
\begin{gathered}
S_{1}, E_{1}, D \vdash_{t d f} \text { delta Exp digits Exp Cns } \Rightarrow S_{t}, E_{2}, S_{2} \\
\frac{\text { not yet defined }}{S_{1}, E_{1}, D \vdash_{t d f} \text { delta Exp digits } \operatorname{Exp} \Rightarrow S_{t}, E_{2}, S_{2}}
\end{gathered}
$$

$$
\frac{\text { not yet defined }}{S_{1}, E_{1}, D \vdash_{t d f} \text { delta Exp Rng } \Rightarrow S_{t}, E_{2}, S_{2}}
$$

4.9.5.10 Operations of Fixed Point Types

4.9.6 Array Types

The evaluation of a subtype mark has no side-effect. Therefore, the evaluation of lists of subtype marks is defined sequentially.

```
        \(S, E \vdash_{S t l}() \Rightarrow[]\)
        \(S, E \vdash_{\text {nam }} \operatorname{Nam}_{0} \Rightarrow\) subtype_view \(\left(L_{s}\right), S\)
            \(S, E \vdash_{s u l}\left(\right.\) Nam, ...) \(\Rightarrow S_{t}\)
                \(\overline{S, E \vdash_{S t l}\left(\mathrm{Nam}_{0}, \mathrm{Nam}, \ldots\right) \Rightarrow S^{s t_{p}}\left[L_{s}\right] \cdot S_{\mathrm{t}}}\)
            index_actions( \(E,(),[],[])\)
            \(\frac{\text { index_actions }\left(E,(\operatorname{Sid}, \ldots), S_{t}, A_{c}\right)}{\text { index_actions }\left(E,\left(\operatorname{Sid}_{0}, \operatorname{Sid}, \ldots\right), S t_{0} \cdot S_{t}, E \vdash \vdash_{\text {sid }} \operatorname{Sid}_{0} \Rightarrow S t_{0} \cdot A_{c}\right)}\)
            range_constraints(S, [ ], [])
            type_constraints \(\left(S, S_{t}, R\right)\)
                range_constraints(S, subtype(?, range_constraint( \(\left.\left.\left.R_{0}\right), ?\right) \cdot S_{t}, R_{0} \cdot R\right)\)
                not yet defined
                                    \(S_{1}, E_{1}, D \vdash_{t d f}\) array(Rng_lst)of aliased Sid \(\Rightarrow S_{t}, E_{2}, S_{2}\)
                not yet defined
            \(S_{1}, E_{1}, D \vdash_{t d f} \operatorname{array}\left(\mathrm{Nam}_{0}, \mathrm{Nam}, \ldots\right)\) of aliased \(\operatorname{Sid} \Rightarrow S_{t}, E_{2}, S_{2}\)
            index_actions \(\left(E, I \mathrm{Idx}, S_{i}, A_{c}\right)\)
                            \(S_{1}\left\{\begin{array}{c}E_{1} \vdash_{\text {sid }} \text { Sid } \Rightarrow S_{t} \\ A_{c 1} \\ \cdots \\ A_{c n}\end{array}\right\} S_{2}\)
            range_constraints \(\left(S_{2}, S_{i}, R\right)\)
            new_type \(\left(S_{2}\right.\), (none \(\times\) array_type \(\left.\left.\left(S_{i}, S_{t}\right)\right), U, S_{3}\right)\)
                \(\overline{S_{1}, E_{1},\langle \rangle \vdash_{t d f} \text { array }(1 d x) \text { of } \operatorname{Sid} \Rightarrow \operatorname{subtype}(U, \text { index_constraint }(R), \text { not_used }), E_{2}, S_{3}}\)
                    \(S_{1}, E_{1} \vdash_{S t l} \operatorname{Idx} \Rightarrow S_{i}\)
                        \(S_{1}, E_{1} \vdash_{\text {sid }}\) Sid \(\Rightarrow S_{t}, S_{2}\)
            new_type \(\left(S_{2}\right.\), (none \(\times\) array_type \(\left.\left.\left(S_{i}, S_{t}\right)\right), U, S_{3}\right)\)
                                    \(\left.S_{1}, E_{1}, \\right\rangle \vdash_{t d f}\) array (Idx)of Sid \(\Rightarrow\) subtype \(\left(U\right.\), no_constraint, \(^{\text {not_used }}\) ), \(E_{1}, S_{3}\)
```


4.9.7 Discriminants

4.9.8 Record Types

$\frac{S_{1}\left[\begin{array}{c}E \vdash_{c m p} \mathrm{D} \Rightarrow \mathrm{Cmp} \\ E, D \vdash_{v r n} V \mathrm{Vp} \Rightarrow V \\ \text { new_type_fn((none } \times \text { record_type }(\text { none }, D, \text { fields }(C, V))), U)\end{array}\right] S_{2}}{S_{1}, E, D \vdash_{\text {tdf }} \mathrm{Cmp} \Rightarrow \operatorname{subtype}(U, \text { no_constraint, not_used }), E, S_{2}}$

$S, E \vdash_{c m p} \mathrm{D} \Rightarrow\langle \rangle,[]$

$$
\begin{gathered}
\frac{\text { not yet defined }}{S_{1}, E \vdash_{c m p} \mathrm{D} \Rightarrow \mathrm{Idn}: \text { aliased Sid; Cmp } \ldots, A} \\
\frac{S_{1}\left[\begin{array}{c}
E, D \vdash_{p s i} \text { Sid } \Rightarrow P_{s} \\
E \vdash_{c m p} \mathrm{D} \Rightarrow \mathrm{Cmp} \ldots
\end{array}\right] S_{2}}{S_{1}, E \vdash_{c m p} \mathrm{D} \Rightarrow \mathrm{Idn}: \text { Sid; Cmp } \ldots, A_{1}\left[\operatorname{ldn} \mapsto\left(P_{s} \times \text { none }\right)\right]} \\
\frac{\text { not yet defined }}{S_{1}, E \vdash_{c m p} \mathrm{D} \Rightarrow \mathrm{Idn}: \text { aliased Sid }:=\text { Exp } ; \text { Cmp } \ldots, A} \\
\frac{S_{1}\left[\begin{array}{c}
E, D \vdash_{p s i} \text { Sid } \Rightarrow P_{s} \\
E \vdash_{c m p} \mathrm{D} \Rightarrow \mathrm{Cmp} \ldots
\end{array}\right] S_{2}}{S_{1}, E \vdash_{c m p} \mathrm{D} \Rightarrow \operatorname{Idn}: \text { Sid }:=\text { Exp; Cmp } \ldots, A}
\end{gathered}
$$

4.9.8.1 Variant Parts and Discrete Choices

$$
\begin{aligned}
& S, E, D \vdash_{v r n} \Rightarrow \text { none, } S \\
& S_{1}, E, D \vdash_{u r n} V_{n t} \Rightarrow B, S_{2} \\
& \left.\bar{S}, E, D \vdash_{\text {urn }} \text { case Idn is Vnt end case; } \Rightarrow \text { some(}(\operatorname{ldn} \times B)\right), S_{2} \\
& \rangle=\operatorname{variant}([]) \\
& S, E, D \vdash_{\text {urn }}\langle \rangle \Rightarrow\langle \rangle, S \\
& S_{1}, E \vdash_{c h c} \text { Dch } \Rightarrow C_{v}, S_{1} \\
& S_{1}\left[\begin{array}{c}
E \vdash_{c m p} \mathrm{D} \Rightarrow \mathrm{Cmp} \\
E, D \vdash_{u r n} \operatorname{Vrp} \Rightarrow V \\
E, D \vdash_{u r n} V_{n t} ; \ldots \Rightarrow \operatorname{variant}\left(B_{1}\right)
\end{array}\right] S_{2} \\
& S_{1}, E, D \vdash_{\text {urn }} \text { when } \operatorname{Dch}=>\text { CmpVrp; } V_{n t} ; \ldots \Rightarrow \operatorname{variant}\left(\left(C_{v} \times \text { fields }(C, V)\right) \cdot B_{2}\right), S_{2}
\end{aligned}
$$

4.9.9 Tagged Types and Type Extensions

4.9.9.1 Type Extensions

```
    \(S_{0}, E_{1} \vdash_{\text {sid }} \operatorname{Sid} \Rightarrow \operatorname{subtype}(P, C, A), S_{1}\)
\(S_{1}^{t y p}[P]=\left(P_{p} \times\right.\) record_type \(\left(\operatorname{some}\left(U_{p}\right), D_{1}\right.\), fields \(\left.\left.\left(C_{1}, V_{1}\right)\right)\right)\)
    \(E_{1} \vdash_{c m p} \mathrm{D}_{0} \Rightarrow \mathrm{Cmp}\)
    \(E_{1}, D_{0} \vdash_{\text {urn }} V_{r p} \Rightarrow V_{2}\)
    new_type_fn \(\left(\left(\operatorname{some}\left(U_{p}\right) \times\right.\right.\) record_type \(\left(\operatorname{some}(U)\right.\), discriminant_union \(\left(D_{0}, D_{1}\right)\), fields \(\left.\left.\left.\left(C_{1} \oplus C_{2}, V_{1} \oplus V_{2}\right)\right)\right), U\right)\)
        \(S_{0}, E_{1}, D_{0} \vdash_{t d f}\) new Sid with \(\mathrm{Cmp} \Rightarrow\) subtype( \(\bar{U}\), no_constraint, not_used), \(E_{2}, S_{2}\)
    none \(\oplus V=V\)
    \(V \oplus\) none \(=V\)
        \(\operatorname{discriminantuunion}\left(\operatorname{discr}\left(A_{1}\right), \operatorname{discr}\left(A_{2}\right)\right)=\operatorname{discr}\left(A_{1} \oplus A_{2}\right)\)
```


4.9.10 Access Types

$S_{1}, E_{1} \vdash_{S_{t d_{i}}}$ Sid $\Rightarrow L_{s}, S_{2}$
$\frac{\text { new_type }\left(S_{2},\left(\text { none } \times \text { access_type }\left(L_{3}, \text { pool_access }\right)\right), U, S_{3}\right)}{S_{1}, E_{1}, D \vdash_{\text {tdf }} \text { access Sid } \Rightarrow \operatorname{subtype}(U, \text { no_constraint, not_used }), E_{1}, S_{3}}$
$S_{1}, E_{1} \vdash_{\text {Sid }_{i}} \mathrm{Sid} \Rightarrow L_{s}, S_{2}$
new_type $\left(S_{2},\left(\right.\right.$ none \times access_type $\left(L_{s}\right.$, all_access $)$), $\left.U, S_{3}\right)$
$S_{1}, E_{1}, D \vdash_{\text {tdf }}$ access all Sid \Rightarrow subtype(U, no_constraint, not_used $), E_{1}, S_{3}$
$S_{1}, E_{1} \vdash_{S_{i d_{i}}}$ Sid $\Rightarrow L_{s}, S_{2}$
new_type $\left(S_{2},\left(\right.\right.$ none \times access_type $\left(L_{3}\right.$, constant_access $\left.\left.)\right), U, S_{3}\right)$
$S_{1}, E_{1}, D \vdash_{\text {tdf }}$ access constant $\operatorname{Sid} \Rightarrow \operatorname{subtype}(U$, no_constraint, not_used $), E_{1}, S_{3}$

$$
S_{1}, E \vdash_{\text {pas }} \text { Pms } \Rightarrow A, S_{2}
$$

```
\(S_{1}, E,() \vdash_{t d f}\) access procedure \(P \mathrm{~ms} \Rightarrow \operatorname{subtype}(U\), no_constraint, not_used \(), E, S_{2}[\) proc_profile \((A) \mapsto 3 U]\)
    \(S_{1}, E \vdash_{\text {pas }}\) Pms \(\Rightarrow A, S_{2}\)
    \(S_{2}, E \vdash_{\text {nam }}\) Nam \(\Rightarrow\) subtype_view \(\left(S_{l}\right), S_{2}\)
    \(S_{1}, E_{1},\langle \rangle \vdash_{t d f}\) access function \(\operatorname{Pms} \Rightarrow \operatorname{subtype}(U\), no_constraint, not_used \(), E_{2}, S_{2}\left[\right.\) func_profile \(\left.\left(A, S_{2}^{s t p}\left[S_{1}\right]\right) \mapsto_{3} U\right]\)
```


4.9.10.1 Incomplete Type Declarations

In the case of access type definitions, a subtype indication may denote an incomplete type.

$$
\begin{gathered}
S_{1}, E \vdash_{\text {nam }} \text { Nam } \Rightarrow \text { subtype_view }\left(L_{s}\right), S_{1} \\
S_{1}, E \vdash_{\text {Sid }_{i}} \text { Nam } \Rightarrow L_{s}, S_{1} \\
S_{1}, E \vdash_{\text {nam }} \text { Nam } \Rightarrow \text { subtype_view }\left(L_{s}\right), S_{1} \\
S_{1}, E_{1} S_{1}^{s t p}\left[L_{s}\right] \vdash_{\text {cns }} C_{\text {sn }} \Rightarrow C, S_{2} \\
\text { compatible }\left(E, S_{1}^{s t p}\left[L_{s}\right], C\right) \\
S_{1}^{s t p}\left[L_{s}\right]=\operatorname{subtype}\left(U, C_{1}, A\right) \\
\text { new_subtype }\left(S_{2}, \operatorname{subtype}(U, C, A), L_{t}, S_{3}\right) \\
S_{1}, E \vdash_{S i d,} \operatorname{Nam} \operatorname{Cns} \Rightarrow L_{t}, S_{3}
\end{gathered}
$$

$$
\langle=\operatorname{discr}([])
$$

For incomplete type declarations, a new incomplete type descriptor carries the discriminant information.

> | new_type $\left(S_{0},(\right.$ none \times incomplete_type $\left.(())), U, S_{1}\right)$ |
| :---: |
| new_subtype $\left(S_{1}\right.$, subtype $(U$, no_constraint, not_used $\left.), L_{s}, S_{2}\right)$ |
| $S_{0}, E_{1} \vdash_{d c l}$ type $I_{d} ; \Rightarrow E_{1}\left[I_{d} \mapsto\right.$ subtype_view $\left.\left(L_{s}\right)\right], S_{2}$ |
| $S_{1}, E_{1} \vdash_{d s c}$ Dcp $\Rightarrow D, S_{2}$ |
| new_type $\left(S_{2},(\right.$ none \times incomplete_type $\left.(D)), U, S_{3}\right)$ |
| new_subtype $\left(S_{3}\right.$, subtype $(U$, no_constraint, not_used $\left.), L_{s}, S_{4}\right)$ |
| $S_{1}, E_{1} \vdash_{d, l}$ tyde I_{d} Dcp $; \Rightarrow E_{1}\left[I_{d} \mapsto \operatorname{subtype_ view~}\left(L_{s}\right)\right], S_{3}$ |

Completing type declarations have their own abstract syntax.

$$
\begin{gathered}
E_{1} \vdash_{\text {lookup }} I_{\mathbf{d}} \Rightarrow \text { subtype_view }\left(L_{s}\right) \\
S_{1}, E_{1}, \ \vdash_{t d f} T d f \Rightarrow S_{t}, E_{2}, S_{2} \\
\hline S_{1}, E_{1} \vdash_{d c l} \text { completetype } I_{\mathrm{d}} \text { is } \mathrm{Tdf} ; \Rightarrow E_{2}, S_{2}\left[L_{s} \mapsto_{4} S_{t}\right] \\
E_{1} \vdash_{l o o k u p} I_{\mathrm{d}} \Rightarrow \text { subtype_view }\left(L_{s}\right) \\
S_{1}\left[\begin{array}{c}
E \vdash_{d s c} \text { Dcp } \Rightarrow D \\
E, D \vdash_{t d f} T d f \Rightarrow S_{t}, E_{2}
\end{array}\right] S_{2} \\
\hline S_{1}, E_{1} \vdash_{d c l} \text { completetype } I_{d} \text { Dcp is } T d f ; \Rightarrow E_{2}, S_{2}\left[L_{s} \mapsto_{4} S_{t}\right]
\end{gathered}
$$

4.10 Expressions

4.10.1 Names

$$
\begin{gathered}
\frac{E \vdash_{\text {lookup }} \text { Idn } \Rightarrow W}{S, E \vdash_{\text {nam }} \text { Idn } \Rightarrow W, S} \\
\frac{S_{1}\left[\begin{array}{c}
E \vdash_{\text {nam }} N a m \Rightarrow \text { object_view }\left(L_{1}, S_{t}, ?\right) \\
\vdash \text { content }\left(L_{1}\right) \Rightarrow \text { access_val }(W, ?)
\end{array}\right] S_{2}}{S_{1}, E \vdash_{\text {nam }} \text { Nam.all } \Rightarrow W, S_{2}}
\end{gathered}
$$

4.10.1.1 Indexed Components

The function expression_list computes a sequence of actions that corresponds to the evaluation of a sequence of expressions.

$$
\begin{gathered}
\text { expression_list }(E,[],[],[]) \\
\text { expression_list }\left(E, \operatorname{Exs}, V_{s}, A_{s}\right) \\
A=E \vdash_{\exp } \operatorname{Exp} \Rightarrow V \\
\hline \text { expression_list }\left(E, \operatorname{Exp} \cdot \operatorname{Exs}, V \cdot V_{s}, A \cdot A_{s}\right) \\
\text { index_list }(S,[],[],[], S)
\end{gathered}
$$

> belongs_to (V, R)
> index_list $\left(S_{1}, R_{s}, V_{s}, I_{s}, S_{2}\right)$
> index_list $\left(S_{1}, R \cdot R_{s}, V \cdot V_{s}, V \cdot I_{s}, S_{2}\right)$
> \rightarrow belongs_to (V, R)
> index_list(normal(N), $R \cdot R_{s}, V \cdot V_{s}, I \cdot I_{s}$, exception(constraint_error, N))
> expression_list $\left(E, E x s, V_{i}, A_{s}\right)$
> abnormal_state $\left(S_{2}\right)$
> $S_{1}, E \vdash_{\text {nam }} \operatorname{Prefix}(E x s, \ldots) \Rightarrow$ undefined_view, S_{2}
> expression_list $\left(E\right.$, Exs, $\left.V_{i}, A_{s}\right)$
> $S_{1}\left\{\begin{array}{c}E \vdash_{\text {nam }} \text { Prefix } \Rightarrow \text { object_view }\left(L_{1}, S_{t}, C\right) \\ A_{s_{1}} \\ \cdots \\ A_{s_{n}}\end{array}\right\} S_{2}$
> normaLstate $\left(S_{2}\right)$
> type_struct $\left(S_{2}, S_{t}\right)=$ array_type $(?, B)$
> $S_{2} \vdash$ content $\left(L_{1}\right) \Rightarrow$ array_val $\left(R, A_{v}\right)$
> index-list $\left(S_{2}, R, V_{i}, I_{x}, S_{3}\right)$
> $\overline{\left.S_{1}, E \vdash_{\text {nam }} \operatorname{Prefix}(E x s, \ldots) \Rightarrow \text { object_view(array_component }\left(L_{1}, I_{x}\right), B, C\right), S_{3}}$

4.10.1.2 Slices

$$
\begin{aligned}
& \text { null range }\left(R_{s}\right) \\
& \text { slice_check }\left(S, R_{s}, R_{a}, S\right) \\
& \frac{\text { included_in }\left(R_{s}, R_{a}\right)}{\text { slice_check }\left(S, R_{s}, R_{a}, S\right)} \\
& \neg \text { null_range }\left(R_{s}\right) \\
& \neg \text { included_in }\left(R_{s}, R_{a}\right) \\
& \text { slice_check(normal(} N \text {), } R_{s}, R_{a} \text {, exception(constraint_error, } N \text {)) } \\
& S_{1}\left\{\begin{array}{c}
E \vdash_{\text {nam }} \text { Prefix } \Rightarrow W \\
E \vdash_{r n g} \text { Rng } \Rightarrow R_{s}
\end{array}\right\} S_{2} \\
& \text { abnormal_state }\left(S_{2}\right) \\
& \overline{S_{1}, E \vdash_{\text {nam }} \text { Prefix(Rng) } \Rightarrow \text { undefined_view, } S_{2}} \\
& S_{1}\left\{\begin{array}{c}
E \vdash_{n a m} \text { Prefix } \Rightarrow \text { object_view }\left(L_{v}, S_{t}, C\right) \\
E \vdash_{r n g} \operatorname{Rng} \Rightarrow R_{s}
\end{array}\right\} S_{2} \\
& \text { normal_state }\left(S_{2}\right) \\
& S_{2} \vdash \operatorname{content}\left(L_{v}\right) \Rightarrow \text { array_val }\left(\left[R_{a}\right], A_{v}\right) \\
& \operatorname{constrain}\left(S_{t}, \text { range_constraint }\left(R_{s}\right), S_{q}\right) \\
& \text { slice_check }\left(S_{2}, R_{s}, R_{a}, S_{3}\right) \\
& S_{1}, E \vdash_{\text {nam }} \operatorname{Prefix}(\text { Rng }) \Rightarrow \text { object_view }\left(\text { array_slice }\left(L_{v}, R_{s}\right), S_{q}, C\right), S_{3}
\end{aligned}
$$

4.10.1.3 Selected Components

$$
\begin{gathered}
\begin{array}{c}
S_{1}, E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow W, S_{2} \\
\text { abnormal_state }\left(S_{2}\right)
\end{array} \\
{, E \vdash_{\text {nam }} \text { Nam.Idn_ } \Rightarrow \text { undefined_view, } S_{2}} } \\
S_{1}, E \vdash_{\text {nam }} \text { Nam } \Rightarrow \text { object_view }\left(L_{v}, S_{t}, ?\right), S_{2} \\
\text { component_type }\left(D_{v}, \text { type_struct }\left(S_{2}, S_{t}\right), \text { Idn }, S_{q}\right) \\
S_{2} \vdash \text { content }\left(L_{v}\right) \Rightarrow \text { record_val }\left(T_{g}, D_{v}, C_{v}\right) \\
\text { new_object }\left(S_{2}, D_{v}[\operatorname{ldn}], L, S_{3}\right)
\end{gathered}
$$

4.10.1.4 Expanded Names

4.10.1.5 Attributes

$$
\begin{aligned}
& S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V, S_{1} \\
& \frac{S_{1}\left[\begin{array}{c}
E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow W_{1} \\
E, W_{1}, V \vdash_{\text {att }} \operatorname{Idn} \Rightarrow W
\end{array}\right] S_{2}}{S, E \vdash_{\text {nam }} \operatorname{Nam}{ }^{\prime} \operatorname{ldn}(\operatorname{Exp}) \Rightarrow W, S}
\end{aligned}
$$

Note that the abstract syntax distinguishes $N^{\prime} I(E)$ for static expression E from $N^{\prime} I(E)$ where N'I is a function-valued attribute.

4.10.2 Literals

$$
S, E \vdash \vdash_{\text {exp }} \text { null } \Rightarrow \text { null, } S
$$

In the abstract syntax, the representation of character literals is given by the numeric value of the position of the character.

$$
\begin{gathered}
S, E \vdash_{\text {exp }} \mathrm{C}^{\prime} \Rightarrow \text { discrete_val }(C), S \\
S, E \vdash_{\text {exp }} \mathrm{R} \Rightarrow \text { real_val }(R), S \\
S, E \vdash_{\text {exp }} \mathrm{N} \Rightarrow \text { discrete_val }(N), S
\end{gathered}
$$

4.10.3 Aggregates

Only explicitly qualified aggregates are defined. Static semantics adds qualification where needed.
We assume a normalized representation using named associations. This is possible because of [4.3.1(14)].

$$
\begin{aligned}
& S_{1}, E \vdash_{\text {nam }} \text { Nam } \Rightarrow \operatorname{subtype} \operatorname{view}\left(L_{s}\right), S_{1} \\
& \text { type_struct }\left(S_{1}, S_{1}^{s t p}\left[L_{s}\right]\right)=\text { record_type }\left(T_{g}, \operatorname{discr}(L), C_{l}\right) \\
& S_{1}^{s t p}\left[L_{s}\right]=\text { subtype(?, no_constraint, ?) } \\
& S_{1}, E, L \vdash_{\text {agg }} \mathrm{Agg} \Rightarrow B_{d}, S_{2} \\
& S_{2}, E \text {, actualized_components }\left(B_{d}, C_{l}\right) \vdash_{\text {agg }} \text { Agg } \Rightarrow B_{c}, S_{3} \\
& S_{1}, E \vdash_{\text {exp }} \mathrm{Nam}{ }^{\prime} \mathrm{Agg}_{\mathrm{Ag}} \Rightarrow \text { record_val }\left(T_{g}, B_{d}, B_{c}\right), S_{3} \\
& S_{1}, E \vdash_{\text {nam }} \text { Nam } \Rightarrow \text { subtype_view }\left(L_{s}\right), S_{1} \\
& \text { type_struct }\left(S_{1}, S_{1}^{s t p}\left[L_{s}\right]\right)=\text { record_type }\left(T_{g}, D_{a}, C_{l}\right) \\
& \left.S_{1}^{s t p}\left[L_{s}\right]=\text { subtype(?, discriminant_constraint }\left(B_{d}\right), ?\right) \\
& \xrightarrow{S_{1}, E_{1} \text { actualized components }\left(B_{d}, C_{l}\right) \vdash_{\text {agg }} \mathrm{Agg} \Rightarrow B_{c}, S_{2}} \\
& S_{1}, E \vdash_{\text {exp }} \mathrm{Nam}^{\prime} \mathrm{Agg} \Rightarrow \text { record_val }\left(T_{g}, B_{d}, B_{c}\right), S_{2} \\
& \text { find_component }\left(I_{d}, \text { others }=>\text { Exp } \cdot \text { Rca, Exp }\right) \\
& \text { member }\left(I_{d}, \text { Lst }\right) \\
& \text { find_component(} I_{d}, \text { Lst, } \ldots=>\text { Exp } \cdot \text { Rea, Exp) } \\
& \text { component_actions(E, [], Rca, [], []) } \\
& \text { find_component(} I_{d}, \text { Rca, Exp) } \\
& \text { component_actions }\left(E, B, \operatorname{Rca}, B_{c}, A_{s}\right) \\
& \text { component_actions }\left(E,\left(I_{d} \times ?\right) \cdot B, \operatorname{Rca},\left(I_{d} \times V\right) \cdot B_{c}, E \vdash_{\exp } \operatorname{Exp} \Rightarrow V \cdot A_{s}\right) \\
& \neg \text { find_component }\left(I_{d}, \mathrm{R}_{\mathrm{ca}}, ?\right) \\
& \text { component_actions }\left(E, B, \text { Rca, } B_{c}, A_{s}\right) \\
& \text { component_actions }\left(E,\left(I_{d} \times ?\right) \cdot B, \mathrm{Rca},\left(I_{d} \times V\right) \cdot B_{c}, E_{1} \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V \cdot A_{s}\right) \\
& \text { component_actions }\left(E, A, \text { Rca, } B, A_{s}\right) \\
& \frac{S_{1}\left\{\begin{array}{c}
A_{s 1} \\
\ldots \\
A_{s n}
\end{array}\right\} S_{2}}{S_{1}, E, A \vdash_{a g g}(\text { Rca }, \ldots) \Rightarrow B, S_{2}} \\
& S, E,[] \vdash_{a g g}(\text { null record }) \Rightarrow[], S \\
& \frac{\text { not yet defined }}{S_{1}, E, R_{s}, C_{s} \vdash_{\text {agg }}\left(\operatorname{Exp}_{1}, \operatorname{Exp}_{2}, \ldots\right) \Rightarrow V, S_{2}} \\
& \text { not yet defined } \\
& S_{1}, E, R_{s}, C, \vdash_{a g g}\left(\operatorname{Exp}_{1}, \text { Exp }_{2}, \ldots, \text { others }=>\operatorname{Exp}\right) \Rightarrow V, S_{2} \\
& \frac{\text { not yet defined }}{S_{1}, E, R_{s}, C_{s} \vdash_{\text {agg }}\left(\text { Aca }_{1}, \text { Aca } 2, \ldots\right) \Rightarrow V, S_{2}} \\
& \text { not yet defined } \\
& S_{1}, E, R_{s}, C_{s} \vdash_{a g g}\left(\operatorname{Exp}_{1}, \operatorname{Exp}_{2}, \ldots, \text { others } \Rightarrow \operatorname{Exp}\right) \Rightarrow V, S_{2}
\end{aligned}
$$

4.10.4 Operators and Expression Evaluation

It is assumed that static semantics has resolved all operators into function calls as defined in [4.5] with the following exceptions:

- short-circuit operators
- in and not in operators

4.10.4.1 Logical Operators and Short-circuit Control Forms

$$
\begin{aligned}
& \frac{S_{1}\left[\begin{array}{c}
E \vdash_{\exp } \operatorname{Exp}_{1} \Rightarrow \text { discrete_val }(1) \\
E \vdash_{\exp } \operatorname{Exp}_{2} \Rightarrow V
\end{array}\right] S_{2}}{S_{1}, E \vdash_{\exp } \operatorname{Exp} 1 \text { and then } \operatorname{Exp}_{2} \Rightarrow V, S_{2}} \\
& S_{1}, E \vdash_{\text {exp }} \operatorname{Exp}_{1} \Rightarrow \text { discrete_val }(0), S_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{S_{1}\left[\begin{array}{c}
E \vdash_{\text {exp }} \operatorname{Exp}_{1} \Rightarrow \text { discrete_val }(0) \\
E \vdash_{\exp } \operatorname{Exp}_{2} \Rightarrow V
\end{array}\right] S_{2}}{S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} 1 \text { or else Exp } 2 \Rightarrow V, S_{2}} \\
& S_{1}, E \vdash_{\text {exp }} \operatorname{Exp}_{1} \Rightarrow \text { discrete_val(1), } S_{2} \\
& S_{1}, E \vdash_{\text {exp }} \operatorname{Exp}_{1} \text { or else Exp } 2 \Rightarrow \text { discrete_val(1), } S_{2}
\end{aligned}
$$

4.10.4.2 Relational Operators and Membership Tests

$$
\begin{aligned}
& S_{1}, E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow \text { subtype_view }\left(L_{s}\right), S_{1} \\
& S_{1}, E \vdash_{\exp } \operatorname{Exp} \Rightarrow V, S_{2} \\
& \frac{\text { belongs_to }\left(V, \text { range_of_subtype }\left(S_{1}, S_{1}^{s t p}\left[L_{s}\right]\right)\right)}{S_{1}, E \vdash_{\text {exp }} \text { Exp in Nam } \Rightarrow \text { discrete_val }(1), S_{2}} \\
& S_{1}, E \vdash_{\text {nam }} \text { Nam } \Rightarrow \text { subtype_view }\left(L_{s}\right), S_{1} \\
& S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V, S_{2} \\
& \rightarrow \text { belongs_to }\left(V, \text { range_of_subtype }\left(S_{2}, S_{1}^{s t p}\left[L_{s}\right]\right)\right) \\
& S_{1}, E \vdash_{\text {exp }} \text { Exp in } \mathrm{Nam} \Rightarrow \text { discrete_val(} 0 \text {), } S_{2} \\
& S_{1}\left\{\begin{array}{ll}
E \vdash_{r n g} & \text { Rng } \Rightarrow R \\
E \vdash_{\text {exp }} & \operatorname{Exp} \Rightarrow V
\end{array}\right\} S_{2} \\
& \text { belongs_to }(V, R) \\
& \overline{\left.S_{1}, E \vdash_{\text {exp }} \text { Exp in Rng } \Rightarrow \text { discrete_val(} 1\right), S_{2}} \\
& S_{1}\left\{\begin{array}{ll}
E \vdash_{r n g} & \text { Rng } \Rightarrow R \\
E \vdash_{\text {exp }} & \text { Exp } \Rightarrow V
\end{array}\right\} S_{2} \\
& \text { ᄀbelongs_to }(V, R) \\
& \left.\overline{S_{1}, E \vdash_{\text {exp }}} \text { Exp in Rng } \Rightarrow \text { discrete_val(} 0\right), S_{2} \\
& \neg \text { is_tagged_type }\left(S, S_{t}\right) \\
& S_{t}=\operatorname{subtype}(U, C, ?) \\
& \text { satisfies }(V, C) \\
& \text { test_in }\left(S, V, S_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S_{t}=\operatorname{subtype}(U, C, ?) \\
& \text { satisfies (} V, C \text {) } \\
& V=\operatorname{record}_{-} \operatorname{val}\left(\operatorname{some}\left(T_{g}\right), ?, ?\right) \\
& \text { ancestor }\left(S, U, T_{g}\right) \\
& \text { test_in(} \left.S, V, S_{t}\right) \\
& S_{1}, E \vdash_{\text {nam }} \text { Nam } \Rightarrow \text { subtype_view }\left(L_{s}\right), S_{1} \\
& S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V, S_{2} \\
& \text { test_in }\left(S_{2}, V, S_{1}^{s t p}\left[L_{s}\right]\right) \\
& S_{1}, E \vdash \vdash_{\exp } \operatorname{Exp} \text { in } \mathrm{Nam} \Rightarrow \text { discrete_val(1), } S_{2} \\
& S_{1}, E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow \operatorname{subtype} \operatorname{view}\left(L_{s}\right), S_{1} \\
& S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V, S_{2} \\
& \neg \operatorname{test_ in}\left(S_{2}, V, S_{1}^{s t p}\left[L_{s}\right]\right) \\
& S_{1}, E \vdash_{\text {exp }} \text { Exp in Nam } \Rightarrow \text { discrete_val(} 0 \text {), } S_{2} \\
& S_{1}, E \vdash_{\text {exp }} \text { Exp in Nam } \Rightarrow \text { discrete_val }(0), S_{2} \\
& S_{1}, E \vdash_{\exp } \text { Exp not in Nam } \Rightarrow \text { discrete_val(} 1 \text {), } S_{2} \\
& S_{1}, E \vdash_{\exp } \text { Exp in Rng } \Rightarrow \text { discrete_val(1), } S_{2} \\
& \left.S_{1}, E \vdash_{\text {exp }} \text { Exp not in Rng } \Rightarrow \text { discrete_val(} 0\right), S_{2} \\
& \left.S_{1}, E \vdash_{\text {exp }} \text { Exp in Rng } \Rightarrow \text { discrete_val(} 0\right), S_{2} \\
& S_{1}, E \vdash_{\exp } \text { Exp not in Rng } \Rightarrow \text { discrete_val(1), } S_{2} \\
& \frac{S_{1}, E \vdash_{\text {exp }} \text { Exp in Nam } \Rightarrow \text { discrete_val }(1), S_{2}}{S_{1}, E \vdash_{\text {exp }} \text { Exp not in Nam } \Rightarrow \text { discrete_val }(0), S_{2}} \\
& \frac{S_{1}, E \vdash_{\exp } \text { Exp in Nam } \Rightarrow \text { discrete_val }(0), S_{2}}{S_{1}, E \vdash_{\text {exp }} \text { Exp not in Nam } \Rightarrow \text { discrete_val }(1), S_{2}}
\end{aligned}
$$

4.10.5 Type Conversions

$$
\begin{aligned}
& \frac{S_{1}\left[\begin{array}{c}
S_{1}, E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow \text { subtype_view }\left(L_{s}\right), S_{1} \\
E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V_{1} \\
E, S_{1}^{s t p}\left[L_{s}\right] \vdash \text { subtype_convert }\left(V_{1}\right) \Rightarrow V_{2}
\end{array}\right] S_{2}}{S_{1}, E \vdash_{\text {exp }} \operatorname{Nam}(\operatorname{Exp}) \Rightarrow V_{2}, S_{2}} \\
& \frac{S_{1}\left[\begin{array}{c}
S_{1}, E \vdash_{\text {nam }} \operatorname{Nam}_{1} \Rightarrow \text { subtype_view }\left(L_{s}\right), S_{1} \\
E \vdash_{\text {nam }} \operatorname{Nam}_{2} \Rightarrow W_{1} \\
E, S_{1}^{s t p}\left[L_{s}\right] \vdash \text { subtype_convert }\left(W_{1}\right) \Rightarrow W_{2}
\end{array}\right] S_{2}}{S_{1}, E \vdash_{\text {nam }} \operatorname{Nam} 1(\operatorname{Nam} 2) \Rightarrow W_{2}, S_{2}}
\end{aligned}
$$

4.10.6 Qualified Expressions

$$
\begin{gathered}
S_{1}, E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow \operatorname{subtype}-\operatorname{view}\left(L_{s}\right), S_{1} \\
S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V, S_{2} \\
\text { abnormaL_state }\left(S_{2}\right) \\
\hline S_{1}, E \vdash_{\text {exp }} \operatorname{Nam}(\operatorname{Exp}) \Rightarrow V, S_{2} \\
S_{1}, E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow \operatorname{subtype_ view}\left(L_{s}\right), S_{1} \\
S_{1}^{s t p}\left[L_{s}\right]=\operatorname{subtype}(?, C, ?) \\
S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V, S_{2} \\
\text { normaLstate }\left(S_{2}\right) \\
\text { satisfies }(V, C)
\end{gathered}
$$

4.10.7 Allocators

$$
\begin{gathered}
\frac{S_{1}\left[\begin{array}{c}
E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V \\
\text { new_object_fn(invalid_val, } L)
\end{array}\right] S_{2}}{S_{1}, E \vdash_{\text {exp }} \text { new Exp } \Rightarrow \text { access_val(object_view(location }(L), ?, \text { aliased), none), } S_{2}} \\
\frac{\text { not yet defined }}{S, E \vdash_{\exp } \text { new Sid } \Rightarrow V, S}
\end{gathered}
$$

4.11 Statements

4.11.1 Statement Sequences

$$
\begin{gathered}
\frac{S_{0}\left[\begin{array}{c}
E \vdash_{s t m} \mathrm{Stm}_{1} \Rightarrow \\
E \vdash_{s t m} \mathrm{Stm}_{2} \ldots \Rightarrow
\end{array}\right] S_{1}}{S_{0}, E \vdash_{\mathrm{stm}} \mathrm{Stm}_{1} \mathrm{Stm}_{2} \ldots \Rightarrow S_{1}} \\
S, E \vdash_{s t m}(\rangle \Rightarrow S \\
\frac{S, E \vdash_{s t m} \mathrm{Stm} \Rightarrow S}{S, E \vdash_{s t m} \ll \mathrm{Nam} \gg \operatorname{Stm} \Rightarrow S} \\
S, E \vdash_{s t m} \text { null; } \Rightarrow S
\end{gathered}
$$

4.11.2 Assignment Statements

4.11.3 If Statements

$$
\begin{aligned}
& \frac{S_{1}\left[\begin{array}{c}
E \vdash_{\text {elf }} \text { Eif }_{1} \Rightarrow \text { false } \\
E \vdash_{\text {elf }} \text { Eif }_{2} \ldots \Rightarrow R
\end{array}\right] S_{2}}{S_{1}, E \vdash_{\text {elf }} \text { Eif }_{1} \text { Eif }_{2} \ldots \Rightarrow R, S_{2}} \\
& \frac{S_{1}\left[\begin{array}{c}
E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow \text { discrete_val(1) } \\
E \vdash_{\text {stm }} \operatorname{Stm} \Rightarrow
\end{array}\right] S_{2}}{S_{1}, E \vdash_{\text {elf }} \text { elsif Exp then } \operatorname{Stm} \Rightarrow \text { true }, S_{2}} \\
& \frac{S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow \text { discrete_val }(0), S_{2}}{S_{1}, E \vdash_{\text {elf }} \text { elsif Exp then } \operatorname{Stm} \Rightarrow \text { false, } S_{2}} \\
& S_{1}\left[\begin{array}{c}
E \vdash_{\exp } \operatorname{Exp} \Rightarrow V \\
E, V \vdash_{\text {clt }} \text { Alt } \Rightarrow \text { true }
\end{array}\right] S_{2} \\
& \overline{S_{1}, E \vdash_{s t m} \text { case Exp is Alt end case; } \Rightarrow S_{2}}
\end{aligned}
$$

4.11.4 Case Statements

$$
\begin{aligned}
& \operatorname{normal}(N), E, V \vdash_{\text {clt }}() \Rightarrow R \text {, exception(constraint_error, } N \text {) } \\
& \frac{S_{1}, E, V \vdash_{\text {clt }} \mathrm{Alt}_{1} \Rightarrow \text { true }, S_{2}}{S_{1}, E, V \vdash_{\text {clt }} \mathrm{Alt}_{1} \mathrm{Alt}_{2} \ldots \Rightarrow \text { true }, S_{2}} \\
& \frac{S_{1}\left[\begin{array}{c}
E, V \vdash_{c l t} \mathrm{Alt}_{1} \Rightarrow \text { false } \\
E, V \vdash_{c t t} \mathrm{Alt}_{2} \ldots \Rightarrow R
\end{array}\right] S_{2}}{S_{1}, E, V \vdash_{c l t} \mathrm{Alt}_{1} \mathrm{Alt}_{2} \ldots \Rightarrow R, S_{2}} \\
& S_{1}\left[\begin{array}{c}
E \vdash_{\text {chc }} \text { Dch } \Rightarrow C \\
\text { covers_fn }(V, C, \text { true }) \\
E \vdash_{\text {stm }} \operatorname{Stm} \Rightarrow
\end{array}\right] S_{2} \\
& \overline{S_{1}, E, V \vdash_{\text {clt }}} \text { when Dch } \Rightarrow>\operatorname{Stm} \Rightarrow \operatorname{true}, S_{2} \\
& S_{1}\left[\begin{array}{c}
E \vdash_{\text {chc }} \text { Dch } \Rightarrow C \\
\text { covers_fn }(V, C, \text { false })
\end{array}\right] S_{2} \\
& \overline{S_{1}, E, V \vdash_{\text {clt }} \text { when Dch }=>\operatorname{Stm} \Rightarrow \text { false, } S_{2}} \\
& \frac{S, E \vdash_{\text {stm }} \operatorname{Stm} \Rightarrow \operatorname{exit}(\text { unnamed, } N)}{S, E \vdash_{\text {stm }} \text { loop Stm end loop } ; \Rightarrow \operatorname{normal}(N)}
\end{aligned}
$$

4.11.4.1 Choices

$$
\begin{gathered}
S_{1}, E \vdash_{r n g} \text { Rng } \Rightarrow R, S_{2} \\
\frac{S, E \vdash_{c h c} \text { Rng } \Rightarrow \text { choice_range }(R), S_{2}}{} \\
\frac{S_{1}, E \vdash_{\exp } \operatorname{Exp} \Rightarrow V, S_{2}}{S_{1}, E \vdash_{c h c} \operatorname{Exp} \Rightarrow \text { choice_value }(V), S_{2}} \\
S, E \vdash_{c h c} \text { others } \Rightarrow \text { choice_default, } S \\
S, E \vdash_{c h c}\langle\Rightarrow \text { choice_lst }([]), S \\
S_{1}, E \vdash_{c h c} \text { Dch } h_{1} \Rightarrow C_{1}, S_{2} \\
\frac{S_{2}, E \vdash_{c h c} \text { Dch } \mid \ldots \Rightarrow \text { choice_lst }\left(C_{2}\right), S_{3}}{} \\
\hline S_{1}, E \vdash_{c h c} \text { Dch }_{1}\left|D_{c h}\right| \ldots \Rightarrow \text { choice_lst }\left(C_{1} \cdot C_{2}\right), S_{3}
\end{gathered}
$$

$$
\begin{gathered}
\text { covers }(V, \text { choice_value }(V), \text { true }) \\
\frac{N_{1} \neq N_{2}}{\text { covers(discrete_val } \left.\left.\left(N_{1}\right), \text { choice_value(discrete_val }\left(N_{2}\right)\right), \text { false }\right)} \\
\frac{\text { belongs_to }(V, R)}{\text { covers }(V, \text { choice_range }(R), \text { true })} \\
\frac{\text { ᄀbelongs_to }(V, R)}{\text { covers }(V, \text { choice_range }(R), \text { false })} \\
\text { covers }(V, \text { choice_default, true }) \\
\frac{\operatorname{covers}(V, \text { choice_lst }([]), \text { false })}{\text { covers }\left(V, \text { choice_lst }\left(C_{1} \cdot C_{2}\right), \text { true }\right)} \\
\frac{\operatorname{covers}\left(V, C_{1}, f a l s e\right)}{\operatorname{covers}\left(V, \text { choice_lst }\left(C_{1} \cdot C_{2}\right), R\right)}
\end{gathered}
$$

4.11.5 Loop Statements

$\frac{S_{1}\left[\begin{array}{c}E \vdash_{s t m} S t m \Rightarrow \\ E \vdash_{s t m} \text { loop } S t m \text { end loop; } \Rightarrow\end{array}\right] S_{2}}{S_{1}, E \vdash_{s t m} \text { loop Stm end loop; } \Rightarrow S_{2}}$
unique(X)
$S_{1}, E_{1}[1 \mathrm{dn} \mapsto$ loop_view $(X)] \vdash_{\text {stm }}$ loop Stm end loop; $\Rightarrow \operatorname{normal}(N)$
$S_{1}, E_{1} \vdash_{s t m}$ Idn : loop Stm end loop; $\Rightarrow \operatorname{normal}(N)$
unique (X)
$S_{1}, E_{1}[\mathrm{ldn} \mapsto$ loop_view $(X)] \vdash_{s t m}$ loop $S t m$ end loop; \Rightarrow exit $(\operatorname{loop}$ _id $(X), N)$
$S_{1}, E_{1} \vdash_{s t m}$ Idn : loop Stm end loop; $\Rightarrow \operatorname{normal}(N)$
$\frac{\left.S\left[\begin{array}{c}E \vdash_{\text {exp }} E x p \Rightarrow \text { discrete_val(1) } \\ E \vdash_{s t m} S t m \Rightarrow\end{array}\right] \text { exit(unnamed, } N\right)}{S, E \vdash_{s t m} \text { while Exp loop Stm end loop; } \Rightarrow \text { normal }(N)}$
$\frac{S_{1}\left[\begin{array}{c}E \vdash_{\exp } E x p \Rightarrow \text { discrete_val(1) } \\ E \vdash_{s t m} \text { Stm } \Rightarrow \\ E \vdash_{s t m} \text { while Exp loop Stm end loop; } \Rightarrow\end{array}\right] S_{2}}{S_{1}, E \vdash_{s t m} \text { while Exp loop Stm end loop; } \Rightarrow S_{2}}$

$$
S_{1}, E \vdash_{\text {exp }} \text { Exp } \Rightarrow \text { discrete_val }(0), S_{2}
$$

$S_{1}, E \vdash$ stm while Exp loop Stm end loop; $\Rightarrow S_{2}$
unique(X)
$S_{1}, E_{1}[1 \mathrm{dn} \mapsto$ loop_view $(X)] \vdash_{\text {stm }}$ while Exp loop Stm end loop; \Rightarrow normal (N)
$S_{1}, E_{1} \vdash_{\text {stm }}$ Idn : while Exp loop Stm end loop; \Rightarrow normal(N)
unique (X)
$S_{1}, E_{1}[1 d n \mapsto$ loop_view $(X)] \vdash_{s t m}$ while Exp loop Stm end loop; $\Rightarrow \operatorname{exit}\left(\operatorname{loop} _i d(X), N\right)$ $S_{1}, E_{1} \vdash_{s t m}$ Idn : while Exp loop Stm end loop; $\Rightarrow \operatorname{normal}(N)$

4.11.6 Block Statements

$$
\begin{gathered}
S_{1}, E \vdash_{s t m} \mathrm{Hsm} \Rightarrow S_{2} \\
\frac{S_{1}, E \vdash_{s t m} \text { begin Hsm end } ; \Rightarrow S_{2}}{} \\
\frac{S_{1}, E \vdash_{s t m} \mathrm{Hsm} \Rightarrow S_{2}}{S_{1}, E \vdash_{s t m} \text { Nam : begin Hsm end; } \Rightarrow S_{2}} \\
S_{1}\left[\begin{array}{c}
E_{1} \vdash_{d c l} \mathrm{Dcl} \Rightarrow E_{2} \\
E_{2} \vdash_{s t m} \mathrm{Hsm} \Rightarrow
\end{array}\right] S_{2} \\
S_{2}, E_{2} \vdash \text { finalize }(B) \Rightarrow S_{3} \\
\hline S_{1}, E_{1} \vdash_{s t m} \text { declare Dcl begin Hsm end; } \Rightarrow S_{3} \\
S_{1}\left[\begin{array}{c}
E_{1} \vdash_{d c l} \text { Dcl } \Rightarrow E_{2} \\
E_{2} \vdash_{s t m} \mathrm{Hsm} \Rightarrow
\end{array}\right] S_{2} \\
S_{2}, 2_{2}+\text { finalize }(B) \Rightarrow S_{3} \\
\hline S_{1}, E_{1} \vdash_{s t m} \text { Nam }: \text { declare Dcl begin Hsm end } ; \Rightarrow S_{3}
\end{gathered}
$$

4.11.7 Exit Statements

$$
\begin{aligned}
& \text { normal }(N), E \vdash_{\text {stm }} \text { exit; } \Rightarrow \operatorname{exit}(\text { unnamed, } N) \\
& \frac{S, E \vdash_{\text {nam }} N a m \Rightarrow \text { loop_view }(X), \operatorname{normal}(N)}{S, E \vdash_{\text {stm }} \text { exit } \operatorname{Nam} ; \Rightarrow \operatorname{exit}(\text { loop_id }(X), N)} \\
& \left.S, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow \text { discrete_val(} 1\right), \operatorname{normal}(N) \\
& S, E \vdash_{s t m} \text { exit when Exp; } \Rightarrow \operatorname{exit}(\text { unnamed, } N) \\
& \frac{S_{1}, E \vdash_{\exp } \operatorname{Exp} \Rightarrow B, S_{2}}{S_{1}, E \vdash_{s t m} \text { exit when Exp } ; \Rightarrow S_{2}} \\
& S\left[\begin{array}{c}
E \vdash_{\text {nam }} \mathrm{Nam} \Rightarrow \text { loop_view }(X) \\
E \vdash_{\text {exp }} \mathrm{Exp} \Rightarrow \text { discrete_val(1) }
\end{array}\right] \operatorname{normal(N)} \\
& S, E \vdash_{s t m} \text { exit Nam when Exp; } \Rightarrow \operatorname{exit}\left(\operatorname{loop} _i d(X), N\right) \\
& \frac{S_{1}\left[\begin{array}{c}
E \vdash_{\text {nam }} N a m \Rightarrow \text { loop_view }(X) \\
\left.E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow \text { discrete_val(} 0\right)
\end{array}\right] S_{2}}{S_{1}, E \vdash_{\text {stm }} \operatorname{exit~Nam~when~Exp;~} \Rightarrow S_{2}}
\end{aligned}
$$

4.12 Subprograms

4.12.1 Subprogram Declarations

$$
S_{1}, E_{1} \vdash_{p a s} \mathrm{Pms} \Rightarrow A, S_{2}
$$

new_subprogram $\left(S_{2}\right.$, unelaborated, $\left.U, S_{3}\right)$
$S_{1}, E_{1} \vdash_{d c l}$ procedure Idn Pms; $\Rightarrow E_{1}[\mathrm{Idn} \mapsto$ subprogram_view $(U, A$, none $)], S_{3}$

$$
S_{1}, E_{1} \vdash_{p a s} \operatorname{Pms} \Rightarrow A, S_{2}
$$

$S_{2}, E_{1} \vdash_{\text {nam }} \mathrm{Nam} \Rightarrow \operatorname{subtype_ view}\left(S_{l}\right), S_{2}$
new_subprogram (S_{2}, unelaborated, U, S_{3})
$S_{1}, E_{1} \vdash_{d c l}$ function Idn Pms; $\Rightarrow E_{1}\left[\right.$ Idn $\mapsto \operatorname{subprogramLview}\left(U, A\right.$, some $\left.\left.\left(S_{2}^{s t p}\left[S_{l}\right]\right)\right)\right], S_{3}$
$S_{1}, E \vdash_{\text {pas }}$ Pms $\Rightarrow A, S_{2}$
$E \vdash_{\text {lookup }} \operatorname{ldn} \Rightarrow$ subprogram_view $(U, A$, none $)$
$S_{1}, E \vdash_{d c l}$ procedure Idn Pms is Dcl begin Stm end; $\Rightarrow E, S_{2}\left[U \mapsto_{2} \operatorname{subprogram}(E\right.$, adom $\left.(A), \mathrm{Dcl}, \mathrm{Stm})\right]$

$$
S_{1}, E \vdash_{\text {pas }} \mathrm{Pms} \Rightarrow A, S_{2}
$$

$S_{2}, E \vdash_{\text {nam }} \mathrm{Nam} \Rightarrow \operatorname{subtype_ view}\left(S_{l}\right), S_{2}$
$\frac{E \vdash_{\text {lookup }} \mathrm{Idn} \Rightarrow \text { subprogram_view }\left(U, A, \text { some }\left(S_{2}^{s t p}\left[S_{l}\right]\right)\right)}{S_{1}, E \vdash_{\text {dcl }} \text { function Idn Pms is Dcl begin Stm end; } \Rightarrow E, S_{2}}$

$$
S, E \vdash_{p a s}(\rangle \Rightarrow[], S
$$

$\frac{\text { not yet defined }}{S, E \vdash_{\text {pas }} \text { Idn : access Nam; Pms; } \ldots \Rightarrow A, S}$
not yet defined
$S, E \vdash_{p a s}$ Idn : access Nam :=Exp; Pms; $\ldots \Rightarrow A, S$
$\vdash_{\text {mod }}$ Mde $\Rightarrow M$
$S_{1}, E \vdash_{\text {nam }} \mathrm{Nam} \Rightarrow \operatorname{subtype}$ view $\left(S_{l}\right), S_{1}$
$S_{1}, E \vdash_{\text {pas }}$ Pms; $\ldots \Rightarrow A_{1}, S_{2}$
$S_{1}, E \vdash_{\text {pas }} \operatorname{Idn}:$ Mde Nam $:=\operatorname{Exp} ;$ Pms; $\ldots \Rightarrow A_{1}\left[\operatorname{Idn} \mapsto\right.$ formal $\left(M, S_{1}^{s t p}\left[S_{l}\right]\right.$, some $\left.\left.(t h u n k(E, E x p))\right)\right], S_{2}$
$\vdash_{\text {mod }}$ Mde $\Rightarrow M$
$S_{1}, E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow \operatorname{subtype}$ _view $\left(S_{l}\right), S_{1}$
$S_{1}, E \vdash_{\text {pas }}$ Pms; $\ldots \Rightarrow A_{1}, S_{2}$
$\frac{S_{1,}, E \vdash_{\text {pas }} \text { Pms; } \ldots \Rightarrow A_{1}, S_{2}}{\bar{S}, E \vdash_{\text {pas }} \mathrm{Idn}: \text { Mde Nam; Pms; } \ldots \Rightarrow A, S}$

4.12.2 Formal Parameter Modes

$$
\begin{gathered}
\vdash_{\text {mod }} \text { in } \Rightarrow \text { in_mode } \\
\vdash_{\text {mod }} \text { in out } \Rightarrow \text { in_out_mode } \\
\vdash_{\text {mod }} \Rightarrow \text { in_mode } \\
\vdash_{\text {mod }} \text { out } \Rightarrow \text { out_mode }
\end{gathered}
$$

4.12.3 Subprogram Bodies

There are no semantics associated with subprogram bodies. The declarations and the statement part of a subprogram body, together with the declaration environment, are stored as a subprogram value. The rules given below define the effect of executing a subprogram value.

The following definition creates an environment for the execution of a procedure body by binding the formal parameter names to the views of the actual parameters. The actual parameters are given as an association but, due to renaming, the names in the association may differ from those of the formal parameters.

$$
\begin{aligned}
& \text { bind_actuals(} E,[],[], E) \\
& \text { bind_actuals }\left(E_{1}\left[I_{1} \mapsto W_{1}\right], P, \mid d s, E_{3}\right) \\
& \overline{\text { bind_actuals }\left(E_{1},\left(P_{1} \times W_{1}\right) \cdot P, I_{1} \cdot I d s, E_{3}\right)} \\
& \operatorname{proc}-\operatorname{exit}(\operatorname{exception}(X, N), \operatorname{exception}(X, N)) \\
& \frac{\text { not yet defined }}{\text { proc_exit(exit(?, } N), ?)} \\
& \frac{\text { not yet defined }}{\text { proc_exit(func_return(?, } N), ?)} \\
& \text { proc_exit(proc_return(} N \text {), normal(} N \text {)) } \\
& \text { proc_exit(normal(} N \text {), normal(} N \text {)) } \\
& S_{1}^{s p g}[L]=\operatorname{subprogram}\left(E_{1}, \text { Ids, Dcl, Stm }\right) \\
& \text { bind_actuals }\left(E_{1}, A, I d s, E_{2}\right) \\
& S_{1}\left[\begin{array}{c}
E_{2} \vdash_{d c l} \mathrm{Dcl} \Rightarrow E_{3} \\
E_{3} \vdash_{s t m} \mathrm{Stm} \Rightarrow
\end{array}\right] S_{2} \\
& \text { proc_exit }\left(S_{2}, S_{3}\right) \\
& \text { subprogram_body(} \left.\left.S_{1}, A, \text { subprogram_view(} L, A_{f}, \text { none }\right), S_{3}\right) \\
& \text { return_check(exception } \left.(X, N), S_{t}, \text { exception }(X, N)\right) \\
& \frac{\text { not yet defined }}{\text { return_check }\left(\operatorname{exit}(?, N), S_{t}, S\right)} \\
& \frac{\text { not yet defined }}{\text { return_check }\left(\text { proc_return }(N), S_{t}, S\right)} \\
& \text { convert_return_value(normal } \left.(N), W_{1}, S_{t}, W_{2}\right) \\
& \text { return_check(func_return } \left.\left(W_{1}, N\right), S_{t}, \text { func_return }\left(W_{2}, N\right)\right) \\
& \text { return_check(normal(} N \text {), } S_{t} \text {, exception(program_error, } N \text {)) }
\end{aligned}
$$

$$
\begin{gathered}
S_{1}^{s p g}[L]=\operatorname{subprogram}\left(E_{1}, \text { Ids, Dcl, Stm }\right) \\
\text { bind_actuals }\left(E_{1}, A, \text { Ids, } E_{2}\right) \\
S_{1}\left[\begin{array}{c}
E_{2} \vdash_{d c l} \mathrm{Dcl} \Rightarrow E_{3} \\
E_{3} \vdash_{s t m} \operatorname{Stm} \Rightarrow
\end{array}\right] S_{2} \\
\text { return_check }\left(S_{2}, S_{t}, S_{3}\right)
\end{gathered}
$$

Appropriate rules need to be defined for all predefined operators.

$$
\begin{aligned}
& S_{1}^{s p g}[L]=\text { operator(Opn) } \\
& \text { not yet defined } \\
& \text { subprogram_body(} \left.S_{1}, A, \operatorname{subprogram_ view}\left(L, A_{f}, ?\right), S_{2}\right)
\end{aligned}
$$

A call to an unelaborated subprogram raises program error.

$$
\frac{\text { normal }(N)^{\text {spg }}[L]=\text { unelaborated }}{\left.\left.\operatorname{subprogram_ body(normal}(N), A, \operatorname{subprogram} \operatorname{view}\left(L, A_{f}, ?\right), \text { exception(program_error, } N\right)\right)}
$$

4.12.4 Subprogram Calls

The rules given here are incomplete and do not describe subtype and view conversions that are part of a call.

$$
\begin{aligned}
& \text { return_value(func_return }(W, N), W, \operatorname{normal}(N)) \\
& \text { return_value(exception }(X, N), \text { ?, exception }(X, N)) \\
& \begin{array}{c}
\text { parameter_list(} \left.E, \mathrm{Pss}_{\mathrm{ss}}, A_{f}, A_{a}, P\right) \\
W=\operatorname{subprogram_ view}\left(?, A_{f}, ?\right) \\
{\left[\begin{array}{c}
E \vdash_{\text {nam }} \operatorname{Nam} \Rightarrow W \\
P_{1} \\
\cdots \\
P_{n} \\
\left\{\begin{array}{c}
\\
\text { subprogram_body_fn }\left(A_{a}, W\right) \\
\text { return_value }\left(S_{2}, W_{r}, S_{3}\right)
\end{array}\right] S_{2} \\
S_{1}, E \vdash_{\text {nam }} \operatorname{Nam}(\operatorname{Pss}, \ldots) \Rightarrow W_{r}, S_{3}
\end{array}\right.}
\end{array} \\
& \text { parameter_list }\left(E, \text { Pss, } A_{f}, A_{a}, P\right) \\
& W=\operatorname{subprogram_ view}\left(?, A_{f}, ?\right) \\
& S_{1}\left[\begin{array}{c}
E \vdash_{\text {nam }} N_{a m} \Rightarrow W \\
P_{1} \\
\cdots \\
P_{n} \\
\text { subprogram_body_fn }\left(A_{a}, W\right)
\end{array}\right\} S_{2}
\end{aligned}
$$

4.12.4.1 Parameter Associations

```
        parameter_list(E, Pss, [ ], [ ], [ ])
        parameter_list \((E, \mathrm{Pss}, F, R, A)\)
\(\frac{\text { parameter_action }\left(E, \mathrm{Pss}, F_{1}, R_{1}, A_{1}\right)}{\text { parameter_list }\left(E, \text { Pss, } F_{1} \cdot F, R_{1} \cdot R, A_{1} \cdot A\right)}\)
```

ᄀgiven_parameter(Pss,Idn,?)


```
    given_parameter(Pss,Idn, Exp)
```


the_parameter(Pss, Idn, Nam)
parameter_action $\left(E, P s s,\left(I d n \times\right.\right.$ formal(out_mode, $\left.\left.\left.S_{t}, ?\right)\right),(I d n \times W), E \vdash_{n a m} N a m \Rightarrow W\right)$
the_parameter (Pss, Idn, Nam)
parameter_action $\left(E, P s s,\left(I d n \times\right.\right.$ formal(in_out_mode, $\left.\left.\left.S_{t}, ?\right)\right),(1 d n \times W), E \vdash_{n a m} N a m \Rightarrow W\right)$
given_parameter(Idn $=>$ Exp \cdot Pss, Idn, Exp $)$
$I \mathrm{dn}_{1} \neq \mathrm{Idn}_{2}$
given_parameter(Pss, Idn_{2}, Exp $)$
given_parameter($\left(\mathrm{Idn}_{1}=>\right.$?. Pss, $\left.\mathrm{Idn}_{2}, \mathrm{Exp}\right)$
the_parameter(Idn $=>$ Nam $\left.\cdot \mathrm{Pss}_{\mathrm{ss}}, \mathrm{Idn}, \mathrm{Nam}\right)$
$I d n_{1} \neq I \mathrm{dn}_{2}$
the_parameter ($\mathrm{Pss}, \mathrm{Idn}_{2}, \mathrm{Nam}$)
the_parameter(ldn $1=>? \cdot$ Pss, $\left.\mathrm{Idn}_{2}, \mathrm{Nam}\right)$

4.12.5 Return Statements

$$
\begin{gathered}
\text { normal }(N), E \vdash_{\text {stm }} \text { return; } \Rightarrow \operatorname{proc_ return}(N) \\
S_{1}, E \vdash_{\text {exp }} \operatorname{Exp} \Rightarrow V, \text { normal }(N) \\
S_{1}, E \vdash_{\text {stm }} \text { return Exp; } \Rightarrow \text { func_return }(\text { constant_view }(V), N)
\end{gathered}
$$

The following needs to be defined to describe the rules of [6.5(6)] through [6.5(21)].

$$
\frac{\text { not yet defined }}{\text { convert_return_value }\left(S, W_{1}, S_{t}, W_{2}\right)}
$$

4.13 Attributes

$$
\begin{aligned}
& \text { is_scalar_type }\left(S_{1}, S_{1}^{s t p}\left[L_{s}\right]\right) \\
& \text { low_bound(range_of_subtype } \left.\left(S_{1}, S_{1}^{\text {stp }}\left[L_{s}\right]\right)\right)=V \\
& \text { new_object }\left(S_{1}, V, L, S_{2}\right) \\
& S_{1}, E \text {, subtype_view }\left(L_{s}\right) \vdash_{\text {att }} \text { first } \Rightarrow \text { object_view }\left(L, S_{1}^{s t p}\left[L_{s}\right] \text {, constant }\right), S_{2} \\
& \text { is_scalar_type }\left(S_{1}, S_{1}^{s t p}\left[L_{s}\right]\right) \\
& \text { high_bound(range_of_subtype } \left.\left(S_{1}, S_{1}^{s t p}\left[L_{s}\right]\right)\right)=V \\
& \text { new_object }\left(S_{1}, V, L, S_{2}\right) \\
& S_{1}, E, \text { subtype_view }\left(L_{s}\right) \vdash_{\text {att }} \text { last } \Rightarrow \text { object_view }\left(L, S_{1}^{s t p}\left[L_{s}\right] \text {, constant }\right), S_{2} \\
& S_{1}^{s t p}\left[L_{s}\right]=\operatorname{subtype}(U, C, A) \\
& \text { is scalar type }\left(S_{1}, \operatorname{subtype}(U, C, A)\right) \\
& \text { new_subtype }\left(S_{1}, \operatorname{subtype}(U, \text { no_constraint, } A), L_{a}, S_{2}\right) \\
& S_{1}, E, \text { subtype_view }\left(L_{s}\right) \vdash_{\text {att }} \text { base } \Rightarrow \text { subtype_view }\left(L_{a}\right), S_{2} \\
& \left.S_{1}^{s t p}\left[L_{s}\right]=\text { subtype(} ?, \text { index_constraint }\left(R \cdot R_{s}\right), ?\right) \\
& \text { new_object }\left(S_{1}, \text { low_bound }(R), L, S_{2}\right) \\
& S_{1}, E, \operatorname{subtype} \quad v i e w\left(L_{s}\right) \vdash_{\text {att }} \text { first } \Rightarrow \text { object_view }\left(L, S_{t}, \text { constant }\right), S_{2} \\
& S_{1}^{s t p}\left[L_{s}\right]=\operatorname{subtype}\left(?, \text { index_constraint }\left(R \cdot R_{s}\right), ?\right) \\
& \text { new_object }\left(S_{1}, \text { high_bound }(R), L, S_{2}\right) \\
& S_{1}, E, \operatorname{subtype} \operatorname{view}\left(L_{s}\right) \vdash_{\text {att }} \text { last } \Rightarrow \operatorname{object}_{-v i e w}\left(L, S_{t}, \text { constant }\right), S_{2} \\
& S_{1}^{s t p}\left[L_{s}\right]=\text { subtype }\left(?, \text { index_constraint }\left(R \cdot R_{s}\right), ?\right) \\
& \text { low_bound }(R)=\text { discrete_val }\left(N_{l}\right) \\
& \left.S_{t}=\text { subtype(universal_integer_t } n, \text { no_constraint }, ?\right) \\
& \text { high_bound }(R)=\text { discrete_val }\left(N_{h}\right) \\
& \text { new_object }\left(S_{1}, \text { discrete_val }(N h-N l+1), L, S_{2}\right) \\
& S_{1}, E \text {, subtype_view }\left(L_{s}\right) \vdash_{\text {att }} \text { length } \Rightarrow \text { object_view }\left(L, S_{t}, \text { constant }\right), S_{2} \\
& S_{1}, E, W \vdash_{\text {att }} \text { first } \Rightarrow \text { object_view }\left(L_{1}, ?, ?\right), S_{2} \\
& S_{2}, E, W \vdash_{\text {att }} \text { last } \Rightarrow \text { object_view }\left(L_{2}, ?, ?\right), S_{3} \\
& S_{3} \vdash \operatorname{content}\left(L_{1}\right) \Rightarrow V_{1} \\
& S_{3} \vdash \operatorname{content}\left(L_{2}\right) \Rightarrow V_{2} \\
& S_{1}, E, W \vdash_{a t t_{r}} \text { range } \Rightarrow \text { make_range }\left(V_{1}, V_{2}\right), S_{3}
\end{aligned}
$$

Chapter 5

Exceptions and Optimization

5.1 Introduction

Version 5.0 of the Annotated Draft Ada 9X reference manual [4] contains language that obviates many of the problems associated with section 11.6 of the Ada 83 reference manual [10]. The purpose of this chapter is twofold. The first is to examine the Ada revision as represented by Version 5.0 in light of the earlier Language Precision Team work in this area as published in the LPT Task 1 report [9]. The second is to discuss the consequences of the remaining problems that the semantics of Ada 9 X present in the areas of predictability and to offer suggestions for accommodating them in practice. The report concludes with a brief commentary on the Annotated Draft used to support this research.

5.2 The Ada 9X revision of 11.6

Section 11.6 of the Ada 83 reference manual contained explicit permissions to reorder operations or to omit some checks that might propagate predefined exceptions. In Ada 83 the notion of the "effect" of a program or of an operation was not as clearly defined as it is in Ada 9 X and the language of the section gave rise to endless discussions such as those captured in AI-315.

As revised, [11.6] contains two substantive paragraphs, (5) and (7). The first gives permission to avoid raising exceptions under some circumstances. The second permits more extensive reordering of operations than was generally considered permissible in Ada 83 by relaxing the requirements for state predictability when an exception handler is entered.

5.2.1 [11.6(5)]

This paragraph allows the implementation to avoid raising exceptions in the face of failures of predefined language exceptions under some circumstances. In the context of a clearer notion of "effect," it is somewhat of an improvement over the language of Ada 83. Even so, the language used in [11.6] is less clear than it might be. Consider the language of [RM-83 11.6(7)]:

A predefined operation need not be invoked at all, if its only possible effect is to propagate a predefined exception. Similarly, a predefined operation need not be invoked if the removal of subsequent operations by the above rule renders this invocation ineffective.

In Ada 83 the term effect is not defined ${ }^{1}$ and the meaning of the term is the subject of considerable discussion in AI-315 and elsewhere. The gist of many of the discussions concerns the case in which the

[^0]programmer has apparently written an operation that is sure to raise an exception as a "shorthand" for a raise statement. While this should be considered to be poor programming style, suppressing the operation leads to surprising effects.

We note that Chapter 14 of the Ada 83 rationale ${ }^{2}$ which deals with exceptions does not discuss the material contained in [RM-8311.6] and a search through the text of the rationale for the root string "optimiz" does not provide any appropriate insight.

From the discussions contained in AI-315 it appears that the primary need that the language of [RM-83 11.6(7)] is attempting to capture is the desire to remove code that is dead along its normal execution path even if executing it may (or is certain to) raise an exception due to the failure of a language-defined check. According to [11.6(7.f)], the language of [RM-8311.6(7)] is now reflected in paragraph [11.6(5)] which reads:

An implementation need not always raise an exception when a language-defined check fails. Instead, the operation that failed the check can simply yield an undefined result. The exception need be raised by the implementation only if, in the absence of raising it, the value of this undefined result would have some effect on the external interactions of the program. In determining this, the implementation shall not presume that an undefined result has a value that belongs to its subtype, nor even to the base range of its type, if scalar. [Having removed the raise of the exception, the canonical semantics will in general allow the implementation to omit the code for the check, and some or all of the operation itself.]

5.2.1.1 Defining undefined

Unfortunately, the index for Version 5.0 contains exactly one entry for undefined result, i.e., [11.6(5)]. Although this reference purports to define undefined result, we are given no useful semantics to associate with the term. Thus we are left to attempt to define exactly what is meant by the phrase through other means. A search of the source text for Version 5.0 yields several additional uses of the word undefined. The ones that appear to be related to its use in [11.6(5)] are:

13.9.1 NOTES

19 Objects can become abnormal due to other kinds of actions that directly update the object's representation; such actions are generally considered directly erroneous, however.

Wording Changes From Ada 83
In order to reduce the amount of erroneousness, we separate the concept of an undefined value into objects with invalid representation (scalars only) and abnormal objects.

Reading an object with an invalid representation is a bounded error rather than erroneous; reading an abnormal object is still erroneous. In fact, the only safe thing to do to an abnormal object is to assign to the object as a whole.
3.8.1 - The discrete_choice others covers all values of its expected type that are not covered by previous discrete_choice_lists of the same construct.

Ramification:For case_statements, this includes values outside the range of the static subtype (if any) to be covered by the choices. It even includes values outside the base range of the case expression's type, since values of numeric types (and undefined values of any scalar type?) can be outside their base range.

[^1][^2]The rules for too-early uses of deferred constants are modified in Ada 9 X to allow more cases, and catch all errors at compile time. This change is necessary in order to allow deferred constants of a tagged type without violating the principle that for a dispatching call, there is always an implementation to dispatch to. It has the beneficial side-effect of catching some Ada-83-erroneous programs at compile time. The new rule fits in well with the new freezing-point rules. Furthermore, we are trying to convert undefined-value problems into bounded errors, and we were having trouble for the case of deferred constants. Furthermore, uninitialized deferred constants cause trouble for the shared variable / tasking rules, since they are really variable, even though they purport to be constant. In Ada 9X, they cannot be touched until they become constant.

The first item seems to be the key. The remaining two items use the word undefined in ways that seem to confirm the impressions given by [13.9.1] as a whole. Thus, we see that undefined either applies to a scalar object with an invalid representation or to an abnormal object. Abnormal objects can either be produced by disrupted assignments (with a reference from [13.9.1(5)] back to [11.6], presumably to $[11.6(6)]$) or (for non-scalars) by a return from a call to either a language defined input procedure or to an imported procedure. It is, perhaps, stretching things to call the latter an operation in the sense of the discussion of [3.2].

Discussion: An operation is a program entity that operates on zero or more operands to produce an effect, or yield a result, or both.

It seems more likely that the operations referred to are akin to the primitive operations partially defined in 3.2.

A type is characterized by a set of values, and a set of primitive operations which implement the fundamental aspects of its semantics.

This leads us to consider the invalid values that can be associated with scalar objects and the predefined operations on scalar types. These are discussed in general in [4.5] where the relevant language appears in $[4.5(9)-4.5(12)]$.

For each form of type definition, certain of the above operators are predefined; that is, they are implicitly declared immediately after the type definition. For each such implicit operator declaration, the parameters are called Left and Right for binary operators; the single parameter is called Right for unary operators. [An expression of the form X op Y , where op is a binary operator, is equivalent to a function_call of the form "op" (X, Y). An expression of the form op Y, where op is a unary operator, is equivalent to a function_call of the form "op" (Y). The predefined operators and their effects are described in subclauses 4.5.1 through 4.5.6.]

Dynamic Semantics

[The predefined operations on integer types either yield the mathematically correct result or raise the exception Constraint_Error. The predefined operations on real types yield results whose accuracy is defined in Annex G, or raise the exception Constraint_Error.]

To be honest: Predefined operations on real types can "silently" give wrong results when the Machine_Overflows attribute is false, and the computation overflows.

The implementation of a predefined operator that delivers a result of an integer or fixed point type may raise Constraint_Error only if the result is outside the base range of the result type.

The implementation of a predefined operator that delivers a result of a floating point type may raise Constraint_Error only if the result is outside the safe range of the result type.

Unfortunately, there is a reading of this language that would make it impossible for a predefined operation on integer types to produce an invalid value. Paragraph (10) requires the operation to either yield the mathematically correct result or to raise Constraint_error. Paragraph (11) states that the implementation of the predefined operation may raise Constraint_error only if the result is outside the base range of the result type. Now, if we assume that "result" in paragraph (11) is the value produced by the implementation, it is almost certainly the case that this result will be within the range of the base type; it just will not be mathematically correct. It is likely that what is intended is

The implementation of a predefined operator that delivers a result of an integer or fixed point type may raise Constraint_Error only if the [mathematically correct] result [of the operation] is outside the base range of the result type.

As the language is currently defined, there is a direct contradiction between the language of [4.5)(10-11)] and that of [11.6(5)]

If we assume the revised interpretation, then we have a class of operations that can produce results that are not mathematically correct though they will typically be precisely defined by the implementation. If $11.6(5)$ is to have any reasonable meaning, it must be the case that results of this kind are the undefined results referred to. If this is the case, we have extended the notion of invalid to include representations of scalar objects that do represent values of the object's subtype but are not the mathematically correct values that would be produced without the violated constraint. ${ }^{3}$ This is a fairly serious extension and deserves more consideration. We will return to this shortly.

5.2.1.2 Use of undefined results

The implementation note associated with $[11.6(5)]$ seems to raise two distinct points. One, allowing the removal of dead code, is fairly obvious and seems to be the only clear-cut case. The other discusses implementation assumptions and seems to involve the extension noted above.

Implementation Note: This permission is intended to allow normal "dead code removal" optimizations, even if some of the removed code might have failed some languagedefined check. However, one may not eliminate the raise of an exception if subsequent code presumes in some way that the check succeeded. For example:

```
if X * Y > Integer'Last then
    Put_Line("X * Y overflowed");
end if;
```

[^3]```
exception
 when others \(\Rightarrow>\)
 Put_Line("X * Y overflowed");
```

If $X^{*} Y$ does overflow, you may not remove the raise of the exception if the code that does the comparison against Integer'Last presumes that it is comparing it with an in-range Integer value, and hence always yields False.

As another example where a raise may not be eliminated:
subtype $\operatorname{Str} 10$ is $\operatorname{String}(1 . .10)$;
type P10 is access Str10;
X : P10 := null;
begin
if X.all'Last $=10$ then
Put_Line("Oops")
end if;
In the above code, it would be wrong to eliminate the raise of Constraint_Error on the "X.all" (since X is null), if the code to evaluate 'Last always yields 10 by presuming that X all belongs to the subtype $\operatorname{Str} 10$, without even "looking."

The first point is that if the result of an operation is not subsequently used, then we can ignore the possibility that execution of an operation might have raised an exception. Examples that illustrate this situation are somewhat contrived since programmers generally do not try to write code that is not useful. For example, we might illustrate the permission by writing something like:

```
 subtype Stri0 is String(1..10);
 X : Str10 := " ";
begin
 X := "2 01";
 Put_line(X);
 X := "8 01234567";
 Put_line(X);
 X := "10 0123456789";
exception
 when others =>
 Put_Line("OOPS");
end;
```

Since the scope of $X$ does not extend beyond the end of the block, the value produced by the last assignment has no effect along the normal path of execution. [11.6(5)] gives permission to ignore the possibility (in this case, a certainty) that the assignment will raise Constraint_Error. This, in turn, allows the elision of the entire assignment statement using conventional, "dead code" elimination techniques.

Note that without the extra permission of [11.6(5)], the code for the last assignment is not dead since there is a a well-defined "effect" along the exceptional ${ }^{4}$ path. The extra permission allows the implementation to restrict its analysis to the normal path. This is important since exception handlers are dynamically bound and an analysis that shows that an operation is dead along its exceptional path is generally intractable, while one that shows that the operation is dead along its normal path may require only local analysis.

While the example is contrived, the situation that it presents appears fairly frequently as the result of other transformations during code generation and optimization. For example, unrolling

[^4]a loop may well leave dead code in the final iteration, e.g., the code intended to initialize the next iteration. Value propagation and common subexpression elimination also serve to create dead variables and dead code to manipulate them.

The language of [11.6(5)] does not ensure that the obviously intended meanings of some realistic examples will be preserved. For example, in AI-315, Robert Dewar presents the following example:

```
function Add_overflows(A, B: Integer) return Boolean is
 T: Integer
begin
 T := A + B;
 return False;
exception
 when Constraint_Error => return True;
end Add_Overflows;
```

The writer of code like this might hope to detect a potential overflow situation and, perhaps, use the knowledge to invoke an alternate more robust computation, however, it appears that the permissions of [11.5] would allow the constraint_error to be ignored, rendering the assignment dead and allowing its elimination permitting the function to always return False. This could cascade, if for example, the function were to be inlined, eliminating the code for the alternate computation which would also appear dead.

Note that both Dewar's example and the example of [11.6(5.e)] have the same intent, the detection of overflow. They differ in minor details with respect to the way the overflow is detected. It is probably unreasonable to expect a casual (or even experienced) user of the language to detect the subtleties. Indeed, the casual observer ought to come to the conclusion that the example of [11.6(5.e)] camnot work because the implementation result (as opposed to the mathematically correct result) of X * Y cannot possibly be larger than Integer' Last so that the first Put_Line cannot appear. This would lead the user towards an example similar to Dewar's which apparently will not work. It is not clear that there is any easy fix. The approach offered with respect to code motion in [11.6(6)], a compromise that allows local code motion with local analysis, but does not insist on global analysis to ensure that the permitted code motion does not disrupt the canonical semantics might also apply here. This would require that analysis proceed along both the normal and exceptional paths following from an operation if there were an exception handler for the exception potentially raised by the operation associated with the innermost sequence of statements containing the operation.

The examples given in (5.e) and (5.g) raise more subtle points. In the absence of [11.6(5)], Ada's exception model is similar to that of Gypsy. If we use a Gypsy-like model to specify the Ada operations, we get a possibility of two execution paths from each operation [6]. We will call these paths the normal and exceptional paths. If none of the language-defined checks fail during the performance of the operation, execution proceeds along the normal path. If performance of the operation causes a language-defined check to fail, execution proceeds along the exceptional path. Associated with each operation is an entry specification which is assumed ${ }^{5}$ to be true when the operation is invoked. Associated with each exit path is an exit specification which is guaranteed to hold if the path is followed.

For example, the implementation of the integer multiplication operation on a given machine might be specified as follows:

```
function Machine_Mul(X, Y : Machine_Integer)
 return Machine_Integer
 entry
```

[^5]```
X, Y in (Machine_Integer'First .. Machine_Integer'Last);
normal exit
    Machine_Mul(X,Y) = Integer_Mul(X, Y) and
    Machine_Mul(X,Y) in
        (Machine_Integer'First .. Machine_Integer'Last);
exceptional exit
    Machine_Mul(X, Y) != Integer_Mul(X, Y) and
    Machine_Mul(X,Y) in
        (Machine_Integer'First .. Machine_Integer'Last) and
    Integer_Mul(X, Y) not in
        (Machine_Integer'First .. Machine_Integer'Last);
```

This says that for some (possibly empty) set of input values, machine multiplication is equivalent to abstract integer multiplication and that execution will proceed along the normal path when this is the case. When machine and integer multiplication do not produce the same result, we are told that the true result is not representable as a Machine_Integer but that some result ${ }^{6}$ representable as a machine integer is produced. ${ }^{7}$ Now, if we look at a possible specification for the comparison operator, $>$, we see a potential problem with the language of the note.

```
function Machine_CMP(X, Y : Machine_Integer)
            return Machine_CC
entry
    X, Y in (Machine_Integer'First .. Machine_Integer'Last);
normal exit
    Machine_CMP(X, Y) = GT implies Integer_GT(X, Y) and
    ... -- Specifications for other return values
exceptional exit
    false;
```

In this case, we assume a comparison instruction at the machine level that sets some condition codes to indicate the results of the comparison. GT is a condition code value that indicates the first operand, interpreted as an abstract integer, was greater than the second operand, also interpreted as an abstract integer. Note that the only entry condition assumes that the inputs are machine integers. This condition is satisfied by the exit condition of the multiply operation under either its normal or exceptional execution. Note also that this operation is defined to always exit normally.

We note that, in program verification, an operational semantics that allows exceptions to be raised when a language-defined check fails is, in a sense a dual of an operational semantics that produces an undefined result under the same circumstances. In the absence of a way to effect a meaningful recovery from failed checks, ${ }^{8}$ we must show that the exceptional path is not taken. The proofs involved are exactly those that are required to show that operations do not produce undefined results. Languages such as Euclid and Verdi (and C for that matter) use an undefined semantics while Ada (in the absence of [11.6]) and Gypsy use an exception-based semantics.

For formal reasoning, the differences are largely matters of style. From an implementation standpoint, unless it can be shown that a given program will not have effects based on undefined results, the choice is between being able to detect a departure from normal execution and not. [11.6(5)] requires that exceptions not be suppressed if suppressing them would lead to a visible

[^6]
effect due to the subsequent use of an undefined result. We will examine the process of substituting operator definitions that produce "undefined" results for those that raise exceptions.

The stated assumptions associated with the example of $[11.6(5 . e)]$ are not sufficiently strong. In most machines, the result of an integer operation that fails an Ada implementation-defined check will be a valid value of the base type of the operation's result and, in many cases, it will be a valid value of the appropriate subtype as well. Thus, the values supplied to the comparison operation will always be "in-range integer value"s. The value is not the issue. If we allow the operation to omit its exception check, we must consider the result to be more than a value for the purposes of analysis. In the abstract, the result of an operation that yields an undefined result must be seen as a object having two attributes, 'value and 'defined. 'value is of the base type of the result of the operation while 'defined is boolean.

Under this view, multiply and compare might be defined as follows:

```
function Machine_Mul(X, Y : Machine_Integer)
                return Machine_Integer
    entry
    X'value, Y'value
    in (Machine_Integer'First .. Machine_Integer'Last) and
    X'defined and Y'defined;
    exit
    if Machine_MUL'defined then
        Machine_Mul'value(X, Y) = Integer_Mul(X, Y) and
            Machine_Mul'value(X, Y) in
                (Machine_Integer'First .. Machine_Integer'Last) and
    else
        Machine_Mul'value(X, Y) != Integer_Mul(X, Y) and
        Machine_Mul'value(X, Y) in
            (Machine_Integer'First . . Machine_Integer'Last) and
            Integer_Mul(X,Y) not in
                (Machine_Integer'First .. Machine_Integer'Last);
    end if
```

function Machine_CMP (X, Y : Machine_Integer)
return Machine_CC
entry
X, Y in (Machine_Integer'First .. Machine_Integer'Last) and
X 'defined and Y 'defined;
exit
Machine_CMP'defined (X, Y) and
(Machine_CMP'value $(X, Y)=G T$ implies Integer_GT(X, Y) and
... -- Specifications for other return values)

Under this view of operational semantics, the obligation to take appropriate action in the case of exceptional operations has shifted from the operation making the check to the operation using the result. The substitution of "undefined" semantics for "exception" semantics might be done as follows:

1. Tentatively replace an operation using "exception" semantics with the equivalent operation using "undefined" semantics. Note that this substitution is dependent on being able to prove the stronger entry specification of the latter. ${ }^{9}$

[^7]2. If it is possible to prove that the 'defined attribute of the operation's result is always true then the substitution is permitted (see the ramification $[11.6(5 . \mathrm{a})]$) and no further analysis is required.
3. Locate all uses of the result of the replaced operation. If there are none, the substitution is permitted. If there are any, substitute the corresponding "undefined" semantics operation, if necessary, and check the entry specification for references to the 'defined attribute of the result in question. If any using operation assumes that the 'defined attribute of the result is true, the substitution cannot be made.

If the substitution can be made, the net effect is to remove from further consideration the execution path arising from the exception exit of the replaced operator definition. This, in turn, should enable additional program transformations, including removal of the replaced operation since it is known to be without an externally visible effect. The removal of the exception path may permit additional removals since dependencies along the path no longer require consideration. Removal of the operation may permit additional operations to be removed since its inputs are now referenced at fewer places.

Note that this is an analytical approach, not an implementation. Typically, there is no practical way to tag values with an indication that they represent an "undefined" result. When this is the case there is no way for subsequent operations in an implementation to check explicitly for the undefined property. In addition, the amount of analysis required to detect all uses of a result may require extensive reasoning about the values of index expressions, etc., when the values are components of arrays or other composite structures.

Implicit in the assumption of the last paragraph of [11.6(5.e)] appears to be an additional assumption that the values being compared are also the mathematically correct results of the operations that produced them, i.e., that they are not undefined.

It is probably the case that the only permission actually granted by [11.6(5)] is the removal of code that is "dead" along its normal exit path regardless of any effects along its exceptional exit path.

5.2.1.3 Bounded errors and erroneous executions

The Ada 9 X revision has made a serious attempt to reduce the number and types of circumstances under which a program's execution can become erroneous. Since an erroneous execution can exhibit arbitrary behavior, this change is highly desirable. Recognizing that most implementations do reasonable things in the face of program errors that violate language semantics, the notion of a bounded error has been introduced. The bounded errors associated with invalid representations are discussed in [13.9.1]

Bounded (Run-Time) Errors
If the representation of a scalar object does not represent a value of the object's subtype (perhaps because the object was not initialized), the object is said to have an invalid representation. It is a bounded error to read the value of such an object. If the error is detected, either Constraint_Error or Program_Error is raised. Otherwise, execution continues using the invalid representation. The rules of the language outside this subclause assume that all objects have valid representations. The semantics of operations on invalid representations are as follows:

- If the representation of the object represents a value of the object's type, the value of the type is used.
addition, for example, operating on two n bit long bit strings interpreted as integers produces an n bit long bit string that can be interpreted as an integer congruent to the mathematically correct integer result modulo 2^{n}. Because of this, the entry specifications cannot be executed but must be reasoned about.
- If the representation of the object does not represent a value of the object's type, the semantics of operations on such representations is implementation-defined, but does not by itself lead to erroneous or unpredictable execution, or to other objects becoming abnormal.

Erroneous Execution
A call to an imported function or an instance of Unchecked_Conversion is erroneous f the result is scalar, and the result object has an invalid representation.

Ramification: In a typical implementation, every bit pattern that fits in an object of an integer subtype will represent a value of the type, if not of the subtype. However, for an enumeration or floating point type, there are typically bit patterns that do not represent any value of the type. In such cases, the implementation ought to define the semantics of operations on the invalid representations in the obvious manner (assuming the bounded error is not detected): a given representation should be equal to itself, a representation that is in between the internal codes of two enumeration literals should behave accordingly when passed to comparison operators and membership tests, etc. We considered requiring such sensible behavior, but it resulted in too much arcane verbiage, and since implementations have little incentive to behave irrationally, such verbiage is not important to have.

If a stand-alone scalar object is initialized to a an [sic] in-range value, then the implementation can take advantage of the fact that any out-of-range value has to be abnormal. Such an out-of-range value can be produced only by things like unchecked conversion, input, and disruption of an assignment due to abort or to failure of a language-defined check.

This depends on out-of-range values being checked before assignment (that is, checks are not optimized away unless they are proven redundant).

The language of the Ramification sounds reasonable, but it flies in the face of the conventions used in many of the logics used to reason about program behavior. Typically, undefined is a loaded term in these logics. Undefined is used to represent a distinguished value about which nothing can be proven. Thus \forall undefined $=$ undefined. This is too strong for implementation semantics in most cases. In any implementation in which evaluating x is free of side effects that could change its value, $x=x$ is true even if x has an invalid representation or is undefined so long as the implementation of = simply involves comparing bit patterns. In the absence of a requirement to actually evaluate x, it should be unconditionally ok to substitute true for the equality.

On the other hand, this language seems to have the potential for conflicts with semantics of "undefined" results discussed above in connection with [11.6(5)]. The relationship between undefined as used in [13.9.1] and [11.6(5)] should be further clarified.

5.2.2 [11.6(7)]

This paragraph allows fairly arbitrary reordering of actions within the scope of an exception handler by reducing the expectations that the programmer may have concerning the state of the computation at the time that the handler is entered. This is essentially the "Undefined" execution order of $[9$, section 2.6.5]. We note that the only effective actions that a programmer can take when an exception handler is entered in the face of this kind of reordering is to assign normal values to all variables that might have become abnormal due to operations disrupted by the exception.

The first sentence of this paragraph is complex and convoluted and calls out to be simplified or clarified. The following discussion may aid in finding more suitable language. An exception_handler is optionally associated with a handled_sequence_of_statements which contains a sequence_of_statements
and is, among other things, the operational portion of a task_body. When an exception is raised, it will either be handled or cause the containing task body to terminate. In either case, all that the user can expect to know is that the exception was raised somewhere in the code of the sequence_of_ statements component of the handled_sequence_of_statements that contains the exception_handler just entered or that constitutes the operational part of the task being terminated. The reordering that can be done is limited in two respects.

1. The operation that raises the exception due to a failed language-defined check cannot have been moved into the code of an independent subprogram, and
2. The operation that raises the exception due to a failed language-defined check cannot have been moved into the code of some abort-deferred operation.

Just breaking up the sentence may help. Instead of

- If an exception is raised due to the failure of a language-defined check, then upon reaching the corresponding exception_handler (or the termination of the task, if none), the external interactions that have occurred need reflect only that the exception was raised somewhere within the execution of the sequence_of_statements with the handler (or the task_body), possibly earlier (or later if the interactions are independent of the result of the checked operation) than that defined by the canonical semantics, but not within the execution of some abort-deferred operation or independent subprogram that does not dynamically enclose the execution of the construct whose check failed.
perhaps language similar to the following would be more understandable.
- If an exception is raised due to the failure of a language-defined check, then upon reaching the corresponding exception_handler (or the termination of the containing task, if no handler is present), the external interactions that have occurred need reflect only that the exception was raised somewhere within the execution of the sequence_of_statements associated with the handler (or the task_body). It may appear that the exception was raised earlier than defined by the canonical semantics (or later if the interactions are independent of the result of the checked operation). It may not appear as if the exception were raised within the execution of some abort-deferred operation or within the execution of an independent subprogram that does not dynamically enclose the execution of the construct whose check failed.

5.3 Living with the "Canonical Semantics"

The canonical semantics define a potentially very large family of valid executions. This is due to the numerous places in which the language definition allows operations to be performed in an arbitrary order. An implementation is free to select any order under these circumstances. In the absence of order dependencies and tasking considerations, all canonical executions should produce the same externally visible effect. Order-dependent side effects, including exceptions raised due to the failure of language-defined checks, can affect the effect of the program. The problem is twofold:

1. Reducing the potential effect space of the program, and
2. Determining which execution the implementation has selected.

First of all, it is worth noting that this kind of problem is not unique to Ada (both Ada 83 and Ada 9X). Most programming languages, including C and $\mathrm{C}++$, admit similar behaviors, either implicitly or explicitly. Ada is more explicit about them. In general, the failure of languages to define or enforce restrictive canonical executions is attributed to a need for flexibility in order to achieve run-time efficiency. There is tension between this need and the requirements for predictable
program behavior, which are imposed by small segments of the user community, typically those users associated with safety and security critical applications. Predictable behavior is usually defined as having a rigorous semantic definition that allows the formal verification of programs written in the language, preferably using mechanical aids.

In theory, one could reason about Ada programs by enumerating the set of possible executions and reasoning individually about each one. A program could then be said to shown to exhibit a given property if each of its possible executions could be shown to exhibit the property. In practice, the combinatorics of potential execution choices are likely to render this approach infeasible for any non-trivial program. If we assume that a compiler conforming to the language standard produces code that follows one of the set of canonical executions of a given program, it seems a waste of time to prove properties of the set as a whole unless there is a need to guarantee the behavior of the program under all possible conforming implementations. This is seldom the case. Further complications arise when it is possible to show that some, but not all, members of the canonical execution set exhibit the desired property. In this case, it is essential to determine whether the implementation being considered exhibits the property.

There are several possibilities. The first is to attempt to reduce the size of the set of canonical executions to a tractable size and possibly to a single member. The second is to discover the member of the canonical execution set that has been chosen by a particular implementation and to reason about that execution alone.

5.3.1 Restricting the execution set size

The size of the canonical execution set about which one must reason can be reduced by one of two methods; reducing the choices available to the implementation or finding equivalence classes within the set, or by some combination of the two. Ada 9 X provides some means for imposing order. For example, the order of the association of operands with a sequence of operators of the same precedence can be controlled by the explicit use of parentheses. The introduction of explicit intermediate variables and assignments should have a similar effect. For example, suppose that side effects exist such that the value resulting from the evaluation of <exp1> depends on whether it is evaluated before or after <exp2>, but that there are no other order dependencies between the expressions. Further assume that the evaluations produce results of some integer subtype.

```
A := <exp1> + <exp2>;
```

Either of the possible results is a member of the canonical execution set for this fragment. If we want to ensure that $\langle\exp 1\rangle$ is evaluated first, we might write:

```
A1 := <exp1>;
A2 := <exp2>;
A := A1 + A2;
```

It is not clear that the additional freedoms to reorder operations granted by [11.6(6)] allow an implementation to ignore structuring of this kind, but aggressive optimizations in compilers for other languages are known to do so in some cases. Presumably, the dependency between the two expressions either becomes explicit or the implementation will be forced to recognize that it cannot assume independence because the expressions invoke separately compiled routines and it will be forced to produce the intended result ${ }^{10}$.

Note that the explicitly ordered code may still exhibit a family of canonical executions. In the expression A1 + A2, the language allows A1 or A2 to be "evaluated" first. We claim that given

[^8]appropriate type declarations (and barring some pathological implementation of +) that both orders will be equivalent and trivial.

By a combination of these two techniques, forcing orders where order makes a difference and creating situations where it is easy to show that, at least locally, all canonical executions are equivalent, it should be possible to reduce the number of canonical executions associated with a program to a tractable number. In most cases, the analysis of the remaining canonical executions should show that language-defined checks will not fail, rendering moot the freedoms of [11.6]. The utility of this approach depends on the implementation or implementations of interest ensuring that the canonical semantics are honored.

If the notion of a subset of Ada 9 X for High Integrity systems, as recently proposed by Brian Wichmann, is accepted, the subset definition could restrict the ordering freedoms permitted by the primary language definition. This approach would necessitate subset compilers to enforce the restrictions, but would offer a higher degree of assurance than the use of general purpose compilers. If a subset is adopted with the notion of supporting mechanical verification, it is not unreasonable to expect that integrated environments will be developed in which both the verification and implementation tools are based on the same semantic assumptions.

5.3.2 Discovering the execution

Another approach to the problem of a canonical execution set is the determination of the actual execution produced for a given program by a given implementation. This requires that the compiler output its object code in a form that allows the user to determine the actual execution that will occur when the program is executed. Implementations conforming to the Safety and Security Annex, in particular to section [H.3], will provide this kind of information. With an appropriate transformation of the object code back into an appropriate Ada or Ada-like source form, it should be possible to perform source level analysis or verification on the program while maintaining confidence that the results are, in fact, applicable to the compiled program.

It is clear that this approach requires facilities that are not present in many, if not all, existing compilers, but the Annex should encourage development of this facility.

5.4 Observations on the Reference Manual

In the course of using the Reference Manual in the preparation of this chapter, a number of general shortcomings have been observed. These have more to do with presentation than with substance and can be fixed prior to the release of the final document.

First of all, we wish to compliment the Mapping/Revision Team on the content and style of the manual. Not only is the wording a substantial improvement over the Ada 83 Reference Manual, but the inclusions of the annotations provide useful and substantive insight into the workings of the language. It is to be hoped that the annotated version will be maintained along with its "official" subcomponents and that it will see widespread use by serious students of Ada 9 X .

This said, there are ways in which the the Reference Manual could be further improved.

1. The index is not sufficiently comprehensive. On a number of occasions, an attempt to trace the consequences of a definition found that the defining occurrence was the only reference in the index. Fortunately, the source files are available and can be searched as necessary; however, any term important enough to be marked as a definition is important enough to have the consequences of that definition tracked. A presentation similar to that used in the index for syntactic constructs should be adapted for defined terms, i.e., a defining reference followed by using references.
2. The index does not appear to cover the annotations. Extending it to this level would greatly aid in the use of the annotated manual.
3. The Syntax Cross-Reference would be much more useful if references for the defining occurrence as well as the using occurrences were given. For example, we find from the cross-reference that a task_body is used in the definition of a proper_body in [3.11], but we must go to the main index to discover that a task_body is defined in [9.1(6)]. Extending the indexing to the numbered paragraph level as is done in the index would also be useful.
4. The marginal paragraph numbering is incomplete and inconsistent. For example, the paragraphs following the example codes of $[11.6(5 . \mathrm{e})]$ and $[11.6(5 . \mathrm{g})]$ are not numbered while similar paragraphs elsewhere, e.g., $[8.3(29.0)]$ are. There is a similar problem in $[13.9 .1(12 . \mathrm{b})]$ as well. This is probably the result of the mechanical approach taken to inserting the annotating scribe commands. In preparing the IAT $\mathrm{E}_{\mathrm{E}} \mathrm{X}$ source for the Annotated version of the Ada 83 reference manual, I found it necessary to insert this material manually.
5. In some cases, precision seems to have been sacrificed for readability. This occurs when it is difficult to determine the antecedents for pronouns or where the same noun appears in an ambiguous context. An example is [4.5(11)] discussed in Section 5.2.1.1 on page 87 above. More liberal use of the @Redundant (or a similar) construct might alleviate this problem in the annotated version.

Chapter 6

Conclusions

We did not expect to formulate a complete semantic definition (even for the sequential part of Ada) in this project; there were simply not enough resources to do so. What we did expect was to gain some insights into the structure of the language, and to identify some problems either with the description in the Reference Manual or in the design of the language itself, and to contribute to the development of Ada 9 X by suggesting improvements to the description or design. Those expectations were met to some degree; for example, we identified some flaws (that have now been fixed) in the design in the area of per-object constraints; we identified some conceptual and some wording problems in the area of floating point and developed a model that was used in the development of new wording for the Reference Manual; and we identified some incompleteness in the description of actual subtypes.

However, we did not make as much progress in the natural semantics definition as we had originally hoped. It was more difficult to understand the supposedly trivial parts of the language than we had imagined. Large-scale languages like Ada do not have neat, independent parts; rather, each feature is affected in some measure by the others. For example, the type system is affected by the concurrency mechanism (e.g., task types), by the packaging mechanism (e.g., private types), and in several ways by the object-oriented features (e.g., access discriminants, per-object expressions, class-wide types). So, indeed, there are no really trivial aspects of the language. In the original LPT project, we had felt that it would be a waste of effort to develop a formal model for things that "everyone understands". Our recent efforts, however, have shown us that there are interesting problems lurking at the fringes of even these areas.

Even though there are serious gaps in the definition, a considerable amount of groundwork has been done. We have identified most of the basic semantic domains that must be used in a full definition, we developed structuring mechanisms for the definition that allow us to describe many of the implementation freedoms, and we have several tools (such as the type checker for the Prolog representation of the definition, and the tool that derives $\mathbb{I A T}_{\mathrm{E}} \mathrm{X}$ source from the Prolog representation) that help in the production and documentation of the definition. So, we feel that we have made a good start in the direction of a complete description of the sequential part of the language.

We are not sure how easily our framework could be adapted to deal with concurrency. The influence of tasking in DDC's formal definition of Ada 83 [1] is pervasive, and we suspect that incorporating concurrency into our definition would similarly affect every part of the model.

6.1 Implementation Freedoms

One impediment to writing a formal definition like ours is the high degree of underspecification in the Reference Manual. This allows implementations considerable freedom to choose orders of actions, accuracy of results, base ranges of types, and so on. These freedoms can be difficult to
model; where an implementation need only produce one acceptable result, our semantics tries to describe all acceptable results.

Modeling these freedoms sometimes forces our formal model to differ in significant ways from an implementation (and to use representations that no implementation is likely to use). For a simple example, consider the following rule about access-to-subprogram values:

Two access-to-subprogram values are equal if they are the result of the same evaluation of an Access attribute_reference, or if both are equal to the null value of the access type. Two access-to-subprogram values are unequal if they designate different subprograms. It is unspecified whether two access values that designate the same subprogram but are the result of distinct evaluations of Access attribute_references are equal or unequal.

In order to model this, we are forced to use a representation of access-to-subprogram values that consists of both a reference to the designated subprogram and an "instance" value that tells which evaluation of an Access attribute gave the access value. Each evaluation of an Access attribute increments this instance value, so that we can determine whether two access values derive from the same evaluation or not. Our definition of the equality function checks both the subprogram reference and the instance number, and can give a result of equal, unequal, or unknown. Such a representation is unlikely to be used in any implementation of Ada 9 X .

An implementor of the language need not be concerned with all these freedoms; just one particular implementation choice needs to be made and the existence of other possible choices is irrelevant. A programmer does not necessarily need to be concerned about all the alternative orders; it is usually possible to write programs in such a way that the specific choice made by an implementation does not matter (for example, by avoiding side effects in functions, restricting the statements in a package_body to affect only variables local to the package, and so on). On the other hand, anyone trying to read an Ada program may indeed be concerned about the different possible outcomes of an execution (especially if the writer has not been careful to avoid situations where the different orders matter). So, our model, while unnatural if compared to an implementation, is quite natural as a description of the complexities that careful readers must deal with.

6.2 Notation and Tools

The natural semantics framework seems to have worked fairly well, although there were a few awkward aspects to our formalization of the language semantics. In particular, our need to introduce explicit sequencing and arbitrary-order combinations of actions (in two slightly different variations) seems somewhat artificial. However, this mechanism of actions allows us to present reasonably concise descriptions of many language features.

The use of Prolog to make the definition executable (and type-checkable) was a great help. We have been able to execute parts of the definition to confirm that it expresses what we intended. The type checker was able to find a number of trivial errors in our semantics. There is some price to be paid, hovever; it is sometimes inconvenient to express a rule in a manner acceptable to Prolog. This is particularly evident in the descriptions of the various semantic domains and the primitive functions acting over those domains. Prolog does not support defined functions (instead, relations must be used). We used a program to convert the Prolog code into the IAT E_{E} source used for this report. This program is able to introduce functional notation in places where we have instructed it to, so at least our published form of the rules can use a more expressive notation than Prolog. But this is still rather unsatisfactory. It is possible that other tools might be able to provide better mechanical support.

6.3 Bounded Errors

A number of rules and concepts were added to Ada 83 in order to make programs more predictable. For example, many situations leading to erroneous executions in Ada 83 have been made into bounded errors. For these errors, a range of possible outcomes is described. This seems like a beneficial change. However, there is a price to be paid for this benefit: the model for a feature using bounded errors can be substantially more complex than a model using erroneous executions. For example, in order to change the evaluation of an uninitialized scalar variable from erroneous to a bounded error, it was necessary to introduce the notion of "invalid representations" of scalar objects. The addition of this notion has an influence on a number of other areas of the language (e.g., relational operators, membership tests, and type conversions). So, the formal model is more complex, which means that formal predictions about programs are harder to derive. On the other hand, the execution of programs is more predictable in the sense that these executions are more constrained (the old rules allowed any behavior, whereas the new rules are more specific).

6.4 Structure of Models

It does not seem possible, using our methods, to formulate a model for Ada 9X that is simultaneously concise, comprehensible, broad, and accurate. Accounting for all the special cases of features adds so much detail to the model that it becomes unusable.

Textbook writers face a similar dilemma; if too much detail is presented, readers will find the text impenetrable. Therefore, authors present simplified descriptions of parts of the language. These simplified descriptions, even when they lead the reader to draw incorrect conclusions about the behavior of some programs, are nevertheless useful to readers who are first learning the language. In a later part of a book, an author may elaborate on some of these missing details, and may need to contradict some of his earlier oversimplified assertions.

We do not know exactly how to make layered formal models using a similar structure. In most formal notations, it is not possible to override an earlier assertion with a more detailed assertion. Even if this were allowed, it is unclear how a user of such a layered formal model would know when the simpler part of model was applicable.

In the model developed in this report, we have tried to approach this ideal of structured models in a very modest way through our use of the "unpredicted" outcomes to simplify the formal model; we can certainly imagine a more complex version of this model that would, in fact, make predictions where this simpler model refuses to. However, we have not had the resources to develop the more complex model.

Bibliography

[1] The Draft Formal Definition of Ada. Denmark, 1987.
[2] David Guaspari. Formal methods in the design of Ada 9X. In Proceedings of the Ninth Annual Conference on Computer Assurance, 1994.
[3] Intermetrics, Inc. Annotated Ada 9X Reference Manual, Version 4.0, September 1993.
[4] Intermetrics, Inc. Annotated Ada $9 X$ Reference Manual, Version 5.0, June 1994.
[5] G. Kahn. Natural semantics. In Fourth Annual Symposium of Theoretical Aspects of Computer Science, pages 22-39, 1987. LNCS 247.
[6] John Mchugh. Towards Efficient Code from Verified Programs. PhD thesis, The University of Texas at Austin, 1983.
[7] U.S. Reddy and T.K. Lakshman. Typed Prolog: A Semantic Reconstruction of the MycroftO'Keefe Type System. Submitted to the '91 Intl. Logic Programming Symp., San Deigo, California, February 1991.
[8] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.
[9] Language Precision Team. Formal studies of Ada 9X, final report. Technical report, Odyssey Research Associates, December 1992.
[10] United States Department of Defense, New York. Reference Manual for the Ada Programming Language, February 1983. ANSI/MIL-STD-1815A-1983.

Appendix A

Official comments submitted

This appendix lists the official comments submitted by the LPT. For each comment, we give its official "key" number, its title, and a short description of the comment or its effect on the Standard.

Comment 93-3209.a: Too much extra permission to remove checks. The conceptual framework of section 11.6 has been changed.

Comment 93-3398.a: per-object constraints and the "current instance". A new rule [3.8(13)] has been added to avoid the problem described.

Comment 93-3511.a: What is the base range of an enumeration type?
Comment 93.3547.a: constants that aren't. The problem described has been identified as an erroneous execution in [13.9.1(13)]

Comment 93-3547.b: subcomponents that are constrained by their initial value. A new legality rule [3.6(11)] was added.

Comment 93-3547.c: conversion to a type with aliased components. A new legality rule [3.6(11)] was added.

Comment 93-3574.a: interleaving evaluation and conversion. Several paragraphs have been modified to clarify the rules.

Comment 93-03574.b: reassociation of sequences of predefined operators. A note [4.5(13.b)] has been added to the Annotated Reference Manual. It is unclear, however, that the note clarifies the issue raised in this comment.

Comment 93-3575.a: aliased subcomponents with per-object constraints. A new legality rule [3.6(11)] was added.

Comment 94-3621.a: Initialize a discriminant before any subcomponents that depend on it. This clause has been added to the rules of [3.3.1(20)].

Comment 94-3760.a: Phraseology. An inaccurate statement has been reworded in [M(1)].
Comment 94-3761.a: Phraseology. Some wording in [3.3] has been improved.
Comment 94-3762.a: Phraseology.
Comment 94-3763.a: Phraseology. The wording of [3.2.3] has been clarified.
Comment 94-3764.a: Phraseology. A clarifying cross-reference was added.
Comment 94-3765.a: Phraseology.
Comment 94-3901.a: Are first subtypes of enumeration types constrained?. A clause has been added to $[3.5 .1(10)]$ to answer this question.

Comment 94-3901.b: First subtypes of discriminated types are unconstrained. This clause has been added to [3.7(26)].

Comment 94.3901.c: First subtypes of incomplete types. A new note in the [3.10.1(10.a)] Annotated Reference Manual argues that this issue is unimportant.

Comment 94.3901.d: Predefined operators and invalid scalar components. The entire discussion of "invalid" scalars has been modified in version 5.0 of the Reference Manual. This comment and
the following two are cited in the changes.
Comment 94-4045.a: Model for valid and invalid values. See above.
Comment 94-4054.a: Model for valid and invalid values. See above.
Comment 94-4064.a: What is the actual subtype of a formal object?. The question has been answered in [6.4.1(15)].

Comment 94-4065.a: Normalizing composite objects. An explicit statement about restoring objects to normal state appears in [13.9.1(7)].

Comment 94-4149.a: Incomplete definition of 'expected profile' and 'corresponding parameter'. Some rules have been clarified

Comment 94-4171.a: Actual subtypes and aliased views. The rules in $[3.10(9)]$ have been reworded.

The remaining comments were sent too late to affect version 5.0 of the Reference Manual. Some of them are addressed in the electronically-distributed version 5.3, as noted below. Furthermore, the floating-point annex is under revision to address some of the comments on the floating-point model.

Comment 94-4448.a: Signed zeroes not permitted as floating point values.
Comment 94-4454.a: Model-oriented floating point attributes.
Comment 94-4455.a: Relation between requested precision and model numbers.
Comment 94-4481.a: Inappropriate references to Annex G.
Comment 94-4482.a: Are S'Model, S'Machine deterministic?.
Comment 94-4486.a: Symmetry of floating point types.
Comment 94-4489.a: Derivation from a floating point type.
Comment 94-4535.a: Derived types with new discriminants are extensions. A sentence has been added.

Comment 94-4535.b: Discriminants used in constraints in derived type definitions.
Comment 94-4535.c: Incorrect rules for uses of new discriminants in constraint on parent. A new rule has been added.

Comment 94-4535.d: Current instance of a derived type. A note has been added in a "to be honest" section of the AARM.

Comment 94-4572.a: An object that is not \{a part of\} a formal parameter.
Comment 94-4572.b: For aliasing, the type of the formal, not the part, matters.
Comment 94-4572.c: When does an access path exist?
Comment 94-4587.a: Incompatibility between semantics of the core and annex G ?
Comment 94-4796.a: reading a composite with an uninitialized scalar component. The wording of this rule has been changed.

Appendix B

Intermediate Syntax

This appendix describes the decorated abstract syntax representation of Ada 9 X programs. This representation includes all static semantic information needed for defining the dynamic semantics.

One approach, not taken here, is to define a representation of semantic information such as types, subtypes, and overload information and defining necessary tree attributes. Instead of using semantic attributes we chose to give a purely syntactic representation of necessary information by introducing new kinds of tree nodes and new synthetic names.

For instance, the results of overload resolution are captured by the introduction of new unique names and suitable renaming of overloaded entities and their use. Crucial type information is represented using existing syntax for qualified expressions. Thus the result of static semantic analysis is a normalized abstract syntax tree. The details of this normalization are described below.

Declarations that introduce multiple names are replaced by static analysis with multiple declarations introducing single names where this is legal.

Constructs for which no abstract syntax is provided are either not treated in this definition (e.g., tasking) or have not significance for the dynamic semantics (e.g., generics).

B. 1 Syntactic Domains

The following is a complete listing of the term algebra used to represent abstract syntax trees. The constructors are grouped by sorts and are arranged alphabetically.

B.1.1 Component Associations (Aca)

$$
\text { array_comp\$assoc : } \quad D c h^{*}, \operatorname{Exp} \rightarrow A c a
$$

B.1.2 Aggregates (Agg)

$$
\begin{array}{ll}
\text { ext\$agg : } & \text { Exp, Rca }^{*} \rightarrow \text { Agg } \\
\text { named_array\$agg : } & \text { Aca }^{*} \rightarrow \text { Agg } \\
\text { null_ext\$agg : } & \text { Exp } \rightarrow \text { Agg } \\
\text { null_record\$agg : } & \rightarrow \text { Agg } \\
\text { other_array\$agg : } & \operatorname{Exp}^{*}, \operatorname{Exp} \rightarrow \text { Agg } \\
\text { pos_array\$agg : } & \operatorname{Exp}^{*} \rightarrow \text { Agg } \\
\text { record\$agg : } & \text { Rca }^{*} \rightarrow \text { Agg }
\end{array}
$$

B.1.3 Case Alternatives (Alt)

Alt\$lst : \quad list $($ Alt $) \rightarrow$ Alt
case\$Alt: $\quad D_{c h}{ }^{*}, S t m \rightarrow$ Alt
B.1.4 Choice Lists (Ccl)

$$
\begin{array}{ll}
\text { list\$choice: } & \mathrm{id}^{*} \rightarrow \mathrm{Ccl} \\
\text { others\$choice : } & \rightarrow \mathrm{Ccl}
\end{array}
$$

B.1.5 Context Items (Cit)

$$
\text { with } \$ \text { context }: \quad \mathrm{Nam}^{*} \rightarrow \mathrm{Cit}
$$

B.1.6 Component Declarations (Cmp)

aliased_comp\$decl :	$I d$, Sid $\rightarrow C m p$
comp\$decl :	$I d$, Sid $\rightarrow C m p$
init_aliased_comp\$decl :	Id, Sid, Exp $\rightarrow C m p$
init_comp\$decl :	Id, Sid, Exp $\rightarrow C m p$

B.1.7 Compilation Units (Cmp)

$$
\begin{array}{ll}
\text { lib\$unit : } & \mathrm{Cit}^{*}, D c l \rightarrow \mathrm{cmu} \\
\text { private\$unit : } & \mathrm{Cit}^{*}, D c l \rightarrow \mathrm{cmu} \\
\text { sub\$unit : } & \mathrm{Cit}^{*}, N a m, D c l \rightarrow \mathrm{cmu}
\end{array}
$$

B.1.8 Conditions (Cnd)

Exp\$condition : $\operatorname{Exp} \rightarrow$ Cnd

B.1.9 Constraints (Cns)

$$
\begin{array}{ll}
\text { constr_delta\$constr : } & \text { Exp,Cns } \rightarrow \text { Cns } \\
\text { constr_digits\$constr : } & \text { Exp, Cns } \rightarrow \text { Cns } \\
\text { delta\$constr : } & \text { Exp } \rightarrow \text { Cns } \\
\text { digits\$constr : } & \text { Exp } \rightarrow \text { Cns } \\
\text { discr\$constr : } & \text { Dca }^{*} \rightarrow \text { Cns } \\
\text { index\$constr : } & \text { Rng }^{*} \rightarrow \text { Cns } \\
\text { range\$constr : } & \text { Rng } \rightarrow \text { Cns }
\end{array}
$$

B.1.10 Discriminant Associations (Dca)

$$
\text { named } \$ \text { assoc }: \quad I d, E x p \rightarrow D c a
$$

B.1.11 Discrete Choices (Dch)

$$
\begin{array}{ll}
\text { discr_other\$choice : } & \rightarrow \text { Dch } \\
\text { exp\$choice : } & \text { Exp } \rightarrow \text { Dch } \\
\text { range\$choice : } & R n g \rightarrow D c h
\end{array}
$$

B.1.12 Declarations (Dcl)

dcl\$1st :	$\operatorname{list}(\mathrm{Dcl}) \rightarrow$ Dcl
anc_i_obj\$decl	Id, Sid, Exp \rightarrow Dcl
a_c_obj\$decl :	Id, Sid \rightarrow Dcl
ami_obj\$decl :	Id, Sid, Exp \rightarrow Dcl
a_obj\$decl :	Id, Sid \rightarrow Dcl
c_i_obj\$decl :	Id, Sid, Exp \rightarrow Dcl
c_obj\$decl :	Id, Sid \rightarrow Dcl
real_const \$decl :	Id, Exp \rightarrow Dcl
int_const\$decl :	Id, Exp \rightarrow Dcl
d_ext\$decl	Id, Dcp, Sid \rightarrow Dcl
d_i_type\$decl :	$I d$, cpp \rightarrow Dcl
d_type\$decl :	Id, Dcp, Tdf \rightarrow Dcl
exception\$renaming	Id, Nam \rightarrow Dcl
excpt\$decl :	$I d \rightarrow$ Dcl
ext\$decl :	$\mathrm{Id}, \mathrm{Sid} \rightarrow \mathrm{Dcl}$
i_obj\$decl	Id, Sid, Exp \rightarrow Dcl
i_type\$decl :	$I d \rightarrow$ Dcl
obj\$decl :	$I d$, Sid \rightarrow Dcl
object\$renaming :	Id, Nam, Nam \rightarrow Dcl
s_subp\$spec	Sps \rightarrow Dcl
subp\$body :	Sps, Dcl, Stm \rightarrow Dcl
subp\$renaming	Sps, Nam \rightarrow Dcl
subp\$spec :	Sps \rightarrow Dcl
subtype\$decl :	Id, Sid \rightarrow Dcl
type\$decl	$I d, T d f \rightarrow$ dcl
c_type\$decl :	Id, $T d f \rightarrow$ Dcl
c_d_type\$decl :	$I d, T d f, D c p \rightarrow$ Dcl

B.1.13 Discriminant Parts ($D c p$)

$$
\begin{array}{ll}
\text { box } \$ \text { discr }: & \rightarrow D_{c p} \\
\text { list } \$ \text { discr : } & \mathrm{Dcs}^{*} \rightarrow D c p
\end{array}
$$

B.1.14 Discriminant Specifications (Dcs)

$$
\begin{array}{ll}
\text { acc\$discr : } & \text { Id, Nam } \rightarrow \text { Dcs } \\
\text { acc_init\$discr : } & \text { Id, Nam, Exp } \rightarrow \text { Dcs } \\
\text { init\$discr : } & \text { Id, Nam, Exp } \rightarrow \text { Dcs } \\
\text { simple\$discr : } & \text { Id, Nam } \rightarrow \text { Dcs }
\end{array}
$$

B.1.15 Exception Choices (Ech)

```
named\$excpt : \(\quad N a m \rightarrow E c h\)
others\$excpt: \(\rightarrow\) Ech
```


B.1.16 Else-If Clauses (Eif)

$$
\begin{array}{ll}
\text { eif\$lst : } & \text { Eif* Eif } \\
\text { elsif\$clause : } & \text { Cnd,Stm } \rightarrow \text { Eif }
\end{array}
$$

B.1.17 Expressions (Exp)

and_then $\$ E x p$ exp\$alloc:	$\begin{aligned} & \operatorname{Exp}, \operatorname{Exp} \rightarrow \operatorname{Exp} \\ & \operatorname{Exp} \rightarrow \operatorname{Exp} \end{aligned}$
name\$exp	Exp, Nam \rightarrow Exp
range\$exp	Exp, Rng \rightarrow Exp
in_type\$exp	Exp, Nam \rightarrow Exp
me\$exp	$N a m \rightarrow E x p$
not_in_name\$exp	Exp, Nam \rightarrow Exp
not_in_range\$exp	Exp, Rng \rightarrow Exp
not_in_type\$exp	$\operatorname{Exp}, \mathrm{Nam} \rightarrow \operatorname{Exp}$
n	$\rightarrow \operatorname{Exp}$
integer\$exp	integer \rightarrow Exp
real\$exp	real \rightarrow Exp
char\$exp	integer \rightarrow Exp
or_else\$exp	Exp, Exp $\rightarrow \operatorname{Exp}$
paren\$exp	Exp \rightarrow Exp
al\$aggregat	Nam, Agg \rightarrow Exp
qual\$exp	Nam, Exp \rightarrow Exp
type\$allo	Sid \rightarrow Exp
type\$conversion	Nam, Exp $\rightarrow \operatorname{Exp}$

B.1.18 Modes (Mde)

$$
\begin{array}{ll}
\text { in } \$ \text { mode }: & \rightarrow M d e \\
\text { in_out } \$ \text { mode }: & \rightarrow M d e \\
\text { no } \$ \text { mode }: & \rightarrow M d e \\
\text { out } \$ \text { mode }: & \rightarrow M d e
\end{array}
$$

B.1.19 Names (Nam)

access\$attr :	Nam \rightarrow Nam
delta\$attr :	Nam \rightarrow Nam
digits\$attr :	Nam \rightarrow Nam
deref\$name :	Nam \rightarrow Nam
direct\$name :	$I d \rightarrow$ Nam
func\$call :	Nam, Pss ${ }^{*} \rightarrow$ Nam
Id\$attr :	Nam, Id \rightarrow Nam
indexed\$comp :	Nam, Exp \rightarrow Nam
name_type\$conversion :	Nam, Nam \rightarrow Nam
param\$attr:	Nam, Id, Exp \rightarrow Nam
selected\$comp :	Nam, Id \rightarrow Nam
slice\$op :	Nam,Rng \rightarrow Nam

B.1.20 Parameter Specifications (Pms)

access\$param :	$I d, N a m \rightarrow$ Pms
access_default\$param :	$I d, N a m$, Exp \rightarrow Pms
default\$param :	$I d, M d e, N a m$, Exp \rightarrow Pms
normal\$param :	$I d, M d e, N a m \rightarrow$ Pms

B.1.21 Pragmas (Prg)
param\$pragma : Id, $P_{S S}{ }^{*} \rightarrow \operatorname{Prg}$ simple\$pragma: $\quad I d \rightarrow \operatorname{Prg}$
B.1.22 Parameter Associations (Pss)

named_exp\$arg :	$I d, E x p \rightarrow$ Pss
named_name $\$$ arg :	$I d, N a m \rightarrow$ Pss

B.1.23 Record Component Associations (Rca)
choice\$assoc: Ccl, Exp \rightarrow Rca
B.1.24 Ranges (Rng)

attr\$range:	Nam \rightarrow Rng
explicit\$range :	Exp, Exp \rightarrow Rng
parm_attr\$range $:$	Nam, Exp \rightarrow Rng

B.1.25 Subtype Indications (Sid)

```
constrained$subtype : Nam, Cns }->\mathrm{ Sid
named$subtype : Nam }->\mathrm{ Sid
subtype$range : Rng }->\mathrm{ Sid
```

B.1.26 Subprogram Specifications (Sps)
function\$spec : Id, Pms ${ }^{*}, N a m \rightarrow S p s$ procedure\$spec : Id, $\mathrm{Pms}^{*} \rightarrow \mathrm{Sps}$
B.1.27 Statements (Stm)

stm\$lst :	list $(S t m) \rightarrow$ Stm
agg_code\$stm :	Nam, Agg \rightarrow Stm
assign\$stm :	Nam, Exp \rightarrow Stm
call\$stm :	Nam, Pss \rightarrow Stm
case\$stm :	Exp, Alt \rightarrow Stm
cond\$exit:	Cnd \rightarrow Stm
declare\$block :	Dcl, Stm \rightarrow Stm
exp_code\$stm :	Nam, Exp \rightarrow Stm
for\$loop :	Id, Rng,Stm \rightarrow Stm
func_return\$stm :	Exp \rightarrow Stm

goto\$stm :	$N a m \rightarrow S t m$
if\$stm	Cnd, Stm, Eif \rightarrow Stm
if_else\$stm :	Cnd, Stm, Eif, Stm \rightarrow Stm
labled\$stm :	$\mathrm{Id}, \mathrm{Stm} \rightarrow \mathrm{Stm}$
name\$exit	$\mathrm{Nam} \rightarrow$ Stm
name_cond\$exit	Nam, Cnd - Stm
named\$block	Id, Stm \rightarrow Stm
named\$loop	Id, Stm \rightarrow Stm
named_declare\$block	Id, Dcl, Stm \rightarrow Stm
named for\$loop :	Id, Id, Rng, Stm \rightarrow Stm
named_reverse\$loop	Id, Id, Rng, Stm \rightarrow Stm
named_while\$loop :	Id, Cnd, Stm \rightarrow Stm
null\$stm :	\rightarrow Stm
plain\$exit :	\rightarrow Stm
plain\$loop :	$\mathrm{Stm} \rightarrow \mathrm{Stm}$
raise\$stm :	$\mathrm{Nam} \rightarrow$ Stm
reraise\$stm	\rightarrow Stm
return\$stm :	\rightarrow Stm
reverse\$loop	Id, Rng, Stm \rightarrow Stm
simple $\$$ block :	$\mathrm{Stm} \rightarrow \mathrm{Stm}$
while\$loop :	Cnd, Stm \rightarrow Stm
handled\$statement	Stm, Xhd ${ }^{*} \rightarrow$ Stm
unhandled\$statement	$\mathrm{Stm} \rightarrow \mathrm{Stm}$

B.1.28 Type Definitions (Tdf)

access\$type : aliased_array\$type : aliased_uc_array\$type allaccess\$type: array\$type: const_access\$type :	$\begin{aligned} & \text { Sid } \rightarrow \text { Tdf } \\ & \text { Rng }^{*}, \text { Sid } \rightarrow \text { Tdf } \\ & \text { Nam }^{*}, \text { Sid } \rightarrow \text { Tdf } \\ & \text { Sid } \rightarrow \text { Tdf } \\ & R n g^{*}, \text { Sid } \rightarrow \text { Tdff } \\ & \text { Sid } \rightarrow \text { Tdf } \end{aligned}$
const_dec_fixed\$type : const_float\$type : dec_fixed\$type : der\$type: enum\$type : ext\$type: float\$type: func\$type: int\$type:	$\begin{aligned} & \text { Exp, Exp, Cns } \rightarrow \text { Tdf } \\ & \text { Exp, Cns } \rightarrow \text { Tdf } \\ & \text { Exp, Exp } \rightarrow \text { Tdf } \\ & \text { Sid } \rightarrow \text { Tdf } \\ & I d^{*} \rightarrow \text { Tdf } \\ & \text { Sid, rd } \rightarrow \text { Tdf } \\ & \text { Exp } \rightarrow \text { Tdf } \\ & \text { Pms }^{*}, N a m \rightarrow \text { Tdf } \\ & \text { Exp, Exp } \rightarrow \text { Tdf } \end{aligned}$
mod\$type : named\$type : ord_fixed\$type : proc\$type : record\$type: t_record\$type : uc_array\$type :	$\begin{aligned} & \operatorname{Exp} \rightarrow \text { Tdf } \\ & \text { Sid } \rightarrow \text { Tdf } \\ & \text { Exp, Rng } \rightarrow \text { Tdf } \\ & \text { Pms }^{*} \rightarrow \text { Tdf } \\ & \text { Cmp }^{*}, \text { Vrp } \rightarrow \text { Tdf } \\ & \text { Cmp* }, V r p \rightarrow T d f \\ & \text { Nam }^{*}, \text { Sid } \rightarrow \text { Tdf } \end{aligned}$

B.1.29 Variants (Vnt)

variant\$clause : $\quad D c h^{*}, C m p^{*}, \operatorname{Vrp} \rightarrow$ Vnt

B.1.30 Variant Parts (Vrp)

no\$variant: Vrp
variant\$part: \quad Nam, Vnt ${ }^{*} \rightarrow \operatorname{Vrp}$
B.1.31 Exception Choices (Xhd)
choice\$handler: Id, Ech ${ }^{*}, \mathrm{Stm} \rightarrow$ Xhd
expt\$handler: $\quad E c h^{*}, S t m \rightarrow$ Xhd

B. 2 Lexical Elements

prgama ::= pragma identifier [(pragma_argument_association \{, pragma_argument_association \})]:

$$
\begin{array}{ll}
\text { param\$pragma : } & \text { Id }, P_{s s}^{*} \rightarrow \operatorname{Prg} \\
\text { simple\$pragma: } & \text { pragma, Id } \rightarrow \operatorname{Prg}
\end{array}
$$

pragma_argument_association ::=
[identifier $=>$] name
| [identifier $=>$] expression

$$
\begin{array}{ll}
\text { named_exp\$arg : } & I d, \operatorname{Exp} \rightarrow \text { Pss } \\
\text { named_name\$arg : } & I d, \text { Nam } \rightarrow \text { Pss }
\end{array}
$$

B. 3 Declarations and Types

B.3.1 Declarations

```
basic_declaration ::=
    type_declaration
    subtype_declaration
    object_declaration
    number_declaration
    subprogram_declaration
    abstract_subprogram_declaration
    package_declaration
    renaming_declaration
    exception_declaration
    generic_declaration
    generic_instantiation
```

It is convenient to treat sequences of declarations as a single declaration.

$$
D c \mid \$ 1 s t: \quad D c l^{*} \rightarrow D c l
$$

defining_identifier ::= identifier

B.3.2 Types and Subtypes

B.3.2.1 Type Declarations

type_declaration ::=
full_type_declaration
| incomplete_type_declaration
| private_type_declaration
| private_extension_declaration
full_type_declaration ::=
type defining_identifier [known_discriminant_part] is type_definition ;
task_type_declaration
| protected_type_declaration

> | d_type $\$ d e c l:$ | $I d, D c p, T d f \rightarrow D c l$ |
| :--- | :--- |
| type\$decl : | $I d, T d f \rightarrow D c l$ |

type_definition $::=$
enumeration_type_definition
| integer_type_definition
real_type_definition
array_type_definition
| record_type_definition
access_type_definition
derived_type_definition

B.3.2.2 Subtype Declarations

```
subtype_declaration ::=
```

subtype defining_identifier is subtype_indication;

$$
\text { subtype\$decl : } \quad I d, \text { Sid } \rightarrow D c I
$$

```
subtype_indication ::=
    subtype_mark [ constraint ]
subtype_mark ::=
    name
```

```
constrained$subtype : Nam, Cns }->\mathrm{ Sid
named$subtype : }\quadNam->\mathrm{ Sid
subtype$range : Rng }->\mathrm{ Sid
```

The form subtype\$range applies only to discrete subtype definitions.

```
constraint ::=
    scalar_constraint
    | composite_constraint
scalar_constraint ::=
    range_constraint
    | digits_constraint
    delta_constraint
composite_constraint ::=
    index_constraint
    | discriminant_constraint
```


B.3.2.3 Classification of Operations

B.3.3 Objects and Named Numbers

B.3.3.1 Object Declarations

```
object_declaration ::=
    defining_identifier_list : [ aliased ] [ constant ] subtype_indication [:= expression ] ;
    defining_identifier_list: [ aliased ][constant] array_type_definition [:= expression ] ;
    single_task_declaration
    single_protected_declaration
```

a_c_i_obj\$decl :	Id, Sid, Exp \rightarrow Dcl
a_c_obj\$decl :	Id, Sid \rightarrow Dcl
a_i_obj\$decl :	Id, Sid, Exp \rightarrow Dcl
a_obj\$decl :	Id, Sid \rightarrow Dcl
c_i_obj\$decl :	Id, Sid, Exp \rightarrow Dcl
c_obj\$decl :	Id, Sid \rightarrow Dcl
i_obj\$decl :	Id, Sid, Exp \rightarrow Dcl
obj\$decl :	Id, Sid $\rightarrow D c l$

All forms of object declarations are normalized such that each declaration defines exactly one name. This is always possible by [3.3.1].

```
defining_identifier_list ::=
    defining_identifier {, defining_identifier }
```


B.3.3.2 Number Declarations

number_declaration ::=
defining_identifier_list : constant $:=$ expression

$$
\begin{array}{ll}
\hline \text { real_const\$decl : } & I d, \operatorname{Exp} \rightarrow D c l \\
\text { int_const } \$ \mathrm{decl}: & I d, \operatorname{Exp} \rightarrow D c l
\end{array}
$$

Number declarations are disambiguated by static analysis into real and integer number declarations.

B.3.4 Derived Types and Classes

```
derived_type_definition ::=
    [ abstract ] new subtype_indication [ record_extension_part ]
```

$$
\begin{array}{ll}
\text { der\$type }: & \text { Sid } \rightarrow \text { Tdf } \\
\text { ext\$type }: & \text { Sid, red } \rightarrow \text { Tdf }
\end{array}
$$

B.3.4.1 Derivation Classes

B.3.5 Scalar Types

```
range_constraint ::=
    range range
```

range 8 constr : \quad Rng \rightarrow Cns
range ::=
range_attribute_reference
| simple_expression .. simple_expression

```
attr$range: }\quadNam->Rn
explicit$range: Exp, Exp }->\mathrm{ Rng
parm<attr$range : Nam, Exp }->\mathrm{ Rng
```


B.3.5.1 Enumeration Types

enumeration_type_definition ::=
(enumeration_literal_specification \{, enumeration_literal_specification \})

$$
\text { enum\$type : } \quad I d^{*} \rightarrow T d f
$$

enumeration_literal_specification $::=$
defining_identifier
| defining_character_literal

```
defining_character_literal ::=
    character_literal
```

char\$enum :	char \rightarrow Id
idSenum :	$I d \rightarrow I d$

B.3.5.2 Character Types

B.3.5.3 Boolean Types

B.3.5.4 Integer Types

integer_type_definition ::=
signed_integer_type_definition
| modular_type_definition
signed_integer_type_definition ::= range simple_expression .. simple_expression

$$
\text { int } \$ \text { type }: \quad \operatorname{Exp}, \operatorname{Exp} \rightarrow T d f
$$

modular_type_definition ::= mod expression

$$
\text { mod\$type }: \quad \operatorname{Exp} \rightarrow T d f
$$

B.3.5.5 Operations of Discrete Types

B.3.5.6 Real Types

```
real_type_definition ::=
    floating_point_definition
    fixed_point_definition
```


B.3.5.7 Floating Point Types

floating_point_definition ::=
digits expression [real_range_specification]

> | float\$type : | $\operatorname{Exp} \rightarrow$ Tdf |
| :--- | :--- |
| const_float\$type $:$ | $\operatorname{Exp}, \operatorname{Cns} \rightarrow$ Tdf |

real_range_specification $::=$
range simple_expression .. simple_expression

See scalar types (3.5).

B.3.5.8 Operations of Floating Point Types

B.3.5.9 Fixed Point Types

fixed_point_definition ::=
ordinary_fixed_point_definition
decimal_fixed_pointq_definition
ordinary_fixed_point_definition ::=
delta expression real_range_specification

$$
\text { ord_fixed\$type : Exp, Rng } \rightarrow \text { Tdf }
$$

decimal_fixed_point_definition ::=
delta expression digits expression [real_range_specification]

$$
\begin{array}{ll}
\hline \text { const_dec_fixed\$type: } & \text { Exp, Exp, Cns } \rightarrow T d f \\
\text { dec_fixed\$type: } & \text { Exp, Exp } \rightarrow \text { Tdf } \\
\hline
\end{array}
$$

decimal_digits_constraint ::=
digits expression [range_constraint]

$$
\begin{array}{ll}
\hline \text { constr_digits\$constr : } & \text { Exp, Cns } \rightarrow \text { Cns } \\
\text { digits } \$ c o n s t r: & \text { Exp } \rightarrow \text { Cns }
\end{array}
$$

B.3.5.10 Operations of Fixed Point Types

B.3.6 Array Types

array_type_definition ::=
unconstrained_array_definition
| constrained_array_definition
unconstrained_array_definition ::=
array (index_subtype_definition \{ , index_subtype_definition \}) of component_definition

$$
\begin{array}{ll}
\hline \text { aliased_uc_array\$type : } & \mathrm{Nam}^{*}, \text { Sid } \rightarrow \text { Tdf } \\
\text { uc_array\$type : } & \mathrm{Nam}^{*}, \text { Sid } \rightarrow \text { Tdf }
\end{array}
$$

index_subtype_definition ::=
subtype_mark range <>
constrained_array_definition ::=
array (discrete_subtype_definition \{, discrete_subtype_definition \}) of component_definition

```
aliased_array$type : Rng*,Sid }->\mathrm{ Tdf
array$type: }\quadRng*,Sid->Td
```

```
discrete_subtype_definition ::=
        subtype_indication
    | range
```

Discrete subtype definitions are subsumed under subtype indications (Sid).
component_definition ::=
[aliased] subtype_indication

B.3.6.1 Index Constraints and Discrete Ranges

```
index_constraint ::=
```

 (discrete_range \(\{\), discrete_range \(\}\))
 $$
\text { index\$constr : } \quad \mathrm{Rng}^{*} \rightarrow \mathrm{Cns}
$$

```
discrete_range ::=
    subtype_indication
    | range
```


B.3.6.2 Operations of Array Types

B.3.6.3 String Types

B.3.7 Discriminants

```
discriminant_part ::=
    unknown_discriminant_part
    | known_discriminant_part
unknown_discriminant_part ::=
    (<>)
known_discriminant_part ::=
    (discriminant_specification {; discriminant_specification })
                lox$discr:
discriminant_specification ::=
    defining_identifier_list: subtype_mark [:= default_expression ]
    | defining_identifier_list : access_definition [:= default_expression ]
```

```
default_expression ::=
```

 expression
 | acc\$discr : | $I d$, Nam \rightarrow Dcs |
| :--- | :--- |
| acc_init\$discr : | $I d$, Nam, Exp \rightarrow Dcs |
| init\$discr: | $I d, N a m, \operatorname{Exp} \rightarrow$ Dcs |
| simple\$discr : | $I d, N a m \rightarrow$ Dcs |

B.3.7.1 Discriminant Constraints

discriminant_constraint ::=
(discriminant_association \{, discriminant_association \})

$$
\text { discr\$constr : } \quad D_{c a}{ }^{*} \rightarrow C n s
$$

discriminant_association ::=
[selector_name $\{\mid$ selector_name $\}=>$] expression

$$
\text { named\$assoc: } \quad I d, E x p \rightarrow D c a
$$

B.3.7.2 Operations of Discriminated Types

B.3.8 Record Types

```
record_type_definition ::=
    [ [ abstract ] tagged ] [ limited ] record_definition
                record$type: C Cmp*,Vrp->Tdf
record_definition ::=
    record
    component_list
    end record
    | null record
component_list ::=
    component_declaration {component_declaration }
    | {component_declaration } variant_part
    null :
component_declaration ::=
    defining_identifier_list : component_definition [:= default_expression ] ;
```

aliased_comp $\$$ decl $:$	Id, Sid $\rightarrow C m p$
comp\$decl :	Id, Sid \rightarrow Cmp
init_aliased_comp\$decl :	Id, Sid, Exp $\rightarrow C m p$
init_comp $\$ d e c l:$	Id, Sid, Exp $\rightarrow C m p$

Component declarations with multiple identifiers are replaced by multiple component declarations.

B.3.8.1 Variant Parts and Discrete Choices

```
variant_part ::=
```

case direct_name is
variant
\{ variant \}
end case ;

$$
\begin{array}{ll}
\hline \text { no\$variant: } & V_{r p} \\
\text { variant\$part : } & \text { Nam, Vnt }{ }^{*} \rightarrow V_{r p} \\
\hline
\end{array}
$$

variant ::=
when discrete_choice_list =>
component_list

$$
\text { variant\$clause : } \quad D c h^{*}, C m p^{*}, \operatorname{Vrp} \rightarrow \operatorname{Vnt}
$$

discrete_choice_list ::=
discrete_choice \{
| discrete_choice \}
discrete_choice ::=
expression
| discrete_range
| others

$$
\begin{array}{ll}
\text { discr_other\$choice : } & \rightarrow \text { Dch } \\
\text { Exp\$choice : } & \text { Exp } \rightarrow \text { Dch } \\
\text { range\$choice : } & \text { Rng } \rightarrow \text { Dch } \\
\hline
\end{array}
$$

B.3.9 Tagged Types and Type Extensions

B.3.9.1 Type Extensions

record_extension_part ::=
with record_definition

```
B.3.9.2 Dispatching Operations of Tagged Types
B.3.9.3 Abstract Types and Subprograms
B.3.10 Access Types
access_type_definition ::=
    access_to_object_definition
    | access_to_subprogram_definition
access_to_object_definition ::=
        access [ general_access_modifier] subtype_indication
general_access_modifier ::=
        all
    | constant
```

access\$type :	Sid \rightarrow Tdf
all_access\$type :	Sid \rightarrow Tdf
const_access $\$$ type $:$	Sid \rightarrow Tdf

access_to_subprogram_definition ::=
access [protected] procedure parameter_profile
access [protected] function parameter_and_result_profile

```
func\$type: \(P_{m s}{ }^{*}, \mathrm{Nam} \rightarrow\) Tdf
proc\$type : \(\quad P \mathrm{~ms}^{*} \rightarrow T d f\)
```

access_definition ::=
access subtype_mark

B.3.10.1 Incomplete Type Declarations

incomplete_type_declaration ::=
type defining_identifier [discriminant_part] ;

```
d_i_type$decl: Id, Dcp }->\mathrm{ Dcl
i_type$decl: Id }->\mathrm{ DcI
```


B.3.10.2 Operations of Access Types

B.3.11 Declarative Parts

declarative_part ::=
\{ declarative_item $\}$

```
declarative_item ::=
        basic_declarative_item
    body
basic_declarative_item ::=
    basic_declaration
    representation_clause
    use_clause
body ::=
    proper_body
    | body_stub
proper_body ::=
    subprogram_body
    package_body
    task_body
    protected_body
```


B.3.11.1 Completions of Declarations

B. 4 Names and Expressions

B.4.1 Names

```
name ::=
    direct_name
    explicit_dereference
    indexed_component
    slice
    selected_component
    attribute_reference
    type_conversion
    function_call
    character_literal
```

String and character literals that denote operators are included as direct names. String literals that denote string values are represented as aggregates.

$$
\text { char } \$ E x p: \quad \text { integer } \rightarrow \operatorname{Exp}
$$

```
direct_name ::=
    identifier
    | operator_symbol
```

direct\$name: Id \rightarrow Nam

Names that are represented as strings, character literals, and identifiers are all treated uniformly as elements of type Id

```
prefix ::=
    name
    | implicit_dereference
```

explicit_dereference ::=
name. all
deref\$name: $\quad N a m \rightarrow N a m$

The abstract syntax for dereferencing includes explicit as well as implicit dereferencing.
implicit_dereference ::=
name

B.4.1.1 Indexed Components

indexed_component ::=
prefix (expression \{, expression \})

$$
\text { indexed } \$ \text { comp : } \quad N a m, \operatorname{Exp}^{*} \rightarrow N a m
$$

B.4.1.2 Slices

```
slice ::=
    prefix (discrete_range)
```

 slice\$op : Nam, Rng \(\rightarrow\) Nam

B.4.1.3 Selected Components

selected_component $::=$
prefix. selector_name

$$
\text { selected } \$ \text { comp : } \quad \text { Nam, Id } \rightarrow \text { Nam }
$$

Static semantics separates expanded names from selected components.

```
selector_name ::=
    identifier
    | character_literal
    operator_symbol
```


B.4.1.4 Attributes

attribute_reference ::=
prefix ' attribute_designator
attribute_designator $::=$
identifier [(expression)]
access
delta
digits
range_attribute_reference ::=
prefix ' range_attribute_designator
range_attribute_designator $::=$
range [(expression)]

$$
\begin{array}{ll}
\text { Id\$attr : } & \text { Nam, Id } \rightarrow \text { Nam } \\
\text { param\$attr : } & \text { Nam, Id, Exp } \rightarrow \text { Nam }
\end{array}
$$

There is special abstract syntax needed for attributes that are reserved words.

B.4.2 Literals

B.4.3 Aggregates

aggregate ::=

record_aggregate
extension_aggregate
array_aggregate

B.4.3.1 Record Aggregates

record_aggregate $::=$
(record_component_association_list)
record_component_association_list ::=
record_component_association \{ , record_component_association \}
| null record

$$
\begin{array}{ll}
\text { nulL_record } \$ A g g: & \rightarrow A g g \\
\text { record } \$ A g g: & \text { Rca }^{*} \rightarrow \text { Agg }
\end{array}
$$

record_component_association ::=
[component_choice_list =>] expression

```
choice$assoc: Ccl, Exp }->\mathrm{ Rca
```

Positional parameter associations have been eliminated by static analysis and are represented with an explicit choice list. This normalization is possible since, by [4.3.1], discriminant values that determine variants are required to be static.

```
component_choice_list ::=
    selector_name {| selector_name }
    | others
```

$$
\begin{array}{ll}
\text { list\$choice : } & I d^{*} \rightarrow \mathrm{Ccl} \\
\text { others\$choice : } & \rightarrow \mathrm{Ccl}
\end{array}
$$

B.4.3.2 Extension Aggregates

```
extension_aggregate ::=
    (expression with record_component_association_list )
```

```
ext$Agg: Exp,Rca* }->\mathrm{ Agg
```

ext$Agg: Exp,Rca* }->\mathrm{ Agg
nulL_ext$Agg: Exp }->\mathrm{ Agg

```
nulL_ext$Agg: Exp }->\mathrm{ Agg
```


B.4.3.3 Array Aggregates

```
array_aggregate ::=
```

 positional_array_aggregate
 | named_array_aggregate
 positional_array_aggregate $::=$
(expression, expression \{, expression \})
| (expression $\{$, expression $\}$, others $=>$ expression)
named_array_aggregate ::=
(array_component_association \{, array_component_association \})

```
named_array$Agg: Aca** Agg
other_array$Agg: Exp}\mp@subsup{}{}{*},\operatorname{Exp}->\textrm{Agg
pos_array$Agg: Exp* }->\mathrm{ * Agg
```

array_component_association ::=
discrete_choice_list $=>$ expression
array_comp\$assoc: $D_{c h}{ }^{*}, \operatorname{Exp} \rightarrow$ Aca

B.4.4 Expressions

```
expression ::=
    relation { and relation }
    relation { and then relation }
    relation {or relation }
    relation {or else relation }
    relation { xor relation }
```

$$
\begin{array}{ll}
\text { and_then\$Exp: } & \operatorname{Exp}, \operatorname{Exp} \rightarrow E \operatorname{Exp} \\
\text { or_else } \$ E x p: & \operatorname{Exp}, \operatorname{Exp} \rightarrow E \operatorname{Exp}
\end{array}
$$

Short-circuit operators are non-strict and require explicit representation.

```
relation ::=
    simple_expression [relational_operator simple_expression ]
    simple_expression [ not] in range
    simple_expression [ not] in subtype_mark
```

$$
\begin{array}{ll}
\text { in_name\$Exp: } & \text { Exp, Nam } \rightarrow \text { Exp } \\
\text { in_range\$Exp : } & \text { Exp, Rng } \rightarrow \text { Exp } \\
\text { in_type\$Exp : } & \text { Exp,Nam } \rightarrow \text { Exp } \\
\text { not_in_name\$Exp : } & \text { Exp,Nam } \rightarrow \text { Exp } \\
\text { not_in_range\$Exp : } & \text { Exp,Rng } \rightarrow \text { Exp } \\
\text { not_in_type\$Exp : } & \text { Exp,Nam } \rightarrow \text { Exp }
\end{array}
$$

Static semantics distinguishes between membership tests where the name denotes an object and those where the name denotes a subtype.

```
simple_expression ::=
    [ unary_adding_operator ] term { binary_adding_operator term }
term ::=
    factor { multiplying_operator factor }
factor ::=
    primary [ ** primary ]
    abs primary
    not primary
primary ::=
    numeric_literal
    null
    string_literal
    aggregate
    name
    qualified_expression
    allocator
    ( expression)
```

```
paren$Exp: Exp }->\mathrm{ Exp
qual$aggregate: Nam, Agg }->\mathrm{ Exp
name$Exp: Nam }->\mathrm{ Exp
null$Exp: }->\mathrm{ Exp
integer$Exp: integer }->\mathrm{ Exp
real$Exp : real }->\mathrm{ Exp
```

All aggregates are assumed to be qualified by static analysis. String literals are represented as qualified aggregates. It may be necessary for static analysis to introduce new type names for aggregates of anonymous array types.

Numeric literals are separated into integer and real literals.

B.4.5 Operators and Expression Evaluation

All strict operators on ordinary values are represented in the abstract syntax as function calls. As with other function calls, the function designators specify the unique overload that applies. Non-strict operators or operators that take subtypes as arguments (e.g., in) have an explicit representation given below.

```
logical_operator ::=
        and
    or
    xor
```

relational_operator ::=
$=$
| $/=$
|<
| <=
| >
| $>=$
binary_adding_operator ::=
$+$
1 -
\| \&
unary_adding_operator ::=
$1+$
multiplying_operator ::=
*
$1 /$
mod
rem
highest_precedence_operator ::=
| abs
not

B.4.5.1 Logical Operations and Short-Circuit Control Forms

B.4.5.2 Relational Operators and Membership Tests
B.4.5.3 Binary Adding Operators
B.4.5.4 Multiplying Operators

B.4.5.5 Highest Precedence Operators

B.4.6 Type Conversions

type_conversion ::=
subtype_mark (expression)
| subtype_mark (name)

type\$conversion :	Nam, Exp $\rightarrow \operatorname{Exp}$
name_type $\$$ conversion $:$	Nam, Nam \rightarrow Nam

B.4.7 Qualified Expressions

```
qualified_expression ::=
    subtype_mark' ( expression)
    | subtype_mark 'aggregate
```

$$
\text { qual } \$ \operatorname{Exp}: \quad \text { Nam, } \operatorname{Exp} \rightarrow \operatorname{Exp}
$$

The abstract syntax for qualified aggregates is covered under aggregates.

B.4.8 Allocators

allocator ::=
new subtype_indication
| new qualified_expression

$$
\begin{array}{ll}
\text { Exp\$alloc : } & \operatorname{Exp} \rightarrow \operatorname{Exp} \\
\text { type\$alloc : } & \text { Sid } \rightarrow \operatorname{Exp}
\end{array}
$$

B.4.9 Static Expressions and Static Subtypes

B.4.9.1 Statically Matching Constraints and Subtypes

B. 5 Statements

B.5.1 Simple and Compound Statements - Sequences of Statements sequence_of_statements ::= statement \{ statement \}

Sequences of statements can be treated as single statements.

$$
\text { Stm\$lst : } \quad S t m^{*} \rightarrow \text { Stm }
$$

statement ::=
\{ label \} simple_statement
| \{ label \} compound_statement

$$
\text { labeld\$stm : Id }, S t m \rightarrow S t m
$$

simple_statement ::= null_statement
assignment_statement
exit_statement
goto_statement
procedure_call_statement
return_statement
entry_call_statement
requeue_statement
delay_statement
abort_statement
raise_statement
code_statement
compound_statement ::=
if_statement
| case_statement
loop_statement
block_statement
accept_statement
select_statement
null_statement $::=$
null :

$$
\text { null\$stm : } \rightarrow \text { Stm }
$$

```
label ::=
```

 \(\ll\) statement_identifier >>
 statement_identifier ::=
direct_name

B.5.2 Assignment Statement

assignment_statement $::=$
name := expression
assign\$stm : Nam, Exp \rightarrow Stm

B.5.3 If Statements

if_statement $::=$
if condition then
sequence_of_statements
\{ elsif condition then
sequence_of_statements\}
[else
sequence_of_statements]
end if ;

if\$stm :	Cnd, Stm, Eif \rightarrow Stm
if_else\$stm :	Cnd,Stm, Eif, Stm \rightarrow Stm
Eif\$lst :	Eif ${ }^{*} \rightarrow$ Eif
elsif\$clause :	Cnd,Stm \rightarrow Eif

condition ::=
expression

$$
\text { Exp\$condition : Exp } \rightarrow \text { Cnd }
$$

B.5.4 Case Statements

```
case_statement ::=
```

 case expression is
 case_statement_alternative
 \{ case_statement_alternative \}
 end case ;
    ```
case$stm : Exp, Alt }->\mathrm{ Stm
```

```
case_statement_alternative ::=
    when discrete_choice_list =>
    sequence_of_statements
```

$$
\begin{array}{ll}
\text { Alt\$lst : } & A l t^{*} \rightarrow \text { Alt } \\
\text { case\$Alt }: & D c h^{*}, \text { Stm } \rightarrow \text { Alt }
\end{array}
$$

B.5.5 Loop Statements

```
loop_statement ::=
    [ statement_identifier:]
    [ iteration_scheme ] loop
    sequence_of_statements
    end loop [identifier];
iteration_scheme ::=
    while condition
    for loop_parameter_specification
loop_parameter_specification ::=
    defining_identifier in [reverse ] discrete_subtype_definition
```

| named_for\$loop : | $I d, I d, R n g, S t m \rightarrow S t m$ |
| :--- | :--- |
| named_reverse\$loop : | $I d, I d, R n g, S t m \rightarrow S t m$ |
| named_while\$loop : | $I d$, Cnd,Stm \rightarrow Stm |
| named\$loop : | $I d, S t m \rightarrow S t m$ |
| for\$loop : | $I d$, Rng,Stm \rightarrow Stm |
| reverse\$loop : | $I d$, Rng,Stm \rightarrow Stm |
| while\$loop : | Cnd,Stm \rightarrow Stm |
| plain\$loop : | Stm \rightarrow Stm |

B.5.6 Block Statements

```
block_statement ::=
    [ statement_identifier:]
        [ declare
            declarative_part ]
            begin
            handled_sequence_of_statements
    end [identifier ];
```

| simple\$block : | Stm \rightarrow Stm |
| :--- | :--- |
| declare\$block: | Dcl,Stm \rightarrow Stm |
| named $\$$ block : | $I d, S t m \rightarrow S t m$ |
| named_declare\$block $:$ | $I d, D c l, S t m \rightarrow S t m$ |

B.5.7 Exit Statements

exit_statement ::= exit [name] [when condition] ;

```
name$exit: Nam }->\mathrm{ Stm
name_cond$exit: Nam, Cnd }->\mathrm{ Stm
plain$exit: }\quad->\mathrm{ Stm
cond$exit : }\quad\mathrm{ Cnd }->\mathrm{ Stm
```


B.5.8 Goto Statements

goto_statement ::= goto name ;

$$
\text { goto\$stm : } \quad N a m \rightarrow S t m
$$

B. 6 Subprograms

B.6.1 Subprogram Declarations

subprogram_declaration ::=
subprogram_specification ;

$$
\text { subp\$spec: } \quad \text { Sps } \rightarrow D c l
$$

abstract_subprogram_declaration $::=$
subprogram_specification is abstract ;

$$
\text { subp\$spec : } \quad \text { Sps } \rightarrow D c l
$$

subprogram_specification ::=
procedure defining_program_unit_name parameter_profile
function defining_designator parameter_and_result_profile

$$
\begin{array}{ll}
\text { function\$spec : } & I d, P m s^{*}, N a m \rightarrow S p s \\
\text { procedure\$spec : } & I d, P m s^{*} \rightarrow S p s
\end{array}
$$

designator ::=
[parent_unit_name .] identifier
| operator_symbol
defining_designator $::=$ defining_program_unit_name
| defining_operator_symbol

```
defining_program_unit_name ::=
    [ parent_unit_name .] defining_identifier
operator_symbol ::=
    string_literal
defining_operator_symbol ::=
    operator_symbol
parameter_profile ::=
    [formal_part ]
```

$\begin{array}{ll}\text { no\$params: } & \rightarrow \text { Psig } \\ \text { param\$list: } & P m s^{*} \rightarrow \text { Psig }\end{array}$
parameter_and_result_profile $::=$
[formal_part] return subtype_mark
formal_part ::=
(parameter_specification \{; parameter_specification \})
parameter_specification ::=
defining_identifier_list : mode subtype_mark [:= default_expression]
| defining_identifier_list: access_definition [:= default_expression]

| access\$param : | $I d$, Nam \rightarrow Pms |
| :--- | :--- |
| access_default $\$$ param : | Id, Nam, Exp \rightarrow Pms |
| default \$param : | $I d, M d e, N a m$, Exp \rightarrow Pms |
| normal\$param : | $I d, M d e, N a m \rightarrow P m s$ |

mode ::=
[in]
| in out
out

```
in$mode: }\quad->\mathrm{ Mde
in_out$mode: }->\mathrm{ Mde
no$mode: }\quad->\mathrm{ Mde
out$mode: }\quad->\mathrm{ Mde
```


B.6.2 Formal Parameter Modes

B.6.3 Subprogram Bodies

subprogram_body ::=
subprogram_specification is declarative_part
begin
handied_sequence_of_statements
end [designator] ;

$$
\text { subp\$body : } \quad S p s, D c l, S t m \rightarrow D c l
$$

B.6.3.1 Conformance Rules

B.6.3.2 Inline Expansion of Subprograms

B.6.4 Subprogram Calls

```
procedure_call_statement ::=
    name
    prefix actual_parameter_part ;
```

$$
\text { call\$stm : } \quad \text { Nam, } P_{s s}{ }^{*} \rightarrow S t m
$$

```
function_call ::=
    name
    | prefix actual_parameter_part
```

 func\$call : \(N a m, P_{s s}{ }^{*} \rightarrow \mathrm{Nam}\)
 actual_parameter_part $::=$
(parameter_association \{, parameter_association \})
parameter_association ::=
[selector_name =>] explicit_actual_parameter
explicit_actual_parameter ::=
expression
name

```
named_exp$arg : Id, Exp }->\mathrm{ Pss
named_name$arg: Id, Nam }->\mathrm{ Pss
```


B.6.4.1 Parameter Associations

B.6.5 Return Statements

return_statement $::=$
return [expression];

$$
\begin{array}{ll}
\text { func_return\$stm: } & \text { Exp } \rightarrow \text { Stm } \\
\text { return } \$ \text { stm }: & \rightarrow \text { Stm }
\end{array}
$$

B.6.6 Overloading of Operators

B. 7 Packages

B.7.1 Package Specifications and Declarations

```
package_declaration ::=
```

 package specification ;
 package_specification ::=
package defining_program_unit_name is
\{basic_declarative_item $\}$
[private
\{basic_declarative_item\}]
end [[parent_unit_name .] identifier]

B.7.2 Package Bodies

```
package_body ::=
    package body defining_program_unit_name is
        declarative_part
    [begin
        handled_sequence_of_statements
    end [[ parent_unit_name .] identifier ] :
```


B.7.3 Private Type and Private Extensions

```
private_type_declaration ::=
    type defining_identifier [ discriminant_part ] is [ [ abstract ] tagged ] [ limited ] private ;
private_extension_declaration ::=
    type defining_identifier [ discriminant_part ] is
    [ abstract ] new subtype_indication with private ;
```

```
d_ext$decl: Id, Dcp,Sid }->\mathrm{ Dcl
```

d_ext$decl: Id, Dcp,Sid }->\mathrm{ Dcl
ext$decl : Id, Sid }->\mathrm{ Dcl

```
ext$decl : Id, Sid }->\mathrm{ Dcl
```


B.7.3.1 Operations of Private Types and Private Extensions

B.7.4 Deferred Constants

B.7.5 Limited Types
B.7.6 User-Defined Assignment and Finalization

B.7.6.1 Completion and Finalization

B. 8 Visibility Rules

B.8.1 Declarative Region

B.8.2 Scope of Declarations

B.8.3 Visibility
B.8.4 Use Clauses
use_clause ::=
use_package_clause
| use_type_clause
use_package_clause ::= use name $\{$, name $\}$;

$$
\text { use\$clause : } \quad \mathrm{Nam}^{*} \rightarrow \mathrm{Dcl}
$$

use_type_clause ::=
use type subtype_mark \{, subtype_mark \};

```
use_type$clause : Nam* }->\mathrm{ Dcl
```


B.8.5 Renaming Declarations

renaming_declaration $::=$
object_renaming_declaration
exception_renaming_declaration
package_renaming_declaration
subprogram_renaming_declaration
generic_renaming_declaration

B.8.5.1 Object Renaming Declarations

object_renaming_declaration ::= defining_identifier : subtype_mark renames name ;

$$
\text { object\$renaming : Id, Nam,Nam } \rightarrow \text { Dcl }
$$

B.8.5.2 Exception Renaming Declarations

```
exception_renaming_declaration ::=
    defining_identifier : exception renames name ;
```

$$
\text { exception\$renaming : } \quad I d, N a m \rightarrow D c l
$$

B.8.5.3 Package Renaming Declarations

```
package_renaming_declaration ::=
```

 package defining_program_unit_name renames name ;

B.8.5.4 Subprogram Renaming Declarations

subprogram_renaming_declaration ::=

 subprogram_specification renames name ;$$
\text { subp\$renaming : } \quad \text { Sps, Nam } \rightarrow \text { Dcl }
$$

B.8.5.5 Generic Renaming Declarations

```
generic_renaming_declaration ::=
```

 generic package defining_program_unit_name renames name ;
 | generic procedure defining_program_unit_name renames name ;
 | generic function defining_program_unit_name renames name ;

B.8.6 The Context of Overload Resolution

B. 9 Tasks and Synchronization

B.9.1 Task Units and Task Objects

task_type_declaration ::=
task type defining_identifier [known_discriminant_part] [is task definition] ;
single_task_declaration $::=$
task defining_identifier [is task definition] ;
task_definition ::=
\{ task_item \}
[private
\{task_item \}] end [identifier]

```
task_item ::=
    entry_declaration
    | representation_clause
task_body ::=
    task body defining_identifier is
    declarative_part
    begin
    handled_ sequence_of_statements
    end [ identifier ] ;
```


B.9.2 Task Execution - Task Activation

B.9.3 Task Dependence - Termination of Tasks

B.9.4 Protected Units and Protected Objects

```
protected_type_declaration \(::=\)
protected type defining_identifier [known_discriminant_part ] is protected_definition ;
single_protected_declaration ::=
protected defining_identifier is protected_definition ;
protected_definition ::=
\{protected_operation_declaration \}
[ private
\{protected_element_declaration\}]
end [identifier ]
protected_operation_declaration ::=
subprogram_declaration
entry_declaration
protected_element_declaration ::=
protected_operation_declaration
| component_declaration
protected_body ::=
protected body defining_identifier is
\{protected_operation_item\}
end [identifier]:
protected_operation_item ::=
subprogram_declaration
subprogram_body
entry_body
```


B.9.5 Intertask Communication

```
entry_declaration ::=
    entry defining_identifier [(discrete_subtype_definition )] parameter_profile ;
accept_statement ::=
    accept direct_name [ ( entry_index )] parameter_profile [ do
        handled_sequence_of_statements
    end [identifier ]] ;
entry_index ::=
    expression
entry_body ::=
    entry defining_identifier entry_body_formal_part entry_barrier is
    declarative_part
    begin
    handled_sequence_of_statements
    end [ identifier] ;
entry_body_formal_part ::=
    [( entry_index_specification )]parameter_profile
entry_barrier ::=
    when condition
entry_index_specification ::=
    for defining_identifier in discrete_subtype_definition
entry_call_statement ::=
    name [ actual_parameter_part ] ;
requeue_statement ::=
    requeue name [ with abort] ;
```


B.9.6 Delay Statements, Duration, and Time

delay_statement ::=
delay_until_statement
| delay_relative_statement
delay_until_statement $::=$
delay until expression ;

```
delay_relative_statement ::=
    delay expression ;
```


B.9.7 Select Statements

```
select_statement ::=
    selective_accept
    timed_entry_call
    conditional_entry_call
    asynchronous_select
```


B.9.8 Selective Accept

```
selective_accept ::=
    select
        [ guard ] select_alternative
    [ or
        [ guard] select_alternative ]
    [ else
            sequence_of_statements ]
    end select ;
```

guard ::=
when condition $=>$
select_alternative ::=
accept_alternative
| delay_alternative
terminate_alternative
accept_alternative ::=
accept_statement [sequence_of_statements]
delay_alternative ::=
delay_statement [sequence_of_statements]
terminate_alternative ::=
terminate ;

B.9.9 Timed Entry Calls

```
timed_entry_call ::=
    select
            entry_call_alternative
```

```
    or
            delay_alternative
    end select ;
entry_call_alternative ::=
    entry_call_statement [ sequence_of_statements ]
```


B.9.10 Conditional Entry Calls

```
conditional_entry_call ::=
```

conditional_entry_call ::=
select
select
entry_call_alternative
entry_call_alternative
else
else
sequence_of_statements
sequence_of_statements
end select ;

```
    end select ;
```


B.9.11 Asynchronous Transfer of Control

```
asynchronous_select ::=
```

asynchronous_select ::=
select
select
triggering_alternative
triggering_alternative
then abort
then abort
abortable_part
abortable_part
end select ;
end select ;
triggering_alternative ::=
triggering_alternative ::=
triggering_statement [sequence_of_statements]
triggering_statement [sequence_of_statements]
triggering_statement ::=
triggering_statement ::=
entry_call_statement
entry_call_statement
delay_statement
delay_statement
abortable_part ::=
abortable_part ::=
sequence_of_statements

```
    sequence_of_statements
```


B.9.12 Abort of a Task - Abort of a Sequence of Statements

```
abort_statement ::=
    abort name {, name};
```


B.9.13 Task and Entry Attributes

B.9.14 Shared Variables

B.9.15 Example of Tasking and Synchronization

B. 10 Program Structure and Compilation Issues

B.10.1 Separate Compilation

B.10.1.1 Compilation Units - Library Units
compilation ::=
\{compilation_unit $\}$
compilation_unit $::=$
context_clause library_item
| context_clause subunit
library_item ::=
[private] library_unit_declaration
| library_unit_body
library_unit_declaration ::=
subprogram_declaration
| package_declaration
generic_declaration
generic_instantiation
library_unit_renaming_declaration
library_unit_renaming_declaration ::=
package_renaming_declaration
| generic_renaming_declaration
| subprogram_renaming_declaration
library_unit_body ::=
subprogram_body
| package_body
parent_unit_name $::=$ name

$$
\begin{array}{ll}
\text { lib\$unit : } & \mathrm{Cit}^{*}, D c l \rightarrow \mathrm{cmu} \\
\text { private\$unit }: & \mathrm{Cit}^{*}, \mathrm{Dcl} \rightarrow \mathrm{cmu} \\
\text { sub\$unit : } & \mathrm{Cit}^{*}, N \mathrm{Nam}, \mathrm{Dcl} \rightarrow \mathrm{cmu}
\end{array}
$$

Renaming of library units is dealt with in static semantics.

```
B.10.1.2 Context Clauses - With Clauses
    context_clause ::=
    { context_item}
```

context_item ::=
with_clause
| use_clause
with_clause ::=
with name $\{$, name $\}$;

$$
\text { with\$context : } \quad \mathrm{Nam}^{*} \rightarrow \text { Cit }
$$

B.10.1.3 Subunits of Compilation Units

body_stub ::=
subprogram_body_stub
package_body_stub
task_body_stub
protected_body_stub
subprogram_body_stub ::= subprogram_specification is separate ;

$$
\text { s_subp\$spec }: \quad S p s \rightarrow D c l
$$

package_body_stub ::= package body defining_identifier is separate ;
task_body_stub ::= task body defining_identifier is separate ;
protected_body_stub ::= protected body defining_identifier is separate ;
subunit ::= separate (parent_unit_name) proper_body

B.10.1.4 The Compilation Process

B.10.1.5 Pragmas and Compilations

B.10.1.6 Environment-Level Visibility Rules

B.10.2 Program Execution

B.10.2.1 Elaboration Control

B. 11 Exceptions

B.11.1 Exception Declarations

exception_declaration $::=$
defining_identifier_list : exception ;

$$
\text { excpt } \$ \text { decl }: \quad I d \rightarrow D c l
$$

As with object declarations, only a single name is defined by each exception declaration.

B.11.2 Exception Handlers

handled_sequence_of_statements ::=
sequence_of_statements
[exception
exception_handler
\{exception_handler \}]

```
handled$statement : Stm, Xhd* }->\mathrm{ Stm
unhandled$statement : Stm }->\mathrm{ Stm
```

exception_handler ::=
when [choice_parameter_specification :] exception_choice $\{\mid$ exception_choice $\}=>$ sequence_of_statements

```
choice\$handler : Id, Ech \({ }^{*}\), Stm \(\rightarrow\) Xhd
expt\$handler : Ech \({ }^{*}, S t m \rightarrow\) Xhd
```

choice_parameter_specification $::=$ defining_identifier
exception_choice ::=
name
| others

$$
\begin{array}{ll}
\hline \text { named\$excpt : } & \text { Nam } \rightarrow E c h \\
\text { others\$excpt : } & \rightarrow \text { Ech }
\end{array}
$$

B.11.3 Raise Statements

```
raise_statement ::=
    raise [ name ] ;
```

$$
\begin{array}{ll}
\hline \text { raise } \$ \text { stm : } & \text { Nam } \rightarrow S t m \\
\text { reraise } \$ \text { stm }: & \rightarrow \text { Stm }
\end{array}
$$

B.11.4 Exception Handling

B.11.5 Suppressing Checks

B.11.6 Exceptions and Optimization

B. 12 Generic Units

B.12.1 Generic Declarations

generic_declaration ::=
generic_subprogram_declaration
| generic_package_declaration
generic_subprogram_declaration ::=
generic_formal_part subprogram_specification ;
generic_package_declaration ::=
generic__formal_part package_specification ;
generic_formal_part ::=
generic \{ generic_formal_parameter_declaration
| use_clause \}
generic_formal_parameter_declaration ::=
formal_object_declaration
| formal_type_declaration
| formal_subprogram_declaration
| formal_package_declaration

B.12.2 Generic Bodies

B.12.3 Generic Instantiation

generic_instantiation ::=
package defining_program_unit_name is new name [generic_actual_part] :
| procedure defining_program_unit_name is new name [generic_actual_part] :

```
    | function defining_designator is
        new name [ generic_actual_part ] ;
generic_actual_part ::=
    (generic_association {, generic_association } )
generic_association ::=
    [ selector_name => ] explicit_generic_actual_parameter
explicit_generic_actual_parameter ::=
    expression
    name
    subtype_mark
```


B.12.4 Formal Objects

formal_object_declaration ::=
defining_identifier_list : mode subtype_mark [:= default_expression] ;

$$
\begin{array}{ll}
\text { init_formal\$obj : } & I d^{*}, M d e, N a m, \operatorname{Exp} \rightarrow \text { Gpd } \\
\text { formal\$obj : } & I d^{*}, M d e, N a m \rightarrow G p d
\end{array}
$$

B.12.5 Formal Types

formal_type_declaration ::=
type defining_identifier [discriminant_part] is formal_type_definition ;
formal_type_definition ::=
formal_private_type_definition
| formal_derived_type_definition
| formal_discrete_type_definition
| formal_signed_integer_type_definition
| formal_modular_type_definition
formal_floating_point_definition
formal_ordinary_fixed_point_definition
formal_decimal_fixed_point_definition
formal_array_type_definition
formal_access_type_definition

B.12.5.1 Formal Private and Derived Types

formal_private_type_definition ::=
[[abstract] tagged] [limited] private

```
formal_derived_type_definition ::=
    [ abstract ] new subtype_mark [ with private ]
```


B.12.5.2 Formal Scalar Types

```
formal_discrete_type_definition ::=
    (<>)
formal_signed_integer_type_definition ::=
    range <>
formal_modular_type_definition ::=
    mod <>
formal_floating_point_definition ::=
    digits <>
formal_ordinary_fixed_point_definition ::=
    delta <>
formal_decimal_fixed_point_definition ::=
    digits <> delta <<>
```


B.12.5.3 Formal Array Types

```
formal_array_type_definition ::= array_type_definition
```


B.12.5.4 Formal Access Types

```
formal_access_type_definition ::= access_type_definition
```


B.12.6 Formal Subprograms

```
formal_subprogram_declaration ::= with subprogram_specification [ is subprogram_default ] ;
subprogram_default ::= default_name
| <>
default_name ::=
name
```


B.12.7 Formal Packages

formal_package_declaration $::=$
with package defining_identifier is new name formal_package_actual_part ;

```
formal_package_actual_part ::=
    (<>)
    | [generic_actual_part ]
```


B.12.8 Example of a Generic Package

B. 13 Representation Clauses and Implementation-Dependent Features

representation_clause $::=$
attribute_definition_clause
| enumeration_representation_clause
| record_representation_clause
at_clause
attribute_definition_clause $::=$
for direct_name ' attribute_designator use expression ;
| for direct_name ' attribute_designator use name;
enumeration_representation_clause ::=
for direct_name use enumeration_aggregate ;
enumeration_aggregate ::=
array_aggregate
record_representation_clause ::=
for direct_name use
record [mod_clause]
\{component_clause\}
end record ;
component_clause ::=
component_clause_component_name at position range first_bit .. last_bit ;
component_clause_component_name ::=
direct_name
| direct_name attribute_designator

```
position ::=
    expression
first_bit ::=
    simple_expression
last_bit ::=
    simple_expression
code_statement ::=
    qualified_expression ;
\[
\begin{array}{ll}
\text { agg_code\$stm : } & \text { Nam, Agg } \rightarrow \text { Stm } \\
\text { exp_code\$stm : } & \text { Nam, Exp } \rightarrow \text { Stm }
\end{array}
\]
restriction ::=
    identifier
    identifier => expression
delta_constraint ::=
    delta expression [ range_constraint ]
\[
\begin{array}{ll}
\text { constr_delta\$constr : } & \text { Exp,Cns } \rightarrow \text { Cns } \\
\text { delta } \$ \text { constr }: & \text { Exp } \rightarrow \text { Cns }
\end{array}
\]
constr_delta$constr : Exp,Cns }->\mathrm{ Cns
delta$constr : Exp }->\mathrm{ Cns
at_clause ::=
    for directed_name use at expression ;
mod_clause ::=
    at mod expression ;
```


B. 14 Ada 9X Input-Output

Index

$\vdash_{s t l}, 65$
$\vdash_{\text {agg }}, 71$
$\vdash_{c h c}, 76$
$\vdash_{\text {clt }}, 76$
$\vdash_{\text {cmp }}, 66$
$\vdash_{d c l}, 61-69,68,79$
$\vdash_{\text {elf }}, 75,76$
$\vdash_{\text {exp }}, 71-74$
$\vdash_{\text {nam }}, 68,70,79,81$
$\vdash_{p s i}, 62$
$\vdash_{\text {rng }}, 64$
$\vdash_{\text {sid }}, 62$
$\vdash_{s t m}, 75-78,81,82$
$\vdash_{t d f}, 63,65,66$
$\vdash_{\text {urn }}, 66$
$\vdash_{\text {attr }}, 83$
$\vdash_{\text {sid }_{i}}, 67$
Nh-NI, 83
Rng_Ist, 65
$\ldots, 65,66,69,71,74,76,77,79,81$
abnormal_state, 49, 51, 64, 69, 70, 74
access_type, 58
access_value, 54, 55
access_val, $54,68,74$
actualized_binding_list, 60,60
actualized_complist, 61
actualized_components, $61,61,71$
actualized_constraint, 60, 60, 60, 61
actualized_partial_range, 60, 60
actualized_range_list, 60, 60
actualized_value, 60, 60
actualized_variants, 61, 61
actualize, 57, 61, 61
adom, 56, 57, 79
all_access, 67
ancestor, $55,55,56,73$
append_components, 61
array_aggregate, 71
array_component, 50,69
array_slice, 50, 69
array_type, $56,59,65,69$
array_value, $55,55,56$
array_val, $50,55,56,59,69$
assign_fn, 62, 63, 75
base_range, 55, 55, 56
base, 83
belongs_to, $59,53,56,59,69,72,77$
bind_actuals, 80, 80, 81
choice_lst, 76, 77
choice_range, 76, 77
choice_value, 76, 77
cl_value, 57, 57, 57
class_type, 56
compatible, 62, 68
component_actions, 71, 71
component_type, 57, 57, 70
composite_value, 55
constant_access, 67
constrain, 69
convert_return_value, 80, 82, 82
covers_fn, 76
covers, 57, 77, 77, 77
default_value_fn, 62, 63
descendant, 55, 55
descriptor_value, 56, 56, 57, 60
discrete_range, 53
discrete_rng, 53-56, 60
discrete_value, 54
discrete_val, $53,54,56,60,64,70,72,76-78$, 83
discriminant_constraint, 59, 60, 71
discriminant_ref, 60
discriminant_union, 67, 67, 67
discriminant_value, $56,56,57$
discr, 56, 57, 67, 68, 71
elementary_value, $54,55,55$
enum_type, $55,56,58$
exception, $49,69,70,74,76,80,81$
exit, $49,76-78,80$
expression_list, $68,68,69$
fields, 57, 61, 66, 67
finalize_fn, 75
find_component, 71, 71, 71
first, 83
formal, 79
func_profile, 59, 67
func_return, 49, 80-82
given_parameter, 82, 82
high bound, 53, 83
in_mode, 79, 82
in_out_mode, 79, 82
included_in, $59,53,69$
incomplete_type, 68
index_actions, 65, 65
index_constraint, 59, 60, 65, 83
index_list, 69, 69
index_pairing, 54, 54
indices, 54, 54, 55
indirect_discriminant_constraint, 60
indirect_index_constraint, 60
is_access_to_object_type, 58, 58
is_access_to_subprogram_type, 58, 58, 59, 59
is_access_type, 57, 58, 58
is_array_type, $58,59,59$
is_boolean_type, 58
is_by_copy_type, 59, 59
is_by_reference_type, 59, 59
is_character_type, 58
is_composite_type, $57,58,58,58$
is_discrete_type, 58, 58, 58
is_elementary_type, 57, 57, 59
is_enumeration_type, 58,58
is_integer_type, 58,58
is_modular_integer_type, 58, 58, 58
is_protected_type, 58, 59, 59
is_real_type, 58,58
is_record_type, $58,59,59$
is_scalar_type, 57,58,58, 83
is_signed_integer_type, 58
is_string_type, 59, 59
is_tagged_type, $58,59,59,73$
is_task_type, 59, 59
last, 83
length, 83
location, 50, 62, 63, 70, 74
loop_id, 77, 78
loop_view, 77, 78
low_bound, 53, 83
make_range, $53,64,83$
make_state, 49, 50
modular_type, $55,56,58,64$
new_object_fn, 52, 62, 63, 74
new_object, 50, 51, 52, 63, 70
new_subprogram, 51, 51, 79
new_subtype, $51,51,61,62,68,83$
new_type_fn, 66, 67
new_type, 51, 51, 63-65, 67, 68
normal_state, $49,64,69,74$
normal, 49, 51, 52, 69, 70, 74, 76-78, 80-82
not_used, 63, 65, 66, 68
nulL_range, 59, 54, 54, 54, 69
object_view, 62, 63, 68-70, 74, 75, 83
operator, 81
out_mode, 79, 82
p_constraint, 62
p_discriminant_constraint, 60
p_index_constraint, 60
p_indirect_discriminant_constraint, 60
p indirect_index_constraint, 60
p_range_constraint, 60
p_subtype, 61
p_value, 60
parameter_action, 82, 82, 82, 82
parameter_list, 81, 82, 82
parameters, 79
pick, 52, 52
pooLaccess, 67
prefix_set_with_element, 54, 54
proc_exit, 80, 80, 80, 80
proc_profile, 59, 67
proc_return, 49, 80, 82
range_constraints, 65,65
range_constraint, 56, 59, 60, 65, 69
range_of subtype, 56, 56, 72, 83
ranges_of_subtypes, 56, 56
real_range, 53
real_rng, 53, 54
real_value, 54
real_val, 54,70
record_component, 50, 70
record_type, $57,59,66,67,71$
record_val, $50,55,57,59,70,71,73$
return_check, $80,80,81$
return_value, 81
run, 52, 53
satisfies, 59, 59, 60, 74
scalar_value, 54, 54, 54, 55
select_component_type, 57, 57, 57
set_of, 54, 56, 57
signed_integer_type, 55,56, 64
slice_check, 69, 69, 69
some, $57,59,61,63,64,66,67,73,79,81,82$
subprogram_body_fn, 53, 81
subprogram_body, $53,80,80,81,81$
subprogram_view, 79-81
subprogram, 79-81
subtype_value, 56, 57, 60, 60
subtype_view, $61,62,65,67,68,71-74,79,83$
subtype, $55,56,58,60-62,64-68,71,73,74$, 83
test_in, 72, 73, 79
the_parameter, 82, 82
the_store, 49-51
the_variant, 57, 61
then, 52
thunk, 79, 82
type_constraints, 65
type_struct, $55,55,56,58,59,69-71$
ultimate_ancestor, 55, 55, 55
unelaborated, 79, 81
universal_integer_tn, 63, 83
universal_integer_type, 56
universal_real_tn, 63
value_split_fn, 75
values_in_range, 54, 54
variant_values, 57,57
variant, 57,66
\vdash content $(-), 50$
$\vdash_{a t t}, 89$
-[- $\mapsto 1-], 50$
-[- $\left.\mapsto_{2}-\right], 50$
[- $\mapsto 3-], 50$
-[- $\left.\mapsto_{4}-\right], 50$
-[- $\left.\mapsto_{1}-\right], 50$
$-\left[-\mapsto_{2}\right], 50$
${ }^{\text {obj }}[-], 50$
$_^{s p g}[-], 50$
$-^{s t p}[-], 50$
${ }_{-}^{t y p}[-], 50$
〈〉, 68
[...], 51
$\{\ldots\}, 51$

| | 3. REPORT TYPE AND DATES COVERED Contractor Report |
| :---: | :---: |
| 4. IITLE ANO SUBTITLE
 Towards a Formal Semantics for Ada 9X | 5. FUNDING NUMBERS
 C NASL-18972 |
| 6. AUTHOR(S)
 David Guaspari, John McHugh, Wolfgang Polak, and Mark Saaltink | WU 505-64-10-56 |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Odyssey Research Associates
 301 Dates Drive
 Ithaca, NY 14850-1326 | 8. PERFORMING ORGANIZATION REPORT NUMBER ORA-TM-95-0044 |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 National Aeronautics and Space Administration Langley Research Center
 Hampton, VA 23681-0001 | 10. SPONSORING / MONITORING AGENCY REPORT NUMBER NASA CR-195037 |

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: C. Michael Holloway
Final Report - Task 11
12a. DISTRIBUTION/AVAILABILITY STATEMENT
12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 62
13. ABSTRACT (Maximum 200 words)

The Ada 9X Language Precision Team was formed during the revisions of Ada 83, with the goal of analyzing the proposed design, identifying problems, and suggesting improvements, through the use of machematical models.

This report defines a framework for formally describing Ada 9X, based on Kahn's "Natural Semantics", and applies the framework to portions of the language. The proposals for exceptions and optimization freedoms are also analyzed, using a different technique.

| 14. SUBJECT TERMS | | | 15. NUMBER OF PAGES 157 |
| :---: | :---: | :---: | :---: |
| Ada 95, formal semantics, natural semantics, optimization | | | $\begin{aligned} & \text { 16. PRICE CODE } \\ & \text { A08 } \end{aligned}$ |
| 17. SECURITY CLASSIFICATION OF REPORT
 Unclassified | 18. SECURITY CLASSIFICATION OF THIS PAGE
 Unclassified | 19. SECURITY CLASSIFICATION OF ABSTRACT | 20. LIMITATION OF ABSTRACT |

[^0]: ${ }^{1}$ The index entry for "effect" in [RM-83 Appendix I] is "[see: elaboration has no other effect]."

[^1]: Extensions to Ada 83

[^2]: ${ }^{2}$ This document may be obtained by anonymous ftp from ajpo.sei.cmu. edu in the directory public/rationale.

[^3]: ${ }^{3}$ Addition in a 2 's complement n bit machine produces a result that is either a mathematically correct integer result or the mathematically correct integer result minus 2^{n}. Consider a 2 bit, 2 's complement machine. Its value set is given as

 | i_{2} | i_{10} | | + | $00(0)$ | $01(1)$ | $10(-2)$ |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | | 00 | 0 | $11(-1)$ | | | |
 | | 1 | $00(0)$ | $00(0)$ | $01(1)$ | $10(-2)$ | $11(-1)$ |
 | 10 | -2 | | $01(1)$ | | | |
 | 11 | -1 | | $10(-2)$ | $10(-2)$ | $11(-1)$ | $11(-1)$ |
 | $00(0)$ | $00(0)$ | $01(1)$ | | | | |
 | | | $11(-1)$ | $11(-1)$ | $00(0)$ | $01(1)$ | $10(-2)$ |

 where the values in italics are not
 mathematically correct integer results but are both well-defined and have a valid integer representation.

[^4]: ${ }^{4}$ See the definitions of exceptional and normal paths below.

[^5]: "Assumed" is with respect to the operator definition. The implementation is required to "prove" that the assumption holds every time the operation is invoked. In the case of operations such as Machine_Mul and Machine_CMP all possible bit patterns represent valid values of Machine_Int eger and the entry condition is trivially satisfied.

[^6]: ${ }^{6}$ For most machines, we could specify exactly what this result is, i.e., how to compute it as a function of X and Y. It is not undefined in the sense that we know nothing about it.
 ${ }^{7}$ The first conjunct is redundant since it could be deduced from the other two.
 ${ }^{8}$ By a meaningful recovery, we mean undoing or overcoming the failed operation in such a way that computation can resume execution along the normal path, satisfying all the implicit and explicit assumptions of that path. In practice, this is extremely difficult unless the specification of the normal computation is extremely weak.

[^7]: ${ }^{9}$ In the implementation of a language using the "undefined" semantics, we note that there is, in general, no way to determine by inspection that a given bit string represents an "undefined" value. A two's complement machine

[^8]: ${ }^{10}$ If the expressions are sufficiently complex and the dependencies between them limited, it may be possible to interleave their evaluations. This would be permitted under the general freedoms noted in [11.6(3)]

