
NASA Contractor Report 195037

/ I .

p. 6S_(

Towards a Formal Semantics for Ada 9X

David Guaspari, John McHugh, Wolfgang Polak, and Mark Saaltink

Odyssey Research Associates, Inc., Ithaca, New York

(NASA-CR-195037) TOWARDS A FORMAL

SEMANTICS FOR Ad_ 9X Final Report

(Odyssey Research Associates)

£58 p

N95-24634

Uncl as

G3162 0047184

Contract NAS ! - i 8972

March 1995

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virigina 23681-000]

Contents

1

2

Introduction 1

Method of Description 3

2.1 External Effects and Nonterminating Programs 4

2.2 Semantic Simplifications 4

2.3 Static Checks and Overload Resolution 5

2.4 Environments, Entities, and Stores 6

2.5 Ordering ... 6

2.6 Types .. 7

2.7 Values .. 7

2.8 Objects ... 8

2.8.1 Actual Subtypes 8

2.8.2 Initialization 9

2.9 Aliasing ... 10

Semantic Domains

3.1

3.2

3.3

3.4

11

Basic Notations 11

Entities and the Environment 12

Thunks ... 13

Values .. 13

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

3.5 Types

3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

3.5.6

3.5.7

3.5.8

3.5.9

3.6 States

Ranges 14

Index Ranges 14

Tags ... 14

Bindings 15

Values .. 15

and Subtypes 15

Subtypes and Constraints 16

Partial Subtypes 17

Derived Types and Classes 18

Scalar Types 19

Array Types 29

Discriminants 29

Record Types 30

Tagged Types and Type Extensions 31

Access Types 31

.. 1

4 Judgements 32
4.1 Domains ... 32

4.1.1 Types .. 32
4.1.2 Values .. 35

4.1.3 Subtypes 36
4.1.4 Environments and Views 38

4.1.5 Memory Model 40
4.1.6 Other Predicates 41

4.2 Judgements ... 42
4.2.1 Declarations 42

4.2.2 Parameter lists 42

4.2.3 Type Definitions 43
4.2.4 Variant Parts 43

4.2.5 Discriminant Parts 43

4.2.6 Component Lists 43

4.2.7 Subtype Indications 43
4.2.8 Statements 44

4.2.9 Elsif Clauses 44

4.2.10 Case Alternatives 44

4.2.11 Discrete Choice Lists 45

4.2.12 Expressions 45
4.2.13 Names .. 45

4.2.14 Ranges 45

4.2.15 Record Aggregates 46

4.2.16 Array Aggregates 46
4.2.17 Attributes 46

4.3 Actions ... 46

4.4 State ... 49

4.4.1 Classification of States 49

4.4.2 Accessing the Store of a State 49

4.4.3 Reading and Writing the Store 50
4.4.4 The Content of a Location 50

4.5 Order of Execution 51

4.5.1 Sequential Execution 51
4.5.2 Arbitrary Order Execution 51

4.5.3 Executing Individual Actions 52
4.6 Values .. 53

4.6.1 Ranges 53

4.6.2 Index Ranges 54
4.6.3 Predicates of Values 54

4.7 Types .. 55

4.7.1 Type Descriptors 55

4.7.2 Ancestry Relation 55

4.7.3 Ranges of Scalar Types 55

4.7.4 Values of a Type 56
4.7.5 Record Fields 57

4.7.6 Classification of Types 57

4.8 Subtypes .. 59
4.8.1 Constraint Satisfaction 59

4.8.2 Values of a Subtype 60
4.8.3 Actualization 60

4.9 Declarations... 61
4.9.1 Declarations..................................... 61
4.9.2 TypesandSubtypes................................ 61
4.9.3 ObjectsandNamedNumbers........................... 62
4.9.4 DerivedTypesandClasses............................ 63
4.9.5 ScalarTypes 64
4.9.6 ArrayTypes 65
4.9.7 Discriminants.................................... 66
4.9.8 RecordTypes.................................... 66
4.9.9 TaggedTypesandTypeExtensions....................... 67
4.9.10AccessTypes.................................... 67

4.10Expressions... 68
4.10.1 Names .. 68

4.10.2 Literals 70

4.10.3 Aggregates 71

4.10.4 Operators and Expression Evaluation 72

4.10.5 Type Conversions 73

4.10.6 Qualified Expressions 74

4.10.7 Allocators 74

4.11 Statements ... 74

4.11.1 Statement Sequences 74

4.11.2 Assignment Statements 75

4.11.3 If Statements 75

4.11.4 Case Statements 76

4.11.5 Loop Statements "............................ 77

4.11.6 Block Statements 78

4.11.7 Exit Statements 78

4.12 Subprograms .. 79

4.12.1 Subprogram Declarations 79

4.12.2 Formal Parameter Modes 79

4.12.3 Subprogram Bodies 80

4.12.4 Subprogram Calls 81
4.12.5 Return Statements 82

4.13 Attributes .. 83

5 Exceptions and Optimization 84

5.1 Introduction ... 84

5.2 The Ada 9X revision of 11.6 84

5.2.1 [11.6(5)] 84

5.2.2 [11.6(7)] 93

5.3 Living with the "Canonical Semantics" 94

5.3.1 Restricting the execution set size 95

5.3.2 Discovering the execution 96
5.4 Observations on the Reference Manual 96

6 Conclusions 98

6.1 Implementation Freedoms 98

6.2 Notation and Tools 99

6.3 Bounded Errors 100

6.4 Structure of Models 100

iii

Bibliography 101

A Official comments submitted 102

B Intermediate Syntax

B.1 Syntactic Domains
B.I.1

B.1.2

B.1.3

B.1.4

B.1.5

B.1.6

B.1.7

B.1.8

B.1.9

104

104

Component Associations (Aca) 104

Aggregates (Agg) 104

Case Alternatives (Alt) 105

Choice Lists (Ccl) 105

Context Items (Cit) 105

Component Declarations (Cmp) 105

Compilation Units (Crop) 105

Conditions (Cad) 105

Constraints (Cns) 105

B.I.10

B.I.ll

B.l.12

B.l.13

B.l.14

B.l.15

B.l.16

B.l.17

B.l.18

B.l.19

B. 1.20

B.1.21

B.1.22

B.1.23

B.1.24

B.1.25

B.1.26

B. 1.27

B.1.28

B.1.29

B.1.30

Discriminant Associations (Dca) 105

Discrete Choices (Dch) 105

Declarations (Dcl) 106

Discriminant Parts (Dcp) 106

Discriminant Specifications (Dcs) 106

Exception Choices (Ech) 106

Else-If Clauses (E/f) 107

Expressions (Exp) 107

Modes (Mde) 107

Names (Nam) 107
Parameter Specifications (Pros) 108

Pragmas (Prg) 108
Parameter Associations (Pss) 108

Record Component Associations (Rca) 108

Ranges (Rag) 108
Subtype Indications (Sid) 108

Subprogram Specifications (Sps) 108

Statements (Stm) 108

Type Definitions (Tdf) 109

Variants (Vat) 110

Variant Parts (Vrp) 110

B.1.31 Exception Choices (Xhd)
B.2 Lexical Elements

B.3 Declarations and Types

B.4

B.3.1

B.3.2

B.3.3

B.3.4

B.3.5

B.3.6
B .3.7

B.3.8

B.3.9

B.3.10

B.3.11

Names

110

ll0

ll0

Declarations 110

Types and Subtypes 111

Objects and Named Numbers 112

Derived Types and Classes 113

Scalar Types 113

Array Types 115
Discriminants 116

Record Types 117

Tagged Types and Type Extensions 118
Access Types 119
Declarative Parts 119

and Expressions 120

iv

B.4.1

B.4.2

B.4.3

B.4.4

B.4.5

B.4.6

B.4.7

B .4.8

B .4.9

Names .. 120

Literals 122

Aggregates 122

Expressions 124

Operators and Expression Evaluation 125

Type Conversions 126

Qualified Expressions 126
Allocators 126

Static Expressions and Static Subtypes 127
B.5 Statements ... 127

B.5.1 Simple and Compound Statements - Sequences of Statements 127

B.5.2 Assignment Statement 128
B.5.3 If Statements 128

B.5.4 Case Statements 128

B.5.5 Loop Statements 129
B.5.6 Block Statements 129

B.5.7 Exit Statements 130

B.5.8 Goto Statements 130

B.6 Subprograms .. 130

B.6.1 Subprogram Declarations 130
B.6.2 Formal Parameter Modes 132

B.6.3 Subprogram Bodies 132

B.6.4 Subprogram Calls 132
B.6.5 Return Statements 133

B.6.6 Overloading of Operators 133

B.7 Packages ... 133

B.7.1 Package Specifications and Declarations 133

B.7.2 Package Bodies 133

B.7.3 Private Type and Private Extensions 133
B.7.4 Deferred Constants 134

B.7.5 Limited Types 134

B.7.6 User-Defined Assignment and Finalization 134

B.8 Visibility Rules 134

B.9

B.8.1

B.8.2

B.8.3

B.8.4

B.8.5
B.8.6

Tasks

B.9.1

B.9.2

B.9.3

B.9.4

B.9.5
B.9.6

B.9.7

B.9.8

B.9.9

B.9.10

B.9.11

Declarative Region 134

Scope of Declarations 134

Visibility 134
Use Clauses 134

Renaming Declarations 134
The Context of Overload Resolution 135

and Synchronization 135

Task Units and Task Objects 135
Task Execution - Task Activation 136

Task Dependence - Termination of Tasks 136

Protected Units and Protected Objects 136
Intertask Communication 137

Delay Statements, Duration, and Time 137
Select Statements 138

Selective Accept 138

Timed Entry Calls 138

Conditional Entry Calls 139

Asynchronous Transfer of Control 139

B.10

B.11

B.12

B.13

B.14

Index

B.9.12 Abort of a Task - Abort of a Sequence of Statements 139
B.9.13 Task and Entry Attributes 140
B.9.14 Shared Variables 140

B.9.15 Example of Tasking and Synchronization 140

Program Structure and Compilation Issues 140

B. 10.1 Separate Compilation 140
B.10.2 Program Execution 142

Exceptions ... 142

B. 11.1 Exception Declarations 142

B. 11.2 Exception Handlers 142
B. 11.3 Raise Statements 143

B.11.4 Exception Handling 143

B. 11.5 Suppressing Checks 143

B.11.6 Exceptions and Optimization 143
Generic Units .. 143
B.12.1 Generic Declarations 143

B.12.2 Generic Bodies 143

B.12.3 Generic Instantiation 143

B.12.4 Formal Objects 144

B.12.5 Formal Types 144

B.12.6 Formal Subprograms 145

B.12.7 Formal Packages 146

B.12.8 Example of a Generic Package 146

Representation Clauses and Implementation-Dependent Features 146
Ada 9X Input-Output 147

148

vi

Chapter 1

Introduction

The Ada 9X Language Precision Team (LPT) was formed in 1990 to study portions of the design of

Ada 9X from a mathematical perspective. The first LPT project studied small parts of the language

in isolation, formulating fairly simple models to explore the ramifications of the design. The idea
was to avoid spending time studying the conventional parts of the language (where, we felt, little

would be gained by the analysis) and to focus on the novel proposals such as the object-oriented

features, overload resolution, and exception mechanisms. The results of this first project appear in
two reports [9, 2].

The second LPT project had two separate goals. The first, similar in approach to the first

project, was to study the rules of allowed optimizations. The second goal was rather different.

Instead of defining many unrelated small models, and studying new features in depth, the plan was

to formulate a broad model to cover a large part. of the language. In this way, we hoped to find
problems arising from the interactions between different features.

The level of effort of the project was clearly insufficient to define a complete model of the language,

and our plan was not to make a complete model. Instead, we planned to define the framework for

such a model, and to fill in the details of the framework only in certain areas. Furthermore, the

framework was not intended to be complete; we did not expect to be able to describe concurrency or

distributed programming. We did, however, hope for the framework to cover most of the sequential
features.

Our expectation was not that the resulting incomplete model would necessarily be useful to

anyone (although we hope that it could be extended to form the basis for analysis tools). Instead,

we expected that the activity of making this model would allow us to influence the design of Ada

9X by identifying problems with specific language features or with the interactions between different

features, or by suggesting improvements in the ways that parts of the language are described. As

the design of Ada 9X was nearing completion when our project began, it was important to move

as quickly as possible. So, the model is quite sketchy in areas. Moreover, the formal definition

presented in this report omits several partial models that we built in the course of the project, as

we did not have the time to integrate them with the overall framework. None the less, these models

have played a useful role in helping us to understand and comment on various language features,
and to influence (however slightly) the design of Ada 9X.

This report is organized as follows. The method used for defining the model is described in

Chapter 2. A discussion of the model also appears there. The model itself appears in two parts. The

"domains" (sets describing the values assumed by different entities in the language) are described in

Chapter 3. The "judgements" describing possible executions of a program are described in Chapter 4.

Our study of the optimization freedoms described in [11.6] does not fit into the main framework; it
is described separately in Chapter 5. Conclusions are drawn in Chapter 6.

Two appendices give some additional information. Appendix A lists the official language corn-

mentsthatweresubmittedbytheLPT;mostoftheseapplyto Version4.0of the Draft Standard [3],

and several have resulted in changes that appear in Version 5.0 [4]. Appendix B describes the inter-

mediate syntax that results from overload resolution (and other static checks).
References to the Ada 83 Reference Manual [10] appear in the form [RM-83 c.s(p)], where c

is the chapter number, s the section number, and p the paragraph number, l_eferences to version

5.0 of the Annotated Draft Standard for Ada 9X [4] appear in the form [c.s(p)]; this standard as a
whole is often referred to as "the Reference Manual".

Chapter 2

Method of Description

Tile "broad semantic framework" is defined using Natural Semantics [5]. The general idea of natural

semantics is to define semantics as one or more relations between syntactic phrases and semantic

values. These relations are defined using axioms and rules of inference. As a trivial example, a

simple language of arithmetic expressions can be defined by the grammar

expression ::= numeral I <expression> "plus" <expression>

We can define the semantics of these expressions using a relation (between expressions and numbers)

of "evaluates to", which we will write as expression :_ value, and a relation (between numerals and
numbers) of "denotes", which we will write as numeral -* value.

Two rules suffice to define the semantics of expressions (although additional rules not shown here

are needed to define the "denotes" relation). The first covers the base case of numerals:

n--_v

n _ v
[n 6. numeral]

The second gives tile semantics of sums:

el=¢,vl e2=V. v2

el plus e2 ::_ vl + v2

The method is easily able to handle nondet.erminism, where a phrase can have many possible

results. If we extend the expression grammar above to include ranges, with the meaning that any
number in the range is allowed, we have the grammar

expression ::= numeral

[<expression> "plus" <expression>

I <expression> ".." <expression>

Only one additional semantic rule is needed:

el:::_vl e2::_v2

el..e2:::>v
[vl < v < v2]

Using these rules, we can deduce

(0..2) plus (10 ..20)_x

for anyx between 10 and 22 inclusive.

In practical applications of Natural Semantics, the judgements used are often more complex than

in this simple example. Usually, there is a certain amount of contextual information (such as the

definitions of functions or procedures); this is represented by an environment. Often a store is used
to record the values of variables. Furthermore, the evaluation of a phrase may have an effect on the

environment or store. So the judgements often have many components, and there are a number of
auxiliary domains of semantic values. We write most judgements in a standardized form

S,E bpt p =_ v,...,

where S is a store, E is an environment, p is a phrase, the subscript pt gives the kind of phrase

(e.g., whether p is a declaration, statement, expression, or name), v is a possible result of executing

(or evaluating or elaborating) p, and the "..." are any other results that the execution may have.
Usually, there is a final state that reflects any side-effects that the execution may have had.

We describe the domains of semantic values using the Z notation [8], which furnishes a standard
toolkit of notations for sets, functions, relations, and "freely constructed" sets.

The Natural Semantics definitions have been written in a machine-readable form in Prolog.

Judgements are represented directly as Prolog predicates, and semantic rules as Prolog rules. There

is a slight difficulty in transcribing uses of functions, but a simple translation to relations is possible.

The Prolog representation has two main advantages. Firstly, we were able to apply a type-checking

package developed by Reddy and Lakshman [7] to the definition; this found a number of simple errors

in the rules. Secondly, we are able to run the Prolog and determine what outcomes are predicted

by the semantic definition. This allows the semantics definition to be tested on small examples.
Several aspects of Ada 9X are tricky to define properly. In the remainder of this chapter, some of

the awkward parts of the language and some of the more intricate aspects of the Natural Semantics

definition will be explained. Not everything described below has been implemented in the Natural

Semantics; some of the discussion describes our plan for dealing with a feature even though we did
not have time to include that feature in the semantics definitions.

2.1 External Effects and Nonterminating Programs

Ultimately, the meaning of an Ada program is defined in terms of its sequence of "external effects",

as described in [1.1.3(8)]. We can readily define several types of external effects, such as operations

on files using the standard I/O packages, propagation of an exception, or return from the main
program. Other effects are not covered.

An outside observer can see these external effects during the execution of a program, and does

not need to wait until (and if) the program terminates. Therefore, we use a small trick to allow

the semantics to assert that a certain sequence of external effects can be viewed whether or not the
program terminates. We use a special incomplete condition that is treated like an exception that

cannot be handled. For any operation having an external effect, one possible result is to "raise" this

condition. The semantic definition then propagates this condition out of the main call. Thus, we

are able to infer judgements of the form

Library F program_name _ e,

where e is a sequence of external effects, for every sequence e that might be observed during a run

of the program.

2.2 Semantic Simplifications

Some language features appear to be very difficult to incorporate into this model. For these features,

we have introduced a notion of an unpredicted result. When our definition allows the deduction that

unpredicted is a possible result of an execution, it means that the particular program includes a

language feature, or encounters a situation, that we decided not to account for in our model. This

is similar to erroneous executions, where the language standard does not predict the results of a

program.
For example, Section [11.6] of the Ada 9X Reference Manuals allows implementations to produce

results at variance with the language rules described elsewhere in the manual (in situations where

a language-defined check would fail if those rules were followed). The freedoms allowed by Section

[11.6] appear to be very difficult to incorporate into the model defined here. Therefore, we have kept
the model simple by treating the failure of a language-defined check as an unpvedicted execution.

There are some rules new to Ada 9X that constrain the result of an execution that Ada 83

classes as erroneous. These bounded error situations can be difficult to model. For example, reading

the value of an uninitialized scalar variable is erroneous in Ada 83. In Ada 9X, it is a bounded

error, which can result in an exception or an implementation-defined result. Version 4.0 of the

proposed Standard introduced the concept of invalid values to describe these results. Unfortunately,
the introduction of invalid values complicates the semantics of the language considerably, as it

is necessary to provide rules'for computing with these values. The draft standard does not always

provide the complete details of these rules. For example, what is the result of a comparison involving
invalid values? Are the ordering operators transitive, even when applied to invalid values? We

decided to keep our model simple, and to avoid these questions, by refusing to predict the outcome

of a program that reads an uninitialized scalar variable. Version 5.0 of the Standard has changed the

description of this situation, but once again the exact rules are vague. Therefore, we are continuing

to use the simple model that refuses to predict the outcome of a program in these situations.

2.3 Static Checks and Overload Resolution

It is conventional to process Ada in two (or more) steps; the first step checking syntax, applying all

of the "legality" checks, and resolving any overloading. We planned to define the semantic model in

a similar way, with two distinct definitions. The first static semantics takes Ada source text, and

produces a program in intermediate syntax. The intermediate syntax differs from Ada source text

in several significant ways:

Intermediate syntax is in the form of a tree, rather than a linear string of characters. Therefore

intermediate syntax does not need to be parsed.

Overloading has been resolved. Identifiers, characters, and operator names have been replaced

by intermediate identifiers (in the set Id) in such a way that no two distinct declarations declare

the same intermediate identifier. Any use of an identifier, character literal, or operator name

has been replaced by a use of the appropriate element of Id. (Some names using selection, e.g.,

package components, are also replaced by intermediate identifiers.)

Many of the notational conveniences of Ada have been eliminated. For example, infix operators

are replaced by function calls.

Generics are eliminated. Generic instantiations are expanded to a sequence of declarations.

• Some additional information is included. For example, a completing declaration is explicitly

marked as such.

The intermediate syntax is described in Appendix B.

We have not formally defined the static analysis, although we believe that a Natural Semantics

formulation of the static rules is possible.

2.4 Environments, Entities, and Stores

The Natural Semantics definition is faithful to the Reference Manual in its treatment of entities.

We use several different sorts of "entity locations", which serve as unique names or references for

entities. When a declaration is elaborated, new names are generated for any of the entities that
need to be "created", and the environment is updated to reflect the association of the declared Id

with a view of one of these entities. The store is a collection of mappings indexed by these different

entity locations, which associates a value or meaning with each entity.

This indirect representation, using references to entity locations rather than the meanings of
entities, makes it fairly easy to handle situations where an entity has a declaration that is separate

from its definition. Between the declaration and definition, any references to the entity cannot make

use of the definition (because it is not yet known). The location associated with the entity is known,
and can be used.

2.5 Ordering

The Ada Standard gives implementations considerable freedom to select the order in which actions
are performed. For example, in evaluating a sum, either the left or the right operand might be

evaluated first. It is easy to write a program that gives different results depending on which order
is chosen.

In order to write a concise description of the possible effects of the evaluation of constructs

allowing a choice of orders, we define a set of actions, and several ways of combining actions. One

combination, written by enclosing the actions in braces, allows the actions to be carried out in an

arbitrary order; another, written by enclosing the actions in square brackets, requires the actions to

be carried out in strict sequential order.

Actions are similar to judgements, except that the states do not appear explicitly. When actions
are executed in some order, suitable states are added and the corresponding judgement is used. We

write the actions in a notation that makes obvious the judgement for the corresponding execution.

For example, corresponding to the judgement $1, E _-_t,, Stm _ $2 is an action written as 'E t-_t,_

Stm =:_'; corresponding to the judgement $1, E _-_p Exp _ V, $2 is an action written as 'E I--_p
Exp =:, V'.

We also use states, which are combinations of stores and control flow information (for example,

whether an exception has been raised, whether a return command has been executed, whether

execution is normal.) The rules defining the execution of a combined action check the control flow
information to skip some actions if that is appropriate. For example, in executing "a followed by

b', if the execution of "a" propagates an exception, the action "b" is not executed.

One advantage to this approach is that the actions themselves look simpler than the correspond-

ing judgements, because the flow of control through them is described by the way they are combined.

For example, in defining the possible results of a sum using explicit ordering, we would need several

judgements, including

s, E I-exp el =_ vl, sl

sl, E _-e_p e2 ==_v2, s2

s, E I-ez p el + e2 :=_ vl + v2, s2

and

s, E t-e_p e2 ==_v2, sl

sl, E I-_xp el =V vl,s2

s, E J-e_v el + e2 :=_ vl + v2, s2

and others to account for exceptions. Instead, using actions, we can write

'E f-e_pel =V vl' }$1 F- 'E t-e_p e2 =v v2' $2

S1,EF-ezp el + e2=:, vl+ v2,$2

which accounts for the different possible orders of evaluation and for the propagation of an exception

from one of those evaluations. (We still need something extra to account for an overflow in the

addition.)

2.6 Types

It is awkward to define a domain of "typevalues" that describe types, because the exact character-

istics of a type can change through its scope. For example, a type may be limited in some parts

of its scope, and nonlimited in other parts (such as the body of a package defining the type of a

component); a type can be private in some places and not in others. Furthermore, an incompletely

defined type can be used in various ways (such as a record component or designated type of an

access type); the characteristics of the using type can change after the incompletely defined type's
full definition.

In order to simplify the treatment of these situations, types are described by descriptors that

refer to other types by their locations (see Section 2.4), rather than by their descriptors. This has

the disadvantage that descriptors are not meaningful in isolation, but only with respect to the store

that associates descriptors with type locations. However, it has several advantages:

• it gives a simple characterization of when types are the same; each type location represents a

distinct type;

• when the characteristics of a type of a component change, that change can be reflected in just

one descriptor; and

• circularities in type descriptors are easily handled (without needing any tricky domains allowing

for infinite data structures).

An example illustrating these advantages is

type A;

type B is access A;

type A is access B;

2.7 Values

We expected it to be easy to describe the domain of values that objects might assume. It was

surprising that this was not so. As mentioned above, the addition of invalid values to scalar types
adds several complications, as the nature of such values is not completely specified. The latest

version (5.0) of the proposed Standard no longer uses the term "invalid value"; instead, a variable

may have an "invalid representation" [13.9.1].

We also argued whether "abnormal" values would be needed in order to model the concept of
abnormal objects. We were able to avoid this, since the circumstances that can lead to abnormal

objects are being treated as unpredictable executions.
There are a few situations where it is difficult, to determine the set of values associated with a

type. For example, given the declaration

subtype Void is Integer range 1 .. O; -- an empty range

type R is record

v: Void

end R;

There are no valuesof subtype Void. However, there are valuesoftype R. For example, a variable

of type R can be declared, and it is not an error to "read" the value of such a variable, or to assign

this value to a second variable of type R.

The problems with this type are related to those for uninitialized scalar variables, and we adopt a

simple approach to solve them. We use a special indicator to denote an uninitialized scalar value. A
scalar subcomponent of an object can have this value. If this "uninitialized" value is read, execution

is unpredicted.
The set of values of an enumeration type is not obvious. Given the declarations

type E is (red, green);

for E use (red => I; green => 100);

version 4.0 of the Draft Standard suggested that there were two "valid values" of type E, and (at

least) 98 "invMid values" between them. The number of elements in an array indexed by E, then, is
open to question. Are there elements corresponding to the invalid members of the base range?

Types declared with per-object constraints do not have obvious sets of values (since the constraint

applied to a subcomponent might depend on the specific object of the type). Our model simply does

not cover the kinds of per-object constraints that lead to this difficulty.
Our model for values uses integers to represent discrete values (even if the value is of an enu-

meration type). This means that the values of different types are not necessarily different. It would

certainly be possible to mark values in such a way that no value belongs to more than one type,
but there seems to be no benefit to doing so. An Ada program cannot directly compare values of

different types, so there is no way for this detail to influence the outcome of a program.

2.8 Objects

It is normal in semantic definitions to use location semantics for variables, but different approaches

can be used in accounting for structured (composite) variables and their components.
The approach that seems most convenient for us is to associate locations with entire variables

(that is, variables that are not subcomponents of other variables). Every object is characterized by
its location and a selector indicating which component of the entire variable it is.

2.8.1 Actual Subtypes

The actual subtype of an object is sometimes different from the nominal subtype in its declaration.

This is an issue for assignments [5.2(11)] and formal parameters of mode in out or out that are

passed by copy [6.4.1(17)]. So it is important only for variables.
The actual subtype of a variable differs from its nominal subtype in the following circumstances:

• the object is a declared object, and is constant, aliased, or has an indefinite nominal subtype

[3.3.1(9)].

• the object is a formal parameter. [6.4.1(16)] states

A formal parameter of mode in out or out with discriminants is constrained if either

its nominal subtype or the actual parameter is constrained.

[6.4.1 (12-15) gives additional rules for out parameters.

* the object is a generic [brma[object of mode ill out. [12.4(8)] states thai, the nominal subtype

is {,akcH ['roJ.l tlw declaration of the formal, while the actual subtype is taken from the actual.

• ill(" o])jcct is declared I)y an allocator, and the designated type of the result subtype of tile

allocator is ind(,finite or has discriminauts ([3.3(23) and [3.10(9)]).

• t,h,, o]>jcct is a vi(,w oF a,m(,hcr object, and Lh(' s.i)type of the view is indefinite [3.3(23)].

This]('ads to the ql,t_stio, of how I.]., ;tctua] subtype of an object is determined, and where,

if m,c(h.d, tlw actual subtype informatio, is stored. Tl,erc are two reasonable choices: the actual

subi,ypc migi)t bc associat_d with tt, e o])j(_ct, or with each view of the object. However, two views

o[' a. ob.iect need .or haw, I,he same type. Obviously, in s.ch a case the actual subtypes must be

dill;'rc,nt. Moreover. i,. a i)roce(lure call, tim actual sul)tyl)c of the view denoted by the formal can

I)_, (li|FereJlt fr(ml tl.' actual subtype of I.I,e a('l.L,al I)aramel, er, even when the views have the same

l,ypc. I.'or cxaJJqdc, I.h_' acl, ual might I)e ol" a. unconstrain_'d discriminated type and the formal

('_).sI, rain.'(I. 'l'hcrefo,'c, wc have (h'cided to st,ore tl., actual subtype as part of ew'.ry view of an

ol).i('('l,.

2.8.2 Initialization

The talc,let|on of tit(' iluplicit initial vah.(' for a. ol_ject is dilficult to describe, as there is consid-

('rahlc fn'c('dotlJ i. tl,(. order of evaluation oF (h'l'a.lt expressions used to initialize subcomponents.

It, is particularly awkward for sul,conipoueuts with discrimiuants; discriminants must be evaluated

I)_'lbr(" ;uly s.I)<'oilq)oucnt I,hat del)ends ou them, bl,t other subcomponents may have their initial

v;du<'s evaluated hc('orc then. So, giv(,u I.he declaral.ious

type T(a: D := e0, b: D := el) is record

u: Integer := e2;

v: U(a) := e3;

w: U(b) := e4;

x: S(a,b) := e5;

end record;

y: T;

_.%(.iiiiis[. ('valuate eO I)cl'orc e3 and eS, and el I_el'orc e4 arid e5. The order of evaluation is otherwise

I.u.'_'striclcd (uuh'ss ,'('l'cr('nccs |.o a or b occur i,i e2, e3, or e4.)

I. or&'r to a('comlllodatc this ih'xil)ilily, wc t,sc a variatiou on ihe "in some order" rules described

i. Sc('tio. 2.5. W(' add an athtitio.lal dal.unl Io I1.' h'fl. and righl of the turnstile; this datum records

which discri,i)inaid,s have had their i.dlJalizing _'xl_r_'ssions evaluated (aud what the resulting value

is). The individual actions record their i)rercquisilcs (that is, which (liscriminauts must be [.valuated

I)¢,lb,'t, tl,e a('l,ion can I)e cxccul.c(t).

I. the record of evahml,ed discrimiuauts, wc tam,of simply use the uame of the discrimilmnt,

;_S Ir_V() st'l)cotUl)O]mUts n_ight have l,he san." tyl)c, and thus have discriminants of the same name.

lustcad, for each discrimiuaut subcompom'ut to I)c cvaluated we generate a unique identifier. A "dis-

('rilJd.a,_t cuvironuleut", associating dis('riudnaut identifiers with discri.ninant names, is therefore

;,is,) us_'d in tl.' .iudge,,.',,t,s lot iuitializatiotl.

A,l()thcr dillic.lty in describing the initialization (W'objects concerns per-object couslrai_tts. Ada 9X

nilows I,h(' ilalllC t)f a l yl)(' to be used i. its ow,i (h'linition. in which cas(. it, sta.ds for the "current

inslau('c" of the I,yl)('. 'l'hus, a ('onstraint ¢)u a ('Olll]_Oll('lll, ('|Ill I'('fer to the containing object. De-

s_'ril)ing; Ibis fornlally can Iw <lilli('ult: lht' ob.ic('t Itdglh(not exist until its subtype can be determined

(which iuvolvcs clal)oratiJtg i)(,r-ol)j(,ct ('(mst,rainLs), yvl ll.' ctabora/io]l of a per-ol)ject co]_straiut

.av r'f('r Io i hc ol).ic('l,. W,' dcci(l('d not io co)tsi(h'r i)er-ol).jc(-|, constraints that refi'r to the "current

il_s(an('_," (I).t w[" allow i hcut to refer to dis('rimi,_ants).

2.9 Aliasing

Some rules concerning aliasing look difficult to model. [6.2(12)] states

If one name denotes a part of a formal parameter, and a second name denotes a part

of a distinct formal parameter or an object that is not a formal parameter, then the

two names are considered disLincl access paths. If an object is of a type for which the

parameter passing mechanism is not specified, then it is a bounded error to assign to the

object via one access path, and then read the value of the object via a distinct access path

while the first access path still exists. The possible consequences are that Program_Error
is raised, or the newly assigned value is read, or some old value of the object is read.

If we are to allow for accurate predictions of the effects of procedure calls (or to refuse to predict

the outcome of cMls that might involve aliasing), we need to be able to recognize, at a minimum,

when the above rule might apply. It is not enough just to say that parameters of certain types may

be passed by copy or by reference at the whim of an implementation, because the above paragraph

allows for results that might not be produced under either of the two passing mechanisms. We might

refuse to predict the result of any call with aliasing, but that can be hard to recognize if access values

are used. Unfortunately, the notion of "access paths" is not well defined by the Reference Manual,
and the precise meaning of the aliasing rule is unclear.

We have submitted several official comments on the aliasing rules, and had some discussions

with the Mapping Team on possible interpretations of these rules. One model that may work can

be sketched as follows: we would define a function access_path on names, which gives an element

of optional Id. This "access path" gives the Id associated with the declaration of some variable

denoting the object denoted by the name. This might be the declaration that created the object, or

might be the name of a formal parameter. If the object was dynamically created, the access path is
null.

In most cases, the definition of access_path is simple, e.g.,

access_path(Id) = some(M) if Id is not declared by a renaming declaration

access_pa$h(Nam.Id) = access_path(Nam)

access_path(Nam(exp, . . .)) = access_path(Nam)
access_path(Nam.all = none

For Ids declared by renaming declarations, we would want to use the access path of the renamed
object.

In order to state the rule of 6.2(12), we would associate a "last update path" with every object

(including subobjects). Whenever an object is updated by an assignment, the access path of the
name used in the assignment statement is recorded in the object (and every subobject and containing

object). In addition, formal parameter objects are updated in a call with the formal parameter Id

as the last update path, and after a call, any in out or out parameter objects are updated by

the access paths of the corresponding actual parameter names. It would be a bounded error to

evaluate a name denoting all or part of a formal parameter for which the parameter passing mode is

unspecified, if the access path differs from the last update path of the object it denotes. Similarly,
it. would be a bounded error to evaluate a name if the last update path of the object it denotes is a

formal parameter for which the parameter passing mode is not specified.

These rules account for most of the situations described by 6.2(12), but probably need refinement

to deal properly with access values created by Access attributes.

10

Chapter 3

Semantic Domains

In this chapter, we define the domains of values used in the semantics. These sets describe the values

assumed by the various entities of Ada 9X.

These definitions have been used as the basis for the Prolog representation of the Natural Se-
mantics definitions presented in Chapter 4. However, some of the definitions defined here have not

yet been incorporated into the Natural Semantics definition, and some small inconsistencies between

the two definitions have not yet been eliminated.

3.1 Basic Notations

In this section, we define some basic notions that will be used in the model.

An association provides a finite function with all enumeration of its domain. It is convenient to

represent such a function by enumerating (domain, range) pairs; the finite function is then the range
of the sequence.

X _ Y=={ s:seqX x YlransEX-_ YA#rans=#s }

Functions adorn and aran give the domain and range of an association. Function _. _ is used to

apply an association to an argument (as though it were a finite function).

= IX, Y]
adorn_:(X a__y)___pX

aran_:(X _ Y)--_PY

_ _:(X-2. Y) xX-_Y

V a : X -_ Y • adorn a = dorri(ran a)

V a : X 2* y. aran a = ran(ran a)

(A, z) E dom_.__ z E adorn A

z E adorn A :v A . z = (ran a) z

We sometimes use optional values:

optional X ::= none I sorne((X}}

Function maximal returns the set of maximal values of an arbitrary relation, where a maximal

value of the relation R : X _-* X is defined as an element z of X such that no y _ z satisfies zRy.

11

ix]

maximal : (X _ X) --* P X

mazimal(R) = X \ dom(R \ idX)

Function restrict restricts both the domain and the range of a relation to some given set.

=ix]
restrict: (e X × (x _ x)) -_ (x _ x)

restrict(S, R) = (S x S) 0 R

Equivalently,

restrict(S, R) = (S ,_ R) _, S

3.2 Entities and the Environment

After overload resolution, every occurrence of an identifier in an Ada program can be replaced by

an Id, so that each Id has at most one declaration in the program.
The elaboration of a declaration creates an entity, and the Id of the declaration then denotes a

view of this entity. A declaration might be elaborated many times (e.g., if it appears in a subprogram

body), denoting a different entity each time.

Environment == Id -+* View

A view identifies an entity and provides some characteristics that affect the use of the entity.

For example, there can be several views of the same subprogram, each having different parameter
names and default expressions. Views refer to entities by using locations of various types.

[Type_location, Su btype_location, Object__location, Subprogram_location]

There are no views associated with packages or generic declarations. Packages are significant

in their provision of information hiding and modularization, but those aspects concern the static

semantics, not the dynamic semantics. Generic declarations are expanded by the static semantics,

so that only ordinary (non-generic) declarations appear in the intermediate syntax.
Exceptions are unusual entities. No matter how often an exception declaration is elaborated, the

same exception is denoted. This exception is represented by an Exeeption_Id that is determined

by the static semantics. (The Exception_Id could be chosen to be the Id of the declaration, for

example).

View ::= object_view{{ Object_location x Subtype})

I subtype_view((Subtype-location))
I subprogram_view{{Subprogrant-location x Profile}}

l ezception((Exception-ld))

I constant((Value}}

Most kinds of entity are held in a store. Assigning a location to refer to the entity, and placing

an entity at that location in the store, corresponds to what the Reference Manual calls "creating"

the entity. This activity happens when a declaration is elaborated.
Several kinds of entities are used in the semantics definition:

• objects, which have values;

12

• subtypes,withtheirassociatedtype,constraint,andattributes;

• types, with descriptors and optional parents;

• subprograms, with formals and bodies; and

• operations (representing the "predefined operations" of the Reference Manual).

__ Store

types : Type_location-+* Type

suMypes : SuMype_locaiion -+. Subtype

objects : Object_location-+* Value

subprograms : Subprogram._location-+* SubprogramOrOp

SubprogramOrOp ::= subprogram((Environment x (seqld) x Dcl x Stm))

I operationl(...))

The different sorts of entities are described in the following sections.

Evaluation is defined in terms of a state, which (usually) includes a store, as well as certain
control information. States are defined below in Section 3.6. Function the_store, giving the store

associated with a state, is used in some of the definitions below.

3.3 Thunks

In several situations it is necessary to record an expression together with the environment in which it
appears, so that the expression can be evaluated in some other context. The environment is retained

so that any Ids appearing in the expression have their correct denotation. We call this combination

of an expression and an environment a thunk.

Thank == Exp x Environment

Thunks appear in record type descriptors (where they describe the initializing values of any

explicitly initialized components), and in parameter lists (where they describe any default values for
parameters).

3.4 Values

There are several kinds of values of interest:

• discrete values (represented by integers)

• real values (represented by rationals)

• access values (represented by views of objects or of subprograms)

• record values (represented by partial functions)

• array values (represented by partial functions)

It is possible to use a model where the values of each type are distinct; however, the benefit of

doing so is not completely clear. The rules of the language do not allow for comparisons of values
of different types, so there is no way of telling whether these sets are disjoint.

13

3.4.1 Ranges

Ranges have two bounds, and determine a set of values of a scalar type.

Range ::= discrete_range((Z x l)l [real_range((Rational x Rational))

Discrete_range == ran discrete_range

Real_range == ran real_range

(The definition of the bounds functions contains a forward reference to functions discrete_value

and real_value, defined in Section 3.4.5.)

low_bound, high_bound : Range _ Value

low_bound(discrete_range(l, h)) = discrete_value(l)

high_bound(discrete_range(l, h)) = discrete_value(h)

low_bound(real_range(i, h)) = real_value(I)

high_bound(real_range(l, h)) = real_value(h)

make_range : Value x Value --_ Range

make_range(discrete_value(v), discrete_value(v')) = discrete_range(v, v')

make_range(real_value(v), real_value(v')) = real_range(v, v')

_ belongs_to _ : Value _ Range

values_of_range : Range _ P Value

_ is_included_in _ : Range _ Range

v belongs_to R ¢_ v E values_of_range(R)

values_of _range(discrete_range(I, h)) = discrete_value(]l . . h D

values_of _range(real_range(I, h)) = real_valuet]l . . h D

R is_included_in R _¢:_ values_of_range(R) C_values_of_range(R _)

3.4.2 Index Ranges

Arrays are indexed by sequences of discrete values. Index ranges are determined by a sequence of

discrete ranges.

Array_bounds == seql (Discrete_range)

Each sequence of bounds determines a set of indices:

indices : Array_bounds ---* P(seql Value)

V B: Array_bounds • indices(B) = { s E seql Value I

_s = #B A Vn E doms- s(n) belongs_to B(i) }

3.4.3 Tags

We use a set of tags. The precise nature of this set is immaterial.

[Tag]

14

3.4.4 Bindings

Bindings are simply partial mappings from Iris to values. Most often these Iris are the names of
record fields or discriminants.

Binding == 1(t --_ Value

3.4.5 Values

Although it seems redundant, we include the bounds as part of an array value. This is because two

arrays with no components (thus, with the same mapping function) can have different bounds.

Record values are furnished with optional tags, discriminants, and other components. This allows

tile descriptions of the various language rules concerning tagged records, discriminated records, and
normal records to be combined.

A special value, uninitialized_value, is used for uninitialized scalar objects. This is used to detect

when such an object is read (in which case the result of the execution is unpredicted).

Value ::= uninitialized_value

I discrete-value((Z))

[real_value((Float))

I access_valuel(optional View x optional SubprogramLabel))

I record_value(((optional Tag) x Binding x Binding))

I array_value(({ B: Array_bounds, v : (seq Value) --_ Value [dom v = indices(B) }))

We can define various sets of values referred to in the language rules:

Discrete_value == ran discrete_value

Real_value == ran real_value

Access_value == ran access_value

Scalar_value == Discrete_values U Real_values

Elementary_value == Scalar_values U Access_values

Composite_value == ran record_value U ran array_value

3.5 Types and Subtypes

Every type has an associated type descriptor giving the characteristics of the type (and possibly

referring to other types via their type locations).

The descriptors are defined here, but described in the sections that follow.

Type_Descriptor ::= enumeration_dsc((N1))

signed_integer_dsc((Z x Z x Z x Z))
modular_integer_dsc((N1))

universal_integer_dsc((Z x Z)}

float_dsc((N1 x Rational x Rational x Float_Implementation))

... (something for fixed-point types)

array_dsc(((seql Subtype) x Subtype))

record_dsc(((optional Tag) x Discriminant_descriptor x Component_list_descriptor))
class_dsc((Type_location))

access_dsc((Subtype_location x Access_Mode))

15

A typeis thenacombinationof anoptionalparent(in casethetypewasderived)plusadescrip-
tor.

Type ::= (optional Type_location) x Type_Descriptor

For each kind of type in Ads 9X, we define a type descriptor. Additionally, for each descriptor

we define the set of values of the type:

I descriptor_values: Type_Descriptor x State-+* P1 Value

Function type_values gives the set of values associated with a type location given a state:

type_values : Type_location x State ---* P Value

V l : Type_location; S : State • type_values(l, S) =

descriptor_values(snd(the_store(S).types(u)), S)

Note that these sets of values might change over time as the information about a type is updated.

3.5.1 Subtypes and Constraints

A subtype is a combination of a type, a constraint, and certain attributes [3.2(8)]. There are in fact

two sorts of subtypes; we will call them "partial" subtypes and "true" subtypes. Partial subtypes can

contain unevaluated per-object constraints, for example, references to discriminants. These partial

subtypes appear as the subtypes of components of a record with discriminants. When an object of a

subtype is created, some of these per-object constraints are elaborated and the true subtype of the

object and its components is determined.

There are several cases where a partial subtype cannot be elaborated: in a variant record, per-

object constraints in initially unused components are not elaborated; in an initialized object, none

of the per-object constraints are elaborated. The Reference Manual is not completely clear on this

point, and for now we will only consider per-object constraints that are references to discriminants.

Partial subtypes appear only as the subtypes of components of types with discriminants; named

subtypes, and the subtypes of objects, will always be "true" subtypes.

The Reference Manual identifies three kinds of constraints: range constraints, index constraints,

and discriminant constraints. In fact, the last two can also be applied indirectly, to an access

type having a designated subtype to which the constraint would apply directly. (Only one level of

indirection is allowed; given

type AI is access String;

type A2 is access AI;

an index constraint can be applied to A1, but not to A2.) We may find it useful to distinguish these

indirect constraints from their direct counterparts.

Constraint ::= no_constraint

I range_constraint((Range))

I index_constraintllseql Discrete_range))

[discriminant_constraint ((Binding))
I indirect_index_constraintllseql Discrete_range))

I indirect_discriminant_constraint ((Binding))

Some values satisfy a constraint:

16

_ satisfies _ : Value _ Constraint

V v : Value • v satisfies no_constraint

V v : Value • v satisfies range_constraint(R) ¢_ v belongs_to R

array_value(B, a) satisfies index_constraint(S) ¢¢, B = S

record_value(t, d, r) satisfies discriminant_constraint(d') ¢_ d = d'

Now we can define subtypes:

_ Subtype

type : Type_location
constraint : Constraint

attributes : Attributes

For every subtype, there is an associated set of values, namely the values of the associated type

that satisfy the constraint.

subtype_values : Subtype _ State ---* P Value

V S : State; s : Subtype [s.type E dom the_store(S).types •

subtype_values(s, S) = { v : Value lv E type_values(s.type, S) A v satisfies s.constraint }

We use function subtype to create subtype values:

subtype : Type_location × Constraint × Attributes---* Subtype

subtype(t, c, a).type = t

subtype(t, c, a).constraint = c

subtype(t, c, a).attributes = a

3.5.2 Partial Subtypes

Partial constraints are similar to constraints, except they may contain references to discriminants

in place of values.

Partial__value ::=

Partial_discrete_range ==

Partial_constraint ::=

I
I
I
I
I

value((Value))ldiscriminant_ref((Id))

Partial_value x Partial_value

no_constraint

range_constraint ((Partial_discrete_range))

index_constraint ((seql PartiaL_discrete__range))

discriminant_constraint ((Id -_ Partial_value))
indirect_index_constraint ((seqs Partial_discrete_range))

indirect_discrimmant_constraint ((Id -_ Partial_value))

A partial subtype combines a subtype and a partial constraint. (Using the subtype allows us

to do a "dependent compatibility check" at the right time, and also gives us the needed attributes

when we actualize.)

PartiaL.subtype == Subtype x Partial_constraint

Given a mapping from discriminant names to values, a partial constraint can be turned into a
true constraint.

17

actualize_value : Binding _ Partial_value -_ Value
actualize_partial_range : Binding _ Partial_discrete_range -+* Range

actualize_constraint : Binding _ Partial_constraint -_ Constraint

actualize_subtype : Binding _ Partialsubtype -_ Subtype

actualize_value f (value v) = v

actualize_value f (discriminant_ref n) = f(n)

actualize_partial_range f (I, h) =

discrete_range(actualize_value f l, actualize_value f h)

actualize_constraint f no_constraint = no_constraint

actualize_constraint f (range_constraint(l, h)) =

range_constraint(actualize_partial_range f (l, h))

actualize_constraint f (index_constraint s) =

index_constraint((actualize_partial_range f) o s)

actualize_constraint f (discriminant-constraint d) =

discriminant_constraint((actualize_value f) o d)

actualize_constraint f (indirect_index_constraint s) =

indirect_indez_constraint((actuahze_partial-range f) o s)

actualize_constraint f (indirect_discriminant_constraint d) =

indirect_discriminant_constraint((actualize_value f) o d)

actualize_subtype f s =

Subtype t type = s.type A
constraint = actualize_constraint f s.constraint A
attributes = s.attributes

3.5.3 Derived Types and Classes

A derived type is a new entity, but it generally uses a copy of the parent descriptor. The set of

values of the derived type is then the same as the set of values of the parent type. However, when

a derived type definition furnishes new discriminants or defines a type extension, a new descriptor
is needed.

The store records some information about derivation, by recording the (optional) parent type

[3.4(1)] of every known type.

parent : State _ (Type_location -_ Type_location)

parent(S) = { t, t' : Type_location I fst(the_store(S).types(t)) = some(t') }

Type extensions are considered in Section 3.5.8. Abstract types are considered in Section 3.5.8.1.

3.5.3.1 Derivation Classes

Tile descriptor for a class_wide type has the form class_dsc(t), where t is the Type_location of the
root of the class. The values of this type are the values of all types derived (directly or indirectly)

from t:

I clescriptor_values(class_dsc(t), S) =LJ{ t': Type_location I (u', u) E parent(S)" • descriptor_values(t', S) }

The notions of [3.4.1(10)] are easily defined:

18

descendant, ancestor : State --_ (Type_location ,--* Type_location)

ultimate_ancestor : State x Type_location -_ Type_location

ancestor(S) = parent(S)"

descendant(S) = ancestor(S) -1

t E dom the_store(S).types

ultimate_ancestor(S, t) = ((ran parent(S)) ._ ancestor(S)) t

3.5.4 Scalar Types

Every scalar type records a base range, in addition to any other needed information.

[base_range : Type_Descriptor-+* Range

Scalar types are either discrete types or real types. A value of discrete type is simply an integer;

a value of a real type is a rational number.

Each scalar subtype determines a range, as specified in [3.5(6)]:

range_of_subtype : Subtype x Store -+* Range

iv.constraint = range_constraint(R) _ range_of_subtype(iv, S) = R

tr.conslraint = no_constraint ::_

range_of _subtype(cr, S) = base_range(snd(the_store(S).types(a.type)))

3.5.4.1 Enumeration Types

The type descriptor for an enumeration type has the form enumeration_dse(n), where n : NIl gives
the number of enumerands.

The base range of the enumeration is the set of discrete values with position numbers between 0

and n - 1 (inclusive). The values of an enumeration type are the values in the base range.

base_range(ennmeration_dsc(n)) = discrete_range(O, n - 1)

descriptor_valnes(ennmeration_dsc(n), S) = discrete_valneO0 . . n -]

3.5.4.2 Character Types

Character types are simply enumeration types.

3.5.4.3 Boolean Types

Boolean types are simply enumeration types.

3.5.4.4 Integer Types

There are three descriptors for integer types:

• signed_integer_dse(bf, hi, f, l), with bf, bl, f, l: Z satisfying (according to [3.5.4(7)]),

1. bf <O<bl,

2. bf + bl E {-1,0}, and

3. {[,l} C_ bf .. hi.

19

Thebaserangeof thistypeis bf.. bl.

• modular_integer_rise(m), with m : N1. (The base range is 0.. (m - 1) [3.5.4(7)].

• universal_integer_dsc(bf, bl) for bf, bl : Z (although the base range seems to be irrelevant

here).

root_integer is just a particular signed integer type.

In every case, the set of valid values of the type consists of all discrete values [3.5.4(6)].

descriptor_values(signed_integer_dsc(bf , bl, f, l), S) = discrete_value_Z_ tO Invalid_value

descriptor_values(modular_integer_dsc(m), S) = discrete_valueOZ DU Invalid_value

descriptor_values(universal_integer_dsc(bf , bl), S) = discrete_value(]'l D t3 Invalid_value

base_range(signed_integer_dsc(bf , bl, f, l)) = discrete_range(b f, bl)

base_range(modular_integer_dsc(m)) = discrete_range(O, m- 1)

base_range(universal_integer_dsc(bf , bl)) = discrete_range(bf , bl)

3.5.4.5 Floating Point Types

As acknowledged in the Ada 9X Rationale, the core language leaves the semantics of floating point

operations largely unspecified. By contrast, the floating point annex (Annex G) is quite precise--

though some flaws in the annex will be noted below. Therefore our model has two parts, one for the
core and the other for Annex G.

The semantics of the Reference Manual refers to the underlying machine values and operations,
and makes features of them visible, for example, in the values of attributes. We have attempted to

model this semantics directly, so that it will be clear how to tell whether an actual implementation

satisfies the semantic rules. This provides a model from the point of view of the implementor. It

would have been easier (and from some points of view, perhaps, preferable) to make a model from the

user's point of view: e.g., take the values of the attributes as given and simply state axiomatically, in

terms of the attributes, the resulting constraints on the values returned by the predefined operations.

The user's model is, of course, a consequence of the implementor's model.

The descriptor for a floating point type has four components:

float_dsc((N1 x Rational x Rational x Implementation}}

The first three components are provided directly by the type's definition: the requested precision and
the bounds of its constraint. The fourth component characterizes the chosen implementation of the

type. The descriptor for an integer type contains a component with analogous information, namely,
the bounds of the underlying base type. We could represent the fourth component in a finitary way

by listing the values of a large number of floating point attributes determined by the implementation.
Instead, this component of the descriptor will consist of a model of the implementation itself, from
which the attributes can be calculated.

descriptor_values(float_dsc(n, v, v', imp), S) = real_value_Float_base_range(_oat_dsc(n, v, v', imp)) = inf (imp.ma.numbers) . . s=p(imp.ma.numbers)

3.5.4.6 The core model of floating point

The values of a floating point type are rationals, with the possible addition of some extra things like

signed zeroes or NaN's. For now these extra possibilities are ignored.

2O

Float == Rational U . . .

There is a problem in the Reference Manual: The possibility of signed zeroes or NaN's is incom-
patible with [RM-83 3.5.7(8)], which says that the set of values for a floating point type is the set
of rational numbers.

3.5.4.6.1 Machine arithmetics Elaboration of a floating point type declaration includes the

choice of an appropriate Implementation (from some predefined non-empty finite set of them) to

model the type. One component of an implementation is a machine arithmetic, which consists of a

radix, a set of machine numbers, and relations modeling the predefined binary and unary floating

point operations. Floating point operations will be modeled not as functions but as relations, in order

to model their potential non-determinism. Some of the predefined binary floating point operations

return floats and some return booleans; all unary operations return floats. It is convenient to add a
special "return value," overflow, to represent the possibility of overflow:

Float Result ::= overflow I result((Float))

BinOpFloat == Float _"_ FloatResult

BinOpBool == Float s _ Boolean

UnOp == Float _-* FloatResult

It will also be handy to have an operation that extracts the (non-overflow) Float values from a set
of FIoalResults:

floats_of : P FloatResult --_ Float

floats_of(X) = resutt~ GX D

In schema MachineArithmetic:

• radix is the radix of the machine representation

• numbers is the set of machine numbers--that is, the set of storable values that will "fit" in

any variable of the type.

• plus, equals , are relations modeling the predefined floating point operations; convert rep-
resents type conversion of an arbitrary real value to a machine number of this arithmetic.

Notice that operations like plus are not restricted to returning machine numbers of the type as
values. The machine numbers represent the storable values of the type, but operations may return,

e.g., extra-precision values that are not immediately rounded.

21

_ MachineArithmetic

radix : N1

numbers : F 1 Float

plus : BinOpFloat

equals : RinOpl_ool

uminus : UnOp

convert : UnOp

float_outcomes : P Float

float_outcomes =

numbers U floats_of(ran plus) tA . . . tAfloats_of(ran convert)

(float_outcomes) 2 C_domplus

(float_outcomes) _ C_ dom equals

float_outcomes C_dom uminus

• . .

Float C_ dom convert
ran convert C ma.numbers

sup(numbers) < - inf (numbers)

The axioms involving float_outcomes are technical conditions guaranteeing that the (non-overflow)

results of any operation can legitimately be passed as arguments to any of the others•

The concluding inequality is Ml we can represent formally of paragraph 3.5.7(8):

The base range (see 3.5) of a floating point type is symmetric around zero, except that
it can include some extra negative values in some implementations.

Note: It would probably be reasonable to suppose that the machine numbers are (roughly) sym-

metric in a stronger sense: the set of machine numbers between -sup(numbers) and sup(numbers)
is closed under additive inverse. The Reference Manual does not require this.

Note: This definition could be shortened if we simply assumed that the relations modeling all

the predefined operations were total. One reason for not making that assumption is the desire

that there be an obvious relation between this definition and actual floating point implementations.

In representing an actual implementation as a machine arithmetic two principles apply: First, the

plus relation modeling an actual implementation of + should contain ((x, y), z) if z is the actual

result (presumably computed by the hardware in some register) of summing x and y; and should

also include ((x, y), z') for every possible "perturbation" z' of z obtained by moving z to and from

registers of other precisions or to and from storage• (Similar considerations apply to all other

operations•) Second, it is sound to model an implementation by using relations that are supersets
of this "minimal" model•

3.5.4.6.2 Parameters of floating point implementations We need two kinds of specifica-

tions for describing aspects of f/oaring point implementations: A MachineParam is a specification

requiring that certain floating point numbers actually be machine numbers of an implementation. It
does not constrain the semantics of the floating point operations. The "representation-oriented at-

tributes" of a type will be defined to return, essentially, the "strongest" MachineParam satisfied by

the type's implementation. (Strictly speaking, we will define what it means for a machine arithmetic

22

tosatisfya MachineParam, and a machine arithmetic is only one component of an implementation.)

All AccurParam does constrain the behavior of the floating point operations. Annex G will define

the "model-oriented attributes" of a type to return, essentially, the strongest AccurParam satisfied

by the type's implementation. The core of the Reference Manual says very little about the relation

between the implementation and these model attributes.

3.5.4.6.3 Machine parameters A MachineParam is a triple whose elements are interpreted

as, respectively, a mantissa length, a minimum exponent, and a maximum exponent.

MachineParam

I mantissa : N1
emin:{ i:NIi<O }
emax : N1

A machine arithmetic satisfies a MachineParam if all the canonical numbers defined in terms of

these parameters (and of the machine arithmetic's radix) are machine numbers:

sat_float_param : MachineArithmetic _ MachineParam

(ma,fp) E sat_float_param ¢¢,

BoundedCanonical(ma. radix, fp. mantissa, fp. emin, fp. emax) C_ ma. numbers

Tim BoundedCanonical numbers are defined in Section 3.5.4.6.4. Note that sat_..float._param does

not constrain the operations of the machine arithmetic in any way.

A first MachineParam is "improved by" a second if the second is at least as restrictive a specifi-
cation as the first.

_improved_by_ : MachincParam _ MachineParam

(Pl, eminl, emaxl) improved_by (P2, emin2, emax2) ¢_

Pl _ P2 A cminl > emin2 A emaxl < emax2

A MachincParam fp for ma is maximal if ma satisfies fp but satisfies no strict improvement of

fp. The function max_mach_params(ma) returns the set of all maximal MachineParams satisfied

by ma.

max_mach_params : MachineArithmetic ---, F MachineParam

max_mach_params(ma) =

maximal(restrict({ mattr I sat_float_param(ma, mattr) },

_improved_by_))

The generic constant maximal returns the set of maximal values of a relation. The generic constant

restrict returns the result of restricting both the domain and range of a relation to the same set.
These constants are defined in Section 3.1.

There is a problem in the Reference Manual: [RM-83 A.5.3] defines the representation-oriented

attributes of a floating point type. They are intended, collectively, to denote a "best" MachineParam

satisfied by the machine arithmetic of the type, but the definitions given there are not quite right.

In particular, if ma is the machine arithmetic chosen to implement type T, the rules of the Reference

Manual do not guarantee that

ma sat_float_param (T'raachine__mantissa, T'machina._emin, T'raachine_emax)

although this is surely one intended consequence of the rules.

23

3.5.4.6.4 Representations of floating point The canonical representions of floating point
numbers are defined in the core semantics, Appendix A.

Our definitions will represent fractions with radix r and mantissa length m by length-m sequences

of the "digits" 0, ..., r - 1. A normal representation is a representation whose first element is non-

zero, or which consists solely of zeroes.

reps : NIl x NIl --+ Pseq(N)

normal_reps : Nx x N1 _ Pseq(N)

reps(r, m) = 1.. m ---, 0.. (r- 1)

s e normal_reps(r, m) ¢* s reps(r, m) ^
s(1) = 0 ::_Vi : dom(s) • s(i) = 0

The operation fraction_value returns the fraction represented by the sequence s in radix r--that

is, the "decimal" .s(1)s(2)... s(m), understood as a literal in base r.

fraction_value : NIl × seq(NI1) ---* Rational
fractions : Nix x NIl --_ P Rational

normal_fractions : NIl × N1 ---* P Rational

fraction_rathe(r, s) = r , 21s(i) * r-'
fractions(r, m) = fraction_vaine_reps(r, m)D

normal_fractions(r, m) = fraction_valueOnormal_reps(r, m)D

The model floating point numbers are those suitably definable in scientific notation, i.e., as

fractions times powers of the radix.

make_floats : P Rational x 7 x [_1 _ [:DRational

make_floats(fracs, exps, tad) =

{ f: Rational, e : NIl If _ fracs A e E exps • -4-f. rad e }

We are principally interested in two classes of "canonical" floating point numbers:

Canonical : Nil x NIa x N1 --* P Rational

BoundedCanonical : N 1 x N 1 x N 1 x N 1 -"+ P Rational

Canonical(rad, mant, emin) =

make_floats(normal_fractions(rad, mant), { i: Z I emin < i }, rad)

BoundedCanonical(rad, mant, emin, emax) =

make_floats(normal_fractions(rad, mant),
{ i:Zlemin <i< emax },

rad)

3.5.4.6.5 Implementations An Implementation consists ofamachine arithmetic, a MachineParam

modeling the representation-oriented attributes of the arithmetic, and a boolean indicating the re-
sponse to numeric overflow. The properties of the machine arithmetic do not uniquely determine

the appropriate MachineParam.

_ Implementation
ma : MachineArithmetic

machine_attr : MachineParam

overflows : Boolean

machine_attr E maLmach_params(ma)

24

An AccurParam is a 6-tuple whose elements are interpreted as a radix, a mantissa length, a
minimum exponent, the bounds for a safe interval, and an indication of whether overflows are to

be reported. (The constraints defined by the other parameters are interpreted more strictly if the

"overflows" flag is true.)

i AccurParam

radix, mantissa : NJI

emin : { i :NJl i <O }

sfirst, Mast : Float

overflows :Boolean

It is convenient to have an abbreviation for the set of safe numbers that an AccurParam defines.

safe : AccurParam --_ P Float

safe(ap) = ap.sfirst . . ap.slast

We will formalize an essential notion of Annex G with _has_accuracy_, which says what it means

for an implementation to satisfy an AccurParam. From the core model, we can extract only some

minimal properties of this relation, expressed in the weaker notion _has_weak__acc_ :

_has_weak_acc_ : Implementation _ AccurParam

_has_accuracy_ : Implementation _ AccurParam

imp has_weak_acc ap ¢_

ap.radiz = imp.ma.radix A

ap.mantissa < imp.machine_attr.mantissa A
ap.emin > imp.machine_attr.emin A

{ ap.sfirst, ap.slast } C_ ma.numbers A
imp.overflows = ap.overflows

imp has_accuracy ap ::_ imp has_weak_acc ap

For any implementation imp, in Annex defines model_attr(imp), a unique "best" AccurParam
satisfied by an implementation. All we can say in the core semantics is that imp satisfies the weak

accuracy requirements imposed by model_attr(imp).

model_attr : Implementation ---*AccurParam

imp has_wcak_acc model_attr(imp)

More precisely, Annex G defines model_attr(imp) to be a particular maximal ap such that imp

has_accuracy ap.
The maximum number of decimal digits of accuracy is uniquely determined by the model-oriented

attributes of the implementation.

digits : Implementation _ NJ1

imp.radix = 10 =¢, digits(imp) = model_attr(imp).mantissa
imp.radix _ 10 =¢,

digits(imp) = ceiling(

(model_attr(imp). mantissa • log(10)/log(i,np.ma, radiz)) + 1
)

There is a problem in the Reference Manual: This definition of "digits" is not given anywhere in
the Reference Manual. It is surely the intended one, but it does not seem to follow from anything
in the Reference Manual.

25

ThereisaproblemintheReferenceManual:SectionA.5.3(67-68)definesthevalueofS'Model_Mant issa
in incompatible ways, depending on whether or not the implementation "supports" Annex G. The

same is true for S' Model___in. In consequence, an implementation can be valid for Core+G but not

valid for the Core alone. (By contrast, the core semantics makes the semantics of the model-oriented

attributes ' Safe_First and ' Safe_Last upward compatible by leaving them implementation-defined.)

The definitions of S _Model._antissa and $ 'ModeL__Emin given here are weaker than those of the

core semantics. We require only that

S'Model_Mantissa < S'Machine_Mantissa

StModel__Emin > S'Machine_Emin

(See the definition of _has_weak__acc_.)

These definitions make the core semantics compatible with Annex G. In addition, they capture

the only information that the present version of the Reference Manual allows a user to rely on across

all implementations.

3.5.4.6.6 Satisfaction of a type definition A floating point declaration supplies a requested

precision (a value of N) and, optionally, a constraint (two Rationals). The accuracy of the type's

implementation must be at least as great as the requested precision and the safe range of the

implementation must include the interval defined by the constraint, This requirement is captured

by the definition of sat_float_def

The Reference Manual says that any such implementation may be chosen. We represent the

particular strategy that the implementation uses for choosing the implementation (such as choosing

the coarsest acceptable implementation type) by the relation implements_float_def. The judgement

defining elaboration of a type definition selects an implementation satisfying implements_float_def.
All the reference manual requires of this relation is that it be consistent with sat_float_de f:

sat_float_de f, implements_float_def :

Implementation _ (N x Rational x Rational)

(imp, (n, L, R)) E sat_float_def :_
L . . R C model_attr(imp).sfirst . . model_attr(imp).slast A

m < digits(imp)

implements_float_def C_ sat_float_def

3.5.4.6.7 Attributes If imp is the implementation chosen for type T, then the basic implementation-
oriented attribute values ofT are given as follows, where we let imp.machine_attr = (mant, stain, emax):

T ' Machine._Radix = imp. ma. radix
T 'Machine_Mant issa = mant

T _Machina_Emin _ emi,
T *Machine_Emax = emaz

T'Base'First = min(imp.ma.numbers)

T'Base'Last = max(imp.ran.numbers)

The limits of the base range are the least and greatest machine numbers. This follows from 3.5(6)

The base range of a scalar type is the range of finite values of the type that can be
represented in every unconstrained object of the type

and from 3.5.7(8)

The machine numbers of a floating point type are the values of the type that can be

represented exactly in every unconstrained variable of the type.

26

Thebasicmodel-orientedattributevaluesofanimplementationimp are given as follows (where

we let model_attr(imp) = (Mant, Ernin, sfirst, slast)):
T'Mode]_Mant issa = Mant

T 'Model_Emin ----Emin

T 'Safe_First -= sflrst
T ' Safe_Last : slast

T'Base'Digits = digits(imp)
The definition of T ' Bass'Digits is something of a guess.

Note: The definitions of various attributes, such as S'Model (for floating point subtypes) and

S'Machine (for fixed and floating point subtypes) say that the value returned is obtained "by

rounding or truncating" the operand "to either one of the adjacent" model or machine numbers, as

appropriate. It is not clear from this language whether these operations are non-deterministic.

3.5.4.7 Annex G

Annex G defines some more precise constraints on the floating point operations.

3.5.4.7.1 Model numbers and accuracy An accuracy parameter determines a set of model

intervals (intervals bounded by the associated canonical real numbers) and associates a model interval

with each bounded set (namely, the smallest model interval that contains it):

ModelIntervals : AccurParam _ P Float

ModellntOf : P Float x AccurParam -4-,P Float

u E Modellntervals(ap) ¢:_

3 lo, hi : Float •
u = lo .. hi A

{ lo, hi } C_ Canonical(ap.radiz, ap.mantissa, ap.erain)

ModelIntOf(X, ap) = N{ u E Modellntervals(ap) I X C_ u }

Given a "paradigm" operation f and an accuracy specification ap, we define for each z the set of

results that approximate f(x) to within the demands of ap--namely, the model interval of the set

that results from applying f to the model interval of x. (The same applies, mutatis rnutandis, to the

binary operations.) All definitions follow the same pattern, but the type restrictions of Z require us
to provide separate definitions for unary operations, binary operations returning floats, and binary

operations returning booleans.

ResultUnOp : (Float _ Float) × AccurParam _ (Float ---* P Float)

ResultBinOpFloat : (Float 2 --* Float) x AccurParam _ (Float 2 _ P Float)

ResultBinOpBool : (Float 2 _ Bool) x AccurParam ---* (Float 2 _ P Bool)

Result UnOp(f , ap) =
)_z : Float •

Modellnt Of(f(] ModeU,,tO/({ • }, ap) D, ap)

ResultBinOpFloat(f , ap) =

)_ x, y : Float •

ModellntOf(f(]ModellntOf({x}, ap) x ModellntOf({y}, ap)O, ap)

ResultBinOpBool(f , ap) =
)_ z, y : Float •

ModellntOf(f(]ModelIntOf({x}, ap) x ModeUntOf({y}, ap)D, ap)

Operands are "safe for" a paradigm operation if they and all their approximate results are safe.

27

SafeForUnOp : (Float _ Float) x AccurParam -+ P Float
SafeForBinOpFloat : (Float 2 _ Float) x AccurParam --_ P Float 2

SafeForBinOpBool : (Float 2 ---, Bool) x AccurParam _ P Float 2

SafeForUnOp(f , ap) =

{ z _ safe(ap) I ResultUnOp(f, ap)(z') C_safe(ap) }

SafeForBinOpFIoat(f , ap) =

{ (z, y) E (safe(ap)) 2 I ResultBinOpFloat(f, ap)(z, y) C_safe(ap) }

SafeForBinOpBool(f , ap) =

{ (x, y) E (safe(ap)) 2 I ResultBinOpFloat(f, ap)(z, y) C_safe(ap) }

A UnOp approximates a "paradigm" function to within some accuracy specification if it associates

all operands with results that are acceptable approximations to that function. The same goes for

BinOpFloats and BinOpBools. In particular, safe operands may not return an overflow; and if the

"overflows" flag is true, unsafe operands must return either an approximately correct result or the

overflow token.

Approz UnOp : UnOp _ (Float --_ Float) x AccurParam
._Approz BinOpFIoat_ : BinOpFloat _ (Float 2 _ Float) x AccurParam

ApprozBinOpBool : BinOpBool _ (Float 2 --+ Float) × AccurParam

op Approx UnOp (f , ap) ¢¢,

V z E dom op *

(z E SafeForUnOp(f , ap)

overflow _ opG{• }_
A

floats_of(opO { z }_) C_ ResultUnOp(f, ap)(z))
A

(ap.overflows = trne =:_
floats_of(op_]{ z }D) c_ ResultUnOp(f, ap)(z))

op Approz BinOpFloat (f , ap) ¢¢,

V(z, y) E dom op *
((z, y) E SafeForBinOpFloat(f , ap) =¢,

overflow qt opO{(x, y) }D
A

floats_of(opO { (z, y) }D) C_ResultBinOpFloat(f, ap)(z, y))
A

(ap.overflows = true =_

floats_of(opt]{ (z, y) }1)) C__ResultBinOpFIoat(f, ap)(z, y))

op ApprozBinOpBool (f, ap) ¢_,

V(z, y) E dom op *

((z, y) E SafeForBinOpBool(f , ap) =:,
o_erflowqt op(]{(_, y) }D
^
floats_ol(opG{ (z, y) }l_) c_ ResuttBinOpBool(I, ap)(z, y))

A

(ap.overflows = true ::¢,
floats_ol(opO{ (z, y) }D) c_ __esultl:linOpBool(f, ap)(z, y))

We can now define the property _has_accuracy_ as the assertion that each machine operation

approximates the appropriate paradigm function to within the given accuracy parameters:

28

imp has_accuracy ap

imp has_weak_ace ap A

imp.ma.plus A pproz BinOp Float (+, ap) A

imp.ma.equals Approz BinOpBool (=, ap) A

imp. ma. convert Approx UnOp (id Float, ap)

3.5.4.7.2 Model-oriented attributes To define modeL_attr we choose a particular maximal

AccurParam satisfied by an implementation• (Note: The definitions below do not follow the defini-

tion in version 5.0, which is incorrect, but Ken Dritz's subsequent reworking of version 5.0.)

best_mant : P AccurParam _ P AccurParam

best_emin : P AccurParam ---, P AccurParam

best_first : P AccurParam _ P AccurParam
best_last : P AccurParam --* P AecurParam

best_ap : P AccurParam --* P AccurParam

best_ap(X) =

best_last(best_first(best_emin(best_mant(X))))
model_attr(imp) =

ap : AccurParam • ap E bestap(ap' : AccurParam I imp has_accuracy ap')ap E best_maul(X) ¢*

ap E X A V ap' : X • ap.mantissa > ap'.mantissa

ap E best_emin(X) ¢:_
ap E X A V ap' : X • ap.emin < ap'.emin

ap E best_first(X) ¢_

ap _ X A V ap' : X • ap.sfirst < ap'.sfirst

ap E best_last(X) ¢_
ap E X A V ap' : X • ap.slast >_ ap'.slast

There is, of course, exactly one best_ap:

#best_ap({ ap : AccnrParara I imp has_accuracy ap }) = 1

3.5.5 Array Types

The descriptor for an array type has the form array_dsc(i, c), where i : seq Subtype is a sequence of

discrete subtypes (the index subtypes) , and c : Subtype is the component subtype.

descriptor_values(array_dsc(i, c), S) =

{ B : Index_bounds, v : (seq Value) -_ subtype_values(c, S)

[Array(B, v) E Value A B = range_of_subtype o i

• Array(B, v) }

3.5.5.1 String Types

String types are just particular array types.

3.5.6 Discriminants

l)iscriminants are specialized components of some composite types. We incorporate discriminants

(which might be null) into the descriptor for every type that can have discriminants, in order to
avoid a tedious duplication of definitions in similar cases.

29

Thismodeldoesnotaccountfor accessdiscriminants.

Discriminanl_descriptor == Id a__Subtype x optional Thunk

discriminant_values : Diseriminant_descriptor x State _ P Binding

discriminant_values(d, S) =

{ f : adom d _ Values [V n E adorn d • f(n) E subtype_values(first(d, n), S) }

3.5.7 Record Types

It seems like a waste of effort to describe records with discriminants separately from records without

discriminants, as there is a good deal of overlap in the two cases. Thus, we give every record type

descriptor discriminants (which may be null).

Similarly, it seems like a big duplication of effort to describe tagged record types separately.

Thus, we will give every record descriptor a tag (which may be null in the case of an untagged

record).

Component_list_descriptor =-=

([d _ Partial_subtype x optional Thunk) × optional Variant_descriptor

A record type descriptor consists of a description of the discriminants (if any), and a component
list description. The values of such a descriptor are records with fields for the discriminants, and

fields for the other components. The subtypes of these latter fields (and even the exact fields present)

may depend on a value of a discriminant.

descriptor_values(record_dsc(t, DA, CL), S) =
{ d, r : Binding I d E discriminant_values(DA,p) A r E CL_values(CL, d, S)

• record(t, d, r) }

A binding giving the values of the discriminants is given to function CL_values, so that the actual

subtype of each component can be determined.

CL_values : Component_list_descriptor x Binding x State ---*P Binding

CL_values((A, Y), d, S) = {f, v: Bindin 9 I dora/= adorn A A

(V n E domf • f(n) E Subtype_values(actualize_subtype(first(A. n), d), S))

v E Variant_values(V, d, S)

.fuv)

3.5.7.1 Variant Parts and Discrete Choices

A variant descriptor has the Id of the discriminant of the variant part, and a mapping from the

possible values of this discriminant to component list descriptors.

Variant_descriptor == Id × (Discrete_value -_ Component,list_descriptor)

Variant_values : (optional Variant_descriptor) x Binding x State ---, P Binding

Variant_values(none, d, S) = {0}

d(n) E domf =, Variant_values(some(n, f), d, S) = CL_values(f (d(n)), d, S)

d(n) f[domf ::¢, Variant_values(sorne(n,f), d, S) = {0}

3O

3.5.8 Tagged Types and Type Extensions

The model for tagged types has not yet been developed.

3.5.8.1 Abstract Types and Subprograms

[AARM 3.9.3(8.a)] asserts that there are no values of an abstract type. But it is possible to have
subprograms for such subtypes, and for non-abstract descendents to inherit them. If we want to say

something about the meanings of such subprograms, we probably need to talk about the values of

tile parameters. (In some sense, these are parameters of type T'Class.)
On the whole, it probably seems easiest to use a model of values as though the type were not

abstract; we can also treat abstract subprograms as though their bodies raised Program r.rror.

3.5.9 Access Types

The descriptor for an access type has the form access_dsc(s, m), where s : Subtype_location describes

the designated subtype of the access type, and m : Access_mode describes the access mode.

Access_Mode ::= constant_access I all_access I pool_access

A value of an access-to-object type is either a null value, or a view of an object of the designated

subtype:

descriptor_values(access_dsc(s, m), S) =

{access_value(none)}U
{ access_value(some(object_view(I, s'))) I

the_store(S).objects(t) • subtype_vatues(the_store(S).subtypes(s), S) }

3.5.9.1 Incomplete Type Declarations

The descriptor incomplete describes an incomplete type. When the full type definition for the type

is elaborated the type environment is updated to reflect the appropriate descriptor for the type.
Note that there is an issue about the first subtype of an incomplete type; it is constrained if

there is no discriminant part. However, the first subtype corresponding to the full definition may

be unconstrained. (See comment 94-3901.c.)
There are no values of an incomplete type.

3.6 States

A state combines a store, an external state, and control flow information (in the usual cases), or is

erroneous or unpredicted. We use the state unpredicted in those cases where our semantic definition,

in the interests of simplicity, makes no prediction about the effect of a program (even though the

Standard defines the effect, or calls it implementation-defined).

State ::= normal((Store)l

exception((Ezceptionld × Store))

exit((Loop_ld x Store))
proc_return ((Store))

func_returnll Value x Store))

intermediate ((Store))
erroneous

unpredicted

Function the_store gives the store associated with a state.

31

Chapter 4

Judgements

This section smnmarizes the domains and judgements used ill the definition of Ada 9X seman-

tics. The details of the domain definitions are given in Chapter 3. The formal definitions of these

judgements are given in later sections.

4.1 Domains

The definition is based on the concepts, domains and support functions, introduced in Chapter 3.

Specifically, il us,,s the domains listed in Table 4.1

All of these d,,mains are generated by term algebras (subject to the constraints defined in Chap-

ter 3). Conslrm'l,,rs [or these domains are given below. In addition, the dolnains of component
associations and ,'_,vironments are defined as follows:

(;ompAssoc = list((Id x (Subtype x optional(Thunk))))

k.'nrironment = (Id-++ View)

Also the sigll;tlures for all flmctions (other than contructors) and predicates are given. Note that

these signatures ;ire Ihose used in the Prolog representation of judgements and inay differ from those

given in Chal)tcr 3.

4.1.1 Types

The structure of a type is given by a type descriptor of the form:

type 7_pe

enunLtype : integer --+ Type

modular_type : integer --+ Type

signed_integer_type : integer x integer x integer x integer ---, Type
universal_integer_type : integer x integer -_ Type

array_type : list(Subtype) x Subtype ---* Type

class_type: Type_location---* Type
access_type : Subtype_location x Access_modifier --* Type

func_profile : (Ida Parameter) x 5'ubtype --. Type

proc_profile : (Id _ Parameter) --. Type

incomplete_type : Discriminant ---+ Type

record_type:optional(Type_location) x Discrirninanl x Record_fields--+ Type

32

Access_modifier
Action

Attributes

Bool

Choice

Constraint

Discriminant

ExId

Record_fields
L Value

Loopld
Mode

Object_location

ObjeeLmode
Partial_constraint

PartiaL_subtype
Partial_value

Parameter

Range
State

Store

Subprogram
Subprogram_label

Subprogram_location

Subtype

Subtype_location
Thunk

Type

Type_location
Value

Variant

View

access (type) modifier
executable actions

subtype attributes

truth values (non-Ada)
choices

constraints
discriminants

internal names for exception identifiers

record fields including variants

L-values (addresses)
internal names for loop identifiers

parameter modes

addresses of top-level objects
indication of constancy and aliasing

partial constraints

partial subtypes

partial values

formal parameters
discrete and real ranges

state of a computation

model of memory

subprogram values
unique tags for subprogram access values

addresses for subprogram values

subtypes

addresses for subtypes

an expression with its declaration environment

type descriptors
address space for type information
runtime values

variants

views

Table 4.1: Domains used in the judgements

33

Descriptorsof this formarestoredin thestateandareaccessedby uniqueaddressesof sort
Type_location. A derived type is represented by a new name for an existing type descriptor. The

use of type names has the advantage that it is easy to deal with cyclic types and type completion,

It has the disadvantage that types can be understood only in the context of a state.

The domain Type_location contains constants that represent the predefined types of the language:

type Type_location

boolean_tn : Type_location

character_tn : Type_location

universaL_integer_tn : Type._Iocation

universal__real__tn : Type_location

root_integer_tn : Type_location

In the case of tagged types, values of Type_location are used as unique tags. The optional

Type_location component of a record type descriptor defines the tag of the parent type. Values of

sort Type_location are related by the ancestor relation which represents both the derivation and class

hierarchy:

ancestor(State, Type_location, Type_.location)

descendant(State, Type_location, Type_location)

ultimate__ancestor(State, Type_location, Type_location)

Access modifiers are used in the descriptors of access types with the obvious meaning.

type Access_modifier

constant_access:Access_modifier

alL_access : Access_modifier

pool_access:Access_modifier

Discriminants are represented as follows:

type Discriminant

discr : (Id _-L(Subtype x optional(Thunk))) _ Discriminant

0 : Discriminant

Two discriminants can be combined using:

discriminant_union : Discriminant x Discriminant _ Discriminant

A thunk represents an expression together with its declaration environment.

type Thunk
thunk : Environment x Exp --_ Thunk

A component list represents actualized record fields, i.e., record fields that do not contain partial

information that depends on discriminant values.

type CompAssoc = list((/(/x (Subtype x optional(Thunk))))

The fields of a, possibly discriminated, record type are represented by the domain

type Record_fields

tlelds : (Id--% (PartiaL.subtype x optional(Thunk))) x optional((Id x Variant)) _ Record_fields

which includes the proper fields (maybe partial) as well as any variant.

34

Componentassociationscanbeconstructedfromdiscriminantvaluesandpartialcomponentlists
orvariants:

actualized_complist: (Id -_ Value) x list((ld × (Partial_subtype x optional(Thunk)))) --* CompAssoc

actualized_components : (ld --_ Value) × Record_fields ---* CompAssoc

actualized_variants : (Id --_ Value) x (Id x Variant) ---* CompAssoc)

append_components : CompAssoc x CompAssoc ---* CompAssoc

A variant part is represented by a pair (M x Variant) where the identifier specifies the name of
the discriminant and the second component represents the actual fields:

type Variant

variant : list((Choice × Record_fields)) --, Variant

O: Variant

Given a discriminant value, the actual record fields of a variant are defined by the predicate

the_variant(Variant, Value, Record_fields).

Variant parts are combined using function

variant_union : optional(Id x Variant) x optional(Id x Variant) ----,optional(Id x Variant).

The representation of subprogram access types uses parameter descriptors of the form:

type Parameter

formal : Mode x Subtype x optional(Thunk) _ Parameter

where modes are given by:

type Mode

in_mode : Mode

out_mode : Mode

in_out_mode : Mode

The following predicates define the set of values of a given type (descriptor):

cLvalue(State, Record_fields, (Id -_ Value), (Id .+* Value))

discriminant_value(State, Discriminant, (Id -_ Value))

variant_values(State, optional((Id x Variant)), (Id -+* Value), (Id -_ Value))

descriptor_value(State, Type, Value)

4.1.2 Values

The representation of values is straightforward using the definition

type Value

invalid_val : Value

discrete_val : integer ---* Value
real_val : real ---* Value

access_val : View x optional(Subprogram_label) ---* Value
null : Value

record_val: optional(Type_10cati0n) x (Id -_ Value) x (Id -_ Value) _ Value

array_val : list(Range) x (list(Value) _ Value) ---* Value

35

Thetermaccess_val(...)isusedfor accessto objectandaccessto subprogram values. In the
latter case, each time a subprogram access is computed a new unique subprogram label

type Subprogram_label

is generated. This label is needed to properly model equality of access to subprogram values.
Note that access values are views. This representation is used to determine the actual subtype

of an access value.

Ranges are represented as pairs of values in the obvious way.

type Range

discrete_.rng : integer x integer --_ Range

real__rng : real x real --_ Range

The following functions are defined for ranges.

low_bound : Range _ Value

high_bound : Range _ Value

make__range : Value x Value _ Range

base_range : State x Type ---* Range

indices: list(Range) --* set(list(Value))

The latter function defines the set of all index vectors that fit a list of (index) ranges.

Sets of (scalar) values are represented using the domain

type Choice

choice_range : Range --+ Choice
choice_value : Value ---, Choice

choice_lst : list(Choice) ---* Choice
choice_default : Choice

The following are predicates on values

access_vMue(Value)

array_value(Value)

belongs_to(Value, Range)

composite_value(Value)

covers(Value, Choice, Bool)

discrete_value(Value)

elementary_value(Value)

real_value(Value)
satisfies(Value, Constraint)

scalar_value(Value)

4.1.3 Subtypes

The definition of subtypes follows the description provided by the Reference Manual:

type Subtype
subtype : Type_location x Constraint x Attributes ---* Subtype

Access to the underlying type is indirect through a type location. The present version of the
semantics does not use any subtype attributes.

type Attributes
not_used : Attributes

36

Functionsdefinedforsubtypesare

range_of__subtype:Statex Subtype _ Range

ranges_of_subtypes: State x list(Subtype) ---, list(Range)

type_struct : State x Subtype ---* Type

Constraints are

type Constraint

no_constraint : Constraint

range_constraint : Range _ Constraint

index_constraint : list(Range) --_ Constraint
discriminant_constraint : (Id -_ Value) --_ Constraint

indirect_index_constraint:list(Range) ---, Constraint

indirect_discriminant_constraint : (Id-_ Value) _ Constraint

In the case of discriminated record types, component subtypes can be partial if they depend

on discriminant values. This leads to the following definitions of partial counterparts of values,

constraints, and subtypes.

type

type

type

Partial_value

p_vMue : Value _ Partialvalue
discriminant__ref : Id---* PartiaLvalue

PartiaL_constraint

p_no_constraint : Partial__constraint

p_range_constraint : (Partial_value x PartiaLvalue) ---, Partial_constraint

p_index_constraint : list((PartiaLvalue x PartiaLvalue)) ---* Partial__conslraint

p_discriminant_constraint : (Id -_ PartiaLvalue) --* Partial_constraint

p_indirect_index_constraint : list((Partial_value x PartiaL_value)) ---* Partial_constraint
p__indirect_discriminant_constraint : (Id --_ PartiaLvalue) ---* PartiaL_constraint

PartiaL.subtype

p__subtype : Subtype x PartiaLconstraint ---* PartiaLsubtype

Given a discriminant constraint, partial entities can be actualized. This process is defined by the

functions:

actualized_partiaL_range: (Id-_ Value) x (PartiaLvalue x Partial_value) ---* Range

actualized._range_list : (ld --_ Value) x list((Partial_value × PartiaL.value)) ---* list(Range)

actualized_value: (Id _ Value) × Partial_value _ Value

actualized_constraint : (Id --_ Value) × PartiaLconstraint _ Constraint
actualized_binding_list : binding(Id -_ Value) x iist((Id × Partial_value)) _ list((/(/× Value))

37

ThefollowingpredicatesonsubtypesdefinethetaxonomyofRM3.2:

ls_access_to_object_type(State, Subtype)

ls_access_to__subprogram-type(State, Subtype)

_s_aceess_type(Siate, Subtype)

is_array_type(State, Subtype)

is_boolean_type(State, Subtype)

is_by_copy_type(Stale, Subtype)

is_by_reference_type(State, Subtype)

is_character_type(State, Subtype)

is_composite_type(State, Subtype)

is_discrete_type(Slate, Subtype)

is_elementary_type(State, Subtype)

is_enumeration_type(State, Subtype)

is_integer_type(Slate, Subtype)
Js_modular_Jnteger_type(State, Subtype)

is_protected_type(State, Subtype)

is_reM_type(State, Subtype)
is_record_type(State, Subtype)
is...scalar_type(Slate, Subtype)

js._signed._integer_type(State, Subtype)

is_string_type(State, Subtype)

is_tagged_type(State, Subtype)

is_task_type(State, Subtype)

Other predicates used in the semantics are

component_type((Id -_ Value), Type, Id, Subtype)
convert_return_value(State, View, Subtype, View)

range_constraints(State, list(Subtype), list(Range))

select_component_type((Id -_ Value), Record._fields, Id, Subtype)

subtype_value(State, Subtype, Value)

test__in(State, Value, Subtype)
type_constraint(Environment, Subtype, Constraint, Type)

null_range(Range)

includedin(Range, Range)

values__im.range(Range, set (Value))
discrete_range(Range)

real_range(Range)

Finally, the following predicates describe state transformers related to various checks and con-

versions related to subtypes.

slice_check(State, Range, Range, State)

view_convert(State, Environment, Subtype, View, View, State)

subtype_convert(State, Environment, Subtype, Value, Value, State)
index__list(State, list(Range), list(Value), list(Value), State)

return_check(State, Subtype, State)

4.1.4 Environments and Views

Environments map identifiers to views.

type Environment = (Id -+* View)

38

An environmentisupdatedusingtheusualsyntaxforbindings.

_[__ _] : Environment x Id x View---* Environment

Note that identifiers are assumed to be unique and that all overloading and qualified names have
been resolved to unique identifiers.

The lookup of an identifier I in an environment E is written as

E F tookup I _ V

A view describes entities denoted by identifiers as follows:

type View

object_view : LValue x Subtype X Object_mode ---* View

loop_view : Id ---* View
constanLview : Value ---, View

subtype_view : Subtype_location ---, View

subprogram_view : Subprogram_location x (Id _ Parameter) x optional(Subtype) --* View
undefined_view : View

Object views include a mode description of the form:

type Object_mode
variable_object: ObjecLmode

constant_object : Object_mode

aliased_object : Object_mode

Whether or not an object may be assigned to depends on its mode:

assignable(Object_mode)

Loop views are used in defining exit from named and unnamed loops.

type LoopId

unnamed : Loopld

loop__id : Id _ Loopld

The following predicate defines how the bindings of a parameter association are added to an

environment creating the environment in which a subprogram body is executed. Note that the

names used in the given parameter association may differ from the names of the formal parameters

(due to renaming). The names of the formals are provided by a separate argument.

bind_actuals(Environment, (Id _-LView), list(Id), Environment)

The following constants of sort E_:ld denote the language-defined exceptions (others may be
added).

type Ezld
constraint_error : Exld

program_error : Exld
ex._id : Id ---* Ezld

New unique names for user-defined exceptions are introduced by static semantics.

39

4.1.5 Memory Model

Values of sort Store describe the current binding of addresses to Ada run-time values (of sort Value).

In our model, there are four different types of addresses (locations). They include type location (see

above) as well as locations for objects, subprograms and subtypes.

type Object_location

loc : integer ---* Object_location

type Subprogram_location

type Subtype_location

Object locations are associated only with objects that are not components of other objects.

Components are specified by the address of the containing object together with a selector sequence.

An address together with a selector sequence is a L-value (sort LValue).

type L Value

location : Object__location _ L Value

array_component : L Value x list(Value) _ L Value

array_.s/ice : LValue x Range ---, LValue
record_component : LValue x Id ---* LValue

Thus, the domain of stores is defined as a 4-tuple as follows:

type Store

(-,-,-,-/ : (Object__location -_ Value) x
(Subprogram_location -_ Subprogram) x

(Type_location -+, (optional(Type_location) x Type)) x

(Subtype_location -_ Subtype) _ Store

Individual components of a store can be updated using the following notation:

-[- _--'1 -] : Store x Object__location x Value _ Store
-[- _-"2 -] : Store x Subprogram_location x Subprogram ---, Store

-[- _-_3 -] : Store x Type_location x (optional(Type_location) x Type) --* Store

-[- _--_4-] : Store x Subtype_location x Subtype ---* Store

Values of sort State describe a current store, together with the current status of program execu-

tion. A state may represent the propagation of an exception, exit from a subprogram, or exit from

a loop.

type State

exception : ExId x Store _ State

exit: LoopId x Store--* State

proc_return : Store --* State
func._return : View x Store _ State

normal : Store ---* State

4O

Thefollowingfunctionsaredefinedto accessandmanipulatethestoreembeddedin astate.

_[_v--*l _] : State x Object_location x Value _ State

-[- _"_2-] : State x Subprogram__location x Subprogram _ State

-[-_--_a-] : State × Type_location x (optional(Type_location) × Type) --* State
-[- _"4 -] : State x Subtype_location x Subtype _ State

obj[] : State x Object_location _ Value

__Pg[_] : State x Subprogram__location _ Subprogram

tuP[] : State x Type_location---* (optional(Type_location) x Type)

stp[] : State x Subtype_location _ Subtype
make__state : State x Store ---*State

the_store : State ---*Store

The allocation of new location of the four different kinds is defined by the predicates:

new_type(State, (optional(Type_location) x Type), Type_location, State)

new._subtype(State, Subtype, Subtype_location, State)
new_object(State, Value, Object_location, State)

new_subprogram(State, Subprogram, Subprogram_location, State)

For a given state and L-value, the following predicate defines the current value. The definition

of this predicate includes access of the appropriate subobjects denoted by an L-value.

content(State, L Value, Value)

States are classified as normal or abnormal. Abnormal states will, in general, alter the control
flow.

abnormal_state(State)

normal_state(State)

The return from a subprogram may be indicated by an abnormal state. The following predicates

deal with the cases of procedure and function returns, respectively.

proc_exit(State, State)

return_value(State, View, State)

Values stored in the subprogram component of a store are of the form:

type Subprogram

subprogram : Environment x list'(/(/) × Dcl × Stm _ Subprogram

operator : Operator---* Subprogram

unelaborated : Subprogram

A user-declared subprogram is represented by the declaration environment, the names of the
formal parameters and the declarations and statements that comprise the body. Predefined operators

of the language are enumerated by a domain Operator. The definition of the semantics of the

operators is not covered. An attempt to execute a subprogram of the form unelaborated will raise

program error.

4.1.6 Other Predicates

The following predicates deal with the selection of elements from parameter lists and record com-
ponent associations.

the_parameter(list(Pss), Id, Nam)

given_parameter(list(Pss), Id, Exp)

tind_component(Id, list(Rca), Exp)

41

4.2 Judgements

Judgements for various syntactic domains define the effect of the elaboration or execution of language

phrases of this domain. In most cases, the effect of a phrase depends on the current state and the

current environment. The effect typically consists of a change in state and the possible return of

a result. Depending on the kind of phrase, the result may be a value, a type, a new environment

and so on. The meaning of some phrases depends on additional context beyond the state and the

environment. For instance, the meaning of a type definition depends on the discriminant (which is

part of the enclosing type declaration).

The general form of a judgement is

state, environment, context _- language-phrase ::_ result, new-state

The following is a list of the judgements used in the definition. For each syntactic domain, the

signature of the judgement is given together with an informal rationale.

If the evaluation of a construct raises an exception then the final state represents this information.

The propagation of exceptions is described as part of the sequencing of actions described below.

The following conventions are used throughout the description of judgements:

Sl : State
E : Environment

S_ : State

- The initial state.

- The environment.

- The final state.

4.2.1 Declarations

The effect of elaborating a (sequence of) declaration(s) is to add bindings corresponding to the newly
introduced identifiers to the environment. The elaboration of a declaration may also affect the state.

E1 : Environment
DcI: Dcl

E2 : Environment

4.2.2 Parameter lists

- The initial environment

- A declaration.

- A possibly modified environment.

Elaboration of subprogram declarations is defined in terms of the judgements

$1, E, I-p_, Pas _ A, $2

Pas : Pros* - Formal parameter list.

A : Id a_%Parameter - Parameter signature.

and

brood Mod ::> M

Mod :Mde - Parameter mode.

M : Mode - Mode representation.

The latter judgement uses neither states nor the environment.

42

4.2.3 Type Definitions

A type definition is elaborated in the context of a (possible) discriminant association. The result

is the first-named subtype. Elaborating a type definition may affect the state and the environment

because subexpressions may have side-effects and new internal type names may be bound in the
environment.

S1,E1,Dt-ta] Tdf_ T, E2, S2

D : Discriminant - The discriminant.

Tdf : Tdf - A type definition.

T : Subtype - The resulting subtype.

E2 : Environment - The modified environment.

4.2.4 Variant Parts

$1, E, D I-_rn Vm =_ V, S_

D : Discriminant - A discriminant.

Vrn : Vnt* - A list of variant clauses.

V : Variant - The resulting variant.

The judgement always uses a discriminant that may be empty.

4.2.5 Discriminant Parts

The evaluation of a discriminant part results in an association that maps discriminant identifiers

into their subtype and optional initialization. As with record component lists, the initialization is

represented by a thunk.

S1, E I-dsc Dcp _ D, S_

Dcp : Dcp - A discriminant part.
D : Discriminant - The resulting association.

4.2.6 Component Lists

Tile result of evaluating a record component list is an association that maps each component identifier

into a pair consisting of the component's subtype and an optional initialization. The initialization

is given by a thunk that represents the initialization expression, together with the environment in

which this expression is to be evaluated.

5'1, E I-crop Cmp :=_ C, $2

Crnp : Crop - A component list.

C : CompAssoc - The result.

4.2.7 Subtype Indications

There are three flavors of judgements dealing with subtype indications. The normal case is covered

by the declaration:

S_, E I-,q Sid =¢, T, $2

43

Sid:Sid - A subtypeindication.
T : Subtype - The denoted subtype.

A special case is needed for subtype indications that appear inside discriminated records because

the result will be a partial subtype.

$1, El, D kpsi Sid ::v T, E2, $2

D : Discriminant - A discriminant.

Sid :Sid - A subtype indication.

T : Partial_subtype - The denoted partial subtype.

Finally, a third form of this judgement is needed to deal with access types to allow references to

incomplete types. Instead of a subtype, this judgement returns a subtype location.

Sz , E F-s,yi Sid :=_ L, $2

Sid : Sid - A subtype indication.

L : Subtype - A subtype location.

A completing type declaration will initialize the subtype location.

4.2.8 Statements

Tile execution of a statement only affects the state and has no result.

$1, E ['stm Stm ==_$2

Stm : Stm - A statement.

4.2.9 Elsif Clauses

An elsif-clause consists of a condition and a sequence of statements. The judgement for this construct

describes the evaluation of the condition followed by the conditional execution of the statements.
There is a boolean result that indicates whether the condition was true. This result is used in the

definition of cascaded elsif clauses.

$1, E I-_¥ Elf =_ B, $2

Elf : Elf - An elsifclause.

B : Bool - The boolean result.

4.2.10 Case Alternatives

The evaluation of a list of case alternatives depends on the value of the case selector:

$1, E, V _-cu AIt =:_ B, $2

V : Value - The value of the case selector.

AIt : Air - A sequence of case alternatives.

B : Bool - True, if one of the alternatives has matched the case selector.

The boolean result indicates whether one of the alternatives has been executed. The execution

of the enclosing case statement will have to terminate in an exception if this result is false.

44

4.2.11 Discrete Choice Lists

Discrete choice lists are used in variant, array aggregates and case statements. The following judge-

ment describes the evaluation of a list of choices. The result is a representation of the choices.

Dch : Dch*

C: Choice

$1, E i-chc Dch :_ C, $2

- A discrete choice list.

- The representation of the choice list.

4.2.12 Expressions

The evaluation of an expression results in a value and possible side-effects. In certain cases the

meaning of an expression depends on the expected type (e.g., the evaluation of aggregates and

string literals). Rather than adding this type information to the judgement, the abstract syntax

provides such information where necessary.

$1, E t-_p Exp ==_ V, 3'2

Exp : Exp - An expression.

V : Value - The resulting value.

The judgement for conditions differs from that for expressions by returning a truth value.

$1, E t-end Cnd :::¢, V, $2

Cnd : Cnd - A condition.

B : Bool - A truth value.

4.2.13 Names

The evaluation of a name results in a view of the named entity.

$1, E I-ham Nam :=_ W, 5'2

N : Nam - Aname.

W : View - The view denoted by the name.

The evaluation of certain kinds of names cannot have side-effects (e.g., subtype indications).

Rather than defining a separate judgement for this case the definition will require that the initial
and final states are identical in these cases.

4.2.14 Ranges

The following judgement defines the evaluation of ranges. In the abstract syntax ranges include

discrete subtype definitions. The judgement also deals with the definition of the range attribute.

Rng : Rng

R : Range

Sx, E I-rng Rng =_ R, 5'2

A range or discrete subtype definition.

The resulting range value.

45

4.2.15 Record Aggregates

Thefollowingjudgementdefinesthevalueof a record or extension aggregate.

C : CompAssoc

Agg : Agg
V : Id-_ Value

S1, E, C t-agg r Agg ::=_ V, S_

- Thee expected components of the aggregate.
- The aggregate.

- The resulting binding.

The expected type for the aggregate is provided in the abstract syntax by allowing only qualified

aggregates. Qualification is added by static analysis where necessary.

4.2.16 Array Aggregates

A separate judgement is used for array aggregates. It has an additional sequence of index ranges as
context.

$1, E, R, T I-_g Agg ==vV, $2

R : list(Range)
T : Subtype

Agg : Agg
V : Value

- The index ranges of the aggregate.

- The type of the elements.

- An array aggregate.

- The array value.

4.2.17 Attributes

The following judgement defines the values of (parameterless) attributes as defined in Appendix A
of the Reference Manual.

S1,E, W1 [-att Id=_ W_,S_

W1 : View - Aview.
Id : Id - The attribute name.

W2 : View - The view of the attribute.

All core language-defined attributes are free of side-effects. This means that the final state will

always equal the initial state. Note that some attributes return a subprogram view which, when

called, may have a side-effect or raise an exception. But the effect of such calls is not part of

evaluating the attribute itself.

In the case of the range attribute, the signature differs as follows:

S1, E, W1 t-_tt,, range =;_R, S_

W : View - Aview.

R : Range - Arange.

4.3 Actions

A sequence of statements is executed by sequentially executing each statement in the sequence.
Execution is abandoned if one of the statements raises an exception or causes some other change in

the flow of control. In the case of expressions, the language specifies that, in certain cases, several

expressions are evaluated in arbitrary order.

46

Inordertosystematicallydefinedifferentkindsoforderofexecutionofprogramparts,thenotion
of anactionis introduced.Anactioncanbeviewedasarepresentationof ajudgementwithoutthe
state.Consider,forinstance,thejudgementforstatements:

81, E F,t,_ Stm _ $2

The corresponding action is a term

statemen t_fn(E, Stm)

that represents the environment and the statement. For convenience, we shall write actions just like

judgements with the initial and final state omitted. In this case, the action is written as

E I-st,,, Stm

Given an action A, it is meaningful to talk about the effect of executing the action in a given state

So. This is expressed by the predicate run:

run(So, A, $1)

holds if and only if the execution of action A in state So results in state $1.

Using run it is possible to define different orders of evaluation of sets and sequences of actions.

The notation

means that the actions A1 through A, are to be executed sequentially starting in state So and

leading to $1. The definition of this notation needs to consider the propagation of exceptions by any
of the actions.

Similarly, the notation

means that the actions A1 through An are to be executed in arbitrary order.

The set of actions (sort AcIion) is given by the following terms. There is one action constructor

for each judgement.

47

type Action

then : list(Action) _ Action
new_objectJn : Value x ObjecLiocation _ Action
attributeJn : Environment x View x Id x View _ Action

param_attributeJn : Environment x View x Id x Value x View _ Action
case_alternativeJn : Environment x Value x Alt x Bool ---, Action
choicesJn : Environment x Dch_lst x Choice _ Action

component__listJn : Environmentx
Discriminantx

Cmp_lst x

(Id -% (Partial_subtype x optional(Thunk))) _ Action

constraintJn : Environment x Subtype x Cns x Constraint _ Action

compatibleJn : Environment x Subtype x Constraint _ Action
declarationJn : Environment x Dcl x Environment --* Action

default_value_fn : Environment x Subtype x Value ---, Action

discr_assoc__fn : Environment x Subtype x Dca x Constraint _ Action
discriminanLpartJn : Environment x Dcp x Discriminant ---* Action
elsif_clauseJn : Environment x Eif x Bool _ Action

expressionJn : Environment x Exp x Value --* Action
nameJn : Environment x Nam x View _ Action

new_typeJn : (optional(Type_location) x Type) x Type_location _ Action

range_fn : Environment x Rug x Range _ Action

subtype_indication_fn : Environment x Sid x Subtype _ Action
p_..subtype__indication_fn : Environment x Discriminant x Sid x PartiaLsubtype _ Action

type_definition_fn : Environment x Discriminant x Tdf x Subtype x Environment _ Action
variant_listJn : Environment x Discriminant x Vnt_lst x Variant ---, Action

variant_partJn : Environment x Discriminant x Vrp x optional((Id x Variant)) ---, Action
subtype_convertJn : Environment x Subtype x Value x Value _ Action

view_convert_fn : Environment x Subtype x View x View _ Action
contentJn : LValue x Value _ Action

assignJn : Environment x Subtype x LValue x Value --* Action

raw_assign__fn : LValue x Value _ Action
finMize_fn : Environment x Subtype x Value ---, Action

value__splitJn : Environment x Subtype x Value -_ Action

discrete_type__fn : Environment x Subtype x Bool _ Action
coversJn : Value x Choice x Bool---* Action

statementJn : Environment x Stm _ Action

arbJn : list(Action) _ Action

subprograrrmbodyJn : (Id -% View) x View _ Action

The following predicates define a sequence of actions for a variety of different syntactic constructs:

component_actions(Environment, CompAssoc, list(Rca), list((Id x Value)), list(Action))

expression_list(Environment, list(Exp), list(Value), list(Action))

index_actions(Environment, list(Sid), (Subtype), list(Action))

parameter_action(Environment, list(Pss), (Id x Parameter), (Id x View), Action)

parameter_list(Environment, list(Pss), (td -% Parameter), (Id -% View), list(Action))

48

4.4 State

Values of sort Siate describe a current store, together with the current status of program execution.
A state may represent the propagation of an exception, exit from a subprogram, or exit from a loop.

4.4.1 Classification of States

States are classified as normal or abnormal. The following judgements define the classification.

abnormaL.state(excep tion(l_, N))

abnormaLstate(exit(Is , N))

abnormal_.state(proc__return(N))

abnormal_state(t'unc..return(W, N))

normaL_state(normal(N))

4.4.2 Accessing the Store of a State

The following judgements describe the store associated with different states:

the__store(exception(Id, N)) = N

the_store(exit(l_, N)) = N

the._store(proc_return(N)) = N

the__store(func_return(W, N)) = N

the_.store(normal(N)) = N

The following judgements describe the construction of states:

make-state(exception(ld, N), N1) = excep tion (Id, N1)

make_.state(exi t(ld, N), NI) = exit(I_, N1)

make..state(proc_return(N), N1) = proc_return(lVl)

make__state(func_return(W, N), N1) = func_.return(W, NI)

make_state(normal(N), N1) = hOtrod(N1)

49

4.4.3 Reading and Writing the Store

the_store(S) = (B, ?, ?, ?)

s°b,[,] = B[/]

the__to_e(S)=/:, B, 7,?)
s'_[I] : B[/]

the_.!o_e(S)= (:, :, B, ?)
StYP[II = B[I]

the__to_e(s) = (?, ?, ?, B)
S"P [I] = B[/]

&[I _-+1 V] = make._state(& , the_store(S1)[I)--+1 V])

Sl[I _-+2 V] -- make_state(Sl, the._.store(S1)[I _"+2 V])

SI[I _-+a V] = make__state(&, the_store(&)[I _-'_a V])

(Bo, Bp, Bt, B,)[I)--_1 V] = (Boil)---* V], Bp, Bt, B,)

(Bo, Bo, Bt, B,}[I _'+2 V] = (Bo, Bo[l _-+ V], Bt, B,)

(Bo, Bp, Bo, B,)[I _-+a V] = (Bo, Bp, Bo[I _-+ V], B,)

(Bo, Bp,B,, B0)[I_4 V] = (Bo,Bp, B,, Bo[I _ v])

4.4.4 The Content of a Location

This function differs from stored_value because it works on a state rather than a store and because

it allows L-values rather than just locations. In the case of a structured L-value, the appropriate

component of a compound object will be returned.

S b content(location(I)) _ S°bJ[l]

s _ co.tent(L.) _ a_ray_val(R.,B)
S [- content(array_component(L., V.)) _ B[V_]

S F- content(L.) =:_ array_vM([R1], B)

S b content(array--slice(Lv, R)) ::_ axray_vM([R], B)

S i- content(Lv) ::> record_val(T_, Dr, C))
S)- content(record_component(L,, Id)) =v Ct[Id]

the.store(S,) = {B, ?, ?, ?)

-,I E dom(B)

new_object(S1, V, I, SI[I _-"1 V])

5O

the_tore(S,) = (%B, 7,?)
_I E dom(B)

new_..subprogram(S1, V, I, $1[I _-_. V])

the_.store($o[l _a T_]) = (?, ?, B, ?)
_I E dom(B)

new_type(So, T_, U, So[I _a T_])

the_store(So[I _4 T_]) = (?, ?, ?, B)
_I e dora(B)

new_subtype(So, Te, U, So[I _"-_4Tel) •

Order of Execution

Sequential Execution

sDs

tun(normal(N), Ao, $2)

A:
hj

normal(N)

s_

t_ Sa

t.

abnormaL.state(S)

S ... S

A,

4.5.2 Arbitrary Order Execution

Sl}S

abnormal_state(S)

s

pick(A, A3 , At)
run(normal(N), Aj , $1)

{At1}
51 ... 82

Atn

{AI},ormal(N)

51

pick(A. A_, A, A_)

pick(As, Ax, At)

pick(A . As, A=, A . At)

4.5.3 Executing Individual Actions

Note that there are predicates that do not involve state. They are included as a matter of conve-

nience. It is possible to include the appropriate terms in a sequential or arbitrary order execution
where this makes the definition more readable.

S1 .. • $2
An

run(S1, then(A), $2)

new_object(S1, V, L, $2)

run(S1, new_object._fn(V, L), S2)

$1, E, V _-cu CLt=_ B, $2

run(St, E, V kclt C{t =_ B, $2)

S_, E _h_ Chc _ C, $2
run(S1, E E-the Chc :=_ C, $2)

S1,E Fc,_p D _ Cmp, A
run(S1, E I-crop D ==_Cmp, $2)

$1, E1 _-dca Dcl => E2, $2

run(S1, E1 }-dcl De} =_ E2, S_)

$1, E }-e/f Elf _ R, S_

run(S1, E i-el I Elf _ R, $2)

$1, E F_p Exp =_ V, $2

run(Si, E I-exp Exp =_ V, $2)

$1, E _-n,,_ Nam _ D, $2

run(St, E Fn_m Nam =_ D, S_)

$1, E krn_ Rng ::_ R, S_
run(Sl,E I-m# Rag ::¢,R, 5'2)

S1, E [-strn Stm ==_$2

run(S1, E [-stm Stm =_, $2)

S1, El, D bta I Tdf _ S,, E2, $2

run(S1, El, D }-ta Tdf =;, St, E2, S2)

$1, E, St k subtype_convert(V1) ::_ V2, $2

run(S1, E, St b- subtype_convert(1/1) ::_ V2, $2)

$1, E, St I- subtype_convert(W1) =_ W2, $2

run(S1, E, St l- subtype_convert(W1) =_ W2, $2)

52

5"_- content(L,) _ V

run(5., _- content(Lv) _ V, 5.)

{A1)5'1 ... 5'2
A,

run(S1, ... , oc2)

A.

subprogram_body(5"1 A, W, $2)

run(S1, subprogram_body_fn(A, W), 5._)

Values

Ranges

discrete_range(discrete-rng(ll , 12))

real_range(real_rng(Rx , R2))

low_bound(discrete-rng(I, ?)) = discrete_val(I)

low_bound(real_rng(R, ?)) = real_val(R)

h igh_bound(discrete_rng(?, I)) = discrete_val(I)

higb._bound(real-rng(?, R)) = real_val(R)

make_range(discrete_ val(I1), discrete_ val(12)) = discrete_rng(I1, &)

make__range(real-val(R1), real-val(R2)) = real_rng(R1, R2)

R_<R
R<_R2

belongs_to(real'val(R), real_rng(R1, R2))

It <I
I<[2

belongs_to(discrete_val(l), discrete-rng(h, 12))

included_in(discrete_rng(It , t2), discrete_-rng(I3,14))

11 >12

n ulLrange(discrete__rng(11,12))

53

R1 > R2

null_range(real_rng(R1, R2))

values_in_range(discrete-rng(I, I), seLof([discre te_val(l)]))

I1>I2
val ues_in_range(discre te_rng(11,12), set_of([]))

values_in_range(discrete-rng(ll + 1, I2), set_of(Vs))

values_in_range(discrete-rng(I1,12), set_of(discrete_ val(11) " V,))

4.6.2 Index Ranges

indices([]) = seLo[([])

values_in_range(R, V_)

indeLvairing(Vr, indices(R,), V)
indices(R. R_) = V

index_pairing(set_of([]), Vl, set_of(I[]]))

index_pairing(set-of(V_), V1, V_)

prefix_seLwith_element(V, V1, Vy)

index_pairing(set-of(V. V,-), V1, V_ U Vy)

prefix._set_with_element(V, seLof([]), set_o[([]))

prefix_seLwith_elemen t(V, set_of(Er), se t_o[(Ep))

prefix_set_with_element(V, set_of(El . Er), set_o[(V . E1 " Ep))

4.6.3 Predicates of Values

discrete_value(discrete-val(X))

real_ value(reaL val(X))

access_value(access-val(X, 7))

discrete_value(V)

scalar_ vMue(V)

reM_ value(V)

scMar_value(V)

scalar_value(V)

elementary_value(V)

54

access_value(V)
element ary_ value(V)

composite_value(record-val(X , Y, Z))

composite__value(array_val(X , Y))

dom(V) = indices(B)

array_value(array_val(B, V))

Types

Type Descriptors

s_-[u] = (? × Tv)
type_struet(S, subtype(U, ?, ?)) -- Tv

4.7.2 Ancestry Relation

ancestor(S, U, U)

styp[u]= (some(U2)x ?)
ancestor(S, Us, Ul)

ancestor(S, U, UI)

ancestor(S, U_, U,)
descendant(S, Ul, Us)

s'-[u] = (nonex ?)
ultimate_ancestor(S, U, U)

Stvp[U] -- (some(U2) x ?)
ultimate_ancestor(S, U1, U2)

ultimate_ancestor(S, U, (]2)

4.7.3 Ranges of Scalar Types

base__range(S, enum_type(N)) = discrete_rng(O, N)

base_range(S, modular_type(N)) = discrete_rng(O, N,-, 1)

base_range(S, signed_in teger_type(BI , Bt, ?, ?)) = discrete_rng(Bf , Bt)

base_range(S, universal-in teger_type(B I , Bi)) : discrete-rng(Bl , Bt)

55

St = subtype(U, no_constraint, A)

range_of_subtype(S, St) = base_range(S, type_struct(S , St))

range_of__subtype(S, subtype(U, range_constraint(R), A)) = R

ranges_or_ ubtypes(S,[]) = []

ranges_of-..su b types(S, $1 • St) = range_of__su b type(S, $1) • ranges_of-.su b types(S, S_)

4.7.4 Values of a Type

ancestor(S, U, Up)

st p[up] = (7 ×
descriptor_value(S, T_, V)

descriptor_value(S, class_type(U), V)

belongs_to(V, base_range(S, enum_type(N)))

descriptor_value(S, enum_type(N), V)

descriptor_value(S, enum_type(N), in valid_pal)

belongs_to(V, base_range(S, modular_type(N)))

descriptor_value(S, modular_type(N), V)

descriptor_value(S, modular_type(N), in valid_pal)

descriptor_value(S, signed-integer-type(BI , BI , F, L) , discrete_pal(N))

descriptor_value(S, signed_in teger_ type(Bf , BI, F, L), in valid_ pal)

descriptor_value(S, universal_integer-type(BI , Bt), discrete_pal(N))

descriptor_value(S, universal_integer_type(B f, B_), invalid_pal)

array_value(array_val(ranges-of-subtypes(S, I), B))

descriptor_value(S, array_type(I, C), array_ val(ranges_of-subtypes(S, 1), B))

N 6 set_of(adorn(D))

D[N] = (St x Th)
subtype_value(S, St, BIN])

discriminant_value(S, discr(D), B)

discriminant_ value(S , D a , D,)

cl_value(S , C_, D_ , C_)

descriptor_value(S, record_type(Tg, D,, C,), record_val(Tg, Dr, Cv))

56

dora(F) = set_o_adorn(A))
A[1d]= (Ps x Th)

subtype_value(S, actualize(Dr, V,), F[ld])

varianL.values(S , Vr , D_, F_)

cl..value(S, fields(A, Vr), Dr, F _ F,)

variant_values(S, none, D_, [])

the_variant(F, D_[/a], C_)

cl__value(S, CI, De, V_)

variant._values(S, some((Id x F)), D_, Vv)

4.7.5 Record Fields

The following definitions are useful to deal with the types of record fields. Binding B represented

the values of the discriminants.

Oo[Id]= (St × T_)
componen t_type(B, record_type(Tg, discr(Da), C¢), Id, St)

selec t_componen t_type(B, Ct, I d, St)

component_type(B, record_type(T 9, Da, C_), I_, St)

ca[_d]= (P, × T_)
select_component_type(B, fields(Ca, ?), ld, actualize(B, P,))

Since component names have to be unique, we can quantify over values V in the following rule.

the_variant(Vb, V, Ci)

select_component_type(B, Ct, I_, St)

select_component-type(B, fields(Ca, some((lv x Vb))), Id , St)

covers(X, C, true)
the_variant(variant((C x Ct)-L), X, Ci)

covers(X, C, false)

the_variant(variant(L), X, Ct)

the_variant(variant((C x Ci) " L), X, Ca)

4.7.6 Classification of Types

is_scalar_type(S, Ty)

is_elemen tary_type(S , Ty)

is_access_type(S, Ty)

is_elementary-type(S, Ty)

is_array_type(S, Tv)

is_composite_type(S, Ty)

57

is_record_type(S, Tv)

is_composite_type(S, Tv)

is_tagged_type(S, TV)
is_composi re_type(S, Ty)

is_protected_type(S, T v)

is_composite_type(S, Ty)

is_discrete_type(S, TV)

is_scalar_type(S, T_)

is_real_type(S, TV)
is_scalar_type(S, Ty)

is_access_to_object-type(S , TV)

is_access_type(S, Ty)

is_access_to...subprogram-type(S , TV)

is_access_type(S, Ty)

is_enumeration-type(S, T v)

is_discrete_type(S, Ty)

isinteger_type(S, TV)

is_discrete_type(S, Tv)

type-struct(S, = enum_type(i)
is_enumeration-type(S, T_)

is_boolean-type(S, subtype(boolean_tn, ?, ?))

is_character_type(S, subtype(character_tn, ?, ?))

is_signed_integer-type(S, T_)

is_integer_type(S, Ty)

is_anodular_integer-type(S , Tv)

is_integer_type(S, Ty)

is_signed_integer_type(S, subtype(root_integer-tn, ?, ?))

type_struct(S, Ty) :- modular_type(?)

is_modular_integer-type(S, Ty)

not yet defined

is_real_type(S, Ty)

type-struct(S , Ty) = access_type(St, Am)
is_access_to_objec t_type(S , Ty)

type-struct(S , Ty) = func_profile(P _ , St)
is_access_to_subprogram-type(S , Ty)

58

type_ztruct(S, TV)= proc_vrofiJe(P,)
is_.access_to..subprogram._type(S , Ty)

type..struct(S , T v) = array_type(C, B)
is_array_type(S, Tu)

not yet defined

is._string_type(S, Ty)

type..struct(S, Ty) = record_type(T_, D, C)

is_record_type(S, Ty)

type._struct(S , TV) = record_type(some(h), D, C)
is__tagged_type(S , Ty)

not yet defined

is_task_type(S, Ty)

not yet defined

is_protected_type(S, Ty)

is_elementary_type(S, Ty)

is_by_copy_type(S, Ty)

is__tagged_type(S, Ty)

is_by_reference_type(S, Ty)

is__task_type(S , T v)

is_by_reference_type(S, Ty)

is_protected_type(S, Ty)

is_by_reference_type(S, Ty)

Subtypes

Constraint Satisfaction

satisfies(V, no_constraint)

belongs_to(V, R)

satisfies(V, range_constraint(R))

satisfies(array_ val(B , A), index_constraint(B))

satisfies(record_val(Tg, D, R), discriminant_constraint(D))

59

4.8.2 Values of a Subtype

s_p[u] = (P × T_)
descriptor_value(S, T_, V)

satisfies(V, C)

subtype_value(S, subtype(U, C, A), V)

Actualization

Values

actualized_value(B, p_value(V)) = V

actualized_value(B, discriminant_ref(I)) =B[I]

4.8.3.2 Ranges

actualized_value(B, L) = discrete_val(Lo)
act ualized_val ue(B, 11) = discrete_val(Ha)

actualized_partial_range(B, (L x H)) = discrete_rng(La, Ha)

actualized_range_list(B, []) -- []

actualized_range_list(B, R • Rs) = actualized_partial_range(B, R) • actualized_range_list(B, R_)

4.8.3.3 Binding Lists

actualized_binding_list(B, []) -- []

actualized_binding_list(B, (I x V) . R) = (I x actualized_value(B, V)) . actualized_binding_list(B, R)

4.8.3.4 Constraints

actualized_constraint(B, p_no_constraint) = no_constraint

actualized_constraint(B, p_range_constraint(R)) = range_constraint(actualized_partiaL..range(B , R))

actualized_constraint(B, p_index_constraint(S)) = index_constraint(actualized_range_list(B, S))

C -_ discriminant_constraint(actualized_binding_.list(B, S))

actualized_constraint(B, p_discriminant_constraint(S)) = C

C = indirect_indeLconstraint(actualized_range_list(B, S))

actualized_constraint(B, p_indirect_index_constraint(S)) -- C

C = indirect_discriminant_constraint(actualized_binding_list(B, S))

actualized_constraint(B, p_indirect_discriminant_constraint(S)) = C

60

4.8.3.5 Subtypes

actualize(B, p_subtype(subtype(U, C, A), Pc)) = subtype(U, actualized_constraint(B, Pc), A)

4.8.3.6 Components

At + A2 = AI + A2

actualized_components(B, fields(C., some(Vp))) = actualized_complist(B, Ca)+ actualized_variants(B, Vp)

actualized_components(B, tields(C_ , none)) = actuMized_complist(B , Ca)

4.8.3.7 Component Lists

actuali ea_comvlist(B, []) = []

actualized_complist(B, A) = A.

actualized_complist(B, (I x P,) . A) = (I x actualize(B, P,)) . A,

the_variant(V., B[I], Ct)

actualized_variants(B, (I x V,)) = actualized_components(B, CI)

4.9 Declarations

4.9.1 Declarations

4.9.2 Types and Subtypes

4.9.2.1 Type Declarations

The semantics of a type definition are determined in the context of a discriminant association. For

types without discriminant, this association is empty

St, El, 0 _-td! Tdf _ St, E_, $2
new_subtype(S2, St, Ls, ,5'3)

S'1, E1 F dct type [d is Tdf; _ E2[Id _ subtype_view(Ls)], Sa

[E t- d.¢ Dcp _ D] s 2$I E, D _'taf Tdf =_ St, E2

new_subtype(S2, St, Ls, $3)

St, E Fdc_ type Id Dcp is Tdf; _ E2[Id _ subtype_view(Ls)],..,ca

For a given type descriptor, the following rule creates a new unique type name and constructs a

first subtype.

61

4.9.2.2 Subtype Declarations

A subtype indication may be a named subtype or a subtype with a constraint. In the former case,

evaluation of the subtype indication cannot have side-effects.

$I, E k'nam Nam :_ subtype_view(Ls), Si

$1, E J-._ Nam _ S;tP[L.], SI

$1, E bnam Nam ::_ subtype_view(L,), S1

Sl, E, s;tp[L_] t-c., ¢s. _ C, &
compatible(E, S;tV[L_], C)

S;tP[L,] = subtype(U, c_, A)

$1, E t-sid Nam Cns ::_ subtype(U, C, A), 82

$I, E _-nam Nam ::_ subtype_view(Ls), $1

$1, E, D I-v,, Nam =_ p-subtype(S;tP[L,], p_no_constraint), S_

$1, E _-nam Nam ::_ subtype_view(L_), $1

p_constraint(S1, E, D, S?tP[L,], Csn, P, S_)

compatible(E, S; tp [L,], C)

s;tp[L,] = subtype(U, C1, A)

$1, E, D F-p,, Nam Cns ::_ p_subtype(subtype(U, no_constraint, A), P), 52

The following syntax represents ranges in a discrete subtype definition. It applies only to con-

strained array type definitions.

not yet defined

$1, E _-,_d Rng _ subtype(U, C, A), 82

$1, El t-s,d Sid =_ St, $2

new-subtype(S2, St,L_, Sa)

$1, E1 _-dc_ subtype Id is Sid; =_ El[ld _ subtype_view(L,)], Sa

Objects and Named Numbers

Object Declarations

S1

E1 _-,id Sid =v St

new_object_fn(invalid_val, L)

default_value_fn(E1, St, V)

assign.-fn(E1, St, location(L), V)

s_

81, E1 bdcl Id : Sid; =v E_[Ia _ object_view(location(L), St, variable)], $2

E1 b,id Sid _ St

new_object_fn(invalid_val, L)
51 default_value...fn(E1, St, V) $2

assign-fn(E1, St, location(L), V)

$1, E1 i-eel Id : constant Sid; =_ El[Id _ object_view(location(L), St, constant)], $2

E1 I-.d Sid =:_ St

$1 new_object__fn(invalid_val, L) $2
E 1 bex p Exp _ V

assign_fn(S_, S,, location(L), V)

$1, E1 _-dd Id :Sid :- Exp; _ E_[Ia _ object_view(location(L), St, variable)], S_

62

E1 I-,,d Sid =* St

S1 new_object_fn(invalid_val, L)
E] I-exp Exp =_ V 5'2

assign_fn(El, St, location(L), V)

$1, E1 F dcJ Id : constant Sid := Exp; =_ El[Id _-* object_view(location(L), St, constant)], S_

E 1 F,i d Sid =_ St

new_object_fn(invalid_val, L)
$1 default_value_fn(E1, St, V) $2

assign_fn(E1, St, location(L), V)

$1, E1 I-dcZId : aliased $id; =_ El[ld _ object_view(location(L), St, aliased)], S_

E1 F,,d Sid =_ St

new_object_fn(invalid_val, L)
$1 default_.value_fn(E1, St, V) $2

assign_.fn(El, St, location(L), V)

$1, E1 Fdd Id : aliased constant $id; =_ El[Id _ object_view(location(L), St, constant)], $2

E1 I-,,d Sid =V St

S1 new_object_fn(invalid_val, L)
El Fexp Exp =_ V 5'2

assign_fn(E1, St, location(L), V)

S_, E1 Fdd Id : aliased Sid := Exp; =_. E_[ld _ object_view(location(L), St, aliased)], $2

E1 I-,id Sid =_ St

$1 new_object_fn(invalid_val, L)
E1 Fexp Exp _ V $2

assign_fn(E1, St, location(L), V)

S_, E1 Fdd Id : aliased constant Sid := I=xp; =_ E_[Id _ object_view(location(L), St, constant)], $2

4.9.3.2 Number Declarations

$1, E1 F_p Exp =_ V, S2

new_object(S1, V, L, 5"2)

Ea = E1 [ld _-* object_view(location(L), subtype(universal_reai_tn, no_constraint, not_used), constant)]

Sl, E) t-de I Id : constant := Exp; ::_ Ea, $2

$1, E1 t-,xp Exp :_ V, $2

new_object(Sl, V, L, $2)

E3 = E, lid _-_ object_view(location(L), subtype(universai_integer_tn, no_constraint, not_used), constant)]

$1, E1 Fdca Id : constant := Exp; =_ E3, $2

4.9.4 Derived Types and Classes

So, El F ,,d Sid _ subtype(P, C, A), $1

S:'P[P] = (P. × T.)

new_type(S1, (some(P) × Ty), U, $2)
So, El, Do F td! new Sid _ subtype(U, C, A), E2, $2

63

4.9.5 Scalar Types

& { E _-o., E×pl . V_ } &E F-,xp ExP2 _ V=
SI, E _-rng ExPI..ExP2=> make_range(VI, V2),$2

6'1, E b,_,_ Nam _ W, S2

abnormaL.state(S2)

S1, E b-r,g Nam'range _ R, .5'2

51, E k,a,_ Nam =_ W, $2

normagstate(S2)

S2, E, W _-aUr range =_ R, Sa

,5'1, E I-rng Nam'range ::> R, $3

not yet defined

$1, E br_g Nam'range(Exp) _ R, $2

4.9.5.1

4.9.5.2

4.9.5.3

4.9.5.4

Enumeration Types

Character Types

Boolean Types

Integer Types

$1, E1 I- exp Exp 1 => discrete_val(V1), S1

$1, E1 I-_.p ExP2 =:> discrete_val(V2), $1
new_type(S1, (some(root_integer_tn) x signed_integer_type(I/1, V2, V1,172)), U, $2)

$1, El, 0 _-tdy range ExPl..Exp2 =_ subtype(U, no_constraint, not_used), El, $2

S1, E1 _'exp Exp ::_ discrete_val(V), $1

new_type(S1, (some(root_integer_tn) x modular_type(V)), U, $2)

$1, El, 0 [-td/ rood Exp =_ subtype(U, no_constraint, not_used), El, $2

4.9.5.5

4.9.5.6

4.9.5.7

Operations of Discrete Types

Real Types

Floating Point Types

not yet defined

$1,17,1, D btdf digits Exp Cns :¢, St, E2, $2

not yet defined

S1, El, D k td! digits Exp =_ St, E2, S=

Operations of Floating Point Types

Fixed Point Types

not yet defined

$1, El, D k'ta! delta Exp digits Exp Cns =_ St, E2, $2

not yet defined

$1, El, D _-ta! delta Exp digits Exp _ St, E2, $2

64

not yet defined

$1, El, D t-tdf delta Exp Rng ::_ St, E2, $2

4.9.5.10 Operations of Fixed Point Types

4.9.6 Array Types

The evaluation of a subtype mark has no side-effect. Therefore, the evaluation of lists of subtype
marks is defined sequentially.

S, E I-sta 0 =_ []

S, E I-.am Nam 0:2z subtype_view(Ls), S
S, E _ stl (Nam,...) =v St

S, E _-stJ (Nam O, Nam,...) _ SstP[L,] • St

index_actions(E, (), [], [])

index_actions(E, (Sid,...), St, A c)

index_actions(E, ($id0, $id,...), Sto - St, E F ,,d $id 0 ::_ Sto • Ac)

r .g _constraint.(S, [], [1)

type_constraints(S, St, R)
range_constraints(S, subtype(?, range_constraint(Ro), ?) • St, Ro • R)

not yet defined

S1, El, D F'td! array(Rng_lst)of aliased 5id =:_ St, E2, $2

not yet defined

$1, El, D _-tdj array(Nam 0, Nam,...)of aliased 5id ::¢, St, E2, $2

index_actions(E, Idx, S,, Ac)

range_constraints(S2, Si, R)

new_type(S2, (none x array_type(Si, St)), U, $3)

$1, El, 0 I-td7 array(Idx)of 5id _ subtype(U, index_constraint(R), not_used), E2, Sa

SI, El _-Stl Idx _ S,

$1, E1 _-sid Sid _ St, $2

new_type(S_ , (none x array_type(S,, St)), U, ,93)

S1, El, 0 Ftd] array(Idx)of Sid _ subtype(U, no_constraint, not_used), El, Sa

65

Discriminants

Record Types

&
EFcmpD_Cmp

E, D I-_r_ Vrp ::_ V

new_type_fn((none x record_type(none, D, fields(C, V))), U)

$1, E, D t-ta! Crop =_ subtype(U, no_constraint, not_used), E, S2

E F-crop D ::_ Crop]
S1 E, D _-vrn Vrp ::_ V $2

new_type_.fn((none x record_type(some(U), D, fields(C, V))), U)

S1, E, D }-tar tagged Crop ::_ subtype(U, no_constraint, not_used), E, $2

not yet defined

5'1, E I-c,_p D =:, Idn : aliased Sid; Cmp ..., A

E,D I-p_, Sid =v P_]S1 E F-cmt, D ::_ Crop ... J $2

$1, E hemp D =¢, Idn : Sid; Crop ...,Al[Idn _-, (Ps x none)]

not yet defined

$1, E F-crop D =_ Idn : aliased Sid := Exp; Crop ..., A

Sx [E, D hp_, Sid =¢, P,] $2
E t-cm e D =_ Crop ... jI,

SI,El-cm p D=_ Idn :Sid := Exp; Crop ...,A

4.9.8.1 Variant Parts and Discrete Choices

S, E, D hw_ _ none, S

S1,E,D I-vrn Vnt=_ B,S2

$1, E, D I-vrn case Idn is Vnt end case; =_ some((Idn x B)), $2

0 = variant([])

S,E, DF-... O=v O,S

$1, E t-_h¢ Dch _ C_, SI

$1 E, D I-_, Vrp =_ V $2

E, D I-o,-_ Vnt; ... =_ variant(B1)
Sx, E, D t-vrn when Dch => CmpVrp; Vnt; ... =¢, variant((Cv x fields(C, V)) . B2), $2

66

4.9.9 Tagged Types and Type Extensions

4.9.9.1 Type Extensions

So, E1 b,,d Sid ::_ subtype(P, C, A), $1

S_YP[P] = (Pp x record_type(some(Up), Dl , fields(C1, I/1)))

$1 El, Do k_, Vrp =_ V2

new_type._fn((some(Up) x record_type(some(U), discriminant.._union(Do , D1), fields(C1 • C2, V1 • V2))), U)
So, El, Do k td! new Sid with Crop =_ subtype(U, no_constraint, not_used), E2, $2

none_ V = V

V $ none = V

discriminant_union(discr(A1), discr(A 2)) = discr(A1 _ As)

4.9.10 Access Types

81, E1 Fs,d, Sid =_ L,, $2
new_type(S2, (none x access_type(L,, pool_access)), U, $3)

S1, El, D b td! access $id =_ subtype(U, no_constraint, not_used), El, $3

SX, E1 _-Sid i Sid ==_L,, Su
new_type(S2, (none x access_type(L,, all_access)), U, Ss)

$1, El, D F td! access all $id =_ subtype(U, no_constraint, not_used), El, Sa

S,, E, kS,d, Sid :=_ L,, S_
new_type(S2, (none x access_type(L,, constant_access)), U, SO)

S1, El, D b td! access constant Sid :=_ subtype(U, no_constraint, not_used), E, , Sa

S,, E Fpa, Pros =_ A, $2
S1, E, 0 F'td] access procedure Pros =_ subtype(U, no_constraint, not_used), E, S2[proc_profile(A) _--_3 U]

S1, E kpa, Pms =_ A, $2
$2, E F.am Nam =_ subtype_view(Si), $2

S, , E,, 0 F td! access function Pros =_ subtype(U, no_constraint, not_used), E_, S2[func_.profile(A, S_'P[St]) _--_a U]

4.9.10.1 Incomplete Type Declarations

In the case of access type definitions, a subtype indication may denote an incomplete type.

S,, E F.am Nam ::_subtype_view(L.), S,

$I,E _-Sid, Nam ::>L,, $I

$1, E I-,a,_ Nam =_ subtype_view(L,), $1

81, E, S;tP[L,] Fc,u Csn =:, C, S2

compatible(E,S; C)
S:tP[L,] : subtype(U, C1, A)

new_subtype(S2, subtype(U, C, A), Lt, Ss)

$1, E bS,d, Nam Cns =:, Lt, $3

67

0 = discr([])

For incomplete type declarations, a new incomplete type descriptor carries the discriminant infor-
mation.

new_type(S0,(none × incomplete_type(0)), U, Sl)
new__subtype(S1, subtype(U, no_constraint, not_used), L,, $2)

So, E1 _-dc_ type Id; =¢. El[1d _-* subtype_view(L,)], 272

S1, E 1 bds c Dcp =¢, D , S2

new_type(S2, (none x incomplete_type(D)), U, $3)

new._subtype(S3, subtype(U, no_constraint, not_used), Ls , $4)

$1, E1 }-dot type Id Dcp; =¢. El[Id _-+subtype_view(L,)], $3

Completing type declarations have their own abstract syntax.

EI _-rook.p Id ::_ subtype_view(Ls)
51, El, 0 FtdI Xdf :¢, St, E2, $2

$1, Ea t-dcl completetype Id is Tdf; :¢. E2, S2[L, _-+4 St]

Ea]-lookup Id ::_ subtype_view(L,)

[EkdscDcp_D]$1 E, D _-tdt Tdf _ St, E2 $2

$I, El }-act completetype Id Dcp is Tdf; _ E2, S2[Ls _-+4 St]

Expressions

Names

E k_ook.p Idn =_ W

S, E t-ham Idn :=_ W, S

$1[E t-._m Nam =_ object-view(L1,St, ?)]k content(L1) _ access_pal(W, ?) $2

$1, E F'nam Nam.aIl =:_ W, $2

4.10.1.1 Indexed Components

The function expression_list computes a sequence of actions that corresponds to the evaluation of a

sequence of expressions.

expression_list(E, [], [], [])

expression._list(E, Fxs, V,, A,)

A=EF_. e Exp=_ V

expression__list(E, Exp • Fxs, V • Vs, A • As)

index_list(S, [], [], [], S)

68

belongs_to(V, R)

index_list(5,1, Rs, V_, I,, $2)

index_list(5,1, R. Rs, V. Vs, V. I,, 5"2)

-,belongs_to(V, R)

index_list(normal(N), R . R,, V . V,, I. I,, exception(constraint_error, N))

expression_list(E, Exs, V,, A,)

abnormal._state(5,2)

5'1, £ b.om Prefix(Exs,...) _ undefined_view, 5"2

expression_list(E, Exs, V,, A,)

normaL_state(5"2)

type._struct(5"2,St) = array_type(?, B)
$2 _- content(L1) => array_val(R, A_)

index_list(S2, R, V,, l:c, Sa)

5'1, E I-,,,,-,, Prefix(Exs,...) _ object_view(array_component(L_, I=), B, C), 5"a

4.10.1.2 Slices

n ull_range(R,)

slice_check(5,, R,, R,, 5")

included_in(Rs , Ra)

dice_check(5", R,, R,, 5")

-,n ulLrange(R,)

-,included_in (R,, R_)

slice_check(normal(N), Rs, R. , exception(constraint_error, N))

5,1{ El--,,,-, Prefix_ W }F_,Frng Rag => R, $2

abnormal_state(5"2)

5'i, E _r_am Prefix(Rng) _ undefined_view, 5"2

5"1{ EF"a'_Ptefix=>°bject-VieW(Lo'5"t'C)}E F,..g Rng _ R, 5'2

normal_state(5,2)

5"2}- content(L_) ::> array_val([Ra], Av)

constrain(5,t , range_constraint(Rs), 5"q)

dice_check(5"2, R,, R,, 5'3)

5'1, E I--,,,,,_ Prefix(Rng) :=_ object_view(array_slice(L_, R,), 5"q, C), 5"3

69

4.10.1.3 Selected Components

S1, E _-.am Nam =V W, S:

abnormal_state(S2)

$1, E I-ham Nam.ldn =_ undefined_view, S_

191,E F'aam Nam ::¢.object_view(L_, St, ?), oc2

component_type(Dr, type_struct(S2 , St), Idn, Sq)

$2 h content(L_) _ record_val(Tg, D,, C_)

new_object(S_, Dv[Idn], L, $3)

Sz, E t-.am Nam.ldn =_ object_view(location(L), Sq, constant), $3

SI, E I-..m Nam ==_object_view(L., St, C), $2

$2 t- content(L.) _ record_val(Tg, Dr, C_)

component_type(D., type._struct(S2, St), Idn, S_)

$1, E t-.arn Nam.ldn =_ object_view(record_component(L_, Idn), Sq, C), $2

S, E _-.am Nam =_ object_view(Lu, St, ?), normal(N)

_component_type(B , type_struct(normal(N), St), Idn, Sq)
S, E I-._,. Nam.ldn =V undefined_view, exception(constraint_error, N)

4.10.1.4 Expanded Names

4.10.1.5 Attributes

EF.am Nam_ W1] $2S1 E, W1 _-,_tt Idn =_ W
d

$1, E hna m Nam'ldn ::_ W, $2

$1, E h_p Exp => V, $1

[EI-naraNam::¢" W1]SI E, W1, V FaUp Idn _ W $2

S, E hnam Nam'ldn(Exp) :_ W, S

Note that the abstract syntax distinguishes N'I(E) for static expression E from N'I(E) where N'I
is a function-valued attribute.

4.10.2 Literals

S, E t-_=p null => null, S

In the abstract syntax, the representation of character literals is given by the numeric value of the

position of the character.

S, E _-_=p 'C' _ discrete_val(C), S

S, E _-_p R :=>reaLval(R), S

S, E t-,.p N _ discrete_val(N), S

7O

4.10.3 Aggregates

Only explicitly qualified aggregates are defined. Static semantics adds qualification where needed.

We assume a normalized representation using named associations. This is possible because of
[4.3.1(14)].

$1, E I-.am Nam =_ subtype_view(L_), $1

type__struct(S1, s_tP[Ls]) = record_type(Tg, discr(L), CI)

S_tP[Ls] = subtype(?, no_constraint, ?)

$1, E, L }- agg Agg =V Bd, $2

$2, E, actualized_components(Bd, Ct) F .g 9 Agg ::_ Be, Sa
5"1, E I-exp Nam'Agg =_ record_val(Tg, Bd, Be), 5'3

$1, E I-n.m Nam =_ subtype_view(Ls), S1

type__struct(S1, s_tP[L,]) = record_type(Tp, D., Ct)

s_tp[L,] = subtype(?, discriminant_constraint(B d), ?)

S1, E, actualized_components(Bd, Ct) I-,g$ Agg =_ Be, $2
$1, E F_xp Narn'Agg =_ record_val(Tg, Bd, Be), $2

find_component(Id, others => Exp • Rca, Exp)

member(Id, Lst)

find_component(Id, Lst,... => Exp • Rca, Exp)

component_actions(E, [], Rca, [], [])

find_component(Id, Rca, Exp)

component_actions(E, B, Rca, Be, As)

component_actions(E, (IdX?) " B, Rca, (ld x V). Be, E b_:q, Exp _ V. A,)

-_find_component(Id, Rca, ?)

component_actions(E, B, Rca, Be, A,)

component_actions(E, (lax?). B, Rca, (Id x V). Be, E1 Fe_p Exp :_ V. A,)

component_actions(E, A, Rca, B, As)

S1 ... S2

Ash

S1, E, A bagg (Rca,...) :0 B, $2

S, E, [] F agg (null record) _ [], S

not yet defined

$1, E, R,, Cs Fagg (Exp 1, ExP2,...) =_ V, 5'2

not yet defined

81, E, R,, C, F_g (ExPl , Exp2,... ,others => Exp) =_ V, $2

not yet defined

$1, E, Rs, Ca _-agg (Aca 1, Aca2,...) =_ V, $2

not yet defined

$1, E, Rs, Cs _-agg (Exp 1, Exp 2, . .., others => Exp) =_ V, $2

71

4.10.4 Operators and Expression Evaluation

It is assumed that static semantics has resolved all operators into function calls as defined in [4.5]

with the following exceptions:

• short-circuit operators

• in and not in operators

4.10.4.1 Logical Operators and Short-circuit Control Forms

$1[EFe_pExpl:v'discrete-val(1)]E be_, Exp 2 _ V $2

SI, E bezp ExpI and then Exp2 :_ V, $2

S1,E b_xp Exp 1 _ discrete_val(O), $2
S1, E b'e_p Exp I and then Exp2 ::_ discrete_pal(O), $2

$1[EF_zvExPl_discrete-val(O)]Ekezp Exp 2 ::_ V $2

S1,EFe_ v ExPl or else ExP2 ::_ V, S2

$1, E b-_p ExPl =evdiscrete_val(1), $2

S1, E _-exp Expl or else ExP2 ::_ discrete_val(1), $2

4.10.4.2 Relational Operators and Membership Tests

S1, E k.a,n Nam _ subtype_view(Ls), $1

$1, E F _zpExp ::_ V, $2

belongs_to(V, range_of_subtype(S1, S_ _p[L.]))

$1, E Fexp Exp in Nam _ discrete_pal(I), $2

$I, E _-.a._ Nam :_ subtype_view(L.), $I

$1, E b e_p Exp =:_ V, S__

- belongs_to(V, range_o ubtype(S2,S: P[L,]))
$1, E _-_xp Exp in Nam =_ discrete_val(O), $2

$1{ E br"g Rng _ R }E b _p Exp =_ V $2

belongs_to(V, R)

$1, E h,rp Exp in Rng :=_ discrete_pal(i), $2

$I { E k_"g Rng _ R }E b e_v Exp :_ V $2

-_belongs_to(V, It)

$1, E _-e_p Exp in Rng _ discrete_pal(O), $2

-_is_tagged_type(S, St)
St -- subtype(U, C, ?)

satisfies(V, C)

test_in(S, v,)

72

St = subtype(U, C, ?)

satisfies(V, C)

v = record_vaJ(some(Tg),?, 7)
ancestor(S, U, T_)

test_in(S, V, St)

$1, E Fnam Nam :=_ subtype_view(Ls), $1

Si, E _-exp Exp _ V, $2

test_in(S2, V, s;tqL,])
$1, E [-expExp in Nam _ discrete_val(1), $2

$1, E _-._., Nam =_ subtype_view(L.), $1

5'1, E t-._p Exp _ V, $2

-.test_in(S2, V, s;tP[L.I)

$1, E _-e_ Exp in Nam =_ discrete_val(O), $2

S1, E be_ Exp in Nam _ discrete_val(1), $2
$1, E be_p Exp not in Nam _ discrete_val(O), $2

$1, E F-e_p Exp in Nam _ discrete_val(O), $2

S1, E F-ezp Exp not in Nam _ discrete_vM(1), $2

S1, E b_p Exp in Rng _ discrete_val(1), S_
$1, E bexp Exp not in Rag _ discrete_val(O), S_

$1, E l-t. T Exp in Rng =_ discrete_vM(O), $2
$1, E _-¢_ Exp not in Rng _ discrete_val(1), S_

S1, E b-e_I, Exp in Nam _ discrete_vM(1), S_
S1, E F-.xp Exp not in Nam _ discrete_val(O), $2

S,, E b.zp Exp in Nam _ discrete_val(O), $2
Sl, E }-e_ Exp not in Nam _ discrete_val(1), $2

4.10.5 Type Conversions

$1, E b,_.m Nam _ subtype_view(L_), $1

[El-'_pExp:_ V1]$1 E, s{tV[Ls] _- subtype_convert(V1) _ V_ S_

S,,E k-expNam(Exp) _ V2, $2

$1, E b.a., Nam 1 _ subtype_view(Ls), S_

[El-"arnNam2=_ W1]S, E,s;tP[L,] i- subtype_convert(W1) ::_ W2 S_

S1, E k'.am Naml(Nam2) ::# W2, S_

73

4.10.6 Qualified Expressions

S1, E F-ham Nam =_ subtype_view(Ls), $1

$1, E _-_p Exp =_ V, $2

abnormal_.state(S2)

S1, E _-ezp Nam'(Exp) ::_ V, $2

SI, E _-,arn Nam =_ subtype_view(L_), $1

S?'_[L,] = subtype(?, C, ?)

Sz , E F ezp Exp ::_ V, $2
normal__state(S2)

satisfies(V, C)

$1, E I'-ezp Nam'(Exp) _ V, $2

5'1, E t-.am Nam =_ subtype_view(L_), $1

S;tP[Ls] = subtype(?, C, ?)

S1, E F-exp Exp :=_ V,normaJ(N)
_satisfies(V, C)

S1, E f-e_p Nam'(Exp) ::_ V, exception(constraint_error, N)

4.10.7 Allocators

[E1-e_pExp:=> V]$1 new_object_fn(invalid-val, L) $2

$1, E _-¢_p new Fxp ::_ access_val(object_view(location(L), ?, aliased), none), S_

not yet defined

S, E bexp new Sid =:_ V, S

Statements

Statement Sequences

E b'stm Stm 1 _] $1So E _-stm Stm 2 ... ==_

So, E _-,tm Stml Stm2 ... :=_ $1

S,E I-_tm 0 _ S

S, E Fstm Stm =:_ S

S,E F-,trn<< Nam >> Stm => S

S, E _-,tm null; _ S

74

4.11.2 Assignment Statements

assign able(variable)

&

assignable(aliased)

E Fnam Nam ::_ object_view(L, St, M) 1 $1
EFe_pExp=_ V J

assignable(M)
E, St F subtype_convert(V) =_ I/1

F content(L) :ez Vo

finalize..fn(E, St, Vo) $2

assign_fn(E, St,L, VI)

value_spliLfn(E, St, V1)

So, E I-stm Nam := Exp =_ $2

E bnam Nam E:_t-e_°bject-view(L'Exp=:_ V St, variable))_ $1

not yet defined

So, E [-,trn Nam := Exp _ $1

4.11.3 If Statements

sl[EkexpExp=_discrete-val(l)]S2EF,t,n Stm 1

$1, E bstm if Exp then Stm I Elf else Stm 2 end if; =:_ S_

$1[E ke_, Exp _ discrete_val(O)]E bet/ Elf _ true $2

$1, E bstm if Exp then Stm I Elf else Stm 2 end if; _ ,92

E be_p Exp _ discrete_val(O)
$1 E _-elI Eif =:_ false $2

E bstm Stm 2 ::_

$1, E b,t,,, if Exp then Stm 1 Elf else Stm 2 end if; =_ oe2

sl [E Fe_v Exp _ discrete-val(1)] S2E[-stm Strn I =_

$1, E F_t,_ if Exp then Stm 1 Elf end if; _ S_

$1 [E F_p Exp _ discrete_val(O)]S_
E F_l/ Elf =_ true lL

$1, E F,tm if Exp then Stm 1 Elf end if; =_ $2

$1[E F_,p Exp =c"discrete-val(O)]E b_tf Elf =, false S_

5'1, E b,t,_ if Exp then Stm 1 Eif end if; =_ $2

S, E F _tf 0 _ false, S

$1, E I--etf Elf 1 =_ true, S_

$1, E I-e_! Elf1 Eif 2 ... _ true, $2

75

4.11.4

E Fe_j Eif I =_ false]$1 E F,i/ Eif 2 ... _ R E2

Sx, E _-,q Eif I Eif 2 ... _ R,S_

sx[Ef-e'pExp_discrete-val(1)]S_EF,,m Stm

$1, E _-el/elsif Exp then Stm _ true, S2

Sx, E }-e=p Exp _ discrete_val(O), $2
Sx, E betl elsif Exp then Stm _ false, S2

[E_-ex, Exp_ V]$1 E, V _-dt Alt =_ true $2

Sx,E _'strn case Exp is AIt end case; _ $2

Case Statements

normal(N), E, V Pcu () _ R, exception(constraint_error, N)

$1, E, V b clt AIt 1 _ true, $2

Sx, E, V [-cit Altl AIt2 ... _ true, S_.

E, V t-de AIt 1 =_ false]$1 E, V bcu AIt 2 ... =_ R j $2

Sx,E, V bcu AIt 1 AIt 2 ... _ R, S2

E }-¢h¢ Dch _ C]
$1 covers._.fn(V, C, true) $2

E Pst,n Stm =_

Sx, E, V Fcu when Dch => Stm ==_true, $2

E F-¢h¢Dch _ C]S, covers_fn(V, C, false) $2

Sx, E, V k_u when Dch => Stm _ false, $2

S, E _-,tm 5tm _ exit(unnamed, N)

S, E b,tm loop Stm end loop; _ norma/(N)

4.11.4.1 Choices

$1, E b-r,,# Rng _ R, $2

SX, E _h¢ Exp =>

choice_range(R), $2

Exp =_ V, $2

choice_value(V), $2

S, E _-chcothers _ choice_default, S

S, E Fch c 0 =_ choice_lst([]), S

Sx, E _-ch¢ Dchl ==>Cx, $2

S2, E I"chc Dch2 [... _ choice_lst(C_), Sa

Sx, E F-the Dch 1 I Dch2 I ..- _ choice_lst(C1. C2), Sa

76

covers(V, choice_value(V), true)

N1 _ Nu

covers(discrete_pal(N1),choice_value(discrete_pal(N2)),_alse)

belongs_to(V, R)

covers(V, choice_range(R), true)

--.belongs_to(V, R)

covers(V, choice_range(R), false)

covers(V, choice_default, true)

covers(V, choice.Jst([]), false)

covers(V, 6'1, true)

covers(V, choiceJst(C_ •G), true)

covers(V, G, false)

covers(V, choice_lst(C2), R)

covers(v, choiceAst(Cx. G), R)

4.11.5 Loop Statements

[E bswn Stm _ 1S2S1 E bstm loop Stm end loop;

Sl, E }-st,,, loop Strfl end loop; =_ $2

unique(X)
Sx, El[Ida _ loop_view(X)] I-.tm loop Stm end loop; _ normal(N)

$1, Ex b,tm Idn: loop Stm end loop; =_ normal(N)

unique(X)

S_, E_[Idn _ loop_view(X)] b.t,. loop Stm end loop; =_ exit(loop_id(X), N)

$1, E1 _-stm Idn: loop Stm end loop; =_ normal(N)

S [E _-e_p Exp _ discrete_val(l)] exit(unnamed, N)
E bst m Stm ::_

a_ J

S, E t-stm while Exp loop Stm end loop; =_ normal(N)

$1
Exp _ discrete_val(1)]

E bst,,, Stm =0 J $2Exp loop Stm end loop; =0-

$1, E bstm while Exp loop Stm end loop; _ $2

$1, E b_ Exp =_ discrete_pal(O), $2
S1, E [-'stm while Exp loop Stm end loop; _ S_

unique(X)

S_, El[Ida _ loop_view(X)] k-st., while Exp loop Stm end loop; =_ normal(N)

.-ql, E1 [-stm Ida : while Exp loop Stm end loop; =_ normM(N)

77

unique(X)
$1, El[idn _ loop_view(X)] k.tm while Exp loop 5tm end loop; =_ exit(loop_id(X), N)

$1, E1 }-.t,_ Idn : while Exp loop Stm end loop; _ normal(N)

4.11.6 Block Statements

$1, E t-stm Hsm =_ S_

S1, E t-str a begin Hsm end; =_ S2

Sz , E h stm Hsm =_ $2

$1, E }-,tin Nam : begin Hsm end; _ $2

$1[E1}-actDcI=_E2] S_E2 h_t,. Hsm =}

S_,E2 }-finalize(B)_ $3

$1, E1 }-_.. declare Dcl begin Hsm end; =V 5'3

$1[El k acI Dcl _ E2] SzE2 Fstm Hsm =_

$2, E2 }- finalize(B) =_ S3

$1, E1 }-st., Nam : declare Dcl begin Hsm end; _ $3

4.11.7 Exit Statements

normal(N), E }-.tin exit; _ exit(unnamed, N)

S, E }-ham Nam =_ loop_view(X), normal(N)

S, E }-,t._ exit Nam; =_ exit(loop_id(X), N)

S, E }-exp Exp ==_discrete_val(1), normal(N)
S, E }-_tm exit when Exp; =_ exit(unnamed, N)

S1, E }- _=p Exp =:v B, $2
Sz, E }-,tin exit when Exp; =:_ $2

S[E}-.amNam=:.loop_view(X)]E }-e=p Exp _ discrete_val(1) normal(N)

S, E b-.t,_ exit Nam when Exp; _ exit(loop_id(X), N)

S][E}-namNam=:_loop-view(X)]E }-e=p Exp _ discrete_val(O) $2

$1, E }-stm exit Nam when Exp; _ $2

78

Subprograms

Subprogram Declarations

$1, E1 _-p._Pros _ A, $2
new--.subprogram(S2, unelaborated, U, $3)

$1, E1 _-8ct procedure Idn Prns; =_ E1 [Idn _-_ subprogram_view(U, A, none)], $3

$1, E1 _-p._ Pros =¢, A, $2
$2, E1 I'-.arn Narn :¢, subtype_view(St), $2

new-subprogram(S2, unelaborated, U, $3)

S1, E1 Fdct function Idn Pros; _ E1 [Idn _-* subprogram_view(U, A, some(S_tp[sz]))], $3

$1, E _-p.s Pros _ A, $2

E Ftooku e Idn _ subprogram_view(U, A, none)

Sl, E _-d,t procedure Idn Pros is Dcl begin Stm end; _ E, S2[U _--_2subprogram(E, adom(A), Dcl, Stm)]

St, E Fv,s Pros =_ A, $2
$2, E t-._._ Nam ::_ subtype_view(St), $2

E htookup Idn ==_subprogram_view(U, A, some(S;tP[st]))

$1, E [-dcl function Idn Pros is Dcl begin Stm end; _ E, $2

S,E%o, 0 _[],S

not yet defined

S, E F-p,, Idn : access Nam; Pros; ... =¢, A, S

not yet defined

S, E t-pas Idn : access Nam := Exp; Pros; ... ::v A, S

}'-rnod Mde =¢. M

S1, E kn.m Nam _ subtype_view(St), $1

$1, E l-ca s Pros; ... _ A1, $2

$1, E kpas Idn: Mde Nam := Exp; Pros; ... =_ Al[Idn _-* formal(M, S?tP[St],some(thunk(E, Exp)))], $2

brood Mde ::_ M

$1, E _-..m Nam _ subtype_view(St), Sx

St, E Fp,, Pros; ... _ A1,$2

S,E kpa_ Idn : Mde Nam; Pros; ... :¢, A,S

4.12.2 Formal Parameter Modes

Fmod in _ in_mode

h.nod in out _ in_out_mode

brood _ in_mode

-rnod out == out_mode

79

4.12.3 Subprogram Bodies

There are no semantics associated with subprogram bodies. The declarations and the statement

part of a subprogram body, together with the declaration environment, are stored as a subprogram

value. The rules given below define the effect of executing a subprogram value.

The following definition creates an environment for the execution of a procedure body by binding

the formal parameter names to the views of the actual parameters. The actual parameters are given

as an association but, due to renaming, the names in the association may differ from those of the

formal parameters.

bind_actuals(E, [], [], E)

bind_actuals(El[I1 _ W1], P, Ids, E3)

bind_actuals(E1, (P1 x I411)" P, I1 • Ids, Ea)

proc_exit(exception(X , N), exception(X, N))

not yet defined

proc_exit(exit(?, N), ?)

not yet defined

proc_exit(func_return(?, N), ?)

proc_exit(proc_return(N), normal(N))

proc_exit(normal(N), normal(N))

S;Ve[L] = subprogram(El, Ids, Dcl, Stm)
bind_actuals(E1, A, Ids, E2)

$1[E2 _-dd DcI _ E3] $2E3 _-stm 5tm ::_

proc_exit(S2, Sa)

subprogram-body(S1, A, subprogram_view(L, A I, none), $3)

return_check(exception(X, N), St, exception(X, N))

not yet defined

return_check(exit(?, N), St, S)

not yet defined

ret urn_check(proc_ret urn (N), St, S)

convert_return_value(normal(N), W1, St, W2)

return_check(func-return(Wl , N), St, func_return(W_ , N))

return_check(normal(N), St, exception(program-error, N))

8O

S_pg[L] = subprogram(El, Ids, Dcl, Stm)
bind_actuals(E1, A, Ids, E2)

$1[E2t-aclDcl::_E3]S'2E3 _-strn Stm =>

return_check(S2, St, Sa)

st, bprogram_body(Sl , A, su bprogram_view(L, A I , some(St)), Sa)

Appropriate rules need to be defined for all predefined operators.

S; pg[L] = operator(Opn)

not yet defined

subprogram_body(S1, A, subprogram_view(L, A I , ?), $2)

A call to an unelaborated subprogram raises program error.

normal(N) spg[L] = unelabovated

subprogram_body(normal(N), A, subprogram_view(L, A f , ?), exception(program._error, N))

4.12.4 Subprogram Calls

The rules given here are incomplete and do not describe subtype and view conversions that are part
of a call.

return_value(func_return(W, N), W, normal(N))

return_value(exception(X, N), ?, exception(X, N))

S1

S1

parameter_list(E, Pss, A f, A a, P)

W = subprogram_view(?, A I , ?)

subprogram_body_fn(A _, W)

return_value(S2, W,-, Sa)

$1, E F-ham Nam(Pss,,..) =¢" Wr, $3

parameter_list(E, Pss, A I , A a, P)

W = subprogram_view(?, A f, ?)

subprogram_body_fn(A _, W)

S], E _-stm Nam(Pss,...); =¢, $2

&

$2

81

4.12.4.1 Parameter Associations

parameter_list(E, Pss, [], [], [])

parameter_list(E, Pss, F, R, A)

parameter_action(E, Pss, F1, RI, A1)

parameter_list(E, Pss, F1 " F, R1 - R, A1 • A)

_given_parameter(Pss, Idn, ?)

parameter_action(E, Pss, (Idn x formal(in_mode, St, some(thunk(E1, Exp)))), (Idn x constant_view(V)), E 1 _-ezp Exp:

given_parameter(Pss, Idn, Exp)

parameter_action(E, Pss, (Idn x formal(in_mode, St, ?)), (Idn x constant_view(V)), E Fexv Exp :¢, V)

the_parameter(Pss,]dn, Nam)

parameter_action(E, Pss, (Idn x formal(out_mode, St, ?)), (Idnx W), E I-_m Nam _ W)

the_parameter(Pss, Idn, Nam)

parameter_action(E, Pss, (Idn x formal(in_out_mode, St, ?)), (Idn x W), E t-n Nam =¢_ W)

given_parameter(Idn => Exp • Pss, Idn, Exp)

Idnl _ Idn_

given_parameter(Pss, Idn2, Exp)

given-parameter(Idn 1 =>? . Pss, Idn2, Exp)

the_parameter(Idn => Nam • Pss, Idn, Nam)

Idnt # Idn2

the_parameter(Pss, Id%, Nam)

the_parameter(Idn I =>? - Pss, Idn2, Nam)

4.12.5 Return Statements

normal(N), E _ stm return; :_ proc_return(N)

SI , E }-exp Exp _ V, normal(N)

S,, E I-_t,_ return Exp; => func-return(constant_view(V), N)

The following needs to be defined to describe the rules of [6.5(6)] through [6.5(21)].

not yet defined

convert_return_value(S, W1, St, I412)

82

4.13 Attributes

is-scalar_type(S1, S_ tp [Ls])

low-bound(range_of_..subtype(S,, SxtP[L,])) = V

new_object(S1, V, L, ,5'_)

&, E, subtype_view(L,) k_tt first _ object_view(L, s;tV[L,], constant), $2

is_scalar_type(Sx, S; t; [L,])

high_bound(range_of_subtype(S1, s;tV[L,])) = V

new_object(Sx, V, L, $2)

SI, E, subtype_view(L,) _-,tt last _ object_view(L, SI'V[L,], constant), &

s_tP[Ls] = subtype(U, C, A)

is_scalar_type(St, subtype(U, C, A))

new_subtype(S1, subtype(U, no_constraint, A), La, $2)

S1, E, subtype_view(L,) F _tt base => subtype_ view(La), S_

S_ tv [L,] = subtype(?, index_constraint(R . R,), ?)

new_object(S1, low_bound(R), L, $2)

$1, E, subtype_view(L,) F au first => object_view(L, & , constant), $2

S;tp[L,] = subtype(?, index_eonstraint(R . R,), ?)

new_object(&, high_bound(R), L, &)

& , E, subtype_view(L,) }-att last => object_view(L, St, constant), $2

S; 'p [L,] = subtype(?, index_constrain t(R. R,), ?)

low_boun d(R) = discrete_ vaI(N_)

St = subtype(universal_in.teger_tn, no_constraint, ?)

high_bound(R) = discrete_val(Nh)

new_object(S1, discrete_val(Nh - Nl + 1), L, $2)

S1, E, subtype_view(L,) F-_tt length => object_view(L, St, constant), $2

&, E, W k _tt first => object_view(L1, ?, ?), &

$2, E, W F-att last => object_view(L=, ?, ?), Sa

Sa _- content(L,) =_ 1/1
& I- content(L=) :_ V=

°Ol, E, W F'attr range _ make_range(I/1, V.'2), $3

83

Chapter 5

Exceptions and Optimization

5.1 Introduction

Version 5.0 of the Annotated Draft Ada 9X reference manual [4] contains language that obviates

many of the problems associated with section 11.6 of the Ada 83 reference manual [10]. The purpose
of this chapter is twofold. The first is to examine the Ada revision as represented by Version 5.0

in light of the earlier Language Precision Team work in this area as published in the LPT Task 1

report [9]. The second is to discuss the consequences of the remaining problems that the semantics

of Ada 9X present in the areas of predictability and to offer suggestions for accommodating them

m practice. The report concludes with a brief commentary on the Annotated Draft used to support,
this research.

5.2 The Ada 9X revision of 11.6

Section 11.6 of the Ada 83 reference manual contained explicit permissions to reorder operations

or to omit some checks that might propagate predefined exceptions. In Ada 83 the notion of the

"effect" of a program or of an operation was not as clearly defined us it is in Ada 9X and the language

of the section gave rise to endless discussions such as those captured in AI-315.

As revised, [11.6] contains two substantive paragraphs, (5) and (7). The first gives permission to

avoid raising exceptions under some circumstances. The second permits more extensive reordering

of operations than was generally considered permissible in Ada 83 by relaxing the requirements for

state predictability when an exception handler is entered.

5.2.1 [11.6(5)]

This paragraph allows the implementation to avoid raising exceptions in the face of failures of

predefined language exceptions under some circumstances. In the context of a clearer notion of
"cffect," it is somewhat of an improvement over the language of Ada 83. Even so, the language used

in [11.6] is less clear than it might be. Consider the language of [RM-83 11.6(7)]:

A predefined operation need not be invoked at all, if its only possible effect is to

propagate a predefined exception. Similarly, a predefined operation need not be invoked if

the removal of subsequent operations by the above rule renders this invocation ineffective.

In Ada 83 the term effect is not defined 1 and the meaning of the term is the subject, of considerable

discussion in AI-315 and elsewhere. The gist of many of the discussions concerns the case in which the

1The index entry for "effect" in [RM-83 Appendix I] is "[see: elaboration has no other effect]."

84

programmerhasapparentlywrittenanoperationthatissureto raiseanexceptionasa "shorthand"
fora raise statement. While this should be considered to be poor programming style, suppressing

the operation leads to surprising effects.

We note that Chapter 14 of the Ada 83 rationale S which deals with exceptions does not discuss

the material contained in [RM-83 11.6] and a search through the text of the rationale for the root

string "optimiz" does not provide any appropriate insight.
From the discussions contained in AI-315 it appears that the primary need that the language of

[RM-83 11.6(7)] is attempting to capture is the desire to remove code that is dead along its normal
execution path even if executing it may (or is certain to) raise an exception due to the failure of a

language-defined check. According to [11.6(7.f)], the language of [RM-83 11.6(7)] is now reflected in

paragraph [11.6(5)] which reads:

An implementation need not always raise an exception when a language-defined check

fails. Instead, the operation that failed the check can simply yield an undefined result.

The exception need be raised by the implementation only if, in the absence of raising

it, the value of this undefined result would have some effect on the external interactions

of the program. In determining this, the implementation shall not presume that an
undefined result has a value that belongs to its subtype, nor even to the base range of

its type, if scalar. [Having removed the raise of the exception, the canonical semantics

will in general allow the implementation to omit the code for the check, and some or all

of the operation itself.]

5.2.1.1 Defining undefined

Unfortunately, the index for Version 5.0 contains exactly one entry for undefined result, i.e., [11.6(5)].

Although this reference purports to define undefined result, we are given no useful semantics to
associate with the term. Thus we are left to attempt to define exactly what is meant by the phrase

through other means. A search of the source text for Version 5.0 yields several additional uses of

the word undefined. The ones that appear to be related to its use in [11.6(5)] are:

13.9.1 NOTES

19 Objects can become abnormal due to other kinds of actions that directly update the

object's representation; such actions are generally considered directly erroneous, however.
Wording Changes From Ada 83

In order to reduce the amount of erroneousness, we separate the concept of an

undefined value into objects with invalid representation (scalars only) and abnormal

objects.
Reading an object with an invalid representation is a bounded error rather than

erroneous; reading an abnormal object is still erroneous. In fact, the only safe thing

to do to an abnormal object is to assign to the object as a whole.

3.8.1 • The discrete_choice others covers all values of its expected type that are not covered by

previous discrete_choice_lists of the same construct.

Ramification:For case_statements, this includes values outside the range of

the static subtype (if any) to be covered by the choices. It even includes values

outside the base range of the case expression's type, since values of numeric types

(and undefined values of any scalar type?) can be outside their base range.

7.4 Extensions to Ada 83

2 This document may be obtained by anonymous ftp from ajpo. sei. (:mu. edu in the directory public/rat ionale.

14.b

85

Therulesfor too-earlyusesof deferredconstantsaremodifiedin Ada9X to
allowmorecases,andcatchall errorsat compiletime.Thischangeisnecessaryin
orderto allowdeferredconstantsof a taggedtypewithoutviolatingtheprinciple
thatfor adispatchingcall,thereisalwaysanimplementationto dispatchto. It has
thebeneficialside-effectof catchingsomeAda-83-erroneousprogramsat compile
time. Thenewrulefits in wellwith thenewfreezing-pointrules.Furthermore,
wearetryingto convertundefined-valueproblemsintoboundederrors,andwewere
havingtroubleforthecaseofdeferredconstants.Furthermore,uninitializeddeferred
constantscausetroublefor thesharedvariable/ tasking rules, since they are really

variable, even though they purport to be constant. In Ada 9X, they cannot be

touched until they become constant.

The first item seems to be the key. The remaining two items use the word undefined in ways that

seem to confirm the impressions given by [13.9.1] as a whole. Thus, we see that undefined either

applies to a scalar object with an invalid representation or to an abnormal object. Abnormal objects
can either be produced by disrupted assignments (with a reference from [13.9.1(5)] back to [11.6],

presumably to [11.6(6)]) or (for non-scalars) by a return from a call to either a language defined

input procedure or to an imported procedure. It is, perhaps, stretching things to call the latter an
operation in the sense of the discussion of [3.2].

Discussion: An operation is a program entity that operates on zero or more

operands to produce an effect, or yield a result, or both.

It seems more likely that the operations referred to are akin to the primitive opcrations partially

defined in 3.2.

A type is characterized by a set of values, and a set of primitive operations which

implement the fundamental aspects of its semantics.

This leads us to consider the invalid values that can be associated with scalar objects and the

predefined operations on scalar types. These are discussed in general in [4.5] where the relevant

language appears in [4.5(9)-4.5(12)].

For each form of type definition, certain of the above operators are predefined; that is,

they are implicitly declared immediately after the type definition. For each such implicit

operator declaration, the parameters are called Left and Right for binary operators; the
single parameter is called Right for unary operators. [An expression of the form X op

Y, where op is a binary operator, is equivalent to a function_carl of the form "op"(X,

Y). An expression of the form op Y, where op is a unary operator, is equivalent to a

function_call of the form "op" (Y). The predefined operators and their effects are described

in subclauses 4.5.1 through 4.5.6.]

Dynamic Semant:cs

[The predefined operations on integer types either yield the mathematically cor-
rect result or raise the exception Constraint_Error. The predefined operations on

real types yield results whose accuracy is defined in Annex G, or raise the exception

Constraint_Error.]

To be honest: Predefined operations on real types can "silently" give

wrong results when the Machine_Overflows attribute is false, and the compu-
tation overflows.

Implementation Requirements

86

Theimplementationof a predefinedoperatorthat deliversa resultof an integeror
fixedpointtypemayraiseConstraint_Erroronlyif theresultis outsidethebaserange
of theresulttype.

Theimplementationofapredefinedoperatorthatdeliversaresultof afloatingpoint
typemayraiseConstraint_Error only if the result is outside the safe range of the result

type.

Unfortunately, there is a reading of this language that would make it impossible for a predefined

operation on integer types to produce an invalid value. Paragraph (10) requires the operation to

either yield the mathematically correct result or to raise Constraint_error. Paragraph (11) states
that the implementation of the predefined operation may raise Constraint_error only if the result

is outside the base range of the result type. Now, if we assume that "result" in paragraph (11) is

the value produced by the implementation, it is almost certainly the case that this result will be

within the range of the base type; it just will not be mathematically correct. It is likely that what
is intended is

The implementation of a predefined operator that delivers a result of an integer or

fixed point type may raise Constraint_Error only if the [mathematically correct] result
[of the operation] is outside the base range of the result type.

As the language is currently defined, there is a direct contradiction between the language of
[4.5(10-11)] and that of [11.6(5)]

If we assume the revised interpretation, then we have a class of operations that can produce

results that are not mathematically correct though they will typically be precisely defined by the

implementation. If 11.6(5) is to have any reasonable meaning, it must be the case that results of this
kind are the undefined results referred to. If this is the case, we have extended the notion of invalid

to include representations of scalar objects that do represent values of the object's subtype but are

not the mathematically correct values that would be produced without the violated constraint. 3

This is a fairly serious extension and deserves more consideration. We will return to this

shortly.

5.2.1.2 Use of undefined results

The implementation note associated with [11.6(5)] seems to raise two distinct points. One, allowing

the removal of dead code, is fairly obvious and seems to be the only clear-cut case. The other
discusses implementation assumptions and seems to involve the extension noted above.

Implementation Note: This permission is intended to allow normal "dead code re-

moval" optimizations, even if some of the removed code might have failed some language-
defined check. However, one may not eliminate the raise of an exception if subsequent

code presumes in some way that the check succeeded. For example:

if X * Y > Integer'Last then
Put_Line("X * Y overflowed");

end if;

3Addition in a 2's complement n bit machine produces a result that is either a mathematically correct integer

result or the mathematically correct integer result minus 2 n. Consider a 2 bit, 2's complement machine. Its value set

is given as

i2 ilO + O0 (O) O1 (t) 10 (-2) 11 (-1)

O0 0 O0 (O) O0 (O) O1 (1) 10 (-2) 11 (-1)

O1 1 and + defined as O1 (1) O1 (1) 10 (-e) 11 (-1) O0 (O) where the values in italics are not

10 -2 10 (-2) 10 (-2) 11 (-1) O0 (O) Ol (I)

11 -1 11 (-1) 11 (-1) O0 (O) Ol (1) 10 (-2)

mathematically correct integer results but are both well-defined and have a valid integer representation.

5.d

87

exception
when others =>

Put_Lzne(" "X * Y overflowed")"

If X*Y does overflow, you may not remove the raise of the exception if the code that does

the comparison against Integer'Last presumes that it is comparing it with an in-range

Integer value, and hence always yields False.

As another example where a raise may not be eliminated:

subtype StrlO is String(1.. 10) ;

type PlO is access StrlO;
X : PIO := null;

begin
if X.all'Last = 10 then

Put_Line ("Cops") ;
end if;

In the above code, it would be wrong to eliminate the raise of Constraint_Error on the

"X.alF' (since X is null), if the code to evaluate 'Last always yields 10 by presuming that

X.all belongs to the subtype Strl0, without even "looking."

The first point is that if the result of an operation is not subsequently used, then we can ignore the
possibility that execution of an operation might have raised an exception. Examples that illustrate

this situation are somewhat contrived since programmers generally do not try to write code that is

not useful. For example, we might illustrate the permission by writing something like:

subtype StrlO is String(1.. 10) ;
X : StrlO := " ";

begin

X := "2 01";
Put_line (X) ;

X := "8 01234567";

Put_line (X) ;
X := "10 0123456789";

exception
when others =>

Put_Line ("COPS") ;

end ;

Since the scope of X does not extend beyond the end of the block, the value produced by the last

assignment has no effect along the normal path of execution [11.6(5)] gives permission to ignore the

possibility (in this case, a certainty) that the assignment will raise Constraint_Error. This, in turn,

allows the elision of the entire assignment statement using conventional, "dead code" elimination
techniques.

Note that without the extra permission of [11.6(5)], the code for the last assignment is not dead

since there is a a well-defined "effect" along the exceptional 4 path. The extra permission allows

the implementation to restrict its analysis to the normal path. This is important since exception

handlers are dynamically bound and an analysis that shows that an operation is dead along its

exceptional path is generally intractable, while one that shows that the operation is dead along its

normal path may require only local analysis.

While the example is contrived, the situation that it presents appears fairly frequently as the
result of other transformations during code generation and optimization. For example, unrolling

4 See the definitions of exceptional and normal paths below.

5.f

5.g

88

a loop may well leave dead code in the final iteration, e.g., the code intended to initialize the

next iteration. Value propagation and common subexpression elimination also serve to create dead
variables and dead code to manipulate them.

The language of [11.6(5)] does not ensure that the obviously intended meanings of some realistic

examples will be preserved. For example, in AI-315, Robert Dewar presents the following example:

function Add_overflows(A, B: Integer) return Boolean is

T: Integer

begin

T := A + B;

return False ;

exception

when Constraint_Error => return True;

end Add_Overflows ;

The writer of code like this might hope to detect a potential overflow situation and, perhaps,
use the knowledge to invoke an alternate more robust computation, however, it appears that the

permissions of [11.5] would allow the constraint_error to be ignored, rendering the assignment dead

and allowing its elimination permitting the function to always return False. This could cascade,

if for example, the function were to be inlined, eliminating the code for the alternate computation
which would also appear dead.

Note that both Dewar's example and the example of [] 1.6(5.e)] have the same intent, the detection

of overflow. They differ in minor details with respect to the way the overflow is detected. It is

probably unreasonable to expect a casual (or even experienced) user of the language to detect the

subtleties. Indeed, the casual observer ought to come to the conclusion that the example of [11.6(5.e)]

cannot work because the implementation result (as opposed to the mathematically correct result) of
X * Y cannot possibly be larger than Integer'Last so that the first Put_Line cannot appear. This

would lead the user towards an example similar to Dewar's which apparently will not work. It is

not clear that there is any easy fix. The approach offered with respect to code motion in [11.6(6)], a

compromise that allows local code motion with local analysis, but does not insist on global analysis

to ensure that the permitted code motion does not disrupt the canonical semantics might also

apply here. This would require that analysis proceed along both the normal and exceptional paths
following from an operation if there were an exception handler for the exception potentially raised

by the operation associated with the innermost sequence of statements containing the operation.

Tile examples given in (5.e) and (5.g) raise more subtle points. In the absence of [11.6(5)],

Ada's exception model is similar to that of Gypsy. If we use a Gypsy-like model to specify the

Ada operations, we get a possibility of two execution paths from each operation [6]. We will call

these paths the normal and exceptional paths. If none of the language-defined checks fail during

the performance of the operation, execution proceeds along the normal path. If performance of the

operation causes a language-defined check to fail, execution proceeds along the exceptional path.
Associated with each operation is an entry specification which is assumed 5 to be true when the

operation is invoked. Associated with each exit path is an exit specification which is guaranteed to
hold if the path is followed.

For example, the implementation of the integer multiplication operation on a given machine
might be specified as follows:

flmction Machine_Mul(X, Y : Machine_Integer)

return Machine Integer

entry

_' "Assumed" is with respect to the operator definition. The implementation is required to "prove" that the as-

sumption holds every time the operation is invoked. In the case of operations such as Machine_Mul and l_achina_Cl£ a

all possible bit patterns represent valid values of Machina_Integer and the entry condition is trivially satisfied.

89

X, Y in (Machine_Integer'First .. Machine_Integer'Last);
normal exit

Machine_Mul(X, Y) = Integer_Mul(X, Y) and

Machine_Mul(X, Y) in

(Machine_Integer'First .. Machine_Integer'Last);

exceptional exit

Machine_Mul(X, Y) != Integer_Mul(X, Y) and

Machine_Mul(X, Y) in

(Machine_Integer'First .. Machine_Integer'Last) and

Integer_Mul(X, Y) not in

(Machine Integer'First .. Machine_Integer'Last);

This says that for some (possibly empty) set of input values, machine multiplication is equivalent

to abstract integer multiplication and that execution will proceed along the normal path when this

is the case. When machine and integer multiplication do not produce the same result, we are told

that the true result is not representable as a Machine_Integer but that some result 6 representable

as a machine integer is produced. 7 Now, if we look at a possible specification for the comparison

operator, >, we see a potential problem with the language of the note.

function Machine_CMP(X, Y : Machine Integer)

return Machine_CC

entry

X, Y in (Machine_Integer'First .. Machine_Integer'Last);
normal exit

Machine_CMP(X, Y) = GT implies Integer_GT(X, Y) and

... -- Specifications for other return values

exceptional exit

false;

In this ease, we assume a comparison instruction at the machine level that sets some condition

codes to indicate the results of the comparison. GT is a condition code value that indicates the first

operand, interpreted as an abstract integer, was greater than the second operand, also interpreted

as an abstract integer. Note that the only entry condition assumes that the inputs are machine

integers. This condition is satisfied by the exit condition of the multiply operation under either its

normal or exceptional execution. Note also that this operation is defined to always exit normally.

We note that, in program verification, an operational semantics that allows exceptions to be

raised when a language-defined check fails is, in a sense a dual of an operational semantics that

produces an undefined result under the same circumstances. In the absence of a way to effect a

meaningful recovery from failed checks, s we must show that the exceptional path is not taken. The

proofs involved are exactly those that are required to show that operations do not produce undefined

results. Languages such as Euclid and Verdi (and C for that matter) use an undefined semantics

while Ada (in the absence of [11.6]) and Gypsy use an exception-based semantics.

For formal reasoning, the differences are largely matters of style. From an implementation

standpoint, unless it can be shown that a given program will not have effects based on undefined

results, the choice is between being able to detect a departure from normal execution and not.

[11.6(5)] requires that exceptions not be suppressed if suppressing them would lead to a visible

6For most machines, we could specify exactly what this result is, i.e., how _o compute it as a [unction of X and Y.

It is not undefined in the sense that we know nothing about it.
_'The first conjunct is redundant since it could be deduced from the other two.

SBy a meaningful recovery, we mean undoing or overcoming the failed operation in such a way that computation

can resume execution along the normal path, satisfying all the implicit and explicit assumptions of that path. In
practice, this is extremely difficult unless the specification of the normal computation is extremely weak.

9O

effectdueto thesubsequentuseofanundefined result. We will examine the process of substituting

operator definitions that produce "undefined" results for those that raise exceptions.

The stated assumptions associated with the example of [11.6(5.e)] are not sufficiently strong. In

most machines, the result of an integer operation that fails an Ada implementation-defined check

will be a valid value of the base type of the operation's result and, in many cases, it will be a valid

value of the appropriate subtype as well. Thus, the values supplied to the comparison operation

will always be "in-range integer value"s. The value is not the issue. If we allow the operation to

omit its exception check, we must consider the result to be more than a value for the purposes of

analysis. In the abstract, the result of an operation that yields an undefined result must be seen as

a object having two attributes, 'value and 'defined. 'value is of the base type of the result of the

operation while 'defined is boolean.

Under this view, multiply and compare might be defined as follows:

function Machine_Mul(X, Y : Machine_Integer)

return Machine_Integer

entry

X'value, Y'value

in (Machine Integer'First .. Machine_Integer'Last) and

X'defined and Y'defined;

exit

if Machine_MUL'defined then

Machine_Mul'value(X, Y) = Integer_Mul(X, Y) and

Machine_Mul'value(X, Y) in

(Machine_Integer'First . . Machine_Integer' Last) and

else

Machine_Mul_value(X, Y) != Integer_Mul(X, Y) and

Machine_Mul'value(X, Y) in

(Machine_Integer'First .. Machine_Integer'Last) and

Integer_Mul(X, Y) not in

(Machine_Int eger 'First .. Machine_Integer 'Last) ;

end if

function Machine_CMP(X, Y : Machine_Integer)

return Machine_CC

entry

X, Y in (Machine_Integer'First .. Machine_Integer'Last)and

X'defined and Y'defined;

exit

Machine_CMP'defined(X, ¥) and

(Machine_CMP'value(X, Y) = GT implies Integer_GT(X, Y) and

... -- Specifications for other return values)

Under this view of operational semantics, the obligation to take appropriate action in the case

of exceptional operations has shifted from the operation making the check to the operation using

the result. The substitution of "undefined" semantics for "exception" semantics might be done as

follows:

1. Tentatively replace an operation using "exception" semantics with the equivalent operation

using "undefined" semantics. Note that this substitution is dependent on being able to prove

the stronger entry specification of the latter. 9

0In the implementation of a language using the "undefined" semantics, we note that there is, in general, no way
to determine by inspection that a given bit string represents an "undefined" value. A two's complement machine

91

.

.

If it is possible to prove that the 'defined attribute of the operation's result is always true

then the substitution is permitted (see the ramification [11.6(5.a)]) and no further analysis is
required.

Locate all uses of the result of the replaced operation. If there are none, the substitution is

permitted. If there are any, substitute the corresponding "undefined" semantics operation,
if necessary, and check the entry specification for references to the 'defined attribute of the

result in question. If any using operation assumes that the 'defined attribute of the result is

true, the substitution cannot be made.

If the substitution can be made, the net effect is to remove from further consideration the

execution path arising from the exception exit of the replaced operator definition. This, in turn,

should enable additional program transformations, including removal of the replaced operation since
it is known to be without an externally visible effect. The removal of the exception path may permit

additional removals since dependencies along the path no longer require consideration. Removal of

the operation may permit additional operations to be removed since its inputs are now referenced

at fewer places.

Note that this is an analytical approach, not an implementation. Typically, there is no practical

way to tag values with an indication that they represent an "undefined" result. When this is the case

there is no way for subsequent operations in an implementation to check explicitly for the undefined

property. In addition, the amount of analysis required to detect all uses of a result may require

extensive reasoning about the values of index expressions, etc., when the values are components of

arrays or other composite structures.

hnplicit in the assumption of the last paragraph of [11.6(5.e)] appears to be an additional assump-
tion that the values being compared are also the mathematically correct results of the operations

that produced them, i.e., that they are not undefined.

It is probably the case that the only permission actually granted by [11.6(5)] is the removal of

code that is "dead" along its normal exit path regardless of any effects along its exceptional exit

path.

5.2.1.3 Bounded errors and erroneous executions

The Ada 9X revision has made a serious attempt to reduce the number and types of circumstances

under which a program's execution can become erroneous. Since an erroneous execution can exhibit
arbitrary behavior, this change is highly desirable. Recognizing that most implementations do

reasonable things in the face of program errors that violate language semantics, the notion of a

bounded error has been introduced. The bounded errors associated with invalid representations are

discussed in [13.9.1]
Bounded (Run- Time) Errors

If the representation of a scalar object does not represent a value of the objeet's 9

subtype (perhaps because the object was not initialized), the object is said to have an
invalid representation. It is a bounded error to read the value of such an object. If

the error is detected, either Constraint_Error or Program_Error is raised. Otherwise,
execution continues using the invalid representation. The rules of the language outside

this subclause assume that all objects have valid representations. The semantics of

operations on invalid representations are as follows:

• If the representation of the object represents a value of the object's type, the value 1o
of tile type is used.

addition, for example, operating on two n bit long bit strings interpreted as integers produces an n bit long bit string

that can be interpreted as an integer congruent to the mathematically correct integer result modulo 2 n. Because of

this, the entry specifications cannot be executed but must be reasoned about.

92

• If therepresentationof theobjectdoesnotrepresentavalueof theobject'stype,
thesemanticsof operations on such representations is implementation-defined, but

does not by itself lead to erroneous or unpredictable execution, or to other objects

becoming abnormal.

Erroneous Execution

A call to an imported function or an instance of Unchecked_Conversion is erroneous

if the result is scalar, and the result object has an invalid representation.

Ramification: In a typical implementation, every bit pattern that fits in

an object of an integer subtype will represent a value of the type, if not of

the subtype. However, for an enumeration or floating point type, there are

typically bit patterns that do not represent any value of the type. In such

cases, the implementation ought to define the semantics of operations on the

invalid representations in the obvious manner (assuming the bounded error is
not detected): a given representation should be equal to itself, a representation
that is in between the internal codes of two enumeration literals should behave

accordingly when passed to comparison operators and membership tests, etc.

We considered requiring such sensible behavior, but it resulted in too much

arcane verbiage, and since implementations have little incentive to behave

irrationally, such verbiage is not important to have.
If a stand-alone scalar object is initialized to a an [sic] in-range value, then

the implementation can take advantage of the fact that any out-of-range value
has to be abnormal. Such an out-of-range value can be produced only by things

like unchecked conversion, input, and disruption of an assignment due to abort

or to failure of a language-defined check.
This depends on out-of-range values being checked before assignment (that

is, checks are not optimized away unless they are proven redundant).

The language of the Ramification sounds reasonable, but it flies in the face of the conventions
used in many of the logics used to reason about program behavior. Typically, undefined is a loaded

term in these logics. Undefined is used to represent a distinguished value about which nothing can

be proven. Thus _/undefined = undefined. This is too strong for implementation semantics in most
cases. In any implementation in which evaluating x is free of side effects that could change its value,

x = z is true even if x has an invalid representation or is undefined so long as the implementation

of = simply involves comparing bit patterns. In tile absence of a requirement to actually evaluate

z, it should be unconditionally ok to substitute true for the equality.
On the other hand, this language seems to have the potential for conflicts with semantics of

"undefined" results discussed above in connection with [11.6(5)]. The relationship between undefined

as used in [13.9.1] and [11.6(5)] should be further clarified.

5.2.2 [11.6(7)1

This paragraph allows fairly arbitrary reordering of actions within the scope of an exception handler

by reducing the expectations that the programmer may have concerning the state of the computation
at. the time that the handler is entered. This is essentially the "Undefined" execution order of [9,

section 2.6.5]. We note that the only effective actions that a programmer can take when an exception
handler is entered in the face of this kind of reordering is to assign normal values to all variables

that might have become abnormal due to operations disrupted by the exception.
The first sentence of this paragraph is complex and convoluted and calls out to be simplified or

clarified. The following discussion may aid in finding more suitable language. An exception_handler is

optionally associated with a handled_sequence_of_statements which contains a sequence_of_statements

12.b

93

andis,amongotherthings,theoperationalportionofa task_body.Whenanexceptionisraised,it
will eitherbehandledor causethecontainingtask_bodyto terminate.In eithercase,all that the
usercanexpectto knowis thattheexceptionwasraisedsomewherein thecodeof thesequence_of_
statementscomponentof the handled-sequence_of_statementsthat containsthe exception_handler
just enteredor that constitutestheoperationalpartof thetaskbeingterminated.Thereordering
thatcanbedoneis limitedin tworespects.

1. Theoperationthat raisestheexceptiondueto a failedlanguage-definedcheckcannothave
beenmovedintothecodeofanindependentsubprogram,and

2. Theoperationthat raisestheexceptiondueto a failedlanguage-definedcheckcannothave
beenmovedintothecodeof someabort-deferredoperation.

Justbreakingupthesentencemayhelp.Insteadof

If anexceptionisraiseddueto thefailureofa language-definedcheck,thenuponreachingthe
correspondingexception_handler(or theterminationof thetask,if none),theexternalinter-
actionsthat haveoccurredneedreflectonlythat theexceptionwasraisedsomewherewithin
theexecutionofthesequence_of-statementswith thehandler(or thetask_body),possiblyear-
lier (or laterif theinteractionsareindependentof theresultof thecheckedoperation)than
that definedbythecanonicalsemantics,but notwithintheexecutionofsomeabort-deferred
operationor independent subprogram that does not dynamically enclose the execution of the
construct whose check failed.

perhaps language similar to the following would be more understandable.

If an exception is raised due to the failure of a language-defined check, then upon reaching

the corresponding exception_handler (or the termination of the containing task, if no handler
is present), the external interactions that have occurred need reflect only that the exception

was raised somewhere within the execution of the sequence_of_statements associated with the

handler (or the task_body). It may appear

by the canonical semantics (or later if the

checked operation). It may not appear as
of some abort-deferred operation or within

does not dynamically enclose the execution

that the exception was raised earlier than defined

interactions are independent of the result of the

if the exception were raised within the execution

the execution of an independent subprogram that
of the construct whose check failed.

5.3 Living with the "Canonical Semantics"

The canonical semantics define a potentially very large family of valid executions. This is due to the

numerous places in which the language definition allows operations to be performed in an arbitrary

order. An implementation is free to select any order under these circumstances. In the absence of

order dependencies and tasking considerations, all canonical executions should produce the same
externally visible effect. Order-dependent side effects, including exceptions raised due to the failure

of language-defined checks, can affect the effect of the program. The problem is twofold:

1. Reducing the potential effect space of the program, and

2. Determining which execution the implementation has selected.

First of all, it is worth noting that this kind of problem is not unique to Ada (both Ada 83
and Ada 9X). Most programming languages, including C and C++, admit similar behaviors, either

implicitly or explicitly. Ada is more explicit about them. In general, the failure of languages to
define or enforce restrictive canonical executions is attributed to a need for flexibility in order to

achieve run-time efficiency. There is tension between this need and the requirements for predictable

94

program behavior, which are imposed by small segments of the user community, typically those users

associated with safety and security critical applications. Predictable behavior is usually defined as

having a rigorous semantic definition that allows the formal verification of programs written in the

language, preferably using mechanical aids.

In theory, one could reason about Ada programs by enumerating the set of possible executions

and reasoning individually about each one. A program could then be said to shown to exhibit a

given property if each of its possible executions could be shown to exhibit the property. In practice,

the combinatorics of potential execution choices are likely to render this approach infeasible for any

non-trivial program. If we assume that a compiler conforming to the language standard produces

code that follows one of the set of canonical executions of a given program, it seems a waste of time to

prove properties of the set as a whole unless there is a need to guarantee the behavior of the program

under all possible conforming implementations. This is seldom the case. Further complications arise

when it is possible to show that some, but not all, members of the canonical execution set exhibit

the desired property. In this case, it is essential to determine whether the implementation being

considered exhibits the property.

There are several possibilities. The first is to attempt to reduce the size of the set of canonical

executions to a tractable size and possibly to a single member. The second is to discover the member

of the canonical execution set that has been chosen by a particular implementation and to reason

about that execution alone.

5.3.1 Restricting the execution set size

The size of the canonical execution set about which one must reason can be reduced by one of

two methods; reducing the choices available to the implementation or finding equivalence classes

within the set, or by some combination of the two. Ada 9X provides some means for imposing

order. For example, the order of the association of operands with a sequence of operators of the

same precedence can be controlled by the explicit use of parentheses. The introduction of explicit

illtermediate variables and assignments should have a similar effect. For example, suppose that

side effects exist such that the value resulting from the evaluation of <expl> depends on whether

it. is evaluated before or after <exp2>, but that there are no other order dependencies between the

expressions. Further assume that the evaluations produce results of some integer subtype.

h := <expl> + <exp2>;

Either of the possible results is a member of the canonical execution set for this fragment. If we

want to ensure that <expl> is evaluated first, we might write:

A1 := <expl>;

A2 := <exp2>;

A := A1 + A2;

It is not clear that the additional freedoms to reorder operations granted by [11.6(6)] allow an

implementation to ignore structuring of this kind, but aggressive optimizations in compilers for

other languages are known to do so in some cases. Presumably, the dependency between the two

expressions either becolnes explicit or the implementation will be forced to recognize that it cannot

assume independence because the expressions invoke separately compiled routines and it will be

forced to produce the intended result 1°.

Note that the explicitly ordered code may still exhibit a family of canonical executions. In the

expression At + h2, the language allows hl or A2 to be "evaluated" first. We claim that given

1°If the expressions are sufficiently complex and the dependencies between them limited, it may be possible to
interleave their evaluations. This would be permitted under the general freedoms noted in [11.6(3)]

95

appropriate type declarations (and barring some pathological implementation of +) that both orders
will be equivalent and trivial.

By a combination of these two techniques, forcing orders where order makes a difference and cre-

ating situations where it is easy to show that, at least locally, all canonical executions are equivalent,

it should be possible to reduce the number of canonical executions associated with a program to a
tractable number. In most cases, the analysis of the remaining canonical executions should show

that language-defined checks will not fail, rendering moot the freedoms of [11.6]. The utility of this

approach depends on the implementation or implementations of interest ensuring that the canonical
semantics are honored.

If the notion of a subset of Ada 9X for High Integrity systems, as recently proposed by Brian

Wichmann, is accepted, the subset definition could restrict the ordering freedoms permitted by the

primary language definition. This approach would necessitate subset compilers to enforce the re-

strictions, but would offer a higher degree of assurance than the use of general purpose compilers.

If a subset is adopted with the notion of supporting mechanical verification, it is not unreason-
able to expect that integrated environments will be developed in which both the verification and

implementation tools are based on the same semantic assumptions.

5.3.2 Discovering the execution

Another approach to the problem of a canonical execution set is the determination of the actual

execution produced for a given program by a given implementation. This requires that the compiler
output its object code in a form that allows the user to determine the actual execution that will occur

when the program is executed. Implementations conforming to the Safety and Security Annex, in
particular to section [H.3], will provide this kind of information. With an appropriate transformation

of the object code back into an appropriate Ada or Ada-like source form, it should be possible to

perform source level analysis or verification on the program while maintaining confidence that the

results are, in fact, applicable to the compiled program.

It is clear that this approach requires facilities that are not present in many, if not all, existing

compilers, but the Annex should encourage development of this facility.

5.4 Observations on the Reference Manual

In the course of using the Reference Manual in the preparation of this chapter, a number of general
shortcomings have been observed. These have more to do with presentation than with substance

and can be fixed prior to the release of the final document.

First of all, we wish to compliment the Mapping/Revision Team on the content and style of the

manual. Not only is the wording a substantial improvement over the Ada 83 Reference Manual,

but the inclusions of the annotations provide useful and substantive insight into the workings of the

language. It is to be hoped that the annotated version will be maintained along with its "official"
subcomponents and that it will see widespread use by serious students of Ada 9X.

This said, there are ways in which the the Reference Manual could be further improved.

1. The index is not sufficiently comprehensive. On a number of occasions, an attempt to trace the

consequences of a definition found that the defining occurrence was the only reference in the

index. Fortunately, the source files are available and can be searched as necessary; however,

any term important enough to be marked as a definition is important enough to have the
consequences of that definition tracked. A presentation similar to that used in the index for

syntactic constructs should be adapted for defined terms, i.e., a defining reference followed by
using references.

2. The index does not appear to cover the annotations. Extending it to this level would greatly
aid in the use of the annotated manual.

96

3. TheSyntaxCross-Referencewouldbemuchmoreusefulif referencesforthedefiningoccurrence
aswellastheusingoccurrencesweregiven.Forexample,wefindfromthecross-referencethat
atask_bodyisusedin thedefinitionofaproper_bodyin [3.11],butwemustgotothemainindex
to discoverthat atask_bodyisdefinedin [9,1(6)].Extendingtheindexingto thenumbered
paragraphlevelasis donein theindexwouldalsobeuseful.

4. Themarginalparagraphnumberingis incompleteandinconsistent.Forexample,thepara-
graphsfollowingtheexamplecodesof[11.6(5.e)]and[11.6(5.g)]arenotnumberedwhilesimilar
paragraphselsewhere,e.g.,[8.3(29.0)]are.Thereisasimilarproblemin [13.9.1(12.b)]aswell.
Thisisprobablytheresultofthemechanicalapproachtakento insertingtheannotatingscribe
commands.In preparingtheISTEXsourcefor theAnnotatedversionof theAda83reference
manual,I foundit necessaryto insertthismaterialmanually.

5. In somecases,precisionseemsto havebeensacrificedfor readability.Thisoccurswhenit
isdifficultto determinetheantecedentsfor pronounsor wherethesamenounappearsin an
ambiguouscontext.An exampleis [4.5(11)]discussedin Section5.2.1.1onpage87above.
Moreliberaluseof the@Redundant(ora similar)constructmightalleviatethisproblemin
theannotatedversion.

97

Chapter 6

Conclusions

We did not expect to formulate a complete semantic definition (even for the sequential part of Ada) in

this project; there were simply not enough resources to do so. What we did expect was to gain some

insights into the structure of the language, and to identify some problems either with the description

in the Reference Manual or in the design of the language.itself, and to contribute to the development

of Ada 9X by suggesting improvements to the description or design. Those expectations were met

to some degree; for example, we identified some flaws (that have now been fixed) in the design in
the area of per-object constraints; we identified some conceptual and some wording problems in the

area of floating point and developed a model that was used in the development of new wording for

the Reference Manual; and we identified some incompleteness in the description of actual subtypes.

However, we did not make as much progress in the natural semantics definition as we had

originally hoped. It was more difficult to understand the supposedly trivial parts of the language

than we had imagined. Large-scale languages like Ada do not have neat, independent parts; rather,
each feature is affected in some measure by the others. For example, the type system is affected by

the concurrency mechanism (e.g., task types), by the packaging mechanism (e.g., private types), and

in several ways by the object-oriented features (e.g., access discriminants, per-object expressions,

class-wide types). So, indeed, there are no really trivial aspects of the language. In the original
LPT project, we had felt that it would be a waste of effort to develop a formal model for things

that "everyone understands". Our recent efforts, however, have shown us that there are interesting

problems lurking at the fringes of even these areas.

Even though there are serious gaps in the definition, a considerable amount of groundwork
has been done. We have identified most of the basic semantic domains that must be used in a

full definition, we developed structuring mechanisms for the definition that allow us to describe

many of the implementation freedoms, and we have several tools (such as the type checker for the

Prolog representation of the definition, and the tool that derives I.*TEX source from the Prolog
representation) that help in the production and documentation of the definition. So, we feel that

we have made a good start in the direction of a complete description of the sequential part of the

language.

We are not sure how easily our framework could be adapted to deal with concurrency. The
influence of tasking in DDC's formal definition of Ada 83 [1] is pervasive, and we suspect that

incorporating concurrency into our definition would similarly affect every part of the model.

6.1 Implementation Freedoms

One impediment to writing a formal definition like ours is the high degree of underspecification

in the Reference Manual. This allows implementations considerable freedom to choose orders of

actions, accuracy of results, base ranges of types, and so on. These freedoms can be difficult to

98

model;wherean implementationneedonlyproduceoneacceptableresult,our semanticstriesto
describeall acceptable results.

Modeling these freedoms sometimes forces our formal model to differ in significant ways from an

implementation (and to use representations that no implementation is likely to use). For a simple

example, consider the following rule about, access-to-subprogram values:

Two access-to-subprogram values are equal if they are the result of the same evalu-

ation of an Access attribute_reference, or if both are equal to the null value of tile

access type. Two azcess-to-subprogram values are unequal if they designate different

subprograms. It is unspecified whether two access values that designate the same sub-
program but are the result of distinct evaluations of Access attribute references are

equal or unequal.

In order to model this, we are forced to use a representation of access-to-subprogram values that.

consists of both a reference to the designated subprogram and an "instance" value that tells which

evaluation of all Access attribute gave the access value. Each evaluation of an Access attribute

increments this instance value, so that we can determine whether two access values derive from the

same evaluation or not. Our definition of the equality function checks both the subprogram reference

and the instance number, and can give a result of equal, unequal, or unknown. Such a representation

is unlikely to be used in any implementation of Ada 9X.

An implementor of the language need not be concerned with all these freedoms; just one particular

inq)lementation choice needs to be made and the existence of other possible choices is irrelevant.

A programmer does not necessarily need to be concerned about all the alternative orders; it is

usually possible to write programs in such a way that the specific choice made by au implementation

do¢,s not matter (for example, by avoiding side effects in functions, restricting the statements in a

packagebody to affect only variables local to the package, and so on). On the other hand, anyone

trying to read an Ada program may indeed be concerned about the different possible outcomes of

an execution (especially if the writer has not been careful to avoid situations where the different

orders matter). So, our model, while unnatural if compared to an implementation, is quite natural
as a description of the complexities that careful readers must deal with.

6.2 Notation and Tools

The natural selnantics framework seems to have worked fairly well, although there were a few

awkward aspects to our formalization of the language semantics. In particular, our need to introduce

explicit sequencing and arbitrary-order combinations of actions (in two slightly different variations)
seems somewhat artificial. However, this mechanism of actions allows us to present reasonably

concise descriptions of many language features.

The use of Prolog to make the definition executable (and type-checkable) was a great help. We

have been able to execute parts of the definition to confirm that it expresses what we intended. The
type checker was able to find a number of trivial errors in our semantics. There is some price to

be paid, hovever; it is sometimes inconvenient to express a rule in a manner acceptable to Prolog.

This is particularly evident in tile descriptions of the various semantic domains and the primitive

fimctions acting over those domains. Prolog does not support defined functions (instead, relations

must be used). We used a program to convert tile Prolog code into the I.$TEX source used for this
report.. This program is able to introduce functional notation in places where we have instructed

it to, so at. least our published form of the rules can use a more expressive notation than Prolog.

But this is still rather unsatisfactory. It is possible that other tools might be able to provide better
mechanical support.

99

6.3 Bounded Errors

A number of rules and concepts were added to Ada 83 in order to make programs more predictable.

For example, many situations leading to erroneous executions in Ada 83 have been made into

bounded errors. For these errors, a range of possible outcomes is described. This seems like a

beneficial change. However, there is a price to be paid for this benefit: the model for a feature

using bounded errors can be substantially more complex than a model using erroneous executions.
For example, in order to change the evaluation of an uninitialized scalar variable from erroneous
to a bounded error, it was necessary to introduce the notion of "invalid representations" of scalar

objects. The addition of this notion has an influence on a number of other areas of the language

(e.g., relational operators, membership tests, and type conversions). So, the formal model is more
complex, which means that formal predictions about programs are harder to derive. On the other

hand, the execution of programs is more predictable in the sense that these executions are more

constrained (the old rules allowed any behavior, whereas the new rules are more specific).

6.4 Structure of Models

It does not seem possible, using our methods, to formulate a model for Ada 9X that is simultaneously

concise, comprehensible, broad, and accurate. Accounting for all the special cases of features adds
so much detail to the model that it becomes unusable.

Textbook writers face a similar dilemma; if too much detail is presented, readers will find the

text impenetrable. Therefore, authors present simplified descriptions of parts of the language. These

simplified descriptions, even when they lead the reader to draw incorrect conclusions about the
behavior of some programs, are nevertheless useful to readers who are first learr_ing the language.

Ill a later part of a book, an author may elaborate on some of these missing details, and may need

to contradict some of his earlier oversimplified assertions.

We do not know exactly how to make layered formal models using a similar structure. In most

formal notations, it is not possible to override an earlier assertion with a more detailed assertion.

Even if this were allowed, it is unclear how a user of such a layered formal model would know when

the simpler part of model was applicable.
In the model developed in this report, we have tried to approach this ideal of structured models

ill a very modest way through our use of the "unpredicted" outcomes to simplify the formal model;
we can certainly imagine a more complex version of this model that would, in fact, make predictions

where this simpler model refuses to. However, we have not had the resources to develop the more

complex model.

100

Bibliography

[1] The Draft Formal Definition of Ada. Denmark, 1987.

[2] David Guaspari. Formal methods in the design of Ada 9X. In Proceedings of the Ninth Annual

Conference on Computer Assurance, 1994.

[3] Intermetrics, Inc. Annotated Ada 9X Reference Manual, Version 4.0, September 1993.

[4] Intermetrics, Inc. Annotated Ada 9X Reference Manual, Version 5.0, June 1994.

[5] G. Kahn. Natural semantics. In Fourth Annual Symposium of Theoretical Aspects of Computer

Science, pages 22-39, 1987. LNCS 247.

[6] John MCHugh. Towards Efficient Code from Verified Programs. PhD thesis, The University of

Texas at Austin, 1983.

[7] U.S. Reddy and T.K. Lakshman. Typed Prolog: A Semantic Reconstruction of the Mycroft-
O'Keefe Type System. Submitted to the '91 Intl. Logic Programming Symp., San Deigo, Cali-

fornia, February 1991.

[8] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.

[9] Language Precision Team. Formal studies of Ada 9X, final report. Technical report, Odyssey

Research Associates, December 1992.

[10] United States Department of Defense, New York. Reference Manual for the Ada Programming

Language, February 1983. ANSI/MIL-STD-1815A-1983.

101

Appendix A

Official comments submitted

This appendix lists the omcial comments submitted by the LPT. For each comment, we give its

official "key" number, its title, and a short description of the comment or its effect on the Standard.

Comment 93-3209.a: Too much extra permission to remove checks. The conceptual framework

of section 11.6 has been changed.

Comment 93-3398.a: per-object constraints and the "current instance". A new rule [3.8(13)] has

been added to avoid the problem described.

Comment 93-3511.a: What is the base range of an enumeration type?.

Comment 93.3547.a: constants that aren't. The problem described has been identified as an

erroneous execution in [13.9.1(13)]

Comment 93-3547.b: subcomponents that are constrained by their initial value.. A new legality
rnle [3.6(11)] was added.

Comment 93-3547.c: conversion to a type with aliased components. A new legality rule [3.6(11)]
was added.

Comment 93-3574.a: interleaving evaluation and conversion. Several paragraphs have been mod-
ified to clarify the rules.

Comment 93-03574.b: reassociation of sequences ofpredefined operators, h note [4.5(13.b)] has

been added to the Annotated Reference Manual. It is unclear, however, that the note clarifies the
issue raised in this comment.

Comment 93-3575.a: aliased subcomponents with per-object constraints. A new legality rule
[3.6(11)] was added.

Comment 94-3621.a: Initialize a discriminant before any subcomponents that depend on it. This

clause has been added to the rules of [3.3.1(20)].

C.omment 94-3760.a: Phraseology. An inaccurate statement has been reworded in [M(1)].

Comment 94-3761.a: Phraseology. Some wording in [3.3] has been improved.
Comment 94-3762.a: Phraseology.

Comment 94-3763.a: Phraseology. The wording of [3.2.3] has been clarified.

Comment 94-3764.a: Phraseology. A clarifying cross-reference was added.

Comment 94-3765.a: Phraseology.

Comment 94-3901.a: Are first subtypes of enumeration types constrained?. A clause has been

added to [3.5.1(10)] to answer this question.

Comment 94-3901.b: First subtypes of discriminated types are unconstrained. This clause has

bee,, added to [3.7(26)].

Comment 94.3901.c: First subtypes of incomplete types. A new note in the [3.10.1(10.a)] Anno-
tated Reference Manual argues that this issue is unimportant.

Comment 94.3901.d: Predefined operators and invalid scalar components. The entire discussion
of "invalid" scalars has been modified in version 5.0 of the Reference Manual. This comment and

102

tile followingtwoarecitedin thechanges.
Comment94-4045.a:Model for valid and invalid values. See above.

Comment 94-4054.a: Model for valid and invalid values. See above.
Comment 94-4064.a: What is the actual subtype of a formal object?. The question has been

answered in [6.4.1(15)].

Comment 94-4065.a: Normalizing composite objects. An explicit statement about restoring ob-

jects to normal state appears in [13.9.1(7)].
Comment 94-4149.a: Incomplete definitwn of 'expected profile' and 'corresponding parameter'.

Some rules have been clarified

Comment 94-4171.a: Actual subtypes and aliased views. The rules in [3.10(9)] have been re-
worded.

The remaining comments were sent too late to affect version 5.0 of the Reference Manual. Some
of them are addressed in the electronically-distributed version 5.3, as noted below. Furthermore, the

floating-point annex is under revision to address some of the comments on the floating-point model.

94-4448.a: Signed zeroes not permitted as floating point values.Comment

Comment

Comment

C,omment

Comment

Comment

Comment
Comment

added.

Comment

94-4454.a:

94-4455.a:

94-4481.a:

94-4482.a:

94-4486.a:

94-4489.a:
94-4535.a:

Model-oriented floating point attributes.

Relation between requested precision and model numbers.

Inappropriate references to Annex G.
Are S'Model, S'Machine deterministic?.

Symmetry of floating point types.

Derivation from a floating point type.

Derived types with new discriminants are extensions. A sentence has been

94-4535.b: Discriminants used in constraints in derived type definitions.

Comment 94-4535.c: Incorrect rules for uses of new discriminants in constraint on parent. A
new rule has been added.

Comment 94-4535.d: Current instance of a derived type. A note has been added in a "to be
honest" section of the AARM.

Comment 94-4572.a: An object that is not {a part of} a formal parameter.

Comment 94-4572.b: For aliasing, the type of the formal, not the part, matters.

Comment 94-4572.c: When does an access path exist?.

Comment 94-4587.a: Incompatibility between semantics of the core and annex G?.

Comment 94-4796.a: reading a composite with an uninitialized scalar component. The wording

of this rule has been changed.

103

Appendix B

Intermediate Syntax

This appendix describes the decorated abstract syntax representation of Ada 9X programs. This

representation includes all static semantic information needed for defining the dynamic semantics.

One approach, not taken here, is to define a representation of semantic information such as types,

subtypes, and overload information and defining necessary tree attributes. Instead of using semantic

attributes we chose to give a purely syntactic representation of necessary information by introducing
new kinds of tree node_ and new synthetic names.

For instance, the results of overload resolution are captured by the introduction of new unique

names and suitable renaming of overloaded entities and their use. Crucial type information is

represented using existing syntax for qualified expressions. Thus the result of static semantic analysis
is a normalized abstract syntax tree. The details of this normalization are described below.

Declarations that introduce multiple names are replaced by static analysis with multiple decla-

rations introducing single names where this is legal.

Constructs for which no abstract syntax is provided are either not treated in this definition

(e.g., tasking) or have not significance for the dynamic semantics (e.g., generics).

B.1 Syntactic Domains

The following is a complete listing of the term algebra used to represent abstract syntax trees. The

constructors are grouped by sorts and are arranged alphabetically.

B.I.1

B.1.2

Component Associations (Aca)

array_compSassoc :

Aggregates (Agg)

ext$agg :

named_array$agg :

null_ext$agg :

null_recordSagg :

other_array$agg :

pos_array$agg :

recordSagg :

Dch*, Exp ---* Aca

Exp, Rca* --* Agg

Aca* --* Agg

Exp _ Agg
---* Agg

F,xp*, Exp ---* Agg

Exp* _ Agg

Rca* --* Agg

104

B.1.3

B.1.4

B.1.5

B.1.6

B.1.7

B.1.8

B.1.9

B.1.10

B.1.11

Case Alternatives (Aft)

Alt$1st:

case$Alt :
list(A/Q _ Alt

Dch*, Stm --, Alt

Choice Lists (Ccl)

list$choice : id* ---* Ccl

others$choice : _ Ccl

Context Items (C it)

with$context : Nam* ---* Cit

Component Declarations (Crop)

aliased_comp$decl : Id, Sid ---* Crop

comp$decl : Id, Sid --_ Cmp
init_aliased_compSdecl : Id, Sid, Exp --* Cmp

init_comp$decl : Id, Sid, Exp --* Cmp

Compilation Units (Crop)

lib$unit :

private$unit :

sub$unit :

Cit*, Dcl --* cmu

Cit *, Dcl --, cmu

Cit*, Nam, Dcl--* cmu

Conditions (Cnd)

Exp$condition : Exp -* Cnd

Constraints (Cns)

constr_delta$constr :

constr_digits$constr :
delta$constr :

digits$constr :

discr$constr :

index$constr :

range$constr :

Exp, Cns --_ Cns

Exp, Cns _ Cns
Exp ---* Cns

Exp _ Cns

Dca* ---* Cns

Rng* --_ Cns

Rng ---* Cns

Discriminant Associations (Dca)

named$assoc : Id, Exp ---* Dca

Discrete Choices (Dch)

discr_other$choice :

exp$choice :

range$choice :

---+Dch

Exp ---* Dch

Rng --, Dch

105

B.l.12

B.1.13

B.1.14

B.l.15

Declarations (Dcl)

dcl$1st : list(Dcl) _ Dcl

a_c_i_obj$decl : Id, Sid, Exp --* Dcl

a_c_objSdecl : Id, Sid--_ Dcl

a_i_obj$decl : Id, Sid, Exp _ Dcl

a_objSdecl : Id, Sid--_ Dcl

c_i_obj$decl : Id, Sid, Exp ---* Dcl
c_obj$decl : Id, Sid---+ Dcl

real_const$decl : Id, Exp ---* Dcl

int_const$decl : Id, Exp ---+Dcl

d_ext$decl : Id, Dcp, Sid --+ Dcl

d_Ltype$decl : Id, Dcp ---* Dcl

d_type$decl :

exception$renaming :
excpt$decl
ext$decl :

Id, Dcp, Tdf---* Dcl
Id, Nam _ Dcl
Id _ Dcl

Id, Sid ---* Dcl

LobjSdecl

Ltype$decl :

objSdecl :
object$renaming :

Id, Sid, Exp ---+ Dcl
Id ---+Dcl

Id, Sid --+ Dd

Id, Nam, Nam ---* Dcl

s_subp$spec :
subp$body :

subp$renaming :

subp$spec :

subtypeSdecl :
type$decl :

c_type$decl :

c_d_typeSdecl :

Sps -+ Dcl

Sps, Dcl, Stm _ Dcl

Sps, Nam _ Dcl

Sps -+ Dcl

Id, Sid -+ Dcl

Id, Tdf---* Dcl
Id, Tdf_ Dcl

Id, Tdf, Dcp---* Dcl

Discriminant Parts (Dcp)

box$discr : _ Dcp

list$discr : Dcs* --+ Dcp

Discriminant Specifications (Dcs)

accSdiscr :
acc_initSdiscr :

init$discr :

simple$discr :

Id, Nam --_ Dcs

Id, Nam, Exp _ Dcs

Id, Nam, Exp ---* Dcs

Id, Nam --_ Dcs

Exception Choices (Ech)

named$excpt : Nam ---+Ech

others$excpt : --* Ech

106

B.1.16

B.l.17

B.1.18

Else-If Clauses (El/)

eif$1st:
elsif$clause:

Expressions (Exp)

and_then$Exp :

exp$alloc :

in_name$exp :

in__range$exp :

in_typeSexp :

name$exp :

not_in_name$exp :
not_in_range$exp :

not_in_type$exp :

null$exp :
integer$exp :

real$exp :

char$exp :

or_elseSexp :

paren$exp :

qualSaggregate :

qual$exp :

typeSalloc :

type$conversion :

Modes (Mde)

inSmode :

in_out$mode :

noSmode :

out$mode :

Eit*_ Elf

Cnd, Stm --+ Elf

Exp, Exp _ Exp
Exp ---.*Exp

Exp, Nam _ Exp

Exp, Rng --* Exp
Exp, Nam _ Exp

Nam ---* Exp

Exp, Nam _ Exp

Exp, Rng ---* Exp

Exp, Nam -.-* Exp

---. Exp

integer _ Exp

real _ Exp

integer ---* Exp

Exp, Exp _ Exp

Exp _ Exp

Nam, Agg _ Exp

Nam, Exp _ Exp
Sid ---* Exp

Nam, Exp ---* Exp

---. Mde
--_ Mde

Mde

Mde

B.1.19 Names (Nam)

accessSattr :

delta$attr :

digits$attr :
derefSname :
direct$name :

func$call :

Id$attr :

indexed$comp :

Nam ---* Nam
Nam ---* Nam

Nam --_ Nam

/Yam ---* Nam

Id --* Nam

Nam, Pss* --* Nam

Nam, Id _ Nam

Nam, Exp* --_ Nam

name_type$conversion :
paramSattr :

selected$comp :

slice$op :

Nam, Nam ---* Nam

Nam, Id, Exp _ Nam

Nam, Id ---* Nam

Nam, Rng ---* Nam

107

B.1.20

B.1.21

B.1.22

B.1.23

B.1.24

B.1.25

B.1.26

B.1.27

Parameter Specifications (Pros)

access$param : Id, Nam --. Pros

access_defaultSparam : Id, Nam, Exp _ Pms

default$param : Id, Male, Nam, Exp --. Pms
norrnalSparam : Id, Mde, Nam --. Pms

Pragmas (Prg)

param$pragma :

simple$pragma :
Id, Pss* ---* Prg

Id --* Prg

Parameter Associations (Pss)

named_exp$arg :

named__nameSarg :
Id, Exp _ Pss
Id, Nam _ Pss

Record Component Associations (Rca)

choice$assoc : Ccl, Exp -_ Rca

Ranges (Rng)

attr$range :
explicitSrange :

parm_attr$range :

Nam ---, Rng

Exp, Exp _ Rng
Nam, Exp --_ Rng

Subtype Indications (Sid)

constrained$subtype :
namedSsubtype :

subtype$range :

Nam, Cns _ Sid
Nam _ Sid

Rng _ Sid

Subprogram Specifications (Sps)

function$spec : Id, Pros*, Nam-_ Sps

procedure$spec : Id, Pms*_ Sps

Statements (Stm)

stm$1st :

agg--codeSstm :

assignSstm :

call$stm :

case$stm :

condSexit :

declare$block :

exp_code$stm :

for$1oop :
func-return$stm :

list(Stm) _ Stm

?/am, Agg _ Stm
Nam, Exp _ Stm

Nam, Pss* --* Stm

Exp, Alt _ Stm
Cnd _ Stm

Dcl, Stm --. Stm

Nam, Exp _ Stm

ld, Rng, Stm _ Stm

Exp _ Stm

108

B.1.28

goto$stm:
ifSstm:
if_else$stm:
labled$stm:
name$exit:
name_condSexit:
namedSblock:
named$1oop:
named_declare$biock:
named_for$1oop:

named_reverse$1oop:
named_while$1oop:
null$stm:
plain$exit:
plain$1oop:
raiseSstm:
reraise$stm:
return$stm:
reverse$1oop:
simpleSblock:
while$1oop:
handledSstatement:
unhand|ed$statement:

Nam ---* Stm

end, Stm, Eif ---* Stm

Cnd, Stm, Elf, Stm --* Stm

Id, Stm ---* Stm
Nam ---* Stm

Nam, Cnd _ Stm

Id, Stm ---* Stm

Id, Stm ---* Stm

Id, Dcl, Stm _ Stm

Id, Id, Rng, Stm ---* Stm

Id, Id, Rng, Stm ---* Stm

Id, Cnd, Stm --* Stm
--* Stm

--* Stm

Stm -* Stm

Nam -* Stm

-* Stm

-* Stm

Id, Rng, Stm --_ Stm
Stm --* Stm

Cnd, Stm--* Stm

Stm, Xhd* _ Stm
Stm --* Stm

Type Definitions (Td 0

access$type :

aliased_array$type :

aliased_uc_array$type :

all_access$type :

array$type :

const_access$type :

const_dec_fixedStype :

const_floatStype :

dec_fixedStype :

der$type :

enum$type :

extStype :
floatStype :

funcStype :

int$type :

modStype :

named$type :
ord_fixed$type

proc$type :

record$type :

t_record$type

uc_arrayStype

Sid --* Tdf

Rng*, Sid --* Tdf

Nam*, Sid ---* Tdf
Sid --* Tdf

Rng*, Sid --* Tdf
Sid -* Tdf

Exp, Exp, Cns--* Tdf

Exp, Cns--* Tdf
Exp, Exp --* Tdf
Sid --* Tdf

Id* -* Tdf

Sid, rcd ---* Tdf

Exp --* Tdf

Pros*, Nam--* Tdf

Exp, Exp -* Tdf

Exp --* Tdf
Sid --* Tdf

Exp, Rng--* Tdf
Pros*--, Tdf

Crop*, Vrp--* Tdf

Cmp*, Vrp-* Tdf

Nam*, Sid --* Tdf

109

B.1.29

B.1.30

B.1.31

Variants (Vnt)

variant$clause :

Variant Parts (Vrp)

no$variant : Vrp

variant$part :

Exception Choices (Xhd)

choice$handler :

expt$handler :

Dch*, Cmp*, Vrp ---* Vnt

Nam, Vnt* ---* Vrp

Id, Ech *, Stm --_ Xhd

Ech*, Stm --* Xhd

B.2 Lexical Elements

prgama ::=
pragma identifier [(pragma_argument_association { , pragma_argument_association})] '

param$pragma : Id, Pss* --_ Prg [simple$pragma : pragma, Id --* Prg I
pragma_argument_association ::----

[identifier =>] name

[[identifier =>] expression

I named_expSarg : Id, Exp --_ Pssnamed_name$arg : Id, Nam --_ Pss

B.3 Declarations and Types

B.3.1 Declarations

basic_declaration ::=

type_declaration

subtype_declaration

object_declaration

number_declaration

subprogram_declaration

abstract_subprogram_declaration

package_declaration

renaming_declaration

exception_declaration

generic_declaration

generic_instantiation

It is convenient to treat sequences of declarations as a single declaration.

110

defining_identifier ::=

identifier

I Dc/$1st : Dcl* ---* Dcl

B.3.2 Types and Subtypes

B.3.2.1 Type Declarations

type_declaration ::=

full_type_declaration

I incomplete_type_declaration

I private_type_declaration

I private_extension_declaration

full_type_declaration ::--

type defining_identifier [known_discriminant_part] is type_definition ;

I task_type_declaration

I protected_type_declaration

d_type$decl : Id, Dcp, Tdf----_ Dcl [

typeSdecl : Id, Tdf----_ Dcl J
type_definition ::=

enumeration_type_definition

integer_type_deft nition

real_type_definition

array_type_definition

record_type_definition

access_type_definition

derived_type_definition

B.3.2.2 Subtype Declarations

subtype_declaration ::--

subtype defining_identifier is subtype_indication ;

subtype$decl :

subtype_indication ::=

subtype_mark [constraint]

Id, Sid _ Dcl

subtype_mark ::=

name

111

constrained$subtype :

named$subtype :

subtype$range :

Nam, Cns --, Sid
Nam ---* Sid

Rng --* Sid

The form subtypeSrange applies only to discrete subtype definitions.

constraint ::---

scalar_constraint

I composite_constraint

scalar_constraint ::---

range_constraint
] digits_constraint

[delta_constraint

composite_constraint ::--
index_constraint

I discriminant_constraint

B.3.2.3 Classification of Operations

B.3.3 Objects and Named Numbers

B.3.3.1 Object Declarations

object_declaration ::_

defining_identifier_list : [aHased] [constant] subtype_indication [:-- expression] ;
] defining_identifier_llst : [aliased] [constant] array_type_definition [:= expression] ;

I single_task_declaration

I single_protected_declaration

a._c_i_objSdecl :
a_.c_objSdecl :

a_i_objSdecl :

a_objSdecl :

c_i_obj$decl :
c_objSdecl :

i_objSdecl :

objSdecl :

Id Sid, Exp ---* Dcl
Id Sid ---* Dcl

Id Sid, Exp ---* Dcl
Id Sid ---* Dcl

Id Sid, Exp ---* Dcl
Id Sid _ Dcl

Id Sid, Exp ---* Dcl
Id Sid ---* Dcl

All forms of object declarations are normalized such that each declaration defines exactly one

name. This is always possible by I3.3.1_.

defining_identifier_list ::=

defining_identifier {, defining_identifier }

112

B.3.3.2 Number Declarations

number_declaration ::=

defining_identifier_list' constant := expression

real_const$decl : Id, Exp --* Dcl

int_constSdecl : Id, Exp ---* Dcl

Number declarations are disambiguated by static analysis into real and integer number declara-
tions.

B.3.4 Derived Types and Classes

derived_type_definition ::=

[abstract] new subtype_indication [record_extension_part]

B.3.4.1 Derivation Classes

B.3.5 Scalar Types

range_constraint :=

range range

der$type : Sid---* Tdfext$type : Sid, rcd _ Tdf

range$constr : Rng _ Cns]

range ::=
range_attribute_reference

[simple_expression .. simple_expression

attr$range :
explicit$range :

parm_attr$range :

Nam ---* Rng
Exp, Exp ---* Rng

Nam, Exp ---0 Rng

B.3.5.1 Enumeration Types

enumeration_type_definition ::=

(enumeration_literal_specification { , enumeration_literal_specification })

enumeration_literal_specification :=

defining_identifier
I defining_character_literal

enum$type : Id* ---* Tdf I

113

defining_character_literal ::=
character_literal

char$enum : char --, Idid$enum : Id _ Id

B.3.5.2 Character Types

B.3.5.3 Boolean Types

B.3.5.4 Integer Types

integer_type_definition ::=

signed_integer_type_definition

[modular_type_definition

signed_integer_type_definition ::=

range simple_expression .. simple_expression

modular_type_definltion ::=

rood expression

int$type : Exp, Exp--_ Tdf

mod$type :

B.3.5.5 Operations of Discrete Types

B.3.5.6 Real Types

real_type_definition ::=

floating-point_definition

I fixed_poinL_defi nition

Exp---_Tdf [

B.3.5.7 Floating Point Types

floating_point_definition :::

digits expression [real_range_specification]

float$type : Exp _ Tdf

const_afloatStype : Exp, Cns--_ Tdf

real_range_specification ::_

range simple_expression .. simple_expression

See scalar types (3.5).

114

B.3.5.8 Operations of Floating Point Types

B.3.5.9 Fixed Point Types

fixed_point_definition ::--
ordinary_fixed_point_definition

I decimal_fixed_pointq_definition

ordinary_fixed_point_definition ::--
delta expression real_range_specification

ord__fixed$type : Exp, Rng--* Tdf

decimal_fixed_point_definition ::--
delta expression digits expression [real_range_specification]

I

const_dec_fixedStype : Exp, Exp, Cns---* Tdf [
dec_fixedStype : Exp, Exp ---* Tdf I

decimal_digits_constraint ::--
digits expression [range_constraint]

I constr_digits$constr : Exp, Cns _ Cns [

I

digits$constr : Exp --_ Cns I

B.3.5.10 Operations of Fixed Point Types

B.3.6 Array Types

array_type_definition ::--
unconstrained_array_definition

I constrained_array_definition

unconstrained_array_definition ::=

array (index_subtype_definition { , index_subtype_definition }) of component_definition

I aliased_uc_arrayStype : Nam*, Sid _ Tdf [uc_arrayStype : Nam*, Sid _ Tdf I
index_subtype_definition ::=

subtype_mark range <>

constrained_array_definition ::=

array (discrete_subtype_definition { , discrete_subtype_definition }) of component_definition

115

aliased_array$type: Rng*, Sid---* Tdf]

array$type : Rng*, Sid---* Td[I
discrete_subtype_definition ::=

subtype_indication

[range

Discrete subtype definitions are subsumed under subtype indications (Sid).

component_definition ::=

[a]iasecl] subtype_indication

B.3.6.1 Index Constraints and Discrete Ranges

index_constraint ::=

(discrete_range { , discrete_range })

discrete_range ::--

subtype_indication

I range

I index$constr : Rng* _ Cns I

B.3.6.2 Operations of Array Types

B.3.6.3 String Types

B.3.7 Discriminants

discriminant_part ::=
unknown_discriminant_part

I known_discriminant_part

unknown_discriminant_part ::=

C<>)

known_discriminant_part ::=

(discriminant_specification { ; discriminant_specification })

I

box$discr : ---* Dcp [

listSdiscr : Dcs* _ Dcp]
discriminant_specification ::=

defining_identifier_list : subtype_mark [:= defaulLexpression]

[defining_identifier_list : access_definition [:= default_expression]

116

default_expression ::--

expression

acc$discr :

acc_init$discr :

init$discr :

simple$discr :

Id,Nam -* Dcs

Id,Nam, Exp --+Dcs

Id, Nam, Exp _ Dcs
Id, Nam --* Dcs

B.3.7.1 Discriminant Constraints

discriminant_constraint ': =

(discriminant_association {, discriminant_association })

: --* CnsDca*discr$constr

discriminant_association ::=

[selector_name { [selector_name } _->] expression

named$assoc : Id, Exp ---, Dca

B.3.7.2 Operations of Discriminated Types

B.3.8 Record Types

record_type_definition ::--

[[abstract] tagged] [limited] record_definition

record_definition ::=

record

component_list
end record

[null record

record$type : Crop*, Vrp---* Tdf

t_a'ecord$type : Crop*, Vrp---* Tdf

component_list ::=

component_declaration { component_declaration }
I { component_declaration } variant_part
[null:

component_declaration ::=

defining_identifier_list - component_definition [:-- default_expression] "

117

aliased_comp$decl:
comp$decl:
init_aliased_compSdecl:
init_compSdecl:

Id, Sid --* Cmp

Id, Sid _ Crop

Id, Sid, Exp _ Crop

Id, Sid, Exp _ Cmp

Component declarations with multiple identifiers are replaced by multiple component declara-
tions.

B.3.8.1 Variant Parts and Discrete Choices

variant_part ::---
case direct_name is

variant

{ variant }
end case ;

no$variant: Vrp Ivariant$part : Nam, Vnt* _ Vrp

variant ::=

when discrete_choice_list =>

component_list

discrete_choice_list ::=

discrete_choice {
I discrete_choice }

variant$clause : Dch*, Cmp*, Vrp --* Vnt

discrete_choice ::=

expression

I discrete_range

I others

discr_other$choice : --* Dch

Exp$choice : Exp _ Dch

range$choice : Rng---* Dch

B.3.9 Tagged Types and Type Extensions

B.3.9.1 Type Extensions

record_extension_part ::=
with record_definition

118

B.3.9.2 Dispatching Operations of Tagged Types

B.3.9.3 Abstract Types and Subprograms

B.3.10 Access Types

access_type_definition ::=

access_to_object_definition

I access_to_subprogram_definition

access_to_object_definition ::=

access [general_access_modifier] subtype_indication

general_access_modifier ::=
all

I constant

access$type :

all_access$type :
const_access$type :

Sid _ Tdf

Sid ---* Tdf
Sid ---* Tdf

access_to_subprogram_definition ::=

access [protected] procedure parameter_profile

access [protected] function parameter_and_result_profile

access_definition ::=

access subtype_mark

func$type : Pros*, Nam---* Tdf [proc$type : Pms*---* Tdf

B.3.10.1 Incomplete Type Declarations

incomplete_type_declaration ::=

type defining_identifier [discriminant_part] ;

d_i_type$decl : Id, Dcp ---, Dcl]

Ltype$decl : Id _ Dcl I
B.3.10.2 Operations of Access Types

B.3.11 Declarative Parts

declarative_part ::--

{ declarative_item}

119

declarative_item ":--
basic_declarative_item

I body

basic_declarative_item ::=

basic_declaration

representation_clause
use_clause

body :=

proper_body

I body_stub

proper_body ::=

subprogram_body

I package_body

I task_body
I protected_body

B.3.11.1 Completions of Declarations

B.4 Names and Expressions

B.4.1 Names

name ::=

direct_name

explicit_dereference

indexed_component
slice

selected_component
attribute_reference

type_conversion
function_call

character_literal

String and character literals that denote operators are included as direct names.

that denote string values are represented as aggregates.

charSExp : integer ---* Exp]

direct_name ::---

identifier

I operator_symbol

String literals

direct$name : ld _ Nam]

120

Namesthatarerepresentedasstrings,characterliterals,andidentifiersare all treated uniformly

as elements of type Id

prefix ::---
name

I implicit_dereference

explicit_dereference ::=
name. all

derefSname : Nam _ Nam I

The abstract syntax for dereferencing includes explicit as well as implicit dereferencing.

implicit_dereference ::=
name

13.4.1.1 Indexed Components

indexed_component ::=

prefix (expression (, expression })

indexed$comp :

B.4.1.2 Slices

slice ::=

prefix (discrete_range)

Nam, Exp* ---* Nam

slice$op :

13.4.1.3 Selected Components

selected_component ::=

prefix, selector_name

Nam, Rng---* Nam]

selected$comp : Nam, Id---* Nam [

i

Static semantics separates expanded names from selected components.

selector_name ::_-
identifier

I character_literal

I operator_symbol

121

B.4.1.4 Attributes

attribute_reference ::--

prefix ' attribute_designator

attribute_designator ::---

identifier [(expression)]

l access

1 detta

t digits

range_attribute_reference ::=

prefix ' range_attribute_designator

range_attribute_designator ::---

range [(expression)]

Id$attr : Nam, Id ---* Nam

paramSattr : Nam, Id, Exp ---* Nam

There is special abstract syntax needed for attributes that are reserved words.

B.4.2 Literals

B.4.3 Aggregates

aggregate :::

record_aggregate

I extension_aggregate

I array_aggregate

B.4.3.1 Record Aggregates

record_aggregate ::=

(record_component_association_list)

record_component_association_list ::--

record_component_association { , record_component_association}

I null record

I null record$Agg : _ Aggrecord$Agg : Rca* --* Agg

record_component_association ::=

[component_choice_list =>] expression

122

choice$assoc : Ccl, Exp .--* Rca]

Positional parameter associations have been eliminated by static analysis and are represented

with an explicit choice list. This normalization is possible since, by [4.3.1], discriminant values that

determine variants are required to be static.

component_choice_list ::=

selector_name { [selector_name }

I others

I list$choice: Id* --_ Ccl [others$choice : ---, Ccl

B.4.3.2 Extension Aggregates

extension_aggregate ::=

(expression with record_component_association_list)

B.4.3.3 Array Aggregates

array_aggregate ::=
positional__array_aggregate

I named_array_aggregate

ext$Agg : Exp, Rca* -* Agg]

null_extSAgg : Exp --* Agg I

positional_array_aggregate ::=

(expression , expression { , expression))

I (expression{, expression},others=> expression)

named_array_aggregate ::=

(array_component_association { , array_component_association})

named_array$Agg :

other_arraySAgg :

pos_array$Agg :

Aca* _ Agg

Exp*, Exp ---* Agg

Exp* _ Agg

array_component_association ::=
discrete_choice_list => expression

array_comp$assoc : Dch*, Exp _ Aca

123

B.4.4 Expressions

expression ::---

relation { and relation }

] relation { and then relation }

I relation { or relation }

I relation { or else relation }

I relation { xor relation }

and_then$Exp : Exp, Exp --+ Exp I

or_else$Exp : Exp, Exp --+ Exp

Short-circuit operators are non-strict and require explicit representation.

relation ::=

simple_expression [relational_operator simple_expression]

I simple_expression [not] in range

I simple_expression [not] in subtype_mark

in__name$Exp :

in_range$Exp :

in_typeSExp :

not_ia_name$ Exp :

not_in__range$Exp :

not_in_type$Exp :

Exp, Nam --+ Exp

Exp, Rng _ Exp

Exp, Nam ----+Exp

Exp, Nam _ Exp

Exp, Rng _ Exp

Exp, Nam --_ Exp

Static semantics distinguishes between membership tests where the name denotes an object and

those where the name denotes a subtype.

simple_expression ::=

[unary_adding_operator] term { binary_adding_operator term }

term ::---

factor { multiplying_operator factor }

factor ::=

primary [** primary]

I abe primary

I not primary

primary
numeric_literal

null

string/iteral

aggregate
name

qua lift ed_expression
allocator

(expression)

124

paren$Exp : Exp _ Exp

qual$aggregate : Nam, Agg----* Exp

name$Exp : Nam ---* Exp
null$Exp : _ Exp

integer$Exp : integer _ Exp
real$Exp : real ---* Exp

All aggregates are assumed to be qualified by static analysis. String literals are represented

as qualified aggregates. It may be necessary for static analysis to introduce new type names for

aggregates of anonymous array types.
Numeric literals are separated into integer and real literals.

B.4.5 Operators and Expression Evaluation

All strict operators on ordinary values are represented in the abstract syntax as function calls.

As with other function calls, the function designators specify the unique overload that applies.

Non-strict operators or operators that take subtypes as arguments (e.g., in) have an explicit repre-

sentation given below.

logical_operator ::=
and

I or

I xor

relational_operator ::=

I /=
I <
I <=
I >
I >=

binary_adding_operator ::=
+

I
I &

unary_adding_operator ::=

I +

multiplying_operator ::=

I /
I mod

I rein

125

highest_precedence_operator ::=

[abs

[not

B.4.5.1

B.4.5.2

B.4.5.3

B.4.5.4

B.4.5.5

B.4.6

Logical Operations and Short-Circuit Control Forms

Relational Operators and Membership Tests

Binary Adding Operators

Multiplying Operators

Highest Precedence Operators

Type Conversions

type_conversion ::=

subtype_mark (expression)

I subtype_mark (name)

type$conversion : Nam, Exp ---* Exp

name_type$conversion : Nam, Nam _ Nam

B.4.7 Qualified Expressions

qualified_expression ::--

subtype_mark' (expression)

I subtype_mark ' aggregate

qual$Exp : Nam, Exp _ Exp]
I

The abstract syntax for qualified aggregates is covered under aggregates.

B.4.8 Allocators

allocator ::=

new subtype_indication

I new qualified_expression

ExpSalloc : Exp _ Exp

type$alloc : Sid _ Exp

126

B.4.9

B.4.9.1

B.5

B.5.1

Static Expressions and Static Subtypes

Statically Matching Constraints and Subtypes

Statements

Simple and Compound Statements - Sequences of Statements

sequence_of_statements ::=

statement { statement }

Sequences of statements can be treated as single statements.

Stm$1st : Stm* -+ Stm

statement ::-----

{ label } simple_statement

l { label } compound_statement

simple-statement ::=
null_statement

assignment_statement

exit_statement

goto_statement

procedure_call_statement

return_statement

entry_call_statement

requeue_statement

delay_statement

abort_statement

raise_statement

code_statement

labeld$stm : Id, Stm ---* Stm I

compound_statement ::--

if_statement

I case_statement

I loop. statement

I block_statement

I accept_statement

I select_statement

null_statement ::=

null;

nullSstm : _ Stm

127

label ::=

<< statement_identifier >>

statement_identifier ::=

direct_name

B.5.2 Assignment Statement

assignment_statement ::=

name := expression

assign$stm : Nam, Exp---, Stm [

B.5.3 If Statements

if_statement ::=

if condition then

sequence_of_statements

{ elsif condition then

sequence_of_statements}
[else

sequence_of_statements]
end if ;

condition ":=

expression

ifSstm :

if_else$stm :

Eif$lst :

elsif$clause :

Cnd, Strn, Elf---, Stm

Cnd, Stm, Elf, Stm ---* Stm
Elf Eir
Cnd, Stm ---* Elf

Exp$condition : Exp ---* Cnd [

B.5.4 Case Statements

case_statement ::---

case expression is
case_statement_alternative

{ case-statement_alternative }
end case ;

case$stm : Exp, AIr--* Stm]

128

case-statement_alternative :::

when discrete_choice_list :>

sequence_of_statements

I Alt$1st : Aft* ---* Alt IcaseSAlt : Dch*, Stm ---* Air

B.5.5 Loop Statements

loop_statement ::=

[statement_identifier:]

[iteration_scheme] loop

sequence_of_statements

end loop [identifier] ;

iteration_scheme ::=

while condition

I ['or loop_parameter_specification

loop_parameter_specification ::=

defining_identifier in [reverse] discrete_subtype_definition

named_for$1oop :

named_reverse$1oop :

named_while$1oop :

named$1oop :

for$1oop :

reverse$1oop :

while$1oop :

plain$1oop :

Id, Id, Rng, Stm ---* Stm

Id, Id, Rng, Stm ---* Stm

Id, Cnd, Stm --_ Stm

[(t, Stm -* Stm

Id, Rng, Stm ---* Stm

Id, Rng, Stm --* Stm

Cnd, Stm ---* Stm

Stm --* Stm

B.5.6 Block Statements

block_statement ::=

[statement_identifier:]

[declare

declarative_part]

begin

handled_sequence_of_statements

end [identifier] ;

simpleSblock :

declare$block :

named$block :

named_declareSblock :

Stm ---. Corm

Dcl, Stm ---+ Stm

Id, Stm ---* Stm

Id, Dc], Stm ---* Strn

129

B.5.7 Exit Statements

exit_statement :::

exit [name] [when condition]"

name$exit :

name_cond$exit :

plain$exit :
condSexit :

Nam ---* Stm

Nam, Cnd --* Stm
--* Stm

Cnd --* Stm

B.5.8 Goto Statements

goto_statement •:=

goto name '

gotoSstm :

B.6 Subprograms

B.6.1 Subprogram Declarations

subprogram_declaration ::=

subprogram_specification ;

Nam _ Stm]

subp$spec :

abstract_subprogram_declaration ::=
subprogram_specification is abstract •

Sps _ Dcl [

subp$spec : Sps--_ Dcl [

subprogram_specification ::=

procedure defining_program_unit_name parameter_profile
] function defining_designator parameter_and_result_profile

function$spec : Id, Pros*, Nam--_ Sps

procedure$spec : Id, Pms*---_ Sps

designator :::

[parent_unit_name.] identifier
[operator-symbol

defining_designator ::=

defining_program_unit_name

[defining_operator_symbol

130

defining_program_unit_name ::--

[parent_unit_name.] defining_identifier

operator_symbol ::--

string_literal

defining_operator_symbol ':=

operator_symbol

parameter_profile : =

[formal_part]

no$params : --* Psig

param$list : Pros* --_ Psig

parameter_and_result_profile ::--

[formal_part] return subtype_mark

formal_part :=

(parameter_specification { ' parameter_specification })

pa ra meter_s p ecifi cation : --

defining_identifier_list • mode subtype_mark [:-- default_expression]

I defining_identifier_list • access_definition [:= default_expression]

accessSparam :

access_default$param :

default$param :

normal$param :

Id, Nam---, Pms

Id, Nam, Exp --* Pms

Id, Mde, Nam, Exp --* Pms

Id, Mde, Nam --* Pms

mode ::=

[in]

in out

out

in$mode :

in_outSmode :

no$mode :

outSmode :

-_ Mde

---* Mde

---* Mde

-_ Mde

131

B.6.2 Formal Parameter Modes

B.6.3 Subprogram Bodies

subprogram_body ::=

subprogram_specification is

declarative_part

begin

handled_sequence_of_statements

end [designator] ;

I subp$body : Sps, Dcl, Stm --* Dcl

B.6.3.1 Conformance Rules

B.6.3.2 Inline Expansion of Subprograms

B.6.4 Subprogram Calls

procedure_call_statement ::=

name

I prefix actual_parameter_part ;

call$stm :

function_call ::=

name

I prefix actual_parameter_part

Nam, Pss* ---* Stm

func$call : Nam, Pss* --. Nam

actual_parameter_part ::=

(parameter_association { , parameter_association })

parameter_association ::=

[selector_name -->] explicit_actual_parameter

explicit_actual_parameter ":=

expression

I name

named_exp$arg : Id, Exp ---* Pss [named_name$arg : Id, Nam -* Pss I

132

B.6.4.1 Parameter Associations

B.6.5 Return Statements

return_statement ::-

return [expression] ;

I func_returnSstm :returnSstm :

B.6.6 Overloading of Operators

B.7 Packages

B.7.1 Package Specifications and Declarations

package_declaration ::=
package_specification;

package_specification ::=

package defining_program_unit_name is

{ basic_declarative_item}

[private

{basic_declarative_item}]

end [[parent_unit_name .] identifier]

B.7.2 Package Bodies

package_body ::=

package body defining_program_unit_name is

declarative_part

[begin

handled_equence_of_statements

end [[parent_unk_name .] identifier];

B.7.3 Private Type and Private Extensions

private_type_declaration ::=
type defining_identifier [discriminant_part] is [[abstract] tagged] [limited] private ;

private_extension_declaration ::--

type defining_identifier [discriminant_part] is

[abstract] new subtype_indication with private ;

d_ext$decl : M, Dcp, Sid--+ Dcl

ext$decl : Id, Sid ---* Dcl

133

]3.7.3.1

B.7.4

B.7.5

B.7.6

B.7.6.1

B.8

B.8.1

B.8.2

B.8.3

B.8.4

Operations of Private Types and Private Extensions

Deferred Constants

Limited Types

User-Defined Assignment and Finalization

Completion and Finalization

Visibility Rules

Declarative Region

Scope of Declarations

Visibility

Use Clauses

use_clause ::=

use_package_clause

I use_type_clause

use_package_clause :::

use name { , name } ;

I use$clause : Nam*--, Dcl I

use_type_clause ::=

use type subtype_mark { , subtype_mark } •

use_type$clause : Nam* ..-+ Dcl I

B.8.5 Renaming Declarations

renaming_declaration :::

object-renaming_declaration

I exception_renaming_declaration

I package-renaming_declaration

I subprogram_renaming_declaration

I generic_renaming_declaration

B.8.5.1 Object Renaming Declarations

object_renaming_declaration :::

defining_identifier • subtype_mark renanaes name •

I objectSrenaming : Id, Nam, Nam --* Dcl]

134

B.8.5.2 Exception Renaming Declarations

exception_renaming_declaration ::=

defining_identifier : exception renames name;

exception$renaming Id, Nam ---* Dcl

B.8.5.3 Package Renaming Declarations

package_renaming_declaration ::=
package defining_program_unit_name renames name ;

B.8.5.4 Subprogram Renaming Declarations

subprogram_renamlng_declaration ::=

subprogram_specification renames name ;

subpSrenaming : Sps, Nam ---* Dcl]

B.8.5.5 Generic Renaming Declarations

generic_renaming_declaration ::--
generic package defining_program_unit_name renames name ;

I generic procedure defining_program_unit_name renames name ;

[generic function defining_program_unit_name renames name ;

B.8.6

B.9

B.9.1

The Context of Overload Resolution

Tasks and Synchronization

Task Units and Task Objects

task_type_declaration ::=
task type defining_identifier [known_discriminant_part] [is task definition] ;

single_task_declaration ::=

task defining_identifier [is task definition] ;

task_definition ::=

{ task_item }
[private

{task_item}]

end [identifier]

135

task_item ::=

entry_declaration

I representation_clause

task_body ::=

task body defining_identifier is

declarative_part

begin

handled_ sequence_of_statements

end [identifier] ;

B.9.2 Task Execution - Task Activation

B.9.3 Task Dependence - Termination of Tasks

B.9.4 Protected Units and Protected Objects

protected_type_declaration ::=

protected type defining_identifier [known_discriminant_part] is protected_definition ;

single_protected_declaration ::=

protected defining_identifier is protected_definition ;

protected_definition ::=

{ protected_operation_declaration }

[private

{protected_element_declaration}]

end [identifier]

protected_operation_declaration ::--

subprogram_declaration

I entry_declaration

protected_element_declaration ::--

protected _operation_declaration

I component_declaration

protected_body ::=

protected body defining_identifier is

{protected_operation_item}

end [identifier] ;

protected_operation_item ::--

subprogram_declaration

I subprogram_body

I entry_body

136

B.9.5 Intertask Communication

entry_declaration ::=

entry defining_identifier [(discrete_subtype_definition)] parameter_profile ;

accept_statement :::

accept direct_name [(entry_index)] parameter_profile [do
ha ndled_ seq uence_of_statements

end [identifier]] ;

entry_index ::=

expression

entry_body ::=

entry defining_identifier entry_body_formal_part entry_barrier is

declarative_part

begin

handled_sequence_of_statements

end [identifier] ;

en try_body_forma I_part ::--

[(entry_index_specification)]parameter_profile

entry_barrier ::--

when condition

entry_index_specification ::---

for defining_identifier in discrete_subtype_definition

entry_call_statement ::---

name [actual_parameter_part] ;

requeue_statement ::=

requeue name [with abort] ;

B.9.6 Delay Statements, Duration, and Time

delay_statement ::--

delay_until_statement

I delay_relative_statement

delay_until_statement ::=

delay until expression ;

137

delay_relative_statement ::=
delay expression ;

B.9.7 Select Statements

select_statement ::=

selective_accept

I timed_entry_call

I conditional_entry_call

I asynchronous_select

B.9.8 Selective Accept

selective_accept ::=
select

[guard] select_alternative

[or

[guard] select_alternative]
[else

sequence_of_statements]
end select ;

guard ::=

when condition =>

select_alternative ::--

accept_alternative
I delay_alternative

I terminate_alternative

accept_alternative :::

accept_statement [sequence_of_statements]

delay_alternative ::=

delay_statement [sequence_of_statements]

terminate_alternative ::=

terminate;

B.9.9 Timed Entry Calls

timed_entry_call ::=
select

entry_call_alternative

138

or

delay_alternative

end select ;

entry_call_alternative ::=

entry_call_statement [sequence_of_statements]

B.9.10 Conditional Entry Calls

conditional_entry_call ::=
select

entry_call_alternative
else

sequence_oLstatements

end select ;

B.9.11 Asynchronous Transfer of Control

asynchronous_select ::--

select

triggering_alternative

then abort

abortable_part

end select ;

triggering_alternative ::=

triggering_statement [sequence_of_statements]

triggering_statement ::=

entry_call_statement

I delay_statement

abortable_part ::=

sequence_of_statements

B.9.12 Abort of a Task - Abort of a Sequence of Statements

abort_statement ::--

abort name { , name} '

139

B.9.13

B.9.14

B.9.15

B.10

B.10.1

B.10.1.1

Task and Entry Attributes

Shared Variables

Example of Tasking and Synchronization

Program Structure and Compilation Issues

Separate Compilation

Compilation Units - Library Units

compilation ::=

{compilation_unit}

compilation_unit ::=

context_clause library_item

I context_clause subunit

library_item ::--

[private] library_unit_declaration

I library_unit_body

library_unit_declaration ::=

subprogram_declaration

I package_declaration

[generic_declaration

[generic_insta ntiation

I library_unit_renaming_declaration

library_unit_renaming_declaration ::=

package_renaming_declaration

I generic_renaming_declaration

I subprogra m_renaming_decearation

library_unit_body ::=

subprogram_body

] package_body

parent_unit_name ::=

name

lib$unit :

private$unit :

sub$unit :

CAt*, Dcl _ cmu

CAt*, Dcl _ emu

Cit*, Nam, Dcl---, cmu

Renaming of library units is dealt with in static semantics.

140

B.10.1.2 Context Clauses - With Clauses

context_clause ::----

{ context_item}

context_item :::

with_clause

I use_clause

with_clause ::=

with name { , name } ;

with$context : Nam* _ Cit]

B.10.1.3 Subunits of Compilation Units

body_stub ::=

subprogram_body_stub

I package_body_stub

I task_body_stub

I protected_body_stub

subprogram_body_stub ::=

subprogram_specification is separate ;

s_subpSspec : Sps ---* Dcl

package_body..stub ::=

package body defining_identifier is separate ;

task_body__tub ::-

task body defining_identifier is separate ;

protected_body_stub ::=

protected body defining_identifier is separate ;

subunit ::-_

separate (parent_unit_name) proper_body

141

B.10.1.4

B.10.1.5

B.10.1.6

B.10.2

B.10.2.1

B.11

B.11.1

The Compilation Process

Pragmas and Compilations

Environment-Level Visibility Rules

Program Execution

Elaboration Control

Exceptions

Exception Declarations

exception_declaration :::

defining_identifier_list • exception ;

excptgdecl : Id--* Dcl [

As with object declarations, only a single name is defined by each exception declaration.

B.11.2 Exception Handlers

handled_sequence_of_statements :::

sequence_of_statements

[exception

exception_handler

{ exception_handler }]

I handled$statement : Stm, Xhd* --* Stmunhandledgstatement : Stm -* Stm

exception_handler ::=

when [choice_parameter_specification :] exception_choice { I exception_choice } "->
sequence_of_statements

I choice$handler :exptghandler :

choice_parameter._specification ::=

defining_identifier

Id, Ech *, Stm --* Xhd I

Ech *, Stm --* Xhd I

exception_choice ::=
name

I others

I

named$excpt : Nam-, Ech [
others$excpt : --* Ech I

142

B.11.3 Raise Statements

raise_statement ::=

raise [name] ;

raise$stm : Nam _ Stm

reraise$stm : --* Stm

B.11.4

B.11.5

B.11.6

B.12

Exception Handling

Suppressing Checks

Exceptions and Optimization

Generic Units

B.12.1 Generic Declarations

generic_declaration ::=

generic_subprogram_declaration

J generic_package_declaration

generic_subprogram_declaration ::=

generic_formal_part subprogram_specification ;

generic_package_declaration ::--

generic_formal_part package_specification ;

generic_formal_part ::=

generic { generic_formal_parameter_declaration

J use_clause }

generic_formal_parameter_declaration ::=

formal_object_declaration

I formaLtype_declaration

I formal_subprogram_declaration

J formal_package_declaration

B.12.2 Generic Bodies

B.12.3 Generic Instantiation

generic_instantiation ::=

package defining_program_unit_name is

new name [generic_actual_part] ;

J procedure defining_program_unit_name is

new name [generic_actual_part] ;

143

function defining_designator is

new name [generic_actual_part] ;

generic_actual_part ::=

(generic_association { , generic_association })

generic_association ::=

[selector_name -----_] explicit_generic_actual_parameter

explicit_generic_actual_parameter ::=

expression

I name

I subtype_mark

B.12.4 Formal Objects

for maLobject_declaration ::=

defining_identifier_list : mode subtype_mark [:-- default_expression] ;

inibformal$obj : Id*, Mde, Nam, Exp --* Gpd]

formal$obj : Id*, Mde, Nam --* Gpd I

B.12.5 Formal Types

formal_type_declaration ::--

type defining_identifier [discriminant_part] is formal_type_definition ;

formal_type_definition ::=

forma Lprivate_type_definition

formal_derived_type_definition

formal_discrete_type_definition

for ma bsigned_integer_type_d efinition

forma Lmodular_type_clefinition

formal_floating_point_definition

formal_ordinary_fixed_point_definition

formal_decimal-fixed-point-definition

formal_array_type_definition

forma Oaccess_type_definition

B.12.5.1 Formal Private and Derived Types

for mabprivate_type_definitlon ::--

[[abstract] tagged] [limited] private

144

formal_derived_type_definition ::-

[abstract] new subtype_mark [with private]

B.12.5.2 Formal Scalar Types

formal_discrete_type_definition ::-

(<>)

formal_signed_integer_type_definition ::=

range < >

formal_modular_type_definition ::=
rood <>

formal_floating_point-definition ::=

digits <>

formal_ordinary_fixed_point_definition ::=
delta <>

formal_decimal_fixed_point_definition ::--

digits <> delta <>

B.12.5.3 Formal Array Types

formal_array_type_definition ::=

array_type_definition

13.12.5.4 Formal Access Types

formal_access_type_definitlon ::=

access_type_definition

B.12.6 Formal Subprograms

formal_subprogram_declaration ::=
with subprogram_specification [is subprogram_default] ;

subprogram_default :'--
default_name

I <>

default_name ::---

name

145

B.12.7 Formal Packages

formal_package_declaration ::=

with package defining_identifier is new npme formal_package_actual_part ;

formal_package_actual-part ::--

C<>)
I [generic_actual_part]

Example of a Generic Package

Representation Clauses and Implementation-Dependent

Features

representation_clause ::-
attribute_definition_clause

[enumeration_representation_clause

I record_representation_clause

I at_clause

attribute_definition_clause ::=

for direct_name ' attribute_designator use expression ;

I for direct_name ' attribute_designator use name ;

enumeration_representation_clause ::---

for direct_name use enumeration_aggregate ;

enumeration_aggregate ::=

array_aggregate

record_representation_clause ::=

for direct_name use

record [mod_clause]

{component_clause}

end record ;

component_clause ::=

component_clause_component-name at position range first_bit .. last_bit ;

component_clause_component_name ::-
direct_name

I direct_name' attribute_designator

146

position ::=

expression

first_bit ::=

simple_expression

last_bit ::-

simple_expression

code_statement ":=

qualified_expression •

restriction ::=

identifier

I identifier => expression

I

agg_code$stm : /Yam, Ag,$ ---* Stm I
exp_code$stm : Nam, Exp ---* Stm I

delta_constraint ::=

delta expression [range_constraint]

constr_delta$constr : Exp, Cns--* Cns

delta$constr : Exp-.* Cns

at_clause ::=

for directed_name use at expression "

mod_clause ::=

at rood expression ;

B.14 Ada 9X Input-Output

147

Index

t-stt, 65

_gg, 71
t-the, 76

_-dt, 76

F_mp, 66
F _, 61-63, 68, 79

_'_q, 75, 76

b _p, 71-74
_-_m, 68, 70, 73, 81

Fp_,, 62

I-.,g, 64
b-s,d, 62

t-stm, 75-78, 81, 82

_-td], 63, 65, 66
F _ , 66

_ .ur, 83

-,d,, 67
Nh-NI, 83

Rng_lst, 65
..., 65, 66, 69, 71, 74, 76, 77, 79, 81

abnormal__state, 49, 51, 64, 69, 70, 74

access_type, 58
access_value, 54, 55

access_val, 54, 68, 74

actualized_binding_list, 60, 60

actualized_complist, 61
actualized_components, 61, 61, 71

actualized_constraint, 60, 60, 60, 61

actualized_partial_range, 60, 60

act ualized-range-list, 60, 60

actualized_value, 60, 60

actualized_variants, 61, 61

actualize, 57, 61, 61

adorn, 56, 57, 79

all_access, 67

ancestor, 55, 55, 56, 73

append_components, 61

array_aggregate, 71

array_component, 50, 69

array_slice, 50, 69

array_type, 56, 59, 65, 69

array_value, 55, 55, 56

148

array_val, 50, 55, 56, 59, 69

assign_fn, 62, 63, 75
base_range, 55, 55, 56

base, 83
belongs_to, 53, 53, 56, 59, 69, 72, 77

bind_actuals, 80, 80, 81

choice_lst, 76, 77

choice_range,76, 77

choice_value, 76, 77

d_value, 57, 57, 57

class_type, 56

compatible, 62, 68
component_actions, 71, 71

component_type, 57, 57, 70

composite_value, 55

constanLaccess, 67

constrain, 69
convert_return_value, 80, 82, 82

covers_fn, 76

covers, 57, 77, 77, 77
default_.value..fn, 62, 63

descendant, 55, 55

descriptor_value, 56, 56, 57, 60

discrete_range, 53

discrete_rng, 53-56, 60
discrete_value, 54

discrete_val, 53, 54, 56, 60, 64, 70, 72, 76-78,
83

discriminant_constraint, 59, 60, 71

discriminant_ref, 60

discriminanLunion, 67, 67, 67

discriminanLvalue, 56, 56, 57

discr, 56, 57, 67, 68, 71

elementary_value, 54, 55, 55

chum_type, 55, 56, 58

exception, 49, 69, 70, 74, 76, 80, 81

exit, 49, 76-78, 80

expression-list, 68, 68, 69

fields, 57, 61, 66, 67
finalize_In, 75

find_component, 71, 71, 71

first, 83

formal, 79

func_profile, 59, 67

func_return, 49, 80-82

given_parameter, 82, 82

high_bound, 53, 83

in_mode, 79, 82

in_out_mode, 79, 82

included_in, 53, 53, 69

incomplete_type, 68

index_actions, 65, 65

index_constraint, 59, 60, 65, 83
index_list, 69, 69

index_pairing, 54, 54

indices, 54, 54, 55
indirect_discriminant_constraint, 60

mdirectindex_constraint, 60

Is_access_to_object_type, 58, 58

is_access_to_subprogram_type, 58, 58, 59, 59

is_access_type, 57, 58, 58

is_array_type, 58, 59, 59

is_boolean_type, 58

is_by_copy_type, 59, 59

is_by_reference_type, 59, 59

is_character_type, 58

Is_composite_type, 57, 58, 58, 58

is_discrete_type, 58, 58, 58

is_elementary_type, 57, 57, 59

is_enumeration_type, 58, 58

is_integer_type, 58, 58

is_modular_integer_type, 58, 58, 58

is_protected_type, 58, 59, 59

is_real_type, 58, 58

_s_record_type, 58, 59, 59

is_scalar_type, 57, 58, 58, 83

ls_signed_integer_type, 58
is_string_type, 59, 59

is_tagged_type, 58, 59, 59, 73
is_task_type, 59, 59

last,, 83

length, 83

location, 50, 62, 63, 70, 74

loop_id, 77, 78

loop_view, 77, 78

low_bound, 53, 83

make_range, 53, 64, 83

make_state, 49, 50

modular_type, 55, 56, 58, 64

new_object_fn, 52, 62, 63, 74

new_object, 50, 51, 52, 63, 70

new_subprogram, 51,51, 79

new_subtype, 51, 51, 61, 62, 68, 83

new_type_fn, 66, 67

new_type, 51, 51, 63-65, 67, 68

normal_state, 49, 64, 69, 74

normal, 49, 51, 52, 69, 70, 74, 76-78, 80-82

not_used, 63, 65, 66, 68

null_range, 53, 54, 54, 54, 69

object_view, 62, 63, 68-70, 74, 75, 83

operator, 81

out_mode, 79, 82

p_constraint, 62
p_discriminant_constraint, 60

p_index_constraint, 60

p_indirect_discriminanLconstraint, 60

p_indirect_index_constraint, 60

p_range_constraint, 60

p_subtype, 61

p_vMue, 60

parameter_action, 82, 82, 82, 82

parameter_list, 81, 82, 82

parameters, 79
pick, 52, 52

pool_access, 67

prefix_set_with_element, 54, 5_

proc_exit, 80, 80, 80, 80

proc_profile, 59, 67

proc_return, 49, 80, 82

range_constraints, 65, 65

range_constraint, 56, 59, 60, 65, 69

range_of_subtype, 56, 56, 72, 83

ranges_of_subtypes, 56, 56

real_range, 53
real_rng, 53, 54

real_value, 54

real_val, 54, 70

record_component, 50, 70

record_type, 57, 59, 66, 67, 71
record_val, 50, 55, 57, 59, 70, 71, 73

return_check, 80, 80, 81

return_value, 81

run, 52, 53

satisfies, 59, 59, 60, 74

scalar_value, 54, 55, 54, 55

select_component_type, 57, 57, 57

set_of, 54, 56, 57

signed_integer_type, 55, 56, 64
slice_check, 69, 69, 69

some, 57, 59, 61, 63, 64, 66, 67, 73, 79, 81, 82

subprogram_body-fn, 53, 81

subprogram_body, 53, 80, 80, 81, 81

subprogram_view, 79-81

subprogram, 79-81

149

subtype_value, 56, 57, 60, 60

subtype_view, 61, 62, 65, 67, 68, 71-74, 79, 83

subtype, 55, 56, 58, 60-62, 64-68, 71, 73, 74,
83

test_in, 72, 73, 73

the_parameter, 82, 82
the_store, 49-51

the_variant, 57, 61

then, 52
thunk, 79, 82

type_constraints, 65

type_.struct, 55, 55, 56, 58, 59, 69-71
ultimate_ancestor, 55, 55, 55

unelaborated, 79, 81

universaL.integer_tn, 63, 83

universal_integer-type, 56
universal__real_tn, 63

value...split_fn, 75
values_in_range, 54, 54

variant_values, 57, 57

variant, 57, 66

}- content(_), 50
_-att, 83

-[- _1 -], 50
[_ _], 50
-[- _3 -], 50
-[- _4 -], 50
-[-_1 -], 50
-[- _2 -], 50
obj[],5o
'" [_], 50
_._t,,[_], 50
_t_p[_], 50
<>,6s
[...], 5_
{...}, 5_

150

Form ApprovedREPORT DOCUMENTATION PAGE OMBNo.o7o4-o18e

Public reporting burden for this collection of information is e_tlmatecl to average 1 hour Der resl)onse, including the time for reviewing instructions, searching existing data SOurce_,

gathe¢lng and maintaining the data needed, and completing and reviewing the collection of intormation. Send comments regard ng th s butden est mate or any other aspect of This
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Oifeclotate for Information Operations and Reports, 1215 Jeffetson

Oavls Highway, Suite 1204 Arlington, VA 22202-4302. and to the Office of Managemen, and Budget. Paperwork Reduction Project (0704-01_8). Washington. DC 20503_

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 199,5
4. TITLE AND SUBTITLE

Towards a Formal Semantics for Ada 9X

6. AUTHOR(S)

David Guaspari, John McHugh, Wolfgang Polak, and
Mark Saaltink

7. PERFORMINGORGANIZATIONNAME(S) AND ADDRESS(ES)

Odyssey Research Associates

301 Dates Drive

Ithaca, NY 14850-1326

9. SPONSORING/MONITORINGAGENCYNAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES

Langley Technical Monitor:

Final Report - Task II
C. Michael Holloway

3. REPORT TYPE AND DATES COVERED

Contractor Report
S. FUNDING NUMBERS

C NASI-18972

WU 505-64-10-56

8. PERFORMING ORGANIZATION
REPORT NUMBER

ORA-TM-95-0044

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-195037

12a. DISTRIBUTION I AVAILABIUTY STATEMENT

Unclassified - Unlimited

Subject Category 62

13. ABSTRACT (Maximum2OOwords)

12b. DISTRIBUTION CODE

The Ada 9X Language Precision Team was formed during the revisions of

Ada 83, with the goal of analyzing the proposed design, identifying

problems, and suggesting improvements, through the use of _,athematical
models.

This report defines a framework for formally describing Ada 9X, based

on Kahn's "Natural Semantics", and applies the framework to portions of

the language. The proposals for exceptions and optimization freedoms

are also analyzed, using a different technique.

14. SUBJECT TERMS

Ada 95, formal semantics, natural semantics, optimization

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified
_1_1 7_/IO.01. ?RO.c;_O0

15. NUMBER OF PAGES

157

16. PRICE CODE

A08

20. LIMITATION OF ABSTRACT

_;tandard F_rm)q8 (Rev 2-R9)

