
'I

NASA-CR-197923 ,fy r- ,.... <'_I _: Y/'Z;

/i_ - dl- s/e_.,

Three-Dimensional User Interfaces

for Scientific Visualization
OltlGIHlL,CttiTII!,_S

Research Grant No. NAG 2-830

STATUS REPORT

(January 1994 through January 1995)

Brown University Computer Graphics Group
Dept. of Computer Science

PO Box 1910, Brown University
Providence, R102912

/

i

P... 0
,,0 I r--

NO_N_
I Z I"
_ I" _ U
0,, i 0,. e"
Z I Z_

Principal Investigator: Andries van Dam

January 20, 1995

Abstract

This document presents the current status of work being done by the

Brown University Graphics Group under NASA grant NAG 2-830. By the

end of the second year of support, we have implemented an application

framework in which we can visualize computational fluid dynamics

(CFD) datasets and develop and experiment with novel three-dimensional

user interfaces. This UI technology allows users to interactively place visu-

alization probes in a dataset and modify some of their parameters. We

have also implemented a time-critical scheduling system which strives to
maintain a constant frame-rate regardless of the number of visualization

techniques.

In the past year, we have published parts of this research at two confer-

ences, the research annotation system at Visualization'94, and the 3D user

interface at UIST'94. The real-time scheduling system has been submitted

to the SIGGRAPH'95 conference. Copies of these documents are included

with this report.

I-4

0
,,t"
,,,t"
0
0

t,,,,,,4
,,l:)

1 Project Description

The main goal of this project is to develop novel and productive user interface techniques

for creating and managing visualizations of computational fluid dynamics (CFD)

datasets. The existing commercial applications for CFD visualization generally provide

many visualization techniques but lack easy-to-use interfaces. Because both these

datasets and the techniques used to visualize them are inherently three-dimensional, our

strategy has been to apply our knowledge of 3D user interfaces to this new domain. _

In the first year of this grant, we implemented an environment in which we could

begin to explore new interaction techniques specifically tailored for scientific visualiza-

tion. This environment was written within our comprehensive 3D rapid prototyping sys-

tem (UGA [11]).

More recent accomplishments include:

• Support for curvilinear grids

• A range of general positioning techniques for probes in a dataset

* 3D interfaces for controlling common visualization parameters

• A system for graphically annotating fluid flows

• Novel visualization techniques

• A time-critical scheduling algorithm

2 Current Status

We have developed a number of prototype 3D widgets for our scientific visualization

environment. These fall into two main categories:

• positioning tools

• generalized probes

Our repertoire of visualization techniques currently includes:

• scalar and vector probes (with numerical, colored or tuft display)

• streamlines and particle paths

• isosurfaces

• "smoke rings"

• "flux balls"

We have combined these various tools and visualization techniques into a single

coherent system for exploring CFD datasets. Descriptions of our user interfaces are given

in the following sections. To date, we have tested our interfaces on relatively simple (less

than 500,000 points) steady-flow datasets on both regular and curvilinear computation

grids. The majority of our work has been done on a curvilinear dataset of airflow velocity

(speed and direction) past the body of the Space Shuttle.

Much of the research described here was published in a technical note at the 1994

Symposium on User Interface Software and Technology [3].

D _

\

2.1 Positioning Tools

The repertoire of positioning techniques discussed here were designed for use with con-

ventional desktop hardware: a 2D mouse and CRT. Thus, these techniques aim to over-

come many of the difficulties which result from using 2D devices for 3D interaction tasks.

It remains to be seen how useful these techniques will be in more immersive environ-

ments with higher degree-of-freedom input and output devices.

2.1.1 Interactive Shadows

The default positioning technique in our system is direct-manipulation screen-aligned

translation (objects are moved in the plane parallel to the screen plane). However, since
this is a 2D mouse-based technique, the user must change the viewpoint to move objects

in other planes. To move objects in three-space without changing the viewpoint, we have
added "interactive shadow" widgets (Figure 1) to this environment. These shadow

objects are generated for every 3D object, provide a valuable depth cue, and can be dis-

played on any axis-aligned plane. Further discussion of this tool is in [4].

Figure 1: Interactive shadows. The shadow widgets for a cutting plane and a
rake are projected onto the floor plane. The position of either probe can be modi-
fied by dragging the probe itself or its shadow. Manipulating a probe translates it
in a plane parallel to the film plane of the camera viewing the scene; manipulating
its shadow widget moves both the shadow and the probe in a plane parallel to the
shadow plane. Note that the shadows provide a useful depth cue.

3

_ 7

I

\

2.1.2 Object Handles

Some geometr)_ such as the Shuttle's fuselage, can easily obscure the shadow widgets

projected onto a wall and render them unusable. To address this problem, we have imple-
mented another technique for moving objects in 3D, called "object handles" (Figure 2).

With this technique, we attach three new objects (in our case, simple line segments) to the

3D object and align them with the principal axes of world coordinate system. Dragging
one of these handles translates the 3D object along the axis defined by that line. These

widgets offer much of the same functionality as the "interactive shadows", but provide

no depth cues. Their main advantage over shadows is that they are always attached to

the 3D object - if the 3D object is visible, then so is the positioning widget.

Figure 2: Object handles. The object handles widget is attached to a probe. The

purple line represents the current translation axis.

These widgets also provide visual feedback to user actions in the form of projection
lines and ghosting. A purple projection line, drawn when a user drags one of the three

handles, indicates the widget's restricted degrees of freedom. Also, a ghosted copy of the

handles widget is drawn in the original location to indicate the distance that the widget
has been moved.

4

o

2.1.3 Grid-Aligned Handles

Both the shadow and object handle widgets use axes in the Cartesian coordinate space to

help position objects more easily in 3D. We have also designed similar techniques which

constrain the movement of a probe to features in the underlying computation grid. We
have implemented a version of our object handles, called "grid-aligned handles" (Figure

3), which allow constrained translation along lines in the computational grid. With this

technique, it is straightforward to move objects along the curved surfaces of a CFD object

such as the leading edge of the Shuttle's wing.

Figure 3: Grid-aligned object handles. The grid-aligned object handles wid-

get is attached to a probe.

The grid-aligned handles work by tracing out lines in the computation grid from the

point in the grid closest to a given sample point. An added benefit of these widgets is that

they provide a visual representation of the local structure of the grid in the area sur-

rounding the sample point. Users may exploit this information to gain a better under-

standing of the dataset and the behavior of visualization techniques.

Apart from its slightly different visual representation, this widget behaves identically

to the object handles.

5

2.1.4 Data-Space Handles

We have also developed some interaction techniques based on the actual data being visu-

alized. For example, the vector probe widget (Figure 4) consists of a grey spherical sam-

ple point, an arrow representing the direction of the vector field at that point, and a disk
representing the plane perpendicular to the vector. By dragging the arrow component,

the sample point can be moved along the streamline formed by the flow through that

point. The disk is used to move the sample point perpendicular to the flow, allowing the

user to explore nearby streamlines in the flow field.

Figure 4: Data-space handles. The data-space handles on a point probe widget
include a blue arrow and a red disk.

When we use this same general probe widget to visualize scalar data, the vector com-

ponent displays the gradient of a scalar field. Pulling the vector changes the value of the

isosurface that passes through the sample point; translating the red disk moves the sam-

ple point along the isosurface. Note that this last technique does not change the level of

the isosurface, just the initial seed point from which the isosurface is computed. Since we

are using an interactive isosurface algorithm [7], moving the probe in this way allows us

to explore different regions of a single isosurface.

2.1.5 Direct-Manipulation Visualization Techniques

We have also explored other direct manipulation techniques using "grab-anywhere"

streamlines and rakes. While our previous streamlines required that users drag a probe

through the dataset, a direct-manipulation streamline can be grabbed anywhere along its

length. When a user clicks on some point along the streamline, the system moves the 3D

probe widget (and thus the sample point) to that new point, and updates the streamline

by integrating both forward and backward from the new sample point. With this tech-
nique, users are able to manipulate a streamline very precisely in particular regions of

interest that might otherwise have been difficult to reach. For instance, if an interesting

fea_re is observed at the very end of a given streamline, a user can simply click on the

streamline right at the feature and move it around. With the older method, the user

would have tried to move the probe at the origin of the streamline only to realize that

small motions there caused very large changes in the streamline near its end.

We also applied this same technique to translate rakes of streamlines. In addition,

rakes can be rotated and scaled. In our system, we use a separate mouse button to "twist"
the rake about the streamline selected. This has the effect of keeping the picked stream-

line constant but modifying the neighboring streamlines.

2.2 Generalized Probes

Most of the visualization techniques we have implemented in our system are generated

by sampling single points in a dataset, calculating scalar or vector values, and displaying

some visual representation of the data. The positioning techniques described above are

designed to help scientists quickly place these sample points in a dataset, but we also
need methods for controlling collections of sample points as single groups. To address

this need, we developed the notion of a generalized probe which can manifest itself as a
zero-, one-, two- or three-dimensional widget. This generalized probe widget (Figure 5) is

used to define a variety of visualization techniques including streamlines, rakes, hedge-

hogs, cutting-planes and isosurfaces.

2.2.1 Zero-dimensional probes

The zero-dimensional widget is a simple probe that samples a single point in the dataset.

From this point, we can choose to generate one of five visualization techniques: a num-

ber, color, tuft, advected particle, or isosurface. Multiple visualization techniques can be

generated simultaneously from a single sample point (though we have not yet devised a

good user interface for controlling this functionality). Users may then use any of the posi-

tioning techniques described above to place this widget in the dataset. The direct-manip-
ulation, "grab-anywhere" interaction technique described in the previous section applies

only to the advected particle visualization technique.

2.2.2 One-dimensional rakes

The one-dimensional widget is essentially the same as a rake tool commonly used in real

wind tunnels. This widget produces a set of sample points at regular intervals in Carte-

sian space along a line; it can be translated and rotated freely and can be scaled along a

single axis by translating the red ball at one end. Additionall}_ we supply a resolution

handle, the orange disk, to change the distance between sample points. Again, any of the

visualization techniques described above can be generated from this set of sample points;

advected particles produce the familiar rake of streamlines, the color technique produces
a colored bar, and the isosurface produces an "onion" - multiple isosurfaces at different
levels of the dataset.

7

Figure 5: Probes. Counterclockwise from left, the point probe with a stream-

line, 1D probe with streamlines, 2D probe with tufts and 3D probe with color.
Visualization techniques are colored by velocity of the vector field from blue
(slow), through green, to red (fast).

2.2.3 Two-dimensional planes

The two-dimensional widget samples a set of points arranged in a regular planar grid
(similar to the one-dimensional widget). This widget can be translated and rotated freel_

and can be scaled independently in two dimensions, much like a 2D window in a desk-

top-style GUI. Also, the resolution of this widget can be changed independently in these

two dimensions. Note that we maintain continuity between the different probes by using

the same visual language for these handles.

Using the color technique with this widget produces a cutting plane; similarly, the

tufts produce a hedgehog. This widget can be confusing when the advected particle tech-

nique is chosen, especially if the sample points are very close together in both dimen-

sions: the visual effect is something like a volume of streamlines, and is not very

intelligible. However, if we reduce the number of sample points in one dimension, say

down to three, we effectively produce a widget which controls a set of three rakes as

group. In this configuration, we have a useful tool once again.

Figure 6:219probe with streamlines. Properly configured, the two-dimen-

sional probe acts like a collection of one-dimensional probes which can be con-
trolled in unison.

2.2.4 Three-dimensional volumes

Finall3_ the three-dimensional widget generates a volume of sample points. It can be
scaled in three dimensions and has resolution sliders for each dimension as well. Like the

two-dimensional probe, this widget can produce very confusing visualizations if not

parameterized correctly. However, by choosing the color technique and adjusting the res-

olution sliders so that there are lots of sample points in two dimensions and very few in

the third, we can produce a set of cutting planes that can be moved around as a unit.

In our current system, we provide a set of 2D buttons outside of the 3D view for

changing the probes from one dimension to another. When a probe changes, it fades from

one representation to the next, thus maintaimng visual continuity. Another set of buttons

changes the visualization technique generated at each sample point. When multiple wid-

gets are being displayed simultaneously, the 2D buttons only affect the last widget used.
In this way, we can have many widgets on the screen, each with a different dimension

and producing a different visualization technique. We plan to migrate our entire 2D inter-
face into the 3D scene; this will be especially important when exploring a dataset within

an immersive virtual reality system, where conventional 2D interfaces are difficult to use.

9

2.3 Other Visualization Techniques

While our primary aim in this grant is to develop new user interfaces for scientific visual-

ization applications, we have also spent some time developing new visualization tech-

niques that seemed interesting and innovative. The "flux ball" and "smoke rings"

techniques described below were developed within the same visualization system as our
other widgets, and currently work with regular and curvilinear datasets. Implementing

these techniques also exposed some new 3D interface design issues.

2.3.1 Flux Ball

The flux ball (Figure 7) is a method for visualizing the direction of a fluid flow as it passes

through a region of space. In our case, we use a spherical region. As fluid flows into or

out of the spherical region, we calculate the angle at which it crosses the boundary and

compare this with the normal to the sphere's surface. If this angle is small, the fluid is

flowing almost directly into or out of the region; when the angle is large, the fluid is flow-

ing tangent to the surface. By sampling this angle at a number of points on the surface of

the sphere, we can produce contour lines of similar angles. We draw these contours and
color them according to the direction of flow and the magnitude of the angle. Blue indi-

cates flow into the region, red indicates flow out of the region, and the intensity of the

color indicates the angle (small angles are more intense than large). The final effect is a set

of concentric contours around the sphere oriented in the direction of flow.

Figure 7: Flux balls. The three flux balls in this image are embedded in a
dataset of convection currents in the Earth's mantle. Blue lines indicate flow out

of a ball; red lines indicate flow into a ball. The black lines indicate where the flow

is tangent to the surface of the ball. A few streamlines indicate the direction of
flow as well.

In our initial implementation of this widget, the sample region was drawn as a fully

opaque sphere and often obscured other visualizations and geometry in the scene. Also,

l0

one could not see the contour lines on the side of the sphere facing away from the viewer.

A solution to this may be to render the sphere transparently.

2.3.2 Smoke Rings

Smoke rings (Figure 8) are similar to streamlines but do not represent the entire path of a
particle through the dataset. Instead, we arrange a set of particles in a ring and advect

them all simultaneously through the dataset. At each integration step, we draw a line

connecting all of the sample points together. Thus, at the first integration step, we see a

ring-shaped object. As this ring of points is advected through the dataset, it deforms

according to the vector field data. In order to maintain the ring's visual continuity, if any

two adjacent points move too far apart from each other, new points are introduced to fill

the gap. Just as with the rake widget, we can see how points that are initially in close for-

mation diverge as they pass through the dataset, so that features such as vortices and

divergences are revealed by the ring's deformation.

Figure 8: Smoke Rings. The smoke ring widget defines a set of sample points

which are advected through the dataset. These points, which form a circle at first,
flow through the dataset and the circle is deformed accordingly. Points are col-
ored by velocity.

II

The smoke ring technique was developed by an undergraduate student during a

summer internship in our Graphics Group. We are considering extending this technique

to arbitrary surfaces advected through the field, using an oriented-particle system.

2.4 Annotation Systems

One of the common tasks of scientists is to maintain accurate records of interesting areas

in a dataset, keeping track of a feature's importance and type. In the last year, a Master's

student in the Graphics Group built an annotation system for time-varying fluid flow

datasets to provide for the creation of these annotations and the subsequent querying and

filtering of this dataset. This research was published at Visualization '94 [6].

This annotation system allows the scientist to create typed geometrical point and vol-
urne markers, and add associated data, including the date, the user making the annota-

tion, the type of feature, and a description. These can then be filtered either through a 2D

interface or through a 3D "Magic Lens" [2], which hides irrelevant annotations as the sci-

entist moves the lens through the dataset.

2.5 User Studies

Last spring, another Master's student in the Graphics Group conducted a user study of

some of the positioning widgets within our fluid flow visualization system. The goal of

this study was to determine the effectiveness of various widgets and interaction tech-

niques across a range of input devices. The subjects for the study were chosen with a high

bias toward computer scientists, but with no concern for their knowledge of CFD con-

cepts.

This work is modeled after a study by Jacob and Sibert [5], which involved the two-

dimensional task of matching one square to another target square, and the one-dimen-

sional task of matching the target square's size or color. These tasks were performed by
each user, first with a conventional mouse, then with a three-dimensional mouse.

In that study, it was found that for matching position and color, the 2D mouse was
more effective, but for controlling position and size, the 3D mouse was better, presum-

ably because these two parameters are cognitively integrable. That is, the users were able
to move more efficiently through the task space with the 3D mouse by simultaneously

manipulating three separate dimensions. With the 2D mouse, they were required to sepa-
rate the tasks into individual interactions.

In our study, users were asked to find a number of features (sources, sinks, and vorti-

ces) by moving streamlines through an analytically-generated 3D flow field. The posi-

tioning techniques available were screen-aligned translation for the 2D mouse, full 3D
translation with the 3D mouse, and interactive shadows for both. It was found that the

interactive shadows were only really useful when using a 2D mouse, and they confused

people who tried to use them with the 3D mouse. Indeed, since the 3D mouse gave them

three degrees of translation freedom by itself, the interactive properties of the shadow

widgets did not help at all except as a depth cue.

2.6 Techniques for Real-Time Interaction

The computations required by scientific visualization techniques often cannot be done at

interactive rates (generally at least ten frames per second). Furthermore, even if the com-

putations can be done quickly enough, a visualization may be so graphically complex
that it cannot be rendered in real time.

12

Toaddresstheseconcerns,wehaveexperimentedwith time-critical interfacesfor iso-
surfacesand streamlines,using techniquesthat compute only the local visualization
while usersinteractwith aprobe,and thengraduallycompletethecomputationafterthe
probeis released.This styleof interactionis usefulboth for largestaticdatasetsand for
time-varyingdatasetswhen it is difficult to animate the dataset more quickly than visual-
izations can be computed. For instance, if an isosurface of a time-varying dataset takes 30

seconds to compute, then each frame of an animation of this isosurface must be com-

puted off-line and viewed later at full speed. By applying time-critical techniques, we can
achieve the interactive visualization of complex datasets without memory- and time-

intensive techniques.
A version of the direct-manipulation "grab-anywhere" streamlines described above

was made time-critical by dynamically adjusting their lengths depending on the amount

of computation possible in a given time period (usually about a tenth of a second). As the

streamline is dragged, it integrates outward (both forward and backward) from the

selected point as far as it can until the next frame must be started. This was part of a

research project to minimize lag in virtual environments, to be published in Presence [10].

A complementary approach to achieving real-time interaction is to use multiprocess-

ing techniques to parallelize computations. At the SIGGRAPH conference this past sum-
mer, we built a demonstration for the Sun booth based on our NASA-funded CFD

research. In this application, we used the Shuttle dataset and parallelized the rake, cut-

ting plane, hedgehog and particle advection visualization techniques on an eight-proces-

sor Sparc-10 workstation. We found this to be very effective in maintaining fast
interaction speeds for scenes which were not extremely complex, achieving near-linear

speedup.

2.7 Time-Critical Scheduling Algorithm

We have recently developed a framework to better integrate the time-critical visualiza-

tion algorithms already developed (streamlines and isosurfaces) into our existing system.

Our implementation [8] includes an algorithm for managing the scheduling of visualiza-

tion techniques on single- and multi-processor workstations. This algorithm quickly opti-

mizes a benefit function which is the product of several relevant factors:

• the inherent value of a given visualization technique

• a hysteresis function to encourage frame-to-frame visual continuity

• the benefit of spending additional time computing the visualization (e.g., comput-

ing more points along a streamline)

• the amount of user interaction with the visualization technique

This algorithm is used to schedule the allocation of compute-power for both computation

and rendering of visualization techniques, with minimal pipelining of the computations.

It has O(n log n) complexity when generating an optimistically-feasible schedule (O(n 2)

complexity for a guaranteed schedule), and iteratively refines its results, so can return a

feasible schedule at any time. When allowed to run to completion, the scheduling algo-

rithm achieves near-total, good usage of all the processors in the multiple-processor sys-
tem.

We intend to carry out informal user studies to determine which aspects of the real-

time scheduling are most important in practice. In addition, through working with per-

ceptual psychologists to determine the visual importance of rendered objects and with

13

scientiststo determine the semantic value of various types of visualizations, we would be

able to develop much more relevant benefit functions.

Another aspect of time-critical rendering is the perceptually based selective degrada-
tion of streamlines and isosurfaces. For example, many of the polygons in a generated

isosurface may be too far away from the viewer to be perceptually relevant, and could be

culled in favor of those which are closer to the viewer. Fast algorithms for reducing the

number of points in streamlines or the number of polygons in isosurfaces could prove

very useful in maintaining rapid interaction with the datasets.

3 Brown Personnel

The Brown Graphics Group, directed by Professors Andries van Dam and John E

Hughes, is a team of Ph.D., Masters, and undergraduate students and full-time staff, all

of whom work with the UGA system. Professor van Dam, the principal investigator of

this research, will, in August, 1995 become the Director of the STC described in Section 1.

He and John Hughes are co-authors of the standard computer graphics textbook, Corn-

puter Graphics, Principles and Practice, along with James Foley and Brown Ph.D. Steven
Feiner. Van Dam is a co-founder of ACM SIGGRAPH and co-founder and first chairman

of Brown University's Computer Science Department. The Graphics Group staff includes
a Senior Research Scientist (Bob Zeleznik), a Research Scientist (Timothy Miller), two

Interface Developers (Kenneth Hemdon and Tom Meyer), an Interactive Illustrations

Designer (Dan Robbins), a part-time Technical Administrator (Nate Huang), and an Edu-

cational Outreach Director (Anne Morgan Spalter). Our interface design team has experi-

ence in animation, modeling, graphic design, industrial design, and communication

techniques. A number of undergraduate students complement the group by assisting on

various research projects such as the 2D and 3D interface to the modeling and animation

system. Five students work part-time to support computers, video-teleconferencing, and

other AV equipment.

The principle researchers being funded by this grant are Kenneth Herndon and Tom

Meyer. Additional research is being done by Dan Robbins, and students Currier McEwen

and Matt Ayers.

4 Facilities and Equipment at Brown

The facilities at Brown include a variety of workstations from HP, IBM, DEC, Sun and

SGI. Our Virtual Reality Lab contains a FakeSpace Labs BOOM, a Virtual Technologies

CyberGlove, and an Ascension Long-range Bird tracker. We also use a StereoGraphics VR

setup (LCD-shutter glasses, two Logitech 3D mice and a high-scan-rate monitor attached

to a Sun SPARC 10 GT workstation). A full audio/video editing system is used to record

footage directly from workstation screens and to edit videotapes.
We also maintain a World Wide Web site (http :/www. cs .brown. edu/research/

graphics) which contains general information about our group and research projects.

5 Current Support

1Tile: Three-dimensional user interfaces for scientific visualization

Sponsor: NASA

14

Description: Develop novel 3D user interfaces for managing elements of scientific

visualization applications.

Amount." $100,000/yr.

End date: April "96

Title: NSF/ARPA Science and Technology Center for Computer Graphics and Scien-
tific Visualization

Sponsor: National Science Foundation/ARPA

Description: Advance the state of the art in computer graphics techniques through
collaboration in a national distributed center.

Sites: Brown University, California Institute of Technology, Cornell University, Uni-

versity of North Carolina at Chapel Hill, and University of Utah

Amount: $500,000/yr.

End date: February '96

Title: Multiprocessor 3D interactive graphics

Sponsor: Sun Microsystems

Description: Investigate operating systems and graphics performance for multi-

threaded, multi-processor graphics applications.

Amount: $100,000/yr.

End date: July '95

Title: Self as a first programming language

Sponsor: Sun Microsystems Group

Description: Investigate using the Self language as a first programming language for

undergraduate students at Brown.

Amount." $70,O00 / yr.

End date: July '95

77tle: Computer graphics research

Sponsor: Autodesk

Description: 3D user interface research

Amount: $100,000/yr.

End date: July '95

Title: Computer graphics research

Sponsor: Microsoft

Description: 3D and 4D graphics

Amount: $100,000/yr.

End date: July '95

Title: Computer graphics research

Sponsor: TACO

Description: General support of the graphics group's research program

Amount: $100,000/yr.
End date: December '94

15

6

[1]

References

Bier, E.A. Snap-dragging in three dimensions. In Proceedings of the 1990 Sympo-

sium on Interactive 3D Graphics, published as Computer Graphics, Vol. 24, No. 2,

pages 193-204, March 1990.
[2] Bier, E.A., Stone, M.C., Pier, K., Buxton W., DeRose, T. Toolglasses and Magic

Lenses: The see-through interface. In Computer Graphics (SIGGRAPH'93 Proceed-

ings), Vol 27., pages 73-80, August 1993.

[3] Hemdon, K.P., Meyer, T. 3D widgets for exploratory scientific visualization. In Pro-

ceedings of the 1994 Symposium on User Interface Software and Technology, pages

69-70, November 1994.

[4] Herndon, K.P., Zeleznik, R.C., Robbins, D.C., Conner, D.B., Snibbe, S.S., and van

Dam, A. Interactive shadows. In Proceedings of the 1992 Symposium on User Inter-

face Software and Technology, pages 1--6, November 1992.

[5] Jacob, R.J.K., Sibert, L.E. The perceptual structure of multidimensional input device

selection. In Proceedings of ACM CHI'92 Conference on Human Factors in Comput-

ing Systems, pages 211-218, 1992.

[6] Loughlin, M.M., and Hughes, J.F. An annotation system for 3D fluid flow visualiza-

tion. In Proceedings of Visualization '94, 1994.

[7] Meyer, T., and Globus, A. Direct manipulation of isosurfaces and cutting planes in

virtual environments. Technical Report 93-54, Department of Computer Science,

Brown University, 1993.

[8] Meyer, T., and Hughes, J. F. Scheduling time-critical graphics on multiple proces-
sors. Submitted to SIGGRAPH'95.

[9] Stevens, M.P., Zeleznik, R.C., and Hughes, J.E An architecture for an extensible 3D

interface toolkit. In Proceedings of the 1994 Symposium on User Interface Software

and Technology, pages, November 1994.

[10] Wloka, M.M. Lag in multiprocessor virtual reality. PRESENCE: Teleoperators and
Virtual Environments, Vol. 4, No. 1, 1995.

[11] Zeleznik, R.C., Conner D.B., Wloka, M.M., Aliaga, D.G., Huang, N.T., Hubbard,

P.M., Knep, B., Kaufman, H., Hughes, J.F., and van Dam, A. An object-oriented

framework for the integration of interactive animation techniques. In Computer

Graphics (SIGGRAPH'91 Proceedings), Vol. 25, No. 4, pages 105-112, July 1991.

16

1P

1 N95- 25868 p

3D Widgets for Exploratory Scientific Visualization

Kenneth R Herndon and Tom Meyer

Brown University
Department of Computer Science

Providence, RI 02912

(401) 863-7693; {kph,twm} @cs.brown.edu

69

1 Introduction

Computational fluid dynamics (CFD) techniques are used to simu-
late flows of fluids like air or water around such objects as airplanes
and automobiles. These techniques usually generate very large
amounts of numerical data which are difficult to understand with-

out using graphical scientific visualization techniques. There are a
number of commercial scientific visualization applications available

today which allow scientists to control visualization tools via textual
and/or 2D user interfaces. However, these user interfaces are often
difficult to use. We believe that 3D direct-manipulation techniques
for interactively controlling visualization tools will provide oppor-
tunities for powerful and useful interfaces with which scientists can
more effectively explore their datasets. A few systems have been
developed which use these techniques, including [1].

In this paper, we will present a variety of 3D interaction tech-

niques for manipulating parameters of visualization tools used to

explore CFD datasets, and discuss in detail various techniques for
positioning tools in a 3D scene. We generally call these techniques
3D widgets [2].

II

Figure 1: A 3D curvilinear grid for the Space Shuttle.

Our environment, built on top of the UGA system [4], supports
both vector and scalar fields. The data may be arranged in a regular

grid or it may be deformed using a curvilinear grid to provide more
detail in areas with more complex flow. In a typical curvilinear

dataset (Figure 1), the computation grid is wrapped around the
body of an aircraft and scaled so that there are many more sample

points in the boundary region (near the surface) than in other areas.

We are conducting this research project under contract to NASA

in order to provide scientists there with more effective tools for

exploring CFD datasets. No formal user studies have yet been
conducted to verify the general usability of our interfaces.

2 3D widgets for scientific visualization

3D widgets are naturally suited for CFD visualization applications
because the data are inherently 3D. Also, several of the visualization

techniques commonly used in CFD visualization are based on real-
world tools used in actual wind tunnels (e.g., "rakes" of streamlines
simulate smoke-emitting rakes). With these metaphors in mind, 3D
widgets can be constructed to control parameters of commonly used
visualization techniques.

In general, the design of a widget must consider two conflicting
requirements: that the widget have adequate geometry to disclose
its affordances; and that this geometry not be so complex that it
obscures other objects in the scene. When exploring or analyzing
a dataset, the visualizations (i.e., streamlines, cutting planes, etc.)
of the data are usually the most important elements in the scene.

In these kinds of applications, it is crucial that 3D widgets provide
only the necessary functionality with a minimum of geometry.

In general, a widget's degrees of freedom should correspond to

the type of data it affects (e.g., a widget which produces a scalar
value should be constrained to a single degree of freedom, as in
a slider or a knob). Also, widgets should provide useful visual
feedback for the user's actions (e.g., highlighting when selected).

We have implemented 3D widgets for the following visualization
techniques: streamline and particle path; rake of streamlines or
particle paths; array of tufts ("hedgehog"); scalar and vector probe;
isosurface; and cutting plane.

Each 3D widget provides Interactive access to a technique's pa-
rameters, such as position, orientation, resolution, etc. When pos-
sible, we align a widget's range of motion with the effect it has on a
visualization technique. For example, the rake's resolution handle

(Figure 2), which determines the spacing and number of streamlines
displayed, slides along the bar of the rake; also, the arrow-shaped
extent handles of the "hedgehog" are aligned with and move in three

or_hogonal directions. It is more difficult to create interfaces to some
abstract parameters such as the integration step of a streamline.

3 Case study: Positioning widgets

A very common task for scientists is specifying the position of a 3D
probe in a dataset (e.g., placing the source of a streamline in a vector
field). To demonstrate the range of choices in 3D widget design,

.... _ -_I__l__ _llw

Figure2:Therake(left)andhedgehog(right)3Dwidgets.The
cylindricalshapesaresliderswhichcontrolresolutionofstreamlines
ortufts.Thearrow-shapedcontrolsonthehedgehogmodifythe
extentofthearrayoftuftsineachofthreedimensions.

wewilldiscussthe designs of several techniques for positioning

widgets which we have implemented in our system.

The default positioning technique is direct-manipulation screen-

aligned translation. To move objects in three-space, we have added
our "interactive shadow" [3] widgets to this environment. A com-

bination of screen-space translation and interactive shadows allows

the user to easily place an object in a 3D scene without having to
move the camera. The "shadow" widgets also provide useful depth

cues for 3D widgets and other objects in the scene.

However, it is easy for a geometry in the scene (e.g., the Shuttle

fuselage) to hide the "shadow" widgets and render them unusable.
Another technique, called "object handles", attaches three objects

(in our case, simple line segments) to the selected object and aligns
them with the world coordinate system. These widgets provide

much of the same functionality as the "interactive shadows", but do

not provide any depth cues.

Each of these techniques use features of Cartesian coordinate

space to position objects. While they are useful techniques in many
situations, problems arise when using them to explore curvilinear
datasets because the data was structured based on the geometry of

the objects being modeled (as in the Space Shuttle), and it is often

useful to move objects relative to this geometry. We have extended

the handle metaphor to accomodate these situations.

"Grid-aligned handles" are especially useful for curvilinear
datasets which are specially fitted to a physical model like an airfoil.

As shown in Figure 3, the handles trace out nearby computation grid
lines. When a handle is dragged, the selected object is constrained

to move along the grid line. Using this technique, it is straightfor-
ward to translate objects along complex surfaces whose geometry

is reflected in the computation grid, such as the leading edge of
an airfoil. Furthermore, because these handles display the nearby

structure of the grid, users can possibly gain a better understanding

of the dataset as they explore it with these widgets.

It can also be useful to work with interaction techniques based

on the data being visualized. For example, the vector probe widget

in Figure 3 consists of a grey spherical sample point, an arrow
which represents the direction of flow at that point, and a disk

which represents the plane perpendicular to the vector. By dragging
the arrow component, the sample point can be moved along the

streamline formed by the flow through that point. The disk is used

to move the sample point perpendicular to the flow, allowing the

user to explore nearby streamlines in the flow field.

We can use this same general probe widget to visualize scalar

data. In this case, the vector component displays the gradient of

a scalar field. Pulling the vector changes the value at which the

isosurface is computed; translating the disk moves the sample point

along the isosurface.

Figure 3: A vector probe widget and three grid-aligned object han-
dles. The three lines extending through the probe widget are the

handle widget and serve both as a Frenet frame for the point in the

computation grid closest to the probe and as constrained translation

widgets. The thicker grid handle extends outward from the surface

of the wing.

4 Future Work

We are continuing to explore techniques to further simplify the

graphical representations of our widgets without impeding their
functionality. Additionally, the widgets described in this paper
were rapidly protoptyped to explore the design space. After we
have done user studies with different widget designs, we would like

to redesign our tools so that they have a more consistent interface.
The general probe widget, which can be used as an interface to a
vector or scalar probe, a streamline, or an isosurface, is a step in this
direction.

Acknowledgments

This work was supported primarily by NASA Ames. Support is
also provided by the NSF/ARPA Science and Technology Center for
Computer Graphics and Scientific Visualization, by ONR Contract
N00014-91-J-4052, ARPA Order 8225, and by the sponsorship of

IBM, NCR, Sun Microsystems, Hewlett Packard, and Digital Equip-
ment Corporation. We thank Steve Bryson, Anddes van Dam, and
the members of the Brown University Graphics Group, especially

Jeremy Katz and Lars Bishop, for their help and support.

References

[1] Steve Bryson and Creon Levitt. The virtual windtunnel: An

environment for the exploration of three-dimensional unsteady

flows. In Visualization '91, pages 17-24, 1991.

[2] D. Brookshire Conner, Scott S. Snibbe, Kenneth E Hemdon,
Daniel C. Robbins,Robert C. Zeleznik, and Andries van Dam.

Three-dimensional widgets. Computer Graphics (1992 Sym-

posium on Interactive 3D Graphics), 25(2):183-188, March
1992.

[3] Kenneth E Hemdon, Robert C. Zeleznik, Daniel C. Rob-

bins, D. Brookshire Conner, Scott S. Snibbe, and Andries van
Dam. Interactive shadows. 1992 UIST Proceedings, pages I-6,

November 1992.

[4] Robert C. Zeleznik, D. Brookshire Conner, Matthias M. Wloka,

Daniel G. Aliaga, Nathan T. Huang, Philip M. Hubbard, Brian

Knep, Henry Kaufman, John E Hughes, and Andries van Dam.

An object-oriented framework for the integration of interactive

animation techniques. Computer Graphics (SIGGRAPH '91

Proceedings), 25(4):105-112, July 1991.

N95-2586 =

An Annotation System for 3D Fluid Flow Visualization

Maria M. Loughlin 1

Cambridge Research Lab

Digital Equipment Corporation

John F. Hughes 2

Department of Computer Science

Brown University

j

Abstract

Annotation is a key activity of data analysis. However, current
systems for data analysis focus almost exclusively on visualization.
We propose a system which integrates annotations into a visualiza-
tion system. Annotations are embedded in 3D data space, using the
Post-it 3 metaphor. This embedding allows contextual-based infor-
mation storage and retrieval, and facilitates information sharing in
collaborative environments. We provide a traditional database filter
and a Magic Lens 4 filter to create specialized views of the data.
The system has been customized for fluid flow applications, with
features which allow users to store parameters of visualization tools
and sketch 3D volumes.

1 Introduction

In a study to characterize the data analysis process, Spring-

meyer et al. [15] observed scientists analyzing different types
of scientific data. The study found that recording results and

histories of analysis sessions is a key activity of the data

analysis process. In each session, the scientists recorded
notes, and inspected previous notes. Two distinct types of

annotating were observed:

• recording, or preserving contextual information

throughout an investigation

and

• describing, or capturing conclusions of the analysis ses-

sions.

Despite the importance of annotation, current systems

for data analysis emphasize visualization, focusing on the

1One Kendall Square, Cambridge, MA 02139. email: lough-
lin@crl.dec.com, phone: 617-621-6618

2Box 1910, Providence, RI 02912. email: jfla@cs.brown.edu, phone:
401-863-7638

3post-it is a trademark of 3M.

4Magic Lens is a trademark of Xerox Corporation.

generation of visual displays. Little or no annotation support
is available: for example, Springmeyer et al. noted that the

recording media used by scientists in their study included
notebooks, scratch paper, and Post-it notes.

In this paper, we describe a system that supports an-
notation as an integrated part of a fluid flow visualization

system. Unlike typical annotations on static 2I) images, our

system embeds annotations in 3D data space. This immersion

makes it easy to associate user comments with the features

they describe. To avoid clutter and data hiding, annotations

are represented by graphical annotation markers that have
associated information. Therefore graphical attributes of the

markers, such as size and color, can be used to differentiate

annotations with different functions, authors, creation dates,

etc.

Annotations can easily be added, edited and deleted.

Also, multiple sets of annotations can simultaneously be
loaded into a visualization. 'I'nis allows scientists, collab-

orating on a data set, to use annotations as a form of com-

munication, as well as a history of data analysis sessions.
Annotation markers also aid scientists in navigating through

the data space by providing landmarks at interesting posi-

tions. Figure l(a)-(c) shows the visualization environment,
annotation markers, and the annotation content panel. Figure

l(d) shows a Magic Lens filter which hides the annotation

markers and widget handles. The implementation has been

applied to three-dimensional Computational Fluid Dynamics
(CFD) applications. However, the techniques can be used in

visualization systems of many disciplines. The design can

also be extended to 3I) stereo and virtual-reality environ-

ments.

The rest of this paper is organized in five sections. In

section 2 we review previous approaches to annotation. Sec-

tion 3 describes design guidelines for annotation systems.

Section 4 details our implementation of annotation within a

3D modeling and animation system. In the last two sections,

we discuss possible future work and present our conclusions.

2 Background

Scientific visualization systems provide little, if any, support

for annotation. For example, Application Visualization Sys-

m

!iiiili!!ii!iii!iiiiiiiii!i!!ii!iil iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iii_i!iiiii!ili
i!!i_i!!ii_!_i_ii_i_iiii_ii_ii_iiiii_ii_i_i!_ii_ii_i_ii_iii_ii_i_iiii_ii_iii_!i_iii_i_!i_!_i_ii_ii_i_i_iiiiii!ii!ii_i_ii_!_!_i_!i_ii_i_

2LLLL:L;;;;LLL;2:_':'_ :6: _;_];_.'_ _:::_'2_:;_L<_2L:0 I;_,;:_,;;_;;:'LI_;I:;L_;k;::2,_:L_fi_;;;.._;_:;,.;_:;;_;L LLLL;:LL4_t_¢:;i;11:_:;;:

I!:!:_!!:))!:_::::::;L:_:_:!:_:!:!:!:!S!:_:_:_:_:!:!SISI:!:!:!:_:!:_:i;_:_?_.i:_;_i:i:_:;4::;:;;:._:;:;;_?_?!:_::_:_;i?_:_3i:_:;;_:_:;:_:i:_:_1:i:_:i:.:.:i:_:i:_:_:_:.:_:_:i:_:_:
;:;_:_::;:;::_;;)I;:I:;_:;LIL;£;fi::::::::;::2;::2;:::::>::L:_::_;I;::I_;I:IL_II:LI;I_;i.i:i._ ; ;::_ i_i:Li_:i;i:i:i:::LL::L::LLLL::::Li;_:L;;:_LI;:;;:LL::L_;;:_2::I:;_;

0 !:i:i$!_!:_:: :_:: :: : : : : i: : _: :_:_:_:_S_:_:_;_:_:_;_:_;_;_:_:_:_:-:_:_:_:_:_:_:__:;:i:!:i_:!:!:!!:_:_:_:_;_;_:_:_S:::::::::::::::::;:::;2;::2; :: :::::::::::::::::::::::::_:

_ii_i_ii_!!!i_i_i__i_ii_i!_iiiii_ii_i____iii_i_i__i__iii_!ill!iii!iiill!_ii_i__!i!i!_!ill!i__ii!ii_iii_iiii__ii!ii_ii_!_i___ii__ii_i__ii_ii_ii_ii_ii_i!_ii_i!_i_i!_i!_iiiii_i!
(_)

iiiiiiiiii!ii!iiiii21iiiiiiiiiiiiiilEiiiiiiiiiii!!!iiiiiiiii_ii!iiiiiiiiii!_i_!_!i_ill_iii_ii_i!_i_iiii!_iii!_!!!_i_i_i_!i_i_i_i_i_!i_!_i_i_!i_i_i_i_ii_i_

_ii_ii_i_i__i__i_____i___i_i_i___ii__ii_i___i____i__ii___i_i_ii_i_ii_!_I_!_i__!i_i_i__i_____ii_iiiiiiiiiiiiiiiii
i i iiili

•fi:;2::<:_::;<:::_;<<_', _:<_ : >'_ ,.; _-_: :': _.;:':%:"_.L't__- ;.,',-_:÷:<,:_-:_-_"_. _4.x._L:_:_;'_:_:.:..>-:.: >:

:::: ;:::; ::_" ",- _. x_ x<._.:<4-__;_<-_:o: _:<<::,b>_ _':_b" _.:.';. ; :'-_-.;<,"_; _.:5 :;5 : ;;;; ;;;

:i:!;!:::_:_;i:_]_'i_'_,.:_< _ _i_;_i1_:_i:_:!_)_1_:_:::)_:_;_;_:_:)_:_:_;:!_)_';!_:i_:_:;;!;_i_i;_:::,._;_.::!:!:!:!_i;_:i:
.... •......... .,.,_, -, ._., ,,_ • 4,-,-,• -_-. • | _ • ,1_•., • _ ,,t._-__ _'ee:_ .'_'__ "_- "I;_ "'_ __• _.-": -_'_-"_'."" ":

",_-_.'.'.'_',',:,'._,_,'.:-:-'-;-;-;<->X ;_; :,._ :'_ _._;;.:_ t_:_ :_ ; :: : .,x :,t<_:o_,_._2L_:.;._;<"<o;4>>>.'-'t:.-;.>>:<<e4-:.:.:,>>>:->:¢.:4;_

] ?i:{Si:_:i:_:i:i:!:i;{:_:i:{:_:i:i;ii:i:!:i:_:i:!:i:i:i:[:'_i;_:!:i:5i:!:!:_:!:!:!:_:iS! !:!:!:!:!'_!:]!:_ i_!:_::_i:])_: !: :_:i:ii:i:_:!:_:!SI:!:_:!:_S!:!:_!:_!:!:!

::i:i:i:i:i:i:i:i;_:!:!:!:i:!;i:_:!:_:;:i:i:i:i:i:i:_:_:_:_:_:_:!:i:_:_:i:_:_:i:i:_:_:i:i:i:i:i:i:i:_?!_:!:_?!_?:.i:_::_;i._;_:{:_:_{_:_::_:_i:_i:_:.:;:.:i:_:_:i:_:_..;_:_:[:)i

Co)

ii!!iiiiiiiil!ii_!_ii_i1_ii_i_i_iiiiiiiiii_ii_iiiiiii_iiii__i_i__!i_ii_i!_i!iii_ii_ii____!i__i_____!_ii l i iiiiiiiiiiiili!iii!iiii!ii!i!iiiiiiiiii!iiiilii!i!iiiiiiii

::_:_:_:_:_:_i_i_i_i:i_i_i:i_)i:i_i:)_!_._`_``__i__5__ __
;:L_::::';:2:2:;:::::I::L:2;2:2;M2:I:2L; r:::_;_;_.,_ ._ _.: _ --_..1_ _'o_

I_:i_.ii::!:_:_i_i_i_i_i_i_!_i_i_i:ili_ii_>_i_i_.ii-'___:(__]

_i_i:!:i_!_!_i:_'" _"_ .--'" ._" _ _i_.;"i:_!_ :::_.i;_,i;i _ _ _ _ _ _ : i_
x:.;._<>.t___ _-,,___-v ._:.:_._ _ ,__:1__.>,<. _<.;<.r¢.___--"_

:;:: _.::_::i;::;:""):_:_: :::::>_:_':_ _,, _ _-:_:'; :_':'.:__::'_:_"::'_::i____ _"*_

i!:ii!_i_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!!!_!i_i_! _
iii:i_ii]_iiiliiiiiiiiiiiiillilliiiiii_i!iill_:_.....]

iiiiiiiiiiiiiiiiiiiiiiiiiii!!i!iiii!ii_!!!i!i!ii!_iiiii!!ii!!iiiiii!ii!ii!!!!ii

i i i
!ii!!:.!iiiiill iii_i!;ii_iii!::iiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiii!iiiii

_i!i!i_i:i!iiiiiiiiii! iiii ii_iiiiii iii i_il i iiiiiiiii_i_il[ili:_ii:ii_!i:]::_._]_i _i_ii:[_<::i_:il_i! i_i:iii_i_ii]_i_]i;_:!!!i!iii!:!:!:._:.::_!:!:i:i:!:.::i:i:i:i:!:i:i:i:i:_:_:_[
|:i::]iS!:i:_SI::.'t:_:_:_:I_[:_:!SI:_:_!!:_:! :: :!!:::_ ::

I iiii?iiiii!ill i iiiiiiiiii!ii!ii!iii ii
(c) (d)

Figure 1: The visuali_ation and annotation system

(a) hedgehog and streamlines showing 3D fluid flow, Co) annotation markers (small geometric objects) placed at points of high

velocity, (c) annotation content panel, (d) Magic Lens falter hiding annotation markers and widget handles.

tern (?,VS) [17] and Fl0w Analysis Software Toolkit (FAST)
[1], two software environmen_ for visualizing scientific data,

facilitate attachment of labels to static 2D images. These sys-

tems also allow a user to record a sequen_ of interactions
with the visualization. This support is u_efui for generating

presentations from the data, but does not facilitate the record-

ing and describing operations observed by Springmeyer et al.

Outside the scientific visualization domain, annotations

of various sorts have been integrated in different applications.

MacDraw, a 2D paint program, introduced a notes fea-

ture, which allows static 2D annotations using the Post-it

metaphor. Media View [12] [13], a multi-media publication

system, extends the conventional paradigm of a document

and allows annotations in all media components including

text, line art, images, sound, video sequences, and computer

animations. The format of annotations has been expanded,

but their use is still limited to presentation of information in
a static environment.

Document annotation is used as a means of communi-

cation in the Wang Laboratories multi-media communication

system, Freestyle [8]. Freestyle's multi-media messages are

based on images, including screen snapshots and hand-drawn

sketches. Furthermore, this system allows synchronization

of input modalities, such that messages can contain informa-

tion about the process by which they were created. Freestyle

advances the concept of annotations as communicators, but

does not address the issues of clutter and management of
annotations in the environment.

Verlinden et aI. [18] developed an annotation system

to explore communication in Virtual Reality (VR) environ-

ments. In general, annotation in immersive VR systems is

restricted, as the user must interrupt the session to interact

with objects in the real world, such as notebooks and com-

puter monitors. Verlinden's system overcomes this problem

by embedding verbal annotations in the VR space. The an-

notations are represented as visual 3D markers. When the

user activates a marker, the verbal message stored with that

marker is played. This system is unique in that it embeds an-
notations in 3D scenes, but it is limited to verbal annotations

and provides no support for annotation filtering. It also limits

annotations to a fixed position in a time-based environment.

3 Design Issues

We have extracted, both from the Springmeyer et al. study

and from our own experience with scientific visualization, a

set of three design guidelines that seem appropriate for an an-

notation system. These guidelines, discussed below, formed

the basis for the design of our system.

Guideline 1: To support ongoing recording of contex-
tual information, an annotation system must be an integral

part of a visualization system. Effective placement and stor-

age of annotations are required.

Traditionally, annotations to scientific visualizations are

recorded on paper or in electronic files, and both the dataset

and the files are labeled to mark their association. This

separation of data and ann0tations meaiis-_-sb_e_ffort is

required to find the data features described by annotations.

The 3D data space of many scientific applications provides
the context in Wlal__annotations should be placed. Recording

annotations in this space capitalizes on human's spatial senses

by facilitating the retrieval of information based on its spatial
location in the visualization.

However insertion of annotations in the data space cre-

ates an immediate conflict between the annotation and visu-

alization functions: both compete for screen territory. We do

not wish to impose any restrictions on the amount of informa-
tion that can be recorded. At the same time, since information
is contained in the data itself, we do not wish data to be ob-

scured by annotations. Our approach is to decompose an
annotation into:

• an annotation marker or small geometric object that

identifies the position of the annotation in the data space

and

• an annotation content in which a user stores information.

The geometry and graphical attributes of markers are

chosen so that they are easily distinguished from existing vi-

sualization tools. By clicking on a marker, a user can expand
the associated annotation to read or edit its content. Separa-

tion of the annotation's content from the annotation marker

in this way allows direct insertion of arbitrarily large annota-
tions.

Guideline 2: Annotations must be powerful enough to

capture information considered important by the user.

There are different types of information. Tanimoto [16]

distinguishes between data (raw figures and measurements),

information (refined data which may answer the users' ques-

tions) and knowledge (information in context). Berlin [3]

classifies the levels of information in a similar way. He con-

siders information as a relationship which can exist between

elements, subsets or sets. The broader the relationship, the

higher the level of information. We assume that an anno-

tation system should be able to store information at each of
these levels - scientists need to record both the data values

at probe points in the data set, and a higher-level analysis of

these figures.

Although some data, such as date of creation and author,

are likely to be relevant to all applications, it is possible that

knowledge can be captured only when an annotation system

is customized for a specific application. The customization

would ensure that annotations can represent information rel-

evant in the context of the application. For example, if the

data of a particular application is time-varying, the annota-

tion system should provide time-varying annotations that can

track the features being described.

In our annotation system, we provide support for dif-
ferent types of information in two ways. First, within each

annotation, scientists can record both numerical and textual

details, and high-level information specific to fluid flow. This
is discussed in section 4.4. Second, the system supports
hierarchically-organized annotations. The hierarchical struc-
ture allows scientists to record facts in separate annotations,
and group related annotations in sets that describe broader
observations.

It is also important to consider the modalities that are
available for capturing information in an annotation system.
Two dimensional text, graphics and images are the standard
annotation modalities; aural annotation is also a candidate.
Chalfonte, in an experiment on the use of annotation for
collaborative document authoring, found aural annotations
a richer and more effective medium for high-level commu-
nicafion [51. Freestyle shows that coordinating hand/cursor
movements with textual and aural annotations is also effec-
five.

In our current implementation, we use 2D text and 3D
volumes to store information. In the future, we would like to

use different interaction techniques for information capture.

Guideline 3: We need to consider the established rules

of user interface (U'I) design, because the UI of an annotation
system will play a key role in determining its acceptance (or
lack thereof) by scientists.

We considered many UI rules [71 and designed our an-
notation system accordingly. One rule states that a UI should
allow users to work with minimal conscious attention to its

tools. We achieve this goal by using a direct manipulation
interface, that is, an interface in which the objects that can

be manipulated are represented physically. For example, the
volume of data affected by the Magic Lens filter can be con-
trolled directly by moving and resizing the physical represen-
tation of the lens. Another design rule states that an interface
should provide feedback, e.g., on the current settings of do-
main variables. In our system, annotation markers give visual
feedback on the location of annotations and marker geometry
gives feedback on annotation content.

Because the geometric data space of fluid flow appli-
cations has three dimensions, we considered design issues
specific to 3D graphical user interfaces [6]. One issue is the
complexity introduced by 3D viewing projections, visibility
determination, etc. A second issue is that the degrees of free-
dom in the 3D world are not easily specified with common
hardware input devices. A third issue is that a 3D inter-
face can easily obscure itself. We use guidelines outlined by
Snibbe et at. [14] to deal with these problems. For example,

we provide shadows, constrained to move in a plane, to sim-
plify positioning of annotation markers (see section 4.3.2).
We provide feedback on the orientation of the data by option-
ally drawing the principal axes and planes. We also ensure
that annotations do not obscure data, by making it easy for
a user to change the viewpoint and resize or hide annotation
markers.

4 Implementation

This section describes the annotation system we have hnple-
merited. We begin by setting a context for the system with a
description of fluid flow visualization and the software devel-
opment environment. Then we discuss the main components
of the annotation system: the annotation markers, support for
information capture, and interaction techniques.

4.1 Fluid Flow Visualizations

Computational fluid dynamics (CFD) uses high speed com-
puters to simulate the characteristics of flow physics. Com-
puted flow data is typically stored as a 3D grid of vector and
scalar values (e.g., velocity, temperature, and vorticity val-
ues), which are static in a steady flow, and change over time
in an unsteady flow. CFD visualization tools allow a scientist
to examine the characteristics of the data with 3D computer
displays.

Interaction with the visual representation is essential in
the exploration and analysis of the data, and has three goals:
feature identification, scanning, and probing [9]. Feature
identification techniques help find flow features over the en-
tire domain, and give the scientist a feel for the position of
interesting parts of the flow volume. An example of this type
of technique is a vector hedgehog, a three-dimensional array
of velocity vectors. Scanning techniques are used to inter-
actively search the domain, by varying one or more parame-
ters, through space or through scalar and vector field values.
Scanning techniques include cutting planes (planar surfaces
which slice the 3D grid and show scalar field value at each
grid point of the plane) and iso-surfaces (three-dimensional

surfaces of a constant scalar value). Probing techniques are
localized visualization tools, typically used to gather quan-
titative information in the final step of investigating a flow
feature. Examples of probing tools include streamlines and
particle paths, which show the path in which a particle would
flow if positioned in a steady or unsteady fluid flow.

The Computer Graphics Group at Brown University has
developed a flow visualization system, to study new modes
of interaction with flow tools. The annotation system was

developed as part of this flow visualization system. This
provided a test-bed for techniques to integrate visualization
and annotation functionality.

4.2 The Development Environment

The annotation system was developed using FLESH, an ob-
ject oriented animation and modeling scripting language [1I],
and C++. In the FLESH language, scenes are described as

collections of objects. The FLESH objects defined for the an-
notation system include geometric objects such as annotation
markers, 3D volumes and lenses, and non-geometric objects,
such as holders for collections of annotations and an annota-

tion filter. Some of these FLESH classes have corresponding
C++ classes, in which data is stored and compute-intensive
operations performed. This allows us to benefit from the

I"

power, of an interpreted interactive prototyping modeling sys-

tem and the efficiency of a compiled language.

4.3 Annotation Markers

Annotations are represented in the 3D data space by small

geometric markers. Each marker has an associated content

which the user can edit at any time.

4.3.1 Marker Geometry and Graphical Attributes

The geometry of a marker gives visual feedback on
the content of the annotation. In the fluid flow visualiza-

tions system, the user can define annotation keywords (e.g.,

plume, vortex), and select a geometry to associate with each

keyword. Then, when the user assigns a keyword to an

annotation in the system, the annotation's marker takes the

associated shape. It is likely that other mappings between

graphical attributes of markers and annotation content would

also be useful. For example, the color saturation of a marker

could depend on the age or priority of the annotation.

The graphical attributes of annotations are also user-
customizable. The size and color of all markers in one level

of hierarchy can be changed. We predict that this feature

would be useful if many scientists work coUaboratively on a

data set, and each scientist defines a unique color and size for
her markers.

4.3.2 Marker Behavior

Since the function of a marker is simply to identify

points of interest in the visualization, its behavior is quite

simple. A marker is created when the user presses the anno-

tation push-button. It appears at the point on which the user

is focussed, making it easy for the user to position it near the
feature of interest.

The scientist can translate and rotate markers with sim-

ple mouse movements. He can also project interactive shad-
ows of the marker on the planes defined by the principal axes

[10]. Each shadow is constrained to move in the plane in
which it lies. If a user moves a shadow, the marker moves

in a parallel plane. This constrained translation helps in pre-

cisely positioning a marker.

Markers can be highlighted in response to a filter re-

quest. In the current system, the color of a marker changes

to a bright yellow when highlighted. This simple approach

seems adequate. However, the user may change this high-

light behavior, by, for example, having highlighted markers

flash between alternating colors.

Since the features of unsteady fluid flows change over

time, a user would like the annotation describing a particular
feature to follow the feature's movement in the visualization.

The current annotation system provides partial support for

this by allowing the user to specify the position of an annota-
tion at any number of points in time. The annotation markers

then linearly interpolate between the specified positions in
time.

4.4 Knowledge Stored

Our annotations can store generic information, as well as

information specific to fluid flow applications. The generic

information includes keyword, textual summary and descrip-

tion, author, md date. Some of this information (author

and date) are captured implicitly when the annotation is cre-

ated. The rest must be explicitly added after the scientist has

opened the annotation by clicking on it. This data entry is

performed via a 2D Motif panel of buttons and text widgets.

We consulted with fluid flow experts to understand how the
information content of annotations could be customized for

fluid flow applications.

4.4.1 Parameters of Visualization Tools

One of the key additions to the annotation system sug-

gested by the fluid flow experts results from the interactive
nature of fluid flow analysis. As described earlier, a scientist
must insert flow visualization tools (such as streamlines and

iso-surfaces) in the data space to see the underlying data.

Much time is spent determining which tools most effectively

highlight a feature, and positioning and orienting both the
tools and viewpoint to best show off the feature being de-

scribed. Springmeyer et al. observed this activity of the data

analysis process, and described it as orientating the data, or

altering a representation to gain perspective.

To support this activity, our concept of an annotation was

expanded to include parameters of flow visualization tools.
When a user wishes to store the parameters of a set of tools, he

or she presses a button to indicate that a set of tools is being
saved, and then clicks on the tools of interest. The time-

varying location, orientation, size, and other parameters of
the tools are saved with the annotation. This can be repeated

any number of times for different groupings of tools with

different parameters. When an annotation is restored, the

user is presented with a list of all saved sets of tools, and

can recover each set of tools to see how they illustrate the
annotated feature.

4.4.2 3D Volume Descriptions

It also became obvious that annotation markers, which

are appropriate for locating point features in a visualization,

are not sufficient for CFD applications. Fluid flows contain
volume features, such as vortices (masses of flow with a

whirling or circular motion) and plumes (mobile columns

of flow). Users may want to associate an annotation with
a region of the data space, rather than a single point in the

space. We therefore need a way to sketch a volume in the data

space. The volume-sketching method must be intuitive, so

that flow scientists (who may not be interested in becoming

artistic volume sculptors!), can easily describe the volume.

Also, the resolution of the volumes sketched need only be as

precise as the grid on which the flow field is defined.

We provide a simple method to sketch volumes. The

user positions "pegs" that define the extreme vertices of the

volume to be drawn. The pegs are created and moved within

iIiii_i_i_iii_i_iii_i_iii_i_ii_iiiiiiiiiiiii_1ii;ii!iiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiii_!iiiiiiiiiiiiiiiiiiiiiiii_;iiiiii!i_!i!iiiii_iiiiiiiiiii!i!i!iiiiiii!iiii_

I_i8i:iii_i:i_i:i_i!i18i:iS!:_:i8i:!ii:iii:i8_:i8i:i_:iiii_:!:!!i:!:i:!:!8E_i_!!!!i_i_!_iiiii_:ii_iiiii_i_ii_i?_i_iiiiiiiii!_iiiii_iii!iiiii!i!i_i!_!_iii!!i_!_!!i!!!!i!ii_!ii_i_!_

i_iii_i_ii_i_i_i_i_i_illiiiii!ii_!iiiiiiiiiiiii_iiiiiiiii_ii_i_!iii_i_iiiiiii_ii_ii_i_

 ! i i i i iiiiiiiiiiiiiii i ii i i i i i i i i i!i! !i!iiiiiiii i i ® i
:x::x:x:;xx:x:=_;xx:x:x=:;::_> _ %t_ .-_::',:.[:'¢-_:,,:_::._:::k:::::::2:::_:::;::5:5:x:_:£;:;2::::::_.-;5552
I:i:i:!:i;i;i:i:i;i:!:i:!:i:i:_:!:i_!:!:i:!;!:i:i:!:!:!:!:i:_:!:!_:__._._t: _!!_ _ _<!:_u_:i; _i_;i;_:!:!:!:!:!:!:i:i:i:i-'i-:i:i:i:_:i:i:i:i:i:i:i:i:i:i-'.":-i:!:

i:_i_ii:_i_i_i;_iiii$i:i_i:i_iii8;::_$i8i:i8_:8_x.-_: kk :::_:> _:_:::X:_:b:::_ fi df:_ d :_: _:_:::::: x=>...,, .-, ,:.. ,:., .:.. ,:._,: >>5>;<<,>:,:->>:,>:-:-:<d 5_>_@_:_:_-:,_5 x;::_::7::b :::: -; :: + :5 ; -: ::_::: :,_: ::: x :;::;: = x =::V =:::::r_:>: ::
> >>>>>:,>>:4,>>>>>>>>:,:._,_::>>>>_c+:o>>>>>:p>>>_ >>_<_ :_e • __. o _, +: >_ :+

!!!iii!iiii!iiii!i_iii!_!!!!!i!ii!i_i_1:._i:ii_iiiiiiiiiiiiiiiiiiiiii_ii?_!_!_!_!_!_!_i_!:i_i!_i!_ d i i ii i iiii_: :i :: : =: :_x 8 > 8:.-'.":_

U_:::5:::_5:::::V::_:5:V_;F;::::_:_:;::;h_4;:;:;:;:5;:;:::f;V;_;::_;_.;;:;;;_>_.._:: :_b:U:_::2:L:52:::::::::2:5:::::::::.'.'::::_:::::::5'2:2:55:':!;5!:I:!;!:!;_;
:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:!:i:i:i:iri$i:i:i::i:i::i:i:::::::::::::::::::::::::::::::::]e[:]:i:::]:::::: :: :::: :::::::: :_:;:::::::::
:::i:::i: ::8;: 8::i:: :::

iiiii iiiiii', iiii', i i ii! i@,;i ii ;i®i iii:if,i',iiii! iiii',ii',',i',iii',iiiiii',ii!i ,ilii' ili ,iiiii!ii :ii! iil

Figure 2: A volume defined as the convex hull of a set of

pegs.

the visualization in a way similar to the creation and transla-

tion of annotation markers. When the user is done positioning

pegs, the system computes their convex hull using the quick-

hull algorithm [2]. The boundary of the volume, defined by

the convex hull, is rendered in either wireframe or transpar-
ent mode. Vertices can be added, deleted and moved, and

the volume redrawn, until the volume is accurate. Figure 2

shows a volume which has been defined in this way.

This implementation provides a simple means to draw

volumes. However, since it uses the convex hull of the pegs,

certain shapes, such as a 3D 'q2' shape, cannot be sketched.

4.5 Retrieving the Annotations

Effective information retrieval and communication requires

that a user can easily identify annotations relating to a spe-

cific topic, by a specific author, etc. The annotation system
facilitates such data filtering in two ways.

First, a traditional database filter is provided. The user

can specify data selection criteria (such as the annotation

creation date, author, or keyword), via a 2D Motif panel.

The markers of annotations that satisfy the search criteria are
highlighted.

A second filter uses the Magic Lens metaphor introduced

by Bier et aL [4]. A Magic Lens filter is a rectangular frame,
placed in front of the visualization, that appears as if it moves

on a transparent sheet of glass between the display and the

cursor. The lens performs some function (which may use

information from application-specific data-structures) on the
application objects behind it.

Four functions are defined for the lens in the annota-

tion system. The first sets the color of all objects, except
annotation markers, to gray, This helps users find markers

in a cluttered scene. The second lens function displays only

the annotations that satisfy the criteria specified in the Motif
database filter. The third lens function hides all annotation

markers behind the lens. Finally, the default function hides

all annotation markers and all interaction handles on the vi-

sualization tools behind the lens. Many other interestiag lens
functions could be defined. One such function could remove

all fluid flow tools except those in the user sketched volume
behind the lens.

We believe that the magic lens filter alleviates the prob-

lena of visualization and annotation functions sharing the
same screen space. Using the lens, a scientist can tightly in-

tegrate the two functions when appropriate. When she wishes

to focus exclusively on either visualization or annotation, the

clutter introduced by the other component can be hidden.

5 Future Work

The work described in this paper could be expanded in a

number of ways, in both the fluid flow application and in new
environments.

There are a number of opportunities for the fluid flow

application. The facility for recording parameters of visual-

ization tools could be extended to record view parameters.

Then, flow tools could automatically be viewed from the

same viewpoint and with the same magnification as when

their parameters were saved. Annotations could also become

more active in the data investigation process. For example,
annotation markers could be used as seed points for auto-

matic flow feature-characterization code. The output of the

feature-characterization code (i.e., specifications of the fea-
ture found) could then be added to the annotation content.

Feature-characterization code could also be used to improve

support for time-varying annotations. If the location of an an-

notation marker were constrained to the feature's position (as

found by feature-characterization code), the marker would
follow the movement of the feature over time.

We would also like to implement annotations in other

applications and environments. For example, virtual real-

ity environments pose many new research problems. User

studies would have to be performed to determine which an-

notation modalities would be appropriate in this space. If

textual annotations were appropriate, we would have to de-

termine where to place the text: floating in space near the

marker, or on 2D panels which exist in the virtual space, or
perhaps in some other place. New interaction mechanisms

for annotation markers and filters should also be developed.

Finally, we would like to expand the scope of annota-
tions. Springmeyer et al. noted that scientists tend to record

their interactions with visualization systems. Perhaps the an-

notation system could help in recording and examining these
edit trails. Also, scientists spend time comparing different

data sets. The current annotation system could be redesigned
to fit in the context of more than one data set.

We hope that further experience with the current sys-

tent and its extension to other applications and environments

will allow us to evaluate our design guidelines, and develop

principles for customization of a general purpose annotation

system.

r

" 6 Conclusion

The importance of annotation in data analysis and the lack

of annotation support in data analysis tools led us to develop

a system that integrates annotation and _is6/dization. In our

system, annotations are embedded in the 3D space of CFD
data. Co-location of annotations and data allows users to

navigate through the information by spatial association. Each

annotation is composed of a small geometric marker and a

content that can include textual, graphical and other domain-

specific information. This allows unobtrusive annotations
with an unlimited amount of information. Filters are provided

to help sort annotations and create customized views of the
information.

Initial feedback from scientists leads us to believe that

the close integration of annotation and visualization facili-

tates the ongoing recording activity observed by Springmeyer
et al. At the same time, the ability to group annotations in

disjoint sets and filter annotations supports the organization

of analysis conclusions, i.e., the describing activity. Further-
more, annotations can be used as a means of communication

between collaborating scientists, and as a way to present in-
formation in an educational tool.

7 Acknowledgments

The authors of this paper would like to thank the members

of the Graphics Group at Brown for their helpful comments
and support. Thanks also to the members of the Visualiza-

tion group at Digital Equipment Corporation's Cambridge

Research Lab for their review of this paper. The paper is
based on the Master's thesis of the first author, whose at-

tendance at Brown University was made possible by Digital

Equipment Corporation's Graduate Engineering Education

Program. This work was supported in part by grants from

Digital Equipment Corporation, NSE DARPA, IBM, NCR,

Sun Microsystems, and HE

References

[1] Bancroft, Gordon V., Merritt, Fergus J., Plessel,
Todd C., Kelaita, Paul G., McCabe, R. Kevin, and

Globus, A1. FAST: A Multi-Processed Environment for

Visualization of Computational Fluid Dynamics. Pro-

ceedings of the First IEEE Conference on _Isualization,

pages 14-27, 1990.

[2] Barber, C. Bradford, Dobkin, David E, and Huhdan-

paa, Hannu. The QuickhuU Algorithm for Convex Hull.
Technical Report GCG53, Geometry Center, U. Min-

nesota, July 1993.

[3] Berlin, Jacques. Graphics and Graphic Information

Processing. Walter de Gruyter and Co., 1981.

[4] Bier, Eric A., Stone, Maureen C., Pier, Ken, Buxton,

William, and DeRose, Tony D. Toolglass and Magic

Lenses: The See-Through Interface. Proceedings of

SIGGRAPH '93, pages 73-80, 1993.

[5] Chalfonte, Barbara L., Fish, Robert S., and Kraut,

Robert E. Expressive Richness: A Comparison of

Speech and Text as Media for Revision. Proceedings

of the ACM Computer Human Interaction Conference,
pages 21-26, 1991.

[61 Conner, D. Brookshire, Snibbe, Scott 2., Hemdon, Ken-

neth E, Robbins, Daniel C., Zeleznik, Robert C., and

van Dam, Andries. Three-Dimensional Widgets. Pro-

ceedings of the Symposium on Interactive 319 Graphics,

pages 183-188, 1992.

[71 Foley, James, van Dam, Andries, Feiner, Steven, and
Hughes, John. Computer Graphics Principles and

Practice. Addison Wesley, 2rid edition, 1992.

[8] Francik, Ellen, Rudman, Susan E., Cooper, Donna, and

Levine, Stephen. Putting Innovation to Work: Adop-
tion Strategies for Multimedia Communication Sys-

tems. Communicat it ns of the A CM , 34(12):53-63, Dec.
1991.

[9] Haimes, Robert and Darmofal, Dave. Visualization in

Computational Fluid Dynamics: A Case Study. Pro-

ceedings of the Second IEEE Conference on _sualiza-

tion, pages 392-397, 1991.

[10] Hemdon, Kenneth E Interactive Shadows. UISTPro-

ceedings, pages 1-6, November 1992.

[11] Meyer, Tom and Huang, Nate. Programming in FLESH.

Technical report, Department of Computer Science,

Brown University, 1993.

[12] Phillips, Richard L. An Interpersonal Multimedia Vi-

sualization System. IEEE Computer Graphics and Ap-

plications, pages 20-27, May 1991.

[13] Phillips, Richard L. MediaView, A General Multimedia

Digital Publication System. Communications of the

ACM, 34(7):74-83, July 1991.

[14] Snibbe, Scott S., Herndon, Kenneth P., Robbins,

Daniel C., Conner, D. Brookshire, and van Dam, An-

dries. Using Deformations to Explore 3D Widget De-

sign. Proceedings of SIGGRAPH '92, pages 351-352,
1992.

[151 Springmeyer, Rebecca R., Blattner, Meera. M., and

Max, Nelson. L. A Characterization of the Scientific

Data Analysis Process. Proceedings of the Second IEEE

Conference on Visualization, pages 351-352, 1992.

[161 Tanimoto, Steven L. The Elements of Artificial Intelli-

gence. Computer Science Press, 1990.

[17] Upson, C. and et al. The Application Visualization

System: A Computational Environment for Scientific

Visualization. IEEE Computer Graphics and Applica-

tions, 9(4):60-69, July 1989.

[18] Verlinden, Jouke C., Bolter, Jay David, and van der

Mast, Charles. Voice Annotation: Adding Verbal In-

formation to Virtual Environments. Proceedings of the

European Simulation Symposium, pages 60--69, 1993.

O IGINAI,,CGITIIN$ "

f. tOR ILLI TRAffSHS*

Scheduling Time-Critical Graphics on Multiple Processors *

H95- 25870
Tom Meyer and John E Hughes

NSF/ARPA Science and Technology Center for

Computer Graphics and Scientific Visualization,
Brown Site

{twm,jfh } @cs.brown.edu

Abstract

This paper describes an algorithm for the scheduling of time-critical

rendering and computation tasks on single- and multiple-processor

architectures, with minimal pipelining. It was developed to man-

age scientific visualization scenes consisting of hundreds of objects,

each of which can be computed and displayed at thousands of pos-

sible resolution levels. The algorithm generates the time-critical
schedule using progressive-refinement techniques; it always returns

a feasible schedule and, when allowed to run to completion, pro-

duces a near-optimal schedule which takes advantage of almost the

entire multiple-processor system.

CR Categories:

Additional Keywords:

1 Introduction

Scientists who create complex datasets (e.g., large time-varying
fluid-dynamics simulations, high-resolution MRI scans, and struc-

tural simulations) require correspondingly sophisticated ways of

examining and visualizing this data. In such cases, a scientist may
want to interactively manipulate and examine very complex visu-

alizations, such as a rake with dozens or hundreds of streamlines.

Maintaining the fast interaction rates required can be quite difficult,

especially in immersive environments such as the Virtual Wind

Tunnel at NASA Ames [BL91], where update rates of at least ten
frames/second are required.

In order to support the task of exploratory visualization in these

complex datasets, we have developed a time-aware scheduling algo-

rithm to provide importance-based real-time computation and ren-

dering of some common scientific-visualization techniques. This
algorithm takes advantage of a dedicated graphics workstation with

a single-threaded graphics pipeline and from one to several dozen

processors, communicating using a shared-memory model. (Al-
though some research systems, such as UNC's PixelFlow, will use

multi-threaded graphics pipelines, no such system is commercially

available yet.)

The techniques described in this paper extend to general graph-

ics scheduling. Objects with nearly-continuous representations--

streamlines can be computed at arbilxary firnesteps, and for any

number of steps, for example--are particularly well-suited to be

scheduled using this algorithm.

This scheduling algorithm has the following advantages

*This work was supported in part by grants from NASA grant
NAG 2-830, NSFIARPA, Sun Microsystems, Autodesk, Microsoft,
and TACO.

• After an initial startup phase, it can terminate at any time

during its incremental refinement phase, and will always return
a feasible schedule.

• It results in near-maximal usage of single- and multiple-

processor machines if allowed to run to the completion of

the refinement phase.

• Itpipelines all computations to be rendered as soon as possible,

reducing lag limes.

• It balances the benefit of spending time computing new data

against the time required to redisplay existing data at its

already-computed resolution.

Figure 1: The target application, scientific visualization of complex

computational fluid dynamics scenes in an immersive environment.

2 Previous Work

An large body of research on real-time scheduling exists, dat-

ing from the 1950's. A good introduction to the relevant issues
is [SSNB94].

Classical real-time theories mainly deal with static scheduling

problems in which the algorithm has complete knowledge of the
demands placed on it, and where there are generally hard constraints

which,"if violated, could result in catastrophic failure (airplanes
crashing, factories blowing up, etc). These types of problems are

fairly well-understood, and many algorithms exist for solving them.
Although dynamic multiple-processor scheduling is becoming an

active area, little work has been done on it. Almost all the interesting

problems are NP-complete, and good approximation algorithms are
only beginning to emerge.

Unfortunately, problems of particular interest to scientific visual-

ization have not been much studied. The narrowness of the problem

- scheduling multiple independent tasks-pairs (computation and

rendering) with the two requirements that the "rendering" portions

all take place on one machine, and that each rendering portion start
only after the completion of its computation portion - makes it too

specialized to warrant much attention, except from those who need
solutions.

Because virtual environments require near-constant, high frame

rates, several systems which address time-critical issues have been

developed:
Richard HoUoway's Viper system [Ho192] uses objects with pre-

defined levels of resolution, and renders objects at a global level of

resolution sufficient to display all of them in allotted time. It does

not provide for individual levels of importance for the objects.

Funkhouser and Sequin describe a real-time scheduling algorithm
for complex virtual walkthroughs in [FS93]. However, their algo-

rithm only provides support for objects with a few pre-computed

levels of representation and their faster algorithm only works well

on objects with a convex-downward benefit function. Nonetheless,

the ideas in that paper provide the starting point for our algorithm.

The multi-processing scheduling algorithm described by Rohlf
and Helman in [RH94] schedules computation, culling and ren-

dering of geometric data by using pipelining, which results in the
addition of one frame's worth of lag to the system (lag is as bad

as low frame rates in virtual environments). Additionally, they use

a feedback-based model for managing scene complexity, so cannot
bound frame times when the scene changes rapidly.

Little work has been done on combining computation and ren-

dering, and on managing tradeoffs among computing expensive but
useful information.

3 Benefit Function

For a set of rendering tasks, we need to determine the most useful

amount of time to spend computing and rendering each one. We

define a function Benefit(t), which reflects the approximate value of

spending an amount of time t computing and rendering a graphics
task. We want to maximize

B = E Benefit, (timei)
i

subject to

E time, < frametime
i

This function consists of a product of several other benefit values,
computed on a per-item basis. For any item i, we decompose the

benefit of allofing time t to rendering that item into a product of

three parts:

Benefit, (l) = Importance, • Processo ri (t) . Hysteresis, (t)

Importance is an importance value for the item, expressing the

object's inherent value, closeness to the viewer, user interaction, and
the visual focus of the viewer. Any number of perceptually-based

metrics could be weighted into this; in the current implementation

we assign high importance to streamlines with which the user is

interacting. Defining useful metrics for determining an object's

importance, both in perceptual and semantic terms, is beyond the

scope of this paper.
Processorexpresses the amount of value to be gained by spend-

ing that amount of startup, computation, and rendering time. We

assume that this is a nondecreasing function, convex to the right of

the "startup time;' reflecting the idea that for most visualizations,

"something is better than nothing, but fine detail is worth onlq._
little more than coarse detail." Our implementation uses _/t - t,

for t > ts, where G is the startup time, and 0 for t <7 G.

Hysteresis term is a sigrnoid function designed to encourage

inter-frame continuity. It varies smoothly from a value of I at some

point t < tprev up to a value of 1 +/_ at tprev, where tprev is the
time allocated to the task in the previous frame.

Startup

,/ Hysteresis Range

/-

Time

Figure 2: The benefit function has a fixed startup cost, rises
quickly after that, and gradually falls off until the hysteresis point.
The two dashed lines indicated the local maxima of the function

Benefit(t)/t.

Since we want to maximize the sum of the benefits subject to
the constraint that the sum of the times scheduled for all tasks is

less than the frame time, we first examine the benefit per time unit

for the tasks. If this benefit per time B't--_, which Funkhauser and

Sequin called the value, is increasing at some value t, we would
ideally like to allocate more time to task i: doing so would reduce

the average cost of the benefits derived from executing task i. But

if the benefit per time is decreasing, then allocating more time to
task i will increase the average cost of the benefit, and should be

done only if other tasks cannot benefit more from being given the

additional time instead. We therefore consider the points where the

value _ is at a maximum as good starting points in the search for
ideal time allocations. A complete rationale for this starting choice

is given in [FS93]. As seen in Figure 2, the benefit/time function

will have at most two local maxima - near the extreme points of

Processor_ (t)/t and (Hysteresis, (t) - l)/t. If these functions are

expressed analytically, it is simple to compute these two points

analytically. Note that as long as both functions are differentiable
and have few local maxima, we can perform a similar analysis to

obtain the starting points.

The functions that constitute Benefit(t) are all defined only at a

fixed, sparse set of values for t, since computation time cannot be
allocated in quanta smaller than the clock cycle. Furthermore, the

functions are likely to be step functions, constant on large intervals

in the domain. To the extent that this is true, time spent in making

small adjustments to the allocation of processor time is often wasted.

On the other hand, by bounding the smallest step size we will take in

adjusting processor allocations be of the same scale as the smallest
interval on which the true benefit functions are constant, we can

substantially avoid such waste, while still derviving the benefit of

being able to use differentiable functions.

4 Scheduling Algorithm

The application into which the scheduler fits works as follows: In
a typical flame-time, user input is gathered, the schedule computed

during the last frame is executed, and the schedule of tasks to be

performed during the next frame is computed, with the compo-

nents of each benefit function modified according to the previous

schedule (which influences the hysteresis factor) and the user inter-

action, which influences importance. This sections describes how
the scheduler works.

4.1 Single-Processor Case

We use a two-phase incremental-refinement scheduling algorithm,

based partly on Funkhouser and Sequin's algorithm [FS93].

Greedy Phase. The first phase is essential; it generates a feasible

but not necessarily good schedule, and requires O(n log n) time.

This makes it possible to bound the worst-case time of the scheduler

and consider that amount of time as part of the frame time. (The

scheduler can place itself into the generated schedule for the next
frame). Of course, it is possible to have an extremely complex scene

for which it would be impossible to execute even this phase during

the frame time. In this case the schedule could be recomputed only

once every few frames, at some loss of responsiveness.

The greedy initial phase generates, for each task i that has been

selected for inclusion in the schedule, a pair (t,3, Benefit(t,,))

at each of the local maxima of the Benefit(t)/t function. We

sort these pairs by value Benefit(t)/t, and repeatedly take from

the list the task whose value is greatest. If the task has not yet
been scheduled and there is still available space, we add it to the

work list; if it has been scheduled and the new value of t is greater

than the previously scheduled one, we reschedule it at the new time

(if there is space). This produces an initial packing which is at

least half as good as the result from doing the NP-complete optimal

packing[FS93].

Incremental Phase. During the second phase of the algorithm

the scheduler iteratively refines its generated schedule, as time al-
lows. However it can terminate at any time, since the feasibility

of the schedule is never violated. This phase also has O(n tog n)

complexity, and may terminate before the time alloted.

The problem reduces to an N-dimensional gradient descent,

where we try to find the maximum value of the derivative such

that all of the benefit functions have the same slope (some may have

a zero slope).

To solve this, we use a version of the Newton-Raphson technique

to initialize each of the tasks with a stepvalue _,:

6, = granularity, rain(l, _ Benefit,(t,)))
Benefit_'(t,)

where granularity is the starting value for the refinement, and
is the current mean of the derivative values. If 6, is smaller than

the current smallest task size, we initialize it to the smallest task

size. This technique moves slowly through areas where the benefit

function has high curvature and quickly otherwise, by taking a step

that's inversely proportional to the curvature, but proportional to
the difference between the current derivative value and the desired

derivative value.

While we can feasibly add a task i, we do so, generating a benefit

of Benefit',(t,). We add _, to t,, and then repeat. If we cannot

feasibly add any task, we find the currently-scheduled task i with

the smallest Benefit,(t,), we subtract 8i from the time allotted to

it. We then repeat the entire process. Every tLrne a task has time
added to it and then subtracted away, we halve the value oft,, until

6, is smaller than the smallest task size, at which point the task i

is removed from the list of candidates for improving the schedule.

The algorithm terminates when the list is empty, or the available

time is used up.

To determine if we should spend additional time refining the
schedule before executing it, we compare the margin of change in

the total benefit pier iteration with the amount of time required to

perform that iteration. If the scheduler should run for less time, we

decrease its alloted time slightly, bounded by the worst-case time.
Otherwise, we can increase its alloted time.

4.2 Multiple-Processor Case

Dedicated graphics multiple-processor workstations are becoming

common, especially for high-end scientific-visualization applica-

tions. These machines allow light-weight processes which com-

municate using low-overhead shared memory and synchronization

primitives; however, the rendering pipeline is fed from only one

processor at a time.
Most multiple-processor scheduling algorithms are NP-complete

(even the fairly simple case of 2 processors, no precedence con-

straints, and arbitrary computation times is N-P-complete) [GJ75].
Since we want to schedule a set of tasks on several processors with

precedence constraints, our problem is at least this hard.

We modify the single-processor greedy algorithm to quickly gen-
erate a feasible schedule for multiple processors in O(n') t_ne for a

guaranteed schedule or O(n log n) time for an optimistic, probably-
feasible one.

First, let us consider how we might build a good multiple-

processor schedule. Generally we have two portions of the vi-

sualization task: a compute task taking time c and a render task

taking time r (possibly with a cull task inserted between them).
The compute task can run on any processor, but all render tasks

must stay together. Also, any data must be computed before it can

be rendered, so any good schedule would have to make sure that

rendering tasks would not sit idle while wailing for data. Let us
consider two tasks which are being computed on a single processor
and rendered on another. If we order them so that the tasks with

large values of c - r (which we call the excess compute time) are
last, we have the most room possible for additions, and minimize the

startup differences and ending differences between the processors,

as shown in Figure 3.

Compute A

Compute B Render A

Render B

Compute B

I

Compute A I RenderB

/

l RenderA

Figure 3: Ordering tasks by increasing excess compute time mini-

mizes the makespan.

The multiple-processor algorithm works like the single-processor

algorithm, except that we modify the insertion routine to verify that

adding work to the schedule doesn't produce an infeasible schedule.
We initially try to add each task to the rendering processor; if there

is not enough room on a processor, we push tasks onto the next

processor, starting with the task with the most excess compute on

the current processor. In this way, we always minimize the total

amount of computation time required before rendering can begin.
Pushing a single task may cause a cascade of pushes, as shown in

Figure 4, but we do not attempt to push a task again if a previous

pushon that task has failed (there is probably still not enough room
for it, since pushes only go in one direction), so we perform at most

O(p. n) pushes (p is the number of processes), with each attempted

push requiring an additional verification pass.

Como I

D I

l

!
i

I Comp

! c

,......__

Comp

D

[Comp

I B

I Comp

I C

__C°mPA

Rend A N

Rend C

Rend D

I Como

I A

IRend A

I-------------

I Rend C
k-----------

I Rend D

Figure 4: Pushing a task may cause a cascade of pushes. Here,
inserting task B causes task D to move to another processor.

In order to guarantee feasibility, we need to look at the two

possible ways in which an insertion could violate it:

• We must make sure that the sum of the work is less than

the framefirne, for each processor. Verifying schedule-size

feasibility takes O(1) time if done as each task is added to the
list.

• Additionally, indivisible tasks cannot be rendered in time less
than the sum of the startup, compute, and rendering times for

that task. Consider a fine-gained compute task that gener-
ates small pieces of geometry (meshes, lines, or even individ-

ual polygons and line segments) at regular intervais c during

computation, after the startup time s. Rendering of any of

that task's data cannot begin until time s + c. If the time

required to render a piece is r, the total lime required to render
:r primitives is s + c + (x - 1)- max (c, r) + r. Any generated

schedule which violates this requirement is infeasible.

Verifying precedence relations takes O(n) time, since it is

necessary to check every rendering task which is scheduled

before an inserted rendering task, as well as every computa-

tional task which is scheduled after an inserted computational
task.

As described previously, when scheduling several tasks, we can

lower the possibility of feasibility conflicts by ordering them from

low to high excess computation. Where this value is equal, we

define a consistent ordering of tasks so that the partial order of
tasks is identical across both the compute and rendering phases.

In actual practice this heuristic, when applied to scenes containing

diverse types of objects, results in schedules which rarely violate

the precedence relations and which achieve high processor usage. If

one can tolerate the occasional slow frame, removing the precedence

checking results in an O(n log n) algorithm.

Of course, in pathological cases, any render-dominated schedule

may have only the same benefit as the single-processor schedule,

but in most complex and diverse scenes, the scheduling algorithm is

able to take advantage of the different computational and rendering
demands of these tasks to generate a feasible, good schedule which

uses almost the entire multi-processor system.

5 Implementation Results

Our actual implementation results are fairly preliminary at this stage,

but we have already found some interesting results.

We used a two-processor Onyx to run our real-time usability

tests. However, we were unable to isolate the processors from

the vagaries of UNIX scheduling (we could only have isolated one

processor from the operating system, since system tasks have to run

on at least on processor), so obtained frame rates that varied between
8 and 12 frames per second when we attempted to schedule at I0

frames per second.

If we simulate a four-processor Onyx, allocating 100 millisec-

onds (one complete processor at 10 frames/second) for the schedul-

ing phase, we fill 97% of the other three processors, when the task is
compote-bound. With 50 milliseconds allocated for the scheduling

task, the algorithm still manages to fill 92% of the available pro-

cessor time. The benefit of the algorithm declines sharply after this

point, however. Giving the scheduler 25 milliseconds resulted in

only 65% processor usage, while 15 milliseconds dropped to 32%
usage, resulting in less computational time than a single processor.

We intend to perform additional investigations to understand how

the scheduling algorithm's behavior degrades under stress, and mod-

ify the search techniques which it uses to cope better with situations

involving too much work or too little tLrne to schedule.

6 Future Work

We have not yet completed the interleaved version of this algo-
rithm, in which it schedules iself as a time-critical task onto the

work queue, scheduling the next frame while the current frame is

being completed. Several interesting problems occur here, involv-

ing feedback problems and how to deal with unexpected user input

(the scheduler can't tell when a user will manipulate a large, com-

plex visualization tool, so will necessarily lag slightly behind in that
case).

It is also be extremely important to understand more about human

perception in complex environments, to generate more realistic ben-
efit functions. Additionally, we would like to work with scientists to

determine the actual semantic benefit of each tool when performing

varying types of tasks.

References

[BL91] Steve Bryson and Creon Levitt. The V'u'tual Windtun-

neI: An Environment for the Exploration of Three-

Dimensional Unsteady Flows. In l/isualization '91,

pages 17-24, 1991.

[FS93] Thomas A. Funkhouser and Carlo H. Stquin. Adaptive
Display Algorithm for Interactive Frame Rates Dur-

ing Visualization of Complex Virtual Environments.

[0J751

[Ho192]

[RH94]

[SSNB94]

In James T. Kajiya, editor, Computer Graphics (SIG-

GRAPH '93 Proceedings), volume 27, pages 247-254,

August 1993.

R. Garey and D. Johnson. Complexity Results for Mul-

tiprocessor Scheduling Under Resource Constraints.

SIAM Journal of Computing, 1975.

Richard L. Holloway. Viper: A Quasi-Real-Time
VLrtual-Environment Application. Technical Report

TR92-004, University of North Carolina, Chapel Hill,
1992.

John Rohlf and James Helman. IRIS Performer: A

High Performance Multiprocessing Toolkit for Real-

Time 3D Graphics. In Andrew Glassner, editor, Pro-

ceedings of SIC, GRAPH '94 (Orlando, Florida, July

24-29, 1994), Computer Graphics Proceedings, Annual
Conference Series, pages 381-395. ACM SIGGRAPH,

ACM Press, July 1994. ISBN 0-89791-667-0.

John A. Stankovic, Marco Spin-i, Marco Di Na-

tale, and Giorgio Buttazzo. Implications of ClassicaI

Scheduling Results for Real-Tmae Systems. to appear
in IEEE Computing, 1994. ftp.cs.uraass.edu,
/pub/ccs /spring/impl_sch rt s .ps.

