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Abstract--A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is
used to implement a computer code for laboratory ion beam transport in multiple-layered materials. The
code is established to operate on the Langley nuclear fragmentation model used in space engineering
applications. Computational procedures are established to generate linear energy transfer (LET) distri-
butions for a specified ion beam and target for comparison with experimental measurement. Comparison
with 56Fe ion with Pb-AI and Pb-(CH2) , targets shows reasonable agreement.
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1. INTRODUCTION

GREEN'S functions were identified as the likely means

of generating efficient HZE shielding codes for space

engineering which are capable of being validated in
laboratory experiments (Wilson et al., 1989). A deri-
vation of the Green's function as a perturbation series

gave promise for development of a laboratory-vali-
dated engineering code (Wilson et al., 1990) but

computational inefficiency provided a major obstacle

to code development (Wilson and Badavi, 1992).

More recently, nonperturbative approximations to
HZE Green's functions have shown promise in

providing an efficient validated engineering code

(Wilson et al., 1993a, c). Previous work has found a
solution to HZE transport in a homogeneous

medium using nonperturbative methods (Wilson and
Badavi, 1992; Wilson et al., 1993b, c). In the present

report, we derive solutions for inhomogeneous multi-

layered media. The resulting computer code is used to

derive LET spectra behind multilayered targets for
ion beams with Z _<28 corresponding to the major

components of the galactic cosmic ray spectrum. The
results of the computation are compared with 56Fe

accelerator beam experiments with Pb-A1 and

Pb,-(CH:), shield configurations.

2. GREEN'S FUNCTION FOR A SINGLE
MEDIUM

We restrict our attention to the multiple charged
ions for which the Boltzmann equation may be

reduced (Wilson, 1977a) to:

_x- g,(E)+_-_ 4_Ax,E_=Y,_,.4_(x, EL
k

where St(x, E) is the ion flux at x with energy E
(MeV/amu), _j(E) is the change in E per unit dis-

tahoe, aj the total macroscopic reaction cross section
and a_ the macroscopic cross section for collision of

ion ty'pe k to produce an ion of type j. The solution

to equation (1) is to be found subject to the boundary
condition:

0,(0, E) =£(E), (2)

which for laboratory beams has only one value ofj

for '_,'hich fj(E) is not zero and that,(E) is described
by a mean energy E0 and energy spread a such that:

1
fj(E) = _ exp[- (E - Eo)_/2a:] • (3)

x/2ncr

The asual method of solution is to proceed solving

equa::ion (1) as a perturbation series (Wilson

19_a_ b; Wilson et al., 1990). In practice, the compu-

tatkx.x..xl requirements limit the usefulness of the tech-
niq,.ze for deep penetration (Wilson and Badavi,

199" x.
T'::_e Green's function is introduced as a solution of:

._ FEg:z) +,, E,Eo)

=_ a,,G,,,(x,E, Eo), (4)
k

su_ to the boundary condition

a:.(O, E, Eo) = _:,,_(E - Eo). (5)

T'_-_ ._'xlution to equation (1) is given by superposition

as

E) = _ f % (_' E, E'_ (E') dE'. (6)_j (x,
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If Gj_(x, E, E') is known as a transcendental func-

tion, the evaluation of equation (6) may be accom-

plished by simple integration techniques, and the
associated errors in numerically solving equation (1)

are avoided (Wilson et al., 1991).

The above equations can be simplified by trans-

forming the energy into the residual range as:

fo5 = dE' E'), (7)

and defining new field functions as:

: q,j(x, _j)= _(E)_j(x, E) (s)

%,.(x, r,, r') = _(E)6_.(x, E, E') (9)

_(,j) =_(EE(E) (lO)

and equation (4) becomes:

Orj Faj %.(x,r.r_)

=T--aj, ffk=(x,r,,r.), (11)
k lPk

where t_ is the range scale factor as vjrj = v,,r,_ and is

taken as rj= Z_/Aj and the boundary condition is
now:

_(O, 5, r'_)=3,_f(5-r'_) (12)

and with solution to the ion fields given by

f; rm)f,,(r,_) dr',.. (13)¢_(x. 5) = _ %,_(x,5, ' " '

The solution to equation (1 I) is written as a pertur-

bation series:

%.(x,r,,r;)=_J2(x,_,r',,) (14)
i

where

¢0)
ffj,.(x, rj,r'_)=g(j)(Sj,.3(x +rj-r,.) (15)

and

v/emg(j, m)
") ' ~ (16)

_J,_(x,rj, r.)~ x(v_v A

where ff_(x, 5, r_.) is zero unless

vj vj
--(5 + x) <_r" _ --rj.+x (17)
Vm i'm

for v,. > vj. If rj> v,., as can happen in neutron
removal, the negative of equation (16) is used and the

upper and lower limits of equation (17) are switched.

The higher terms are approximated as:

'n(x, rj, r,.)_,.
k l .k ] ., . ..Iq . I

t{iajk, _,,_: . • - a_, _ ,=g(j, kl , k: ..... k,_ I, m)
x

x(r..-v,)
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(18)

In the above, the g-function of n-arguments is found

recursively by:

g(j) = e-°_ _ (19)

and

/(Ji,A'" "./.,._ + 1)

g(Ji ,J2 " ""J.-I,J.) -- g(Jl ,J2 " "".k- I,J.+ i)

aj. +, + ej.
(20)

Note that the ff_(x, rj, r_,) are purely dependent
on x for t>0 which we represent as ff_,(x)

(Wilson and Badavi, 1992). In terms of the above, the
solution to equation (1) becomes (Wilson and Badavi,

1992)

#j(x, rj) = e-°,%(5 + x)

o_ ' -F,.(r,,,)]. (21)+ y_,j_(x)tt.(,-.,) - .
m,#

In equation (21), r_ and r_,_ are given by the upper
and lower limits of the inequality (17). The symbol

[',.(r_,) refers to the integral spectrum:

f;P,. (r_.) = f,,(r) dr. (22)

We note that:

_(r_) -= F= (E') (23)

with

and

F,, (E') = f_ f,, (E) dE (24)

r;, = Jo dE/_,,(E). (25)

We now introduce nonperturbative terms for the

summation in equation (21).
First, we recall that the g-function of n-arguments

was generated by the perturbation solution of the

transport equation neglecting ionization energy loss

(Wilson et al., 1989) given by:

[ff._x + _l g_,(x ) = _ e_,g,_,(x ), (26)

subject to the boundary condition:

g_ (0)= 5_. (27)

for which the solution is

g_(x) = 3_.g(m) + a_gCj, m) +""

It is also true that:

(28)

g,..(x) = _g,,(x - y)g,..(y) (29)
k

for any positive values ofx and y. Equation (29) may

_r

v
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be used to propagate the function gj,,(x) over the

solution space, after which:

aJ,,.(x, r,, r_,) _ e-"," 31,.6(x + r, -- r_,)

+ v,[g,.(x) - e-',' 6,.]/x(v,_ - v,). (30)

The approxima.te solution of equation (I) is then

given by

_,,(x, r,) = e-', "_" ÷')

+ y. °Ag'"(x) - e-.,., _,.1 ,. x(_,.-vj) [P.(r.,)- LAr;,,)]

(31)

which is a relatively simple quantity (Wilson et al.,

1993a).

_t:j.(x, y, r,, r;,) -_ e .... "-":'> _,_,

× 6(x + py + rj -- r_) + v,[g:.i_,(x, y)

3. GREEN'S FUNCTION IN A SHIELDED
MEDIUM

The major simplification in the Green's function
method results from the fact that the scaled spectral

distribution of secondary ions to a first approxi-

mation depends only on the depth of penetration as
seen in equations (16), (18) and (30). Our first ap-

proach to a multilayered Green's function will rely on
this observation and assume its validity for multilay-

ered shields.
Consider a domain labeled as 1 which is shielded

by a second domain labeled as 2; the number of type

j ions at depth x in i due to type rn ions incident on
domain 2 of thickness y is:

glz:,(x ' y) = _gjjk(x)g.._(y). (32)
k

The leading term in equation (32) is the penetrating

primaries as:

gl:j,,(x, y) = e-","- _2,y6/,_

+ [g_::.(x,y)-e-*"'-*2:6:,], (33)

where all higher order terms are in the bracket of

equation (33).
The first term of the scaled Green's function is

then:

_(0_ . r;,) = e-":-'"' 6j,.t2:,tx, y, rj,

x 6Ix + rj - (r'_ - py)],

where p is the range factor for the two media:

/

-e .... _-_,." 6,,.]t(x + py)(v= - vj). (37)

Equation (37) is our first approximation to the
Green's function in a shielded medium (two layers)

and is easily modified to multiple layers (see Appen-

dix). We now consider the first spectral modification.
It is easy to show that the first collision term has

the properties:

vjal:.e-._ ..... z.v for r_,= r_..
Iv., - vii

O-2jm e-ell .... 21Y , (38)
= vj for r_,=r.,,

Iv,.- vii

We use these properties to correct the average spec-
trum as:

v,g_',2,.,(x, y)

_tl:_,_(x, y, r,,rk ) = Iv.,- v_l(x+ py )

+b:,(x,y)(r'_-_,), (39)

where g_l:_,_(x,y) is the first collision term of equation

(37) and

"" = (r',. u + r',.,)/2 (40)r.,

is the midpoint of _:_, between its limits given by

equation (36). The b:. term of equation (39) has the

property that:

f'b,m(x, yl(r'-:_ldr'--O, (41)

ensuring that the first term of equation (39) is indeed

the average spectrum as required. The spectral slope

parameter is found to be:

b:,(x, y) = vjvm(al:,e -'_ ..... _'>"- u:j,.

xe .... '-*z-")/[(x + py)(vm - v/)lv., - _)1]. (42)

A similarly simple spectral correction could be made

to the higher order terms. The spectral correction

given in equation (42) is included in the present
Green's function code.

(34)
t.o -

The ratio is shown for protons in Fig. 1. We take a u I[, 0.5

IIQ I t-
single value for p corresponding to 600 MeV/amu. c °
The secondary contribution is similarly found by _ _

noting that equation (17) becomes:

V) (rj + x + py) <_r',,<_ VJ rj + x + py, (36)
I_m _m

from which the average spectrum is evaluated. The

full approximate Green's function is then:

0 I I I I
0-1 10 0 101 10 2 10 3

E (MeV)

FIG.I.Ratioofrangeinwatertorangeinaluminum for
protonbeams.
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4. LET SPECTRA FOR LABORATORY BEAMS

We use the boundary condition appropriate for

laboratory beams given by equation (3). The cumu-

lative spectrum is given by:

Fj(E) = _ [1 {E-E0"l-.it-Tm )I.
The cumulative energy moment needed to evaluate

the spectral correction is:

'[Ej(E) = -_ Eo 1 - k x/2e II

+ a expV (E-Eo)"]
,/2_ L T_ _1' (_)

The average energy on any subinterval (El,E:) is
then:

J. L. SHINN et al.

_= [_(E,) - E,(E:)]f[F,(E,) - F,(E:)].

The beam generated flux is:

q,,(x, y, r_)= e-°''=- °:"_(rj + x + py)

+ _" _(x, y)[P,, (r_,_) - _'_,(r_,,)]
m.i

(45)

+ _, bJ2(x, y)[r _,(L') -- F_.]
m

x [Je.(r'.)-/'..(r_)], (46)

where _ is evaluated using equation (45) with El, and

E: as the lower and upper limits associated with r_,_

and r_,_.
A series of evaluations for a lead scattering foil

(2.24 g/cm 2) in front of a water target is shown in

Fig. 2. The lead scattering foil is usually part of the
accelerator beam line so that the fragments from the

V

•.002

24

10( 32 A t.
200 40

400 48
E, MeV/amu 500

600 56

(a)

.004

600 56

(b)

FIG.2 (a) and (b).

Normalized
fluence density,
(MeV/amu) -1

Normalized
fluence densiD,
(MeV/amu) -1
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",,._.;

.004
Normalized

fluence density',

(MeV/amu)-"

0
E, MeV/amu 500 _<"

600 56

(e)

Fig. 2. Differential fluence for 525 MeV/amu _Fe beam with a 2.5 MeV/amu standard deviation after
passing through a 2.24g,'cm 2 lead scattering foil and a water target. (a) 0cm H:O; (b) 5cm H:O;

(c) 10cm H:O.

lead target are seen as contamination. Clearly, these

fragments must be modeled to properly interpret the
attenuation of the beam in the water target in actual

experiments.

5. N'UCLEAR DATA BASE

The nuclear absorption cross sections are fits to

quantum mechanical calculations developed at the

Langley Research Center over the past 20 years
(Wilson, 1973, 1974; Wilson and Cosmer, 1975;
Wilson and Townsend, 1981; Townsend and Wilson,

1986) and are considered reliable to about 10%. The

nuclear fragmentation cross sections for most nuclei

on hydrogen targets are taken from Silberberg et aL
(1983) and are augmented for light fragment pro-
duction with the Bertini model (Bertini, 1969). It

was noted that early versions of these cross sections
failed to conserve mass and charge (Wilson et al.,

,..., 0.S

E
o.6

O.4

"E

0.2

_ 0 (_Ajc_ip)/A _

0 Op -mO °

•-

_0 I I I I I J I
4 g 12 16 20 24 211

Projectile ion charge

FIG. 3. The absorption cross section in hydrogen targets
and mass averaged production cross sections at

600 MeV/amu for various projectiles.

RH 2311--E

1974) and still exhibit mass loss for 10 _< Z _<22 by
as much as 30%. This is displayed in Fig. 3 where

cr,_ is compared to EA,_r,p/Ap, where A_ is fragment

mass, a,p is the fragmentation cross section for
projectile p and Ap is the projectile mass. The

breakup of light nuclei (A _< 4) is taken from the

quantum calculations of Cucinotta et al. (1993). The
fragmentation of the remaining nuclei (Ap> 4) is
evaluated from the latest versions of the

NUCFRAG model (Wilson et al. 1987a, b). Since

the public release version of NUCFRAG (HZE-
FRGI, Townsend et al., 1993), a de-excitation
scheme for mass two and mass three fragments and

a coulomb trajectory calculation have been added
for more realistic cross sections at low energy

(Wilson et al., 1993a). The elemental fragmentation

cross sections are displayed in Fig. 4 at several

energies. The reduced light fragment production at
low energy results from coulomb trajectory correc-
tions. This is the same data base used in the most

recent energy dependent engineering code HZETRN

(Shinn et al., 1992).

The transport codes usually represent a reduced
set of isotopes. In the past, we usually represented

each charge group with an associated mass taken as
the nearest mass on the stability curve for the given

fragment charge. Tl'ie most recent version of
HZETRN uses an isobaric flux representation with

the nearest charge on the stability curve and the
distance to the nearest isobar was calculated

D = (A,- As): + 4(Z,- ZI)", (47)

where A_, Z, represent the fragment and AI, Z_

represent the listed isobar mass used in the calcu-
lation and nearest charge to the stability curve. The

present calculation uses an 80-isotope representation
and the nearest isotope in the list is found using

equation (47).
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(a) 25 MeV/amu. (h) 150 MeV/amu.

6

24'
32

Ap

16 16
24

AF Ap 32 AF

56

(c) 600 MeV/amu. (d) 2400 MeV/amu.

FIG. 4. The fragment production cross section in H20 targets including coulomb corrections.

6. EXPERLMENTAL METHODS ANT)
COMPARISON

The SrFe nuclei were accelerated to 600 MeV/amu

at the Lawrence Berkeley Laboratory Bevalac facility

and passed through a series of beam transport

102

"Z"
ID

U

10 t
c

E

_. 10 0
0

l0 -1

l 0°

1 I I

I0_ I02 103

LET. keV/Ism (in water)

FIG. 5. Measured CR-39 response parameter (Benton et al.,
1986).

elements, triggering devices and a 2.24 g/cm: lead foil

prior to exiting the beam pipe and impacting the

target. Two targets of- g/cm- AI and 4.6 g/era 2 of

polyethylene (CH:), were used to evaluate their
transport properties• The beam energy is inferred to

be 557 MeV/amu when only the lead foil and target
are considered for transport analysis. The trans-

ported beam exciting the target was measured using

CR-39 plastic foils (Benton et at., 1986). The beam
intensity was measured by a monitoring foil in front

of the target. The detectors and targets are run in

good geometry so that acceptance corrections are not

required.
The detector response is assumed to be approxi-

mately Gaussian with an LET dependent width F
shown in Fig. 5. A correction for non-Gaussian
contributions is taken as:

R(L,/.,_) = 0.8 _ e -_L- z_):,.2_
i,,) "1x/-ner_

1
+ 0.2 :e-,L- ,_):,'2_, (48)

where er0= 0.4247/" and er_(taken as 2.4a0) is fit to the

V
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10-2

0

(a)

50 100 1'_0 200 2._0

LET (keV/_tm)

i0 o
(b)

I0 -I _GRNTRN

i 0 Expt. _,-, A10-2

_ 10-3

10-40 " 50 I00 150 200 250 300

LET (keV/p.m)

FIo. 6. Transport experiments for a lead-shield multilayer combination For 557 MeV/amu iron beams.

(a) 2.24 g/cha 2 Pb + 2 g/cm: A1; (b) 2.24 g/cm 2 Pb + 4.6 g/era z (CH_).,.

high LET side of the primary ion peak. The response
function of equation (48) is used to compare the

theory to the experiment.
The distribution of ions produced in passing a

557 MeV/amu S6Fe beam through a 2.24 g/era 2of lead
and the two target materials (separately) was mapped
into detector response using equation (48). The com-
parison with experimental measurements is shown in
Fig. 6. While the calculated result for polyethylene is

in good agreement with the experimental data
(Fig. 6(b)), the calculated aluminum curve (Fig. 6(a))
suggests that the aluminum fragmentation cross sec-
tions may be 20-30% low.
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APPENDIX

The preceding formalism is extended to a three-layer

configuration as follows. The solution to equation (26) in a
three-layered medium is:

gl:_,(x, y, :) = _., g_# (x)g2klO')gu,.(:). (AI)
kl

The leading term is the penetrating primaries, and equation

(AI) may be written as:

+ [g_,.3,.(x, y. :) - e .... "- _-_'-"_: _]. (M)

The scaled Green's function is then:

ff_:3_(x, y, :, rj, r_,)_ - e - _','-'_'-*',: _,_

xcS(x +PlY + p 2 + rj--r'_)+ _,'s[gl:3w,,(x,)', -")

-- e ........ ',:'-",: ¢5_]1(x + PaY + P3:)(v_, - _j),

(A3)

where p:= RIj(E)/R2._(E) and ps= Rij(E)/Rsy(E). The
range condition of equation (17) becomes:

v-ZJ(rj+x+pay+p_z)<_r'_<_-rj+x+p,+p3:. (A4)

The spectral corrections are similarly derived.
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