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ABSTRACT

Underintegrated methods are investigated with respect to their
stability and convergence properties. The focus was on
identifying regions where they work and regions where techniques
such as hourglass viscosity and hourglass control can be used.
Results obtained show that underintegrated methods typically lead
to finite element stiffness with spurious modes in the solution.
However, problems exist (scalar elliptic boundary value problems)
where underintegrated with hourglass control yield convergent
solutions. Also, stress averaging in underintegrated stiffness
calculations does not necessarily lead to stable or convergent
stress states.






0. INTRODUCTION

Promoted

One of the most important and widespread numerical procedures used
in contemporary finite element analysis of nonlinear problems in structural

mechanics is the use of so-called reduced or underintegration.

strongly in the late seventies and early eighties as a means for dramatically

reducing computational times in large-scale calculations, the use of under-

integrated finite element methods has become common practice in a large

majority of all nonlinear calculations.
A question of overriding importance that has perplexed many users

It 1is

of underintegrated finite element tec
or not these underintegrated methods are really satisfactory.

known that underintegrated methods are’ frequently unstable, but these

ins;abilities,can be dampengéjgg; bylEhe use of various types of."hourglass
viscosity" or fhourg1§§svcog?r?lﬁl £IFiis'also_known that in many cases
seem to converge at a rate equal to

EHhaE are(the true properties

=

"the underintegrated solutions can

- that of the fully ig;eggatgd :sqlqt;ons.

of underintegrated metﬁods? Wheﬁ do they work? What criteria must
' ‘g?giyhjcpnfidence?é: B '

‘ }n the rgseé;chﬁp;oject

hold in order that they can be use
These are the questions that were addressed
This final report summarizes the results

reported in this document.
of a two-year research project, supported by the NASA Lewis Research

Center and carried out by Professor J. Tinsley Oden and his students
Some of the principal conclusions of the

at The University of Texas.
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_work are listed as follows:
Underintegration of finite element stiffnesses generally leads

Y
to the introduction of spurious modes in the finite element solution.




These spurious modes arise from two distinctly different mechanisms: under-
integration of comstraint terms, which gives rise to checkerboard instabili-
ties and the underintegration of primary stiffness terms, which gives
rise to hourglass instabilities.

2) The spurious modes actually arise from expanded kernels of constraint
operator and the governing differential operator. For example, an improperly
underintegrated stiffness matrix will be ranked deficient‘and these ranked
deficiencies correspond to additional modes supplied to the rigid body
modes that appropriately belong to the kernel of this operator. In
a similar fashion, underintegration of constraint terms leads to checkerboard
modes, which belong to an expanded kernmel of the comstraint operator.

3) There is a significant class of problems in which, with appropriate
filtering, can be shown that an underintegrated solution with hourglass
control can yield very satisfactory answers, and produce a finite element
method which has the same rate of convergence as the fully integrated
'method. The fact that this does indeed hold has been rigorously proved
" in the enclosed document for a class of scalar elliptic boundary value
problems.

4) Unfortunately, underiﬁtegrated with hourglass control Aoes not
work uniformly on all 1linear or mnonlinear problems, and i£ can lead
to solutions which, while looking reasonable to the unsuspecting eye,
may be grossly in error. The success of underintegrated methods seems
to depend strongly on the regularity of the solution. Underintegration
seems to work well in the presence of smooth solutions.

5) Most of the better known and often used underintegrated methods
for constrained problems are aétually unstable, but the instabilities

are subtle and may be manifested only in cases in which irregular meshes
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are used or in which there are irregularities in the data. In general,
these unstable methods should be avoided in code development.

6) For the underintegration of constraints, such as those occurring
involved with the incompressiblity condition and Stokes problems are incom-

pressible elasticity or incompressible plasticity, a necessary condition

for the numerical stability of underintegrated methods is the satisfaction-

of a specific LBB condition. Some excellent underintegrated elements
which satisfy this condition are discussed in the report. Stress averaging
in underintegrated stiffness calculations does not necessarily lead to
a stable or convergent stress.

0.1. Major Publications and Presentations

A number of significant papers and reports were published during
the contract period. These are listed as follows:

Oden, J.T., "Penalty Method and Reduced Integration for the Analysis
of Fluids," Proceedings, Symposium on Penalty Finite Element Methods in

Mechanics, ASME Winter Annual Meeting, November 14-19, 1982, Phoenix,

'KE;: : T *

Oden, J.T. and O0.-P. Jacquotte; "Stability of Some Mixed Finite

" Element Methods for Stokesian Flows," Computer Methods in Applied Mechanics

and Engineering, 1984, Vol. 43, No. 2, pp. 231-248.

Kikuchi, N., Oden, J.T., and Song, Y.J., "Convergence of Modified
Penalty Methods and Smoothing Schemes of Pressure for Stokes Flow Problems,™
Finite Elements in Fluid Dynamics, Vol. V, John Wiley & Somns, Ltd.,
London, 1984, :

Odeﬁ, J.T. and Jacquotte, 0.-P., "Stable and Unstable RIP/Perturbed
Lagrangian Methods for Two-Dimensional Viscous Flow Problems," Finite Elements

in Fluid Dynamics, Vol. V, John Wiley & Sons, Ltd., London, 1984, pp.
127-146. -

Endo, T., Oden, J.T., Becker, E. and T. Miller, "A Numerical Analysis
of Contact and Limit-Point Behavior in a Class of Problems of Finite
Elastic Deformation," Computers and Structures, 1984, Vol. 18, No. 5,
pp. 899-910. i -

Jacquotte, 0.-P. and Oden, J.T.iAnalysis of Hourglass Instabilities
and Control in Underintegrated Finite Element Methods," Computer Methods

in Applied Mechanics and Engineering, 1984, Vol. 44, pp. 339-363.

Jacquotte, O0.-P. and Oden, J.T. "Analysis and Treatment of Hourglass
Instabilities in Underintegrated Finite Element Methods," Proceedings, Sympo-
sium on Innovative Methods for Nonlinear Mechanics, ASME Winter Annual
Meeting, December 1215, 1984, New Orleans, LA.




Jacquotte, 0.-P.;"Stability, Accuracy, and Efficiency of Some Underin-
tegrated Methods in Finite Element Computations,” Computer Methods in

Applied Mechanics and Engineering, (to appear).

Oden, J.T., Jacquotte, 0.-P. and Becker, E.B.,'Numerical Control of
Hourglass Instability," Computers and Structures, (to appear).

Oden, J.T. and Jacquotte,‘O.—P.l"Convergencé énd Stability of Underin-
tegrated Finite Element Methods," To appear in Proceedings, ASCE/ASME

Mechanics Meeting, June 24-26, 1985 at Albuquerque, NM.

0.2 Dissertations:

Jacquotte, Olivier-P., "Underintegration in Finite Element Methods,"

Ph.D. thesis, University of Texas, Austin, Texas, 1985.

0.3 Oral Presentations

There were three oral presentations during the research period. They

are as follows:

Oden, J.T., "Stability and Convergence of Underintegrated Finite Element
Approximations,”" Presented at the NASA-LeRC/INDUSTRY/UNIVERSITY Workshop
on Nonlinear Analyses for Engine Structures, April 19-20, 1983, in Cleveland,
OH. .- : T . . ’ S

Jacquotte, 0.-P., "Analysis and Treatment of Hourglass Instabilities
in Underintegrated Finite Element Methods," Presented at the ASME Winter
- Annual Meeting December 12-15, 1984 in New Orleans,  LA.

] Oden, J.T., "Convergence and Stability of Underintegrated Finite Element
Methods," Presented at the ASCE/ASME Mechanics Meeting June 24-26, 1985
in Albuquerque, NM. -

0.4 Personnel

The following individuals worked on  technical aspects of _fhe project

during the report period:

Prof. J.T. Oden, Principal Investigator

' !
Mr. 0.-P. Jacquotte, Graduate Research Assistant

Mssrs. Lin, Martins, Strouboulis, Wu, and Manifold worked on it

for a small percentage of their time.

0.5 Outline of the Technical Report

This technical report is divided into two major parts: in Part I

a numerical analysis of underintegrated constraints is presented. Particular

T3
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attention is focused on the Stokes problem with a constraint divergence
u = 0 and on construction of an appropriate LBB condition for stability.
Part II deals with underintegration and hourglass control. There

projection methods, error estimates, and a large collection of numerical

results are described.



PART I: STABILITY OF SOME MIXED FINITE

" ELEMENT METHODS FOR STOKESIAN FLOWS

1.1, Introduction

In so-called primitive variable formulations of problems 6f flow of
viscous, incompressible, Stokesian fluids, two fields appear as unknowns:
the velocity field u and the pressure field p,_the latter representing
a Lagrange multiplier associated with the incompressibility constraint,

div u = 0. TFinite element methods based on such formulations were first
introduced over a decade ago [42]. Since the mid-1970s, interest in these
methods was rekindled by the appeérance of several new techniques which
provided for very efficient calculation of the element pressures. These
included mixed methods which employ pressure approximations which are
discontinuous at interelement boundaries as well as the closely related
mixed-type methods which employ an exterior penalty approximation of the
-incompressibility condition and reduced integration of the penalty terms.
All of these methods have the attractive feature that the discontinuous
element pressures can be eliminated element by element, reducing the problem
to one only involving velocities. Upon determining velocities, element
pressures can then be evaluated through a simple post-processing operation.

Methods of this type were developed and discussed by several authors,

and we mention in particular the works of Malkus [30,31], Hughes [23], Malkus.
and Hughes [33]; Reddy [@é], Bercovier [é], Engleman and Sani Elé], and the
references therein. In 1980, however, mathematical analyses indicated that

some of the more popular discontinuous-pressure/mixed-methods might be numer-

ically unstable [5&,35—40,4£}. It was discovered that while certain of these

1
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methods perfo?m well in problems with smooth solutions for which regular
uniform meshes are employed, serious oscillations in the pressure approximation
can occur when the data or the mesh pattern are mildly irregular, and these
oscillations increase in amplitude as the mesh is refined.

Oden, Kikuchi, and Song [41] attributed the deficiency of these unstable
methods to their failure to satisfy a key stabilityrcriterion which they
referred to as the "LBB-condition," making reference to the work of
Ladyszhenskaya [29] on existence theorems of viscous flow problems and of
Babuska [1] and Brezzi [8] on the approximation of elliptic problems with
constraints. ‘The discrete LBB-condition of Oden, Kikuchi, and Song is
basically the requirement that ;he discrete approximation Bg of the
transpose B* of the constraint operator B = div be bounded below as a
linear operator mapping the space of approximate pressures onto the dual
of the space of apprbximate velocities. TFor example, one form of this
condition is that there exist an o > 0 such that for all th Qh,*

(q;,div gh)

o | a |l < sup

2
L°(Q)/ker B* ,
o gl

Related conditions for mixed finite elements were discussed by Fortin n8j
and Girault and Raviart [22 J. The possibility of unstable pressure approxi-

mations is signalled by the existence of a parameter oy

which depends upon the mesh size h. Indeed, the fact that a mesh-dependent
&, corresponds to methods with "spurious pressure modes" is supported
by the theoretical and numerical results_of Oden et al [41] and by extensive

numerical experiments of Malkus [32]. Equally important, the behavior of

* Definitions of terms displayed here are given in Section 1.3.



o as a function of h governs the asymptotic rate of convergence of
such mixed methods.

An important question that has arisenrfrom these considerations is
whether or not stable mixed methods exist whiph converge at optimal rates in
the energy-and Lz—norms. The present paper is directed at resolving this
question for a restricted class of problems by estimating thevstability
parameter o in the corresponding discrete LBB—condjtion.

The ﬁetﬁods of proof of the LBB-condition basically fall into two
categories depending on whether or not ker Bﬁ = ker B* or ker Bﬁgﬁ ker B*,
where B* = — gradient + boundary conditions and Bg is it finite element
approximation. In the former case, a general method of proof can be constructed
which is inspired by the work of éirault and Raviart [2?], and which will be
.discussed in the first section. We shall concentrate next on the 1at£er
case, and present another gemeral constructive technique for estimating

o for uniform meshes which makes use of a discrete Poincaré-type inequality.

" These two methods of proof will be presented and used to establish the
LBB-condition for two elements. In the first category of stable mixed
method with discontinuoﬁs pressure for which ker B; = ker B* , we shall
analyze in detail the Q2/Pl—element (biquadratic velocity/linear discontin-
uous pressure), and prove-that it does in fact satisfy the LBB-condition
with oy indepeﬁdent of h.

As far as the second category of method (for which ker B; kaer Bh)

is concerned, we shall prove that the IB/Pl—element (eight node isopara-

metric velocity/linear discontinuous pressure) satisfies the LBB-condition

with O of order h , and therefore appears to be unstable. However,

h
certain ways to stabilize this element are suggested and their implementa-

tion in codes have lead to stable and accurate solutions.

|



Also falling into this second category is the QI/PO-element (bilinear
velocity/piecewisé constant pressure). This-element will be briefly discussed.
Finally the various values of the LBB-constant and the rate of convergence
N expected from the most used rectangular elements and using discontinuous

pressure will be summarized.

1.2 Statement of the Problem

Let § denote an open bounded region of IR2 with boundary 23Q.
We consider the two-dimensional Stokes problem an {2, which involves finding

a velocity field u = (ul,uz) and a pressure field p such that

A

~vhu + Vp=£f in @

divu=0 in Q > (2.1

u=0 on 3

/

where v is the viscoscity of the fluid, (v = conmst. >-0), and f 1is the

body force, assumed to be a prescribed vector field with components fiéé LZ(Q)

We recast (2.1) in a weaker variational framework by introducing the

spaces

V= @gen’, o= t® (2.2)

and the forms
aitvxv-+R, £:V-> 1R

(2.3)
2
Z (£;,v,)

a(u,v) = v(u,V)l, f(v) =
. e 51

for all u, v&V, where (-,-)1 and (*,*) are inner products on V and Q,

respectively, and are given by



(v,w) = dex; v,w€0
: Q
0 (2.4)
% Bui Svi
(u,v), = (==, =) ; u,v€V
~’~"1 i,j=1,axj ij ~n y,

The partial derivatives in (2.4)2 are interpreted in a distributional sense.

We proceed by considering the problem of finding (u,P) €V X Q such that

a(g,g)\ = (P,div v) = £(v) VvGV
(2.5)

(q,div E) =0 VqEQ

It is easily verified that any solution of (2.1) satisfies (2.5); any

solution of (2.5) satisfies equationms of the form (2.1) in'a distributional
sense. Under the conditions stated, it is also known that (2.5) possesses
a solution (5,p), with u uniquely determined by each choice of f and p

unique up to an arbitrary constant.

Problem (2.1) can also be interpreted as the characterization of a

saddle point of the functional

L:Vx Q- TR

L(v,q) = -zl-a(g,g) - £(v) - (q,div v) (2.6)

with q clearly a Lagrange multiplier associated with the constraint,
div v = 0 in Q.

We remark the saddle point problem for the functional L(*,*) of
(2.6), can be pre-conditioned by introduciqg the perturbed Lagrangian

L, :VXxQ>R

L .(v,q) = L(v,q) —z—i(q,q) (2.7)



for all q€Q, which represents a regularization of L(*,*) with respect

to the multipliers q. For each € > 0, saddle points (ue,pe) of L(*,*)

are characterized by

alu,v) - (p.,div v) = £(v) Vvev

(ept+ div u_,q) = 0 Vq€Q
Upon solving the last equation in (2.8) for P.» Ve obtain

1 ..
Pe =~ ¢ div u. in Q

(2.9)

The forms a(-,* and f(°) are continuous and a(-,*) is V-elliptic.

In addition, Ladyszhenskaya [29] has shown that a constant o > 0 exists

such that

allall , < swp (DdIVD)

L"(Q) /IR vEvV ”v”
- ~1

Yq€q

where Ile' = ‘V(v,v)l. Under these conditioms, the sequence {(Ee,ps)}

;fusolutions converge strongly in VéﬁQ/R. to the saddle point (u?p)

of the functional L(+,*) in (2.6).

(2.10)

>0

Finally, it is interesting to note that when (2.9) is introduced into

the first equation in (2.8), one obtains

a(ge,z) +-é (div Be’div g) = f(z) v (JAY

(2.11)

which is equivalent to an exterior penalty formulation of the constraint,

div u = 0.

11



1.3 Finite Element Approximations

We shall outline briefly features of certain finite element approxi-

mations of (2.5) or (2.8). We confine our attention to cases in which ( is

rectangular or is the union of rectangles and, for simplicity, to uniform
meshes of rectangular elements of maximum length h. For a family of

such meshes with E = E(h) elements, we introduce the discrete (finite-

dimensional) spaces,

h . —
Vo= ey = (v vyg) vhieco(m’

Vi |Qe € Qk(Qe); Vo = 0 on 30 ,

1< e<E, i=1,2} (3.1)
h 2
Q" = {q, €L7(D) |q lQe €P_(2);

1< e<E, r>o0} (3.2)

Here Qk(ﬁé) is the space of - tensor products of complete polynomiais in
X and X, of degree < k defined on finite element ﬁ; and Pr(Qe)
is the space of complete polynomials of degree < r defined on Qe.' The
élgments:'QZ/Pl .and [Ql/PO clearly cqrrespond to the values (2.1) and
(1.0) of the parameters (k,r).

Ih addition to the spaces ﬁh , we shall also consider cases in which
vh 5 constructed using I8-elements:

18 = eight-node isoparametric elements

This element is also referred to as a serendipity element (461 . We also

consider composite elements which employ both Q2 and 1I8-subelements.

12



Clearly, for every h ,
vV CV amd Q C Q (3.3)

The finite element approximatidn of ”the formulation (2.5) consists of seek-

ing uhé_Vh and PpLE Qh such that

- 1 = V h
aly,v) = (py,div v) = £(v) e
(3.4)
(q, ,div w) = 0 Vg € Q"
h* Y T h
while the approximation of (2.8) is of the form
a(uev)-(edivv-)=f(v) VvEVh
%’ h P>tV Th *h “h ,
3.95)

({-:plff:1 + div gi,qh) =0 Y qh€ Qh

The solvability of (3.4) depends upon a compatibility condition between
the spaces Vh and Qh which resembles (2.10) and which we record below.
‘ Likewise, while (3.5) is uniquely solvable for EE and p;:l for any € > 0
(under the stated conditions on a(+,+) ) , the behavior of 3:;1 vand ‘p;

as £ or h tend to zero also depends upon more delicate features of the

approximation.
*
Let Bh and Bh denote the discrete operators,
h h h' h'
. 3 % .
Bh : V> Q Bh : Q + V
= * = 1
o By = v BRa> 5 (apdiv vp)

Vq, € Q" Vy, € (3.6)

13



where [';-] and <:},::> denote duality pairings on Q' x Q (Q = Q' = LZ(Q))
and V' x V respectively (i.e., Bh and Bﬁ are the discrete approximations of
div and -grad plus boundary conditions defined by (*,*)). Then, the
discrete LBB-condition for probléﬁs (3.4) and (3.5) is as follows:

There exists a number o > 0 such that

(q, ,div v,)
h ~ ~h (3.7)

: |[q Il 2 sup
% h''L°(R)/ker B* < 3 Vh
~h vyl

for all q € Qh

The behavior of o as h tends to zero and the structure of ker Bﬁ
governs the stability of these types of mixed methods. In particular, let

Eh(u,p) denote the distance function

BGp) = tnf [lu-vwll + tmf lo-qll,
v ‘; Vh € ah L (Q)
defined on V X Q, 6 = {q € Q I Iﬂqu = 0}. Then one can show (see Oden
and Kikuchi [40]) that if (E,p) is the solution of (2.5) and (EE’PE) is
" the solution of (3.5) in Vh x Qh ,
£ -1
o = wpll; <c@+ o) (5 (e + 0
(3.9)

e - of|| < Cl+ ot + a2 (E (u,p) + )
hl 200 = Op T O JlE (u

where C 1s a generic constant independent of u, p, €, and h.

The remainder of this part is devoted to the study of (3.7) and

.

estimations of the stability parameter o for different approximation spaces
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Vh and Qh ((3.1) , (3.2)). As noted in the Introduction, we will focus

our study on the following approximations:

1) Qé/P1 elements [}iquadratie velocities, piecewise linear
pressureg
2) IB/Pl elements [eight-node isoparametric elemen;s for velocities,
piecewise linear pressureé
k) Composite elements [élements consisting of two or more of
the above:]
&) Ql/P0 elemen;s [bilinear yelocities, piecewise constant pressures]

Again, we note that in all of the cases we study, we shall assume that

Q= Qh is a recgangle (or a union of h
rectangles) discretized by a uniform
mesh of rectangular finite elements; ’ (3.10)
WV, with v = (E @)% and
FCa = 2@. /
The prinqipal results concerning ker B: and the LBB-constant d are stated

h
in the following theorems. '
Theorem I. Let conditions (3.10) hold and let the discrete spaces Vh and
h

Q be constructed using QZ/Pl—eZements. Then ker B; = ker B* and the

stability parameter o in the discrete LBB-condition (3.7) is a positive

constant independent of h(ah = 0(1)) . [:]

Theorem II. Let conditions (3.10) hold and suppose that v and Qh are
defined by 18/pl—elements. Then dim ker B: = 3 and the stability para-

meter o in the discrete LBB-condition (3.7) dépends linearly on h :

o = 0(h) v D
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Theorem III. Let conditions (3.10) hold and suppose that VP g Qh are
defined using .ca;:posite IS/Pl - Q2/P1¥eZements of the type shown in Fig. 1.

Then dim ker B* = 1 and the stability parameter o, appearing in the dis-

h h
erete LBB-condition is a positive constant independent of h ; (Of.h = 0(1)). D ’

Theorem IV. Under the assumptions of Theorem II, if VB ond Qh are
* .
defined using Q1/P0 -elements, them dim ker Bh =2 and @ = o(h) .

L]

1.4 The LBB-Condition For Q./P. Elements
& b

In this sectioﬁ, we describe a general method for establishing the

*
h

then be used to prove Theorem I for Qz/Pl-elements, and can also be used

, , - %
LBB~condition when ker B, and ker B coincide. This procedure will
for Theorem III. The method is embodied in the following four steps.

I. Let 9 be an arbitfary element in Qh . Construct a vector

uy € vh such that

(q),div u ) = I qhHg
) (4.1)
e ll, <cllall,

*
where ||°I[0 = [|'|| 2 and C is a constant. Then
L™ ()
(q, ,div v ) (qh,div u,) 1
sp 0 M > s Ll
h

so that o = 1/c .

To construct such a uh s we continue as follows.

* It suffices to define q, only to within an arbitrary constant or to
demand that all 9, be such that (1,qh) =0 .



II. TFor each 9 4 Qh(: Q, 9 # constant, it can be shown (Ladyszhens-

kaya E29j) that 4 vy € V can be found such that

= <

div zq %Y, in Q and ]lzq[|1 __Clllqh|!o (4.2)
Let w denote the V-orthogonal projection of v, onto Vh;

@, - v,,v ). =0 v ¢ V" (4.3)

"‘h ""h"'h 1 ‘ \7/ ~h N ) -
Then
< <
gty < My lly < egllayll,
ITI. Set

A RN _ (4.4)
We attempt to construct a u with the desired property (4.1) by demanding
that

E
(qh,dlv(g - Eh)) = 51 IQ qhdiv(g - Sh)dx =0 (4.5
e

where

. %h " %hn (4.6)
Then it is clear that

(q.,div v)) = || q |[2 = (q, ,div u)

h’ ~ N h"0 h’ ~h

which is (4.1)1, and it remains only to verify that (4.1)2 holds. Assuming

that this is possible, we see that the original problem reduces to one of

constructing a u such that (4.5) holds.



IV, To satisfy (4.5), it is sufficient to require that

qum%-mk=-kwﬂrﬁﬁx
e e

o G nle T g

for each finite element Qe, n being a unit outward nomrmal to BQe . In

many finite element meshes, each 'Qe is the image of a fixed master element

~

! under an invertible affine map Fe ’

F :Q-=>8_, FR=x=TX+5D .7
e~ -~ ~ea ~€

Te being a 2 x 2 matrix and be a translation vector. Then it is suf-

-~

ficient to comstruct uh such that

La & - 8)4% - } Jafl ~(8 - 8)aR = 0 (4.8)
Q ~ - ' - ~ -

where §q = qhoFgl,ré = eoF;l, etc.

Remark: This procedure is next used for the Q2/P1-element. But in
the case where {0 1is partitioned into IB/P1 elements, except one Q2/P1

element, we can show that

k B* = k *
er h - er B

For this mesh, the construction II, III, IV can theoretically be made,
but the essential estimate of (4.1) cannot be obtained. This remark suggests
the introduction of the composite element described in Theorem III.

For the Q2/P1 element, the two discrete finite-dimensional spaces Vh

and Qh are defined as

18
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Ve = {v €cP@;

Vh = (v

hi’Vh2) Ivhi

vhi]Qe € @), vpy =0 on

Q"= g, € '@ qly e P @)] e <)
e

and then using the definition

divv dx =0

x h
ker Bh = {qh €Q such that J q, v, dx

Q

for all v, € V) (4.9)
a simple calculation reveals that

*
ker Bh = ker B* = R . (4.10)

Then'it suffices to construct a u such that (4.8) holds for the
master element 5 shown in Fig.é and to then;show that u satisfies
(4.1)2. We use the notation indicated in the figure; the integral‘ appearing
on thg left side of (4.8 ) is denoted ; , and we seek g‘ with ﬁi E.Qz(ﬁ).

Observe that the shape functions associated with the indicated nodes are

of the form

b= a-Fa-5 4y, - 5@ - D5a - H

N

WA+ DA -5, Gy, =50 - 250+ P

<>

23

ﬁ’u R - DA - 5, ete.

and that each q € Pl(ﬁ) is of the form



q=9qy+ q%x+q¥ with Vg = (q;,q,)
where qa,a = 0,1,2 are real numbers. A simple calculation reveals that

I-= qojaﬁ (Sh - e)°§ ds

-~

+ ql[-J (ehl - el)dxdy + j x(g - s)-g ds (4.11)

e

+ qu_-Ja (eh2 - ez)dxdy + J y(e, - S)-E ds]
It is clear that we can make I = 0 by choosing 8h (equivalently,

choosing a Gh ) such that the following five conditions hold:

(1) @Y =0, 1<1<4

~ f— —

an g -0, 1x1<5<4

where % 1is the unit vector tangent to 3§

(1ii) J gh-g ds = J

(iv) —J 8hldﬁd9 + } ﬁ%h'ﬁ ds = -J 81d§d§ + § ﬁg'ﬁ ds

[]
1
>
{0
NQ-
">
.
<>
+
——
>
@)
o
e
[ =)
(a7
>

v) - J éh2d§d§ + § §§,-a ds

a a8

This set of conditions must determine the 18 independent components of

j=p
¢

8, (8, € @) .

Conditions (i) and (ii) make 12 of the 18 degrees of freedom of

? (D>

zero. We are left with six coefficients:

>
|

' 5.0 23, A 14~
n1 = Eh1 (@5 ¥ 8 (@) Uy5 + 8 (2 DYy,

o>
|

a 5.~ 12.~ 34 A~
n2 = Ep2(a¥s + 8, @ Yy, + 8, (a7 )Yy,
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But four of these coefficients are immediately determined from (iii) by

a direct integration:

2 3
a a
~ 120 3 . . A 230 3 . .
€haf Zj 1"‘2‘1s 3 gp(@) Zj zelds
a - a
4 1
a a
~ 340 3 . . 14 3 . .
&pa™ ) = - ZJ 3ezds’ epp@ ) = - Zj flds
a a

Thus, it remains only to deiermine ehi(as), i = 1,2, using the last
two conditioms, (iv) and (v). But a direct calculation leads to the

pair of equalities

a2 a’

161\ 5 /\‘ ~ ~ AA A 1 ~ A
—e, .(a") = fAe dxdy + J xe. ds - j €.ds
97hl Q 1 1 2 3 2 1

a a
4 1
a a
-J 28,48 - %j 8 a8
3 4
a
3
a a
—gehz(a ) Jaezdxdy - 5{ €,ds - J yelds
Q 1 2
a a
& 3
a a
+lf ads-j 98,ds
3) 572 o 1
a a

Hence, conditions (i)-(v) determine a vector éh for which I = 0, as

P

required. We easily verify that ehfvh,e ] = & oF .
~ ~ Q ~h e

e



It remains to be proven that the vector u, = e + v satisfies
(4.1)2. We not.e-that it is sufficient to prove that
lell, <c el
because
Taglly= Mwlly < Woy = wll, <clly - wll,
<o tllylly + il
so, stace flwll; < llv,ll;

lally < @+ 2eplivglly <cllg,l,

To establish (4.12), we note that for the master element?,

A LA A A2 a 9 1a 2
8, = izlgh(gi)wi » llell] a< ci__z_l e eIl
where {bi} are the 9 nodes of the element and ]II'fll denotes the

euclidean norm in ]Rz . Using the fact that
A
1]313-3 asl <cllelly gqcctlal? g+ a2 5%
a

3
|j:iﬁg-§ asl <cllglly 55 » ete.

and the previously computed nodal values of éh

v) above, we can verify that IIIeh(bi)[llz < Cll“llz + || e”2

a constant C exists such that

el o< c{||e|| 5+ ”A”Z }%i

* Here and elsewhere in this paper, C denotes a generic constant independent

of h and does not necessarily have the same value throughout.

(4.12)

(4.13)

obtained via steps (i)-

Thus,

(4.14)
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We next transform this result so that it applies to a typical element

Qe of the mesh and sum over all elements to obtain

leglly g et el + flell}y? (4.15)

In this last calculation, we used the affine map Fe of (4.7), the fact

1

that “‘Eelll f_Clh,lllTe-l‘ll < C,h"~ , and standard relations between

2
” §” l.ﬁ and ” s” 1,9 .

We shall next verify that
lell, <callell, (4.16)

We will then arrive at (4.12) v%a (4.15) and thereby complete the proof of
the theorem.

To prove (4.16), we employ a duality argument of Girault and Raviart
{22). Note that |

e, e
e = sup — s i=1,2 (4.17)
1708 vertm vl o

Let g be in Lz(Q) and ¢g be the solution to the Dirichlet problem

_A¢g =g
(4.18)
¢g‘39 = 0
Then
o, CH@NE@ ana lloll, o <clislly g (4.19)

The variational formulation for the problem (4.18) is:

1
(¢g’v)l,§2 = (g’v)o,ﬂ Vv E H,(2)

t = ’ = .
It is permissible to take v e, so that (¢g’ei)1,Q (g,ei 0.9

h h
But e, is orthogonal to V ; hence, (vh’ei)l,Q 0, \/vh cEv .
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- _ h
It follows that (ei’g)O,Q = (ei,d)g vh)l,Q VVhé V" and

Greg gl < eglly glle, = vl o Vv, e .

Choosing v, = ¢2 to be the interpolant in Vh of ¢g , we have

o

Hence,

and by (5.7) ,

lellg g < cnllell,

This compietes the proof of the theorem. [:j

1.5 The LBB Condition For 18/P. Elements
EN

This section is devoted to the proof of Theorem II and in particular
*
to obtaining the kernel of the operator Bh and an estimate of the LBB
constant O

h

h _ 0,

hile € Q@) vy =0 onm

e
2, 1 <e <E, 1i=1,2}
2.2 =

%@ = @) - LA E R (y) €7
h —
Q' = {q Q|qh|9e€ P,(R), 1<e<E)

where Qé is the subspace of Q2 used to define the serendipity element.

~

We shall work with a master element §} . Each element qhbéiQh has
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three degrees of freedom qa » & =0,1,2, and each element and can be
chosen such that

QIQe = qy + a;x + 4,5 ; Vg = (q;, q,)
When referred to the element { , these degrees of freedom will be noted

by ﬁa , 0 =0,1,2 :

Then

N

q0=q03q1=hq1:and q2=hq2'

) *
Lemma 5.1. Under the conditions of Theorem II, dim ker Bh = 3.,
* o . .
Moreover, ker B, = span {1, Xy xz} , where X, s X, are diseontinuous

functions of the type showm in Fig. 3.

Proof. It suffices to confine our attention to the collection of four
reference elements ﬁi’ i=1,2,3,4, shown in Fig. 4a.

*

We wish to characterize all <hlé_ker Bh ; i.e., (qh, div vh) = 0
\/vh.e Vh . We begin by choosing Yh in Vh such that vy < 0 at all
nodes except al4 where Vh1(314) =1 . Then,

o _ ' S S | 1, . Al 1
in @y ¢ v, =0 +)Q-y),q =4+ &+ +5,F -3
o . - AN 1. . A4 1
in Q, : Vig = -4x(1 +x)(1 + y) , q =9q,+ ql(x + 7) + qz(y + EJ

where ﬁg , @ =0,1,2, are the degrees of freedom (coefficients) of 9,

in subelement Qe » € =1,2,3,4. Then we find that

|

qhdiv Yhdx =0

QIU e,



and this implies that

b _ Al
9, 9,
. 14 \
Similarly, choosing VhZ(a Yy =1 with v, = 0 at other nodes, leads to
1 L4 y N 12

the conclusion that QO = We continue this procedure at nodes a ,

qo'
23 34 . e
a”", and a to eliminate 7 of the 12 degrees-of-freedom of 9y, - Collecting
these results, we are left with the 5 coefficients indicated in Fig. 4b.
We next choose v, = 0 at all nodes except that vhl(O) =1, We

find that

hnes A =2l
J qhdiv Ythdy =0=>9, =4,

AUI\ ~ ~
Q QZU Q3UQ4

A similar calculation with vhz(o) =1 yields ﬁl = &i.

Collecting all of the results, we are left with three indgpendent

- coefficients, 95°9y595 and these defiqe the qh-pattern indicated in

Fig. 1. Reciprocally, a linear combination 9 of 1,X, and ¥, satisfies
(qh,div gh) = 0 for all v in Vh. A typical member ¥, of ker Bﬁ is

indicated in Fig. 3; X is obtained by rotating the =x-, y-axes 90-degrees.a

Proof of Theorem ITI. We now return to the completion of proof of

TheoremII. On each element Qe , we evaluate the product qhdiv vy using
16 degrees of freedom of Vi (eight for each component vV, and VZ) and
the 3 degrees of freedom of 9y, (the coefficients ﬁo,ﬁl, and 62 defined

earlier). We get

26



div v, dx =

~h v

1

(NTR-3

1 ~ ~ A
(a )[—q°+2ql+q2] +

v ] +

1 (a ) [+qo+2ql_q2

3 ral ~ A
vl(a )[+qo+2ql+q2] +

4 ~ A ~
vl(a )[-qo+2q1 qzl +

12, A
[-vl(a )ql 2

[+, 2",

£
)4y

34

[-v (a + v2(a

W W Wi LN O aF A= o

14/\
[-vl(a )qo

1t

[

§

e

(qh, div yh) = R

)4 ]
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1 "~ ~ A
vz(a )[-qo+q1+2q2]

~

2 N A
v,(a )[-qo~ql+2q2]

v

3 ~ ~ ~
1(a )[+qo+q1+2q2]

- P R o

4 ~ P A
v,(a")[+q -4,+24,]

~

(o]

v2<a14>32]}

div vh dx

This summation over the elements can be replaced by a summation over

the nodes as shown in Fig. 5.
shown in the Fig. 6.

is also shown. Then,

-1 . . L
2h (qh, div Yh) = B

A

I

~1
vz(eI)[- l+2

D

II

+

v (e

1711

wiro

)[ ql ﬁ

vl(eIII

1,.2 2 ~2
a + + +29
(eI)[ q +._ql+q2 q +ql q2+q 2q1 4, q 1 q2

1+A2
q, qol + vz(e

Three types of nodes can be distinguished as
The indices for the pressure with respect to each node

using the numbering scheme shown, we have

A3, A ~b
3,.3 A4 ]

]+ v, (e, ) 1-324501)

v

l-qzl)

) 4
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If we choose:

vy ) = 6(-8 428 +4,+4 420 -4 2+ -4 428 -8) )

vy(ep = 6Capea--ataa i deai-algh ||

vy(e ) =3 (-41-8) |

R AR L (5.
vl(eIII) "% (—Q§+a§)

volerry -3 (-ﬁé-ﬁg) /

then
2h g, , div v.) = ‘f (m)? + ()2 > ¢ |]v. |2 (:
> ¢V T A vain = “ally 5.2
where the summation is over all N nodes.
Now it will be shown that the choice (5.1) implies
“Yh”l 3 c ”qh”O/ker Bi}; (503)
Then (5.2) and (5.3) complete the proof. [J
With the expression chosen in (5,1) we can reorder Ilghlli and, using

the numbering scheme of Fig. 5, obtain



lwlls > ¢ <(-ﬁi+2ﬁi+a§+a§+2ai—q§+ag+zai+‘ -g+29%-0%)7
+ (4gHH28,-00-20 1420, 44423400~ +203) (5.4)
* (§i+ﬁi)2 + (ai+ﬁi)2 + (ﬁ;+ﬁ§)2 + (“g+a;)2 .
+ @D v @-h?+ @ah? + @*-ah?)

Here we find a quadratic form, whose kernel is precisely the kernel

of Bﬁ defined in the Lemma 5.1.

Then, it can be written:

Al 22,2 A2 23,2 A3 4.2 b A 1.2
”Vh”l > Cz (qo"qo) + (qo—qo) + (qo‘qo) + (@ 9, qo)
i
A n2.2 A2 3.2 A3 AB.2 A A1.2
+ (q1 ql) + (ql+ql) + (g —ql) + (g q,+q l) (5.5)
A]- A2 2 A2 /\3 2 ' /\3 A4 2 4 Al 2
+ (q2+q2) + (qz-qz) + (q2+q2) + (g 4, 2) i}

The passage from ( 5.4) to (5.6) comes from the fact that both
quadratic forms in bracket in these expressions provide the same kernel

and therefore define two equivalent semi-norms on
i . .
vV = {qj 1 i=1,4; 3=0, 2}

Now if we pay 6ur attention to the quadratic form on the first line
of ( 5.5), it can be interpreted as the L2 -norm of the gradiant of a
piecewise bilinear function ¢0 , defined by qé at the corresponding
centroid of each element. This function ¢0 belongs'to Hl and, as

proved in TEMAM [45], there exists a constant C such that
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984117 > clle, I 5.6
: o - O m (5.6)
This procedure can also be applied in the construction of functions
¢1 and ¢2 from the qi 's and q; 's. TFinally we obtain the inequality
(5.3) from (5.5 ) and (5.6 ) noticing that the summation of the three

squared LZ/IR norms of ¢j (3 =0, 1, 2) precisely corresponds to

2
”qh” * . ) .
0/ker Bh , s

1.6 The LBB Conditions For Q. /P, Elements
. v

The general proof of Theorem III can also be used in the analysis of
the Ql/P0 element (bilinear velocities, constant pressures). For this element

*
we maintain that the kernel of B consists of checkerboard nodes which are

h
characterized by alternating values a and b in each neighbor element. 1In

this case

*
~dim ker Bh =2

Using the same notation as in the ﬁrevious section, we can define for
each element and each node their integer component J and K ; the element
e =1 1in the corner (resp.e = 2) corresponds to J =K =1 (resp.J = 2,
K=1). (See Fig. 7.) Using the elements e satisfying J + K = even and
constructing a piecewise bilinear continuous function defined by qe at

the centroid of these elements, we can apply the inequality (5.6) and obtain -

o N -] o (-]
2 4.2 2 2

-t + 1 (g -9 > ch I q
i=1 e=1

J+K even J+K odd : J+K even

We obtain a similar inequality considering the element e such that

J + K 1is odd, and by addition, we arrive at
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[ 02 o4 2 2 02

R R (¢ -ap” > ¢ ] q 6.1)

=1+ 7 e=1

-

The improvement h2 instead of h4 in the estimate of Oden, Kikuchi, and

Song [41/] allows us to obtain an LBB constant o = 0(h) for this element.

1.7 Summary of Some Stability Results

A mathematical analysis of the discrete Babuska-Brezzi condition (3.7)

has been made by Oden and Kikuchi [55], Oden, Kikuchi and Song [;@], and Oden

and Jacquotte [}7,36] for several finite elements for a model two-dimensional

Stokes' problem on a uniform mesh. We shall summarize these results here

. which pertain to the behavior of the "LBB-constant" % and the stability of

the pressure calculations. We use the notations

P, = space of complete piecewise polynomials of degree k
over an‘elemenf

Qk = space of temsor products of complete polynomials of

degree k

I8 = the eight-node isoparametric element

Results are summarized in Table 1. .In this table, examples 1, 2, and 7
"lockf at small values of the penalty ﬁarameter € . This means that for a
given mesh size h , ¢ cannot be taken arbitrarily small, as noted earlier.
Of course, for an acceptable & for reasonable mesh sizes, € 1s so large
that the constraint of incompressibility is not adequately satisfied. Hence
these elements should generally be avoided. Elements 2, 4, 5, 8, 11, and
14 are unstable since o = 0(h) . Remarkably, these igstabilities frequently

are not observed on uniform meshes when the solution is very smooth. Mild
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irregularities in the solution or small perturbations in the mesh may, how-
éver, produce violent oscillations in computed pressures the magnitudes of
which increase without bound as h tends to zero. In many cases, however,
these oscillations disappear upon "filtering" the pressure solutions (i.e.
upon averaging the pressures over one or more elements). In the case of
elements 2 and 14 it has been proven mathematically 20 that certain filter-
ing schemes will produce a stable and convergent method. However, it is not
known if filtering can‘be ﬁsed to stabilize and salvage the remaining unstable
elements.

Elements 6 and 10 lead to stable and convergent schemes and are quite
robust in the sense that they are insensitive to singularities in the solution.
'However, they are not too accurate and converge at a suboptimal rate.

Element 9 is clearly the superior of any listea: it is unconditionally
stable, it provides both velocity and pressure approximations which converge

at the optimal rate, and.
ker Vh = ker V

Element 13 is somewhat of a novelty. While element 5 yields unstable
pressure approximations, Oden aﬁd Jacquotte [§z] have shown that ; comﬁosite
of three QZ/PI elements (no. 9) and one IB/P1 element (no. 5) is stable.

The behavior of elements 11 and 12, marked with an asterisk, is only .
conjectured here and has not been rigorously proven.

Extensions of these results to three-dimensional elements are straight-

forward.

1.8 Numerical Examples

The results of several numerical experiments are described which are

designed to verify the theoretical results with regard to the Q2/P1, IB/Pl,

32
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and the composite elements described earlier. We also investigate numeri-
cally the effecté of a pressure filtering operation.
As a first example, we consider an L—shapéd domain  partitioned into

64 square subdomains, as shown in Fig. 8. The fluid is subjected to a
constaﬁt body forcg' g = (0,-100). We take v = 333, and the penalty
parameter € = 10-5. We will be interested in the computed hydrostatic
pressure across the section AA' defined by: y = 0.80 . Each subdomain
correspoﬁds to a finite element; the velocity on each element is interpolated .
at 8 or 9 nodes and the pressure by its value at 3 points. Thus, various
choices of how to handle the ninth node lead to meshes with IS/Pl, QZ/Pl’
or Composite/Plelements. We will be interested in three cases involving
these elements:

Mesh 1: All the elements are Q2/P1 elements

Mesh 2: All the elements are IS/P1 elements

Mesh 3: Adding 16 centroid nodes, we obtain 16 composite

elements as shoﬁn in Fig. 9.
' The results reported here were obtained using the FIDAP code for problems
of incompressible viscous flowr[}é].
Figures 10 and 11 show the comparison between the results obtained with

the Q2/P1 element (Mesh 1) and those obtained with meshes 2 and 3. Fig. 10
illustrates the major difference between the QZ/PI and the IS/Pl element;
the former involves a pressure which seems to be smoothly distributed along
the section AA' while the latter yields a pressure with severe oscillations.
We note, however, that the values of ﬁhe pressure obtained at the centroid of

each element are close to the values obtained with the Q2/P element, which

1
suggest that this unstable solution can be stabilized by a filtering opera-

tion which effectively uses these averaged values of pressure.



It is also remarked that the oscillations seem to come from the
spurious modes in ker Bﬁ. The smoothing device may be equivalent to an
a posteriori elimination of these spurious modes. However, it turms out
that these spﬁrious modes do not solely come from ker Bﬁ : Figure 11

contains results obtained by adding one node in the elements in the comner

(point Cy in Fig. 8). For this mesh, ker Bﬁ = R but the results still .

exhibit pressure oscillations. However, for this mesh, the solution seems
to be much smoother than in the I8-case.

Finélly, the composite elements lead to a quite smooth solutiom as
indicated in Fig. 12, which is close to the solution obtained with 9-node
elements, except that for this element h2 = 0.25, while for the Q2/P1

element h2 was equal to 0.0625.

We also note that when the body force f derives from a potential:

f = -Vv , then the unique solution for the Stokes Problem is

In this example f = (0,-100) and v = 100y = -p. The numerical results
obtained by these different methods are summarized in Table II. We
observe that the error in the filtered pressures is around 33 percent

greater than that of the QZ/P1 elements for this particular example.

-

As a second example, we consider a Dirichlet Stokes Problem, which is

designed for numerical verification of the convergence theory for three

schemes considered:

a) A uniform mesh of Q2/Pl elements.
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b): A uniform mesh of IS/P1 elements.

c) A uniform mesh of IS/Pl elements with pressure averaging.

We consider the unit square domain partitioned into-square.subdomain, and

the following body forces £ = (fl’fz) are applied:

£ = by + 12x% + 24xy + 1292 - 24x° - 48x%y - T2xy”

3 22 3 4

+ 125" + 48xy + 72x°y° + 48xy 3

-8y - 24xy - 48x%y

-2(x - xo) + a(x)

f, = 4x - 12x2 - 24xy - 12y2 + 8x3 + 72x2y + 48xy2 + 24y3

_129% - 48xyd - 725392 - 48x0y + 24xy” + 48xy?

where o(x) =-1 if 0 <x < Xpo alx) = 1 if ag < X < 1. Then

(g,p) is defined by

- { 2 2
g—(ul,.uz) ,J u; = x (1 - x) (2y-6y2+4y3)
) ,

u, = (-2x + 6x" - 4x) y2 1 - y)2

\
and P =X.-%-(x-x )2 if 0 < <
0 ) —X2%

< .

p‘-'x-x—(x—x)2 if x_ < x <
\ 0 0 o <x=1

(g,p) satisfies:

2 div u=0 in &

-Adu+p=f in Q



As before, we construct a plot of the computed pressures across a
section of the domain. Figurel3 shows the results obtained by partitioning
the domain § in 64 square subdomains. TFor this mesh, h is equal to
1/8. The computations are made with Qz-on I8-elements. Whereas the Qz-
solution seems to be stable, clearly the 18-solution shows éscillations
around the exact solution. However, it is noted that both solutions
coincide at the centroid of the elements and this again suggests that
the "smoothed I8-solution,” obtained using only the pressure at the centroid,

is stable, and may converge at a rate of O(hz).

Finally, Fig. 14 confirms this suspicion showing the computed rate of

convergence 1s precisely 0(h2) for the pressure for the Qz—element, and

for the smoothed I8-element. However, it is also observed once again that the

Q2/P1—pressures are considerably more accurate than the filtered IS/Pl-

pressures for all mesh sizes considered.

With the results from these examéles we can conclude that

* The QZ/Pl.element is stable and the op;imal Lz—rate of convergence
"of the pressures of O(h?) is attained;

* The IS/P1 element yields unstable pressure approximations, but
these can apparently be stabilized considering only the values at

the centroids.

» Spurious oscillations (checkerboarding) can also appear when

ker }31’51 = IR

e TFiltering the pressures in the IB/Pl-element by using on%y the

centroidal value leads to a pressure approximation which may

converge in L2 at a rate of O(hz); howevé&, the accuracy of the

filtered scheme is quite inferior to that of the QZ/Pl-elements.
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These computed results underline once again the critical role played
by the LBB~condition in studying the stability of finite element schemes
by reduced integration. These and ogﬁer results we have computed also
indicate that the estimates obtained in Section 4 for the discrete LBB-
constant ah are sharpi Indeed, the theoretical result that the use of a.
composite element of the type employed here leads to a stable pressure

field, while not of great practical value, is fully confirmed by the numer-

ical results. This suggests again that these calculated estimates of ct.h

are a good indication of the actual numerical performances of these methods.
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PART II: ANALYSIS OF INSTABILITIES IN

UNDIRINTEGRATED FINITE ELEMENT METHODS

2.1 Introduction

For many years, a special type of numerical instability has been
observed in finite difference approximations of flow fields, which has
been referred to as "hourglassing”, "keystoning", or "chickenwiring".
These graphic terms refer to geometrical patterns which appear in com-
puted flow fields (e.g. velocities) and which emerge as spurious oscil-
lations superimposed on an otherwise smooth field, the spurious oscilla-
tions often taking a zig-zag form which resembles an hourglass orva,
chickenwire mesh. These spurious modes can be amplified upon refining
the mesh, and to control such numericai instabilities, various schemes
for incofporating "hourglass viscosity" or "hourglass damping" have
been proposed by some authors.

It is now known that hourglass modes can arise from an incomplete
(or poor) approximation of the kernel ofvthé operators in the momentum
equations in flow or solid mechanics problems (or, more generally, of
the principal part of the operator in the governing differential equa-
tion of a given boundary-value problem). For example, in additiom to
therrigid body motions residing in the kernel of the standard operators
appearing in the equilibrium (momentum) equations of solid and fluid
mechanics, one finds hourglass modes in various crude discrete models

of these operators.

In recent years, the occurrence of hourglass instabjlities in
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underintegrated finite element approximations has been observed. 1In
the implementation of most finite element methods, integrals defining
stiffness matrices are evaluated using numerical quadéaturé schemes.

To improve computational efficiency, the practice of underintegration
ié often employed, by which is meant the use of a quadrature rule of

an order lower than that requifed to integrate polynomial integrands
exactly. This can produce rank-deficient stiffness matrices or, equi-
valently, an expanded kernel of the equilibrium operation which contains
spurious hourglass modes, and the result is again a numerically un-
stable scheme.

In order to overcome this difficulty, artificial stiffness or vis-
cosity methods, dr other stabilization methods have been proposed by
several authors (e.g. [2-5, 17, 28]). .fhese methods involve computing
an underintegrated matrix, apd then adding a stabilization matrix which
effectively eliminatés the hourglass modes. They turn out to be fairly
general and have been used for a long time in numerous code;. Whereas
all of these methéds based on intuitive feéiing give good numerical
results, their mathematical study remains often non-existent.

The mosﬁ‘interesting challenge‘is to solve the problem using only
the crude rank-deficient un&erintegrated stiffness matrix, the solution
is obtained up to within an arbitrary spurious mode, and then to elimi-r
nate these modes froﬁ the solution in a post-processing operation.

Unfortunately, even when the stifﬁness matrix is rank-sufficient,
similar oscillations are observed wheﬁ-underintegration is used. In

that case, the process of the excitations of modes similar to the hour-

glass modes is not completely understood and these modes have never been

Lyl
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mathematically studied.

In this report, we would like to give precise mathematical justi-
fications and answers to the questions previously mentiomned. -The
next section (Section 2.2) is devoted to the prooﬁ that the Stabiliza-
tion Method is mathematically justified. Then, in Section 2.3 we pre-
sent a method which involves solving an underintegrated and not well-
posed problem, then in a-posteriori eliminating the unknown degree of
freedom. The proof of the accuracy of the method. is given in Section
2.4, and its numerical aspects and results are described in Section 2.5.
In Section 2.6, we examine the case where the spurious oscillations
cannot be predicted from the rank-deficiency of the stiffness matrix and
we anal&ze why these modes may be excited. Finally, we apply the pre-
vious considerations to the Linear Elasticity Problem.

‘It should be noted that the method and its results cannot be
embedded in'a classical elliptic theory: Strang's ellipticity condition
[44] is here violated and this non-elliptic method cannot be studied by
the classiéai theory of finite element methods and numerical integration
[10, 11]. We élso'refer to Girault [20, 21] for his approach to the
same kind of problem, non-elliptic because of the use of partially
underintegrated'stifﬁness matrix, but where hourglass modes did not

appear.

2.2 A-Priori Hourglass Control

2.2.1 Introduction. This section is devoted to giving a mathema-

tical support to several methods consisting of adding a stabilization

matrix to the underintegrated matrix. For clarity, we shall confine our



attention to a simple model problem. Let  be a regular domain in

B? with boundary 9 and consider the model Neumann problem,

(Po) Find u .= u(x,y) such that

M = £ on § £2.1)

J . on 30
on _

where £ d4s an LZ(Q)—function satisfying
J fdxdy = O (2.2)

The questions of the existence and uniqueness of solutions to (Z.i)
(which are well-known) are takem up in Part II.

We shall first comnsider a finite éiement approximation of (2.1)
constructed using Ql—elements, i.e., four-node quadrilateral elements
over which bilinear shape functions are used. Most of our notations
and results are reproductions of those of Flanagan {17] and Belytschko
(2, 4, 5].~ Then Qe will attempt to extend 6ur results to the Q2-
elements (nine-node, biquadratic elements) and will indicate in which

ways they differ from Belytschko's [3].

The construction éf finite element approximations of (2.1) involves

the calculation of the stiffness matrix Ke for a typical finite ele-

ment Qe , which is given by the formula,
t
K = j VYN~ * VN dxdy (2.3)
~e Q -~ ~

where N 1is a vector representing the bilinear or biquadratic shape

functions in each element Qe , 1 <e<E.
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When Ql—(respectively Qz-) elements are used to discretize the
domain Q , Ee is a 4x4 matrix (resp. 9x9) and the g's contain four
bilinear (resp. nine biquadratic) shape functions. We will distinguish
exact-, full-, and under-integrationms. Tﬁe full iﬁtegration:is obtained
using the number oﬁ Gauss integration points necessary to obtain the
exact integration on regular square elements: 4 (resp. 9) points in our

study. The underintegration will involve the Gauss rule of lower order:

1 (resp. 4) points. The stiffness matrix associated with a rule involv-

(k)

ing k points will be denoted Ee s k=1,4,9 .

Several authors [2, 4,'5, 17, 28] proposed to add to the underinte-
grated stiffness matrix a stabilization matrix which exhibits several
special properties. In this section, we will prove that these proper-
ties.are indeed'satisfied and that the exact stiffness matrix Ke can
be computed by this method. This will be accomplished by first carry-
ing out the integration (2.3) exactly.

We first introdﬁée some notations. Suppose that element Qe is

defined b§~the coordinates of its nodes (xI, yI), 1<I<p,p=24or

9 . We introduce the isoparametric mapping from a master element

A 1,1 1 .1
& = [‘2"*2] = [‘2""2]

to Qe such that

-
P I
x = I x NI(E,n)
=1 i .
( (2.4)
P
y = Zl y NI(E:T\)
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where N 1<Ic<p, are the shape functions for the quadrilateral

1°
element on the master element. The node numbering convention is shown
in Figure 15.

The stiffness matrix Ee is evaluated in (2.3) using t?g mapping
(2.4) from Q to Qe :

XK = VNT VN dxdy
~e ‘Q ~ ~

. T
) srlaelf [ag ] &
g 3| In l:dx] [dx] VN d&dn

where [g—i] is the Jacobian matrix of the mapping from Q to Qe ’

J is the inverse of its determinant, and where the gradients of the

(2.5)

shape functions are derived with respect to the master element coordi-

nates (£,n) . These matrices can be computed using (2.4) :

X = xT *N
~ - (2.6)
y =y N
LI 4N ;L
T ax aE
#)-
dg *
T odN T an
~ dn v dn
. [yra T oay]
SIER
dx dg T J ) :
T
dn dz J
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,,
H

UN = ' . (2.9)

where J 1is the Jacobian of the mapping

dx
J = dgt Eg (2.10)
Finally, we obtain the expression,
J AxxTAT' AnyAT
K = |. | =+ =—=——|d&dn (2.11)
~e Q yTAx yTAx :
where A 1s the antisymmetric matrix
T T
A = SN 4y 4N 4y (2.12)
p dn dg d§ dn .

the Jacobian J can be expressed as XTéf .

A study of ge expressgd as in (2.115'and the properties, of the
matrix A will then enable us to study the effect of the underintegra-
tion of the stiffness matrix. We will first concentrate on the 4 node-
element and derive the exacf expression of the stabilization matrix.

Then we will discuss what form this matrix may take for the 9-node ele-

ment.

2.2.2. The stabilization matrix for the bilinear element. For the

bilinear element, the shape function vector can be written as

N |y

N = %.t - 8 +<§-s' +&n h (2.13)
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~ =~ zen=o~

where
ﬁT = (1, -1, -1, 1)
T = (1, 1, -1, -1)
~ > ? (2.14)
ET =(1, 1,1, 1)
' = (1, -1, 1, -1)
then the explicit form of the (4x4) matrix A is
A=3(s's" - s8'h) +2(sh’ - ns™) + Jns'" - s T (2.15)
for (&,n) = (0, 0) , we obtain A0 which satisfies
Ty g =y L=l
Y A% = 1A X = 5(ry4%y3 ¥ Y31%p8) (2.16)

which is merely the area of the element Qe » noted lQe[ .

. At this point, we can precisely see the matrix resulting from a

(1)

l-point rule; this underintegrated matrix denoted by Ke is given by
A xxTAT A nyAT
g o 20==0 , 202 - (2.17)
e’ T IRT T TIRT -
T

Also, if we note B = (b the discrete approximétions of

B = (b, b))

the gradient VN evaluated at the integration point we can remark that '

b, = -Ay
~L S0 (2.18)
b, = A%
and therefore (2.17) takes the usual form
k= 1 b bl + b bY) (2.19)

~e |Qe|
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1)

the rank deficiency of Ke

can now be verified.

“l

Indeed, from (2.14) and (2.15) we can simply note that

~0~ (2.20)

and then

n
o

h
~€ ~ (2.21)

0

~
ot
]

Therefore, if we consider H and T the global hourglass and transla-

tion, and K(l) the assembled underintegrated stiffness matrix, we have

g1 5= 5 Kil) BH= 3 g “h =0
~ ~ e ™ ‘ e ~© (2.22)
also K(l) T = (
(1)

and this proves the rank deficiency of K77 .
Note that this "&l1" pattern is independent of the regularity of the
mesh and that H will take alternating values +1 and -1 at neighbor

nodes as shown in Fig. 16.
stab

Our goal will now be to calculate a matrix . Ke such that, if
added to Kil), we obtain the exact stiffness matrix Ke given by :

(2.11). This expression does not seem easy to integrate, but the image

w

of certain vectors mapped by this matrix can be easily computed using

orthogonality relations previbusly obtained (2.20) and the fact that

T T _
bix = By = 19,



T T '
by =b,x=10. (2.23)
we can obtain:
\
Kt=20
~l - ~
Rx=b (2.24)
y="»o

Equation (2.24) is not sufficient to compute Ke , because it gives only
9 out of the 10 coefficients of Ke (4 x 4, symmetric). It is enough

to know Xt Ke X , where t, X, y, and X form a set of independent

vectors. That is the case for X = h because
det(x,y,t,h) = 4A # 0

provided the element is not singular. Then the knowledge of hTKeh

and the relations define uniquely Ke . If we set
~ hKh=16¢ . (2.25)

then Ke is given by

=k r Tyt (2.26)

~e ~e ~e

whereas, again, given by (2.25), € 1is a scalar, and

T t
y=n-foir e - i b (.27
e e’

While it is difficult to express € nicely in function of x énd

y , its exact value can be written
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€ = d&dn

| (2™ - nts"™]? + [Esp - nie )2

Q19| + Elyyqx;, + 715%3,) + N(g,x Hyy,%,0)

&=

(2.28)

We observe that for parallelogram elements, the denominator is constant

and its value is the area of the domain Iﬂe‘ . In this case

- 1
g = — (x_. +x
24!981 13 24

2 -2 2 2
+ Y13 + y24) (2.29)

or for rectangular elements
224 g2
€=-*—7 (2.30)
12 ley ,
where lx and ly are the lengths of the sides of the rectangular
element. Also note that for such parallelogram elements Y reduces to
E .

The expression (2.26) is often used to a—priorireliminate spurious
mo&es for the kernel of K but the deterﬁination‘of € remains a prob-
lem. The‘;hoice €E=0 leadé to the underintegrated matrix and to the
method to be studied in the next section. On the other hand, a cheaper
way than the full,integration of the whole matrix would be to fully
integrate € given by (2.28). This method would lead again to the
full integration and is cheaper because it needs only one 4 x 4 integra-
tion by element instead of.lO. A more common use is to take for € a
simple value independent o£ the geometry of the element, which is often

the value obtained for a square 1/6 or. sometimes any arbitrary constant,

as used in [4, 5].
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2.2.3. The stabilization matrix for the biquadratic element. In

this section, we will study the effect of the underintegration of the
9x 9 stiffness matrix obtained in (2.11) with nine-node elements when
a 4- Gauss integration point rule is used. Whereas Belytschko and al.
[3] intuitively obtain another "Y.YT" stabilization, we prove that this
decomposition ié not even valid for regular meshes. We then propose a
decomposition derived onm regular mesh.

But first we exhibit the spurious modes out of. 524). For the bi-

quadratic element, the shape function vector can be writtemn as

N =S § (2.31)

where S is the 9 x 9 matrix

[0 0 0 1 0 0 -2 -2 &
o 0 0 -1 0 0 -2 4
o 0 0 1 0 0 4
6 0 0 -1 0 0 -2 4
s=/0 0 -1 0 0 2 0 & -8 - (2.32)
"o 1 0 0 2 o0 -4 -8
©o o 1 0 0 2 0 -4 -8
0o -1 0 0 2 0 -8
|1 0o 0 0 -4 -4 16 _
and
2 2 _2 2 27
§=[1,z,n,an,s,n,sn,an,an] (2.33)

The integration rule we are interested in involves four integration
points (%, n® , a=1, 4 . Associated to each of them, we note
Ad and Ja the corresponding matrix A and Jacobian. The underinte-

~

grated matrix is then
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T T
A
MO N AR Ay *ATY A

~€ o=1 Ja

and can also be written

. ,
K£4)- T -% (bf b:T + b; b;T) (2.35)
- o=1 Ja -1 - -2 -

where
of | _ T
131 = (—Aay)
oT (ax"
b2 o

(2.36)

generalizes (2.18) to a 4- point rule.

(4)

The rank deficiency of Ke

can now be verified. 1Indeed if we

call t and h the vectors defined by

T

t [}, 1, 1, 1, 1’ 1’ la 1: #] (2.37)

hT = [}, ,1,1, -1, -1, -1, -1, é]

we easily obtain:

T T

t" *N=t *S+*&% =1
and
hY e N=hl 5§« E= -4(E% + n? - 12 £2n9)

and then differentiating these expressions and using (2.12) we get:

A.t=0
2. dN 2 dN
A'h = -8 In(1-126") G& + £(-12n) &=

the second expression vanishes when the point (£,n) is one of the four

Gauss integration points of Q

(2.34)
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&% =

1 .
» Y ;a=1, 4 (2.38)
V3 V3

therefore we have

éa Tt= éa . E =0 a=1, 4 (2.39)
and consequently
k. e =x®.n=0 (2.40)
~e ~e ~
which proves the rank deficiency of Kia) . Once again we note that

the pattern of E, defined in (2.37) is independent of the geometry
of the element and is therefore valid for a rectangular element as well
as for an irregular element.

The search for decomposition for this element cannot bgfcompleted
in a manner as complete as it has been .for the 4-node element. However,
Belytschko and co-workers [3] have intuitively come up with a decompo-

sition similar to (2ﬁ26) where Yy and € are

4 b2 & b2
Y=h-zhlex I LoZnfy 3 = (2.41)
- - T T =l o - a=1 "o
4 T T
1 1ot & .af o
e-—z—E %+ b 'b:| (2.42)
T00 oy Tolo1 1T %2 7R

This decomposition does in fact satisfy several properties also satis-

fied by therexact matrix, as

r b¢
a=1 "

~

L]

™
1

t
¢



4 o
K *y= I b2 .
~& - =1l T

but for a simple square element*, Ee and its decomposition (2.26) does
not coincide. Indeed, for this simple gebmetry, the calculation of
(2.11) can be carried out explicitly and the polynomial in (&,n) ob-
tained can be split into_one part exactly integrated with 4 Gauss points,

and another part of higher order that requires 9 points. This calcula-

tion leads to the decomposition:

(9) _ (&) 1 T, 4 T
K =K _~ +Q (FT 8,28 +337 84 *5g)

O @ Lo (L. T, 4 T
Kyy ’ Kxx + Qe (45 %s° S +'135 59" & )

where ~
T T
R . A sy ey o A
Kxx = {, = ; = — dE&dn
‘a7 ax ) (2.44)
r A x X T AT -
K = [, = = ~ = dgd'ﬂ
yy 49 yT . A s x

th

and 85 » Sg » S are the 7th, 8 and 9th column vector of S (2.32).

These vectors. correspond to the higher order of g (2.33) that cannot
be exactly integrated by a 4-point rule. The form taken by thé stabil-
ization matrix involves now three matrices (?i' ?{ , 1=17,8,9), is
exact for a square element and cannot coincide with the decomposition

found in [3]. Finally, we note that both decompositions were used in

our a-posteriori control described in Section 2.7 on a regular mesh,

* or also for a geometry for which the Jacobian is constant.
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and optimal rates of convergence were only obtained with the decomposi-

tion (2.43).

2.2.4. The stabilization matrix for a general heat transfer equa-

tion. 1In this paragraph we would like to gi#e the stabilization matrix
for a slightly more complicated operator. The case of the linear elas-
ticity operator will be discussed later.

Let us consider the case where the operator is defined by

A=g'cp (2.45)
where
= > 2T
g = (ax By)
and
C c
c =< 11 21)
€12 S
then the stiffness matrix associated with this operator is given by
K_ - J UNT - C - VN dxdy " (2.46)
p Q - - -

The generalization of the stabilization decomposition when Q1 elements

are used can then be written

10 T

Ko = I,Se + € '! . ’I (2.47)
where

K(l) = 1—l—r 8T ¢ B ’ (2.48)

~e Qe -~ ~ o *

€= C11 € x + (C12 + CZl)exy + sz vy (2.49)
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and

1 T .2
jA,E{gs.y - ns'* y)  d&dn
Q ek ~ %

T 2
-ns' e g) d&dn

~

™|
"
)

1 T
~ —'(ES M
JQ J ~

L

€
Xy

1]

1 T
=7 J" %(ES .
Q -~

T T T
-nse §)(€ sey - n§' °g) dgdn J

\ (2.50)

The quantities 7Y, B and J are the ones previously defined. Expres-

sions similar to those given in (2.29) and (2.30) can be used to

simplify € .

For a regular geometry, and corresponding to (2.29) and (2.30) we

have

— 2 2
€xx T 24(9) (y13 + ¥y4)

- 1 2 2

Syy T (@) (x5 + x5,)

€= L (X, V10 ¥+ X,, ¥.,)
Xy 24(96) 13 713 24 724

(2.51)

As far as the 9-node element is concerned, the decomposition can

be obtained only for regular elements. First we note that

MO
~Xy ~Xy

where the notations are similar to (2;43) and

decomposition can be written:

k(9) _ ¢ (&) 1 T, 4
-e Ke ' + 0, €115 87 87 + 33
1 T 4

+ 8, Cyy(75 5 53 * 133

(2.44).

(2.52)

Therefore, the

(2.53)



2.3 A-Posteriori Hourglass Control

2.3.1. Introduction anahbfélimiharies. The basic ideas are more

easily understood when demonstrated for the same simple model problem.
We still focus on the model Neumann problem P0 or its variatiomal

equivalent P .,

Let Q be a regular (e.g. Lipschitz) domain in iRz with boundary

9 and let f be a given Lz-function. Problem P0 is then,

(Po) Find u such that

~Au = £ in Q
(3.1)
.%E = 0 on 30
n
where the data f satisfies the compatibility condition ,
J fdx = 0 (3.2)
Q ,

Later we shall put further restrictiéns on I and on f (e.g. we
will need uf 6 H(?)). The kefnel oﬁ.the governing operator A = (-4 ,
é%) in (3.1) is, of course, the space of constanfs. Thus, whenever
(3.2) holds, there exists a solution to (3.1) which is unique up to an
arbitrary constant. .

To formulate a variational éfétement of prbblem PO , We introduce

*
the spaces and inner products ,

* The elements of V (and L )/ ]R) are cosets {(v]) such that u 6 [¥]
implies that u, v € nl (Q) (or 12 () and v - u 6 R . Throughout this
paper we frequently refer to functions v in V , meaning, of course,
that v 1is a representative functlon in the coset [v].
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v =r(Q)/R

(u,v)1 = an inner product on V

J VueVvdx ; u, vV i
Q

(f,g)0 = an inner product on LZ(Q)/ R

1
fgdx = ———— J fdx J gdx (3.3
JQ meas {1 0 Q

Three remarks are in order:
i) The norm ||* ”0 associated with the inner product (-,-)0 is
the canonical norm on the quotient space LZ(Q)/ R,

lell, = tne fe4all
PER L (3.4)

i1i) According to Temam [45], there exists a constant C0 , depend-

ing only on  , such that

'> - .

vily 2c,livily, Vv ev (3.5)
iii) For all £ satisfying the compatibility comdition (3.2) and

any v € V , we have ‘

(£ = | evax < llelly lvll,
(3.6)

1515 el Nvl,

With these relations now established, we consider the variational

statement of PO as problem P :
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(P) Find u 6 V such that
(u,v); = (£,9), Yvev : (3.7)

We can easily verify that any solution of Po is a solution of P

and, conversely, the solution of P satisfies the condition of P in

0

at least, a distributional sense. Moreover, since the bilinear form
(-,-)1 is continuous and coercive on V and since the linear form

(f,‘)0 is continuous on V if (and only if) f satisfies (3.2), the

following result is an immediate consequence of the Lax-Milgram Theorem:

THEOREM V. Let { satisfy (3.2).

Then there exists one and only ome solution u € V to problém P
and this solution depends continuously on the data £ . QO

We now consider a fiﬁite element Aéproximation of the problem P.
Let us now construct a finite element approximation of problem P. We
begin by-introducing a partition @ of Q into E . finite elements

so that

E
= U q
e=1

We shall assume that § is such that it can be partitioned in this
fashion into four-node quadrilateral elements over which bilinear shape
functions are defined. Thus, if

Ql(Qe) = gspace of bilinear functions defined on Qe

we can introduce the finite-dimensional space

v o {vh (<] CO(Q) such that Vth 6 Ql(Qe), 1<efE /VR'CV
¢ (3-8)
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wherein, as usual, the label h is the mesh parameter (e.g. ,
h = max dia(Qe)). The functions in Vh are continuous and are still
1<e<E

defined up to an arbitrary constant.

dur finite-element approximation of problem P is embodied in the .
discrete problem,

h h
(Ph) Find u” 6 V' such that

(3.9

(uh, vh)1 = (f, vh)o \/vh € Vh

where, again, £ satisfies condition (3.2).
In analogy with Theorem V, we have:
THEOREM VI. Let £ satisfy (3.2). Then there is one and only
h

ome solution u® to problem P in V. and this solution depends

eontinuously on the data £ . O

In examining the convergence of such finite element approximatioms,
we shall confine our attention throughout this study to regular mesh
refinements. In such cases, we have the a priori asymptotic error

estimates,

luu®ll] =0, u-a®ll, = 0® (3.10)

2.3.2 The underintegrated problem. We now focus our attention

on finite element approximations of problem P in which incomplete
quadratures are used to evaluate the bilinear form (',°)1 . To simpli-
fy this study, we shall now introduce some additional assumptions:

i) @ is the unit square,
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Q = (0,1) x (0:1)
ii) The finite elements are the squares,

ST R A s N
Ry = e 35, P

1<i,j<N

= Qij

1<i,j<N
iii) The data £ 1is Lz-integrable; e.g.
2
£ 6 L7(R) (3.11)

In this case, we take

h=2, din V' = (1) - 1= 00 (3.12)
h . 2 . h
In Ph we can replace £ by £, its L"-projection on V is
defined by
h
" W, = 5 v, Yt et (3.13)

For further use, we note that‘the projection satisfies
£, < Nell (3.14)
0 — 0 . ‘

and can be chosen such that

J £ ax = 0 (3.15)
Q

Now we turn to the issue of numerical integration of the stiff-
nesses. Let I(*,*) denote a discrete inner product on CO(Q) defined

by a numerical quadrature rule as follows:



E
_ G
I.(f,8) = El I (£,8)
e - N (3.16)
e = T WEEDSED &
e ’g j=1 j “‘j g ~j

Here W§ are the quadrature weights and g; are the quadrature points
for element e and G 1is the number of quadrature points used.
Assuming that Gaussian quadrature is used, the choice G=4 (2x2 - Gauss

rule) leads to an exact integration of the stiffnesses for each element:

u®, vh)l = 14(uh , v = uR v (3.17)

for any uh, vh 6 Vh . Here E _is the fully-integrated stiffness
matrix and u and v are vectors of nodal degrees of freedom of uh
and vh » respectively.

‘Instead of the correct bilinear form in (3.18), we wish to consider
an underintegrated approximation to ',')l in which only one integra-

: *
tion point per element is used:

h N E  _h, _ T (1)
(u , vh)l,h Il(u sy V) =ukK v
h
Vo, vPev (3.18)
Here g(l) is the underintegrated stiffness matrix. The difference be-
tween (',')1 and (',‘)1 h (on Vh) is denoted a'(-,+) and the
’
%%
corresponding stiffness matrix is KStab :

~

* Recall Section (2.2).

** Recall that KStab= E&YT where € = 1/6 for a rectangular mesh and
Y is given by (2.27).7°
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= u gSta%, Vb, v* e v? : (3.19)

The "underintegrated problem",

. h  _h
(Ph) Find u 6V such that
w® vh)l . g? | vh)o VP g vP (3.20)

is, in general, meaningless. This problem, in general, has no solution
except for the special case in which fh is orthogonal to the one-

dimensional space of hourglass modes,
g={ne v, vh)1 L= 0 V" ¢ vH) (3.21)
b4

A way to overcome this difficulty is to note that the underintegration

of the righthand side also leads to a rank-deficient linear form

599 p ¢

- ¢ ,m,, =0 , Yetev?
0,h
Vue &
Wote that if fh satisfies (3.15) we also have
¢, 1., =0 (3.23
? O,h . . )
Therefore we now consider the underintegrated problem f% :
(§£) Find O 6 7" such that
h _h _h _h \/ h _=h
@, vy T L vy YVv'ev (3.24)
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where

Vh : Vh/H

We can now state and prove

THEQOREM VII: There exists one and only ome solution Eh to P -

Proof: This is an immediate consequence of the Lax-Milgram theo-

rem. Since

h h ~ h
(u ,u)l’h—0®u Y1H+Y2

b
h
and continuous on Vh . -As far as the continuity of the righthand side

is concerned, a simple calculation shows that for any vh in Vh we

we can consider (',-)1 as a norm on Vh . It is therefore coercive
’ - R

have

h

€™ v ol < T T

Also for any constants Yl and Y2

l(fh, vh

. _ T
Y Yy Byl = 1E, v L
therefore

b .

<Py V" + vy, mlly Vv,
<ol €My It

Here we successiveiy used (2.23), (2.22), (3,6) and the equivalence
between the canonical norm.of V' and the norm Il .”l h a
»

We have obtained a solution to the underintegrated problem f; .



This solution is unique in Vh , from a computational point of view it
is defined up to within an arbitrary hourglass mode. We now need a
projection to obtain a reasonable solution from any representative u

chosen.

2.3.3. Projection of the underintegrated solution. In order to

. A h
construct this projection, we remark that, since u is a solution of

Ph and since H 6 Vh , uh satisfies

h _,.h
(w , B), = £, B, (3.26)

We wish to extend Eh to all of Vh so that a new function- ﬁh
& Vh is obtained which contains an hourglass mode and which also satis-

fies (4.8). Thus, if 7 1is an operatdr from Vh into »Vh , we define

ﬁh=nih=ih+x0a, A 6 R (3.27)

-h _ .h

This latter requirement determines Xo uniquely as

=2 @ my - @, H)J (3.29)
T

so that i is uniquely determined as the function

h h
e TRy
Tk a1

It is instructive to consider a geometrical interpretation of our
projection defined in (4.9). Note that the "component" of the fully

. . h . h A h h
integrated solution u  orthogonal (in V') to H 1is (u ,H), = (£7,H),
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as indicated in Fig. 17. " The solutions G£ of Ph constitute
the vectors generating a line '"parallel to" the space H 1in the figure.
The projection ﬁh is then the vector defined by the orthogonal projec-

. h R
tion of u  onto this line.  Indeed, by construction,

@" - uh, H), =0

At this point, we have established the following procedure for

processing an underintegrated finite element approximation of problem P.

1) Compute the underintegrated bilinear and linear forms (-,-)1 h

ad (£, 0,n
i) Solve problem FL for
1it) Compute (Gh, H)1
iv) Construct the enhanced solution Gh using (3.30).

Thus, this procedure involves the computation of an underintegrated
solution G; to a reduced problem 5% and its enrichment via a post-
processing operation to obtain a new approximation Gh . We shall now
show that'these post-processgd solutions Gh converge to the exact

solution u of problem P as the mesh is refined, and, remarkably,

these approximations converge at precisely the same rate as the fully-

integrated solution!

Indeed we have:
THEOREM VIII: Let u , u' and u® be the solutions of P,

P, and P,

. s let £ bein LX) and satisfy (3.2). Let & be ob-
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tained by the projection of & defined in (3.30). Then we have the

following error estimates for s =0 and 1

™", < c, n?"° lell, (3.31)
and

~h 2-8 ,
=", <c; w77 Il (3.32)
The next section will prove this theorem.

2.3. Convergence of the A-Posteriori Control

2.4.1 Introduction.. Tﬁis section is devoted to the proof of

Theorem VIII. The method of proof relies on the tensor properties of

the bilinear element and of the Gauss integration rules. The problems

Ph ?nd Ph

eigenvectors of (',')1, (',')1 h and (',')0 b Then we note that
N £] bJ

will be explicitly solved using an orthonormal basis of

for a regular domain and mesh, f 6 LZ(Q) implies u € HZ(Q) and that
o -l <flell. (4.1)
- 1 ) 0
Likewise, the Aubin-Nitsche method providés also
e - o®ll, <cw?llelly | (4.2)
By the triangle inequality,

o =g, <en gl + Na® - "), 4.3)

with a similar estimate in the |I° IO-norm .

Thus, it suffices to estimate the relative error



e =u -u (4.4

The Lz— and Hl—norms of this relative error will be explicitly calcu-

lated and estimated.

2.4.2. Some one-dimensional results. For reasons to be made

clear in the next subsection, it is convenient to review briefly some
results on one-dimensional plecewise-linear approximations on a uniform
mesh for = (0,1) . Our aim here is .to establish concrete relation-
ships between various bilinear forms (".)O,h R (',-)1 , and (".)l,h

on spaces of pilecewise-linear functions.

Let D(k, o) and I denote the N+l-order matrices

-k o . . . 0 O ] B 1 0 . . . =
o 2k . . - 0 0 0 2 . . .
D(k’a)= . . . . . ’I'= . . . - -
. . e Zk Q . . L]
. . ° o kJ o 0 . . .
(4.5)

(i.e. I' = (D(1,0) . Then, for a # 0 , one can show that
det D(k, @) = (- det D(- £, 1)

= (- det p(- H 4.6)

where
def
D(k) =— D(k, -1) ' 4.7

The values of k for which det D(k) wvanishes are

kK, =cos =2, 0<i<N (4.8)
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and the corresponding vectors (D(ki)vi = 0) are
v ='{cosm},0ijiN , ) (4.9)

The significance of the above matrices is that in one dimension,
the discrete Hl(O,l)- . L2(0,1)- and underintegrated L2(0,1)—norms,

on the space Vh of piecewise linear Cg—functions on a uniform mesh

1

of N elements on (0,1) ,

Vh = {vh € CO(O,l)[ vh is linear on Eah, (e+1)h], e=0,...,N-1}

1
(4.10)

are associated with the matrices

=1 -
=5 D@, -1) and 4;

f
|
g

A =E31'D(1’;5) ’ é

~0 (1, (4.11)

1

respectively. In other words,

"2 = vav s=0,1, (0,0 (4.12)

where v 1is the vector of nodal valués of vh .

By using (4.6) through (4.8), one can verify that the numbers oy

and Bi which render éO,h - aiéo and él - Biéo singular are

7 3(1 + cos lNTE)
a, = in (4.13)
2(2 + cos -ﬁ-)

6 1 —Eos%
B, = 5 —=— (4.14)
l hz 2+,cos%

In particular, let ¢i = ¢i(x) , X6 EO,]] denote the piecewise



..

linear functions associated with the vectors v

'(im = cos AT, 0 < 1,5 < ¥
(4.15)
span {¢i}0<i<N = V?
Then,
B A A T L . (4.16)
? h h
v & Vl
", oh, =8, 7, ehy (4.17)

Notice that the base functions ¢i are orthogonal for each of the
scalar products under consideration.
The following rémarks are in order:
i) The denominators in (4.13) and (4.14) are non-zero.
ii) For i =N, di = 0 and the corresponding eigenfunction is the
one-dimensional hourglass mode:
(1, -1, 1, -1, ...)
iii) TFor 41i =0, Bi = 0 and the corresponding eigenfunction is

constant. Then we have the condition (vh,l)1 = 0 as expected.

2.4.3. Discrete norms for two dimenéional meshes. The extension

of the above results to two-dimensional rectangular meshes is straight-
forward. Since the bilinear basis functions for Vh are tensor pro-

ducts of piecewise linear functions of one variable, we can define
i i
é j(x,y) = % (X)¢j(y)

0<1i,i<N (4.18)
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Further, let us normalize these basis functions so that
ij -
oM, =1

We can then establish the following:

h h

Lemma 4.1. For v 6V , we have

Wﬁ¢ﬁ%m=ai%_wmwﬁ%
S M R R LA R

h  ij - h 1]

Moreover, if arbitrary Pe vt is expressed in the form,

vh = z vi.¢iJ
0<i,j<N M

" h ij)o

then

0 hpp2 2
1912 = 5
0<i,j<N

2
(VB2 = 1 (B, + BV,
| b ogeg,yan 2 304

Proof: First note that

h 1] _ . h i i
‘' (V > ¢ )O,h = I(V (j) (X) ¢(y))

-a aijQ, W o1y ed (y) axdy

o h Lij
a a
i3 v, ¢ Yo
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(4.19)

(4.20)

.(4.21)

(4.22)

(4.23)

(4.24)



We also have

h
", ¢ty - J

v 417 3
g B ¥

R ) o) axa
Sy % (y) ¢7°(x) dxdy

= Bij : vh¢i(x)¢j(y) dxdy
9)

B J Ryl xy o3
+ 5 Jg vr (x)% (y) dxdy
_ h  ,ij
=B+ B v, ¢

Finally

: h h
S ST L% BN UAE T A
1,h LG ¢ ¢+ 3y $7¢" )

R i
CANE- I

_ h ij h ,1ij
The norms (4.23) and (4.24) are then directly obtained o

In analogy with our remarks on the one-dimensional case, we observe

that for 1 =3 = N, ¢ij = H , the two dimensional hourglass mode. Then

h 24 h
v, H)1 = ;5'(v . H)0 (4.25)
and
<", B 0 (4.26)

0,h
Also, for i=3j =0, ¢1j = 1 and the equilibrium condition (3.2) can
be written

fo0 = 0' (4.27)
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with

= (eP 1]
£,y (£, 7)), (4.28)

2.4.4. Explicit resolution of P, and (EL_ + 7M. With the above
results in hand, let us now return to the fully-integrated finite-
element approximate problem Ph given in (3.9). The solution uh to

that problem can be written

\
uh= z ui 1]
0<i,j<N 13
- ? (4.29)
SRR - B &
J -~

and since fpr [vh = ¢ . in (3-9)],

h i, _ h 1]
(u,¢7)1 (Bi+8j) (', ¢ )0
- h ij -
we have
. 1 ‘ .
u £.. 3 (1,3) # (0,0) (4.30)
ij Bi + Bj ij

Using constructions similar to those in (4.29) for the fully-
integrated problem, we easily verify that the solution Eh to the

underintegrated problem P, 1is representable in the form,

h
o = r w4 (4.31)
(1,5)#,N) |
(1.3)#(0.0)
with )
— o, o
u 1 £ 3 (4.4) # (0,0) and (N,N)  (4.32).

=1 J
1 OLiBj + ajBi i3
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The cases (4,j) = (N,N) and (i,j) = (0,0) correspond to the arbi-

trary hourglass mode and arbitrary constant, respectively.

The projected approximation gh defined by L m is con-

structed so that projections of ﬁh and uh coincide; i.e.

ﬁij = G;j (4,3) # (0,0) and (N,N)
(4.33)

Un,N T OUN,N

2.4.5. Proof of theorem VIII. Since the error function eh = uh

uh is in Vh » we use (4.29) and (4.31) to obtain
e = z e ¢t (4.34)
(1, )#w,ny M
(i,3)#(0,0)
where
_ b 1]
€y (e’ ¢ )0 ,
= @ ot - @t ot
= Gij - Uy

Thus, from (4.30) and (4.33),

0.0
i’j 1
e,, = - £.. (4.35)
ij (aiBj + ajsi Bi + 3j> ij
Then, using (4.13) and (4.14), eij can be written as

h2

eij = Kij fﬁ' (4.36)

where
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Kyy = K(cos i—ﬁ" . cos iN"-‘) (4.37)
and
R(x,y) =% (1+x) (1+y) ___16_ (2+x) (2+y) 7(4.38)

(14x) (1-y)+(1+y) (1-x) (2+x) (1-y)+(2+y) (1-x)

On the square S = [—1,+1] X [;l,+ij/{(-1,—1), (1,1)} , R(-,*) is

bounded and there exists a positive constant K such that
[R(x, | < ¥ W(x,y) 68 (4.39)

Therefore we have

[kl <k V(L5 £ (0,00 and (N,W) (4 .40):

and we can obtain using (3.13) and (4.23)

Il eP)2 = n* z k2¢?
0 (i,5)#¢0,0) H 4
(i,3)#(N,N)

4 2 hy2 4 2 2
Snoxt el <t kOl

Aiso,'after calculation and use of (4.24), (4.14) and (3.14), we have

4 ’ 2 2
Il e? =n T (B, +B,)K,> £.°
1 (i,i)#0,0) + 34 4]
(i,3)#(N,N)
<12 v’ & flellg B

2.5. Implementation and Numerical Results of the A-Posteriori Control

For the Laplace Equation.

In this section we first would like to indicate how the a-posteriori



control method is implemented, and how its time efficiency compares to
the a-priori method. Then several numerical results will be given,
illustrating the accuracy of the method and confirming the results
obtained in the previous sections;

2.5.1. Implementation of the a-posteriori method. First let us

indicate that from a mathematical point of view the problem ?h is
well-posed but cbmputationally, the matrix obtained from this formula-
tion is singuiar and the dimension of its kernel is 2. Consequently, we
must pick two nodes, fix them a value, and solve. The first wvalue fixes
the constant mode, and the sécond one fixes the hourglass mode to- be
eliminéted later. Let us fix Gh equal to zero at the origin and at
the next point on the boundary (coordinates : h,0) (Figure 18.a).

According to the error estimates (3.30) and (3.31), we may write
u® = 3+ AH + 0(h27S) (5.1)

and therefore, if we normalize H such that its nodal values are O or
1, A measures precisely the value of uh at (h,0) (Figure 18.b), and

approaches u(h,0)
A = u(h,0) + 0% (5.2)

But u(h,0) is O(hz) for a smooth enough solution (u(0,0) =0,
ou/3n(0,0) = 0) and using L”-estimates 12 » O can be evaluated to

2-€, € arbitrary. Finally, we have the estimate

£

A= O(hz- ), € arbitrary (5.3)

Also, the choice of H 1leads to
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e, -

l&ll, =
and therefore we obtain
| 2wl = 0m®7)

s = 0,1

and that proves that the post processor contribution

75

(5.4)

(5.5)

AH can be neg-

lected if the fixed nodes are chosen as indicated for this type of

boundary condition. The error estimates of Theorem I still hold up to

within h° .

Unfortunately this remark has two major drawbacks:

it supposes

that u 1is smooth (u € HZ/(Q)) and it is not valid to 9-node elements

that will later be discussed.

Before discussing the implementation of (3.30), we indicate that

this projection can be simplified.

we obtain

" m Nallz 2
23wl <l —F =%
I w2 o Ilali?

& wm, Y.

e Sl N =
E ™ Ny

Therefore we have

2-8

(th) ' h
|20 ) ol w7,

2
a2

Indeed, taking vh

[N

= H in (4.25)

(5.6)

Il 711,

0;1 (5.8)

and this term can be neglected without affecting the estimate of Theorem



VIII. The formula used in the post processor is then
i =u - M (5.9)
—h -
=@ty al? (5.10)

In order to preserve the efficiency of the method provided by
underintegration, one must find an efficient way to compute the para-
meter A in (5.9). One way that suggests itself is to calculate the
H1 inner products of (5.10) using numerical integration. The use of a
one point rule would be absurd and would lead to a ratic 0/0. The use
of a 4 Gauss point rule hasrbeen numerically implemented and gives good
results (similar to those to be presentedrnext) but cost of thié'inte—
ération is expensive, as shown in Table 3. This method is therefore
rejected.

We shall now describe a more efficient method with related numer-
jcal results shown in the next subsection. This method relies on the
fact that,_for the bilinear glement, the stiffness matrix caﬁ Pe decom-
poéed into two parts, one of which contains H in its kernel. The
other part is such that the image of H 1is cheap to calculate.

This decomposition proved in Section 2.2.2 can be written as

exact under , — T
= + .
Ee Ee e Ze Ie (5.11)
where szact and gznder respectively are the exact element stiffness

matrix and its under-integrated form, €, and Vye are obtained from

~

(2.27) and (2.28). 1In particular

- n _ hex _h
Ye™ D 2,] el iae] b2 (3.12)
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Even though €, given by (2.27) is still difficult to calculate, note

that, during the element calculations, the vectors

El and EZ and the
Jacobian IQe] are necessarily computed. Therefore Yo is very easy
to calculate.

The inner product (Eh , H)

1 may, therefore, be calculated by
using the decomposition (2.1)

of . Kexact . Introducing the nodal vec-
tors U and H associated with the function Eh and H , we have
=h . _ , T exact . .

(u?, H)1 - E E H Ze e Ve Ze H

ar

-~

’-;T—T
=z ee(ze ge)(Xe Ee)

where ﬁ; and H are the values of U and H at the nodes of the
element e

We note that if the values of H are +1 or

-1, the
scalar vector product YT *H  1is always 4 . Therefore
@, W, =4TtT, I ylul (5.13)
1 e e
e € 1=1 .
and -
(4, H)l = 162 €a _ _ (5.14)

These expressions are still exact since no approximation has been
made on €

If we suppose that the Jacobian of the element is approx-

th

imately constant (true for parallelogram element), E; is simply ex-
pressed as

€e = 12|_|' (o] B ! + by by) (5.15)

The calculation of the approximate projection can be summarized in .



the following algorithm:
* Loop on Elements

/\ Calculate Yo > € using (2.2) and (2.6)

Calculate =*e£ (¥

Lada

T —
{ )\2 = )\l t ee(Ye . Ue)

kz = Xz + ee
* A = Allakz

* Loop on Nodes
b‘l = 3"
Y INode Node * A

Remark: The notations previously used are essentially those found
in the work of Belytschko and co-workers [4,5] on stabilization methods.
These methods rely on the decomposition (5.11) but the stabilization
tefm SX.IT is a-priori added to the under-integrated matrix to prevent
the spurious modes from the kernel of the stiffness matfix; whereas our
control method uses the very same term a-posteriori, after solving with
the underintegrated matrix. Therefore, our method seems to be cheaper
than the stabilization methods as sﬁmmarized in Table 4.

" 2.5.2. Numerical results.

s

2.5.2.a. Reguiaf mesh of 4-node éieﬁéﬁfé. In order to illus-

trate what has been stated, we have considered the Laplacian problem
solved on a square domain partitioned into N2(=h-2) subdomains, for

various values of N and we have studied the norms of the difference

between the solution obtained with a full integration uh (4 point rule -

Al



- and with underintegration (1 éoint rule) Gh and Gh (before and after
post processing). The reéults are shown as plot of Logl!uh—ah|| or
Logl‘u—ﬁhils in function of |Log h] , for 8 = 0,1 . Data of vari-
ous regularities have been used:
i) fl is a Co—function, but not C1
[flcx,,y) =300 -y i vy 20

m (2 (1-x) - ¢ -2 i
£,6,) = yG A-x) -y —3) if Y, (x,5) <0
where the Cl-discontinuity line is
Y, Gy 3 (1) -y
1 ? 2 :

ii) f2 is a non-continuous function

= ' >
[fZ(X’Y) 1 if Yl(x’Y) 0

fz(x,y) -2 if Yl(x,y) <0

where Yl is the same as in i).

Remark: Both of these functions satisfy the compatibility
condition'ﬁ3.25.

Results obtained with the continuous function fl are shown in
Figure 19. When the solution has been treated by'the post processor
(Fig. 19a.), borvboth 7L2 énd H1 norms, thevrepresenting points lie
on lines of slope 2. This proves that whereas the estimate (1-13) is
optimal for the L2 norm (s = 0), it is not in the Hl norm and seems
to be in fact better than what was expected in our study. This does
not affect in any case the comparison with the exact solution (1.14).

Figure 19.b shows the comparison with the crude solution Gh ,

obtained with two fixed nodes, and not treated by the post-processor.
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"Slopes 2 and 1 are 6bserved and the loss (1. instead of 2. for the Hl

norm) corroborates the final remark of Section 3.32.

When the function f2 is use@ (Figure 20), the points show os-
cillations around two lines of slope 2. (for the sznorm) and 1.65.
(fqr the Hl—norm) proviﬁg that the estimate (3.31) still holds (Fig.
20.a). When the solution has not beenrtreated by the post-processor
(Fig. 20.b), the slope 1.65 becomes 1. as expected.

The next series of examples was intended to study the influence

of a singularity (at the origin) for a unit square domain regularly

partitioned. The data functions are of the form

o

£,y =t%-¢C , @ - 2 (5.16)

where C 1is a real number chosen such that the equilibrium condition
(2.2) 1is satisfied. The family. {fa} represents various regularities

of data:

£, 6 55 () a>s -1 (5.17)

The result shown in Fig. 21.a is a plot of o (regularity) versus o
h
”s=0,1) .

plot seems to show a linear increase of slope 1 towards the maximum

(rate of convergence of |[ﬁh -u The pattern of the (a, o)
2 2

value 2 reached for f €6 L"(g= -1) for the L™-norm (s=0) . As far as

the Hl—norm (é=l) of the error is concerned, the linear increase of

slope 1 reached 1 for £ 6 L2 but keeps increasing towards 2 . This

shows that the expected error estimate

i uh-”hlls <cruf (s llm , 8 =0,1 (5.18)



&1

where

k=1+min (1, m) - s (5.19)

is not optimal for 8=1 and m > 0 . The estimate (3.32) remains
optimal however.

In conclusion, these numerical results prove that the method is
accurate for regular mesh and that no accuracyris lost.

2.5.2.b. Regular mesh of 8- and 9-node elements. Since the be-

ginning of Part II we have not discussed the underintégration of the
stiffness matrix of the 8-node elements. It is well known that this
matrix is not rank-deficienf, and the practice of the underintegration
has been widely used &ith good results when the mesh is regular. Since
there is not any spurious mode, the a-posteriori control previously
described.is ﬁét needed. " |

Unfortunateiy, the method Qf proof presented in Section 2.4 cannot
be used because this element does not possess'the nice tensor product
properties on which the method relies. The only hope for a proof of
convergenéé would be to obtain the result as a by-product of a result
for the 9-node elements.‘

As far as this element is concerned (9-node element), wé have
proved (Section 2.2.3) that the underintegrgtion of this element leads
to a rank-deficient matrix; in fact, the procedure described in Section
2.3, for the resolution of the underintegrated problem and the projec-
tion of its solution ié completely applicable to a mesh of 9-node ele-
ments. Thus, Theorem VII is valid and the projection defined in (3.3)

can be used to eliminate the spurious mode. As far as the existence of



- a convergence theorem is concerned, one can establish generalizations
of (4.165 and (4.17) to 3-node, one-dimensional elements: there exist

a Bi s ¢i and wi such that

O N Ak a]

Vb
S h i

Unfortunaﬁely, the basis functions ¢i and wi are different for the
Lé-underintegrated and Hl-norms and a lemma as Lemma 4.1 cannot be ob-
tained.

However, in this subsection we will show numerical results
obtained by use of the projection (3.30) for regular meshes of 9-node
elements. WNote that two typeé of control have been teéted with similar
results: the control only involving the term in Y.YT predicted by

Belytschko [3] and the complete control calculated with & i=17,

_ 1%
8,9. (See Section 2.2.3). The results obtained with either of them are
similar for this operator (-4A).

For 8 and 9-node elements, the optimal rates of convergence are

given by

lua®ll, <cn® el 5= 0,1 (5.20)
where

k=2 + min(1l,n) - s (5.21)

and the best rates of convergence 0(h3-s) are obtained when £ € HI(Q).

The results obtained with functions presenting a singularity line (such

as the functions £, and f2 previously defined and others) are pre-

1
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sented in Table 5 (first and second lines). We obtained 1.99 and 1.74
for a discontinuous function (f € L2) , then 2.43 and 1.97 for a con-
tinuous, not Cl , function (f 6 Hl), 2.95 and 1.95 for a Cl, not C2
fupction (f 6 Hz) and finally 4 and 3 for a C°° data. Therefore, the
rates 3 and 2 are reached when £ is at least Hz or equivalent when
the solution u is.in Ha . In this case; the convergence rate (5.1)
does not seem to be reached.

The second series of data involving the singularity at the origin
(5.16) has been tested and results are shown in Fig. 20.b. The pattern
of the (0,0) plot shows linear increases of slope 1, the predicted
" values 3 ahd 2 are reached for f 6 Hl(r) according to (5.21), but the
maximum values 4 and 3 are reached for f € HZ(Q) .

2.5.2.c. Irregular mesh of 4~ and 9— node elements. Finally, the

method has been tested on the quarter unit disk shown in Fig. 22 with

2
f r - ey a>- 2

The plot (a,0) is shown in Fig. 23 and we can point out:
* The general pattern is respected (linear increase towards a

maximum value)

*» The maximum values 4 and 3 (9-node elements) are reduced to

values slightly lower than 3 and 2 .

2.6 Excitation of Spurious Modes

The previous sections were devoted to the study of the Laplace
equations with Neumann boundary conditions. The choice of these bound-

ary conditions is convenient for the analysis of the hourglass instabil-



ities because these modes appear explicitly in the kernel of the under-
integrated discrete operaﬁor. When Dirichlet conditions are applied

on a part of the boundarf, even though the kernel of the underintegrated
stiffness matrix is not rank-deficient, instabilities may appear.

" In this section we would like to study the influence the boundary
conditions haye on the solution of the underintegréted problem, and
obtain results analogous to Theorem VIII. Also we would like to explain
how the oscillations may be excited in certain problems. The method of
proof is similar to that presented in Section 2.4. For various boundary
conditions, we are able to exhibit the exact eigenvalues and eigen-
functions of the various linear and bilinear.form involved. Tﬁe expla-
nation éf the excitétion of oscillations will result from the comparison
of these eigenvalues. Therprocedure also allows us to study ;he under-
intégration of the oper#tor -A+1 and the control of resulting spurious

modes. Numerical results will illustrate the theory.

2.6.1. The underintegrated problem with Dirichlet or mixed bound-

- ary conditions. This section is devoted to a generalization of the

results obtained in Section 2.4 to the Laplacian equation with Dirichlet
or mixed Dirichlet-Neumann boﬁndary_conditions.' Only proofs for the
Dirichlet case will be giveﬁ in this section, but their equivalent for
the mixed case can be found in Appendix A. 7

The Dirichlet case is simpler than the Neumann case because the
hourgiass mode'dogs.not belong to thg new approximation space defined
to handle the boundary condition. Thérefore the stiffness matrix is no
longer singular and can be normally inverted. In the variational for-

mulation, similar to (3.7), the projection of the data function is not
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necessary and the problem fh is written:

(?h) Find Eh € Vh such that

0
@, vh)l,h = (£, Vh)o,h‘ w6 v (6.1)
~ where
Vo= e @ , WMo eq@uin L 13N,
vh[,aQ = 0}
Remarks

is not singular omn Vh does not make
1,h 0

the problem classically eliptic in the sense that the comnstant in the

i) The fact that (-,°)

Lax Milgram Theorem is h-dependent.

ii) When Dirichlet or mixed boundary conditions are applied,

Ker A, = Ker Al,h = {0}
Thus the post processor is not justified anymore and we will compare
directly Eh and uh .
This comparison is carried thersame way as in Sectiom 2.4 and a
basis of the approximation-space Vg can be obtained. One useful
basis is the common eigen-basis of the matrices of the Hl-, L2—, and

underintegrated Hl— or L2— inner product. Let us consider the N-1 x
: o 7

o - | \\

N-1 matrix




The values for which det D(k) wvanishes are

- im . N
ki = cos 1<i<N-1 (6.2)

and the corresponding vectors (D(ki)vi = Q) are

v, = {sin 3T } : (6.3)
j=1, N-1

Let ¢i = ¢i(x) » X € [b,i] , denote the piecewise linear functiomn

associated with the vector v, :

i
$'(im) @ sin A 113 am (6.4)
i h
span{¢ }1fi§N“1 V1,0 (6.5)
where
~ vll1 0" {vh 6 co(o,l), vh(O) = Vh(l) =0
»

v" is linear on eh, (e+l)h , 0<e<N-1}

From this point, the remainder of the proof goes as in Section 2.4 and
the variational problem and its underintegrated formulation cah be ex-
plicitly solved and the decomposition (4.29), (4.30) and (4.31), (4.32)
are obtained for 1 f_i,j f_N-l » and we finally obtain the fesult for
Dirichlet boundary conditiomns: 7

| THEOREM IX: Let f be a function in LZ(Q). Let u be the

solution of P :

P : Find u 6 Hé / (u,v)1 ='(f,v)0 Vv e Hé (6.6)

Let _fh be the Lz-projection of £ onto Vh and let Gh be the solu-

. tion of ?h

&6



sh . =h h =h _h h h h h
P': Find u 6 s /] @', v )l,h (£, v )O,h Vv e vy (6.7)
Then we have the following error estimate:
—h 2-s '
Toolg <cn™ Jlgll, s=o0,1 o (6.8)

This theorem proves that the use of the uqderintegrated matrix does not
affect the raie of convergence oﬁ the solution. The method is there-
fore accurate and efficient.

Varuous regularities of data have been tested for meshes of 4-, 8-,
and 9-node elements, with various boundary conditions. Results are
summarized in Tables 5 and 6. They indicate that the optimal rates of
donvergence‘for £f6 LZ(Q) for the 4-node case and f € HZ(Q) for the
8- and 9-node case.

2.6.2. The underintegration of the operator -A+l. In this sub-

section we consider the underintegration of the operator associated with

the problem

Pb : Find u 6 Hl(Q) such that

-MN+u=f in{

(6.9)
du afd
_5-'= 0 on
n
The usual variational formulation of P0 is
P : Find u 6 HY(Q) such that
(u, v)1 + (u, v)0 = (f, v)o . v 6 Hl(Q) (6.10)

The results 6f existence, uniqueness of P are well-known and so are
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~the ones for its discrete formulation:

Ph : Find uh 6 Vh such that

w?, vh)l + (b, &h)o = (£, vh)o . Vel e vt (6.11)

where Vh is an approximation of Hl(Q) using bilinear elements.
The underintegration of (-,')1 + (',-)0 leads to the following under-

integrated problem:

P. : Find Eh € Vh such that

h
-h h —h h _ h h . =h
(b, v )l,h + (u, v )O,h = (f, v )O,h ’ \fv 6V
(6.12)
where the choice of approximation space
™ = vYE ‘ (6.13)
is justified by
h h - . h h ,
(v, H)l,h + (v, H)O,h 0o, _ v 6V (6.14)

Then, the method of proof used in Section 2.3 allows us to obtain the
existence and uniqueness of ﬁh . A projection similar to (3.30) can

be obtained by analogy: we have

h h .
(', B, + (o, By = (£, B), (6.15)

we therefore construct the projection as:

= =T+ Ao H - (6.16)

.h _h 7
@, H)l + (0, H)O = (f, H)O (6.17)



This defines uniquely AO as

(f’H)O - (G-’H)l - (;,H)O

= : (6.18)
NPT

Similarly to what was done in Section 2.5.1, we can use (4.25), (5.6)
through (5.8), simplify AO without any loss of accuracy and still use

(5.9), (5.10) for the projection

ﬁh = Gh - XH 7 , (5.9) repeat
A= (Gh, H)l llH‘l;z (5.10) repeat

The proof of the convergence of Gh towards u is again done by

direct calculation of uh and ﬁh : the explicit resolution of Ph

and (fh + m) leads to :

"1, 7T+ 8, + 8, £43 0<1,j <N (6.19)
and
- a0 ‘
Ei 5= J fij 0<i,j<N
aiaj + aiBj + ajgi, (173) £ (NN
Usn T OUNN (6.20)

These decompositions allow us to obtain uh - ﬁh as done in Section

(2.4). Provided that £ € LZ(Q) we can obtain
™, <cn®Pllell, s=0.1 (6.21)

Once again, the underintegration does not seem to affect the rate

of convergence. The result can also be obtained with various boundary
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conditions. Numerical results are joined in Tables 5 and 6 and assert

the theory.

2.6.3. Excitation of oscillations. The existence of spurious

oscillations when underintegration is used is not only encountered

when Neumann ﬁoundary conditions are applied on the whole boundary. In
this subsection, we would like to énalyze precisely how modes that os-
cillate with wavelength of order h are excited when underintegration
is used, whereas they afe damped when the integration is exact,

For this discussion we consider the unit square

@ =J0,1 [xjo,1[ (6.22)

discretized into NxN elements. We consider the Laplace equation on §

- =f in Q

u=0 on 30N {x = 0} (6.23)
_du =g on 3Q/{x = 0}

an

For the first time we include two kinds of load: body forces and sur-
face loads, and we will observe separately the effects of each of them.

The eigenfunctions associated with these particular mixed boundary
conditions are constructed as in Section 2.4.

i i
ey = vl 0, 1 (6.24)
0<j<N

where ¢j is defined in (4.15) (associated with Neumann boundary con-
ditions at both ends) and wi is similarly defined (see Appendix A).
These functions are defined through sine and cosine functions and there-

fore oscillate. Among them we will distinguish "smooth" modes with
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 longer wavelengths (0(1)) from "irregular'" modes with shorter wave-
lengths (0(h)). Smooth (respectively irregular) modes correspond to
smallér (respectively longer) values of i or j . Examples of each
extreme are shown in Fig. 25 for N = 10 .

The resolution of the fully integrated problem leads to the

search for coefficients uij such that
V= oz o, ¥ v (6.25)
1<i<y
0<j<N
The basis {xij} is an eigenbasis for (-,-)1 and therefore we have
- 1j 1] Q:]
where
1 :
T —————— .27
A By * 8 (6.27)
with .. .
- S LU RO
ar o 6 1 cos( N N
1 h2 2 + cosé%g - é%)
> (6.28)
6 1 - cosé%%
B, =—H ————
J hz 2 + cos(%?b J

- The values Aij have been calculated exactly with these formulae
and their values are reported in Table 7.a for N = 10 . The 20 highest
values are in the shaded zome. We clearly can pbserve that

i) these values range from the highest value to 1% of this value,
ii) these values are associated with smooth modes (temsor products

of smooth modes).



92

Contrarily, the eigenvalues of irregular modes are smaller and because
of this, these modes will be damped; only smooth modes will contribute
in (6.25).

When the underintegration is used, and when g is zero, the solu-

X ~h
tion u is

- : i xi3 | (6.29)
1<i<N
OijiN
with
N 1j
uij Aij(f, X )0 (6.30)
where
- a o
Ay - —i 3 (6.31)
ajBi + aiBj
andv im m
o - 3(1 + cos(? - ﬁ)) h
i imr m )
2(2+ cos(-ﬁ- - 51_))
It (6.32)
3(1 + cos(jt%r-))
a =

3 202 + cos(jml))

Again, the values»of Kij have been calculated exactly and they
are reported in Table 7b. The 20 highest values are in the shaded

zone. The comparison between Tables 7a and b shows that these 20 values

are approximately the same and they are associated with the same smooth ,
modes. In this case, irfegular modes will still be damped , and ome

can predict that no oscillation will occur.

When a load 1s only applied on the boundary (f =0, g # 0) ,



uij is now
S =k (g XN (6.33)
ij ij =2 0,90 *
where
Ry T SETTaTE (6.34)
S L B b

Again the values of K;j are reported in Table 7.c and the 20 highest
values are in the shaded zone. Among these 20 values; three correspond
to very irregular modes. In particular, the third value is associated
with X10,10 . Therefore, we can predict a strong contribution of
irregular modes within the solution Gh , which will show oscillatijons.
Finally, one could wonder if the calculation of the boundary
integral can be calculated such that (g, Xij)o,aﬂ is damped for large

iand j . Unforfunately, no precise method has been obtained. In par-

ticular, if the load g 1is a concentrated load at (xo, yo) , then
ij = 1J

and this value is not necessarily zero. The procedure, consisting of
splitting g between neighboring nodes, seems to give satisfactory

results, but is more ad hoc than general.

2.7. The Practice of Underintegration in Linear Elasticity

We devote this section to the discussion and the effects of the
underintegration of the linear elasticity operator. Our goal is: 1)
to exhibit the kernel of the underintegrated operator; 2) to obtain a

post-processor formula similar to (3.30) to control, a-posteriori, the
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spurious modes; 3) to indicate how to Implement this control, and 4)
finally, to show numerical results. This study is entirely qualitative
- the basis function obtained in Section 2.4 cannot be used at this
point to obtain basis functions for the elasticity operator. BHowever,
both 4- and 9-node elements will be discussed.

2.7.1. The kernel of the discrete underintegrated linear elasti-

city operator. We consider the linear elasticity operator defined by

a=8"c8 (7.1)
where
I T
9% dy
= 9 ) '
0 dy ox

and C is a 3x3 symmetric matrix. 1In the plane strain case we may

particularize C :

A2 A 0
0 0 A

In order to exhibit the spurious modes we consider the operator A
associated with Neumann boundary conditions. In that éase, the kernel
of A consists of the usual 2-dimensional rigid body modes denoted by

t ,t and r
~X =y -

RBM = span {t_= () 5 t_ = () ;r=(D} (7.4)

We consider the problem
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%1 1, 02
P : Find u = (u ) 6 [ﬁ (Qi] /RBM such that

2
J ul gT ¢ g v dxdy = J £1 « v dxdy ‘ (7.5)
0~ T = o Q" ~
where f = (fl, f2)T is a force satisfying the equilibrium conditions _
T
f 6 RBM. : _ , (7.6)

or equivalently

J f1 dxdy = J f2 dxdy = 0
Q Q “.7)

JQ (fly - f2 x) dxdy.= 0

The existence and uniqueness of a solution for P are well known. The
construction of finite element approximations of (7.5) involves the cal-
culation of the (2Nx2N) stiffness matrix Ke for a typical element

Q, » which is given by the formyla

ksl

= J T 8T ¢ g N axdy (7.8)
e -~ -~ A A Ay

Q -~ ~ A
where N is a vector representing the bilinear (N=4) or biquadratic

(N=9) shape functions in each element Qé » 1< e<E. Incomputa-

tional applications Ke is evaluated using an integration rule:

L
K. = I W 3T ¢ 5% (7.9)
= ﬁ=l o} x ~N X
where, similar to (2.36),
) T
by O b; :
a ~ ST .
B = 0 ba ba . (7 .10)
~2 -1

a-L



and w is the weight at the integration point o . Simple rank con-
o

siderations allow us to predict the rank of Ke + Indeed, since

X

rk(A + B) E_max(rk.A, rk B)

(7.11)

and rk(A + B) E_rk A+rk B

we have

rtk K <3 1L o (7.12)

When the full integration is used, (7.12) does not tell us anything,

but we know that Kiull has the correct kernel containing only rigid

~

body modes. However, when underintegration (L=1) is used on 4-node

elements, we have
rk K <3 (7.13)

Therefore, the 8x8 matrix Ke possesses at least two spurious modes.
In fact, two is the exact number. Similarly, when underintegration

{L=4) is used and 8- or 9-node elements, we have
- rk K < 12 (7.14)

This inequality predicts one spurious mode for the 16x16 matrix associ-
ated with 8-node elements, but when the procedure is repeated for two
neighboring 8-node elements, the spurious modes can no longer exist in
the global matrix [;é]. We can also interpret this elimination of the
spurious mode by noticing that neighboring element cannot share the
mode ElB] .

As far as 9-node elements are concerned, the inequality (7.14)
tells us that the 18x18 stiffness matrix has at least three spurious

+

modes. In fact, there are exactly three such modes and they can be
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shared by adjacent elements. Next the modes will be explicitly de-
scribed.

2.7.1.a. The spurious modes for 4-node elements. Let Hx and

HY be the two hourglass vectors defined as

-~

_h _,0
o= () o= () (7.15)

. . ,
where h 1is the hourglass nodal displacement defined in (2.14). Then

wvhen L=1 , we obtain from (2.18) and (2.20)

b .h 0
1 -1~
B Hx 0 |=10
=~ T
ek 0
and similarly
B1 «H =0
= ~y
Therefore,
g .n =xWog -0 (7.16)
~€ ~X ~e ~y -

These element displacements can be put together to obtain two

global spurious modes, also denoted by Hx and Hy and we have :

under :
Ker K = {span tos Ey’ r, i, H } (7.17)

This defines entirely the kernel of the underintegrated matrix and the
spurious modes for 4-node elements.

Remark: 1In problems where symmetry is used for simplificationms,

the kernel of Kunder must respect the symmetry. If one axis of sym-

~

* In this section, nodal values and associated functions will be denoted.
by the same letter, the underlining "." differentiating them. The
nodal values are expressed component by component.



metry (say, the x-axis) exists, then

Ker g9MdeT _ span {t_ , H}
~ ~X ~X

If the problem has two axes of symmetry (x- and y-axis)

Ker Kunder = {0}

The spurious modes are eliminated by the symmetry conditionms.

2.7.1.b. The spurious modes for 9-node elements. Let Hx and

- H be the two vectors defined as

~

- (h H '=(0

B = Q) 1, = ) (7.19)

where h 1is the spurious mode of 9-node elements defined in (2.37).

Using (2.36), (2.39) and (7.9), we easily get

K(Asz S (7.19)

~ ~. ~ ~y -~
~ -~

Therefore, Hx and H_ are two out of the three spurious modes of
<

~8

-

on the geometry of the mesh. As far as the third spurious mode denoted

~

- We remark that the pattern (2.37) defining them does not depend

by
Y1
W= (" (7.20)
~ WZ

' is concerned, one can show that the equations defining it are

o w =0 1,4 (7.21)

oT =dT. o aT. -
E w b w b + 92 v,

1 1T 20 o I B

or equiValently :

T o = ]
yAw =0

1



§T~ay2 =0 o= 1,4 (7.22)
T o T, o
XAw =yaw, J

Note that for this system of 12 equations, we have 18 unknowns. 1If

-~

we add 5 orthogonality equations between W and tx’ ty’ T, Hx and Hy,'

the system will define only one W (up to within a multiplicative fac-
tor). For a general geometry of Qe , one cannot exhibit an explicit
form for W ; however, when Qe is a quadrilateral, and when x and

y are of the form

~

~

= 1
x (xl, Xys X545 Xy, »i(x1 + xz), %(x2 + x3),

%(x3 + xa), %(xa + xl), k(xl + %, + X4 + x4)) (7.23)

we can prove that one candidate for W can be written as

w, =Ty
o= (7.24)
w, = ~Ix’
where
T
4 2 0 2 -1 0 0 -1
-2 -4 =2 0 1 (7.25)

1
[

0 2 4 2 0 -1 -1
-2 0 -2 -4 0 0 1

o O O O

and 5' s ¥

of x and y . An example on W for a geometry satisfying (7.23) is
shown in Figure 25 and can be constructed as follows:
i) the displacement of a mid-side node is normal to the side,

alternatively inwardly and outwardly oriented, with magnitude

are the vectors constructed with the first four components
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proportional to the length of the side.

ii) the displacement of a cornmer is obtained by multiplication
of -2 of the sum of the two displacements of the closest
mid-side nodes.

1ii) the displacemenﬁ of the céntroid is zero.
On a square, the pattern of Ag is well-known:
-2, 2,2, -2,0,-1,0,1, 0

W= ‘ (7.26)
- 2, 2, -2, -2, -1, 0, 1, 0, 0

ant;ary to 8-node eleﬁgn;s, ané because of the presence of ,Hx
‘and Hy » this mode can "propagate" from one element to another. For
example, on a square mesh, if the nodal displacement vector is g
, given by (7.26).on an elemenf Qo » then the displacement vectors H

on the elements to the right of QO

+3H +t and W-3H, -t
~X X ~ - ~y
and above QO allow us to construct a continuous global displacement
also denoted W , on the mesh as shown in Figure 26.
We finally have

under

Ker K = span'{tx, , T, H, H , W} (7.27)

t
~y LTy L

Remark: Similar to what we have with 4-node elements, the exis-
tence of one axis of symmetry (say, the x-axis) reduces the kermel of

the underintegrated stiffness matrix:

under

Ker K = span {tx, Hl, H, + H1,} (7.28)
where
B =3/2(8 -t)
= =3/2(H -t
i) /2y - t)



~H3 = V~J + 2(tx - ty) J (7.29)

have been chosen such that the displacements of these modes are zero at
the intersection of both axes for a square mesh. Contrary to the 4-node

case, we still have a spurious mode when two axes of symmetry exist:

Rer KUPIET o span'{Hl + H, +H,} (7.30)

This mode is shown in Figure 27.

It is also important to point out that whereas the pattern of
the spurious modes Ex and Ey are independent of both the geometry
and the element, the mode Y depends upon both of them. Moreover, we
can see by construction on a square mesh that the amplitude varies
strbngly when we consider succéssive‘elements. In fact, the pattern we
gay:observe is a succession of pattern Ex and Ey with increﬁsing
amplitude.

2.7.2. The a-posteriori control in linear elasticity. In this

subsection we wish to generalize (3.30) with regard to the discrete
_operators;_dsing various kernels discussed in the previous subsection.

We consider the general case where

Ker Isunder = RBM & spah{Hi, i=1,1} (7.31)

where I may have the values 1, 2 or 3 . We recall that for

I =1, we obtained a control formula similar to

~h _ —h

a(@®, Hy) ‘
i =u H (7.32)

where the bilinear form a(+,¢) was obtained in the variational formu-

lation of the initial problem. This projection satisfies:
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a(@l, H) = 0 (7.33)

or, in other words, ﬁh‘ is orthogonal to the spurious mode. We gener-
alize this property to the elasticity problem by supposing the projection
to be orthogonal to all the spurious modes. Therefore the control will

consist of looking for I constants ki (i = 1,I) such that

=5 - 1 A, H
S
' o (7.34)

a(ﬁh, Hi) =0 for i=1,3

This leads to the system of I equations with I unknowns :
Find Ay , 1 =1,T such that

= —11 -
j=§,1 Ay ally, B =a(, B) , 1=1,1 , (7.35)

The computations involved in the control are computations of products
of ﬁh and the spurious modes by themselves. The implementation of
these éomputations are to be discussed in the next sectiomn.

2.7.3. Implementation of the spurious modes control. For the

computation of the coefficients in (7.35) we again use the decomposition

Kfull - Km:xder >'+ x* o ' (7.36)
where Kunder satisfies

SRRt R | (7.37)
then

a@h, 131) = I ot - g% H (7.39) '

e=1,E ™~
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The expressions used for kK’ are next given for 4- or 9-node

elements,

2.7.3.a. Control for 4-node elements. For the operator defined

in (7.1) and (7.2) with

c c c

11 12 13
g = 021 C22 C23 (7.40)
C31 C32 C33

we have the exact decomposition for any geometry of Qe

, oYy voyT
exact under 11 ~ =~ 12 -
I-Se ='§ + T T
~ %yp Y°Y %9 Y°X
where
[] C1 1€ H(Cy34Cs1)E, 7+C33 €53 138, H(C1 o *C 33)€xy+c32yy
15t (Cp1¥C33) €, #CoE s 33E H(Cyy¥Cy3) €L #0h0E o

(7.42)

‘The vector Y and the €'s are defined in Section 2 ((2.41) and

~

(2.50)). For practival use, the expressions (2.51) are used for € .

For linear isotropic linear material, C is given by (7.3) and

A+2u)€ T u

£
[] vy Xy (7.43)

€ +(A+2v) e
y uxx( )yy

This expression of [a:] can be compared to the general strain-stress

~
~

relationship:



(>\+2u)sx + uey U exy

[2] = (7.44)

+
u €xy usx+(x 2u)€y

An algorithm similarrto the one presented in Section 2.5.1 can be con- )

structed. It involves tﬁe computation of Y., € and o, then the

computation of a(Hi, Hj) and a(gJn . Hi) , and finally the coeffi-

cients Xi are obtained by resolution of a NxN system, N measuring
under

the rank deficiency of K (N=1 or 2).

2.7.4.b, Control for 9-node elements. In this subsection, devoted

to 9-node elements, we would like first to show why the results obtained
by Belytschko are not sufficient to obtain a generalization of the
Linear Elasticity Problem, and then to propose an implementation of the

control that leads to a stable solution converging to the exact solu-

tion with the optimal rate of convergence. However, for 9-node elements,

we have not yet been able to obtain a computationally easy way to exhi-
bit the third spurious mode, and the proposed results are only applica-
ble to regular discretizations of a domain.

As far as the stabilization method proposed in [i] is concerned,
algebra similar to that in Subsection 2.7.3.a leads to (7.41) where Y
was defined in 2.41. But, whereas the stabiliéation matrix constructed
witﬁ the submatrix I°x? eliminates gx and gy from the kernel of

the stiffness matrix, it does not take W into account. Indeed, we

have
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- Therefore this procedure cannot be used to control W .,
In order to obtain an accurate control, we have to consider a

generalization of (2.43). Now we have

%1 %4%% %1 %1 %
. Hj'# 0
%2 5554 %2 55 34

for 7<i<9
1<3<3
where the vectors s, are defined in Section 2.2.3. Finally, using
(2.43) and (2.52), we have

~ ~ T
= e (C )s s T

T
NOMMON (C11#C33)898y  (Cq34Cq,) 845,
e +135 ves T
311C23)893 22703408

A

T ~ _
_JE! Cy 8580 €388 ) [Casfls C32€8§8T \
45 T T

\c 5555 Cp95gS / (7.45)

315787 C33§7§7 85  C2%3%s

Similarly, for the 4-node case, the aigorithm for the computations

of the coefficients in (7.35) has been obtained and implemented. Numer-

"yeyM-type of

~

ical results agree with our presumptions concerning a
control and incline in favor of the-decomposition (7.45). On a square
domain discretized with NxN elements, we have calculated and compared
the solutions obtained with full (exact) and underintegration for vari-
ous boundary and symmetry conditions. The rates of convergence were
calculated by comparing the error norms (s=0: LZ/RBM norm; s=1: energy

2-s)

norm) obtained with N=5,6 and 7. We consistently got the rate O(h

using a Y-YT decomposition and O(hB_S) with (7.45) for homogeneous
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materials under the action of gravity ({ 6 C«3 ;3 the order 3-s being
optimal, we may conclude that the method presented below is accurate.
It is also efficient: for one second taken for the fully integrated
stiffness matrix, only .61 are taken when the underintegration is used
and only .05 seconds are taken fof the control.

Remark: The analysis of the excitation of the spurious modes
carried for the simple Laplace equation cannot be done for the elasti-
city because we are not able to exhibit eigenbasis of the discrete
operator for neither 4- mnor 9-node elements. Numerical computations
Ej] seem to indicate that the same phenomenon occurs: several "irreg-
ular" modes appear within the smooth, high wavelength modes, and are
therefore excited. The shape of these modes and their mathematical

knowledge would allow their elimination or damping.

2.8 Conclusions and Further Research

The underintegration seems to be a very attractive way to obtain
more efficient computations in solid or fiuid mechanics. The spurious
modes this-practice introduces and the precise way they are excited have
long remained unstudied. Several authors previously mentioned proposed
several interpretations based on the intuition. We have here tried to
study this phenomenon from a rigorous mathematical point of view, and
we have precisely answered all the questions concerning one simple prob-
lem. Unfortunately, the algebra involved in more sophisticated problems

(9-node elements, linear elasticity) does not allow us such a complete

study. We would like to indicate that several generalizations of our

results will help in the control of the spurious modes: i) a discrete
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/eigenbasis of the linear elasticity would allow an interpretation of
the excitation of spurious modes, and hence a way of damping them;
ii) an accurate control formula for 9-node elements would help in
a~priori as well as a-posteriori control of the widely known spurious
mode H . This could also help iﬁ preventing bad behavior of 8-node

elements in certain geometries.
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APPENDIX A

As far as mixed boundary conditions are concerned, we suppose
that a Dirichlet boundary condition 1is applied at 0 and a Neumann
boundary condition at 1 . For the interval [O,lj , we consider the

NxN matrix

7 N
2k -1 0
D(k) = ¢ (A.D)
2k -1
$ 0 -1 k
The values for which det K(k) wvanishes are:
- cos(Z 4+ 41)
ki—c°s<2N+N . 1<i<N (A.2)
and the corresponding vectors (D(ki)vi = 0) are :
= ir
A {sin T } 1<3j<¥ ‘ (A.3)

The corresponding approximation space VP with basis {d)j} is con-

1,%

structed as in §25]or in Section2.4, Then, depending upon the sides

where the various boundary conditions (D or N) are applied, tensor

product of Vh R Vh or V. , are to be considered. The results of
_ 1 1,0 ~ 1,%

Theorem II hold for the Mixed Problem.
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Table 2? Norm-evaluation obtained by:

Method 1: QZ/Pl elements

117

Method 2: composite elements
Method 3: IB/P1 elements and filtering of the pressures
by using only the centroidal value
" Exact Solution: |lpll.2 =100 [3L = 175.5942 ; h? = 0.0625
' L"()/R 12 ?
h
“P"Pe ”LZ(Q)/]R .
h h
”PE ”L2 /R ”P"PE ”Lz Q) /R HP ”LZ(Q) /R
Method 1 167.1254 20.0310 0.1141
Method 2 171.5448 36.3181 0.2068
Method 3 171.5845 26.6219 0.1516




Table 3: Cost of computation of

with a full integration.
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4 Node Element
Full Integration:
4 points

Under Integration:

9 Node Element
Full Integration:
9 points

Under Integration:

1 point 4 points
Stiffness with Full Int. 1. 1.
Stiffness with Under-Int. .41 .52
Control with Full Int. .51 .34

-l



Table 4:

Operations Cost per Element for Both

Stabilization and A-posteriori Methods

Stabilization Method

Operations Cost

A-posteriori Method

Computations of E;, Ye 20x ; 21+ [20x ; 21+ Computations of E;'Ye
Multipl . T 16 4 Maultipl UT-
ultiply Y, * Y, x x ply U_-Y,
Multipl g * T 16x 1x Multiply £ ° UT
ply e YeYe ply e e Ye
Add K +¢ T 16+ 24 Y, * &, v Ye
e e Ye Ye Add e
Y2+€e
Then: (4 nodes/element)
4t | Add TP £ A
TOTAL 52x ; 37+ 29x 3 27+ TOTAL
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Table 5: Rate of Convergence ‘Logl]e]lsfv.s[Log h|(0=0,1)

for 8- and 9-node Elements

*.

REGULARITY

BOUNDARY CONDITIONS

*
|
|
[
| AND ELEMENT

fe Hz

€ E3

W o e — 3¢
* o
h
1)
le]

* *
|NEUMANN, 9~NODE
|+SPECIAL PROJECTION

12.43 [2.95 14.00

1.74] 1.97] 1.94]
* * *

* *
INEUMANN,8-NODE EL. 1.99
*

12.00 12.97 14.00
1.791 1.93] 1.95] 3.001

%
|DIRICHLET,9-NODE EL.
|

% *.

2,35

— * * ——k
12.85 12.99 13.00 |

1.47] 1.99] 1.99] 2.00]
* * % *

IDIRICHLET,8-NODE EL. 12.30

j2.71 [2.99 13.00 |

1,461 2.12}1 1.99] 2.00]
* * ¥* *

%*. —
IMIXED,9-NODE EL.
]

2.00

[3.83 14.00 |
2.28] 2.84]1 3.00]
* * *

12.00
1.671

¥

I
|
|
I
I
I
!
I |
I
!
!
|
|
I
IMIXED,8-NODE EL. 12.00
I ' I

K - %
%

12.00 13.84 14.00 !

1.74] 2.271 2.84] 3.00]
* — * *

*
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Table 6: Rate of Convergence lLog ]!el]slv.s.ILog hl for

4-node Elements (s=0,1)

REGULARITY

OPERATOR AND

BOUNDARY CONDITIONS
*

b e — — %}
W
)

| NEUMANN

11.99

| +PROJECTION |

*

*

| DIRICHLET

11.99
I

%

12.00
1.851
.

12.00

1.501
*

MIXED

12.00
|

*.

12.00 12.00

1.50] 1.991
* ——

o m e e —m e e m = W = o W o}

NEUMANN

12.00

+PROJECTION|

*

{12.00 12.00

1.50] 2.00]
* *

2.00]
*

-A+1 DIRICHLET

{2.00
I

*

[2.00 i2.00

1.501 1.85]
* *

2.00]
*

MIXED

o N o N e N = e —

|2.00
|

*

12,00 12.00

1.50]| 1.851
* -

2.00]
*
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Figure 15: Node numbering convention for 4, and 9, node elements,



138

§
Figure 16, "ilngpattern of the hourglass mode in an
arbitrary mesh.



H

\{U“}

Figure 17, Geometrical interpretation of the projection ﬁh = Trﬁh.



140

-5«

° 1
!

i

Figure 18a \

Figure 18b, UM = 0™+ a# + 0(h°™%)

1

Figure 18,Justification of the omission of the projection



LOG (ERROR)
=

LOG (ERROR)
b

LOGH LOG H

i

Figure 19a. Comparison between uh and ﬁh

LOG (ERROR)
wak
LOG (ERROR)

LOG H ' LOG H

Figure 19b. Compariéon between uh and ﬁh.

Figure 19. Results obtained with a continuous data function.

141



3 =

@ 2 o]

'= &

u u

O O

O

S 1 S

1
[
LOGH LOG H
|
Figure 20a, Comparison between uh and ﬁh .
!
™ -
o (2 o
oo (o]
o o
ui o0
-~ 13]
0 L
o &)
d (o]
~l 1
. 1
[

LOG H ' _ LOG H

Figure 20b. Comparison between uh and Gh.

Figure 20, Results obtained with the discontinuous data function
f2, for Neumann boundary conditionms.
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Plot for a square domain.
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Figure 23, (@,0) Plot for a quarter circle domain
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Figure 25, Spurious Modé W on a Quadrilateral Element.
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26b. The spurious mode W on a 16 element mesh

Figure 26: The Spurious Mode W
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