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ABSTRACT

Underintegrated methods are investigated with respect to their

stability and convergence properties. The focus was on
identifying regions where they work and regions where techniques

such as hourglass viscosity and hourglass control can be used.
Results obtained show that underintegrated methods typically lead

to finite element stiffness with spurious modes in the solution.

However, problems exist (scalar elliptic boundary value problems)

where underintegrated with hourglass control yield convergent
solutions. Also, stress averaging in underintegrated stiffness

calculations does not necessarily lead to stable or convergent

stress states.





0. INTRODUCTION
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One of the most important and widespread numerical procedures used

in contemporary finite element analysis of nonlinear problems in structural

mechanics is the use of so-called reduced or underintegration. Promoted

strongly in the late seventies and early eighties as a means for dramatically

reducing computational times iq large-scale calculations, the use of under-

integrated finite element methods has become common practice in a 1.arge

majority of all nonlinear calculations.

A question of overriding importance that has perplexed many users

+.

of underintegrated finite element techniques for some years is whether

or not these underintegrated methods are really satisfactory. It is

known that underintegrated methods are- frequently unstable, but these

instabilities can be dampened out by the use of various types of "hourglass

• viscosity" or "hourglass control." It is also known that in many cases

"the underintegrated solutions can seem to converge at a rate equal to

-that of the fully integrated solutions. What are the true properties

of underintegrated methods? When do they work? What criteria must

hold in order that they can be used with confidence?

These are the questions that were addressed in the research project

reported in this document. This final report summarizes the results

of a two-year research project, supported by the NASA Lewis Research

Center and carried out by Professor J. Tinsley Oden and his students

at The University_=0f: Texas_ .... Some of the principal ....conclusions of the

work are listed as follows:

i) Underintegration of finite element stiffnesses generally leads

to the introduction of spurious modes_ in the finite element solution.
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These spurious modesarise from two distinctly different mechanisms: under-

integration of constraint terms, which gives rise to checkerboard instabili-

ties and the underintegration of primary stiffness terms, which gives

rise to hourglass instabilities.

2) The spurious modesactually arise from expandedkernels of constraint

operator and the governing differential operator. For example, an improperly

underintegrated stiffness matrix will be ranked deficient'and these ranked

deficiencies correspond to additional modes supplied to the rigid body

modes that appropriately belong to the kernel of this operator. In

a similar fashion, underintegration of constraint terms leads to checkerboard

modes, which belong to an expandedkernel of the constraint operator.

3) There is a significant class of problems in which, with appropriate

filtering, can be shown that an underintegrated solution with hourgiass

control can yield very satisfactory answers, and produce a finite element

method which has the same rate of Convergence as the fully integrated

method. The fact that this does indeed hold has been rigorously proved

in the enclosed document for a class of scalar elliptic boundary value

problems.

4) Unfortunately, underintegrated with hourglass control does not

work uniformly on all linear or nonlinear problems, and it can lead

to solutions which, while looking reasonable to the unsuspecting eye,

may be grossly in error. The success of underintegrated methods seems

to depend strongly on the regularity of the solution. Underintegration

seemsto work well in the presence of smooth solutions.

5) Most of the better known and often used underintegrated methods

for constrained problems are actually Unstable, but the instabilities

are subtle and may be manifested only in cases in which irregular meshes
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are used or in which there are irregularities in the data. In general,

these unstable methods should be avoided in code development.

6) For the underintegration of constraints, such as those occurring

involved with the incompressiblity condition and Stokes problems are incom-

pressible elasticity or incompressible plasticity, a necessary condition

for the numerical stability of underintegrated methods is the satisfaction

of a specific LBB condition. Some excellent underintegrated elements

which satisfy this condition are discussed in the report. Stress averaging

in underintegrated stiffness calculations does not necessarily lead to

a stable or convergent stress.

0.I. Major Publications and Presentations

A number of significant papers and reports were published durlng

the contract period. These are listed as follows:

Oden, J.T., "Penalty Method and Reduced Integration for the Analysis

of Fluids," Proceedings, Symposium on Penalty Finite Element Methods in

Mechanics, ASME Winter Annual Meeting, November 14-19, 1982, Phoenix,
AZ. •

Oden, J.T. and O.-P. Jacquotte, "Stability of Some Mixed Finite

Element Methods for Stokeslan Flows," Computer Methods in Applied Mechanics

and Engineering, 1984, Vol. 43, No. 2, pp. 231-248.

Kikuchi, N., Oden, J.T., and Song, Y.J., "Convergence of Modified

Penalty Methods and Smoothing Schemes of Pressure for Stokes Flow Problems,"

Finite Elements in Fluid Dynamics, Vol. V, John Wiley & Sons, Ltd.,

London, 1984.

Oden, J.T. and Jacquotte, O.-P., "Stable and Unstable RIP/Perturbed

Lagrangian Methods for Two-Dimensional Viscous Flow Problems," Finite Elements

in Fluid Dynamics, Vol. V, John Wiley & Sons, Ltd., London, 1984, pp.
127-146.

Endo, T., Oden, J.T., Becker, E. and T. Miller, "A Numerical Analysis

of Contact and Limit-Point Behavior in a Class of Problems of Finite

Elastic Deformation," Computers and Structures, 1984, Vol. 18, No. 5,

pp. 899-910.

Jacquotte, O.-P. and Ode_n, J.T. Analysis of Hourglass Instabilities

and Control in Underintegrated Finite Element Methods," Computer Methods

in Applied Mechanics and Engineering, 1984, Vol. 44, pp. 339-363.

Jacquotte, O.-P. and Oden, J.T. "Analysis and Treatment of Hourglass

Instabilities in Underintegrated Finite Element Methods," Proceedings, Sympo-

sium on Innovative Methods for Nonlinear Mechanics, ASME Winter Annual

Meeting, December 1215, 1984, New Orleans, LA.



4

I
I

Jacquotte, O.-P.,"Stability, Accuracy, and Efficiency of Some Underin-

tegrated Methods in Finite Element Computations," Computer Methods in

Applied Mechanics and Engineering, (to appear).

Oden, J.T., Jacquotte, O.-P. and Becker, E.B.,"Numerical Control of

Hourglass Instability," Computers and Structures, (to appear).

Oden, J.T. and Jacquotte, O.-P.!"Convergence and Stability of Underin-

I

tegrated Finite Element Methods," To appear in Proceedings, ASCE/ASME

Mechanics Meeting, June 24-26, 1985 at Albuquerque, NM.

0.2 Dissertations:

Jacquotte, Olivier-P., "Underintegration in Finite Element Methods,"

Ph.D. thesis, University of Texas, Austin, Texas, 1985.

0.3 Oral Presentations

There were three oral presentations during the research period. They

are as follows:

Oden, J.T., "Stability and Convergence of Underintegrated Finite Element

Approximations," Presented at the NASA-LeRC/INDUSTRY/UNIVERSITY Workshop

on Nonlinear Analyses for Engine Structures, April 19-20, 1983, in Cleveland,

OH .... _!

Jacquotte, O.-P., "Analysis and Treatment of Hourglass Instabilities

in Under!ntegrated Finite Element Methods," Presented at the ASME Winter

Annual Meeting December 12-15, 1984 in New Orleans, LA.

Oden, J.T., "Convergence and Stability of Underintegrated Finite Element

Methods," Presented at the ASCE/ASME Mechanics Meeting June 24-26, 1985

in Albuquerque, NM.

0.4 Personnel

The following individuals worked on technical aspects of the project

during the report period:

Prof. J.T. Oden, Principal Investigator

Mr. O.-P. Jacquotte, Graduate Research Assistant

Mssrs. Lin, Martins, Strouboulis, Wu, and Manifold worked on it

for a small percentage of their time.

0.5 Outline of the Technical Report

This technical report is divided into two major parts: in Part I

a numerical analysis of underlntegrated constraints is presented. Particular



5

attention is focused on the Stokes problem with a constraint divergence

u = 0 and on construction of an appropriate LBB condition for stability.

Part II deals with underintegration and hourglass control. There

projection methods, error estimates, and a large collection of numerical

results are described.



PART I: STABILITY OF SOME MIXED FINITE

ELEMENT METHODS FOR STOKESIAN FLOWS

I.i. Introduction

i

In so-called primitive variable formulations of problems of flow of

viscous, incompressible, Stokeslan fluids, two fields appear as unknowns:

the velocity field u and the pressure field p, the latter representinE

a La_ranze multiplier associated with the incompressibility constraint,

div u = 0. Finite element methods based on such formulations were first

introduced over a decade ago [42]. Since the mid-1970s, interest in these

methods was rekind!ed by the appearance of several new techniques which

provided for very efficient calculation of the element pressures. These

included mixed methods which employ pressure approximations which are

discontinuous at interelement boundaries as well as the closely related

mixed-type methods which employ an exterior penalty approximation of the

-incompressibility condition and reduced integration of the penalty terms.

All of these methods have the attractive feature that the discontinuous

element pressures can be eliminated element by element, reducing the problem

to one only involving velocities. Upon determining velocities, element

pressures can then be evaluated through a simple post-processing operation.

Methods of this type were developed and discussed by several authors,

and we mention in particular the works of Malkus [30,31], Hughes [23], Malkus

and Hughes [33_, Reddy [43_, Bercovier [6], Engleman and Sani [15], and the

references therein. In 1980, however, mathematical analyses indicated that

some of the more popular discontinuous-pressure�mixed-methods might be numer-

ically unstable _4,35-40,4 0 . It was discovered that while certain of these



methods perform well i_ problems w_th smooth solut±ons for which regular

uniform meshes are employed, serious oscillations in the pressure approximation

can occur when the data or the mesh pattern are mildly irregular, and these

oscillations increase in amplitude as the mesh is refined.

Oden, Kikuchi, and Song [41.] attributed the deficiency of these unstable

methods to their failure to satisfy a key stability criterion which they

referred to as the "LBB-condition," making reference to the work of

Ladyszhenskaya [29] on existence theorems of viscous flow problems and of

Babu_ka [I] and Brezzi [8] on the approximation of elliptic problems with

constraints. The discrete LBB-condition of Oden, Kikuchi, and Song is

basically the requirement that the discrete approximation B E of the

transpose B* of the constraint operator B = div be bounded below as a

linear operator mapping the space of approximate pressures onto the dual

of the space of approximate velocities. For example, one form of this

condition is that there exist an _h > O such that for all qh E Qh,,

(qh ,div lh )
sup

CLh]l qh][ L2(fl)/ker BE V h I] Zhll i

Related conditions for mixed finite elements were discussed by Fortin _8]

and Girault and Raviart [22 ]. The possibility of unstable pressure approxl-

mations is signalled by the existence of a parameter e h

which depends upon the mesh size h. Indeed, the fact that a mesh-dependent

a h corresponds to methods with "spurious pressure modes" is supported

by the theoretical and numerical results of Oden et al [41 ] and by extensive

numerical experiments of Malkus [32]. Equally important, the behavior of

* Definitions of terms displayed here are given in Section 1.3.



_h as a function of h governs the asymptotic rate of convergence of

such mixed methods.

An important question that has arisen from these considerations is

whether or not stable mixed methods exist which converge at optimal rates in
K

the energy-and L2-norms. The present paper is directed at resolving this

question for a restricted class of problems by estimating the stability

parameter _h in the corresponding discrete LBB-condition.

The methods of proof of the LBB-condition basically fall into two

categories dependin_ on whether or not ker B_ = ker B* or ker B_ker B*,

where B* = - gradient + boundary conditions and B_ is it finite element

approximation. In the former case, a general method of proof can be constructed

which is inspired by the work of Girault and Raviart [22], _ndo_h_Ch will be

.discussed in the first section. We shall concentrate next on the latter

case, and present another general constructivetechnique for estimating

_h for uniform meshes which makes use of a discrete Polncar_-type inequality.

These two methods of proof will be presented and used to establish the

LBB-condition for two elements. In the first category of stable mixed

method with discontinuous pressure for which ker Bh = ker B , we shall

analyze in detail the Q2/Pl-element (biquadratic velocity/linear _iscontin-

uous pressure), and prove that it does in fact satisfy the LBB-condition

with _ independent of h .

As far as the second category of method (for which ker Bh_ker Bh)

is concerned, we shall prove that the 18/Pl-element (eight node isopara-

metric velocity/llnear discontinuous pressure) satisfies the LBB-condition

B

with _ of order h , and therefore appears to be unstable. However,
_h •

certain ways to stabilize this element are suggested and their implementa-

tion in codes have lead to stable and accurate solutions.



Also falling into this second category is the %/P0-element (bilinear

velocity/piecewise constant pressure). This element will be briefly discussed.

Finally the various values of the LBB-constant and the rate of convergence

expected from the most used rectangular elements and using discontinuous

pressure will be summarized.

1.2 Statement of the Problem

Let _ denote an open bounded region of IR 2 with boundary _.

We consider the two-dimensional Stokes problem an _, which involves finding

a velocity field u~ = (Ul,U2) and a pressure field p such that

+ Vp = f in _ ]

div u = 0 in _ (2.1)

]u= 0 on _ "

where 9 is the viscoscity of the fluid, (9 = const. > 0), and f is the

body force, assumed to be a prescribed vector field with components fi _ L2(_) "

We recast (2.1) in a weaker variational framework by introducing the

spaces

V = (HoI(_)) 2 , Q = L2(n) (2.2)

and the forms

a:V x V ÷ ]R, f:V ÷ IR

a(u,[) : 9(u,v)l,

2

f(v) = [ (fi,vi)
~ i--i

(2.3)

for all u, v_V, where (''')i

respectively, and are given by

and (-,-) are inner products on V and Q,



(v,w) _= S vwdx ; v,wEO
i _ "

2 8ui _'vi

(u'v)l =i, ~ ~ /

(2.4)

The partial derivatives in (2.4) 2 are interpreted in a distributional sense.

We proceed by considering the problem of finding (u,p) 6 V x Q such that

lO

a(u,v) :- (P,div v) = f(v) VvEV

(q,div u) == 0 VqEQ

(2.5)

It is easily verified that any solution of (2.1) satisfies (2.5); any

solution of (2.5) satisfies equations of the form (2.1) in a distributional

sense. Under the conditions stated, it is also known that (2.5) possesses

a solution (u,p), with u uniquely determined by each choice of f and p

unique up to an arbitrary constant.

Problem (2.1) can also be interpreted as the characterization of a

saddle point of the functional

L:V x Q -> IR

1

L(v,q) = _a(v,v) - f(v) - (q,div v) (2.6)

with q clearly a Lagrange multiplier associated with the constraint,

div v = 0 in Q.

We remark the saddle point problem for the functional L(-,-) of

(2.6), can be pre-conditioned by introducing the perturbed LaKranEian

L e : V x Q-+ ]R

1
LE(v, q) = L(v,q) -_(q,q) (2.7_



ll

for all q6Q, which represents a regularization of L(',') with respect

to the multipliers q. For each e > O, saddle points (us,ps) of L(',

are characterized by

.)

a(us,v) - (ps,div v) = f(v) Vv_V

(cpe+ div us,q) = 0 '_q6Q

Upon solving the last equation in (5.8) for Ps' we obtain

(2.8)

I div u in Q (2.9)
PE = - _ ~S

The forms a(',') and f(') are continuous and a(.,-) is V-elliptic.

In addition, Ladyszhenskaya [29] has shown that a constant 6 > 0 exists

such that

< sup (q,div v)
511 qllL2(_)/iR vEV

llzlll

(2.10)

where llzll=  JFvv,v)1. Under these conditions, the sequence

of solutions converge strongly in V X Q/l% to the saddle point

{(us,ps)}
g >0

(u',p)

of the functional L(-,-) in (2.6).

Finally, it is interesting to note that when (2.9) is introduced into

the first equation in (2.8), one obtains

i
a(u s,v) + _ (div us ,div v) = f(v) v _ V (2.11)

which is equivalent to an exterior penalty formulation of the constraint,

div u = O.
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1.3 Finite Element Approximations

We shall outline briefly features of certain finite element approxi-

mations of (2.5) or (2.8). We confine our attention to cases in which n is

rectangular or is the union of rectangles and, for simplicity, to uniform

meshes of rectangular elements of maximum length h. For a family of

such meshes with E = E(h) elements, we introduce the discrete (finite-

dimensional) spaces,

vh {vh " (Vhl,Vh2) I Vhi ecO(_),

Qk(_e); Vhi = 0 on _

i < e < E, i = 1,2} (3.1)

Qh = {qh_L2(_ ) lqh in
a

6 Pr (_e) ;

i < e < E, r > O} (3.2)

Here Qk(_e) is the space of tensor products of complete polynomials in

x I and x 2 of degree _< k defined on finite element _e and Pr(_e)

is the space of complete polynomials of degree _ r defined on _e" The

elements Q2/P I and QI/P0 clearly correspond to the values (2oi) and

(i.0) of the parameters (k,r).

WIn addition to the spaces , we shall also consider cases in which

vh is constructed using I8-elements:

I8 = eight-node isoparametric elements

This element is also referred to as a serendipity element _6_. We also

consider composite elements whichemploy both Q2 and I8-subelements.



13

Clearly, for every h ,

vhc V and Qhc Q (3.3)

The finite element approximation of the formulation (2.5) consists of seek-

Qh
ing Uh_Vh and ph_ such that

a(u h,v h) - (Ph'div v h) = f(v h)

(qh,div uh) = 0

v h _ Vh

Jqh _ Qh

(3.4)

while the approximation of (2.8) is of the form

a(u h,v h) - (PhC'div vh) = f(v h)

c
(gphE + div uh,qh)~ = 0

vh 6 Vh _,

Jqh ( Qh

(3.5)

The solvability of (3.4) deDends upon a compatibility condition between

the spaces Vh and Qh which resembles (2.10) and which we record below.

g
Likewise, while (3.5) uniquely solvable for u_ and p_ for any g > 0is

c g

(under the stated conditions on a(-,') ) , the behavior of uh and Ph

as _ or h tend to zero also depends upon more delicate features of the

approximation.

,

Let Bh and Bh denote the discrete operators,

Vh QhBh : + ; B_ : Qh' _ Vh'

[qh,BhVh] = <Vh,B_qh> - (qh,div v h)

Vqh E Qh, Vv h _ Vh (3.6)



14

L2(_))where [.,-] and <_-,-/> denote duality pairings on Q' × Q (Q = Q' =

and V' x V respectively (i.e., Bh and B_ are the discrete approximations of

div and -grad plus boundary conditions defined by (',')). Then, the

discrete LBB-condition for problems (3.4) and (3.5) is as follows:

There exists a number _h > O such that

_hll qhilL 2(_)/ker B_ < vhSEuPVh

(qh,div vh)

I[Vh IIi

(3.7)

for all qh E Qh

The behavior of ah as h tends to zero and the structure of ker B_

_overns the stability of these types of mixed methods. In particular, let

_(u,p) denote the distance function

_(u,p) = inf flu- VhI[l + inf Ifp- qhllL2(_ )

v h ,_ Vh ~•. qh E &h (3.8)

defined on V x _, _ {q E Q I IRq dx = 0). Then one can show (see Oden

c
and Kikuchi [40]) that if (u,p) is the solution of (2.5) and (uh,Ph) is

the solution of (3.5) in Vh x Gh ,

III - uhllI < c(z + ) +

(3.9)

where C is a generic constant independent of u, p, E, and h.

The remainder of this part is devoted to the study of (3.7) and

estimations of the stability parameter _h for different approximation spaces
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Vh and Qh ((3.1) , (3.2)). As noted in the Introduction, we will focus

our study on the _ollowing approximations:

i) Q2/PI elements _iquadratic velocities, piecewise linear

pressure d

2 ) 18/P 1 elements leight-node isoparametric elements for velocities,

piecewise linear pressure_

3) Composite elements _lements consisting of two or more of

the above_

4 _ QI/P0 elements [bilinear velocities, piecewise constant pressures]

Again, we note that in all of the cases we study, we shall assume that

= % is a rectangle (or a union of

rectangles) discretized by a uniform

mesh of rectangular finite elements;

vh_v, with V = (H_(_)) 2 and

QhCQ = L2(_).

(3. i0)

The principal results concerning ker B h and the LBB-constant O h are stated

in the following theorems.

Theorem I. Let conditions (3.10) hold and let the discrete spaces V h and

Qh be constructed using Q2/Pl-elements.

stability parameter _b in the discrete

constant independent of h(_ h = 0(1)) .

Then ker Bh = ker B and the

LBB-condition (3.7) is a positive

D

Theorem II.

defined by

meter

Let conditions (S. 10) hold and suppose that V h and Qh are

,

18/Pl-elements. Then dim ker Bh _ 3 and the stability para-

in the discrete LBB-condition (3. ?) depends linearly on h :

_h _ 0(h)
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Theorem III. Let conditions (3.10) hold and suppose that v h and Qh are

defined using composite I8/P 1 - Q2/Pl-elements of the type shown in Fig. 1.

Then dim ker B h = 1 and the stability paro_eter ah appearing in the dis-

crete LBB-condition is a positive constant independent of h ; (ah = 0(1)).

Theorem IV. Under the assumptions of Theorem II, if V h and Qh are

defined using QI/P0 -elements, then d_ ker Bh - 2 a_d _ = 0(h) .

1.4 The LBB-Condltion For Q2/PI Elements

In this section, we describe a general method for establishing the

LBB-cond it ion when ker Bh and ker B coincide. This procedure will

then be used to prove Theorem I for Q2/Pl-elements, and can also be used

for Theorem III. The method is embodied in the following four steps.

I. Let qh be an arbitrary element in Qh . Construct a vector

h

uh _ v such that

2
(qh ,div u h) = II qhllO

II _hlll i cll qhllO
C4.1)

where IIIIo = ll"IIL2( ) and C is a constant.Then

sup (qh'div vh) > (qh'div uh) > _i [[qhll 0

vh _ vh IIv II_ IIu hll I

so that _ = I/C

To construct such a
_h ' we continue as follows.

* It suffices to define qh only to within an arbitrary constant or to

demand that all qh be such that (l,qh) _ 0 .
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II. For each qh < QhC Q ' qh ¢ constant, it can be shown (Ladyszhens-

kaya [29_) that a v h _ V can be found such that

div v = qh in _ and l[v [I < C Ill qhll~q ~q i- 0

Let _h denote the V-orthogonal projection of [h onto vh:

(wh - Vh, Vh) I = 0

(4.2)

'V'lh 6 vh (4_.3)-

Then

][w hill < ]IVqlll < CII[ qhl]0

III. Set

e = v h - w h (4.4)

We attempt to construct a uh with the desired property (4.1) by demanding

that

where

(qh,div(_ - eh)) E I qh dlv(e - eh) dx = 0
e=l _ ~

e

(4.5)

eh = u h - wh (4.6)

Then it is clear that

2 = (qh,di v(qh,aivvh)_ 11qhIIO _h)

which is (4.1)1, and it remains only to verify that (4.1) 2 holds. Assuming

that this is possible, we see that the original problem reduces to one of

constructlng a uh such that (4.5) holds.
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IV. To satisfy (4.5), it is sufficient to require that

I_ qh div(e-eh)dX =- I _qh'(e - eh)dX

e e

+ I qh n-(e- eh)dx

e

= 0

for each finite element _e' n~ being a unit outward normal to _e " In

many finite element meshes, each _ is the image of a fixed master element
e

under an invertible affine map F e ,

A

F : _ ÷ _ , F _ s x = T _ + b (4.7)
e _ e~ ~ ~e~ me

T being a 2 x 2 matrix and b a translation vector.
~e _e

ficient to construct u_ such that
_h

I_q eh)dX _ ^ ^h)• (_ - ^ ^ _ ~
~ ~ _q_ -(5 - aS = 0

where q = qh°Fe I' e~" ~e°F-l'e etc.

Then it is suf-

(4.8)

Remark: This procedure is next used for the Q2/Pl-element. But in

the case where _ is partitioned into 18/P I elements, except on___eeQ2/P I

element, we can show that

ker Bh = ker B

For this mesh, the construction II, III, IV can theoretically be made,

but the essential estimate of (4.1) cannot be obtained. This remark suggests

the introduction of the composite element described in Theorem III.

VhFor the Q2/PI element, the two discrete finite-dlmensional spaces

and Qh are defined as
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Vh = {v h = (vhZ,Vh2)IVhi 6 cO('_);

Vh±]_ _ Q2C_e),
e

Vhi = 0 on

Bf_, [ < e< E, i = 1,2}

Qh =- {qh -_ L2(_) [ qh[n C Pl(_e 5 ] < e <_ E}
e

and then using the definition

* " {qh _ Qhker Bh

[
such that J qh div v h dx

0

for all vh_ Vh}
(4.9)

a simple calculation reveals that

Bh = ker B* = _ _._vjker

Then it suffices to construct a _h such that (4.85 holds for the

z

master element _ shown in Fig.2 and to then show that _h satisfies

(4.152. We use the notation indicated in the figure; the integral appearing

on the left side of (4.8) is denoted I , and we seek Q_ with ui _ Q2 (_)"

Observe that the shape functions associated with the indicated nodes are

of the form

^ 2) 2) _12 ^ ^_5 = (1-_ (1-_ , =½(_2 _ l)y(1-y)

_23 =_(I+_5(I-92)' _34 =½(I-_2)_(I+_5

^ ^^ _2
_41 = _(x - i)(i - ), etc.

and that each $ _ PI(_) is of the form
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= qo ÷ ql _ ÷ q2_ with V_~ = (ql,q2)

where q_,a = 0,1,2 are real numbers. A simple calculation reveals that

A _ _ A

I = qo _ h ~e)'n~d_

+ ql[-[_j (_hl- _i )d_d_ + j[ _(_h _- _)-_ dE]_ _ ~

.... I ^^-^^+ (_2 - e2)dxdy + y(e h e).n d_

(4.111

It is clear that we can make I = 0 by choosing _ (equivalently,

choosing a _ ) such that the following five conditions hold:

(i) _(_m) = o ,. i_< i_< 4

(ii) _eh(aiJ) .@ij~ = 0 , I _< i _< j _< 4

where @ is the unit vector tangent to _

(iii) J ^^ I• . e'neh n d_ = ^ ^d;~~ , i < i <j_ _ _< 4

(iv)

(v)
A A A A^ A A A A'_ A

- _2dxdy + eh-_ dE = - e2dxdy + ^ ye-n~~ d_
^

This set of conditions must determine the 18 independent components of

A

(ehi _ Q2 (_)) "

Conditions (i) and (ii) make 12 of the 18 degrees of freedom of _h

zero. We are left with six coefficients:

_hl = _hlCa5)_5 + _I(a23)_23 + _hl(a14)_14

12 ^ _ (a34)^_h2 = _2(a5)_5 + _h2 Ca )_12 + _2 _34
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But four of these coefficients are immediately determined from (iii) by

a direct integration:

2
a

8h2 (a12) = 3 I 182 d_ ;

a

3
a

8hl(a 23) --3 I 2_i d_

a

4 1
a a

3[ ^ .^. ehl (a14 ) 3[ ^ .^
eh2 (a34) = - _J 3e2 as' = - _-_]4±e.as

a a

Thus, it remains only to determine ehi(aS), i = 1,2, using the ;last

two conditions, (iv) and (v). But a direct calculation leads to the

pair of equali=ies

2 3
a a

1o^.5.f,--_ehl_a ) = _id_d9 + IXe2ds - 2_Id_
a a

4 1
a a

a a

2 3
a a

"-9eh216^(a5) __ f_2d_d_ - 31 l_2d_ _ f 2_@ld _
a a

4 3
a a

• 3 2d -;
a a

A

Hence, conditions (i)-(v) determine a vector _ for which I = O, as
~h

required. We easily verify =hat ehEVh,eh[ - ~_hOFe .

e
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It remains to be proven that the vector u h = eh + wh satisfies

(4.1)2. We note that it is sufficient to prove that

IIehlli ! ClII_II1 (4.12)

because

IIuhlll

SO, since

II_hlli < IIuh - whII1 < ciIIv - _hII-- -- ~q 1

<_c1(If_qII1 + li _hIll )

(i + 2C I) IIVqliI < cliqhN0

To establish (4.12), we note that for the master element*,

9 ^ 9

^_%= iZl_h(h)%, ll^_ehi112__<C Z Ill_h(bi)IIi2= i=l

(4.13)

where {b i} are the 9 nodes of the element and III"ill denotes the

euclidean norm in ]R2 . Using the fact that

k,

and the previously computed nodal values of

(v) above, we can verify that III _h(_i ) II12

_h obtained via steps (i)-

<cll̂ 2 2 ^_ _llo,_ + II_11l_,_.
a constant C exists such that

II_hlll,g <_c(llEli,6+ IIsll_,_}_.

Thus,

(4.14)

* Here and elsewhere in this paper, C denotes a generic constant independent

of h and does not necessarily have the same value throughout.
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Wenext transform this result so that it applies to a typical element

of the mesh and sum over all elements to obtain
e

[Ieh[ll, _ _< C_h-211 ~el1_ + [Tell2~ I }_ (4.15)

In this last calculation, we used the affine map F of (4..7), the fact
~e

that III T~el[l _< Clh, I11 re-llll < C2h-I , and Standard relations between

II_ll.l_ and if_ell1,_

We shall next verify that

IIell0 <Chll ellI
(4.16)

We will then arrive at (4.12) via (4.15) and thereby complete the proof of

the theorem.

To prove (4.16), we employ a duality argument of Girault and Raviart

[223. Note that

(e. ,v)

11 II
l

= sup - , i = 1,2 (4.17)

el°'_ v eLf(n)11vllo,

Let g be in L2(_) and Sg be the solution to the Dirichlet problem

Then

(4.18)

and [I@gII2,_2<cII gl[o,n (4.19)

The variational formulation for theproblem (4.18) is:

But

(_g,V)l, _ = (g,v)0, _
l(e)Vv<H 0

It is permissible to take v = ei so that ($g,ei)l, _ = (g,ei)0, _ .

e i is orthogonal to Vh = 0 _v h _V h; hence, (vh,ei)l, _ ,
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It follows that (ei,g)0,_ = (ei,_g -Vh)l, _

l(g,ei)0,_l < IIeiNl, _II _g - Vhl11, _ Vv h _vh •

Choosing Vh = _h to be the interpolant in Vh
g

v h _ Vh , and

of Cg , we have

HeDce,

II gllo,
<_ Chite lll,n and by (5.7) ,

II elIo, n < Ch{Ielll,

This completes the proof of the theorem.

1.5 The LBB Condition For 18/P I Elements

This section is devoted to the proof of Theorem II and in particular

to obtaining the kernel of the operator B h and an estimate of the LBB

constant _h

h
v = {vh = (Vhl,Vh2) IVhi_ C0(n) ;

Vhiln ( Q_(ne), Vhi = 0 on
e

9n, i <_e <E, i = 1,2}

Q'(_ ) = Q2(_e ) - {x2y2' % _ _'(x'y) _ _ }
e e

Qh = {qh Q]qh[ _ _ el(_e), I < e < E}
e

!

where Q2 is the subspace of Q2 used to define the serendipity element.

We shall work with a master element fi . Each element qh _ Qh has
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three degrees of freedom q_ , _ = 0,1,2, and each element and can be

chosen such that

qI_e = q0 + ql x + q2 y ; _q = (ql' q2)

When referred to the element _ , these degrees of freedom will be noted

by 9e , u = 0,1,2 :

ql ^ ^ (91 32)91_ = 90 + ^ + q2y ; Vq~ = •

Then

hql q2 ^q0 = q0 ' ^ql m ^ , and = hq2

Le,_na 5.1. Under the conditions of Theorem II,

Moreover, ker Bh = span {1, XI' X2} ' where X1 , X2

functions of the type shown in Fig. 3.

dim ker Bh = 3.

are discontinuous

Proof. It suffices to confine our attention to the collection of four

^

reference elements _i' i = 1,2,3,4, shown in Fig. 4a.

We wish to characterize all qh _ ker B h ; i.e., (qh' div Vh ) - 0

_h _ Vh " We begin by choosing _h in V h such that _h = ~0 at all

nodes except a 14 where Vhl(a 14) = 1 . Then,

^ ^i ^i 1 ^i i
in _i : Vhl = -4x(l + x)(l - y) , qh -- qo + ql (x + 2 ) + q2 (y - 2 )

^ ^4 ^4 i ^4 i
in _4 : Vh4 -- -4x(l + x)(l + y) , qh = qo + ql (x + 2 ) + q2 (y + _)

^e
where qa ' a = O,1,2, are the degrees of freedom (coefficients) of

^

in subelement _ , e = 1,2,3,4. Then we find that
e

qh

I^ , ^ qhdiV VhdX = 0

nlUn4
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and this implies that

^4 ^i
ql = -ql

Similarly, choosing Vh2(al4) = I with [h = _ at other nodes, leads to

^4 12
the conclusion that 6_ = qo" We continue this procedure at nodes a , .

23 34

a , and a to eliminate 7 of the 12 degrees-of-freedom of qh" Collecting

these results, we are left with the 5 coefficients indicated in Fig. 4 b.

We next choose v h = O at all nodes except that Vhl(O) = i. We

find that

I^ ^ ^ qhdiV VhdXdy = 0 => 62 -- 61

U O U

^I
A similar calculation with Vh2(O) = i yields ql " ql"

Collecting all of the results, we are left with three independent

coefficients, qo,ql,q2 and these define the qh-pattern indicated in

Fig. I. Reciprocally, a linear combination qh of |,XI and X2 satisfies

(qh,div Vh ) = 0 for all _h in Vh. A typical member X, of ker B_ is

indicated in Fig. 3 ; X2 is obtained by rotating the x-, y-axes 90-degrees.o

Proof of Theorem III. We now return to the completion of proof of
=

Theoremll. On each element _e ' we evaluate the product qh div _h using

16 degrees of freedom of _h (eight for each component v I and v 2) and

the 3 degrees of freedom of qh (the coefficients _0,_i, and q2 defined

earlier). We get
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f
e

h _i ^ ^ ^ 1 ^ ^ ^qh div vh dx = _ _ vl(al ) [-qo+2ql+q2 ] + _ v2(al ) [_qo+ql+2q2 ]

i ^ ^ ^ i ^ ^ ^
+ _ vl(a2)[+qo+2ql-q2 ] + _ v2(a2)[-qo-ql+2q2 ]

i ^ ^+^ i
+ -_ vl(a3)[+qo+2q I q2 ] + _ vl(a3)[+qo+ql+2q2 ]

I , ^+ .... i ,+^ ^ +_^
+ 6 vl(a4)[-qo zql-q2] + 6 v2(a4) [ qo-ql zq2]

2
+ _ [-vl(al2)q I v2(a12)_o]

2
+ _ [+vl(a23)_ o - v2(a23)_2]

2 r . 34.^ ^
+ 3 [-vl_a )ql + v2(a34)qo]

2 [_vl(al4)_ ° _ ^
+ _ v2(al4)q 2]

(qh' div Vh) = _ qh air vh dx -_

e=l
e

This summation over the elements can be replaced by a summation over

the nodes as shown in Fig. 5. Three types of nodes can be distinguished as

shown in the Fig. 6. The indices for the pressure with respect to each node

is also shown. Then, using the numbering scheme shown, we have

i . ^i,o^i,^i,^2,^2 ^2.^3._^3,^3 ^4,_^4 ^4
2h-l(qh' div vh) = _ _ _v l(e l) [-qot-ql_q2tqo_ql-q2tqotZql_q2-qo_Zql-q2 ]

e I

+ , ^I.^i._^i ^2 ^2.^^2.^3,^3._^3.^4 ^4._^4_v2(el)[-qo_ql_zq2-qo-qltzq2_qo_qltzq2tqo-qltzq2 ] )

2 _ r ^i _4_ ^i.^4,\
+ _ _ \vl(eIl) [-ql-ql j + v2(ell) [-qotqo]_

eII

2 [__+_2 ] v2 ^i ^2+_ _ (vl(ell I) + (elll)[-q2-q2])

elll
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If we choose:

, ^i+_^i.^i ^2.^^2 ^2 ^3 -^3 ^3 ^4 ^4 ^4
vl(e I) = 6_-qo zql_q2+qotZql-q2+qo+Zql+q2-qo+2ql-q 2)

, ^i+^i+_^i ^2 ^2._^2.^3+^3._^3.^4 ^4._^4,
v2(eI) = 6_-qo ql zq2-qo-ql_zq2_qo ql_zq2_qo-qltzq2 )

3 , ^i ^4,
v2(eii) _ _ £-ql-ql )

3 (__I+_4)
v2(eII) " _ o o

3
vl(eiii) = _ (__2+_2)

o o

3 - A1 ^2

v 2(enI) = _ _-_2-q2 )

and u = 0 at the nodes on the boundary,

(5.1)

then

N( 2 )2h-l(qh , div Vh) = =_in v l(n) + v 2(n)2

2
>_c llvhllI (_.2)

where the summation is over all N nodes.

Now it will be shown that the choice (5.1) implies

llVhlll > C llqhllO/ke r B_
(5.3)

Then (5.2) and (5.3) complete the proof. D

With the expression chosen in (5.1) we can reorder

the numbering scheme of Fig. 5, obtain

2
ll llland, using
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/'. ^i,_^i ^1,^2 ^2 -2 ^3,.^3,^3 -4 ^4 _4.2
[ k t-qo_'Zql+q2_-qo+2ql-_2+qo_'Zql_'q2-_o+2ql-q2 )
i

. ^1+_1+.^1 ^2 _^2+.^2.^3,^3._^3.^4 -4 -^4.2
+ t-qo ql zq2-qo-Zql zq2*qotql_zq2tqo-_l+2q2)

,^i+^4, 2 ,^2.^3,2 ,^i.^2,2 ,^3.^4)2
+ tqI ql ) + tql-rql) + tq2tq 2) + tq2-rq2

,^I 2,2 ,^2 ^1,2 ,^3 ^4,2 ,^4 _i)2+ tqo-_ o) + tqo-q o) + tqo-q o) + tqo-q 0 )

(5.4)

Here we find a quadratic form, whose kernel is precisely the kernel

of B_ defined in the Lemma 5.1.

Then, it can be wr&tten:

,^i ^2.2 ,^2 ^3,2 ,^3 ^4.2C Z tqo-q o) + tqo-q o) + tqo-q o)

i
.^i ^2.2 .^2 ^3 2 ,^3 ^4.2

+ tql-ql ) + _.(ql+ql) + tql-q I)

,^i+^2, 2 ,^2 ^3,2 ,^3.^4,2
+ tq2 q2 ) + tq2-q2 ) + tq2tq 2)

,^4 _i, 2
+ £qo-q o)

-^4 ^1)2
+ (ql+ql

,^4 ^I.2_

+ tq2-q 2) j

(5.5)

The passage from (5.4) to (5.6) comes from the fact that both

quadratic forms in bracket in these expressions provide the same kernel

and therefore define two equivalent semi-norms on

ve = {q_ ,.i= i, 4 ; j = 0, 2}

Now if we pay our attention to the quadratic form on the first line

of (5.5), it can be interpreted as the L 2 -norm of the gradiant of a

piecewise bilinear function _0 ' defined by

centroid of each element. This function ¢0

proved in TEMAM [45], there exists a constant

i
q0 at the corresponding

belongs to H I and, as

C such that
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llv% II 2 > c II% llL2/:m (5.6)

This procedure can also be applied in the construction of functions

i's i 's.
$i and _2 from the ql and q2 Finally we obtain the inequality

(5.3) from (5.5) and (5.6) noticing that the summation of the three

squared L2/IR norms of Sj (j - 0, i, 2) precisely corresponds to

llqhll2/kerO * '
B h II

1.6 The LBB Conditions For QI/P0 Elements

The general proof of Theorem III can also be used in the analysis of

the QI/P0 element (bilinear velocities, constant pressures). For this element

we maintain that the kernel of Bh consists of checkerboard nodes which are

characterized by alternating values a and b in each neighbor element. In

this case

dim ker Bh = 2

Using the same notation as in the previous section, we can define for

each element and each node their integer component J and K ; the element

e = I in the corner (resp. e = 2) corresponds to J = K= I (resp. J = 2,

K = I). (See Fig. 7.) Using the elements e satisfying J + K = even and

constructing a piecewise bilinear continuous function defined by qe at

the centroid of these elements, we can apply the inequality (5.6) and obtain

N °3 _3 N "2 _ "4.2 E o 2
_ (qi - -i)2 + _ (qi qi ) > Ch2 [ qe

i=l i=l -- e=l

J+K even J+K odd J+K even

We obtain a similar inequality considering the element e such that

J + K is odd, and by addition, we arrive at
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N

i=l
o2

e=l
(6 .i)

i

The improvement h2 instead of h 4 in the estimate of Oden, Kikuchi, and

Song [_i/] allows us to obtain an LBB constant _h = O(h) for this element.

1.7 Summary of Some Stability Results

A mathematical analysis of the discrete Babuska-Brezzl condition (3.7)

has been made by Oden and Kikuchi _, Oden, Kikuchi and Song E40_, and Oden

_7,38_ for several finite elements for a model two-dimenslonaland Jacquotte

Stokes' problem on a uniform mesh. We shall summarize these results here

which pertain to the behavior of the "LBB-constant" _ and the stability of

the pressure calculations. We use the notations

Pk _ space of complete piecewlse polynomials of degree k

over an element

Qk = space of tensor products of complete polynomials of

degree k

18 = the eight-node isoparametric element

Results are summarized in Table l. ln this table, examples I, 2, and 7

"lock" at small values of the penalty parameter E • This means that for a

given mesh size h , e cannot be taken arbitrarily small, as noted earlier.

Of course, for an acceptable E for reasonable mesh sizes, e is so large

that the constraint of incompressibility is not adequately satisfied. Hence

these elements should generally be avoided. Elements 2, 4, 5, 8, ii, and

14 are unstable since eh = 0(h) . Remarkably, these instabilities frequently

are not observed on uniform meshes when the solution is very smooth. Mild
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irregularities in the solution or small perturbations in the meshmay, how-

ever, produce violent oscillations in computed pressures the magnitudes of

which increase without bound as h tends to zero. In many cases, however,

these oscillations disappear upon "filtering" the pressure solutions (i.e.

upon averaging the pressures over one or more elements). In the case of

elements 2 and 14 it has been proven mathematically 20 that certain filter-

ing schemes will produce a stable and convergent method. However, it is not

known if filtering can be used to stabilize and salvage the remaining unstable

elements.

Elements 6 and I0 lead to stable and convergent schemes and are quite

robust in the sense that they are insensitive to singularities in the solution.

However, they are not too accurate and converge at a suboptimal rate.

Element 9 is clearly the superior of any listed: it is unconditionally

stable, it provides both velocity and pressure approximations which converge

at the optimal rate, and

ker Vh = ker V

Element 13 is somewhat of a novelty. While element 5 yields unstable

pressure approximations, Oden and Jacquotte _7_ have shown that a composite

of three Q2/PI elements (no. 9) and one 18/P I element (no. 5) is stable.

The behavior of elements ii and 12, marked with an asterisk, is only

conjectured here and has not been rigorously proven.

Extensions of these results to three-dimensional elements are straight-

forward.

1.8 Numerical Examples

The results of several numerical experiments are described which are

designed to verify the theoretical results with regard to the Q2/PI, 18/Pl,
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and the composite elements described earlier. Wealso investigate numeri-

cally the effects of a pressure filtering operation.

As a first example, we consider an L-shaped domain _ partitioned into

64 square subdomains, as shown in Fig. 8. The fluid is subjected to a

constant body force f = (0,-100). Wetake D -- 333, and the penalty

parameter e = 10 -5. We will be interested in the computed hydrostatic _"

pressure across the section AA' defined by: y = 0.80 . Each subdomaln

corresponds to a finite element; the velocity on each element is interpolated

at 8 or 9 nodes and the pressure by its value at 3 points. Thus, various i_

choices of how to handle the ninth node lead to meshes with 18/PI, Q2/PI,

or Composite/Plelements. We will be interested in three cases involving

these elements:

Mesh i: All the elements are Q2/PI elements

Mesh 2: All the elements are I8/P 1 elements

Mesh 3: Adding 16 centroid nodes, we obtain 16 composite

elements as shown in Fig. 9.

The results reported here were obtained using the FIDAP code for problems

of incompressible viscous flow EI4_ .

Figures I0 and II show the comparison between the results obtained with

the Q2/PI element (Mesh i) and those obtained with meshes 2 and 3. Fig. I0

illustrates the major difference between the Q2/PI and the I8/P 1 element;

the former involves a pressure which seems to be smoothly distributed along

the section AA' while the latter yields a pressure with severe oscillations.

We note, however, that the values of the pressure obtained at the centroid of

each element are close to the values obtained with the Q2/PI element, which

suggest that this unstable solution can be stabilized by a filtering opera-

tion which effectively uses these averaged values of pressure.
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It is also remarked that the oscillations seemto come from the

spurious modesin ker B_. The smoothing device maybe equivalent to an

a posteriori elimination of these spurious modes. However, it turns out

that these spurlous modesdo not solely come from ker B_ : Figure II

contains results obtained by adding one node in the elements in the corner

(point Ci in Fi_. 8). For this mesh, ker B_ = _ but the results still

exhibit pressure oscillations. However, for this mesh, the solution seems

to be muchsmoother than in the 18-case.

Finally, the composite elements lead to a quite smooth solution as

indicated in Fig. i_ which is close to the solution obtained with 9-node

elements, except that for this element h2 = 0.25, while for the Q2/PI

element h2 was equal to 0.0625.

We also note that when the body force f derives from a potential:

f = -qv , then the unique solution for the Stokes Problem is

I u= 0

p -- -v

In this example f = (0,-i00) and v = 100y = -p. The numerical results

obtained by these different methods are summarized in Table II. We

observe that the error in the filtered pressures is around 33 percent

greater than that of the Q2/PI elements for this particular example.

As a second example, we consider a Dirichlet Stokes Problem, which is

designed for numerical verification of the convergence theory for three

schemes considered:

al A uniform mesh of Q2/PI elements.
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b)

c)

A uniform mesh of

A uniform mesh of

18/P I elements.

18/P I elements with pressure averaginE.

We consfder the unit square domain partftioned into, squaresuSdomafn, and

the following body forces f = (fl,f2) are applied:

fl = -4y + 12x 2 + 24xy + 12y 2 - 24x 3 - 48x2y - 72xy 2

-By 3 + 12x 4 + 48x3y + 72x2y 2 + 48xy 3 - 24x4y - 48x2y 3

-2(x - xO) + _(x)

f2 = 4x - 12x 2 - 24xy - 12y 2 + 8x 3 + 72x2y + 48xy 2 + 24y 3

_12y 4 - 48xy 3 - 72x2y 2 - 48x3y + 24xy 4 + 48x3y 2

where e(x) = -i if 0_< x_< Xo, e(x) = 1 if s0 < x_< i. Then

(6,p) is defined by

..

( 2 2

= (Ul, U2) ; j uI = x (i - x) (2Y - 6y 2 + 4y 3)

u 2 = (-2x + 6x2 - 4x 3) y2 (I - y)2

and

(u,p) satisfies:

P --x 0 - x - (_ - Xo)2 if 0 < x < x0

P
2

= x - x 0 - (x - Xo) if x0 < x < i

uIr = 0

divu -- 0 in

-Au + p = f in
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As before, we construct a plot of the computedpressures across a

section of the domain. Fi,_ure13 shows the results obtained by partitioning

the domain _ in 64 square subdomains. For this mesh, h is equal to

i/8. The computations are madewith Q2-on 18-elements. Whereas the Q2-

solution seems to be stable, clearly the 18-solution shows oscillations

around the exact solution. However, it is noted that both solutions

coincide at the centroid of the elements and this again suggests that

the "smoothed 18-solution," obtained using only the pressure at the centroid,

is stable, and may converge at a rate of 0(h2).

Finally, Fig. _4 conflrms this suspicion showing the computed rate of

convergence is precisely O(h 2) for the pressure for the Q2-element, and

for the smoothed 18-element. However, it is also observed once a_aln that the

Q2/Pl-pressures are considerably more accurate than the filtered 18/P l-

pressures for all mesh sizes considered.

With the results from these examples we can conclude that

• The Q2/PI element is stable and £he optimal L2-rate of convergence

Of the pressures of O(h 2) is attained.

• The 18/P 1 element yields unstable pressure approximations, but

these can apparently be stabilized considering only the values at

the centroids.

• Spurious oscillations (checkerboarding) can also appear when

ker B_ = ]R

• Filtering the pressures in the 18/Pl-element by using only. the

centroidal value leads to a pressure approximation which may

converge in L2 at a rate of O(h2); however, the accuracy of the

filtered scheme is quite inferior to that of the Q2/Pl-elements.
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These compUted results underline once again the critical role played

by the LBB-condition in studying the stability of finite element schemes

by reduced integration. Theseand other results we have computed also

indicate that the estimates obtained in Section 4 for the discrete LBB-

constant _h are sharp. Indeed, the theoretical result that the use of a.

composite element of the type employed here leads to a stable pressure

field, while not of great practical value, is fully confirmed by the numer-

ical results. This suggests again that these calculated estimates of eh

are a good indication of the actual numerical performances of these methods.



PARTII: ANALYSIS OF INSTABILITIES IN

UNDERINTEGRATED FINITE ELEMENT METHODS

2.1 Introduction

For many years, a special type of numerical instability has been

observed in finite difference approximations of flow fields, which has

been referred to as "hourglassing", "keystoning", or "chickenwiring".

These graphic terms refer to geometrical patterns which appear in com-

puted flow fields (e.g. velocities) and which emerge as spurious oscil-

lations superimposed on an otherwise smooth field, the spurious oscilla-

tions often taking a zlg-zag form which resembles an hourglass or a

chickenwire mesh. These spurious modes can be amplified upon refining

the mesh, and to control such numerical instabilities, various schemes

for incorporating "hourglass viscosity" or "hourglass damping" have

been proposed by some authors.

It is now known that hourglass modes can arise from an incomplete

(or poor) approximation of the kernel of the operators in the momentum

equations in flow or solid mec_hanics problems (or, more generally, of

the principal part of the operator in the governing differential equa-

tion of a given boundary-value problem). For example, in addition to

the rigid body motions residing in the kernel of the standard operators

appearing in the equilibrium (momentum) equations of solid and fluid

mechanics, one finds hourglass modes in various crude discrete models

of these operators.

In recent years, the occurrence of hourglass instabilities in

38



underintegrated finite element approximations has been observed. In

the implementation of most finite element methods, integrals defining

stiffness matrices are evaluated using numerical quadrature schemes.

To improve computational efficiency, the practice of under_ntegration

is often employed, by which is meant the use of a quadrature rule of

an order lower than that required to integrate polynomial integrands

exactly. This can produce rank-deficient stiffness matrices or, equi-

valently, an expanded kernel of the equilibrium operation which contains

spurious hourglass modes, and the result is again a numerically un-

stable scheme.

In order to overcome this difficulty, artificial stiffness or vis-

cosity methods, or other stabilization methods have been proposed by

several authors (e.g. [2-5, 17, 28]). These methods involve computing

an underintegrated matrix, and then adding a stabilization matrix which

effectively eliminates the hourglass modes. They turn out to be fairly

general and have been used for a long time in numerous codes. Whereas

all of these methods based on intuitive feeling give good numerical

results, their mathematical study remains often non-exlstent.

The most interesting challenge is to solve the problem using only

the crude rank-deficient underintegrated stiffness matrix, the solution

is obtained up to within an arbitrary spurious mode, and then to elimi-

nate these modes from the solution in a post-processlng operation.

Unfortunately, even when the stiffness matrix is rank-sufficient,

similar oscillations are observed when underintegration is used. In

that case, the process of the excitations of modes similar to the hour-

glass modes is not completely understood and these modes have never been
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mathematically studied.

In this report, we would like to give precise mathematical justi-

flcations and answers to the questions previously mentioned. The

next section (Section 2.2) is devoted to the proof that the Stabiliza-

tion Method is mathematically Justified. Then, in Section 2.3 we pre-

sent a method which involves solving an underintegrated and not well-

posed problem, then in a-posterlori eliminating the unknown degree of

freedom. The proof of the accuracy of the method is given in Section

2.4, and its numerical aspects and results are described in Section 2.5.

In Section 2.6, we examine the case where the spurious oscillations

cannot be predicted from the rank-deficiency of the stiffness matrix and

we analyze why these modes may be excited. Finally, we apply the pre-

vious considerations to the Linear Elasticity Problem.

It should be noted that the method and its results cannot be

embedded in a classical elliptic theory: Strang's ellipticity condition

[44] is here violated and this non-elliptlc method cannot be studied by

the classical theory of finite element methods and numerical i_tegratlon

[I0, II]. We also refer to Girault [20, 21] for his approach to the

same kind of problem, non-elliptic because of the use of partially

underintegrated stiffness matrix, but where hourglass modes did not

appear.

2.2 A-Priori Hourglass Control

2.2.1 Introduction. This section is devoted to giving a mathema-

tical support to several methods consisting of adding a stabilization

matrix to the underintegrated matrix. For clarity, we shall confine our
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attention to a simple model problem. Let _ be a regular domain in

1%2 with boundary _ and consider the model Neumann problem,

(P0) Find u = u(x,y) such that

-Au = f on _

J---_ = 0 on @_
Bn

(2.1)

where f is an L2(_)-function satisfying

I f = 0dxdy (2.2)

The questions of the existence and uniqueness of solutions to (2.1)

(which are well-known) are taken up in Part II.

We shall first consider a finite element approximation of (2.1)

constructed using Ql-elements, i.e., four-node quadrilateral elements

over which bilinear shape functions are used. Most of our notations

and results are reproductions of those of Flanagan [17] and Belytschko

[2, 4, 5].- Then we will attemPt to extend our results to the Q2-

elements (nine-node, biquadratic elements) and will indicate in which

ways they differ from Belytschko's [3].

The construction of finite element approximations of (2.1) involves

the calculation of the stiffness matrix K
~e

ment _ , which is given by the formula,
e

for a typical finite ele-

_e = I_ VNt~ • VN~ dxdy (2.3)

where N is a vector representing the bilinear or biquadratic shape

functions in each element _ , I < e < E .
e -- --
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When Ql-(respectively Q2- ) elements are used to discretize the

domain _ , K is a 4x4 matrix (resp. 9x9) and the N's contain four
_e

bilinear (resp. nine biquadratic) shape functions. We will distinguish

exact-, full-, and under-integrations. The full integration is obtained

using thenumber of Gauss integration points necessary to obtain the

exact integration on regular square elements: 4 (resp. 9) points in our

study. The underintegration will involve the Gauss rule of lower order:

i (resp. 4) points. The stiffness matrix associated with a rule involv-

ing k points will Be denoted K (k), k - 1,4,9 .
~e

Several authors [2, 4, 5, 17, 28] proposed to add to the underlnte-

grated stiffness matrix a stabilization matrix which exhibits several

special properties. In this section, we will prove that these proper-

ties are indeed satisfied and that the exact stiffness matrix K can
e

be computed by this method. This will be accomplished by first carry-

Ing out the integration (2.3) exactly.

We first introduce some notations.

defined by'the coordinates of its nodes

Suppose that element _ is
e

(x I, yI), 1 < I < p, p = 4 or

9 • We introduce the isoparametric mapping from a master element

11
to

e
such that

P

x = Z xI N1(_,n)
I=l

P

y ", 7_ yl NI(_,T])
I=l

(2.4)
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where N I , i _I !p , are the shape functions for the quadrilateral

element on the master element. The node numbering convention is shown

in Figure 15.

The stiffness matrix K
~e

(2.4) from fl to _ :
e

is evaluated in (2.3) using the mapping

K
_e

E x]
where dE is the Jacoblan matrix of the mapping from

J

(2.5)

to _ ,
e

is the inverse of its determinant, and where the gradients of the

shape functions are derived with respect to the master element coordi-

nares (_,n) • These matrices can be computed using (2.4) :

TX = X ° N

T
y = y " N

dx =

T dN T dN

x drl Y drl

(2.6)

(2.7)

I T d_ 1-x T d_ T
"a-f _ dE

(2.s)
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V

dN T

(2.9)

where J is the Jacobian of the mapping

dx
J = det d--_ (2.10)

Finally, we obtain the expression,

TA T - AyyTAT_
(2.11)

where A is the antisymmetric matrix

d_ dN T dN d_ T (2.12)

the Jacobian J can be expressed as yTAx .

A study of K expressed as in (2.11) and the properties, of the

matrix A will then enable us to study the effect of the underintegra-

tlon of the stiffness matrix. We will first concentrate on the 4 node-

element and derive the exact expressionof the stabilization matrix.

Then we will discuss what form this matrix may take for the 9-node ele-

ment.

2.2.2. The stabilization matrix for the bilinear element.

bilinear element, the shape function vector can be written as

For the

i _s+n
N~ = _ ~t - y ~ _- ~8' + _r] h~ (2.13)
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where

S T = (i, -i, -i, i)

8 'T = (i, I, -i, -I)

tT = (i, i, i, i)

hT = (i, -i, i, -i)

(2.14)

then the explicit form of the (4x4) matrix A is

I. , T ,T) _2(sh T hsT)~~+ _(h8'T~~ - s'hT)~~ (2.15)

for (_,q) = (0, 0) , we obtain A 0 which satisfies

YTA0x _-T.A[ 1_(Y24XI3 +
_:n,0 x = Y31X24 )

(2.16)

which is merely the area of the element _e ' noted l_el .

At this point, we can precisely see the matrix resulting from a

1-point rule; this underintegrated matrix denoted by K (I) is given by
e

" TT TT

K(Z) A0_-_A0 AO_ AO= + (2.17)
e l_el If_el

Also, if we note B : (h' h )
T

the discrete approximations of

the gradient VN evaluated at the integration point we can remark that
~

(2.18)

and therefore (2.17) takes the usual form

• .4 .. l :..:"
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the rank deficiency of K,l,t_ can now be verified.
~e

Indeed, from (2.14) and (2.15) we can simply note that

Ah=O 1

O_

- o

and then

Klh=0 1
K1 t 0

(2.20)

(2.21)

Therefore, if we consider H and T the global hourglass and transla-

tion, and K (I) the assembled underintegrated stiffness matrix, we have

K(1)- also'R~= reK(I)~K(1)~e.T_'R_==0e7K(l)~e.h_= 0 I

(2.22)

and this proves the rank deficiency of K (I) .

Note that this "+'i" pattern is independent of the regularity of the

mesh and that H will take alternating values +I and -i at neighbor

nodes as shown in Fig. 16.

Our goal will now be to calculate a matrix Kstab such that, if
~e

added to K (I) we obtain the exact stiffness matrix K given by
e ' ~e

(2.11). This expression does not seem easy to integrate, but the image

of certain vectors mapped by this matrix can be easily computed using

orthogonallty relations previously obtained (2.20) and the fact that

I0oI
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we can obtain:

Eat-"0 |

_e_--b-i

_e_ _2

(2.23)

(2.24)

Equation (2.24) is not sufficient to compute K , because it gives only
~e

9 out of the i0 coefficients of K (4 x 4, symmetric). It is enough
~e

to know X t K X , where t, x, y, and X form a set of independent

vectors. That is the case for X = h because

det(x,y,t,h) = 4A # 0

provided the element is not singular.

and the relations define uniquely K
~e

hTK h ffi16

Then the knowledge of

. If we set

hTK h
_e _

(2.25)

then K is given by
~e

K = K (l) +FYYT
-e ~e ~-

(2.26)

whereas, again, given by (2.25), e- is a scalar, and

(2.27)

While it is difficult to express

y , its exact value can be written

e nicely in function of x and
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=" ,, ~' .... '" " ~-_-- - d_dn

n Inel+ _(Y43X12+ YlzX34) + n(Y32X14+Y14x23)

(2.28)

We observe that for parallelogram elements, the denominator is constant

and its value is the area of the domain l_el . In this case

-- i 2 2 2 2

e = (x13 + x24 + YI3 + Y"4)z (2.29)

or for rectangular elements

£2 + £2
X

e= Y

12 ££
xy

(2.30)

where Z
X

element.

h •

and £ are the lengths of the sides of the rectangular
Y

Also note that for such parallelogram elements T reduces to

The expression (2.26) is often used to a-priori eliminate spurious

modes for thekernel of K but the determination of _ remains a prob-

lem. The choice e ffi 0 leads to.the underintegrated matrix and to the

method to be studied in the next section. On the other hand, a cheaper

way than the full integration of the whole matrix would be to fully

integrate g given by (2.28). This method would lead again to the

full integration and is cheaper because it needs only one 4 x 4 integra-

tlon by element instead of i0. A more common use is to take for e a

simple value independent of the geometry of the element, which is often

the value obtained for a square 1/6 or sometimes any arbitrary constant,

as used in [4, 5].
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2.2.3. The stabilization matrix for the biquadratic element. In

this section, we will study the effect of the underintegration of the

9 x 9 stiffness matrix obtained in (2.11) with nlne-node elements when

a 4- Gauss integration point rule is used. Whereas Belytschko and al.

[3] intuitively obtain another ,,y.yT,, stabilization, we prove that this

decomposition is not even valid for regular meshes. We then propose a

decomposition derived on regular mesh.

But first we exhibit the spurious modes out of K (4) . For the bi-
.e

quadratid element, the shape function vector can be written as

where S

N- S _ (2.31)

is the 9 x 9 matrix

O 0 0 I 0 0 -2 -2 4

0 0 0 -I 0 0 2 -2 4

0 0 0 I 0 0 2 2 4

0 0 0 -i 0 0 -2 2 4

0 0 -I 0 0 2 0 4 ,8

0 I 0 0 2 0 -4 0 -8

0 0 1 0 0 2 0 -4 -8

0 -i 0 0 2 0 4 0 -8

1 0 0 0 -4 -4 0 0 16 _

(2.32)

and

T

_ = El, _, n, _n, _2, n 2, _n 2, _2n, _2n23 (2.33)

The integration rule we are interested in involves four integration

(_, n_) , _ = I, 4 . Associated to each of them, we notepoints

A and J the corresponding matrix A and Jacobian. The underinte-

grated matrix is then
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' Aa= TA_ + A_ TA_
K(4) ffiE
-e _ffil J_

and can also be written

K (4).
-e

4

e=l Je

aT

- )2 )

where

generalizes (2.18) to a 4- point rule.

The rank deficiency of K (4) can now be verified.
~e

call t and h the vectors defined by

t = , I, I, I, i, i, i, I, I

hT = [I, I, I, I, -i, -I, -i, -I, 0]

we easily obtain:

t T • N = tT • S • _ = 1

and

hT • N = hT • S • _ -- -4(_ 2 + q2 - 12 _2n2)

(2.34)

(2.35)

(2.36)

Indeed if we

(2.37)

and then differentiating these expressions and using (2.12) we get:

A. t=0

ElA'h ffi -8 (1-12_2) "_ + _(1-12rl2) drlJ

the second expression vanishes when the point

A

Gauss integration points of

(_,_) is one of the four
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(_, ritZ) = (+_ I 1
_, +_) ; ct= I, 4

therefore we have

(2.38)

• AA t=_ _ • h =0. e= i, 4

and consequently

(2.39)

K (4). t = K (4)" h = 0 (2.40)
-e we -

which proves the rank deficiency of K "4"(_ . Once again we note that
~e

the pattern of h defined in (2.37) is independent of the geometry

of the element and is therefore valid for a rectangular element as well

as for an irregular element.

The search for decomposition for this element cannot be completed

in a manner as complete as it has been for the 4-node element. However,

Belytschko and co-workers [3] have intuitively come upwith a decompo-

sition similar to (2.26) where y and ¢ are

T = h - _ -x Z • -- (2.41)~ all Ja 4 - I z~ ~ " _=1

(2.42)

This decomposition does in fact satisfy several properties also satis-

fied by the exact matrix, as

K'. t=0

4

K .x= y
we ~ 0b=l



52

4

K • y= 7 52 .
~e ~ _=i

w
but for a simple square element , K and its decomposition (2.26) does

we

not coincide. Indeed, for this simple geometry, the calculation of

(2.11) can be carried out explicitly and the polynomial in (_,_) oh-

rained can be split into one part exactly integrated with 4 Gauss points,

and another part of higher order that requires 9 points. This calcula-

tion leads to the decomposition:

K(9) = K(4) + fl (_5 _7"87 + 4 T= = e 8-9"Z9)

K(9) ffiK(4) + _ (_5 _ _ + 4 Tyy xx e " )

(2.43)

where

T A T

A-y -y •
~ _ _ _.

K ffi ^ T d_dn
xx y Ax

T A T

ffl A • x • x • d_dnm ^ T
Kyy y "A'x

(2.44)

and _7 ' _8 ' _9 are the 7 th, 8 th and 9 th column vector of S (2.32).

These vectorscorrespond to the higher order of _ (2.33) that cannot
~

be exactly integrated by a 4-point rule. The form t_ken by the stabil-

T

ization matrix involves now three matrices (_i" _i ' i = 7,8,9), is

exact for a square element and cannot coincide with the decomposition

found in [3]. Finally, we note that both decompositions were used in

our a-posterlori control described in Section 2.7 on a regular mesh,

* or also for a geometry for which the Jacobian is constant.
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and optimal rates of convergence were only obtained with the decomposi-

tion (2.43).

2.2.4. The stabilization matrix for a general heat transfer equa-

tion. In this paragraph we would like to give the stabilization matrix

for a slightly more complicated operator. Thecase of the linear elas-

ticity operator will be discussed later.

Let us consider the case where the operator is defined by

where

and

A = BT C 8 (2.45)

C _m

ell C21 1
C12 C22/

then the stiffness matrix associated with this operator is given by

"- i

K = VN T • C • VN dxdy (2.46)

~e _ ~ ~ ~

The generalization of the stabilization decomposition when QI elements

are used can then be written

where

K = K (I) + e-y • y T (2.47)
~e ~e ~ ~

K(1) = i B T
~e _ C B (2.48)

e-= Cll _xx + (C12 + C21) gLy + C22 _yy (2.49)
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and

I I :I T,,,7(_s.y _ rls, T y)2 d_d_

-- i I I(_8T ,T. 2--- ^ • x - Ks y) d_d_
_yy 4 fl ~ ~ ~

exy = --4 f" ?x - rib.....• x)(_ s-y - rl8 -y) d_drl

(2.50)

The quantities y, B and J are the ones previously defined. Expres-

sions similar to those given in (2.29) and (2.30) can be used to

simplify _ .

For a regular geometry, and corresponding to (2.29) and (2.30) we

have

- 1 2 2)
_xx ffi 24(fle) (YI3 + Y24 •

-- ffi I 2 2

_yy 24(f e) (x13 + x24)

-- I
E =
xy 24 (fie)

(x13 YI3 + x24 Y24 )

(2.51)

As far as the 9-node element is concerned, the decomposition can

be obtained only for regular elements. First we note that

K (9) = K (4) (2.52)
.xy .xy

where the notations are similar to (2143) and (2.44).

decomposition can be written:

K(9)-e= K(4)-e+ fie ClI("_5 _z7 .87 4 .89.89)+1-Tf

4 T

+ I-_ -89 s9)

Therefore, the

(2.53)
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2.3 A-Posteriori Hourglass Control

2.3.1. Introduction and preliminaries. The basic ideas are more

easily understood when demonstrated for the same simple model problem.

We still focus on the model Neumann problem PO or its variational

equivalent P .

Let _ be a regular (e.g. Lipschitz) domain in R2 with boundary

_ and let f be a given L2-function. Problem PO is then,

(P0) Find u such that

-Au= f in _ _

], (3.1)

B__uu= 0 on B_
Bn

where the data f satisfies the compatibility condition ,

I fdx = 0
(3.2)

n

Later we shall put further restrictions on _ and on

will need f _ H(_)). The kernel of the governing operator

_n ) in (3.1) is, course, space Thus,of the of constants. whenever

(3.2) holds, there exists a solution to (3.1) which is unique up to an

arbitrary constant.

To formulate a variational statement of problem P0 ' we introduce

the spaces and inner products ,

f (e.g. we

A = (-A ,

* The elements of V (and L2(_)/_3_) are cosets [v] such that u G [v]

implies that u, V G HI(_) (or Lz(_)) and v - u G R . Throughout this

paper we frequently refer to functions v in V , meaning, of course,

that v is a representative function in the coset Iv].
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v --Hl(n)/

(u,v) 1 = an inner product on V

[ Vu-Vvdx ; u, v G V ..............
Jn

ffi L2
(f'g)0 an inner product on (_)/

ffiIfgdx_ measl I fdxI_gdx_
(3.3)

Three remarks are in order:

i) The norm l[* II 0 associated with the inner product

the canonical norm on the quotient space L2(_)/ 1_ ,

(o o) is
0

" mf [If+_II
l[f ][0 A. _ ]1%. L2(_)

(3.4)

ii) According to Temam [45 ], there exists a constant

Ing only on _ , such that

- Jlv[Ii >-_Col]vllo V_ _ v

CO , depend-

(3.5)

iii) For all f satisfying the compatibility condition (3.2) and

any v S V , we have

" I fvdx! IIf IIo IIv IIo
(f'v)0 n

i II_IIllvll
ic_ 0 1

(3.6)

With these relations now established, we consider the variational

statement of P0 as problem P :
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(P) Find u @ V such that

= (f,v) Vv G v(u'v)l 0

We can easily verify that any solution of

(3.7)

P0 is a solution of P

and, conversely, the solution of P satisfies the condition of P0 in

at least, a distributional sense. Moreover, since the bilinear form

("')i is continuous and coercive on V and since the linear form

(f'')0 is continuous on V if (and only if) f satisfies (3.2), the

following result is an immediate consequence of the Lax-Milgram Theorem:

THEOREM V. Let f satisfy (3.2).

Then there existsone and only one solution u @ V to problem P

and this solution depends continuously on the data f • 0

We now consider a finite element approximation of the problem P.

Let us now construct a finite element approximation of problem P. We

begin by introducing a partition

so that

E

_= U n e
effil -

We shall assume that

Q of _ into E finite elements

is such that it can be partitioned in this

fashion into four-node quadrilateral elements over which bilinear shape

functions are defined. Thus, if

Ql(_e ) = space of bilinear functions defined on _e

we can introduce the finite-dimensional space

vh= {vh s c0(a) such that

l
sql(ne), I !e!E /m_V]

(3.8)
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wherein, as usual, the label h is the mesh parameter (e.g. ,

max dia(_e)). The functions in Vh are continuous and are stillh

l<e<E

defined up to an arbitrary constant.

Our finite-element approximation of problem P is embodied in the

discrete problem,

(Ph)
Find uh G Vh such that

(uh, vh)l = (f, vh) 0 _v h _ Vh

(3.9)

where, again,

In analogy with Theorem V, we have:

THEOREM VI. Let f 8atis_ (3.2).

h
one solution u to problem Ph _n V h

continuously on the data f • [3

f satisfies condition (3.2).

Then there i8 one and only

and this solution depend8

In examining the convergence of such finite element approximations,

we shall confine our attention throughout this study to regular mesh

In such cases, we have the a priori asymptotic errorrefinements.

estimates,

IIu-uhlll " O(h)-, II u-uhllo -- O(h2) (3.10)

2.3.2 The underinte_rated problem. We now focus our attention

on finite element approximations of problem P in which incomplete

quadratures are used to evaluate the bilinear form (-,-)
I " To simpli-

fy this study, we shall now introduce some additional assumptions:

i) _ iS the unit square,



59

ii)

n = (o,i) x (o.1)

The finite elements are the squares,

_ij --, N ) x ,

I< i, j <N

= _ij
l<_.i,j<_.N

iii) The data f is L2-integrable; e.g.

f @ L2(_)

In this case, we take

I Vh 2 0(h-2)h=s, dim = (N+I) - 1 =

In Ph we can replace f by

defined by

(3.ll)

(3.12)

, Vhfh its L2-projection on is

(fh, vh)o : (f, vh)o _v h S V h.

For further use, we note that the projection satisfies

IIfhIl0 < IIf II0

and can be chosen such that

I fh dx = 0

(3.13)

(3.14)

(3.15)

Now we turn to the issue of numerical integration of the stiff-

nesses. Let I(-,') denote a discrete inner product on C0(_) defined

by a numerical quadrature rule as follows:
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E
IG(f,g) = Y. IeG(f,g)

e=l

G .... _ _ _

.i=1

(3.16)

 ero arethequadratureweights arethe adraturopo ts
for element e and G is the number of quadrature points used.

Assuming that Gaussian quadrature is used, the choice G=4 (2x2 - Gauss

rule) leads to an exact integration of the stiffnesses for each element:

(uh, vh)l = 14(uh , v h) ffiuTK~~ v~ (3.17)

h h Vhfor any u , v G . Here K is the fully-integrated stiffness

matrix and u and v are vectors of nodal degrees of freedom of

h
and v , respectively.

h
u

Instead of the correct billnear form in (3.18), we wish to consider

an underintegrated approximation to ("')i

,
tion point per element is used:

in which only one integra-

(uh _.. = II(U h vh) = uTK(1)v, v i,_ , •

h VhV uh, v _ (3.lS)

Here K (I) is the underintegrated stiffness matrix. The difference be-
~

tween ("')I and ("')l,h (on Vh) is denoted a'(-,-) and the

corresponding stiffness matrix is K stab : **

* Recall Section (2.2).

** Recall that KStab= _yT where _ = 1/6

y is given by~(2.27). ~~

for a rectangular mesh and
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a'(u h , vh) = (uh ' vh) l - (uh ' vh) l,h

b h h
- uTKStav Vu , v

The "underintegrated problem", \

G Vh (3.19)

* uh Vh
(Ph) Find G such that

(uh h) --, v l,h (fh , vh) 0 Vv h G V h
(3.2o)

is, in general, meaningZes8. This problem, in general, has no solution

except for the special case in which fh is orthogonal to the one-

dimensional space of hourglass modes,

H = {H G vhI(H, vh)l,h = 0 V vh _ Vh} (3.21)

A way to overcome this difficulty is to note that the underintegratlon

of the righthand side also leads to a rank-deficient linear form

("')0,h :

_ (fh , H)0, h _- 0 , Vfh G Vh

VHG 

Note that if fh satisfies (3.15) we also have

(fh , l)0,h- 0

Therefore we now consider the underintegrated problem

(P-h) Find u-h G V-h such that

h) = ' vh)0,h(u--h , v l,h (fh

_h :

(3.23)

_v h G V-h (3.24)
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where

V-h: vh/H

Wecan now state and prove

--h
THEOREM VII: There exists one and only one solution u to Pk "

Proof: This is an immediate consequence of the Lax-Milgram theo-

rein. Since

uh) 1 h(uh ' ,h = 0_u = YI H + 72

we can consider (',') ½ as a norm on V-h It is therefore coercive
l,h

and continuous on V--h . As far as the continuity of the righthand side

h V his concerned, a simple calculation shows that for any v in we

have

I.(fh, vh)0,h [ <__ I[fhll0 l[vhNo

Also for any constants yl and y2

I(fh'vh + Y1 + Y2 H)0,h[ = I(fh' vh)0,hI

therefore

l(f h, vh)0,h I <_.II fhllo llv h + YI + Y2 Hllo _IYI' Y2

<_.II fhll0 IIvh + 72 HilI V7 2

<_.%11fhll0 II vhlll,h

Here we successively used (2.23), (2.22), (3,6) and the equivalence

between the canonical nozln,of V-an and the norm II "IIi,h

We have obtained a solution to the underlntegrated problem P-h "
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This solution is unique in _ , from a computational point of view it

is defined up to within an arbitrary hourglass mode. We now need a

--h
projection to obtain a reasonable solution from any representative u

chosen.

2.3.3. Projection of the underintegrated solution. In order to

h
construct this projectlon, we remark that, since u is a solution of

Ph and since H 6 Vh h, u satisfies

(uh , H) 1 ffi(fh , H) 0 (3.26)

We wish to extend --h V h ~hu to all of so that a new function u

6 Vh is obtained which contains an hourglass mode and which also saris-

fies (4.8) Thus, if _ is an operator from V-h into Vh. , we define

~h -h --h
= _ -u + _0H' _0 6 _ (3.27)u

(sh H)I = (fh, H) 0

This latter requirement determines %0 uniquely as

Xo-- IIR1121

~h
so that u is uniquely determined as the function

~h --h (fh'H) 0 (uh'H) 1
u =u + H H

IIH II_ IIH I121

(3.29)

It is instructive to consider a geometrical interpretation of our

projection defined in (4.9). Note that the "component" of the fully

h Vh ) .tintegrated solution u orthogonal (in to H is (uh,H)l = (fh,H) 0,



64

as indicated in Fig. 17. The solutions u--h of _h constitute

the vectors generating a line "parallel to" the space H in the figure.

~h
The projection u is then the vector defined by the orthogonal projec-

h
tion of u onto this line. Indeed, by construction,

h
.(_h_ u , H) =0

I

At this point, we have established the following procedure for

processing an underlntegrated finite element approximation of problem P.

i) Compute the underintegrated bilinear and linear forms ("')l,h

and (fh, -)O,h

ii)

iii)

iv)

--h
Solve problem _h for u

Compute (u-h, H) I

~h
Construct the enhanced solution u using (3.30).

Thus, this procedure involves the computation of an underintegrated

solution uh to a reduced problem _h and its enrichment via a post-

~h
processing operation to obtain a new approximation u . We shall now

~h
show that these post-processed solutions u converge to the exact

solution u of problem P as the mesh is refined, and, remarkably,

these approximations converge at precisely the same rate as the fully-

integrated solution!

Indeed we have:

h
THEOREMVIII: Let u , u

Ph and _h " let f be in L2(_) and satisfy

be the solutions of P,

(3.2). Let Gh be oh'
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--h
rained by the projection of u defined in (3.30).

followin@, error estimates for 8 = 0 and i

Then we have the

and

IIuh-uhlls =< C1 h2-S llf II0 (3.31)

IIu-_h118 <__CI h2-8 IIfII0 (3.32)

The next section will prove this theorem.

2.3. Convergence of the A-Posterlori Control

2.4.1 Introduction.• This section is devoted to the proof of

Theorem VIII. The method of proof relies on the tensor properties of

the bilinear element and of the Gauss integration rules. The problems

and Ph will be explicitly solved using an orthonormal basis ofPh

eigenvectors of (''')I' ("')l,h and ("')0,h " Then we note that

for a regular domain and mesh, f G L2(_) implies u _ H2(_ and that

II_u - uhIll < Ch{]f II0 (4.1)

Likewise, the Aubin-Nitsche method provides also

IIu - uhllo < C'h21lfIIo

By the triangle inequality,

II u - 6hlll <_Ch II f II0

(4.2)

h ~h

+ Ilu u Ill (4.3)

with a similar estimate in the II "llo-nO_ .

Thus, it suffices to estimate the relative error
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h ~h h
e -- u - u (4.4)

The L 2- and HI-norms of this relative error will be explicitly calcu-

lated and estimated.

2.4.2. Some one-dimensional results. For reasons to be made

clear in the next subsection, it is convenient to review briefly some

results on one-dimensional piecewise-linear approximations on a uniform

mesh for _ = (0,I) . Our aim here is to establish concrete relation-

ships between various bilinear forms ("')O,h ' (''')1 ' and (''')l,h

on spaces of piecewise-linear functions.

Let D(k, _) and I denote the N+l-order matrices

-k e • • • 0 0

2k • • • 0 0

0 0 • • • 2k

0 0 • • • _ k
m

,I'=

i i

i 0 • • • 0 0

0 2 • • • 0 0

0 0 • • • 2

0 0 • • • 0
D

(i.e. I' = (D(I,0) . Then, for e ¢ 0 , one can show that

where

det D(k, o0 = (-00 N+I det D(- k

(__)N+I det D(-_)

def

D(k) --- D(k, -i)

-i)

The values of k for which det D(k) vanishes are

iT

k i = cos _._ , 0 --<i _< N

0

i
D

(4.s)

(4.6)

(4.7)

(4.8)
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and the corresponding vectors (D(ki)v i = 0)

v i {cos , 0_< J _<N

ate

(4.9)

The significance of the above matrices is that in one dimension,

the discrete Hl(O,1) - , L2(O,1) - and underintegrated L2(O,1)-no_s,

h 0
on the space V1 of piecewise linear _-functions on a uniform mesh

of N elements on (0,i) ,

Vlh = {vh G C0(0,1) I vh is linear on _h, (e+l)h], e=0,...,N-1}

(4 .lO)

are associated with the matrices

h D(I,½) _i i h50 = _ , = _ D(I, -i) and _0,h = _ D(I,I)
(4. Ii)

respectively, In other words,

and

[[vhll 2 = v A v s = 0, 1 , (0,h) (4.12)
S _ uS~

where v
h

is the vector of nodal values of v

By using (4.6) through (4.8), one can verify that the numbers =i

8i which render A0, h - eiA0 and A 1 - 8iA 0 singular are

iT

3(1 + cos_)

_i = i_

2(2 + cos-_)

(4.13)

i - cos --
6 N

Bi = 7 i_ (4.14)
2 + COS--_-

In particular, let _i = _i(x ) , x @ E0,1] denote the piecewise
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linear functions associated with the vectors v i :

$i(jb) = cos i__N , 0_< i,j _<N

{0i}0<i<N hspan = V 1

(4.15)

Then,

(vh, _i)0,h = =i (vh ' _i)0

(vh, $i) I = 8i (vh' $i) 0

h h

v S V I

(4.16)

(4.17)

Notice that the base functions _i are orthogonal for each of the

scalar products under consideration.

The following remarks are in order:

i) The denominators in (4.13) and (4.14) are non-zero.

il) For i = N, _i = 0 and the corresponding eigenfunction is the

one-dimensional hourglass mode:

(I, -i, i, -I, ...)

lii) For i = 0, 8i = 0 and the corresponding eigenfuncti6n is

constant. Then we have the condition (vh,l) I = 0 as expected.

2.4.3. Discrete norms for two dimensional meshes. The extension

of the above results to two-dimensional rectangular meshes is straight-

forward. Since the bilinear basis functions for Vh are tensor pro-

ducts of piecewise linear functions of one variable, we can define

$iJ (x,y) = $i(x)$J (y)

0 < l,J < N (4.18)
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Further, let us normalize these basis functions so that

II_iJiI° 1

We can then establish the following:

h vhLs_ 4.1. For v G , we l_ve

(vh' _iJ)0,h = _i _j (vh' _iJ)o

(vh' $iJ)l = (_i + Bj) (vh' $iJ)o

(vh, $iJ)l, h = (%B i + ei8 j) (vh, $iJ)o

h VhMoreover, if arbitrary v G is expressed in the form,

•(4.19)

(4.20)

(4.21)

then

v = Z vij$ 3
0<i, j<._N

vii = (vh, _iJ)o

II¢II2 _ 2
0 = vii

0<._i,j<....N

2

2 = Z (8 i + 8j)vijIIvhlIl
0<i, j<N

Proof: First note that

(4.22)

(4.23)

(4.24)

• i

(vh' _i3)O,h = I(vh # (x) _J(y))

i J)n
v h _i(x)_J (y) dxdy

= _i _j (vh' ¢iJ)o
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We also have

(vh, ,lJ) = I _vh _i'(x) _J(y)

+ _vh ,j'
(Y) _i(x) dxdy

=81 nl vhOi(x)_J(Y) dxdy

I vh_i(x)_ j (y) dxdy+ 8j

= (8 i+ 8S) (v h, _lJ) o

Finally

"" " = -r ( _vh ,S _v h "'

= 81%(vh,$iJ)0 + 8jai(vh,$1J) 0

The norms (4.23) and (4.24) are then directly obtained

In analogy with our remarks on the one-dimenslonal case, we observe

that for "i = j = N, _lJ = H , the two dimensional hourglass mode. Then

and

Also, for

be written

24

(vh , H)I = _ (vh , H) 0
(4.25)

(vh, H)O, h = 0

i=j =o, _iJ=l

(4.26)

and the equilibrium condition (3.2) can

f00 = 0 (4.27)
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with

fij = (fh $ij) 0 (4.28)

2.4.4.
AL

results in hand, let us now return to the fully-integrated finite-

h
element approximate problem Ph given in (3.9). The solution u

that problem can be written

Explicit resolution of Pt and (Ph + _). With the above

to

h ij
u = Z uij$

o<_i,J<..._

uij = (uh, $iJ)o

(4,29)

and since for Iv h = _ij in (3.9)_,

(uh, $iJ) 1 = (8 i + 8j) (uh, $iJ) 0

= (fh $iJ) 0 = fij

we have

fij ; (i,j) _ (0,0)
(4.3o)

Using constructions similar to those in (4.29) for the fully-

--h
integrated problem, weeasily verify that the solution u to the

underintegrated problem Ph is representable in the form,

-h

u = Z u.. $ij

(i,j)_(N,N) 13

(i,j)#(0,0)

with

13 _i6j + _j8 i fij ; (i,j) _ (0,0) and (N,N)

(4.31)

(4.32)
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The cases (i,J) = (N,N) and (i,j) = (0,0) correspond to the arbi-

trary hourglass mode and arbitrary constant, respectively.

~h ~h -h
The projected approximation u defined by u = _u

~h h
structed so that projections of u and u coincide; i.e.

is con-

_lj --uij (i,j) _ (0,0) and (N,N)

UN, N = UN, N

(4.33)

h
U

2.4.5. Proof of theorem Vlll. Since the error function

is in Vh , we use (4.29) and (4.31) to obtain

h h
e = u

where

h eij _ij
e = 7.

(I,j)¢(N,N)

(i,j)#(O, O)

eij = (eh, _iJ)o

ffi(_h _ij) 0

= uij - uij

- (uh, _ij) 0

(4.34)

Thus, from (4.30) and (4.33),

/ _iaj

"" eij = \_UiBj +
(4.35)

Then, using (4.13) and (4.14),

eij = h2Kij fij

where

eij
can be written as

(4.36)
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i_ j_ )
Kij = K(cos -_ , cos N

and

I

K(x,y) = 4
(l+x)(l+y)

(l+x)(1-y)+(l+y)(l-x)

1 (2+x) (2+y)
6

(2+x) (l-y)+(2+y) (l-x)

On the square S = [-1,+l] X Dl,+l_/{(-1,-1), (1,1)} , K(',')

bounded and there exists a positive constant K such that

(4.37)

(4.38)

is

IK(x,y) I < K V(x,y) @ S (4.39)

Therefore we have

IKij I <_ K
_(i,j) _ (0,0) and (N,N) (4.4o)

and we can obtain using (3.13) and (4.23)

11ehll2o = h4
2 2

Z Kij fij
(i,j)_(O,0)

(i,J)_(N,N)

! h4 K2 II fhll2 0 ! h4 K2I1_II

Also, after calculation and use of (4.24), (4.14) and (3.14), we have

2 = h 4 EIIchill
(i,j)#(0,0)

(i,j)#(N,N)

2(8i + 8j)Ki fij

2
<_ 12 h 2 K 2 IIf I1o m

2.5. Implementation and Numerical Results of the A-Posteriori Control

For the Laplace Equation.

In this section we first would like to indicate how the a-posterlorl
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control method is implemented, and how its time efficiency compares to

the a-priorl method. Then several numerical results will be given,

illustrating the accuracy of the method and confirming the results

obtained in the previous sections.

2.5.1. Implementation of the a-posteriorl method. First let us

indicate that from a mathematical point of view the problem p--h is

well-posed but computationally, the matrix obtained from this formula-

tion is singular and the dimension of its kernel is 2. Consequently, we

must pick two nodes, fix them a value, and solve. The first value fixes

the constant mode, and the second one fixes the hourglass mode to be

--h
eliminated later. Let us fix u equal to Zero at the origin and at

the next point on the boundary (coordinates : h,0) (Figure 18.a).

According to the error estimates (3.30) and (3.31), we may write

h --h 0(h2,8)u = u + XH + (5.1)

and therefore, if we normalize H such that its nodal values are 0 or

h
1, I measures precisely the value of u at (h,0) (Figure 18.b), and

approaches u(h,0)

But u(h,O) is

_u/_n(O,O) = O)

2-_:,

= u(h,0) + 0(h o) (5.2)

0(h 2) for a smooth enough solution (u(0,0) = 0 ,

and using L_-estimates 12 , _ can be evaluated to

arbitrary. Finally, we have the estimate

= 0(h2-e), e arbitrary (5.3)

Also, the choice of H leads to
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I]_IIo = 1/3

and therefore we obtain

(5.4)

II_,Hlls= O(h2-S-5 s = 0,1 (5.5)

and that proves that the post processor contribution ZH can be neg-

lected if the fixed nodes are chosen as indicated for this type of

boundary condition. The error estimates of Theorem I still hold up to

within h-E .

Unfortunately this remark has two major drawbacks: it supposes

that u is smooth (u G H2/(_)) and it is not valid to 9-node elements

that will later be discussed.

Before discussing the implementation of (3.30), we indicate that

h
this proj ection can be simplified. Indeed, taking v = H in (4.25)

we obtain

2 h2
II(fh H) 0 H II < IIfhll l]s II0 I[fh2 - =-- II

IIHllI 0 llHll_24 0
(s.6)

IIHIIo= h fh
I!1 < II fhll o iiBlll 2-_-6II IIo

Therefore we have

h

(fill)0Hll < cllfhl]0 h2-s "2 s -- , s = 0,i (5.8)
IIIIRII1

and this term can be neglected without affecting the estimate of Theorem
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VIII. The formula used in the post processor is then

~h --h
u = u - IH (5.9)

= H)1 11HI1-21 (5.i0)

In order to preserve the efficiency of the method provided by

underintegration, one must find an efficient way to compute the para-

meter % in (5.9). One way that suggests itself is to calculate the

H I inner products of (5.10) using numerical integration. The use of a

one point rule would be absurd and would lead to a ratio 0/0. The use

of a 4 Gauss point rule has been numerically implemented and gives good

results (similar to those to be presented next) but cost of this inte-

gration is expensive, as shown in Table 3. This method is therefore

rejected.

We shall now describe a more efficient method with related numer-

ical results shown in the next subsection. This method relies on the

fact that, for the bilinear element, the stiffness matrix can be decom-
i

posed into two parts, one of which contains H in its kernel. The

other part is such that the image of H is cheap to calculate

This decomposition proved in Section 2.2.2 can be written as

• T

KexaCte = Kunder=e + _e Ye~ Ye~ (5.11)

and Kunder respectively are the exact element stiffness
=e

and _e are obtained from

where K exact
_e

matrix and its under-integrated form, E
e

(2.27) and (2.28). In particular

!e b2-- l el
(5.12)
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Even though e given by (2.27) is still difficult to calculate, note
e

that, during the element calculations, the vectors hl and _2 and the

Jacobian l_el are necessarily computed. Therefore Te is very easy

to calculate.

product (u-h , H)I may, therefore, be calculated byThe inner

using the decomposition (2.1) of Kexact . Introducing the nodal vec-

-- _%
tors U and H associated with the function u and H • we have

T
= uTK exact H = UT" Z_ [e'[e " H(u-%,H)1 ~ = " " e e ~

_.- Z . _e)( T= %(!e !e " _e)

m

where U and H are the values of U and H at the nodes of the
-e ~e - ~

element e . We note that If the values of H are +i or -i , the

scalar vector product yT "H is always ±4 . Therefore
~e e

-- i
, = ?. yei u (5.13)(u-h H)I 47. +_ _e e

e i=l

_d ,-

w

(H, H) 1 = 16Z s (5.14)
e e

These expressions are still exact since no approximation has been

m

made on £ . If we suppose that the Jacobian of the element is approx-
e

imately constant (true for parallelogram element), e is simply ex-
e

pressed as

_-e= i

The calculation of the approximate projection can be summarized in



78

the following algorithm:

• Loop on Elements

Calculate _e ' ce using (2.2) and (2.6)
Calculate +e-e(yT-e"_e )

_-Add

%2 = %2 + Ee

• I - li/4% 2

• Loop on Nodes

--h
_hlNod e = u INod e +_ k

Remark: The notations previously used are essentially those found

in the work of Belytschko and co-workers [4,5] on stabilization methods.

These methods rely on the decomposition (5.11) but the stabilization

T
term e_-y is a-prlori added to the under-integrated matrix to prevent

the spurious modes from the kernel of the stiffness matrix; whereas our

control method uses the very same term a-posteriori, after solving with

the underlntegrated matrix. Therefore, our method seems to be cheaper

than the stabilization methods as summarized in Table 4.

2.5.2. Numerical results.
I

2.5.2.a. Regular mesh of 4-node elements. In order to illus'

irate what has been stated, we have considered the Laplaclan problem

solved on a squaredomain partitioned into N2(=h -2) subdomains, for

various values of N and we have studied the norms of the difference

h
between the solution obtained with a full integration u (4 point rule
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-h _hand with underintegration (i point rule) u and (before and after

post processing). The results are shown as plot of Log lluh-uhll or

Log IIu-_h IIs in function of ILog hl for 8 z 0,I . Data of vari-

ous regularities have been used:

i) fl is a C0-functlon, but not CI :

14
fl(x?y) = (l-x) - -_ y if Yl(X,y) > 0fl(x'Y)= (l-x)-y if Y1(x,y)<_0

i
where the C -discontinuity line is

=3
Y1 (x,y) _ (l-x) - y

ii)

f2(x,y) = i

f2(x,y) = -2

f2 is a non-continuous function

if Yl(X,y) > 0

if Yl(X,y) < 0

Where YI is the same as in i).

Remark: Both of these functions satisfy the compatibility

condition (3.2).

Results obtained with the continuous function fl are shown in

Figure 19. When the solution has been treated by the post Processor

(Fig. 19a.), 5or both L2 and HI norms, the representing points lie

on lines of slope 2. This proves that whereas the estimate (1-13) is

optimal for the L2 norm and seemsnorm (s = 0), it is not in the H1

to be in fact better than what was expected in our study. This does

not affect in any case the comparison with the exact solution (1.14).

--h
Figure 19.5 shows the comparison with the crude solution u ,

obtained with two fixed nodes, and not treated by the post-processor.
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-Slopes 2 and i are observed and the loss (i. instead of 2. for the H I

norm) corroborates the final remark of Section 3.32,

When the function f2 is used (Figure 20), the points show os-

cillations around two lines of slope 2. (for the L2-norm) and 1.65

(for the Hl-norm) proving that the estimate (3.31) still holds (Fig.

20.a). When the solution has not been treated by the post-processor

(Fig. 20.b), the slope 1.65 becomes i. as expected.

The next series of examples was intended to study the influence

of a singularity (at the origin) for a unit square domain regularly

partitioned. The data functions are of the form

f (x,y)-. = r - C , e> - 2 (5.16)

where C

(2.2) is satisfied. The family {f }

of data:

f 8 HS(_) _ > s - i

The result shown in Fig. 21.a is a plot of

(rate of convergence of II ah_ uhlls=O,1) .

is a real number chosen such that the equilibrium condition

represents various regularities

(5.17)

(regularity) versus

The pattern of the (_, o)

plot seems to show a linear increase of slope i towards the maximum

value 2 reached for f G L2(u = -I) for the L2-norm (s=0) . As far as

the HI-norm (s=l) of the error is concerned, the linear increase of

slope I reached i for f G L2 but keeps increasing towards 2 . This

shows that the expected error estimate

< C h k llf II 8 = 0,illuh-u hlls - m ' (5.18)
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where

is not optimal for

optimal however.

k = I + min (i, m) - 8

8 = i and m > 0 .

(5.19)

The estimate (3.32) remains

In conclusion, these numerical results prove that the method is

accurate for regular mesh and that no accuracy is lost.

2.5.2.5. Regular mesh of 8- and 9-node elements. Since the be-

ginning of Part II we have not discussed the underlntegration of the

stiffness matrix of the 8-node elements. It is well known that this

matrix is not rank-deficient, and the practice of the underintegration

has been widely Used with good results when the mesh is regular. Since

there is not any spurious mode, the a-posteriori control previously

described is not needed.

Unfortunately, the method of proof presented in Section 2.4 cannot

be used because this element does not possess the nice tensor product

properties on which the method relies. The only hope for a proof of

convergence would be to obtain the result as a by-product of a result

for the 9-node elements.

As far as this element is concerned (9-node element), we have

proved (Section 2.2.3)that the underintegration of this element leads

to a rank-deficient matrix; in fact, the procedure described in Section

2.3, for the resolution of the underintegrated problem and the projec-

tion of its solution is completely applicable to a mesh of 9-node ele-

meats. Thus, Theorem VII is valid and the projection defined in (3.3)

can be used to eliminate the spurious mode. As far as the existence of



82

-a convergence theorem is concerned, one can establish generalizations

of (4.16) and (4.17) to 3-node, one-dimensional elements: there exist

_i ' Bi ' _i and _i such that

(vh, ¢i)0,h = _i(vh, ¢I)0
Vv h

(v h, _i) 1 = _t(v h, _i) o

Unfortunately, the basis functions _i and _i are different for the

L -underintegrated and Hl-norms and a lemma as Lemma 4.1 cannot be ob-
1

rained.

However, in this subsection we will show numerical results

obtained by use of the projection (3.30) for regular meshes of 9-node

elements. Note that two types of control have been tested with similar

T
results: the control only involving the term in y.y predicted by

T

Belytschko [3 ] and the complete control calculated with sis i , i = 7,

8,9. (See Section 2.2.3). The results obtained with either of them are

similar for this operator (-A).

For 8 and 9-node elements, the optimal rates of convergence are

given by

where

< C h k llf Nm s = 0,i (5.20)IIu-uhl] _

k = 2 + mln(l,m) - 8

0(h3-S)and the best rates of convergence are obtained when

The results obtained with functions presenting a singularity llne (such

as the functions fl and f2 previously defined and others) are pre-

(5.21)

f _ HI(_).
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sented in Table 5 (first and second lines). We obtained 1.99 and 1.74

for a discontinuous function (f @ L 2) , then 2.43 and 1.97 for a con-

tinuous, not CI , function (f G HI), 2.95 and 1.95 for a CI, not C2

function (f @ H2) and finally 4 and 3 for a C_ data. Therefore, the

rates 3 and 2 are reached when f is at least H2 or equivalent when

the solution u is in H4 . In this case, the convergence rate (5.1)

does not seem to be reached.

The second series of data involving the singularity at the origin

(5.16) has been tested and results are shown in Fig. 20.b. The pattern

of the (_,_)plot shows linear increases of slope I, the predicted

values 3 and 2 are reached for f @ HI(r) according to (5.21), but the

maximum values 4 and 3 are reached for f @ H2(_) .

2.5.2.c. Irregular mesh of 4- and 9- node elements. Finally, the

method has been tested on the quarter unit disk shown in Fig. 22 with

2
f=r e>-2

e+2

The plot (_,o) is shown in Fig. 23 and we can point out: ,

• The general pattern is respected (linear increase towards a

maximum value)

• The maximum values 4 and 3 (9-node elements) are reduced to

values slightly lower than 3 and 2 .

2.6 Excitation of Spurious Modes

The previous sections were devoted to the study of the Laplace

equations with Neumann boundary conditions. The choice of these bound-

ary conditions is convenient for the analysis of the hourglass instabil-



84

itles because these modesappear explicitly in the kernel of the under-

integrated discrete operator. WhenDirichlet conditions are applied

on a part of the boundary, even though the kernel of the underintegrated

stiffness matrix is not rank-deficient, instabilities may appear.

In this section we would llke to study the influence the boundary

conditions have on the solution of the underintegrated problem, and

obtain results analogous to Theorem Vlll. Also we would like to explain

how the oscillations may be excited in certain problems. The method of

proof is similar to that presented in Section 2.4. For various boundary

conditions, we are able to exhibit the exact eigenvalues and eigen-

functions of the various linear and billnear form involved. The expla-

nation of the excitation of oscillations will result from the comparison

of these elgenvalues. The procedure also allows us to study the under-

integration of the operator -A+I and the control of resulting spurious

modes. Numerical results will illustrate the theory.

2.6.1. The underintegrated ' problem with Dirichlet or mixed bound-

ary conditions. This section is devoted to a generalization of the

results obtained in Section 2.4 tothe Laplacian equation with Dirichlet

or mixed Dirichlet-Neumann boundary conditions. Only proofs for the

Dirichlet case will be given in this section, but their equivalent for

themixed case can be found in Appendix A.

The Dirichlet case is simpler than the Neumann case because the

hourglass mode does not belong to the new approximation space defined

to handle the boundary condition. Therefore the stiffness matrix is no

longer singular and can be normally inverted. In the variational for-

mulation, similar to (3.7), the projection of the data function is not
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necessary and the problem p--h is written:

where

h such that(_) Find _ G v0

(_ ,Vh)l,h= (fh• vh)0,h
h h

v S V 0 (6.17

v0h = {vh/v h @ C0(_) , vhlnij @ Ql(_ij) , l _< i,j _< N ,

vhI_ = 05

Remarks

h does not make
i) The fact that ("')l,h is not singular on V 0

the problem classically eliptic in the sense that the constant in the

Lax Milgram Theorem is h-dependent.

ii) When Dirichlet or mixed boundary conditions are applied,

Ker _ = Ker AI, h = {0}

Thus the post processor is not justified anymore and we will compare

-h h
directly u and u .

This comparison is carried the same way as in Section 2.4 and a

h
basis of the approximation-space V0 can be obtained. One useful

basis is the common eigen-basis of the matrices of the HI- , L 2-, and

L 2_underintegrated HI- or inner product. Let us consider the N-I x

N-I matrix

D(k) =

2k -i 0

0 -i 2k
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The values for which det D(k) vanishes are

iT

k i = cos --_ l<_i<._N-i (6.2)

and the corresponding vectors (D(ki)v i -- 0) are

44.T

= {sin _ } (6.3)v i
j=l, N-I

Let _i = _i(x ) , x G E0,1_ , denote the plecewise linear function

associated with the vector v i :

 i(jh) 1 ! i,j! (6.4)

i = V h (6.5)
span{_ }l<i<N-I 1,0

where

h = {vh 6 cO(0,1) vh(0) = vh(1) = 0
Vl, 0

h
v is linear on eh, (e+l)h , 0<e<N-l}

From this point, the remainder of the proof goes as in Section 2.4 and

the variational problem and its underintegrated formulation cam be ex-

plicitly solved and the decomposition (4.29), (4.30) and (4,31), (4.32)

are obtained for I < i,j < N-I , and we finally obtain the result for

Dirichlet boundary conditions:

THEOREM IX: Let f be a function in L2(_). Let u be the

solution of P :

i / (u,v)
P : Find u _ H 0 i

Let fh be the L2-projection of f

• tion of p--h .

• i
= (f,v) 0 Vv _ H 0 (6.6)

onto V h and let u-h be the solu-
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h/ (u--h,vh)l ' = (fh, vh)o ' V.,,h_; h_: Find_ G v0 h h V0 (6.7)

Then we have the following error estimate:

IIu-_ll,<_c h2-8 II f I10 8 = 0,i [3 (6.8) --

This theorem proves that the use of the underintegrated matrix does not

affect the rate of convergence of the solution. The method is there-

fore accurate and efficient.

Varuous regularities of data have been tested for meshes of 4-, 8-,

and 9-node elements, with various boundary conditions. Results are

summarized in Tables 5 and 6. They indicate that the optimal rates of

convergence for f G L2(fl) for the 4-node case and f G H2(_) for the

.

8- and 9-node case.

2.6.2. The underintegratlon of the operator -A+I. In this sub-

sectlonwe consider the underintegration of the operator associated with

the problem

PO : Find u G HI(_) such that

I -Au.+ u = f in____u= _n
Sn 0 on

The usual variational formulation of P0

P : Find u G Hl(fl) such that

is

(6.9)

(u, v)I + (u, v)0 --(f, v)0 , v _ Hl(n) (6.10)

The results of existence, uniqueness of P are well-known and so are
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sthe ones for its discrete formulation:

Ph : Find uh G Vh such that

where Vh

(uh, vh)l + (uh, Vh)0 = (f, vh)o , _/v h G Vh (6.11)

is an approximation of Hi(a) using bilinear elements.

The underintegration of ("')i + ("')0 leads to the following under-

integrated problem:

P-h : Find u-h G V-h such that

(u-h, vh)l,h + (u-h, vh)0,h = (f, vh)0, h ,

where the choice of approximation space

_v h G V--h

(6.12)

v--h= vh/H (6.13)

is Justified by

(vh, H)I, h + (vh, H)0, h = 0 , _v h G Vh (6.14)

Then, the method of proof used in Section 2.3 allows us to obtain the

--h
existence and uniqueness of u A projection similar to (3.30) can

be obtained by analogy: we have

(uh, H) I + (uh, H) 0 = (f, H) 0

we therefore construct the projection as:

(6.15)

~h -41

u = _u = u+ __,0H (6.16)

(Gh H) 1 + (_h H) 0 = (f, H) 0 (6.17)
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This defines uniquely 10 as

w. m

(f,H)0 - (u,H) 1 - (u,H) 0
= (6.18)

ilnll I

Similarly to what was done in Section 2.5.1, we can use (4.25), (5.6)

through (5.8), simplify _0 without any loss of accuracy and still use

(5.9), (5.10) for the projection

~h --h
u = u - IH (5.9) repeat

(u B)1 Iln 2 (5.10) repeat

The proof of the convergence of _h towards u is again done by

h ~h
direct calculation of u and u : the explicit resolution of Ph

and (_h + _) leads to :

i

ui,j = 1 + Bi + Bj fij 0 < i,j <N
(6.19)

and

ui,j = =i_j + =iBj + _8 i
HNN - UNN

fij _i<ji,j < N)_ (N_N)

(6.20)

h -h
These decompositions allow us to obtain u - u as done in Section

(2.4). Provided that f @ L2(_) we can obtain

II uh-_hJl8 < c h2-SJlf IIo s = 0,i (6.21)

Once again, the underintegration does not seem to affect the rate

of convergence. The result can also be obtained with various boundary
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conditions. Numerical results are joined in Tables 5 and 6 and assert

the theory.

2.6.3. Excitation of oscillations. The existence of spurious

oscillations when underlntegration is used is not only encountered

when Neumann boundary conditions are applied on the whole boundary.

this subsection, we would like to analyze precisely how modes that os-

cillate with wavelength of order h are excited when underlntegration

is used, whereas they are damped when the integration is exact.

For this discussion we consider the unit square

In

discretized into NxN elements.

(6.22)

We consider the Laplace equation on

-Au=f inn 1
u = 0 on 3 tZ{x = 0} )

_u = g on 3_/{x = 0}

_n

(6.23)

For the first time we include two kinds of load: body forces and sur-

face loads, and we will observe separately the effects of each of them.

The eigenfunctions associated with these particular mixed boundary

conditions are constructed as in Section 2.4.

xiJ(x,y) = _i(x)_J(y), l<i<N (6.24)

ovj 

where _J is defined in (4.15) (associated with Neumann boundary con-

dltlons at both ends) and _i is similarly defined (see Appendix A).

These functions are defined through sine and cosine functions and there-

fore oscillate. Among them we will distinguish "smooth" modes with
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longer wavelengths (0(I)) from "irregular" modeswith shorter wave-

lengths (0(h)). Smooth(respectively irregular) modescorrespond to

smaller (respectively longer) values of i or j . Examplesof each

extreme are shown in Fig. 25 for N = I0 .

The resolution of the fully integrated problem leads to the

search for coefficients ulj such that

The basis

h . •

u = Z uij X 13 (6.25)
l<i<N

0<D<_N

{X ij} is an eigenbasis for ("')i and therefore wehave

(6.26)

where

I

Aij = 8i + 8j (6.27)

with

6 1 - cos('-_- - 2-'_')

6 1 - cos (I_-N_)

Bj h 2 2 + cos(_N_)

(6.28)

The values Aij have been calculated exactly with these formulae

and their values are reported in Table 7.a for N = i0 . The 20 highest

values are in the shaded zone. We clearly can _bserve that

i) these values range from the highest value to 1% of this value,

ii) these values are associated with smooth modes (tensor products

of smooth modes).
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Contrarily, the elgenvalues of irregular modes are smaller and because

of this, these modes will be damped; only smooth modes will contribute

in (6.25).

When the underlntegration is used, and when g is zero, the solu-

~h
tion u is

with

where

~h ~ ×lj
u = 7. (6.29)

l<i<N uij

<_N

_ij = Aij (f' Xij )0 (6.30)

Aij :" (6.31)

and

____.

iw

3(1 + cos(--_- _

iT w

2(2+ cos(-" N-- - T_))

3(1 + cos(/_-N_))

2(2 + cOS(N:_._))

(6.32)

Again, the values of

are reported in Table 7b.

~

Aij have been calculated exactly and they

The 20 highest values are in the shaded

zone. The comparison between Tables 7a and b shows that these 20 values

are approximately the same and they are associated with the same smooth

modes. In this case, irregular modes will still be damped , and one

can predict that no oscillation will occur.

When a load is only applied on the boundary (f = O, g ¢ O) ,
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uij is now

where

_ij ffi ALj(g' xiJ)o,_ (6.33)

1 (6.34)

Aij %8'i + _'.B.I3

Again the values of AAj are reported in Table 7.c and the 20 highest

values are in the shaded zone. Among these 20 values, three correspond

to very irregular modes. In particular, the third value is associated

with X I0'I0 . Therefore, we can predict a strong contribution of

~h
irregular modes within the solution u , which will show oscillations.

Finally, one could wonder if the calculation of the boundary

calculated such that (g, xiJ)o,_ is damped for largeintegral can be

i and j . Unfortunately, no precise method has been obtained. In par-

ticular, if the load g is a concentrated load at (Xo, y0 ) , then

(g, xiJ)o,B_ = xiJ(xo , YO )

and this value is not necessarily zero. The procedure, consisting of

splitting g between neighboring nodes, seems to give satisfactory

results, but is more ad hoc than general.

2.7. The Practice of Underintegration in Linear Elasticity

We devote this section to the discussion and the effects of the

underintegration of the linear elasticity operator. Our goal is: i)

to exhibit the kernel of the underlntegrated operator; 2) to obtain a

post-processor formula similar to (3.30) to control, a-posteriori, the
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spurious modes; 3) to indicate how to implement this control, and 4)

finally, to show numerical results. This study is entirely qualitative

- the basis function obtained in Section 2.4 cannot be used at this

point to obtain basis functions for the elasticity operator. However,

both 4- and 9-node elements will be discussed.

2.7.1. The kernel of the discrete underinte_rated linear elasti-

city operator. We consider the linear elasticity operator defined by

where

A = 8Tc 8 (7.1)

T

o ay

0 _

_y _x

(7.2)

and C is a 3x3 symmetric matrix.

particularize C :

In the plane strain case we may

I },+2_ % 0 1C -- k k+2 _ 0 d

0 0 k

(7.3)

In order to exhibit the spurious modes we consider the operator A

associated with Neumann boundary conditions. In that case, the kernel

, t and r
~y -

RBM = span {tx~ = (0) ; ty

of A consists of the usual 2-dimensional rigid body modes denoted by

t
~X

We consider the problem
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P : Find u = (u2) 6 (_ 2/RBM such that

where

I u T BT C B v dxdy I fT= • v dxdy (7.5)

{ = (fl' f2 )

T
is a force satisfying the equilibrium conditions

f 6 RBM T (7.6)

or equivalently

I_ fl dxdy = I_ f2 dxdy = 0 1

I (fl y - f2 x) dxdy = 0

(7.7)

The existence and uniqueness of a solution for P are well known. The

construction of finite element approximations of (7.5) involves the cal-

culatlon of the (2Nx2N) stiffness matrix

, which is given by the formgla
e

K for a typical element
~e

where

K = J[ N T 6T C 8 N dxdy (7.8)
=e _ ~ ~ ~

N is a vector representing the bilinear (N=4) or blquadratic

(N=9) shape functions in each element _ , I < e < E . In computa-

tional applications K e is evaluated using an integration rule:

L
K = Z W B eT C B e (7.9)

where, similar to (2.36),

T

-h o
(7.10)
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and w is the weight at the integration point _ . Simple rank con-

siderations allow us to predict the rank of K . Indeed, since
Re

and

rk(A - B) <__max(rk A, rk B)

+ Jrk(A B) <__rk A + rk B _

(7 .II)

we have

rk K < 3 L (7.12)

When the full integration is used, (7.12) does not tell us anything,

But we know that K full has the correct kernel containing only rigid
=e

body modes. However, when underintegration (L=I) is used on 4-node

elements, we have

rk K < 3 (7.13)

Therefore, the 8x8 matrix K possesses at least two spurious modes.
e

In fact, two is the exact number. Similarly, when underintegration

(Lffi4) is used and 8- or 9-node elements, we have

- rk K < 12 (7.14)
=e --

This inequality predicts one spurious mode for the 16x16 matrix associ-

ated with 8-node elements, but when the procedure is repeated for two

neighboring 8-node elements, the spurious modes can no longer exist in

the global matrix [460 . We can also interpret this elimination of the

spurious mode by noticing that neighboring element cannot share the

mo oE133.

As far as 9-node elements are concerned, the inequality (7.14)

tells us that the 18x18 stiffness matrix has at least three spurious
i

modes. In fact, there are exactly three such modes and they can Be
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shared by adjacent elements. Next the modes will be explicitly de-

scribed.

H
~y

2.7.1.a. The spurious modes for 4-node elements.

be the two hourglass vectors defined as

Let H and
~X

where h

~x ~y

is the hourglass nodal displacement defined in (2.14).

(7.15)

Then

when L=I , we obtain from (2.18) and (2.20)

Bl' x 0 : 0
0

and similarly

Therefore,

B I -H :0

K (I). H : K (I). H : 0
_e ~x _e ~y

(7.16)

These element displacements can be put together to obtain' two

global spurious modes, also denoted by H and H and we have :
~x ~y

Ker Kunder: {span5x' _y' r, _x' H }
~y

(7.17)

This defines entirely the kernel of the underintegrated matrix and the

spurious modes for 4-node elements.

Remark:

the kernel of

In problems where symmetry is used for simplifications,

Kunder must respect the symmetry. If one axis of sym-

* In this section, nodal values and associated functions will be denoted

by the same letter, the underlining "." differentiating them. The

nodal values are expressed component by component.
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merry (say, the x-axis) exists, then

Ker Kunder = span (t , H }
_X _X

If the problem has two axes of symmetry (x- and y-axis)

H
~y

Ker Kunder = (0}

The spurious modes are eliminated by the symmetry conditions.

2.7.1.b. The spurious modes for 9-node elements. Let H
~X

be the two vectors defined as

and

H = (0) H = (Oh) (7.18)
~x ~y

where h is the spurious mode of 9-node elements defined in (2.37).

Using (2.36), (2.39) and (7.9), we easily get

K(4_H = K(4_H = 0 (7.19)
=e ~x =e ~y ~

Therefore, H and H are two out of the three spurious modes of
~x ~y

K (4). We remark that the pattern (2.37) defining them does not depend
_e -

on the geometry of the mesh. As far as the third spurious mode denoted

by

w I

w = (w2)

is concerned, one can show that the equations defining it are

(7.2o)

haT • wI " b2T w 2 = baT • w 2 + b aT w I 0 ; a=l,4 (7.21)~i " _I ~2 ": =

or equivalently :

ZA W_l 0
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CL= 1,4 (7.22)

Note that for this system of 12 equations, we have 18 unknowns. If

we add 5 orthogonality equations between W and _X' _y' r, H_X and By,

the system will define only one W (up to within a multiplicative fac-

tor). For a general geometry of

form for W ; however, when
e

y are of the form

fl , one cannot exhibit an explicit
e

is a quadrilateral, and when x and

= (Xl, x 2, x3, x 4, ½(x I + x2), ½(x 2 + x3),

½(x 3 + x4) , ½(x 4 + Xl) , k(x I + x 2 + x3 + x4)) (7.23)

we can prove that one candidate for W can be written as

w 2 -I x'

(7.24)

where

20210010jT = -4 -2 0 1 l 0 0 0 (7.25)

Z 2 4 2 0 -i -i 0 0

0 -2 -4 0 0 i i 0

and x' Z'~ , are the vectors constructed with the first four components

of x and Z • An example on _! for a geometry satisfying (7.23) is

shown in Figure 25 and can be constructed as follows:

i) the displacement of a mid-side node is normal to the side,

alternatively inwardly and outwardly oriented, with magnitude
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proportional to the length of the side.

ii) the displacement of a corner is obtained by multiplication

of -2 of the sum of the two displacements of the closest

mid-side nodes.

iii) the displacement of the centroid is zero.

On a square, the pattern of W is well-known:

-2, 2, 2, -2, 0, -I, 0, i, 0W = J (7.26)~ 2, 2, -2, -2, -i, 0, I, 0, 0

Contrary to 8-node elements, and because of the presence of H
X

and H , this mode can "propagate" from one element to another.
Y

example, on a square mesh, if =he nodal displacement vector is W

For

given by (7.26) on an element _0 ' then the displacement vectors W~

+ 3_x + ~xt and W~ - 3Hy~ - ty on the elements to the right of _0

and above _0 allow us to construct a continuous global displacement

also denoted W , on the mesh as shown in Figure 26.

We finally have

Ker Kunder = span {_x' _y' r,~ H~x, _y' W}~ (7.27)

Remark: Similar to what we have with 4-node elements, the exis-

tence of one axis of symmetry (say, the x-axis) reduces the kernel of

the underlntegrated stiffness matrix:

Ker Kunder = span {tx. HI, H 2 + H3} (7.28)

where
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~H3 = W+ 2(t x - ty) (7.29)

have been chosen such that the displacements of these modesare zero at

the intersection of both axes for a square mesh. Contrary to the 4-node

case, we still have a spurious modewhen two axes of symmetry exist:

Ker Kunder - sPan {HI + _2 + H-3} (7.30)

This mode is shown in Figure 27.

It is also important to point out that whereas the pattern of

the spurious modes H and H are independent of both the geometry
~x ~y

and the element, the mode W depends upon both of them. Moreover, we
~

can see by construction on a square mesh that the amplitude varies

strongly when we consider successive elements. In fact, the pattern we

may observe Is a succession of pattern H and H with increasing
~x ~y

amplitude.

2.7.2. The a-posterlori control in linear elasticity. In this

subsection we wish to generalize (3.30) with regard to the discrete

operators,-Using various kernelsdiscussed in the previous Subsection.

We consider the general case where

Ker Kunder = RBM _ span{Hi, i = i,I} (7.31)

where I may have the values I, 2 or 3 . We recall that for

I = i , we obtained a control formula similar to

~h .1)
= - H I (7.32)

u u a(Hl ' HI )

where the bilinear form a(-,-) was obtained in the variational formu-

lation of the initial problem. This projection satisfies:
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a(_ h, HI) = 0 (7.33)

or, in other words, u is orthogonal to the spurious mode. We gener-

alize this property to the elasticity problem by supposing the projection

to be orthogonal to all the spurious modes. Therefore the control will

consist of looking for I constants %i (i = I,I) such that

z
i=l'l (7.34)

a(8 h, H.) = 0 for i=1,3

This leads to the system of I equations with I unknowns :

Find %i ' i = i,I such that

z _j a(_i, Hi) = a(_, Ri) , i=l,I
J=l,l ~ ~

(7.35)

The computations involved in the control are computations of products

--h
of u and the spurious modes By themselves. The implementation of

these Computations are to be discussed in the next section. ,

2.7.3. Implementation of the spurious modes control. For the

computation of the coefficients in (7.35) we again use the decomposition

K full - Kunder + K _ (7.36)

Kunder satisfieswhere

--K-nder • H. = 0 (7.37)

then

a(u-h, H i) ffi Z _T.KI H i (7.39)
~ efl,E ~
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The expressions used for K p are next given for 4- or 9-node

elements.

2.7.3.a. Control for 4-node elements. For the operator defined

in (7.1) and (7.2) with

(• )
Cll C12 C13

C = C21 C22 C23 (7.40)

C31 C32 C33

we have the exact decomposition for my geometry of Q :
e

y.yT/ C_ll
Kexac t __ Kunder + |

T

_12 !'!T )
_22 !'!

where

(7.42)

The vector "( and the _'s are defined in Section 2 ((2.41) and

(2.50)). For practival use, the expressions (2.51) are used for _ .

For linear isotropic linear material, C is given by (7.3)and
m_

_+2 U)_xx + u eyy

\ .

_xy

la e +(_.+2 la)
xx y

(7.43)

Thls expresslon of [_ can be compared to the general strain-stress

r elat ionship:



104

I(k+2_)e + _ e 1

x l]Ey xy

exy pex+(k+2p) ey

(7.44)

An algorithm similar to the one presented in Section 2.5.1 can be con-

structed. It involves the computation of 7 , g and e , then the

computation of a(Hi, 5) and a(u-h_ , H i) , and finally the coeffi-

clents li are obtained by resolution of a NxN system, N measuring

the rank deficiency of Kunder (N=I or 2).

2.7.4.5. Control for 9-node elements. In this subsection, devoted

to 9-node elements, we would like first to show why the results obtained

by Belytschko are not sufficient to obtain a generalization of the

Linear Elasticity Problem, and then to propose an implementation of the

control that leads to a stable solution converging to the exact solu-

tion with the optimal rate of convergence. However, for 9-node elements,

we have not yet been able to obtain a computationally easy way to exhi-

bit the third spurious mode, and the proposed results are only applica-

ble to regular discretizations of a domain.

As far as the stabilization method proposed in [3_ is concerned,

algebra similar to that in Subsection 2.7.3.a leads to (7.41) where y

was defined in 2.41. But, whereas the stabilization matrix constructed

T
with the submatrix y'y eliminates H and H from the kernel of

~ ~ ~x ~y

the stiffness matrix, it does not take W into account. Indeed, we

have

_ll y.yT _21 y.yT 1

.... •w:o

a12 Y-'IT alI y,yT
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Therefore this procedure cannot be used to control W .

In order to obtain an accurate control, we have to consider a

generalization of (2,43). Now we have

all 8i'Si e21 ~I

-H.#0

el2 _i'8i e22 _i 8i -3 ~

for 7<i<9

1<j<_3

where the vectors si are defined in Section 2.2.3. Finally, using

(2.43) and (2.527, we have

T

K(9)= K(4)+ 4he [(CII+C33)89_9

=e =e i--_ L (C31+C23) 5959 T
(CI3+C32)Z9_9T 1
(C22+C33)8989 T

%

45_ Lc318787 T C335787 TJ L'c23&88 T c228888 T j/ (7.45)

S_milarly, for the 4-node case, the algorithm for the computations

of the coefficients in (7.35) has been obtained and implemented. Numer-

ical results agree with our presumptions concerning a "y.yT"-type of

control and incline in favor of the decomposition (7.45). On a square

domain discretized with NxN elements, we have calculated and compared

the solutions obtained with full (exact) and underlntegration for vari-

ous boundary and symmetry conditions. The rates of convergence were

calculated by comparing the error norms (s=0: L2/RBM norm; s=l: energy

norm) obtained with N=5,6 and 7. we consistently got the rate 0(h 2-8)

T
using a 7"Y decomposition and 0(h 3-8) with (7.45) for homogeneous
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co

materials under the action of gravity (f G C ) ; the order 3-s being

optimal, we may conclude that the method presented below is accurate.

It is also efficient: for one second taken for the fully integrated

stiffness matrix, only .61 are taken when the underintegration is used

and only .05 seconds are taken for the control.

Remark: The analysis of the excitation of the spurious modes

carried for the simple Laplace equation cannot be done for the elasti-

city because we are not able to exhibit eigenbasis of the discrete

operator for neither 4-nor 9-node elements. Numerical computations

E7 3 seem to indicate that the same phenomenon occurs: several "irreg-

ular" modes appear within the smooth, high wavelength modes, and are

therefore excited. The shape of these modes and their mathematical

knowledge would allow their elimination or damping.

2.8 Conclusions and Further Research

The underintegration seems to be a very attractive way to obtain

more efficient computations in solid or fluid mechanics. The spurious

modes this practice introduces and the precise way they are excited have

long remained unstudied. Several authors previously mentioned proposed

several interpretations based on the intuition. We have here tried to

study this phenomenon from a rigorous mathematical point of view, and

we have precisely answered all the questions concerning one simple prob-

lem. Unfortunately, the algebra involved in more sophisticated problems

(9-node elements, linear elasticity) does not allow us such a complete

study. We would like to indicate that several generalizations of our

results will help in the control of the spurious modes: i) a discrete
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eigenbasis of the linear elasticity would allow an interpretation of

the excitation of spurious modes, and hence a way of damping them;

ii) an accurate control formula for 9-node elements would help in

a-priori as well as a-posteriori control of the widely known spurious

mode W . This could also help in preventing bad behavior of 8-node

elements in certain geometries.



APPENDIX A

As far as mixed boundary conditions are concerned, we suppose

that a Dirichlet boundary condition is applied at 0 and a Neumann

Boundary condition at i . For the interval E0,1] , we consider the

NxN matrix

D(k) =

2k -I 0

(A.1)

The values for which det K(k) vanishes are:

ki = cos +_- , I _< i _< N (A.2)

and the corresponding vectors (D(ki)vi = 0) are :

v i = {sin } 1 !J iN CA.3)

h

The corresponding approximation space Vl, ½ with basis {#J} is con-

structed as in @25]or in Section 2.4. Then, depending upon the sides

where the various boundary conditions (D or N) are applied, tensor

" h h h

product of VI , Vl, 0 or Vl, ½ are to be considered. The results of

Theorem II hold for the Mixed Problem.
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/

Method I:

Method 2:

Method 3:

Table 2:
t

Norm-evaluation obtained by:

Q2/PI elements

composite elements

18/P 1 elements and filtering of the pressures

by using only the centroidal value

Exact Solution: llpllL2(n)/m --i00 3_13--_ = 175.5942 ;
h 2 = 0.0625

h
[[P-Pe [[L2 (_)/JR

h

IIP-P e IIL2(_)/_

lipIlL2(_)/IR

Method i 167.1254 20.0310 0.1141

Method 2 171.5448 36.3181 0.2068

Method 3 171.5845 26.6219 0.1516
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Table 3: Cost of computation of with a full integration.

Stiffness with Full Int.

Stiffness with Under-Int.

Control with Full Int.

4 Node Element

Full Integration:

4 points

Under Integration:

I point

.

.41

.51

9 Node Element

Full Integration:

9 points

Under Integration:

4 points

IQ

.52

.34
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Table 4: Operations Cost per Element for Both

Stabilization and A-posteriori Methods

Stabilizat ion Method

Computations of L' !e

T

Multiply Xe " Ye

T

Multiply ee " YeYe

T

+ e Ye YeAdd K e e

TOTAL

Operations Cost

20x ; 21+

16x

16+

16x

52x ; 37+

20x ; 21+

4x

1x

2+

4+

29x ; 27+

A-posteriori Method

m

Computations of ee_Ye

Multiply U T
e'Me

Multiply £ • U T
e e Ye

Add

UT
Y1 ± ee e Ye

Y2 + ee

Then:(4nodes/element)

Add u-h ± X

TOTAL
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Table 5: Rate of Convergence ILogllell s Iv.slLog hl(O=O,l )

for 8- and 9-node Elements

9:,

] REGULARITY

I
IBOUNDARY CONDITIONS

] AND ELEMENT

INEUMANN, 9-NODE

I+SPECIAL PROJECTION
9:m--q,

INEUMANN, 8-NODE EL.

I

9:......... 9:........ 9:......... 9: 9:

! L2 I H1 I I : Ii f G if e I f_,_2 I fec _ I

I _ H1 I _,,.i2 I _3 I I
I I I e I I
9:......... 9:......... 9:........ 9:......... 9:

11.99 12.43 12.95 14.00 I
! 1.741 1.97l 1.941 3.001
9:.......... 9:--. 9:......... 9:........ *

!1.99 12.00 12.97 14.00 I
! 1.79[ 1.931 1.951 3.001

* ..................... 9:.......... 9:........ 9:......... 9:........ *

IDIRICHLET,9-NODE EL. 12.35
I I
9:. 9:

[DIRICHLET,8-NODE EL. 12.30
I I
9:----. 9:

_MIXED,9-NODE EL. 12.00

I I
9:.............. _ .... 9:

IMIXED, 8-NODE EL. 12.00

I I
.------------------------------------------.

12.85 12.99 13.00 I
1.471 1.991 1.991 2.00l

9:........ 9:. 9:..--....... 9:

12.71 12.99 13.00 !
1.461 2.121 1.99l 2.00l

9:......... *. 9:......... *

12.00 13.83 14.00 I
1.671 2.28 ! 2.841 3.00 I

• ........ 4:- 9:---....... W

12.00 13.84 14.00 I
1.741 2.271 2.84l 3.001

9:--. * ......... . ........ 9:
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Table 6: Rate of Convergence ILog IIe II

4-node Elements (s=0,1)

Iv.s. ILog h I for
S

I REGULARITY

l I feL 2

l OPERATOR AND i HI
I BOUNDARY CONDITIONS I

I ! NEUMANN I1.99

! ' I I
t f e H1 ! f e c® I

i _2 I I
I e I I
_--- _ ......... *

12.00 12.00 i
I

I
I

I
I

- A

I+PROJECTION] 1.611 2.001 2.001

[ DIRICHLET li.99 [2.00 12.00 [

I I 1.501 1.8sl 2.001
_--- * .......... _ ......... _ .......

I MIXED 12.00 12.00 12.00 I
I I 1.501 1.991 1.991

I
I

I -a+l
I

I
I
•k .......... "k,

I NEUMANN 12.00 12.00 I2.00

I+PROJECTIONI 1.501 2.001

I DIRIC_LET {2.00 12.00 12.00

I I 1.5Ol 1.851
*, _ ......... * ........ _-.

I MIXED 12.00 12.00 12.00
I I 1.501 1.851

I
2.ool

I
2.001

"k

!
2.00l
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.j
0

1
2

3

4

5

6

7

8

9

10

Table 7: Arrays of Eigen Values Aij, Aij and A--lj

Table 7a. Array Aij

i 1 2 3 4 5 6 7 8 9 10

0.45 4.:42_54 0.75:_0:_3'_ " 0.18 0.13 0.10 0.080.27;"'_':; _" _" ¢_ :_'-_"_: _ _""_
_8.05 3.07 1;34 0.70 0._--0.26 0.17 0.12 0.10 0.08

•12.31 1.580.95 0,i_I0.36 0.24 0.17 0.12 0.09 0.08
0.0.850.  O.30 0.21 150.110.090.08

I0:755 0.49 0._JXO.32 0.24 0.18"0.13 0.I0 0.08 0.07

0.33 0.31 0.27 0.23 0.19 0.15 0.12 0.09 0.08 0.07
0.21 0.21 0.19 0.17 0.14 0.12 0.10 0.08 0.07 0.06
0.15 0.14 0.14 0.12 0.11 0.10 0.08 0.07 0.06 0.05
0.11 0.11 0.10 0.10 0.09 0.08 0.07 0.06 0.05 0.05
0.09 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.05 0.04
0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.04 0.04

0

1

2

3

4

5
6

7

8

9
i0

Table 7b. Array _ij

i 1 2 3 4 5 6 7 8 9 i0

.-.rzi_s____T.:,--_i_-----_:-_--_.__- o.o,o.o,o.o o.oo
'_ _-_' _'-'--l_99 3.o2 1.27 0.62[0.33 0.18 0.09 0.04 0.01 0.00
i:_.24 z.53 0.90 0.5210,30 0.17 0.09 0.04 0.01 0.00
,.,_:l_b:'940.79 0.58 0...Q._0.25 0.15 0.09 0.04 0.01 0.00
l;_'_47 0.43 0.3610.28 0.20 0.13 0.08 0.04 0.01 0.00

0.25 0.24 0.21 0.18 0.14 0.11 0.07 0.04 0.01 0.00
0.13 0.13 0.12 0.11 0.10 0.08 0.05 0.03 0.01 0.00
0.06 0.06 0.06 0.06 0.05 0.05 0.04 0.03 0.01 0.00

0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.00

0.01 0,01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

i

:l
ol
11
2 I
31
4 I
51
6 I
7 !
81
9l

lO !

m " .

Table 7c. Array Aij

1 2 3 4 5 6 7 8 9 I0

0:45t4.42":'i;54 0 0.43 0.27 0.18 0.13 0.10 0.08

,, 8".0813.1i" 1.36 0.7110.42 0.26 0.18 0.13 0.10 0.09
12.321_i.62 0.99 0.6110.39 0.26 0.18 0.13 0.10 0.09
''-----"11;02_'0.87_8 0.34 0.24 0.18 0.13 0.10 0.09
!' "------0.55 0;5fI0.44 0.37 0.29 0.23 0.17 0.14 0.11 0.10
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_Typical mesh on a quarter circle domain.
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