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Preface

The NASA Aircraft Noise Prediction Program (ANOPP) was developed originally for
the prediction of airport community noise from turbofan-powered aircraft, with theoretical

manuals for the original system (known as CTOL) published as NASA TM-83199, Parts 1

and 2, in February 1982. Subsequently, ANOPP was augmented to encompass prediction
of airport community noise from propeller-powered aircraft, with the theoretical manual for

this augmentation (known as the Propeller Analysis System or PAS) published as NASA
TM-83199, Part 3, in June 1986. Part 1 describes program modules which define the

atmosphere, aircraft flight trajectory, propagation of the broadband noise, and subjective

effects of the noise on the observer. Part 2 describes program modules which define the
turbofan engine noise sources and the airframe noise sources of CTOL aircraft. Part 3

describes those additional program modules which define the propeller noise sources and the

propagation of pure tones.

The purpose of Part 4 of the theoretical manual (the present volume) is to describe those

additional program modules, applicable to rotorcraft, which are used to define rotor noise

sources and to describe a module which is used for combining multirotor or multipropeller
noise sources. Although this part begins with chapter 13 to follow the numbered chapters of

Parts 1, 2, and 3, the manual is written such that the chapters have minimal interdependence.

The program user may rely on Part 4 of the manual to define the rotor noise sources. The
previously published parts of the manual are then referred to for noise propagation and for

the effect of the rotor noise sources on the airport community.
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13.1. ROTONET System Description

Donald S. Weir and Stephen J. Jumper

Lockheed Engineering & Sciences Company

Introduction

ROTONET is the element of the NASA Aircraft Noise Prediction Program (ANOPP) which

is designed to predict helicopter noise. The problem is approached from a fundamental basis.
The helicopter follows an arbitrary flight path in the presence of an observer on the ground.
Tonal and broadband noise sources axe predicted and propagated to the observer with an

accounting for atmospheric and surface effects. The resulting time-dependent sound pressure

level spectra are integrated with respect to frequency to produce subjective noise levels and

integrated with respect to time to produce effective noise levels.

The ROTONET system relies heavily on functional modules from the other elements of

ANOPP. The aerodynamic characteristics for the main and tail rotor geometries and the blade

section axe provided by the ANOPP Propeller Analysis System (PAS) (ref. 1) and by the
improved ANOPP Propeller Analysis System (ref. 2). The engine noise sources are predicted

by using modules from the conventional takeoff and landing (CTOL) turbofan and turbojet

engine modules (ref. 3). The source-to-observer geometry, atmospheric propagation, ground
effects, and noise levels computation are provided by the basic ANOPP system (ref. 4). Finally,

the ANOPP Data Base Manager is used to develop empirical noise prediction methods and to

make comparisons of theory with experiment (ref. 5).

The key elements to the ROTONET system axe the functional modules with dedicated

helicopter analysis capability. These modules include simplified rotor analysis, higher harmonic
loads analysis, and rotor source noise prediction. These capabilities are described in more detail
later in this chapter. ROTONET also has the capability to interface directly with user stand-

alone programs. Any source noise or performance analysis module can be replaced with a data

table generated from a program outside of ROTONET.

A list of all ROTONET functional modules, along with the source (either a reference or a

section in the theoretical manual (refs. 1, 3, and 4, and the present paper)) for the description of

the module, is presented in table I. A schematic diagram of the system is presented in figure 1.

An updated list of the available ROTONET modules, as well as all other ANOPP modules, is
available from the on-line system.

ROTONET Functional Modules

Documentation Format

The dedicated functional modules for the ROTONET system are described in this theoreti-

cal manual. Each module write-up is organized in a format described in six sections as follows.

First is the section "Introduction," which overviews the purpose of the module. Second is a

complete list of symbols used in both the theoretical development and computer input/output
description. For each symbol for nondimensionalizcd quantities, the definition concludes with

the phrase "re" (i.e., referenced to) followed by the reference quantity used for nondimeusion-

alizing. For symbols for dimensional quantities, the definition concludes with the acceptable
units, with the preferred SI system of units cited first, followed in parentheses by the alternate

acceptable U.S. system of units. Third is the section "Input," which itemizes all inputs required
to execute the module code. Listed arc user parameters, which are single constants to be input

directly. Also listed are arrays and tables, which contain several related quantities to be input

directly or to be supplicd by previously executed modules (the module providing the input is
idcntified by in the headnote in the applicable table). Fourth is the section "Output," which
itemizes the user parameters and tables resulting from cxccution of the module code. For the
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reader interested strictly in the theory of a module, the sections "Input" and "Output" may

bc skipped without loss of continuity or understanding in reading succeeding sections of the
write-up. Fifth is the section "Method," in which the theoretical development is presented. In

most modules, the section "Method" concludes with a step-by-step computational procedure

outline for implementing the theory. Last, if present, are the appendixes used to clarify or

amplify parts of the theoretical development, references, tables, and figures. A brief summary
of each module is presented in the following sections.

Simplified Rotor Analysis

The simplified rotor analysis consists of the Lifting Rotor Performance and the Lifting Rotor
Noise Modules. These modules compute the performance and tone noise for an isolated main
or tail rotor. They are used for quick-look studies and fundamental validation problems where

some accuracy can be sacrificed for computational efficiency.

Lifting Rotor Performance Module. The Lifting Rotor Performance Module computes the

rotor force coefficients, first harmonic flapping, and blade section force distribution for the main

or tail rotor. It applies the method of Bailey and Wheatley as mentioned by Gessow and Myers
(ref. 6). The method assumes that the wake-induced inflow is uniform over the rotor disk so

that blade element momentum analysis can be used. The rotor blades are articulated with

zero hinge offset, and blade structural bending effects are neglected. The blade tip effects are
modeled with a blade tip loss factor.

Lifting Rotor Noise Module. The Lifting Rotor Noise Module integrates the Ffowcs-

Williams-Hawkings equation in the time domain for loading and thickness noise using a lifting

line model for the main or tail rotor. It implements a compact chord formulation presented by
Farassat (ref. 7). The loading, thickness, and total noise signatures are produced as a function

of harmonic number and observer position. It incorporates blade flapping and lead/lag motions.

Higher Harmonic Loads Analysis System

%

The ROTONET Higher Harmonic Loads Analysis system consists of four functional

modules. They provide the capability for a detailed performance analysis and provide inputs for
the prediction of tone and broadband rotor noise. The core modules of the system are Rotor

Loads, Rotor Inflow, and Rotor Rigid Dynamics. An ANOPP control statement procedure

controls an iteration among the three modules to solve for the flapping angles, nonuniform
inflow, and resulting harmonic loads. The remaining module provides inputs to account for

wake distortion. The procedure is based on the method developed by Scully (ref. 8), with

improvements to allow for higher harmonics. The analysis assumes a lifting line model of the
rotor.

Rotor Loads Module. The Rotor Loads Module determines the harmonic airloads distri-

bution on the rotor disk due to nonuniform inflow and blade dynamics. From tables of the

induced velocity normal to the tip-path plane and blade flapping angles, it computes the local

angle of attack and Mach number at each blade section. Tables of section lift and drag force
are interpolated for the resulting force distribution on the blades. The force distribution is then

integrated to produce rotor thrust and torque.

Rotor Inflow Module. In the Rotor Inflow Module the nonuniform inflow induced by the

rotor wake is computed by integration over the wake. The tip, inboard, and shed wakes are
modeled with a combination of vortex sheet and vortex line elements. The effects of a finite

distributed vortex core and vortex core bursting are ircluded.

Rotor Rigid Dynamics Module. The first and higher harmonic flapping angles are computed
from the input rotor loads. The full set of flapping equations is solved and includes the effects of

harmonic coupling. The Rotor Rigid Dynamics Module allows for a variable mass distribution

for the blade and a flapping hinge offset.
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Rotor Wake Geometry Module. The Rotor Wake Geometry Module determines the

distortion of the rotor tip vortex from the classical helical wake. It applies the prescribed
wake analysis of Egolf and Landgrebe (ref. 9). The distortion of the wake normal to the rotor

tip-path plane is computed from a fit to the results of experiments and free wake analysis. The
distortion parallel to the tip-path plane is neglected.

Helicopter Noise Prediction

In addition to the engine noise sources, two rotor noise prediction modules are incorporated

into the system. The Rotor Tone Noise Module computes the narrowband noise signature due

to loading and thickness effects. The Rotor Broadband Noise Module computes the one-third-
octave band noise signature due to four broadband noise sources. Additionally, the" Multirotor

Source Noise Module is available for combining noise signatures of two separate rotors.

Rotor Tone Noise Module. The Rotor Tone Noise Module integrates the Ffowcs-Williams-

Hawkings equation in the time domain by using a full surface model for the rotor. It implements

the noncompact subsoniC formulation developed by Farassat and Succi (ref. 10) and incorporates

the effects of higher harmonic loads and blade motions. The full blade geometry with tip shape
is included. The module produces the loading, thickness, and total narrowband noise signatures
as a function of harmonic number and observer position.

Rotor Broadband Noise Module. One-third-octave band sound pressure levels are predicted
for four broadband noise mechanisms by using a combination of six prediction methods.

All six prediction methods apply empirical noise data from wing and airfoil tests to full

rotor geometries. The noise mechanisms accounted for are turbulent-boundary-layer trailing-

edge noisc_separated-flow noise, laminar-boundary-layer vortex shedding noise, trailing-edge
bluntness vortex shedding noise, and tip vortex formation noise.

Multirotor Source Noise Module. Acoustic signals from two separate rotor systems are
combined, accounting for acoustic interaction, to produce the resulting noise signature at
each selected observer location. Both rotor systems are assumed to have the same blade

passing frequency and are assumed to produce exactly correlated signals, such that the signals
may be added directly. Used in conjunction with either the Lifting Rotor Noise Module

or the Rotor Tone Noise Module, the Multirotor Source Noise Module is applicable to two
physically separated rotors or to a single rotor incorporating azimuthally unevenly spaced

blades. Similarly used in conjunction with-the Subsonic Propeller Noise Module (ref. 1) and
the Transonic Propeller Noise Module (refs. 1 and 2), the Multirotor Source Noise Module is
applicable to two physically separated propellers.

Turbulence Ingestion Noise Prediction

In addition to the modules already described, three other modules exist in ROTONET

for computing rotor turbulence ingestion noise. These modules, the Atmospheric Boundary-

Layer Module, the Streamline Distortion Module, and the Turbulence Ingestion Noise Module,
were developed by United Technologies Research Center and are documented in references l l
through 15; hence, the documentation for these modules is not included in this manual. As

shown in figure 1, all three modules are executed in sequence if turbulence ingestion noise is
predicted.

Atmospheric Boundary-Layer Module. The Atmospheric Boundary-Layer Module computes

the turbulent characteristics of the atmospheric boundary layer based mostly on correlations

by Snyder (ref. 16). It accounts for stable, neutral, and unstable atmospheric conditions. It

computes the atmospheric boundary-layer thickness, skin friction velocity, turbulent correlation
length scale, and the vertical turbulence intensity. The theoretical manual for this module was

written by Simonich (ref. 11), and the users manual was written by Simonich and Caplin
(ref. 12).

13.1-3



Str_amlin_ Distortiou. Module. The Streamline Distortion Mo(hde conq)utes the mean flow

into the rotor disk by the method of Casth's and Dc Leeuw (ref. 17). Then, a rapid distortion

theory approach is used to compute the distortion of the atmospheric e(hlies from th(_ free-
stream con(tition at the rotor t)lane. The resnlt is a turt)ulence distortion tensor that can be

applied uniformly over the rotor disk or can be allowed to vary radially or azimuthally over the

rotor disk. Simonich (rcf. 11) wrote the theoretical nmmml for this module. The users manual

was written by Simonich and Caplin (rcf. 12).

Turbulence Ingestion Noise Module. The Turbulence Ingestion Noise 5,Io(tul(_ calculates
the noise produced by a rotor encountering a tm'bulcnt flow fiel(t. It is based on a method

developed by Amiet (rcf. 18). The current method uses an extension of Amict's method which
allows consideration of both isotropic amt nonisotropic turbulence. It computes the narrowband

noise spcctra produced by the rotor bade interacting with the atmospheric turbulence, by using
an airfoil gust response model. The theoretical manual for this module is in Amict (rcf. 13).
The users manual is found in Amict, Egolf, and Simonich (ref. 14). Validation of the module

is documented by Simonich, Schlinker, and Amiet (ref. 15).

Concluding Remarks

The functional modules devcloped for ROTONET, plus the modules from the other clements

of ANOPP, provide a capability for the prediction of helicopter noise. Further development
efforts in the areas of unsteady aerodynamics, blade/vortex interaction, main rotor/tail rotor

interaction, rotor/fuselage interaction, wake modeling, and blade loading are required to further
define the helicopter noise signature.
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Table I. Baseline ROTONET Functional Modules

Name of module

ABL
ABS

ATM

BLM (or IBL) b
EFF
GECOR

GEO
GETUR

HDNFAN

LEV

LRN
LRP

MSN

PRO

PRT

RBA (or IBA) b
RBN

RBS (or IBS) b
RIN

RLD

RRD

RTN
RWG

SGLJET

SFO
SMBTUR

STL

TIN

Abbreviation

Atmospheric Boundary Layer

Atmospheric Absorption

Atmospheric

Blade Section Boundary Layer
Effective Noise

Source a

References 11 and 12

Section 3.1

Section 2.1

Section 10.4 (or ref. 2)
Section 6.2

Combustion Noise

Geometry
Turbine Noise

Fan Noise
Noise Levels

Lifting Rotor Noise

Lifting Rotor Performance
Multirotor Source Noise

Propagation
Tone Propagation

Blade Section Aerodynamics
Rotor Broadband Noise

Blade Shape
Rotor Inflow

Rotor Loads

Rotor Rigid Dynamics
Rotor Tone Noise

Rotor Wake Geometry

Single Stream Circular Jet Noise

Steady Flyover
Smith and Bushell Turbine Noise

Streamline Distortion

Turbulence Ingestion Noise

Section 8.2

Section 2.2
Section 8.3

Section 8.1

Section 6.1
Section 14.2

Section 14.1

Section 16.3

Section 5.1
Section 12.2

Section 10.3 (or ref. 2)
Section 16.2

Section 10.2 (or ref. 2)
Section 15.2

Section 15.1

Section 15.3
Section 16.1

Section i5.4

Section 8.4

Section 2.3 (modified)
Section 8.9

References 11 and 12

References 13 and 14
• := ==

aSource for description of module is a reference or a section in the theoretical manual (NASA TM-83199).

bIBS, IBA, and IBL are improved modifications of RBS, RBA, and BLM, respectively.
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14.1. Lifting Rotor Performance (LRP) Module

Donald S. Weir and Stephen J. Jumper

Lockheed Engineering & Sciences Company

Introduction

The Lifting Rotor Performance (LRP) Module predicts the aerodynamic force distribution

on a helicopter rotor in a uniform flow field as a function of span location and azimuth angle.
The reference plane for the analysis is the hub plane, defined as the plane normal to the axis

of rotation of the rotor. This reference plane is a convenient choice for two reasons. First,

all rotational velocities lie in that plane. Second, use of the hub plane allows a more direct
interface of the LRP Module results with noise prediction methods, most of which use the

axis of rotation for reference. The rotor is assumed to be in steady equilibrium flight so that

all azimuthally varying quantities have a period of 2_r radians. The aerodynamic forces are

predicted in the thrust and azimuthal directions, perpendicular and parallel, respectively, to
the hub plane. In addition, the overall rotor thrust and torque and the required tail rotor thrust

are computed. Also provided are several quantities in formats suitable for use in initializing

modules in the higher harmonic loads analysis systeim in ROTONET, specifically the Rotor

Loads (RLD) Module and the Rotor Rigid Dynamics (RRD) Module. These quantities include
rotor total inflow velocity, blade flapping angle Fourier coefficients, and blade mass per unit

length.

The method is based on the assumption that the wake-induced velocity normal to the hub

plane is uniform over the rotor disk. Though the uniform inflow assumption is accurate only

for certain flight conditions and rotor types, it is used in this method to provide a first-order

approximation of the inflow. Blade dynamics include rigid flapwise motion, with the flapping
hinge assumed to lie on the axis of rotation (i.e., zero spanwise hinge offset assumed). Lead/lag

blade motion is not considered; lead/lag motion effects on blade air loads are assumed negligible

compared with flapwise motion effects. Small angle approximations are applied in describing

flapping angles and rotor control angles. However, hub plane angle of attack is not limited to
small angles. The approximations of lifting line theory are assumed valid.

For input to the analysis, LRP is designed to use blade geometric and blade section
aerodynamic information provided by one of two sets of previously executed modules. The first

set for supplying input to LRP consists of the Blade Shape (RBS) Module, the Blade Section

Aerodynamics (RBA) Module, and the Blade Section Boundary-Layer (BLM) Module, which
are documented, respectively, in sections 10.2, 10.3, and 10.4 of Zorumski and Weir (ref. 1).
The second alternative set consists of the Improved Blade Shape (IBS) Module, the Improved

Blade Section Aerodynamics (IBA) Module, and the Improved Blade Section Boundary-Layer

(IBL) Module, which are presented in Nguyen (ref. 2).

For main rotor analyses, hub plane angle of attack is calculated from the rotorcraft weight

force, fuselage drag force, and rotor drag force. In a self-contained trim calculation loop, the

method adjusts main rotor blade collective pitch until the rotor thrust force equals the vector

sum of weight and drag forces. For the force trim calculations, blade cyclic flapping angles
relative to the plane of no feathering (defined as the plane relative to which cyclic blade pitch

is zero, i.e., the control plane), as well as coning angle, are employed from the work of Wheatley

(ref. 3) and Bailey (ref. 4). After main rotor force trim is obtained, the output cyclic pitch angles
for the main rotor relative to the hub plane are obtained with the aforementioned Wheatley-

Bailey cyclic flapping angles by application of the equivalence of flapping and feathering. That
is, the calculated Wheatley-Bailey cyclic flapping angles relative to the plane of no feathering

(i.e., control plane) are converted to the equivalent cyclic pitch angles relative to the hub plane,

under the assumption that the hub plane is parallel to the tip-path plane, and the final output

cyclic flapping angles are converted to zero as appropriate for subsequent input to the Lifting.

Rotor Noise (LRN) Module for main rotor tone noise predictions.
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For tail rotor analyscs, hub plane angle of attack is set to zero by assuming that the drag
force on the tail rotor is negligible. In a self-contained trim calculation loop, thc mcthod adjusts

tail rotor blade collective pitch until the gencrated tail rotor thrust equals the required tail rotor

thrust. Required tail rotor thrust is the amount of thrust required to balance the main rotor

torque, and this thrust is a known input to thc tail analysis, with this value being obtained
from output of the previous execution of the LRP Modulc for tlle associated main rotor. The
force trim calculations for tile tail rotor, as is true for the main rotor, cmploy blade cyclic pitch

angles relative to the plane of no feathering (i.e., control plane), as well as coning angle, from

the work of Wheatley (ref. 3) and Bailey (rcf. 4). Howcvcr, the tail rotor is assumed to have
zero cyclic blade pitch such that the equivalence of flapping and feathering is not applied to
the tail rotor. Thus the tail rotor hub plane is parallel to the plane of no feathering, with

both planes being perpendicular to the tail rotor axis of rotation. Further, the final output

cyclic blade flapping and coning angles remain equal to the values from the Wheatley-Bailey
calculations, as appropriate for subsequent input to the Lifting Rotor Noise (LRN) Module for

tail rotor tone noise predictions.

In addition to supplying results to the LRN Module, LRP also generates rotor performance

characteristics applicable as input to the Rotor Broadband Noise (RBN) Module. Blade

aerodynamic information suitable for application to bleate-vortex interaction (BVI) analyses
is also produced. Also, LRP generates tables of blade flapping, rotor inflow velocity, and blade

mass information in a form convenient for initializing both the Rotor Loads (RLD) Module

and the Rotor Rigid Dynamics (RRD) Module in the higher harmonic loads analysis system in
ROTONET.

A0

A1

a

a0

al

B

B1

bl

C

c*

Cd

cl

Cl,max

cQ

CT

D

Dr

Symbols

collective pitch at blade root, tad

lateral cyclic pitch relative to hub plane, tad

section lift-curve slope (i.e., ct per rad), 1/rad

complex Fourier coefficient of blade flapping angle relative to plane

of no feathering, ra_i

coning angle, ra_t

longitudinal flapping angle, rad

blade tip loss factor

longitudinal cyclic pitch, rad

lateral flapping angle, rad :

airfoil or blade section chord length, re R

airfoil or blade section chord length, m(ft)

blade airfoil section steady drag force, re qc*

blade airfoil section steady lift force, re qc*

blade or airfoil section maximum lift force, re qc*

speed of sound in ambient air at flight altitude, m/s (ft/s)

rotor torque in hub plane, re 7rpf_2R 5

rotor thrust perpendicular to tip-path plane, re 7rp_t2R 4

total drag force along wind axis (i.e., parallel to Vcc), re rcpf_2R 4

main rotor drag force parallel to hub plane, re 7rp_2R 4

I
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J

F_

f

g

Ih

Lw

M

Mh

Moo

m

Nb

N_

n

q

R

Tt

V

ve

VT

Voo

½

W

WB

tail rotor moment arm length (i.e., distance between main rotor

shaft axis and tail rotor shaft axis), re R of main rotor

fuselage drag force along wind axis (i.e., parallel to Voc),

re r p_2 R 4

blade flapping hinge spanwise position (figs. 1 and 4; in analysis,

assumed equal to zero), re R

blade section normal force (i.e., normal loading in thrust direction,

perpendicular to hub plane), re pfft2R 3

blade section azimuthal force (i.e., azimuthal loading in tangential

direction, parallel to hub plane), re p_2R3

fuselage equivalent flat-plate area, re R 2

gravitationM constant, re R_ 2

blade flapwise moment of inertia about hub center, re pR 5

blade flapwise moment about hub center due to blade weight,

re p_2 R5

blade section Mach number

blade hover tip Mach number

rotorcraft translational flight Mach number

blade mass-per-unit blade length, re pR 2

number of rotor blades

number of azimuthal harmonics, that is, number of equal size
azimuthal increments into which one rotor revolution is subdivided

and has value equal to 2 raised to nonzero integer power

azimuthal harmonic number (in output tables)

airfoil or blade section onset flow dynamic pressure, N/m 2 (lb/ft 2)

(fig. 2)

rotor radius, m (if)

required tail rotor thrust (perpendicular to tail hub plane),

re 7rpf_2 R 4

resultant flow velocity (at blade section), re fiR

component of local onset flow velocity (at blade section, directed

perpendicular to hub plane), re YtR

component of local onset flow velocity (at blade section, directed

parallel to hub plane), re fiR

rotorcraft translational velocity (i.e., airspeed), re fir

component of local onset flow velocity due to rotor rotational speed

at blade section and directed parallel to hub plane (= r/), re f_R

effective weight (for main rotors; rotorcraff weight plus vertical
component of rotor drag force per eq. (3)), directed down perpen-
dicular to Voo, re rpf_2R 4

weight of a single rotor blade, re rcp_2R 4
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w

c_

(_dp

¢_tpp

F

Fmax

0

OT

A

bt

P

¢

f_

Subscript:

wb

avg

Superscripts:

Input

rotorcraft weight (for main rotors; directed down perpendicular to

Vow), re rp_t2R 4

average rotor wake-induced downwash velocity, re _tR

blade section angle of attack, rad

hub plane angle of attack, rad

tip-path plane angle of attack, rad (fig. 1)

blade flapping angle (relative to hub plane per eqs. (6)), rad

blade section bound circulation, re _tR 2

maximum blade bound circulation (at a given azimuth angle),
re _tR 2

blade mass constant (i.e., Lock number (eq. (12)))

blade spanwise coordinate, re R

blade section pitch angle (relative to hub plane), rad

rigid twist angle (at local blade section), rad

rotor total inflow velocity normal to hub plane (eq. (8)), re _2R

mean rotor total inflow velocity normal to hub plane (used in
table III), re gtR

rotor advance ratio along hub plane, V_ cos _dp

air density at flight altitude ambient conditions, kg/m 3 (slugs/ft 3)

local upflow angle at blade section, rad

blade azimuth angle, rad

rotor rotational speed, rad/s

Wheatley-Bailey theory

average value

derivative with respect to time

Fourier transform (i.e., Fourier coefficient)

Input to the LRP Module consists of several user parameters to specify the blade, rotor, and

rotorcraft characteristics. Additional required input consists of two or three tables (depending

on input option) and the independent variable array values. Figures 1 through 4 indicate the

sign convention of the various input quantities.

Blade geometric parameters, including chord length and twist angle as a function of spanwise
position, are provided by the Blade Shape Table from either the RBS Module or the IBS Module.

Reference collective pitch is measured at the blade root, such that at zero collective pitch, the

root angle of attack referenced to the hub plane is zero. Thus the input distribution of twist

angle in the Blade Shape Table must start with a zero value at the root.
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Input of blade airfoil section lift and drag forces is required, and the choice of table format
is based on whether the improved option is used. If the set of improved modules, IBS, IBA, and

IBL, has been executed to establish blade characteristics, then the improved option is used. If

the improved option is used, the blade airfoil section lift and drag data are input separately to
the LRP Module via the Section Lift Table from the IBA Module and the Section Drag Table

from the IBL Module, respectively. If the improved option is not used, then blade characteristics

must have been established by the original set of modules, RBS, RBA, and BLM. In this case,

the blade airfoil section lift and drag data are input to the LRP Module via a single combined
table, the Section Aerodynamic Force Table from the BLM Module. However, any of the three

aforementioned section lift and drag input tables can also be created by the user from any other

source of airfoil data. Note that the user parameter Cl,max for maximum allowable blade section
lift force governs the reading of lift data from input tables and is a single value representative

of all airfoils on the blade for all local Mach numbers. User parameter Cl,max functions as a
cutoff limit to prevent unrealistically high lift values from being read from the linear lift-curve

data contained in the Section Lift Table and the Section Aerodynamic Force Table when the

tables are generated by the IBL and BLM Modules. The cutoff limit is needed, because the
airfoil section lift data from the IBL and BLM Modules do not contain any stall (maximum

lift) information. If, however, the user creates the input table of section lift forces with data
containing actual stall information and covering the complete range of angle of attack (0.0 ° to

360.0 ° or 0.0 ° to -360.0°), the input user parameter for maximum allowable blade section lift

should be made larger than the maximum lift amplitude found in the input table. This action

ensures that no lift limit is incurred during reading of the input table, such that the actual stall
information contained within the lift table is used.

Finally, the computational grids of blade spanwise coordinates and azimuth positions must

be provided. These grids establish the spatial resolution of the computed air loads distribution
over the rotor disk and are provided in Independent Variable Arrays.

All user parameters, tables, and data arrays input to the LRP Module are as followsi

User Parameters

Ao

B

Cl,max

Coo

Dtail

f

Ih

Lw

Mh

Moo

Yb

R

initial guess of collective pitch at blade root and relative to hub

plane (per eq. (7)), rag

blade tip loss factor

maximum allowable rotor blade airfoil section lift force, re qc*

speed of sound in ambient air at flight altitude, m/s (ft/s)

tail rotor moment arm length (i.e., distance between main rotor
shaft axis and tail rotor shaft axis; input only for main rotor

analyses), re R of main rotor

fuselage equivalent flat-plate area (input only for main rotor

analyses), re R 2

blade flapwise moment of inertia about hub center (eq. (15) or

(16)), re p(R) 5

blade flapwise moment about hub center due to blade weight

(eq. (13) or (14)), re p_2R5

blade hover tip Mach number

rotorcraft translational flight Mach number

number of rotor blades

rotor radius, m (ft)
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Tt

WB

Wv

c(_)

77

C_

M

cl(_, a, M)

7/

(1

M

ed(O, t_, _)

71

tl

M

cl(_, a, Af)

Cd(_, c_,M)

77

¢

required tail rotor thrust (input only for tail rotor analyses),

re 7rp_ 2R 4

weight of single rotor blade, rc zcp_2R !

rotorcraft weight (input only for main rotor analyses; value input
is weight supported per rotor for analysis of rotor from multirotor

vebicle), re zrp_2R 4

air density at flight altitude ambient conditions, kg/m 3 (slugs/ft 3)

Blade Shape Table

[From RBS or IBS]

blade spanwisc position, re R

blade chord length, re R

blade rigid twist angle, rad

Section Lift Table

[From IBA, required if improved option used]

blade spanwise position, re R

blade section angle of attack, deg

blade section Mach number

blade section steady airfoil lift force, re qc*

Section Drag Table

[From IBL, required if improved option used]

blade spanwise position, re R

blade section angle of attack, deg

blade section Mach number

blade section steady airfoil drag force, re qc*

Section Aerodynamic Force Table

[From BLM, required if improved option is not used]

blade spanwise position, re R

blade section angle of attack, deg

blade section Mach number

blade section steady airfoil lift force, re qc*

blade section steady airfoil drag force, rc qc*

Independent Variable Arrays

blade spanwise position, re R

blade azimuth angles (specified as fractions of 27r rad, should be

evenly spaced and must range from 0.0 through 1.0)
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Output

TheLiftingRotorPerformance Module produces the rotor angle of attack, drag force, thrust,

torque, collective pitch angle, and coning angle as output user parameters. For the main rotor,

the required tail rotor thrust is computed. Also computed as output user parameters for the
main rotor are the lateral and longitudinal cyclic pitch angles, relative to the hub plane assumed

coincident with the tip-path plane. Thus, the output parameters of lateral and longitudinal

cyclic flapping angles are always computed as zero for the main rotor. For the tail rotor,

the lateral and longitudinal cyclic flapping angles, as output user parameters, are determined

relative to the hub plane coincident with the plane of no feathering. Thus for the tail rotor,
the output user parameters of lateral and longitudinal cyclic pitch angles are always computed
as zero.

The LRP Module generates three output tables containing spatial and/or temporal data.

As indicated in the following three paragraphs, these three tables are designed to be used as
input to the LRN Module, the RBN Module, or to a blade-vortex interaction (BVI) analysis.

First is the Rotor Aerodynamic Lo_ts Table, which provides the output aerodynamic force
distribution over the rotor disk corresponding to the final trimmed rotor solution from the

LRP Module analysis. This table can be used subsequently as input to the LRN Module for

tone noise predictions. Specifically contained in the table is total force on the blade section,

resolved into the normal component, perpendicular to the hub plane, and into the azimuthal

or tangential component, parallel to the hub plane. The spanwise blade section locations for
which forces are included in the table match exactly the positions which were specified by the

user in the LRP input spanwise grid. Similarly, the blade azimuthal angles (i.e., temporal

values) for which forces are included in the table match exactly the LRP input spanwise grid
values converted to radians, from 0 through 27r.

Second is the Rotor Performance Table, which provides the local onset flow velocities, flow

Mach number, and flow angles corresponding to the final trimmed rotor solution from the

LRP Module. The Rotor Performance Table can be used subsequently as input to either
the LRN Module, for tone noise predictions, or to the RBN Module, for broadband noise

predictions. The spanwise and azimuthal (i.e., temporal) values for which data are tabulated
in the Rotor Performance Table are exactly the same as those included in the aforementioned
Rotor Aerodynamic Loads Table.

Third is the Rotor Maximum Bound Circulation Table, which provides the maximum blade

bound circulation values corresponding to the final trimmed rotor solution from the LRP

Module and applicable to blade-vortex interaction modeling. Basically this table is, for one

blade from the rotor, a time history of maximum bound circulation occurring anywhere on the
blade as the blade rotates through one revolution. Azimuthal angles (i.e., temporal values)

from 0 through 27r radians are represented in the Rotor Maximum Bound Circulation Table,

exactly as found in the other two aforementioned output tables.

Additionally, the LRP Module generates three more output tables. These three tables

contain Fourier harmonic representations of LRP results, as well as blade mass characteristics,

in a format designed specifically for subsequent submission as input to the higher harmonic

loads analysis in ROTONET. Each of these three final tables is discussed in more detail in the

following three paragraphs.

First is the Flapping Angle Table, which provides angles of blade flapping (relative to
the plane of no feathering, i.e., the control plane) in terms of complex Fourier coefficients

at(n). Table I presents the relationship between the array storage sequence for complex

Fourier coefficients a_(n) (i.e., storage sequence in the output Flapping Angle Table) and the
theoretical complex Fourier series sequence used by the LRP Module (eq. (40)). Complex

Fourier coefficients a_(n) in the output Flapping Angle Table are functions of conventional sine

series coefficients as indicated in table II. For a tail rotor analysis (center column of table II), the

conventional sine series flapping coefficients a0, al, and 51 (eq. (6a)) are used (per eqs. (41))
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to generate the output Flapping Angle Table. This is consistent with the assumption that
the hub plane is parallel to the plane of no feathering for tail rotor analyses. For a main

rotor analysis (right column of table II), however, the conventional sine series coning and pitch
control angles a0, A1, and B1 (eq. (7)) are used (per eqs. (42)) to generate the output Flapping

Angle Table. The use of A1 and BI in the output for a main rotor analysis is a consequence of
the flapping-feathering equivalence (eqs. (33)) employed by the LRP Module, consistent with

the assumption that the hub plane and tip-path plane are parallel. For either a tail or main

rotor, the output Flapping Angle Table from the LRP Module is formatted for direct use as
an initial flapping input estimate to the RLD Module in the higher harmonic loads analysis in
ROTONET.

Second is the Inflow Velocity Table, which provides the total rotor inflow velocity. The LRP

Module calculates only the uniform mean total inflow velocity over the rotor disk. That is,

only the zeroth harmonic (eq. (38)) of the complex Fourier series representation of total rotor
inflow velocity (eq. (37)) is generated. The Inflow Velocity Table, comprised of complex Fourier

coefficients, contains four array entries (minimum allowable size for such a table in ROTONET)
as indicated in table III. In table III, only the zeroth harmonic, first array entry, is nonzero.

Thus the Inflow Velocity Table from the LRP Module is formatted for direct use as an initial

input estimate to the RLD Module in the higher harmonic loads analysis in ROTONET.

Last is the Mass Density Table, which provides blade mass-per-unit blade length (as a

constant over the entire blade length, per eq. (39)). This table is directly applicable as input to

the RRD Module in the higher harmonic loads analysis in ROTONET if the blade is of uniform

mass.

All user parameters and tables generated by the LRP Module are given as follows:

User Parameters

A 0 final value of collective pitch at blade root, rad

A1 blade lateral cyclic pitch for main rotors only, rad

ao blade coning angle, rad

al blade longitudinal cyclic flapping angle for tail rotors only, rad

B1 blade longitudinal cyclic pitch for main rotors only, rad

bl blade lateral cyclic flapping angle for tail rotors only, rad

CQ rotor torque, re 7rp_2R 5

C T rotor thrust re 7rpf_2R 4

Dr rotor drag force (for main rotor only; parallel to hub plane),

re r p_2 R 4

Tt required tail rotor thrust output only for main rotor analyses,

perpendicular to hub plane, re 7rpf_2R 4

O_dp rotor hub plane angle of attack (positive for hub leading edge tilted
up), rad

Rotor Aerodynamic Loads Table

¢

Fz(n, ¢)

blade spanwise position, re R

blade azimuth angle, rad

blade normal loading (in thrust direction, perpendicular to hub

plane, positive up), re p_2R3
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F

M(r/, ¢)

Ve (,7,¢)

VT('7,¢)

¢('7,¢)

rm x( )

n

blade azimuthal loading (in tangential direction, parallel to hub

plane, positive toward increasing azimuth), re p_2R3

Rotor Performance Table

blade spanwise position, re R

blade azimuth angle, tad

blade section angle of attack, rad

blade section Mach number

component of local onset flow velocity (at blade section and di-

rected perpendicular to hub plane; positive up), re fiR

component of local onset flow velocity (at blade section and di-

rected parallel to hub plane; positive in direction of rotor rotation),
re f_R

local upflow angle (at blade section and relative to hub plane,

eq. (23)), rad

Rotor Maximum Bound Circulation Table

blade azimuth angle, rad

maximum blade bound circulation at given azimuth angle, re fir 2

Flapping Angle Table

azimuthal harmonic number

complex Fourier coefficients of blade flapping angle relative to
plane of no feathering, positive up (tables I and II), rad

Inflow Velocity Table

7/

n

i(v,n)

blade spanwise position, re R

azimuthal harmonic number

complex Fourier coefficients of rotor total inflow velocity (perpen-

dicular to hub plane, positive up (table III)), re nR

Mass Density Table

blade spanwise position, re R

blade mass-per-unit blade length (constant for all span stations),

re pR 2

Method

The primary assumptions underlying the LRP Module have already been stated in the
section "Introduction." A description of the problem is shown in figure 1. In figure 1, the

various rotor planes are shown in fully general, nonparallel orientations with none of the

assumptions regarding parallel rotor planes or application of flapping-feathering equivalences
from the Introduction having yet been applied. The sign conventions of Gessow and M_ers
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(ref. 5) are adopted. A helicopter is in steady level flight with airspeed V_c. The hub plane

of the main rotor is inclined by angle ¢_dp relative to the free-stream velocity; this angle is
typically negative during forward flight (front half of the hub plane inclined below horizontal)

as shown in figure 1. The rotor has N b articulated blades, hinged at the rotor axis of rotation

(e shown ill fig. 1 is assumed zero). The coning angle is a0. The first harmonic longitudinal and
lateral flapping angles are al and bl, shown measured with respect to the hub plane. The rotor

control angles are collective pitch A0 (positive for blade leading edge pitched up) and the lateral
and longitudinal cyclic pitches A1 and B1. The pitches A1 and B1 are measured from the hub

plane to the plane of no feathering (i.e., control plane). Further details regarding the flapping

angles, control angles, and application of rotor plane assumptions are provided later in the
subsection "Blade Section Dynamics." The tail rotor moment arm length is Dtail as illustrated

in figure 1. Rotorcraft weight WV, fuselage drag DI, and rotor drag Dr. are assumed to act at
the rotor hub center as shown in figure 1; vehicle pitching and rolling moments are neglected

in the analysis. Normal loading Fz at a blade section is defined positive up, perpendicular to

the hub plane. This is illustrated in figure 1, where the normal loading at the root section of
a blade is portrayed. Finally, the resultant thrust force CT generated by the rotor is assumed

normal to the tip-path plane.

Balance of Forces

i

Dimensionally, the fuselage drag force is the product of fuselage equivalent flat-plate area
and free-stream dynamic pressure. Thus, nondimensionally the fuselage drag force is expressed

in terms of the rotorcraft translational flight Mach number, the rotor blade hover tip Mach

number, and the fuselage equivalent flat-plate area as follows:

1 _
D/-- 27r --_h f (1)

where 7r appears because of the defined nondimensionalizations of D/ and f. The rotor drag
force Dr is computed from the integration of the rotor azimuthal forces as described in a later

section. Figure 1 shows the free-stream velocity for level flight and the forces acting on the

main rotor system.

Consider the balance of forces for a main rotor analysis. Referring to figure 1, the required
main rotor thrust must be sufficient to balance the rotorcraft weight, fuselage drag, and main

rotor drag forces as

CT = x/W 2 + D 2

where the effective weight W and total drag force D are given by

(2)

W = W V + Dr sin O_dp (3)

and

D = D/+ Dr cos O_dp (4)

and the rotor angle of attack C_dp is given by

D

adp ----- arctan _ (5)

For a tail rotor analysis, equations (2) through (5) are not applied. Instead, the thrust

CT is trimmed to the known required tail rotor thrust force Tt, required to provide sufficient
tail boom torque to balance main rotor torque and calculated from the main rotor analysis as
described in the subsection "Overall Rotor Performance." For a tail rotor, effective weight W

is not used, and total drag force D equals tail rotor drag force Dr. For purposes of computing

tail rotor angle of attack, tail rotor drag Dr is neglected such that tail rotor angle of attack

C_dp is taken as zero.

14.1-10



Blade Section Dynamics

The blade motion of an articulated rotor relative to the hub plane is defined by the blade

flapping and pitch sine series coefficients. The blade flapping coefficients are the coning angle

a0, the longitudinal cyclic flapping angle al, and the lateral cyclic flapp!ng angle bl. The blade

flapping angle _ relative to the hub plane and the blade flapping rate _ are defined by

f_(¢) = a0 - al cos ¢ - b1 sin _ (6a)

and

_(¢) _ 0_(_)) _ al sin ¢ - bl cos ¢ (6b)
0¢

where ¢ is the azimuth angular position relative to the direction of flight.

Similarly, the blade pitching coefficients are the collective pitch A0, the longitudinal cyclic

pitch B1, and the lateral cyclic pitch A1. The blade pitch angle at a local blade section relative

to the hub plane for a twisted blade is defined by

0(_, ¢) = A0 - A: cos ¢ - B: sin ¢ + 0T(_) (7)

The blade flapping angle relative to the hub plane varies so that the sum of the moments of the

blade forces about the flapping hinge is zero. These forces include the aerodynamic lift force,

the blade weight force, the centrifugal force, and the flapwise inertial force.

The formulations of Wheatley (ref. 3) and Bailey (ref. 4), as embodied in equations of

the latter, are employed to determine the rotor blade coning angle a0 and the corresponding

longitudinal and lateral cyclic flapping angles al and b1 relative to the hub plane. Wheatley

(ref. 3) and Bailey (ref. 4) present an early autogyro aerodynamic analysis employing the plane

of no feathering (i.e., control plane) as the plane of reference, with this plane being coincident
with the hub plane. Then for application of the Wheatley-Bailey results to final LRP Module

cyclic flapping and pitch output, further assumptions about the LRP reference hub plane

orientation are made, depending on whether the rotor under consideration is a main rotor or a
tail rotor. For a main rotor, the cyclic pitch angles A1 and B1, relative to the tip-path plane

are then assigned by applying the assumption that the reference hub plane is parallel to the tip-

path plane such that the final resulting values of al and b1 for the main rotor axe zero. For a tail

rotor, conversely, the cyclic pitch angles A1 and B: are set to zero by applying the assumption
that the reference hub plane is parallel to the plane of no feathering. The values of al and bl

for the tail rotor are those directly from the Wheatley-Bailey formulations. Details regarding

Wheatley-Bailey formulation calculations are presented in subsequent paragraphs. Further

details regarding conversion of Wheatley-Bailey results to final LRP output are deferred until
a later subsection "Generation of Final Cyclic Pitch and Cyclic Flapping Angles."

The total inflow velocity ), into the hub plane is defined as

A = V_ sin _dp -- W ---- p tan _dp -- w (8)

where w, by assumption, is the average wake-induced downwash velocity through the hub plane

and constant over the hub plane. This average velocity is related to the thrust of the rotor by

w = i

I

(9)

for hover or for low-speed conditions (low-speed conditions meeting the following assumed

criterion: Vc_ < v/_/2). Alternatively the average downwash is given by

CT (10)W _ --

2_

for forward flight conditions (i.e., for Voo _> v/-_/2, by assumption).
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Neglecting# terms of order 4 and higher, the bladeconinganglea0 is defined by
nondimensionalizing and reexpressing equation (1) of Bailey (ref. 4) as follows:

i

ao,wb = _ "7 )#3 B 2 _t_#2 -t- _T, avg -}- (11)+0.0s0_-_ +A0 4 Zh

where subscript wb denotes a Wheatley-Bailey result and where % the rotor blade mass constant

(i.e., Lock number), is defined in terms of nondimensionalized quantities as

aCavg (12)
_= Ih

and B is the blade tip loss factor (blade regions outboard of station _7= B are assumed to have

drag but no lift), I h is the blade flapwise moment of inertia about the hub center, Lw is the
blade weight moment (i.e., blade flapwise moment about the hub center due to distributed blade

mass), _T, avg is the average blade twist, Cavg is the average chord length, and the constant a
is blade section lift-curve slope. A single value of section lift-curve slope a is calculated by the

LRP Module from the section lift data el(r/, a, M) interpolated from the input tables for the

tip blade section (7/= 1) at M h with two lift values corresponding to angles of attack of 5° and

-5 °. This single tip section value of lift-curve slope a is assumed to be a valid representative
value for all blade secti0ns and all local Mach numbers for application in equation (12). Blade

weight moment Lw is given by

/01L,_ = re(r/) gv a_ (13)

which reduces to the following equation for a uniform blade mass distribution:

Lw- IrWB (14)
2

Blade flapwise moment of inertia I h is given by

Ih = m(_) rl2 a_

which for a uniform blade mass distribution reduces as follows:

rrWB
Ih-

3g

(15)

(16)

Neglecting # terms of order 4 and higher, the longitudinal cyclic flapping angle al is given

by reexpressing equation (2) of Bailey (ref. 4) as follows:

al,wb=_-_ 2B2+ 2-7 144+_2BS +

+ 6 _! 4'1 _B 8 ] )

OT,avg#{2+(-_)2[-_(14,_-_2B8]+ } (17)

where the subscript wb denotes a Wheatley-Bailey result. Note that equation (17), per

Wheatley (ref. 3) and Bailey (ref. 4) theory, is the longitudinal cyclic flapping relative to
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/

the plane of no feathering (control plane) for a rotor configuration in which the plane of no
feathering and the hub plane are coincident (i.e., cyclic pitches A1 and B1 are nonexistent).

Similarly neglecting # terms of order 4 and higher, the lateral cyclic flapping angle is given
by nondimensionalizing and reexpressing equation (3) of Bailey (ref. 4) as follows:

9 7 2n8"_
bl,wb= (_{2B 2+.2 [(144_t_72B8 ) (_h- -11

1 7 2B8" _ }[(1,,
[(1.+-'+,,,)(1 o+ +1]})

where the subscript wb denotes a Wheatley-Bailey result. Analogous to equation (17),

equation (18) is the lateral cyclic flapping relative to the plane of no feathering (control plane)
for a rotor configuration in which the plane of no feathering and the hub plane are _oincident

(i.e., cyclic pitches A1 and B1 are nonexistent).

For either a main rotor or a tail rotor analysis, the LRP Module performs a self-contained
iterative rotor force trim calculation procedure by equations presented previously in the

subsection "Balance of Forces" and equations presented in the subsequent two subsections

"Blade Section Aerodynamics" and "Overall Rotor Performance." For either rotor type,

this iterative procedure for obtaining the trimmed rotor air loads uses the Wheatley-Bailey
formulations for blade coning and cyclic flapping (eqs. (11), (17), and (18)), with cyclic pitch

values A1 and B1 in eq. (7) set to zero per Wheatley-Bailey assumptions regarding coincidence

of the hub plane and plane of no feathering). During the iteration force trim procedure, the

collective pitch A0 is the iterative independent variable, initialized by user input. For a main
rotor analysis, A0 is adjusted iteratively until the force balance equations (eqs. (2) through (5))

are satisfied. For a tail rotor analysis, A 0 is adjusted iteratively until the resulting tail rotor

thrust CT equals the required tail rotor thrust force Tt, provided by user input.

Blade Section Aerodynamics

The aerodynamic force acting on a rotor blade section depends on the velocity and angle
of attack of the blade section relative to the airflow. For the rotor hub plane tilted forward at

an angle of attack OZdp , the nondimensionalized free-stream velocity parallel to the plane is the
advance ratio defined by

/2 = Vc_ cos _dp (19)

The onset flow velocity to a local blade section is resolved into two components as indicated

in figure 2. The component lying simultaneously parallel to the hub plane and normal to the

blade is lit (positive in the direction opposite the direction of blade section translation due to

rotor rotation), and the component normal to the hub plane is Vp (positive up). For a hub

plane inclined by angle of attack O_dp from the free-stream velocity, figure 3 illustrates the local
blade section onset flow velocity components lying in the hub plane and resolved radially and

tangentially relative to the blade. The tangential velocity component VT contributions are those
due to the inplane free-stream velocity component and rotor rotational speed (nondimensionally

given by Vf_, numerically equal to _7)- Tangential velocity component VT is thus given by

VT(_, ¢) = #sin ¢ + 77

Negative values of VT(rh ¢) represent the reversed-flow region.

(20)
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For the same blade section, there are four contributions to the perpendicular velocity

component Vp as shown in figurc 4. Thc first contribution is the frcc-stream velocity componcnt

perpendicular to the hub plane duc to hub plane angle of attack and given nondimensionally by

# tan _dp" The second contribution is the average rotor wake-induced velocity w through the
hub plane. The third contribution is the component of inplanc velocity, parallel to the blade in

figure 3, resolved perpendicular to the hub planc due to thc actual flapped orientation of the
blade. The fourth contribution is the perpendicular component of onset velocity produced by

blade rigid flapping rate. Thus tile total local perpendicular velocity component Vp is written
as

Vp(_?, _b) = # tan adp -- w -- #cosCsinfl - _7_ (21)

Applying small angle approximations and using equation (8) for total rotor inflow velocity,

equation (21) is rewritten as

Ye(,7,¢) = >,- _, cos ¢ - v_ (22)

where f_ and _ are given by equations (6a) and (6b), in which the Wheatley-Bailey values for

a0, al, and 51 (per eqs. (11), (17), and (18)) are employed.

As shown in figure 2, the local upflow angle ¢ between the blade section resultant onset

flow velocity and the hub plane is given by

¢(_?,¢) tan_ 1 Vp (23)
VT

and the local Mach number M is defined by

M(71,_, ) -_ M h V(_?,¢)-- Mhv/V2 + V 2 (24)

For a blade section which has a pitch angle 0 relative to the hub plane, the blade section

angle of attack a, as indicated in figure 2, is given by

_(u, ¢) = e(u, ¢) + ¢(7, _) (25)

where, for the force trim calculations for either a main or tail rotor, 0 is defined by equation (7),

with A1 and B1 set to zero, consistent with assumptions of the Wheatley-Bailey formulations.

In the reversed-flow region, where VT <_ O, the local angle of attack a is assigned a value

opposite in sign from that calculated by equation (25). This sign switch implements a fiat-
plate airfoil assumption to provide a crude accounting for reversed flow in utilizing typical

input blade airfoil lift and drag tables produced by the IBA, IBL, or BLM Module. The impact
of this assumption is described in the text immediately following equation (27).

Referring to figure 2, the blade section force in the thrust direction, that is, blade normal

loading, perpendicular to the hub plane is given by

1

F_(V,¢) = 2V2c [+el(n, ¢) cos ¢ -l- Cd(?_ ¢) sin ¢]

= _ + c [±c l (77,¢) cos ¢ ± Cd(_, ¢) sin ¢] (26)

Similarly the blade section force in the azimuthal direction, i.e., blade azimuthal loading,

parallel to the hub plane is given by

1 (V 2 + V2) c(_t_clOT,_)sin ¢ _ [±Cd(_,_) cos ¢] }F_(_, ¢) = (27)
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The negative sign in the ":t:" sign option appearing in equations (26) and (27) is applied in

the reversed-flow region. This sign usage is consistent with the angle of attack sign reversal
used in the reversed-flow region as mentioned in the text immediately following equation (25)

by application of the fiat-plate airfoil assumption in reading the input tables for airfoil lift

and drag. In the typical input lift and drag tables from the IBA, IBL, or BLM Module, true
reversed-flow information is not present because only a small range of angle of attack about zero

is contained in them. The user is hereby warned, therefore, that if the user has provided input

airfoil lift and drag tables containing measured reversed-flow data (i.e., large angles of attack

near +180 ° or -180°), the actual input reversed-flow c t and c d values will not be utilized by the
LRP Module as a consequence of the angle of attack sign reversal applied in the reversed-flow

region before the input airfoil tables are read for use in equations (26) and (27).

From the Kutta-Joukowski theorem in Karamcheti (ref. 6), the bound circulation distribu-
tion on the blade F can be written as

1

r(r/, ¢) = Ec(r/) ct(r/, ¢) v(r/, ¢)
(28)

where the values of cI are determined by interpolation from the input table. (Note that in

the reversed-flow region, the warning stated in the previous paragraph regarding obtaining cl
from the input table still applies.) The maximum value of the bound circulation Fmax(¢) is
the maximum of the bound circulation values at a fixed value of azimuth angle. An output

table of Fmax values is built. Because the blade tip vortex strength is assumed equal to the

maximum value of bound circulation at a particular azimuth angle, this output table of values

is applicable to blade-vortex interaction modeling.

Overall Rotor Performance

Given the rotor blade normal and azimuthal loadings (eqs. (26) and (27)), the overall rotor

performance quantities are calculated. The rotor thrust is given by

CT = _ Fz cos _ dr/de (29)

the rotor torque is given by

CQ = _ -F_r/ dr] de (30)

and the rotor drag is given by

-- 27r2 JO Jo

Finally, for a main rotor calculation, the required tail rotor thrust is

Tt- CQ (32)
etail

Generation of Final Cyclic Pitch and Cyclic Flapping Angles

After the force trim iteration procedure is completed, the calculation of the final LRP

output values for blade cyclic flapping angles (al and bl) and cyclic pitch angles (A1 and B1),

suitable for input to noise prediction modules LRN and RBN, remains to be done. These final

output values are obtained from the Wheatlcy-Bailey cyclic flapping results from the force trim

iteration procedure. However, the spccific method used for obtaining the final output cyclic
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I)ladeanglesfrom the Wheatley-Baileyresultsfor a mainrotor differsfrom that for a tail

rotor. In the remaining paragraphs of this subsection, the calculation method for a main rotor

followed by that for a tail rotor is detailed.

For a main rotor analysis, the principle of equivalence of flapping and feathering is applied
to provide final LRP output cyclic blade angle results. Thereby, the cyclic pitch angles A1

and B1 for a main rotor are defined relative to the tip-path plane because the hub plane is

assumed parallel to the tip-path plane. Thus the cyclic pitch angles relative to the tip-path
plane of a main rotor are related to the Wheatley-Bailey flapping angles relative to the plane

of no feathering by

B1 = al,wb (33a)

and

A1 = -bl,wb (33b)

where this equivalence relationship can be seen in figure 1, if the hub plane is first made parallel

to the tip-path plane and then if the hub plane is made parallel to the plane of no feathering.
In the tip-path plane, the cyclic flapping angles al and bl are zero. Therefore, the equations
of blade motion in the tip-path plane are

i

_3= ao = aO,wb (34a)

and

0(_, ¢) = A0 - A1 cos ¢ - B 1 sin ¢ + OT(_I) (34b)

For a main rotor, the LRP Module generates output parameters for rotor longitudinal and

lateral flapping and pitch angles relative to the tip-path plane, suitable for input to the LRN
and RBN Modules for subsequent noise predictions. Thus the parameter output from the LRP

Module for a main rotor includes A1 per equation (33b), B1 per equation (33a), al = bl = 0,

coning angle a0 given by equation (11), and collective pitch A 0 set to the final incremented
value which yields force balance.

For a tail rotor, by assumption, the hub plane is parallel to the plane of no feathering, just

as is assumed in the Wheatley (ref. 3) and Bailey (ref. 4) formulations. Thus for a tail rotor,
the cyclic pitch angles A1 and B1 are taken as zero, and the blades are flapped relative to the

hub plane. Cyclic flapping for the tail rotor is given, therefore, by

al = al,wb (35a)

and

bl = bl,wb (35b)

with coning given by

ao = al,wb (35c)

where the right-hand sides of equations (35a), (35b), and (35c) are given by equations (17),

(18), and (11), respectively. The equations for blade motion in the hub plane (assumed parallel
to the plane of no feathering) for the tail rotor are

/_(¢) = a0 - al cos ¢ - bl sin ¢ (36a)

and

0(_1) = Ao + OT(_) (365)

For a tail rotor, the LRP Module generates output parameters for longitudinal and lateral

flapping and pitch angles relative to the hub plane, assumed parallel to the plane of no

feathering, suitable for input to the LRN and RBN Modules for subsequent noise predictions.
Thus the parameter output from the LRP Module for a tail rotor includes A1 : B1 : 0, al

per equation (35a), bl per equation (35b), coning a0 per equation (35c), and collective pitch

\
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A 0 set to the final incremented value which yields a tail force CT equal to required tail force
Tt.

Supplemental Parameters for Initializing ROTONET Higher Harmonic Loads Analysis

To provide supplemental parameters suitable for use in initializing the higher harmonic loads
analysis in ROTONET, rotor total inflow velocity, and blade flapping angle are converted

to complex Fourier coefficient format, and blade mass-per-unit span is calculated. These

parameters are presented in the following discussion.

Rotor total inflow velocity may be expressed with the following Fourier series:

u./2
= exp(i ¢) (37)

n=-Nn/2

For a uniform inflow, equation (37) reduces to the zeroth (i.e., n = 0) Fourier coefficient term

only. Using equation (8) gives

5,(_7, 0) = Arnean --- # tan adp -- w (38)

which may be used to initialize the Rotor Loads Module in the higher harmonic loads analysis

in ROTONET. The uniform inflow of equation (38) is written to an output table of minimum

allowable size (using Nn = 4) in the format shown in table III, transmittable to the RLD
Module.

For a uniform mass distribution, the blade mass-per-unit span is constant and is given by

rWBm = -- (39)
g

which is written to an output table, which may be used as input to the Rotor Rigid Dynamics

Module in the higher harmonic loads analysis in ROTONET.

Blade flapping relative to the plane of no feathering and accurate to the first sine-cosine
series harmonic of rotor azimuth angle (corresponding to Nn = 2) may be expressed by the

following series:
1

= exp(in¢) (40)
n=-I

For a tall rotor analysis, equating equations (36a) and (40) fields the following expressions for

the complex Fourier coefficients at:

a'(O) = _0 (41a)

--al bl
a'(1) = _ + iy (41b)

and

a'(-1) - -al i bl (41c)
2 2

For a main rotor analysis, application of the principle of equivalence of flapping and feathering

(eqs. (33a) and (33b)) to eqs. (41b) and (41c) yields the following equivalent expressions for
the complex Fourier coefficients at:

fit(0) -- a0 (42a)

St(1 ) = -B1 .A1 (425)
2 _2
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and

a'(-1)-- -B12 + -2-iA1 (42c)

Flapping angles in the format of equations (41) for a tail rotor or equations (42) for a main rotor

may be used to initialize the RLD Module in the higher harmonic loads analysis of ROTONET.
For this purpose, the LRP Module generates a table of minimum allowable size (corresponding

to Nn = 4) in the appropriate tail or main rotor format shown in table II, which can be input
to the RLD Module.
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Table I. Relationship Between Array Storage Sequence and Fourier Series

Sequence for Complex Fourier Flapping Coefficients a'(m)

Array sequence in output

Flapping Angle Table

a'(1)
a'(2)

a'(3)
a'(4)

Fourier series sequence

(right-hand side of eq. (40))

a'(0)
a'0)

a'(2) + a'(-2) = 0.0
2
a'(-l)

Table II. Contents of Output Flapping Angle Table Generated by LRP Module

in Terms of Conventional Sine Series Coefficients

Complex Fourier coefficient Output value for tail Output value for main

(array entry in data table) rotor analysis rotor analysis

8r(1)

a'(2)

a'(3)

5'(4)

ao +iO

0+i0

ao+iO

0+i0

Table III. Contents of Output Inflow Velocity Table Generated by LRP Module

Complex Fourier coefficient

(array entry in data table)

i(,,1)
i(,,2)
i(,,3)
X(_,4)

Array entry value

(provided by LRP Module)

aAmca n + i0

0+ i0

0+i0

0+i0

aAmean is given by equation (38).
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14.2 Lifting Rotor Noise (LRN) Module

Donald S. Weir and Stephen J. Jumper

Lockheed Engineering & Sciences Company

Introduction

A significant noise source for a helicopter in flight is the tone noise generated by the main

and tail rotors. Two noise-generating mechanisms contribute to the tone noise signature. The

thickness noise is created by the displacement of fluid by the rotor blade, and the loading noise
is duc to the accelerated forces on the blade. The purpose of the Lifting Rotor Noise (LRN)

Module is to predict the loading and thickness tone noise for a helicopter main rotor, helicopter

tail rotor, or rotor from any other multirotor rotorcraft in flight.

To compute rotor loading and thickness noise, the LRN Module solves the governing Ffowcs-

Williams Hawkings equation, given by Ffowcs Williams and Hawkings (ref. 1), using the
compact source (i.e., compact chord) formulation and solution method of Succi, as given by

Farassat (ref. 2) and by Farassat and Succi (ref. 3). Quadrupole source terms in the governing

equation are neglected. Shock noise and turbulence and other broadband noise mechanisms
are also neglected. The rotor is assumed to fly in hover or at forward translational speeds for

which the advancing blade tip Mach number remains subsonic. The rotor blades are modeled

as rotating lifting lines with a given cross-sectional area and forces acting at the aerodynamic
center of each blade section. These forces must be provided to the LRN Module as components

parallel and perpendicular to the reference plane for the analysis, which is the hub plane defined

as the plane perpendicular to the axis of rotation of the rotor. The blades are free to flap and

lead/lag, and the rotor collective pitch is assigned. The LRN Module is designed to use blade
geometric information provided directly from one of two sets of other modules. The first

set providing data to LRN consists of the Blade Shape (RBS) Module and the Blade Section

Aerodynamics (RBA)Module, these being documented in sections 10.2 and 10.3, respectively, of
Zorumski and Weir (ref. 4). The second set consists of therImproved Blade Shape (IBS) Module

and the Improved Blade Section Aerodynamics (IBA) Module, both of which are documented

in Nguyen (ref. 5). The LRN Module is also designed to make use of blade force and flapping
information as provided directly by the Lifting Rotor Performance (LRP) Module, though the

required inputs to the LRN Module can be provided from any other user-supplied source of
information. At specified observer locations, fixed with respect to the rotor hub, the resulting

tone noise is provided by the LRN Module as sound pressure levels, mean-square acoustic

pressures, and complex Fourier coefficients of total acoustic pressure as a function of frequency.

The tone noise generated by the LRN Module is in a format suitable for subsequent input to
the Tone Propagation (PRT) Module, given in Zorumski and Weir (ref. 4), for propagation to

far-field ground observers.

Symbols

A

C

C_

C

F_

blade section area (i.e., blade cross-sectional area), re R 2

speed of sound in ambient air at flight altitude, re ftR

speed of sound in ambient air at flight altitude, m/see (ft/s)

rotor blade flapping hinge radial offset from center of rotor, re R

blade section normal force (i.e., aerodynamic loading on blade in direction

perpendicular to hub plane), re pft2R 3

blade section azimuthal force (i.e., aerodynamic loading on blade in tangential

direction, parallel to hub plane), re pf't2R 3
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f

fo

f,

T

MI
Mh

Mr

Nb

gt

n

P

Pref

/P2>
R

R_

Rx

R"

r

S

SPL

t

¢

v.

R

?

XI, X2, X3

X_, ' 'X 2,X 3

function describing blade surface (f = 0 on blade surface; f < 0 for regions

inside blade surface)

blade passage (i.e., fundamental) frequency, =_ -_-_, Hz

total blade section force vector exerted by blade section on fluid, re pf_2R3

blade force per unit area vector exerted by blade surface on fluid, re pft2R 2

Mach number vector of point on blade

rotorcraft translational flight Mach number

rotor hover tip Mach number

component of Mach number vector if/in radiation direction

number of rotor blades

number of sound frequency harmonics (must be a nonzero integer power of 2)

number of time points (must be a nonzero integer power of 2)

harmonic number

acoustic pressure, re pc2c_

complex Fourier coefficients of acoustic pressure, re pc 2

reference acoustic pressure (eq. (34)), N/m 2 (lb/ft 2)

mean-square acoustic pressure, re p2c4

rotor radius, m (ft)

rotor blade lead/lag hinge radial offset from center of rotor, re R

nondimensionalized distance from hub to observer (i.e., spherical observer

radius), re R

distance from hub to observer (i.e., spherical observer radius), m (ft)

point source-to-observer position vector, re R

point source-to-observer distance, ]_'1, re R

rotor blade surface area, re R 2

sound pressure level, dB

observer time (i.e., reception time), re 1/ft

rotorcraft translational velocity vector, re f_R

velocity normal to blade surface, f = 0, re f_R

nondimensionalized observer position vector in hub-fixed Cartesian coordinate

system, re R

observer position vector in hub-fixed Cartesian coordinate system, m (ft)

axes of the hub-fixed Cartesian coordinate system (figs. 1, 2, and 4)

Cartesian coordinates of observer position in hub-fixed coordinate system,

m (ft)

observer position vector in medium-fixed Cartesian coordin,te system, re R
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J

Xl, x2, x3

?

OZdp

r/1

7"12

0

Or

P

T

¢

¢

¢o

fi

Subscripts:

Y

L

l

r

ret

T

Superscripts:

axes of rnedium-fixed Cartesian coordinate system (fig. 2)

source position vector in hub-fixed Cartesian coordinate system, re R

source position vector in medium-fixed Cartesian coordinate system, rc R

rotor hub plane angle of attack, tad

blade rigid flapping angle relative to hub plane, rad

Fourier sine/cosine series coefficients of blade rigid flapping angle, rad

Dirac delta function

blade lead/lag angle, tad

Fourier sine/cosine series coefficients of blade lead/lag angle, tad

chordwise axis, parallel to hub plane, of blade-fixed rotating coordinate

system; also, blade surface chordwise coordinate in blade-fixed rotating
reference frame, re R

radial axis, parallel to hub plane, of blade-fixed rotating coordinate system;
also, blade surface radial coordinate in blade-fixed rotating reference frame,

re R

axial axis of blade-fixed rotating coordinate system (i.e., vertical axis, per-

pendicular to hub plane); also, blade surface vertical coordinate in blade-fixed

rotating reference frame, re R

blade section aerodynamic center abscissa, re R
/

blade section aerodynamic center ordinate, re R

observer polar directivity angle, deg

collective pitch angle at blade root, rad

blade spanwise coordinate, re R

air density at flight altitude ambient conditions, kg/m 3 (slugs/ft 3)

source time (i.e., emission time), re 1/_

observer azimuthal directivity angle, deg

rotor azimuth angle, rad

initial azimuth angular position of reference blade, rad

rotor rotational speed, rad/s

flapping-transformed (matrix subscript)

loading

lead/lag-transformed (matrix subscript)

collective-rotated (matrix subscript)

retarded time

thickness

complex conjugate

derivative with respect to v
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unit vector
Notation:

[ ] absolutevalue
_7 gradientoperator

V2 Laplacianoperator

Input

The computation of rotor noise requires input descriptions of the rotor flight conditions,

rotor dynamics rotor blade shape, rotor aerodynamics, observer locations, and computational

grids. These inputs are provided to the LRN Module by user parameters, three or four tables

(depending on input option), and various data arrays. Figures 1 through 6 indicate the sign
convention of most of the input quantities. Sign conventions of other input quantities are

described in the input tables.

Inputs of rotor flight conditions and rotor dynamics are provided by user parameters. Rotor

blade shape input is provided by a combination of user parameters and the Blade Shape Table,
from either the RBS Module or the IBS Module.

Input of rotor aerodynamics is provided by two tables: the Aerodynamic Center Table, from
either the RBA Module or the IBA Module, and the Rotor Loads Table, from the LRP Module.

The Aerodynamic Center Table specifies, for each blade section, the chordwise location at which

the aerodynamic loads act to implement the compact chord assumption used in the analysis.
The input abscissas and ordinates in the Aerodynamic Center Table are with respect to the

blade-fixed rotating coordinate system, as illustrated in figures 4 and 6. Note that the user

must ensure that the blade section geometry in this table is established such that the _2 axis
is coincident with the blade pitch change axis. This is due to assumptions applied in geometric

transformations employed by the LRN Module, as detailed in the section "Method." The Rotor

Loads Table provides the aerodynamic loading on each rotor blade.

Observer positions relative to the rotor hub must be provided with one of two input options.

First is the spherical input option, where all observer positions are specified in hub-fixed

spherical coordinate format. With the spherical input option, one or more observers are

positioned on a sphere centered at the hub and having a radius given by a user parameter.
As shown in figure 1, the location of each observer on the sphere is defined by polar and

azimuthal directivity angles, which are provided as input via the Observer Directivity Angle

Arrays. Use of the spherical input option is necessary if the noise predicted by the LRN Module
is to be subsequently submitted to the PRT Module for propagation to the ground. Second is

the Cartesian input option, by which all observer positions are specified in hub-fixed Cartesian

format. Employing the Cartesian input option, the Cartesian position vector, relative to the
hub as shown in figure 1, for each observer is input to the LRN Module via the Observer Table

built by the user. If the Cartesian option is employed, then the noise predicted by the LRN
Module cannot be submitted to the PRT Module for propagation. The Cartesian input option

is intended for situations in which the predicted noise is to be mapped at a specific locus of

observers in space, such as the location of the fuselage surface of the rotorcraft, for example,

and subsequent propagation to the ground is not of interest. :

For either observer input option and regardless of actual rotor rotation direction, all observer

locations arc always input as if the rotor rotation is right-handed. Via an input rotation flag,

selectable by the user, the LRN Module properly accommodates left-hand rotor rotation cases

during calculations in a manner transparent to the user.

Finally, the computational grids of blade spanwise coordinates and blade azimuthal positions

must be provided. These grids establish the spatial and temporal resolution of computation

points over the rotor disk (i.e., hub plane). The spanwisc computational grid is input via the

Independent Variable Array. The azimuthal (i.e., nondimensionalizcd temporal) starting point

14.2-4



F

and spacing of computation points over the rotor disk are provided via user parameters ¢0
and N_. User parameter ¢0 specifies the blade azimuth position at which to begin calculations.

This parameter is particularly useful, for example, in the analysis (by two separate executions
of the LRN Module) of two individual rotors from the same vehicle, in which the second rotor

is azimuthally phased by the amount 90 relative to the first rotor. Via user parameter Nt

the azimuthal (i.e., nondimensionalized temporal) spacing employed in the analysis is provided
implicitly as 2w/Nt radians.

The user parameters, tables, and data arrays input to the LRN Module are as follows:

User Parameters

c_ speed of sound in ambient air at flight altitude, m/s (if/s)

e rotor blade flapping hinge radial offset from center of rotor, re R

Mf rotorcraft translational flight Mach number

M h rotor hover tip Mach number

N b number of rotor blade_

Ns number of sound frequency harmonics desired (must be nonzero integer power

of 2)

Nt number of time points desired in single blade acoustic time history (must be non-

zero integer power of 2; azimuthal computational resolution is 27r/Nt rad)

R rotor radius, m (ft)

R l rotor blade lead/lag hinge radial offset from center of rotor, re R

Rx distance from hub to observer (i.e., spherical observer radius; used only for

spherical input option), re R

C_dp rotor hub plane angle of attack (positive for hub leading edge tilted up), rad

f_i Fourier sine/cosine series coefficients of blade rigid flapping angle (per eq. (18),

where positive blade flapping is "up" from hub plane), rad

_i Fourier sine/cosine series coefficients of blade lead/lag angle (per eq. (19),
where lag is positive), rad

Or collective pitch angle at blade root (positive for blade leading edge tilted up

from hub plane), rad

p air density at flight altitude ambient conditions, kg/m 3 (slugs/ft 3)

¢0 initial azimuth angular position of reference blade, rad

A(_)

Blade Shape Table

[From RBS or IBS Module]

blade spanwise position, re R

blade cross-sectional area, re R 2

Aerodynamic Center Table

[From RBA or IBA Module]

blade spanwise position, re R

blade section aerodynamic center abscissa, re R

blade section aerodynamic center ordinate, re R
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Rotor Loads Table

[From LRP]

blade spanwise position,re R

blade azimuth angle,rad

blade sectionnormal force (i.e.,aerodynamic loading on blade in axialdirection,

perpendicular to hub plane,positiveup), re pi22R 3

blade sectionazimuthal force (i.e.,aerodynamic loading on blade in tangential

direction,parallelto hub plane,positivein directionof rotor rotation),re pi_2R 3

Observer DirectivityAngle Arrays

[For sphericalinput option only]

observer polar directivityangle,deg (fig.I)

observer azimuthal directivityangle,deg (fig.I)

Observer Table

!

[For Cartesian input option only]

observer position vector (relative to the Cartesian hub-fixed coordinate system

(fig. 1); table actually stores components X_, X_, and X_ of each observer
position), m (ft)

Independent Variable Array

blade spanwise position, re R

Output

The LRN Module generates two possible sets of outputs. For a given analysis, the set of

outputs actually generated depends on which observer input option (described in the section

"Input") is in effect. Both of the two sets of outputs are described separately, in turn, in the

following paragraphs.

If the spherical input option is in effect, then the input value of hub-to-observer radius
is converted to a dimensional quantity and provided as an output user parameter. Also, at

each observer position, spectra of mean-square acoustic pressure are generated. These spectra

are in three separate output tables, one each for rotor total noise, rotor loading noise, and
rotor thickness noise. In each of these three tables, the values of observer directivity angles

are identical to the input values. For a left-hand rotor rotation, in which the observers are

converted internally by the LRN code to the left-hand coordinates for proper calculation in

a manner transparent to the user, the directivity angles are reconverted to the original right-
hand input convention for insertion in the three output tables. Each of these three spectra

output tables is in proper format for direct subsequent submission to the PRT Module for

noise propagation to the ground.

If, however, the Cartesian input option is in effect, then the LRN Module generates two

output entities, unique to this option, which are identified as output members rather than

output tables. The first output member provides, at each observer location, the time history

of rotor total acoustic pressure. This member is identified as the Total Acoustic Pressure
Time History in the output. The second output member provides, at each observer location,
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the spectrum of rotor total acoustic pressure and is identified a.s the Total Acoustic Pressure

Spectrum in the output.

Regarding the aforementioned outputs, complex Fourier coemcients of acoustic pressure

arc given with the C -il2t time harmonic convention in the LRN Module, such that all spectra

are understood to be two-sided, with p(n, 0, ¢) = p*(-n, 0, ¢) for the spherical input option or

i0(n,)() = p*(-n,)() for the Cartesian input option. With this convention, the mean-square

(p2) is 2pp* for each harmonic.pressure

Regardless of the choice of observer input option in effect, the LRN Module generates, at

each observer location, spectra of sound pressure level (i.e., SPL in dB) corresponding to rotor

total noise, rotor loading noise, and rotor thickness noise. These spectra are provided to aid in

results interpretation. Thus, the SPL spectra arc printed only and arc not generated as output
tables or output members, l_lrther, these SPL spectra are not cited in the following tables:

R"

fi

0

¢

(p2) (1_,0, ¢)

k

0

¢

f,

0

¢

User Parameter

[Output only for spherical input option]

distance from hub to observer (i.e., spherical observer radius), m (ft)

Total Mean-Square Acoustic Pressure Spectrum Table

[Output only for spherical input option]

/

noise harmonic frequencies (i ---- 1, 2, 3,..., Ns), Hz

observer polar directivity angle, deg (fig. 1)

observer azimuthal d!rectivity angle, deg (fig. 1)

total mean-square acoustic pressure, re p2c4

Loading Mean-Square Acoustic Pressure Spectrum Table

[Output only for spherical input option]

noise harmonic frequencies (i = 1, 2, 3,..., Ns), Hz

observer polar directivity angle, deg (fig. 1)

observer azimuthal directivity angle, deg (fig. 1)

loading mean-square acoustic pressure, re p2c4

Thickness Mean-Square Acoustic Pressure Spectrum Table

[Output only for spherical input option]

noise harmonic frequencies (i = 1, 2, 3,..., Ns), Hz

observer polar directivity angle, deg (fig. 1)

observer azimuthal directivity angle, deg (fig. 1)

thickness mean-square acoustic pressure, re p2c4
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TotalAcousticPressureTimeHistory

[Outputonlyfor Cartesianinput option]

bladepassagefrequency(i.e.,fundamentalfrequency),Hz

timehistoryof total acousticpressure(eachhistorycontainsNt pressure values,

one history per observer location )_r per output record, records implicitly in

sequence corresponding to input sequence of observer locations), re pc_

Total Acoustic Pressure Spectrum

f0

N8

R'

[Output only for Cartesian input option]

blade passage frequency (i.e., fundamental frequency), Hz

number of frequency harmonics

observer position (relative to rotor hub in hub-fixed Cartesian coordinate system;

same values as were specified in input Observer Table), m (ft)

complex Fourier coefficients of total acoustic pressure (for each observer is a set of
Ns complex Fourier coefficients, each complex coefficient implicitly corresponding

to nth harmonic frequency and in sequence from n = 1 to Ns), re pc 2

Method

Acoustic Formulation

The technique used in this module to predict the loading and thickness tone noise is to solve

the Ffowcs-Williams-Hawkings equation (given in ref. 1) without the quadrupole source term
by using a Green's function solution. The governing equation is presented by Farassat (ref. 2)
as

02Pot2 c2V2p = [VnlVfl (f)] -- Ox/0[li IVfl (f)] (1)

where the equation f = 0 defines the blade surface. The first term on the right-hand side of

equation (1) is the thickness noise source term and the second is the loading noise source term.

Two compact source solutions presented in reference 2 are used in this module.

The thickness noise solution is derived from equation (38) of reference 2, which is

02
4rrc2pT (R,t) =

1

where f < 0 represents the region inside the blade surface. The term in brackets is evaluated

at the time of sound emission. The vector _ represents the position of a point on the blade, and
the radiation Mach number Mr is the component of the motion of that point in the radiation

direction as shown in figure 2. If chordwise compactness is assumed as shown in figure 3, where

the blade is replaced by acoustic sources arrayed on a line which is the locus of blade section

aerodynamic centers, then the volume integral is replaced by a line integral as

()_, t) : 02 1 A
"_ _0 It(1 = l_/[r)Jrct d_ (3)

4rc2p7 ,

where the absolute value has been dropped, since the source motion relative to the observer is
assumed subsonic.
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A similar expression can be obtained for the loading noise. Replacing the space derivative

with a time derivative in equation (33) of reference 2, the loading noise is written as

c _ =0 [I [[ _Y/r[ dS + dS (4)r ret =0 r2 [i -- _rr[ ret

Again assuming chordwise compactness, equation (4) is rewritten as

r (i -- _/r) ret (1 :])_'/r) ret d_ (5)

Equations (3) and (5) are functions of both the source time T and the reception time t. The
evaluation of the two equations is simplified if the right-hand sides are functions of source time

only. The source time is related to the observer time by

r = t - Mh r (6)

where r = IFI. Thus, the time derivative in t can be related to a time derivative in r by taking

the derivative of equation (6) with respect to r and applying the chain rule of differentiation,
which yields

0 _OT 0 _ [ 1 0] (7)Ot Ot OT 1 --M r _T ret

Using equation (7) to evaluate the time derivatives in equations (3) and (5) and carrying out

the differentiation yield

-_hh _ /00 r({:_[r) 5 [(1-Mr)( -_r--r " +3(CMr) 2

+ 3(IVIr-CM2)2+c(l_4r-CM2)(l+4Mr+M2)]d_ (8)

and

-T_+2PLM_4rc(+_, t)---- fO' cr(1 _1Mr)2 {+'_+ (1_ _fr)¢''L [/V/r +- (lrC - M2)] --c/_r " _ } d_ (9)

for the thickness noise and loading noise, respectively. Note that the dot over a variable

indicates differentiation with respect to r and that the speed of sound c is nondimensionalized

with respect to Rf_ so that c -- 1/M h. Equations (8) and (9) are integral forms of the Succi

method solutions, equations (21) and (23) of reference 3.

Source-to-Observer Geometry

The expression relating the source time to the observer time was given by equation (6).

To efficiently use fast Fourier transform techniques for the solution of the noise harmonics, the

acoustic pressure must be evaluated at evenly spaced observer times as the observer moves with

the rotor hub at velocity V given vectorially as

= (- M I cos adp, 0, - M I sin adp)
Mh

(10)

The source times that correspond to each observer time are not necessarily evenly spaced and
must be determined.
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In acoordinatesystemfixedto therotorhub,theobserverpositionisgivenbythevector)(
as shown in figures 1 and 2. If the observer position is input in spherical coordinate format,

then the corresponding nondimensionaiized Cartesian observer position is given by

f[ = (-Rx cos 0, Rz sin 0 sin ¢, -Rz sin _ cos ¢) (lla)

where the spherical coordinates are illustrated in figure 1. If the observer position is input

directly in Cartesian format, it must first be nondimensionalized with respect to rotor radius
as follows:

2=--if= ' R'

The position of a point on the blade relative to the hub-fixed coordinate system is given by

i]l]2= -cost sinT (_,T)

o 0 • r)

(12)

where T = 0 corresponds to the blade being aligfied with the positive X1 axis of the hub-fixed

system, as shown in fig_lre 2(a), and where (771,7/2, 7/3) are coordinates of a point" on the blade
relative to the blade-fixed rotating coordinate system, shown in figure 4. It is assumed that the

r/2 axis of this coordinate system is coincident with the blade pitch change axis. Transformations
for obtaining (_/1, r/2,7/3) are presented in the next subsection "Blade Motion Description."

The noise prediction equations (8) and (9) and the source time equation (6) are written
in a coordinate system fixed to the stationary medium. In this, the medium-fixed coordinate

system (fig. 2), the source position at the source time T is

= 1_ + VT (13)

and the observer position at the subsequent observer time t is

(14)

Therefore, the path of sound propagation is defined by the vector

i- 7 (15)

Squaring equation (6), substituting equations (13) to (15), and rearranging yield the following

quadratic equation:

(1- M 2 1712) (t- T) 2- 2M_V. ()( - l_) (t- v)- M 2 I)_ - }72----0 (16)

Applying the quadratic formula, noting that only the root for t > v is physically meaningful,

yields

(t -- T) =
(17)

Equation (17) is not an explicit expression for v since 12 is a function of v. However, simple

iteration quickly converges to the correct source time, particularly for an observer in the. f_

field.

L
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Blade Motion Description

Consistent with the compact chord acoustic, formulation, already discussed and as shown

in figure 3, the blade is modeled as a lifting line. The lifting line is assumed to be the locus
of blade section aerodynamic centers, hlrther, it is assumed that tile lifting line is coincident

with the blade center of twist. The blade is free to rotate about a flapping hinge and a lead/lag

hinge as shown in figure 5, where the particular case of both hinges having the same spanwise
offset from the center of the rotor is portrayed. However, it is possible for the two hinges to

have differing offsets. The flapping displacement is defined by the angle fl and the lead/lag
displacement by the angle ¢. These two angles are expressed in terms of Fourier series of the
form

4

= N - + (is)

and
4

¢ (T) = _0 -- E (_2n-1 COS_T -t- _2n sin n7) (19)

_'L=I

where the Fourier coefficients in both equations are inputs to the analysis, such that/3 and

are known quantities.

The position of a point on the deflected blade lifting line is given by coordinates (r/1 , _, r/3)
relative to the blade-fixed rotating coordinate system of figure 4. The position of a point on

the undeflected blade lifting line (i.e., at a blade section) is given by coordinates (r/_,_, r/_),
which are defined inputs relative to the blade-fixed rotating coordinate system and illustrated

in figure 6.

To define the blade motio_ the deflected coordinates must be obtained from the undeflected

blade coordinates by applying a suitable transformation. A two-step process is required to

obtain the desired transformation. First, the undeflected blade coordinates must be rotated

to account for the blade pitch displacement. Several assumptions are applied regarding this
rotation. One assumption is that contributions of cyclic blade pitch to the pitch displacement

are negligible compared with the contributions of collective pitch and are therefore omitted

from the pitch displacement transformation step. Another assumption is that the sweep of the

lifting line is negligible. Still another is the asmmlption stated previously that the r_2 axis of the
blade-fixed rotating reference frame is coincident with the blade pitch change axis. Further, it

has already been assumed that the lifting line is coincident with the blade twist center so that

blade twist contributes nothing to the pitch displacement of the blade lifting line. Based on
these assumptions, therefore, the pitch displacement rotation is simply a function of the root

collective pitch as follows:

i:= 0 in°lI:1010
[r]_ r -sin0r 0 cos Or Lr/3j

(20)

where the subscript r on the left-hand side of the equality indicates the position that results

from pitch rotation. Second, the pitch-rotated blade lifting line coordinates are displaced by

the angles _(T) and _(r) to result in the final transformation for the fully deflected blade lifting
line coordinates. The expression for the final transformation is a function of the position of

the flapping hinge e, the lead/lag hinge RI, and the spanwise coordinate _ on the blade. The

final transformation expression has several forms that depend on the relative locations of e, R l,

and _. If there is no flapping or lead/lag at spanwise station _, then the final deflected position
is defined by

= (21)

Ln_
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If there is flapping only at spanwise station 4, then

I Ii° °1{ [i]}[i]= 772 = cosfl -sinfl - +

_73 I sin fl cos fl J [ 7_ J r

(22)

or if there is lead/lag only, then

[:] [cOS,osin,01{r  ] [!1}[i]= 72 = -sine cos¢ 0 - t + t

73 73 l 0 1 [ nl J r

(23)

where subscripts f and l on the position matrices indicate final blade positions resulting from

blade flapping and blade lead/lag, respectively. Finally, if both flapping and lead/lag exist and

R l > e, then

[ il[i° [il}Ii]= = cos/3 - sin _ - +

Jr/ sin_ " cos_ J l

or if RI _< e, then

[:][:1lOS,!]{i:][!]}[!]= = -sine cos_ - l + l

73 773.1 fl 0 0 r)3 f

(24)

(25)

where subscript If indicates a position resulting from lead/lag followed by flapping and

§ubscript fl indicates a position resulting from flapping followed by lead/lag. Table I gives

the appropriate transformation equation to substitute into equation (12), depending on the

values of 4, e, and R t.

Evaluation of Noise Integrals

Once the retarded time equation has been solved, accounting for the blade motion, the
thickness, and loading noise defined by equations (8) and (9) is determined. Several terms in

the integrands must be computed. The unit vector _ in the radiation direction is

_ (26)
v_.¢

where i_ is defined in equation (15). The source-to-observer distance r is given by the magnitude

of g. The Mach number of a point on the blade is given vectorially by

= Mh _-_T + _ (27)

where ]_ is given by equation (12). Similarly, the time derivatives of the Mach number are

/_ - 02¢ (2s)
= Mh_T 2
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and

" 03Y (29)
= Mh-_r 3

Mach number M is given by the magnitude of 2_. The components of the Mach number and
its derivatives in the radiation direction are

Mr = if/'/" (30)

(31)

and

2V/r -- if/" _ (32)

The blade loading is defined by the input axial force Fz(_, _), which is perpendicular to

the hub plane, positive up, and by the input azimuthal section force F?(_, _b), which is parallel
to the hub plane, positive in the direction of increasing azimuth angle ¢. Note that the

angle _b equals the dimensionless time r. These forces are in the rotating coordinate system

and represent forces acting on the blade. However, the acoustic equations require the force of
the blade on the fluid, which is opposite the force of the fluid on the blade. Thus the force of

the blade acting on the fluid in the hub-fixed, nonrotating coordinate system is

_PC (r) sin r ]
-Fv (r) cosr

-F_

(33)

Using equations (26) through (33), along with input values of blade cross-sectional area A(_),
hover tip Mach number Mh, and sound speed c, the integrands of equations (8) and (9) are
determined. Integrations are performed by using a spline integral technique. These integrations

produce a pressure time history at each observer moving with the rotor hub due to a single
rotor blade.

Multiple Blade Time History and Spectrum

vJ

The single blade pressure time history is obtained for a blade aligned with the positive

X1 axis at r = 0 starting at T = ¢0. The pressure time histories for the other blades are

determined by time shifting by t = 2r/N b for each blade and interpolating the single blade
time history. Then, the Single blade time histories are summed to produce the rotor noise

time history for loading, thickness, and total noise. Using a fast Fourier transform technique,
the time histories axe converted to spectra in terms of complex Fourier coefficients of acoustic

pressure p()(, n), if observers have been input in Cartesian coordinate format. The spectra axe

in terms of p(Rz, 8, ¢, n) if the observers have been input in spherical coordinate format. The

sound pressure level is computed as

(Pc / (34)
SPL = 101oglo (2p#*) + 20log \ P_ef /

where Pref is reference acoustic pressure which, for air, has the value of 0.00002 N/m 2

(4.1773 x 10 -7 lb/ft2).
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Computational Procedure

The procedure for computing SPL is as follows:

1. For first observer position, reception time, and spanwise position, compute initial guess
for source time based on 1_ -- 0

2. Compute blade position with appropriate equation in table I and equation (12)

3. Compute new value of source time from equation (17)

4. Repeat steps 2 and 3 until convergence

5. Compute terms required for integrands in equations (8) and (9)

6. Compute value of integrands in equations (8) and (9)

7. Repeat steps 2 through 6 for all spanwise positions

8. Integrate for loading and thickness acoustic pressure

9. Repeat steps 2 through 8 for each reception time

10. Repeat steps 2 through 9 for each observer-

i1. Interpolate for time-shifted pressure for each additional blade and add to first blade time

history

12. Apply fast Fourier transform to time histories to produce acoustic spectra

13. Compute sound pressure level by equation (34)
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Table I. Blade Position Transformation Equations To Use With Equation (12)

[Equation used depends on values of _, e, and RI]

Hinge position

R l >e

R l <e

Spanwise coordinate

e<_<_Rl

_>Rt

£ <_R_

Rl<_<_e

_>e

Equation

(21)

(22)

(24)

(21)

(23)

(25)
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15. Higher Harmonic Loads Analysis
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15.1 Rotor Loads (RLD) Module

Donald S. Weir and Stephen J. Jumper

Lockheed Engineering & Sciences Company

Introduction

The purpose of the Rotor Loads (RLD) Module is to determine the harmonic air-load
distribution oil the rotor disk due to inputs of nonuniform wake inflow and blade dynamics.

The reference plane for the analysis is the hub plane, defined as the plane normal to the axis

of rotation of the rotor. Although this selection is arbitrary, the hub plane is believed to serve
as the most convenient reference plane for a generalized rotor model because all rotational

velocities lie in that plane. In addition, direct interface is possible with most noise prediction

techniques, which use the axis of rotation for reference. The analysis assumes the rotor to be

in steady equilibrium flight so that all azimuthally varying rotor quantities have a period of
27r radians. All inplane flow distortions are assumed small compared with rotational velocity

and can be neglected. Blade dynamics include flapwise motion but exclude lead/lag motion;

lead/lag motion effects on blade airloads are assumed negligible relative to fiapwise motion

effects. Small angle approximations are applied in describing flapping angles, rotor control
angles, and angle of attack and displacement changes due to blade flapwise bending. However,

hub plane angle of attack is not limited to small angles. The approximations of lifting-line

theory are assumed valid.

All input quantities are relative to the hub plane except for total inflow velocity, which is
normal to the tip-path plane and provided by the Rotor Inflow (RIN) Module. The tip-path

plane is defined as the plane established by the tips of the flapped rotating blades of the rotor.
The user has the option of providing blade bending and unsteady aerodynamic data.

The input inflow and blade motion data are used to compute the local blade section angle
of attack as a function of radial and azimuthal position. The air-load distribution on the rotor

disk is determined from the local section angle of attack and local section Mach number by

using blade section lift and drag tables. Corrections for unsteady lift effects can also be applied.

Finally, the blade bound circulation distribution is determined. The output distributions of
airload and bound circulation from the RLD Module can be used as inputs to the Rotor Rigid

Dynamics (RRD) and RIN Modules for the computation of updated blade flapping and rotor

total inflow velocity; thereby the RLD Module is employed in conjunction with the RRD and
RIN Modules in iterative fashion.

Symbols

J

Ao

A1

-d

ao

al

a2

a3

aNm/2

B1

collective pitch at blade root, rad

lateral cyclic pitch relative to hub plane, rad

complex Fourier coefficient of flapping angle relative to hub plane (eq. (11)),
rad

coning angle, rad

longitudinal first harmonic flapping relative to hub plane, rad

longitudinal second harmonic flapping relative to hub plane (eq. (11) and

table III), rad

longitudinal third harmonic flapping relative to hub plane (table III), rad

longitudinal (Nm/2)th harmonic flapping relative to hub plane (table III), rad

longitudinal cyclic pitch relative to hub plane, rad

15.1-1



51

b2

lateral first harmonic flapping relative to hub plane, rad

lateral second harmonic flapping relative to hub plane (eq. (11) and table III),
rad

53

bN_12

cq

CT

c

c*

Cd

Cd,s

cl

Cl,s

Ac t

D

e

F_

Y

M

lateral third harmonic flapping relative to hub plane (table III), rad

lateral (Nm/2)th harmonic flapping relative to hub plane (table III), rad

rotor torque in hub plane, re 7rp122R 5

rotor thrust perpendicular to tip-path plane, re zrp_2R 4

airfoil or blade section chord length, re R

airfoil or blade section chord length, m (ft)

blade airfoil section drag force, re qc*

steady airfoil drag force, re qc*

blade airfoil section lift force, re qc*

stcady airfoil lift force, re qc*

unsteady blade section lift force increment, re qc*

fuselage drag force along wind axis (i.e., parallel to Vo¢), re _rpl_2R 4

rotor blade flapping hinge radial offset from center of rotor, re R

blade section normal force (i.e., normal loading in thrust direction, perpendic-

ular to hub plane), re p122R 3

blade section azimuthal force (i.e., azimuthal loading in tangential direction,

parallel to hub plane), re pf_2R3

fuselage equivalent fiat-plate area, re R 2

blade section Mach number

2tl h

m

rotor hover tip Mach number

azimuthal harmonic number

Nb

Nm

q

R

r

Up

UT

V_

W

Az

number of rotor blades

number of azimuthal harmonics, that is, number of equal size azimuthal
increments into which one rotor revolution is subdivided and has value equal

to 2 raised to nonzero integer power

airfoil or blade section onset flow dynamic pressure, N/m 2 (lb/ft 2)

rotor radius, m (ft)

rotor radial coordinate, m (ft)

component of local onset flow velocity at blade section and perpendicular to

hub plane, re 12R

component of local onset flow velocity at blade section and parallel to hub

plane, re _R

rotorcraft translational velocity, m/s (ft/s)

rotorcraft weight, re 7rp_t2R 4

blade flapwise bending displacement, re R
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A_

¢_dp

Cttpp

F

0

0T

#

#P

#T

P

¢

¢

Superscripts:

blade section angle of attack, rad

increment in blade section angle of attack due to elastic torsional twist, rad

hub plane angle of attack, rad

tip-path plane angle of attack, rad

blade rigid flapping angle relative to hub plane (eq. (11)), rad

blade section circulation, re fiR 2

blade spanwise position, re R

blade section pitch angle relative to hub plane, rad

rigid twist angle at blade section, rad

rotor total inflow velocity perpendicular to tip-path plane, re fiR

rotor mean inflow velocity perpendicular to tip-path plane, re FIR

rotor advance ratio along wind axis, --- _¢_

Voo sin _dp
rotor advance ratio perpendicular to hub plane, ----- s2R

Vac cos Ctdp
rotor advance ratio tangent to hub plane, ---- _R

air density at flight altitude ambient conditions, kg/m 3 (slugs/ft 3)

local upflow angle at blade section and relative to hub plane, rad

blade azimuth angle, rad

rotor rotational speed, rad/s

Fourier transformed (i.e., Fourier coefficient)

updated value

derivative with respect to blade azimuth angle ¢

J

Input

The RLD Module requires a significant amount of input data because it produces the
final force distribution on the rotor disk. Figures 1 through 4 indicate the sign convention of

the various input quantities. The control variables and operating state are defined by user

parameters.

The computational grid of blade spanwise positions at which output results are calculated

is provided via the Independent Variable Array specified by user.

Blade geometric parameters, including chord length and twist angle, as functions of span are

provided by the Blade Shape Table from either the Blade Shape (RBS) Module or the Improved
Blade Shape (IBS) Module; the RBS Module is documented in section 10.2 of Zorumski and

Weir (ref. 1) and the IBS Module in Nguyen (ref. 2). Reference collective pitch is measured
at the blade root such that at zero collective pitch the root angle of attack relative to the hub

plane is zero. Thus the input distribution of twist angle in the Blade Shape Table must start
with a zero value at the root.

Blade rigid flapping angles in complex Fourier coefficient form are input to the RLD Module
via the Flapping Angle Table. Table I presents the relationship between the array sequence for

complex Fourier coefficients _(m) (i.e., storage sequence in the input Flapping Angle Table)
and the theoretical complex Fourier series sequence for _(m) (eq. (11)).
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For the first execution of the RLD Module, the input Flapping Angle Table contains an

initial estimate of the flapping and is provided by the Lifting Rotor Performance (LRP) Module

or is built anew by the user with LRP output control angle parameters. Complex Fourier

coefficients if(m) in the initial input Flapping Angle Table are functions of conventional sine

series coefficients from the LRP Module as indicated in table II. For tail rotor analyses (table II),
the conventional sine series flapping angle coefficients a0, at, and bi (eq. (11)) output from the

LRP Module are used to generate the initial Flapping Angle Table input to the RLD Module.

For main rotor analyses (table II), however, the conventioiml coning and pitch control angles a0,
A1, and B1 output from the LRP Module are used to generate the initial Flapping Angle Table

input to the RLD Module. This use of a0, A1, and B1 from the LRP Module for initial flapping

input to the RLD Module in a main rotor analysis is a consequence of the flapping-feathering

equivalence employed by the LRP Module in the analysis of main rotors.

For subsequent iterative executions of the RLD Module, the required input Flapping Angle

Table is provided by the Rotor Rigid Dynamics (RRD) Module and contains updated flapping
information. Table III indicates the values of the complex Fourier coefficients _(m) in the input

Flapping Angle Table from the RRD Module as functions of conventional sine series flapping

coefficients (eq. (11)). Comparing tables II and III shows that the updated input Flapping
Angle Table from the RRD Module contains higher order flapping terms not present in the

initial input tahle from the LRP Module.

Distribution of rotor total inflow velocity, relative to the tip-path plane, must be input

via the Inflow Velocity Table. For first execution of the RLD Module, tile Inflow Velocity
Table contains an initial estimate of the inflow distribution, provided by the LRP Module, and
consists of uniformln-flow over the rotor disk. The content of the initial Inflow Velocity Table

input to the RLD Module as provided by the LRP Module is presented in table IV. Note that
the initial uniform mean inflow velocity )_mean provided by the LRP Module for the initial

input Inflow Velocity Table is actually perpendicular to the hub plane because of the analysis

method employed in the LRP Module. However, this initial mean inflow velocity in the Inflow

Velocity Table is assumed to be perpendicular to the tip-path plane, as required by the the
RLD Module analysis. This assumption is valid because the initial inflow input is merely a

first estimate and can be approximate.

For subsequent iterative executions of the RLD Module, the Inflow Velocity Table is provided

by the Rotor Inflow (RIN) Module and contains updated inflow information having higher
harmonic content. The relationship between the table storage sequence for complex Fourier

coefficients of inflow velocity A(r/, m) and the theoretical complex Fourier series sequence for

_(r/, m) per equation (10) is analogous to that for the flapping data as indicated in table I.

Input of blade airfoil section lift and drag data is required, and the choice of table format is
based on whether the improved option is used. If the set of improved modules (which includes

the IBS Module, the Improved Blade Section Aerodynamics (IBA) Module, and the Improved

Blade Section Boundary-Layer (IBL) Module, the latter two being documented along with

the IBS Module in ref. 2), has been executed to establish blade characteristics, the improved
option is used. If the improved option is used, the blade airfoil section lift and drag data are

input separately to the RLD _Module via the Section Lift Table from the IBA Module and the

Section Drag Table from the IBL Module, respectively. If the improved option is not used, then
blade characteristics must have been established by the original set of modules (which includes

the RBS Module, the Blade Section Aerodynamics (RBA) Module, and the Blade Section

Boundary-Layer (BLM) Module, the later two being documented in sections 10.3 and 10.4 of

ref. 1). In this case, the blade airfoil section lift and drag data are input to the RLD Module
via a single combined table, the Section Aerodynamic Force Table from the BLM Module.

However, any of the lift and drag input tables can also be created by the user from any other
source of airfoil data.

Finally, the user can optionally input to the RLD Module the Unsteady Lift and Blade

Bending tables if available. These tables contain_ complex Fourier coefficients. For these

optional tables, the relationship between the table storage sequence of the complex Fourier

\
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coefficientsandthetheoreticalcomplcxFourierseriessequenceof the coefficientsis analogous

to that already described for the flapping data as indicated in table I.

The user parameters, tables, and data arrays input to the RLD Module are as follows:

A0

A1

B1

C

f

Mh

Nm

W

O_dp

User Parameters

current value of collective pitch at blade root (eq. (2)), tad

current value of lateral cyclic pitch relative to hub plane (eq. (2)), rad

current value of longitudinal cyclic pitch relative to hub plane (eq. (2)),

rad

rotor blade flapping hinge radial offset from center of rotor, re R

fuselage equivalent flat-plate area, re R 2

rotor hover tip Mach number

number of rotor blades

number of azimuthal harmonics in frequency domain (i.e., twice number of

positive frequency harmonics and establishes azimuthal discretization of one
rotor revolution with azimuthal increments of size 2_r/Nrn in time domain,

thereby satisfying Nyquist criterion relating number of time steps to number

of frequencies; must have value equal to 2 raised to nonzero integer power)

rotorcraft weight (for tail rotor analysis, value input is tail rotor thrust force; for

analysis of rotor from multirotor vehicle, value input is weight supported per

rotor), re _rp_2R 4

rotor hub plane angle of attack (positive for hub leading edge tilted up), rad

rotor advance ratio along wind axis, _-

71

Independent Variable Array

blade spanwise position for output tables, re R

71

c(n)

OT(n)

Blade Shape Table

[Prom RBS or IBS]

blade spanwise position, re R

blade section chord length, re R

blade section rigid twist angle (positive for blade section leading edge tilted up

and measured from hub plane), rad

m

Flapping Angle Table

[Prom RRD or initialized by LRP]

azimuthal harmonic number

complex Fourier coefficients of flapping angle (positive up from hub plane

(tables I, II, and III)), tad
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77

m

Inflow Velocity Table

[From RIN or initialized by LRP]

blade spanwise position, re R

azimuthal harmonic number

complex Fourier coefficients of rotor total inflow velocity (perpendicular to

tip-path plane, positive up (table IV)), re f_R

77

OL

M

Cl,s(rl, a, M)

77

oz

M

Cd,s(rh ct, M)

rl

ot

M

ct,s(rh a, M)

Cd,s(r h a, M)

rl

m

m)

Section Lift Table

[From IBA; required if improved option is used]

blade spanwise position, re R

blade section angle of attack, deg

blade section Mach number

blade section steady airfoil lift force, re qc*

Section Drag Table

[From IBL; required if improved option is used]

blade spanwise position, re R

blade section angle of attack, deg

blade section Mach number

blade section steady airfoil drag force, re qc*

Section Aerodynamic Force Table

[From BLM; required if improved option is not used]

blade spanwise position, re R

blade section angle of attack, deg

blade section Mach number

blade section steady airfoil lift force, re qc*

blade section steady airfoil drag force, re qc*

Blade Bending Table

[Optional]

blade Spanwise position, re R

azimuthal harmonic number

complex Fourier coefficients of blade flapwise elastic bending displacement

(positive up relative to rigid blade position), re R

complex Fourier coefficients of blade e_astic torsional twist angle increment

(positive for blade section leading edge twisted up relative to rigid blade

position), rad
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7/

m

A_l (71,m)

Unsteady Lift Talflc

[Optional]

blade spanwise position, rc R

azimuthM harmonic number

complex Fourier cocfficicnts of airfoil unsteady lift force increment, re qc*

Output

The RLD Module produces various updated rotor control and performance parameter

output as user parameters. A table of the aerodynamic loading distribution on the rotor

disk as a function of blade spanwisc position and azinmthal harmonic number is produced.

Also produced are tables of bound circulation distribution and unsteady blade motion. Note
that for those output tables containing complex Fourier coefficients, the relationship between

the table storage sequence and the theoretical complex Fourier series sequence of each Fourier

coefficient is analogous to that described previously in the section "Input" for flapping data as
indicated in table I.

The user parameters and tables output from the RLD Module are as follows:

J

Alo

Ai

ao

al

bl

cQ

CT

_tpp

m

Fz (rh m)

?¢(_, m)

r/

¢

r(n, ¢)

User Parameters

updated value of collective pitch at blade root, rad

updated value of lateral cyclic pitch relative to hub plane, rad

rotor coning angle (eq. (11)), rad

first harmonic longitudinal flapping relative to hub plane (eq. (11)), rad

updated value of longitudinal cyclic pitch relative to hub plane, rad

first harmonic lateral flapping relative to hub plane (eq. (11)), rad

rotor torque, re 7rp_2R 5

rotor thrust, re 7rp_2R 4

rotor tip-path plane angle of attack (positive for leading edge of tip-path plane

tilted up), rad

Harmonic Aerodynamic Loads Table

blade spanwise position, re R

azimuthal harmonic number

complex Fourier coefficients of blade normal loading in thrust direction

(perpendicular to hub plane, positive up), re pf't2R 3

complex Fourier coefficients of blade azimuthal loading in tangential direction

(parallel to hub plane, positive toward increasing azimuth), re p_2R3

Bound Circulation Table

blade spanwise position, re R

blade azimuth angle, rad

bound circulation, re fir 2
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77
m

M(rl, m)

m)

Blade Motion Table

blade spanwise position, re R

azimuthal harmonic number

complex Fourier coefficients of blade section Mach number

complex Fourier coefficients of blade section angle of attack, rad

Method

The key assumptions underlying the RLD Module }lave already been presented in the

Introduction, and a description of the problem is shown in figure 1 with the sign conventions

of Gessow and Myers (ref. 3) adopted. A helicopter is in steady level flight with airspeed t_.

The hub plane of the main rotor makes an angle Oldp with the free-stream velocity; this angle
is typically negative during forward flight (front half of hub plane inclined below horizontal),

as shown in figure 1. The rotor has N b fully articulated blades with hinge offset e. The coning

angle is a0. The first harmonic longitudinal and lateral flapping angles are al and bl, measured
with respect to the hub plane. Higher harmonic flapping angles are expressed in complex form.

The rotor control angles are specified by the collective pitch A0 (positive for blade leading
edge pitched up) and the lateral and longitudinal cyclic pitches A1 and B1, and AI and Bl

are measured from the hub plane to the plane of no feathering, which is assumed coincident

with the control plane. Further details regarding control angles, the plane of no feathering,

and the control plane are provided later, in the subsection "Determination of Cyclic Pitch

and Collective Pitch'." Rotorcraft wclght W and fuselage drag D are assumed to act at the
rotor hub as shown in figure 1 with vehicle pitching and rolling moments being neglected in

the analysis. The resultant thrust force C T generated by the rotor is assumed normal to the

tip-path plane. The normal loading Fz at a blade section is defined positive up, perpendicular
to the hub plane, this is illustrated in figure 1, where the normal loading at the root (hub)

section of a blade is portrayed.

Blade Section Angle of Attack

The first step is to determine the local angle of attack at each blade section. With reference

to figure 2, the local angle of attack at a given blade section is

g/) = ¢(0, g/) + g/) (1)

where ¢ is the local upflow angle and 0 is the local blade pitch angle, both relative to the hub

plane. Angles a and 8 are positive for blade fiect!0n leading edge tilted up. The local pitch
angle is expressed in terms of the control angles as

O(_,g/) = A0 - A1 cosg/- B1 sing/+ OT(T}) + Aa(T}, g/) (2)

where control angles A0, AI, and B1 are relative to the hub plane; OT(_?) is the fixed rigid tw{st

distribution of the blade (positive for leading edge up relative to the hub plane) adjusted so that

0T(0) = 0; and Aa(o , g/) is the distribution of blade elastic twist increment (measured positive

for leading edge twisted up relative to the rigid blade position). The onset flow velocity tg_thc
local blade section is resolved into two components as indicated in figure 2. The component

normal to the hub plane is Up (positive up), and the component lying both parallel to the hub

plane and perpendicular to the blade is UT (positive in the direction opposite the direction of
blade section translation due to rotor rotation). In terms of these velocity components, the

local upflow angle ¢ is expressed as

¢(77, g/) = arctan Up (3)
UT
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Finally, the local blade angle of attack increment due to blade elastic torsional twist is

determined from tile input Fourier transformed quantity A_(y, m), if provided, by

Nm/2

Aa(_, _b) = Z A_(_, m) exp(im¢) (4)

m=-Nm/2

Figure 3 illustrates the onset flow velocity components lying in the hub plane and resolved

radially and tangentially relative to the blade. The tangential component UT is a function of
rotor rotational speed and forward velocity in the form

_RU T -_ _r + Voo cos O_dp sin ¢ (5)

Applying dimensionless quantities yields

UT('7,¢) = + sin ¢ (6)

!

where r/is the normalized spanwise coordinate and ST is the advance ratio component tangent to

the hub plane, that is, # cos _dp. Negative values of UT(rh ¢) represent the reversed-flow region.

The perpendicular velocity contributions are shown in figure 4. Because of hub plane angle

of attack, a component of advance ratio resolved perpendicular to the hub plane exists and is

given by

= sm aap (7)

or in terms of nondimensional input quantities

#p = # sin adp (8)

The total normal velocity Up is

(9)

where the dot over the symbol signifies derivative with respect to azimuth angle ¢. Each term

on the right-hand side of equation (9) requires further explanation. The first is the rotor total
inflow velocity, normal to the tip-path plane, computed by the RIN Module. The second term

is the correction of the total inflow velocity from tip-path plane orthogonality to hub plane

orthogonality. The third is the component of the inplane velocity, parallel to the blade in
figure 3, resolved normal to the actual flapped blade position. The last two terms are the onset

velocity contributions produced by blade rigid flapping rate and flapwise elastic bending rate,

respectively. The contribution #p to the velocity Up is accounted for implicitly by the quantity

[)_(v], ¢) - #Tall in accordance with the theory used in the RIN Module for _(_, ¢). Hence #p
does not appear explicitly in equation (9).

The azimuthally dependent input quantities in equation (9) are provided as finite Fourier
series of the form

Nm/2

)_(_' ¢) = Z _(r/, m) exp(im¢) (10)

m=-Nm/2

J f_(¢) -----a0 - al cos ¢ - bl sin ¢ - a2 cos 2¢ - b2 sin 2¢ -... =

Nm/2

m=-Nm/2

(11)
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and
Nm/2

Az(7' ¢) = Z  z(7, m) exp(im¢) (12)
m=-Nm/2

The longitudinal flapping coefficient al in equation (9) is given by twice the negative real

part of _(1). With equations (10) to (12), all terms on the right-hand side of equation (9) are

written as Fourier series. Differentiating and summing like terms yield a single Fourier series for

Up(7, m) as shown in the appendix. A final inverse transform yields Up(B, ¢). Once Up and U T
are determined, then the local blade section angle of attack is computed from equation (1).
The blade section Mach number is

(13)

The local blade section angle of attack is assigned negative values in the reversed-flow region.

This sign switch implements a flat-plate airfoil assumption to provide a crude accounting for

reversed flow in utilizing typical input blade airfoil lift and drag tables produced by the IBL
Module, the IBA Module, or the BLM Module (discussed in the subsection "Blade Section

Forces"). In such typical input airfoil lift and drag tables, true reversed-flow information is

not present because only a small range of angle of attack about zero is contained in them.

The user is hereby warned, therefore, that if the user has provided input airfoil lift and drag
tables containing measured reversed-flow data (i.e., large angles of attack near 180 ° or -180°),

the input reversed-flow data will not be utilized by module RLD as a consequence of the sign

reversal of the angle of attack applied in the reversed-flow region before the input airfoil tables
are read.

The Fourier transforms of equations (1) and (13) produce _(7, m) and M(7, m), which are

the quantities, along with the blade shape, that are required to compute chordwise pressure
distributions by using unsteady or transonic theory. These quantities are also required for

implementation of a full surface prediction of rotor noise.

Blade Section Forces

The next step is to determine the section forces (i.e., blade loadings) normal and tangent
to the hub plane. These are determined from the blade airfoil section lift and drag input data.

For each value of spanwise position 77 and azimuthal position ¢, the local angle of

attack a(7,_) and Mach number M(T/, ¢) have been determined. From the input tables of

the steady lift cLs(7, a, M), the steady drag Cd,s(7, a, M), and, optionally, the unsteady lift
increment A_l( y, m) for the blade airfoils, the blade section lift and drag are

Nm/2

ct (7, ¢) = Ct,s [7, a(7, ¢), M(7, ¢)] + _ Act (7, m) exp(im¢)

m=-Nm/2

(14)

and

Cd(7, 0) = Cd,s[Th a(71, ¢), M(_/, ¢)]

The bound circulation at a blade section is given by

(15)

1M 1

= ¢)- + (16)

The forces given by equations (14) and (15) act normal and tangent, respectively, to the
local relative wind at each blade section. For noise prediction purposes, it is more convenient

\
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to resolve these forces normal and tangent to the hub plane. When referring to figure 2, the

section normal force is given by

1 hi 2

Fz (r/, _P) - 2 M 2 c [+c I (r/, ¢) cos ¢ + cd(r/, ¢) sin ¢]

= 1 (U_ + U2) c[:kCl(_?,¢)cos¢:kCd(77,¢)sin¢]2
(17)

and the section azimuthal force is

1 M 2

Fy,(y, ¢) = -_y-_2 c {:l=cl(r/, _P) sin ¢ - [=t=CdO?,¢) cos ¢]}
lv_h

= 1 (U 2 +U2) c{:l:cl(_7,¢)sind2_[:l:Cd(rh_b)cos¢] }2
(18)

The negative sign in the "-t-" sign option appearing in equations (17) and (18) is applied in the
reversed-flow region. This sign usage is consistent with the sign reversal of the angle of attack

applied in the reversed-flow region, as discussed previously in the paragraph which followed

equation (13). Therefore, any actual reversed-flow lift and drag data which may be prcscnt in
the input airfoil tables will not be utilized in equations (17) and (18).

Determination of Cyclic Pitch and Collective Pitch

/

Force balance requires that the resultant thrust force CT generated by the rotor be equal
and opposite to the vector sum of the rotorcraft weight (i.e., weight carried per rotor) and

drag. When the assumption that the resultant rotor force is normal to the tip-path plane is

applied, as indicated in figure 1, the balance of forces determines the tip-path plane angle of

attack required for rotor trim as follows:

D (19)
C_tpp _ _ tan -1

where the rotorcraft drag is assumed to equal the fuselage drag, which is given by D = #2f/2_,

the constant n occurring because of defined nondimensionalizations of D and f.

To provide some further rotor reference plane definitions and to make some additional

assumptions underlying the methodology for computing rotor trim and the associated control

angles are necessary. As illustrated in figure 1, the rotor blades are flapped with respect to the
hub plane, with the plane of the blade tips establishing the tip-path plane. Relative to the hub

plane, the blades also have uniform collective and cyclic (azimuthally varying) pitch tO, which

from equation (2) is

tO(r/, ¢) = A0 - A1 cos ¢ - B1 sin ¢ + Elastic twist (20)

The first additional assumption made is that blade elastic deflections are now ignored; therefore,

only rigid blade pitch relative to the hub plane exists and is given by

J

tO(r/,_b)rigid = AO - A1 cos ¢ - B1 sin (21)

Another reference plane exists, relative to which the blades experience only uniform collective

pitch A 0 but no cyclic pitch; this is defined as the plane of no feathering. The rotor employs a
mechanical control system for altering blade pitch. Conventionally this is a swashplate system in

which the swashplate position establishes the control plane orientation with respect to the hub

or body axis. Two more assumptions made are that the mechanical control system is perfectly
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rigid andthat thereis nopitch/flapcouplingexperiencedby the rotor blades.Therefore,by
thesetwoassumptions(ref.4),thecontrolplaneisthesameastheplaneof nofeathering.Given
thespatialorientationof thecontrolplaneviapilot-commandedpitchanglecontrolinputsA1

and B1, the rotor blades flap and feather. Thus a new spatial orientation of tile tip-path

plane is established, and the hub plane is tilted laterally and longitudinally with respect to the

control plane. As shown in figure 1, the control plane angular tilt relative to tile hub plane
is A1, laterally, and B1, longitudinally. Thus from the aforementioned assuinptions, control

inputs A1 and B1 (i.e., control plane orientation with respect to the hub plane) command a

particular blade flapping response al and bl (i.e., tip-path plane tilt with respect to the hub

plane). A final additional assumption made regarding rotor control is that the rigidity of the
control system and rotor blades is such that there is a direct one-to-one ratio between input

pitch control angle and resulting blade flapping angle response; that is, a 1° change in A1 yields

a 1° change in bl and a 1° change in B1 yields a 1° change in al.

Based on the aforementioned additional assumptions, an iterative scheme is employed for

obtaining updated longitudinal cyclic pitch B_ in which one call of the RLD Module represents
one iteration. The scheme is based on longitudinally trimming the rotor to the known required

tip-path plane angle C_tpp. The known longitudinal flapping a 1 of the rotor is a result of the
known longitudinal cyclic pitch control input B1. During a given iteration (i.e., call of the RLD

Module), the current known values of B1 and al are inputs to the module, where al is given by

twice the negative real part of input complex coefficient g(1) in the Fourier series for the flapping
angle fl (eq. (11)). If B1 happens co be the correct control input to achieve rotor longitudinal

trim, then the corresponding resulting input value of longitudinal flapping al is the correct

trim value, such that the relation _dp + al,correct = O_tpp holds, where this equality is evident in
the geometry in figure 1, in which the side view of the figure portrays a longitudinally trimmcd

rotor. During a typical iteration, however, the current input values of B 1 and al do not yet

equal the correct values consistent with trim to the known O_tpp, such that _dp + al _ _tpp.

It is assumed that the difference between the current quantity adp + al and the known target
trim value _pp is the amount by which the current longitudinal cyclic pitch control angle B1

must be acljusted to give the updated value B_, corresponding to longitudinal trim. Thus

i

2

B_ - B 1 ---- - [atpp - (adp + al)] = True or Updated - Current (22)

where the negative sign preceding the quantity in brackets accounts for the opposing relation-

ship between longitudinal cyclic B1 and longitudinal flapping al; that is, longitudinal cyclic

pitch control consisting of increasing the value of B1 (forward tilting of the control plane caused

physically by forward motion of the pilot's control stick) results in longitudinal flapping con-
sisting of decreasing the value of al (forward flapping response). Rearranging equation (22)

gives the following expression for updated longitudinal cyclic pitch:

B_ : B 1 + O_dp -- Oltp p -k al (23)

Similarly an iterative scheme is employed for obtaining updated lateral cyclic pitch A_ in
which one call of the RLD Module represents one iteration. Though rotors, particularly main

rotors, actually produce side forces in the trim condition, this analysis assumes no side forces

are generated. Also the rotorcraft weight acts at the rotor hub, by assumption, such that there

are no rolling moments. Based on these assumptions, the tip-path plane and the hub plane
must be horizontal when lateral trim is achieved which is the trim criterion on which the scheme

for A_ is based. For a given rotor lateral orientation, tile known lateral flapping bl is associated
with a known lateral cyclic pitch control input A1, the geometry being indicated in the side

view of figure 1. During a given iteration (i.e., call of the RLD Module), tile current valucs

of A1 and bl are inputs to the module, whcrc bt is given by twice the positive imaginary part
of input complex coefficient _(1) in the Fourier series for the flapping angle fl (eq. (11)). If A1

happens to be the correct control input to achieve rotor lateral trim, then the corresponding

resulting lateral flapping bl is the correct trim value, given by bl,correc t = 0. During a typical
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iteration, however, the current input values of A1 and bl do not yet equal the correct values

corresponding to lateral trim such that bl :_ 0. It is assumed that the amount by which b1
differs from zero is the amount by which the current lateral cyclic pitch control A1 must be

adjusted to give tile updated value A_ corresponding to lateral trim. Thus

A_ - A1 = [0 - bl] = True or Updated - Current (24)

or rearranging,

A_ = A1 - bl (25)

An iterative scheme is employed for obtaining updated collective pitch A_) in which one
call of the RLD Module represents one iteration. For simplicity it is assumed that a lift-curve

slope of 2rr applies everywhere on each rotor blade. This assumption provides a simple direct

proportionality between the current input value of collective pitch A0 and the corresponding
rotor lift force, which is the vertical component of CT. The trim value of A 0 is assumed achieved

when the current total rotor lift force equals the known rotorcraft weight W (i.e., weight carried

per rotor). Thus the required change in collective pitch from the current input value to achieve
trim is proportional to the difference between the rotorcraft weight and the current rotor total

lift (i.e., the vertical component of rotor thrust) as follows:

(AIo - AO) 2rr = W - CT cos O_tp p -_- True or Updated - Current (26)

Rearranging gives the following expression for updated collective pitch:

"-ua"= Ao + W - CT cos _tpp (27)
27r

where _tpp is given by equation (19) and current rotor total thrust C:r is computed as described
in the subsection "Rotor Thrust and Torque."

Equations (23), (25), and (27) represent the basic scheme which has been coded into the RLD
Module for updating the control angles. All the quantities involved in these three equations

are user parameters. Thus by judicious use of control statements within the actual computer

prediction input job stream, the user can create any desired iterative procedures for executing
the related RLD, RRD, and RIN Modules to implement other update schemes.

Rotor Thrust and Torque

Equations (17) and (18) define the blade section forces relative to the hub plane that
are required for noise prediction. Additionally, rotor thrust and rotor torque are required

to describe the rotor performance. These two quantities are obtained by integration of blade
section forces. The rotor thrust is defined as

CT = _ [Fzcos(adp- atpp) -- F_0 sin (adp- atpp)] dr/de (28)

and the rotor torqueas

j

gb
r3/02rtf]01 [Fz sin (adp _tpp) + F¢ cos (_dp C_tpp)] r/dr/d* (29)CQ - 27r2 - -

In terms of the Fourier series coefficients, the equations simplify to

Nb fl
CT -----2-_ J0 ['-ffz(z], 0) cos (adp -- °:tpp) -- F_b (r/, 0) sin (_dp -- _tpp)] dr/ (30)
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and

 /01CQ - 2r 2 [-Fz(q, 0) sin (adp - O_tpp) -[- Y¢(q, 0) cos (O_dp -- O_tpp)] ?7 dq (31)

Computational Procedure

1. Compute Up(_, ¢) (defined by eq. (9)) by following method in appendix

2. Compute UT(_, _) from equation (6)

3. Apply inverse Fourier transform to A_(_/, m) (if input) to get Aa(_, ¢), compute 6(_/, ¢)

from equation (2), and compute 0(_, ¢) from equation (3)

4. Compute a(r/, _) by equation (1), with negative values assigned in reversed-flow region

5. Compute M(_/,¢) from equation (13)

6. Interpolate for blade section steady lift and drag forces cl, 8 and Cd,s

7. Apply inverse Fourier transform to A_/(_,m) (if input) for blade section unsteady lift

increment AclO?, ¢) and compute total c I from equation (14)

8. Generate K(_, m) and _-7(_7, m) for output table by applying Fourier transform to a0?, _b)

and M(7/, ¢)

9. Compute F(_, ¢) for output table with equation (16)

10. Compute blade normal and tangential section forces with equations (17) and (18 and Fourier

transform to get Fz(r/, m) and F¢(r/, m)

11. For output, determine coning angle a0 from complex Fourier coefficients of flapping _(m)

by equation (11), with coning angle being given by value of _(0)

12. Determine first harmonic flapping angles al and bl from _(m), as described in paragraphs

immediately preceding equations (22) and (24), respectively, by equation (11)

13. Compute atpp from equation (19)

14. Compute integrated rotor thrust CT and torque CQ from equations (30) and (31)

15. Compute updated pitch control angles A_}, A_, and B_ from equations (27), (25), and (23),

respectively
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Appendix

Calculation of Perpendicular Velocity

The expression for the local onset flow velocity component perpendicular to the hub plane
involves both sums and derivatives of Fourier series. It is more computationally efficient to

perform the summations and differentiations in Fouricr series form and then use the inverse

Fourier transform to yield the perpendicular velocity Up(rl, g,).

Equation (9) for the perpendicular velocity is

Up(?1, _) = )_(rl, _) - #Tal -- /3(_) + ---- #T cos _p -- (r/-- e)/3(_P) -- A_(rl, _b) (A1)

where the terms A,/3, and Az are written as Fourier series as given by equations (10) to (12).

The perpendicular velocity can also be written in Fourier series form as

Nm/2

Up07, _) = __, Up(y, m) exp(im¢) (A2)

m=-Nm/2

/

Substituting equations (10) to (12) and (A2) into equation (A1) and summing coefficients_
of like harmonics yield a series of equations for each perpendicular velocity harmonic Up(rl, rn).

Four sets of equations result for four cases: flapping and bending, flapping and no bending, no

flapping and bending, and no flapping and no bending. The result for the first case, flapping

and bending, where r1 > e,/3(_b) _ 0, and Az # 0, is

-- _T #T
Up(rl, O) = -_(rl, O) - #Tal -- _-- [a(-- 1) + g(1)] 2(7/-- e) [Ag(_, --1) + Ag(r/, 1)]

(A3)

and

Up(_, m) = _(_, m) - -_ [g(m - 1) + g(m + 1)]

/iT [i_ (r/, m - 1) + A2 (r/, rn + 1)l - i {m [(7/- e) _(m) + A2(r/, m)]}
2(_ - _)

(A4)

J

for

and

Nm <m<O
2

(A5)

Up (_?,-t--_)= _(_7, _-_)-"_ [a(_-_- 1)+_(1-____mm)]

#T [A2(_?, Nm 1) + A2(_?, 1 - -_)]4(_-- e) 2

The result for the second case, flapping and no bending, where _ > e, fl(¢) # 0, and Az ----0,

is
Up(r/, 0) = _(r/, 0) -- #Tal -- -_-[_(--1) + _(1)] (A7)
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and

for

and

-UI'('I, ,n) = -_(q, m) - _ [_(m - 1) + E(m + 1)] - i(m [(,I - e) E(m)]) (A8)

O<m<N,. _ } (A9)
2 <m<0

_p(/i,q__n)-_(7/,_)-_ [_(_-1)+_(1--_)1
'{_[/0_(_)]} (AI0)

The result for tile third case, no flapping with bending, where r/> e,/3(¢) = 0, and Az _ 0, is

PT - 1) + AS(n, + 1)1 i{m[A_07, m)]}
Up(q,m) = X(rl, m) 2(_2e)[Az(q,m - m -

(All)

for
Ym Nm

--- < m < -- (A12)
2 2

and

Up (_/,-t-_-_) : _(_7, _-_) 4(_Te)[A_(r/, --2--Nm1)+ A5(_7, 1- _)3

(A13)

The fourth case is for no flapping and no bending, which is true When 7/> e, fl(_b) = 0, and

Az -----0 or when 7/< e. The resulting expressions for this case are

Up(r/, m) = _(rl, rn) (A14)

for

_Nm < m < Nm (A15)
2 2

and

(A16)

The inverse Fourier transform is applied to the function _p(T/, m) to yield the perpendicular
velocity _?p(r/, ¢).
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Table I. Relationship Between Array Storage Sequence and Fourier Series

Sequence for Complex Fourier Flapping Coefficients _(m)*

Array sequence in input Fourier series sequence
Flapping Angle Table (eq. (11))

n(1)

_(3)

E(Nm - 2)

"5(Ym - 1)

-5( Nm )

-a(o)

_(1)

_(2)

_(-3)

_(-2)

_(-:)

*Tabulated relationship also applies analogously for other input and output tables for

the following complex Fourier coefficients:

X(7/,m), A_(o,m), A_(2, m), and__A_l(_/,m) (eqs. (10), (4), (12), and (14), respec-
tively) and -fz(rhm), F,p(_l,m), M(rl, m), and _(r/,rn) (Fourier series analogous to
that in eel. (12))

Table II. Contents of Initial Input Flapping Angle Table From LRP Module
in Terms of Conventional Sine Series Coefficients

Complex Fourier
coefficient

(array entry
in data table)

K(1)

_(2)

_(3)

_(4)

LRP value

(for tail rotor analysis)

a0 + i0

O+iO

LRP value

(for main rotor analysis)

ao + iO

-B1 - iA1
2

O+iO

-B1 + iA1

2

|
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TableIII. Contentsof Input FlappingAngleTableFromRRDModule
in Termsof Conventional Sine Series Flapping Coefficients

/

Complex Fourier coefficient

(array entry in data table)

_(i)

_(2)

-5(Nm - 2)

-d(Nm - 1)

"5(Win)

Function of conventional sine

series flapping coefficients

(eq. (ll))

a0 + i0

-al + ibl

2
-a2 + ib2

2

-a(Nm/2)-I + ib(Nm/2)-I
2

--aNm/2 + iO

-aiNm/2)_ 1 - ib(Nm/2)_ l

2

--a{Nm/2)_ 2 -- ib{Nm/2)_ 2
2

Table IV. Contents of Initial Input Inflow Velocity Table
Obtained From LRP Module

J

Complex Fourier coefficient Array entry value

(array entry in data table) (provided by LRP Module)

_(r/, 1)

X(_,2)

_(_, 3)

A(.,4)

a/_mean + iO

O+iO

O+iO

O+iO

aMean inflow

hub plane but for

tip-path plane.

velocity Am,,an from analysis by LRP Module is actually perpendicular to
use as initial estimate input to RLD Module is assumed perpendicular to
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15.2 Rotor Inflow (RIN) Module

Casey L. Burley and Stephen J. Jumper

Lockheed Engineering & Sciences Company

Introduction

A helicopter in forward flight encounters unsteady flow which produces fluctuating blade

air loads and noise. To calculate the rotor air loads and noise, the flow field about the rotor

must be described. A nonuniform inflow distribution is often required to accurately define the

unsteady loads on the blade and, thus, the acoustics. The purpose of the Rotor Inflow (RIN)

Module is to compute the total nonuniform rotor inflow velocity distribution, relative to the
tip-path plane, from the wake-induced inflow and rotor translational speed and to add in any

optional inflow contribution due to external sources, such as a fuselage, wing, or another rotor.

To compute the induced contribution of nonuniform inflow velocity, elements of the Scully

wake/inflow model (ref. 1) is used. This is a free-wake model in which the wake from each
rotor blade is modeled with vortex lines and vortex sheet elements. Not only is the tip vortex

modeled, but the shed and inboard trailing wake structures are modeled also. Once the wake

is modeled, the Biot-Savart law is used to compute the induced velocity contribution from each

vortex wake element at predefined points on the rotor disk. The bound circulation distribution

on the blades must be input from an external analysis. The Scully method usually is used
in a free-wake mode, where the velocity calculation is followed by a tip vortex convection

calculation and iterated until a converged tip vortex trajectory is obtained. Because of the

substantial computational time and expertise necessary for free-wake calculations, the RIN

Module is usually executed just once in a "prescribed-wake" mode by using the tip vortex
geometry predicted by the Rotor Wake Geomet_'y (RWG) Module. Since the inflow computed

depends on the input circulation table, and vice versa, RIN is normally cxecuted within an

iteration loop with the Rotor Loads (RLD) Module.

The Scully method employed by the RIN Module accounts for several flow and wake effects.

Tip vortex roll-up is accounted for by using a linear roll-up model. The wake is divided into

near-field and far-field regions, which are delimited based on the degree of influence each wake

element in a region has on the induced velocity at the blade. Division of the wake into regions
allows a more efficient computational scheme to be used. A simple vortex core-radius method

is used to improve calculation of velocity induced by a very close vortex segment. A simple

vortex core bursting scheme is used to handle blade vortex interactions, where a rotor blade

encounters or passes very near a vortex.

Symbols

a0

CT

C

Ca, Cb

Cmean

D1(¢, _f)

vectors from point P(rh ¢) to points Pa and Pb on vortex element, re R

coning angle, rad

rotor thrust, re 7rp_2R 4

rotor blade local chord length, re R

vector along vortex line segment from point Pa to point Pb, re R

distances along segment _ at front edge of vortex sheet, re R

mean or reference rotor blade chord length, m (ft)

tip vortex distortion, re R

x component of vortex distortion vector/9(¢, 6), re R
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D2(¢, 6)

D3(¢, 6)

ds

dsl

d_

dVv L

dVl

frO)

GVL

Gvs

I1, I2

II,a, [1,b

I2,a,I2,b

I

lo

y component of vortex distortion vector /)(¢, 5), re R

z component of vortex distortion vector/9(¢, 6), re R

nondimcnsional length of diffcrcntial element of vortex line, rc R

length of differential element of vortex line, m (ft)

vector representation of differential clement of vortex line, rc R

nondimensional velocity induced by differential clcmcnt of vortex

line, re f_R

velocity induced by differential element of vortex line, m/s (ft/s)

vortex core bursting factor

fraction of total tip vortex circulation concentrated in tip vortex line of

age 6

1
tip vortex roll-up rate, re ra_d

fraction of total vortex circulation concentrated in tip vortex line of zero

age

uncorrected velocity influence coefficient corresponding to vortex line

element (ratio of vortex line-element-induced velocity to maximum blade
1

bound circulation, eq. (61)), re 7_

uncorrected velocity influence coefficient corresponding to vortex sheet

element (ratio of vortex sheet-element-induced velocity to maximum blade
I

bound circulation, eq. (62)), re 7[

perpendicular distance from point P(r/, _p) to vortex line element or to

front edge of vortex sheet element (fig. A1), re R

vector from point P(r/, _p) drawn perpendicular to front edge of vortex

sheet element (fig. B2), re R

integrals in vortex sheet-element-induced velocity expression (eqs. (B10)

and (Bll))

terms in integral I1 (eqs. (B56) and (B57))

terms in integral/2 (eqs. (B58) and (B59))

unit vector along x, y, and z axis, respectively

unit vector along _, _), and _ axis, respectively

radial station on l blade of point Pl from which vortex wake element is

shed, re R

radial station on l blade of inboard edge of inboard trailing wake region,

re R

Ii(¢)

11

12

13

h(¢)

radial station on l blade of outboard edge of inboard trailing vortex sheet,
re R

shed wake region

inboard trailing wake region

tip vortex wake region

radial station on l blade of inboard edge of tip vortex sheet, re R
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v _

vt

Alxy

Mh

m

mr

Nb

Nm

P ,Pb

Re

P(_, _b)

QMAT(_, ¢, ¢)

R

Rca, Rcb

rl

_C

81,a, 81,b

VVL

distance in tip-path plane from point Pa on vortex line segment to 71blade
or its extension, re R

rotor hover tip Mach number

azimuthal harmonic number

number of wake revolutions

number of rotor blades

number of azimuthal harmonics, that is, number of equal size azimuthal
increments into which one rotor wake revolution is subdivided and has

value equal to 2 raised to nonzero integer power

number of wake segments required to complete tip vortex roll-up

unit vector used in vortex sheet-induced velocity calculations

endpoint of vortex line segment or corner point at front edge of vortex

sheet segment

point on tip vortex line segment (or its extension) which intersects _ blade

(or its extension) when projected onto tip-path plane

point on l blade from which vortex wake element was shed

point on 77blade at which induced velocity and air loads are computed

influence coefficient matrix for contribution to z component of induced

velocity at P(z/, _) from all wake elements generated at azimuth angle ¢,
1

re :_

blade-vortex interaction factor

velocity influence coefficient (ratio of induced velocity to maximum blade

bound circulation) used in QMAT matrix for obtaining contribution to
velocity induced at P(z?, ¢) by wake element which is identified by _, l,

and ¢ and has circulation F(¢), re :_

blade length (i.e., rotor radius), m (ft)

shorthand functions used in vortex sheet-element-induced velocity integrals,
re R

nondimensional distance from point P(r/, ¢) to differential element on

vortex line, re R

distance from point P(_, ¢) to differential element on vortex line,

(fig. A1), m (ft)

core radius of vortex sheets and unburst vortex lines, re Cmean

burst core radius size factor (ratio of burst to unburst core radius)

vector drawn lengthwise on vortex sheet element (fig. B3), re R

shorthand functions used in vortex sheet-element-induced velocity integrals,
re R

shorthand functions in vortex sheet-element-induced velocity integrals, re R

inflow velocity contribution normal to tip-path plane due to external

sources, re DR

contribution to induced velocity at P(_, ¢) by straight vortex line segment,
re fir
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_ZVS

X, y, Z

Xa, Ya, Za

Ax, Ay, Az

Xb, Yb, Zb

A_

Xh, Yh, Zh

Xx , Yx , Zx

Xy, yy, Zy

Xz, Yz, Zz

Xl, X2

Zc

Zm

zp

Zv

(_tpp

F

Fa, F b

rbv (7, ¢)

rm_(_)

F1

 c(p)

contribution to induced velocity at P(rl, ¢) by vortex sheet segment, re _R

rotorcraft translational velocity, m/s (if/s)

right-hand rectangular coordinate system oriented with respect to tip-path

plane with origin at P(_, ¢)

components of vector extending from point P(rl, ¢1 to point Pc, re R

vortex segment length, re R

components of vector extending from point P(r/, ¢1 to point Pb, re R

right-hand rectangular coordinate system oriented with respect to each

individual vortex sheet segment with origin at P(_, _P)

length of vortex sheet segment perpendicular to its circulation vector, re R

components of vector f_ in coordinate system with origin at point P(_?, ¢)

and oriented with respect to tip-path plane, re R

matrix elements for transforming _ component to components in tip-path

plane coordinate system (appendixB)

matrix elements for transforming _ component to components in tip-path
plane coordinate system (appendix B)

matrix elements for transforming _ component to components in tip-path

plane coordinate system (appendix B)

coordinates of front and back edges of vortex sheet segment, re R

distance of vortex line segment (or its extension) above or below _ blade,
re R

mean z component of vector from point P(._, ¢) to endpoint of back edge
of vortex sheet, re R

shortest distance between point P(rl, ¢1 and plane containing vortex sheet

element (figs. B2 and B3), re R

shorthand function in vortex sheet-element-induced velocity integrals, re R

angles used to derive induced velocity of vortex lines and vortex sheets

(figs. A1 and B1), rad

tip-path plane angle of attack (positive for leading edge of tip-path plane

tilted "up"), rad

bound circulation or circulation of vortex line segment (eq. (A2) and

fig. A1), re _tR 2

vortex line (or sheet / circulation at point Pa and Pb, respectively, re _R 2

rotor blade bound circulation distribution, re 12R 2

maximum rotor blade bound circulation at given azimuth position ¢,

re FtR 2

shed wake element circulation, Fs(_b / = Fmax(¢ + A¢) -- Fmax(¢), re fir 2

circulation of a vortex line segment, m2/s (ft2/s)

vortex core factor (i.e., fraction of vortex line circulation within distance p

of vortex centerline)
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I

5

Es

q

An

)_mean

_(,,¢)

#

#T

P

Pc

o"

¢

A¢

¢

a¢

Superscripts:

age of point PI on wake element shed from station l on l blade, rad

angle used to derive vortex sheet-induced velocity (fig. B3), rad

distance from _7blade to start of shed wake vortex sheet, 0.0125rWbb , reR

azimuth angle difference between ith l blade and _ blade, rad

radial position of point P(_?, ¢), re R

radial distance from point P(_?, _b) to point Pc, re R

radial position of vortex line passage (or its extension) above or below

blade (or its extension), re R

angle used to derive expression for vortex line-induced velocity (fig. A1),
rad

rotor mean total inflow velocity from momentum theory, re 12R

rotor total inflow velocity perpendicular to tip-path plane (positive

"upward," i.e., in rotor thrust direction), re _R

advance ratio along wind axis, -

advance ratio component tangent to tip-path plane, tt cos _tpp

radial distance from centerline of straight vortex filament, re R

vortex core radius, re R

rotor solidity, -=

azimuth angle of I blade, rad

azimuth angle increment between successive l blade positions, rad

angle used to derive expression for vortex line-induced velocity (fig. A1),
rad

azimuth angle of r/blade, rad

azimuth angle increment between successive rI blade positions, rad

rotor rotational speed, rad/s

unit vector

Fourier transformed (i.e., Fourier coefficient)

vector quantity

Input

Calculation of nonuniform inflow requires input of rotor flight conditions and blade bound

circulation distributions. Optional inputs are tip vortex trajectory and inflow tables due to

other phenomena external to the rotor. Figures 1 through 6 illustrate coordinate systems and

sign conventions.

The RIN Module requires input from the user as well as from the Rotor Loads (RLD) Module

and from the Rotor Blade Shape (RBS) Module, documented in section 10.2 of Zorumski and

Weir (ref. 2), or from the Improved Blade Shape (IBS) Module, documented in Nguyen (ref. 3).

The input quantities from the RLD Module are the coning angle a0, the rotor thrust CT, the
advance ratio #, and the tip-path plane angle of attack _tpp, which are user parameters. User
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parameters also supply specific rotor quantities including numl)er of blades IV/,, solidity (r, and

hover tip Mach uumbcr M h. Additionally, the user provides t)aramcters to set up the vortex

wake modeling. These include tim number of wake revolutions mr to consider, mmfi)er of
azimuthal harmonics Nm in the frequency domain (to establish the blade azimuthal spacing for

the analysis in the ti,nc domain consisting of Nm azimuth incrcinents per rotor revolution each
of size 2r/Nm), number of azimuth increments to complete tip vortex roll-up NO, unburst vortex

core radius Sp,c, and burst vortex core radius scale factor S/,,/. More information regarding
core radius parameters is found in the section "Method."

The grid of blade spanwisc positions at which the RIN Module results arc to be calculated

is provided via an independent variable array.

The bound circulation distribution Fbv(rh _) is provided via an input table which can be
obtained from the RLD Module. Bladc local chord c is input through a table which can be

obtained from either the RBS Module or the IBS Module. The influence coefficient matrix

QMAT (from a previous execution of the RIN Module) can be provided in an optional input

table. Also, the wake distortion /9 (from a previous execution of the Rotor Wake Geometry

(RWG) Module) can bc provided in a separate optional input table. If, during an iterative air
loads calculation, the inflow and wake shape arc assumed not to changc despitc a change

in air loads from iteration to iteration, then QMAT and /_ can be calculated during the

initial iteration only and can thcn bc provided as input to the RIN Module during subsequent

iterations. However, in normal practice QMAT and /) arc computed anew during each air-

load iteration (i.c., cach execution of RIN) and arc not provided as input. Finally, the option
exists for input of inflow velocity contributions at the rotor of interest duc to other external

sources, such as the fuselage or anothcr rotor. This optional input, if available, is provided in
the External Inflow Source Table.

The user parameters, tables, and data arrays input to the RIN Module arc as follows:

a0

Cv

Mh

mr

Nm

User Parameters

coning angle (fig. lb), rad

rotor thrust perpendicular to tip-path plane, re T:p_2R 4

fraction of tip vortex circulation concentrated in tip vortcx line at zero wake age

rotor hover tip Mach number

number of wake revolutions

number of azimuth angle incrcments to complete tip vortex roll-up

number of azimuthal harmonics in frequency domain (i.e., twice number of positive

frequency harmonics and establishes azimuthal discretization of one rotor wake
revolution with azimuthal increments of size 27r/Nm in time domain, thcreby

satisfying Nyquist criterion relating number of time steps to number of frequencies;

must have value equal to 2 raised to nonzero integer power)

i

gb

Sp,_

_tpp

#

tT

number of rotor blades

core radius of vortex sheets and unburst vortex lines, re Cmean

burst vortex core radius size factor (ratio of burst to unburst core radius)

tip-path plane angle of attack (positive for tip-path plane leading edge tilted

up), rad

rotor advance ratio along wind axis, ---

rotor solidity, ---
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U

IndependentVariableArray

bladespanwisepositionforoutput tables(fig.l(a)), reR

rbv(_,¢)

Bound Circulation Table

[From RLD]

blade spanwise position (fig. l(a)), re R

blade azimuth angle (fig. l(a)), tad

blade bound circulation, re _R 2

c(v)

Blade Shape Table

[From RBS or IBS]

blade spanwise position, (fig. l(a)), re R

blade section chord length, re R

/

¢

QMAT(_, ¢, ¢)

Influence Coefficient Table

[Optional; from previous RIN execution]

blade spanwise position (fig. l(a)), re R

blade azimuth angle (fig. l(a)), rad

wake segment azimuth angle (fig. 3), rad

1
influence coefficient matrix (eq. (3a)), re /_

¢

D(¢,_)

Wake Distortion Table

[Optional; from RWG]

wake segment azimuth angle (fig. 3), rad

wake age (fig. 3), rad

wake distortion vector, re R

J

ve(_,_)

External Inflow Source Table

[Optional]

blade spanwise position (fig. l(a)), re R

blade azimuth angle (fig.l(a)), rad

inflow velocity perpendicular to tip-path plane due to external

sources (positive for velocity directed upward), re _R

Output

This module produces a table of the rotor total inflow velocity distribution. The inflow

values are given as a function of the blade spanwise position T] and the azimuthal harmonic

number m. The inflow velocity values are the components perpendicular to the tip-path plane.
Table I relates the complex Fourier coefficients of inflow from equation (2) to the array element

ordering of the Inflow Velocity Table. Optionally, the module also saves the influence coefficient
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matrix inatableasafunctionofbladespanwisepositionU,bladeazimuth¢, andwakesegment
azimuth¢.

Theoutputtablesgeneratedby theRIN Moduleareasfollows:

InflowVelocityTable
bladespanwiseposition(fig. l(a)), reR

m azimuthal harmonic number (eq. (2))

_(_, m) complex Fourier coefficients of rotor total inflow velocity perpendicular to
tip-path plane (eqs. (1) and (2), positive inflow being directed upward),
re f_R

¢

¢

QMAT(_, ¢, ¢)

Method

Influence Coefficient Table

[Optional]

blade spanwise position (fig. l(a)), re R

blade azimuth angle (fig. l(a)), rad

wake segment azimuth angle (fig. 3), rad

1
influence coefficient matrix (eq. (3a)), re

The mathematics and procedures used by the Rotor Inflow Module are rather involved.

This section breaks up the theory into subsections as follows:

General description of rotor inflow and the harmonic representation thereof

Coordinate systems, analysis assumptions, and nomenclature

Modeling of the rotor wake with ideal vortex sheet and line segment elements, the scheme

for assigning vorticity strengths, and the geometry of those elements

Equations for computing the velocity at the rotor disk due to line segment and sheet elements

Assembly of the velocity relations for each wake element into a matrix system

Modifications of vortex segment properties due to viscous core effects and bursting

Overall procedure combining all of the calculations

Inflow Concepts

The inflow is computed at points P0?, ¢), which are located at blade radial stations 77and

azimuth angles ¢, as shown in figure l(a). The total inflow velocity A(rl, ¢) (perpendicular to

the tip-path plane and directed positive upward) at a given point P07, ¢) is written as the sum

of three components:

mr-1

A(_,_)--psinatpp+Ve(TL¢)+EE E E Fmax(¢)qk(_'¢'¢'l'¢+2rn) (1)
¢ l n=O ¢

The first component represents the inflow velocity (fig. l(b)) due to forward flight and is
assumed to be a function of the advance ratio # and the tip-path plane angle of attack _tpp.

The second component represents the inflow velocity d u_. t9_ cxtern_ flow sources such as_flow
distortion due to the rotorcraft fuselage or another rotor. The third component represents the

inflow velocity induced by the rotor wake. The bound circulation Fmax(¢) is the maximum



boundcirculationmagnitudeat the azimuthangle¢ = ¢ asshownin figure2. Quantities
qk01,¢,_,l,¢ + 27rn) are velocity influence coefficients (velocity per unit bound circulation),
where the velocities are induced from segments of the rotor wake. The rotor wake is modeled

with vortex sheet elements and vortex line elements. Airfoil theory and the Biot-Savart law

are used to formulate the computation of the induced velocities at P(71, ¢). The total inflow

velocity at each point P(_, _p) is written in terms of the azimuthal harmonics as

k=Nm/2

-X(,, m) = y_ )_(rh _Pk) exp(-ik_k) (2)

k=-Nra/2

The inflow velocity expressed in terms of the complex Fourier series coefficients is the desired

form, since the total inflow velocity distribution is used directly in the calculation of the blade
load harmonics by the Rotor Loads Module.

Coordinate Systems, Analysis Assumptions, and Nomenclature

/

As computed by the RIN Module, inflow velocity is perpendicular to the tip-path plane

of the rotor. Total inflow velocity is computed at each point P(r/, ¢) located on the blade at

azimuth angle ¢. For each given point P0/, _P), computations are performed relative to a local
tip-path plane coordinate system which is shown in figure 1. The origin of this coordinate

system is at point P(_, ¢). The x axis is directed downstream parallel to the tip-path plane;

the z axis is directed upward perpendicular to the tip-path plane; and the y axis is directed

parallel to the tip-path plane and perpendicular to both the x and z axes; thus, a right-hand
rectangular coordinate system is formed. In this system, inflow is the z component of velocity.

Relative to point P(r/, _p), the z position of another point on the blade is a function of rotor

coning angle a0, and the x and z positions are functions of rt and ¢. For example, the center of

the physical hub of the rotor relative to point P(r/, ¢) is located at (x = -7/cos ¢, y -- -r 1sin ¢,

z = -_ sin a0 _ -_a0).

Consider a point P(r L_b) located at radial station 7/ on the rotor blade at the azimuth

angle ¢. The rotor blade containing the point P(rl, ¢) is designated the fl blade. The velocity
induced at P(rl, ¢) is due to the wake which originates from the rI blade itself and the other

rotor blades. The rotor blade from which the wake originates is designated the l blade. The

l blade and r/ blade are separated by the angle _'. For a three-bladed rotor, for example, _ = 0°,
120 °, and 240 °, where _ = 0 indicates the wake originated from the Tt blade. Figure 3 is a

schematic showing the relation between the r/blade, P(U, ¢), and the wake generated by the
l blade.

The wake is modeled as a combination of vortex sheet and vortex line segments. Each wake
segment has an age 5 which is the azimuth position of the segment relative to the blade which

generated it. The wake age is computed as 5 = ¢ + _ - ¢, where _b has been defined as the

current rI blade azimuth position and ¢ as the I blade azimuth position at the time the wake
segment was generated.

The circulation of each wake segment is determined from the maximum bound circulation

value on the blade at the time the segment was shed. The circulation value remains constant

over time for each segment of wake.

Each wake segment is referenced to the point P01, ¢) by the vectors ff and b', as shown

in figure 3. The endpoints of a wake segment are labeled Pa and Pb. The point Pa is also

labeled/_. The point PI refers to a point that was originally shed fl'om the radial station l on

the l blade when it was at azimuth angle ¢.

Equation (1) for the total inflow velocity was derived by assuming steady-state, equilibrium

flight. The rotor angular velocity f_, the rotorcraft translational velocity V_, the tip-path plane

angle of attack relative to the wind c_tpp, and the net thrust and torque of the rotor remain

15.2-9



constant over time. Furthernlore, the rotor blade air loads, the bound circulation, and the

blade motions are assunmd to be periodic in azimuth angle over one rotor revolution, which

implies that the wake circulation is periodic in azimuth angle over one rotor revolution and

that the wake geometry is stat)le.

The first term in the total inflow velocity relation (eq. (1)) is easily computed. The second

term is a defined input. The third term, which represents the inflow velocity induee(t by
the rotor wake, is much more difficult to obtain. The rotor wake location and its circulation

strength must be known before the indueed inflow velocity can bc computed. By specifying
a wake model and a wake geometry for a given set of flight conditions, the wake location and

circulation strength are obtained.

The wake geometry specified for this analysis is assumed to bc a rigid helix of straight vortex

line segments and plane vortex sheet segments. The tip vortex wake geometry model has the
option of adding distortion to the rigid helical shape. The wake model incorporates, from each

rotor blade, a wake divided into three regions: the tip vortex trailing wake, labeled 13; the shed

wake, labeled/1; and the inboard trailing wake, labeled 12, as shown in figure 2. The circulation
of each vortex clement depends on the maximum bound circulation Fmax(¢) at the azimuth

position at which the blade generated the wake element.

Using equation (1) to compute the total inflow velocity at the points P(q, ¢) requires that the

velocity induced by each wake element bc computed to obtain the individual velocity influence

coefficients qk- The total inflow velocity distribution may be computed several times for a rotor
blade load iteration. To recomputc the induced velocity contributions from each wake clement

for each iteration is costly in computation time and requires a large amount of computer storage.
The induced inflow velocity term in equation (1) can be reexprcsscd more compactly to reduce

storage requirements and the computation time for a complete rotor loads iterative analysis.

This ree×pression consists of regrouping the individual vclocity influence coefficients qk into a

compact influence coefficient matrix QMAT. Equation (1) is then rewritten as

A(r/, ¢) = # sin O_tp p T Ve(r], ¢) -{- ___ Fmax(¢) QMAT(r], ¢, ¢) (3a)
" el)

with

i

QMAT(_'¢'¢):Em_ll[l_12qk(_7'_'_'l'¢_-2rn)lin=0(

+qk(rl, 0, _, ll, ¢ -- A¢ -t- 27rn) -- qk(_, ¢, _,/1, ¢ T 27rn)

)
(3b)

in which the last two qk terms are associated with the shed wake region elements and are

paired so that Fmax(¢) QMAT(r/, ¢, ¢) implicitly and properly accounts for shed wake element

circulation Fs(¢), which is given by Fs(¢) = Fmax(¢) - Fmax(¢ - A¢). The first qk term (inner

summation) in equation (3b) is associated with inboard trailing and tip vortex wake elements.

The QMAT matrix represents the influence on the induced velocity at P(r_, ¢) of all the

wake elements generated by each rotor blade at each azimuth position 0. The complete induced

inflow velocity at P(O, _b) is obtained by summing over ¢ the product of the maximum bound
circulation and the QMAT matrix. Since each element of the QMAT matrix is a consolidation of

several individual velocity influence coefficients qk, QMAT requires much less computer storage
than would be required to store each qk coefficient separately. If the wake geometry and the wake

model are unchanged from iteration to iteration during a complete rotor air-load computation,

then the QMAT matrix needs only to be computed once, during the initial iterative execution

of this module, and can be saved and reused for each subsequent intcrative execution. In this
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specialcircumstance,therefore,the QMAT matrix offers not only a computer storage space

savings but a saving in computation time as well. This circumstance is not typical, however.

Usually the rotor air loads do change every iteration, which changes the wake geometry every
iteration and necessitates computation anew of the QMAT matrix with each iterative execution
of this module. Thus the QMAT matrix typicMly provides more of a storage space reduction
benefit than an execution time reduction benefit. In essence, the analysis for computing total

rotor inflow velocity is reduced to the problem of calculating the velocity influence coefficients qk
associated with each vortex wake element to generate the QMAT matrix (eq. (3b)).

The next five subsections provide the details for computing each influence coefficient qk for

the QMAT matrix. The first of these subsections details the wake model, includes the geometry
of each vortex line and sheet element and addresses the special flow effects of tip vortex roll-up

and tip wake distortions by incorporating a tip vortex roll-up model as well as wake distortion
in the tip vortex geometric description. With the use of this geometry, the second and third

subsections detail the calculation of velocity induced by a vortex line element and vortex sheet

clement, respectively, to account for the presence of vortex cores to simulate viscous fluid effects.
The fourth subsection, by using the vortex element-induced velocity formulas, provides the

specific formulas for each qk term to be employed in equation (3a). These qk formulas contain
correction factors accounting for thc effect of vortex core bursting. The fifth subsection details
the vortex core models and core bursting models, needed for calculating the aforementioned

correction factors.

Wake Model and Geometry

As illustrated in figure 2, the wake generated by a rotor blade consists of three regions: tip

vortex wake 13, shed wake 11, and inboard trailing wake 12. The tip vortex wake region extends
from the end of the rotor blade l = 1 inboard along the blade to the radial station l = It(C). By

assumption, the radial station l =/t(¢) is where F(_, ¢) = 0.9Fmax(¢). The shed wake region

extends from l = It(C) inboard to the radial station l = li(¢). The radial station l = li(¢) is
the next radial position inboard of/= lt(¢), where F(q, _p) = 0.9Fmax(¢), by assumption. The

inboard trailing wake region extends from l = li(¢ ) inboard to the blade root cutout l = 10.

Each wake region is further divided into a near-field wake and a far-field wake relative to the

point P(r_, ¢). Combinations of vortex line elements and vortex sheet elements are employed in
the near and far fields of each wake region as indicated in table II. The near field of the wake

region is the part of the wake just behind the blade which generated it. This part of the wake
has a stronger induced effect on the blade air loads and bound circulation distribution than the

far-field part. Hence, the near field of the wake is modeled in more detail than the far field of
the wake.

Before the velocities induced by the various vortex wake elements can be calculated for

computation of the induced contribution to rotor inflow velocity, first quantifying the geometry
of the various wake elements is necessary. The equations for the geometric description of the
vortex elements in each of the three wake regions, in turn, are described in the following three

subparts and are summarized in table III.

Tip vortex wake: roll-up model and geometry. The tip vortex wake at the instant of

generation consists of a concentrated vortex line plus a distributed region of circulation which
subsequently rolls up into a concentrated vortex line. The near field of the tip vortex wake is

represented as a vortex sheet plus a vortex line, whereas the far field is represented as a vortex
line only. The near-field wake roll-up process occurs over some multiple of the azimuth angle

increment A¢. The process is described by using the function ft(5) given by

[ fo + 5. fD (Near wake, 0 < ft(5) __ 1) (4)ft(5)
( 1.0 (Far wake)

where fo, specified in the input, is the fraction of the total tip vortex trailing wake circulation
concentrated in the tip vortex line at zero wake age and 5 is the age of the point Pl which is
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onthewakeelementasshownin figure3. ThefunctionfD defines the rate at which the sheet

rolls up into a vortex line. For this analysis fD is defined as

fD _ 1 (5)
N,. a¢

where NV (a specified input value) is the number of A¢'s over which the near field extends,
where A¢ equals the azimuthal step size for the analysis based on the input-specified number
of azimuthal harmonics. The circulation associated with the tip vortex wake in the near field

at an azimuth angle ¢ is the sum of the vortex line element circulation plus the vortex sheet

element circulation at that ¢. The sum of these circulations must equal the maximum bound

circulation for that azimuth position ¢:

F(¢)hine = ft(5) Fmax(¢)

F(¢)[shee t = [1.0 -- ft(5)]Fm_x(¢)

(6)

(7)

rmax(¢) = F(¢)hine + F(¢)[sh_et (8)

The far-field tip vortex wake is modeled by vortex line elements with constant strength Fmax(¢)

over the length of each element.

The tip vortex wake geometry is described by using a rigid helix model plus a distortion

term. Each wake segment is located by the vectors g and b relative to the point P(r/, ¢), as

shown in figures 3 and 4. The vectors _ and b are written as

= _o_+ _a) + za_ (9)

and b = Xb_ + Yb5 + zbk (10)

where i, 5, and _: are the unit vectors of the tip-path plane coordinate system. For the rigid
helix model the wake segment-p0sition components are aefinecl as

Xa = I COS ¢ -- r/ cos !b + #T 5 (11)

Ya = l sin ¢ -- r/ sin ¢ (12)

Z a = aO(l -- II)4- _mean5 (13)

zb = l cos (¢ - A¢)- 11cos ¢ + ter(_ + A¢) (14)

Yb = l sin(¢ -- A¢)- 11sin ¢ (15)

Z b ---- ao(l -- 11)-4- ),mean (5 4- A¢) (16)

where a0 is the coning angle, #T is the advance ratio component tangent to the tip-path plane

(p COS O_tpp) , _tT_5 defines the distance the hub moves upstream as the rotor rotates through the
azimuth angle 6, and _mean is the rotor mean total inflow velocity. From Gessow and Myers

(ref. 4), the rotor mean total inflow velocity is computed as

_mean = -- CT '{-I -t sin OLtp p (17)
2#T

where the advance ratio # along the wind axis is assumed large compared with the rotor total

inflow velocity _. The parameter l defines the radial position from which the wake element

originated on the generating blade. The tip vortex line element is trailed from the very tip
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(position l = 1) of the generating blade. The tip vortex sheet element is trailed from tile

generating blade segment extending from I = 1 to l = It(C). With reference to figure 5, a

vortex sheet element has a front edge and back edge. For a tip vortex sheet element, the front

edge is the outboard edge of the sheet, such that cndpoints Pa and Pb of vectors ff and b are at

radial position I = 1. Thus l is set to 1 in equations (11) through (16) to obtain the components

of vectors ff and b' for both vortex line elements and vortex sheet elements in the undistorted

tip vortex wake.

For a distorted tip vortex wake geometry, an additional term is added to each of the

rigid wake components given in equations (11) through (16). The distortion is a vector, the

components of which are the distortions in the 5, ), and k directions

/)(¢, 5) -- O1(¢, _)_ + D2(¢, 5)) + D3(¢, _)k (lS)

The distortion/9(¢, 5) is an input from the RWG Module. The z component of/9(¢, 5) includes

the effect of the induced part of )_mean (first term on the right-hand side of equation (17)) but

does not include the effect of the wind relative to the tip-path plane. Hence, the components

of the vectors ff and b, including the distortion terms, are

Xa = l COS ¢ -- r/COS ?¢) -_- gT_ -_- Pl (¢, _') (19)

Ya = I sin ¢ - rI sin _b + D2(¢, 5) (20)

za = ao(l- _)+ 5#sinatpp + D3(¢,5) (21)

x b = / cos(¢ - A4)- rI cos ¢ + #T(6 + A4)+ D1 (4 - A4, _ + A4) (22)

Yb = /sin(4 -- A4)-- rlsin ¢ + D2(4 - A4, _ + A4) (23)

z b ----ao(l - _?)+ (5 + A4) p sin _tpp + 03(4 - A4, 6 + A4) (24)

where l has a value of 1 in applying these equations to both vortex line elements and vortex

sheet elements in the distorted tip vortex trailing wake.

Recalling that the front edge (fig. 5) of the near-field tip vortex trailing wake sheet clement

is located by the vectors _ and b and has endpoints at the tip radius l = 1, two additional

quantities are required to complete the definition of the tip vortex sheet element geometry.

First is the sheet width, which is given by

A_ = 1.0 - Zt(4) (25)

J

Second is the average z coordinate of thc back edge of the sheet, which is given by

1

zm = 5(z_ + zb)- a0A2 (26)

where a0 is the rotor coning angle, a defined input to the analysis.

Shed wake geometry. The far-field shed wake is modeled with vortex line elements. Each

shed wake line clement extends radially inward from the intersection of two tip vortex line

segments to the outboard edge of the inboard trailing wake region (at the outboard intersection

of two adjacent vortex sheet segments in the inboard trailing wake), such that the shed wake
line element lies on a line of constant azimuth position, as shown in figure 6. The radial

stations Ii(4) and It(4) define the ends of the vortex line at the time it was shed. The length

of the vortex line at an angle 4 is/t(4) - li(4). The circulation of each vortex line is based on
the difference in bound circulation between consecutive azimuth positions. For a vortex line

segment at an angle 4, the shed circulation is

+/,4)- (27)
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The geometry of ttm shed wake at the outboard end is the same as that of the tip vortex
wake, which may or may not bc distorted. The inboard ends of the shed wake elements have

the same geometry as that of the inboard trailing wake, which is defined as a rigid helix. The

vector ff extends from point P(T/, _) to point Pa, which is located at the outboard end of tile

shed wake element. The vector b extends from point P(T/, ¢) to point Pb, which is located at

the inboard end of the shed wake clement. The components of ff are defined in equations (11),

(12), and (13) if the tip wake is undistorted or in equations (19), (20), and (21) if the tip wake

is distorted. The components of b"arc defined as

x b =/i(0)cos¢ - 77cos ¢ + #T5

Yb = li(¢)sin ¢ -- 77sin ¢

zb = ao[li((b)- TI]+ ,Xmean5

(28)

(29)

(30)

The near-field shed wake is modeled with a vortex sheet. The vortex sheet starts a

distance Vs(= 0.0125 _:/Nb, re R) behind the point P(v/, ¢) on the _/ blade and extends over
the first azimuth increment A¢. The gap between the blade and the vortex sheet is used to

avoid a singularity at the front edge of the sheet. The length of the vortex sheet is defined by
the distance between adjacent shed vortex lines

A_

AS_ = _-_llt(_b)+ 1i(¢]- es (31)

The vortex sheet circulation is evenly distributed over tlae entire sheet. The magnitude of the

circulation is computed using equation (27). Distance es must be accounted for to obtain the

position vectors _ and b for the near-field vortex sheet. Thus, the x and y components of
and b for the near-field vortex sheet are obtained from the equations already given for the
vortex line elements as follows:

Xa = Equation (11) + es sine

Xa = Equation (19) + es sine

Ya -- Equation (12) - es cos ¢

ya = Equation (20) - es cos ¢

x b = Equation (28) + es sin ¢

Yb = Equation (29) - es cos ¢

(if wake is rigid)

(if wake is distorted)

(if wake is rigid)

(if wake is distorted)

(32a)

(32b)

(33a)

(33b)

(34)

(35)

where Xa and Ya are evaluated at l = 1.0. The z components Za and z b of the near-field vortcx
sheet are obtained from equations for vortex line elements evaluated at age 5 = Es and are used

to define the average z coordinate of the back edge of the vortex sheet as follows:

za(¢ - A¢)+ Zb( ¢ -- A¢) (36)
Zm = 2

where

za(¢ - A¢)= a0(1.0 - T/)+ _mean(Es A- A¢) (37)

and

Zb( ¢ -- A¢)= a0[/i(¢ -- A¢)-- 7/]+ ._mean(g s 3t- A(_) (38)

for the rigid wake and

Za(¢ - A¢)= a0(1.0 - 71)+(e s + A¢)tt sin Ottp p d- O3(0 -- A¢, es + A¢) (39)

\
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and

Zb( ¢ -- A¢)= ao[li( ¢ -- A¢)-- r/l + )_mean(¢s + A¢) (40)

for the distorted wake.

In addition to the singularities that may occur at the front edge of the vortex sheet, a

singularity may also occur when point P(r/, ¢) is near or on the side edge of a vortex sheet.

This may happen for a vortex sheet just shed from the r/blade (5 = 0) or for vortex sheets that
are older than 6 = 0. For the vortex sheet just shed, the edges of the sheet located at li(¢)

or lt(¢) are redefined to be midway between two adjacent P(r/, ¢) points; thus, the chance of

the singularity is avoided. For the older vortex sheets, the edges at _ = Xl and :_ = x2 are

moved until at least 0.1 A_ away from point P(r/, 0) to avoid the singularity. This movement
should not affect the accuracy of the model because the vortex core model assures that the

induced velocity is small near the computational singUlarity.

Inboard trailing wake geometry. The inboard trailing wake in both the near field and far field

is modeled with vortex sheet elements exclusively. During each time step A¢, a single vortex

sheet is generated by that portion of the 7/blade extending from the blade root cutout radius l0

to the inboard edge of the shed wake at l = li(¢), as shown in figure 2. In the nomenclature of

figure 5, the front edge of each vortex sheet element coincides with the outboard edge l = li of
the inboard trailing wake region. Point Pb is at the older edge of the sheet element and point Pa

is at the younger edge of the sheet element. The near field of the inboard trailing wake consists

of the vortex sheet element that has just been generated by the 7/blade, the blade on which

point P(r/, ¢) lies. Upon generation, the inboard wake vorticity trails locally aft, perpendicular
to the 77blade for a distance cb = li(¢)A¢. No gap or overlay exists between this vortex sheet

and the r/blade. It is thus possible for certain P(r/, ¢) to lie on the front or back edges of this
near-field sheet element, such that a numerical singularity would occur during computation of

sheet-induced velocity. To avoid such singularities, the locations of li(¢) and 10 are shifted,

for the near-field wake element only, such that each is midway between two adjacent P(r/, ¢)

points. The far field of the inboard trailing wake consists of all the other sheet elements not

touching the r/blade (i.e., those older than one time step).

By the conservation law for circulation, the inboard trailing wake circulation is equal in

magnitude to the tip vortex wake circulation but opposite in sign. The character of the inboard

trailing wake is also different from that of the tip vortex wake. The inboard trailing wake does
not appear to roll-up into a vortex line (ref. 1) but remains more like a vortex sheet. The

circulation is spread evenly across the sheet and is not concentrated as for a line; this implies
that the blade air loads are not as sensitive to the position of the inboard trailing wake sheet

compared with the tip wake position. For this reason, the classical rigid helix is assumed to be

sufficient in defining the inboard trailing wake geometry, and distortion in this wake region is

neglected. The components of vectors d and b' which locate the vortex sheet elements relative

to P(r/,¢) are

Xa = li(¢)cos ¢ - r/cos ¢ + ttT5

Ya = li(¢)sin ¢ -- r/sin ¢

za = ao(li(¢)- r/)+

X b : li(q_ -- A_b)cos (¢ - A¢)- r/cos _) + #T(_ + A¢)

Yb = li (¢ -- A¢)sin (¢ -- A¢) - r/sin ¢

Zb = ao[li( ¢ -- A¢)-- 7/]+ Amean(_ + A¢)

(41)

(42)

(43)

(44)

(45)

(46)

j"

The width of the sheet element is given by

(47)
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andtheaveragez coordinate of the back (or inboard) edge of the sheet is

Zm = ,_mean (6 -I- .Z_b) --I-ao (lo - r/) (48)

The foregoing equations for the geometry of the vortex sheet and line elements in each
of the three wake regions provide information necessary to permit calculation of vortex line-
induced and vortex sheet-induced velocities due to all wake elements. (See table III.) The

next two subsections describe the computation, respectively, of vortex line-induced velocity

and vortex sheet-induced velocity and also include details specific to the various wake region
vortex elements.

Velocity Induced at P(r h _b) by Vortex Line

Each vortex element in the rotor wake contributes to the induced velocity at the

point P(0, _b). The induced velocities resulting from the wake of each l blade for mr wake
revolutions considered are summed. These are then entered as the elements of the QMAT

matrix, as given in equation (3b). Note that the two ll terms in QMAT arise because of the
definition of the shed wake element circulation.

The wake generated by each rotor blade is made up of a combination of vortex sheet and
vortex line elements. The velocity induced from a vortex line element is computed from the

Biot-Savart law for a straight vortex line segment. The derivation is presented in appendix A,
and the final result is

VVL= _ × ro

\

1,_12_ ,_. _

)

where VVL is the velocity induced at P(r/, ¢) by the vortex line segment located by the vectors

and b relative to point P(r/, ¢). The velocity is directed perpendicular to the plane formed by the

vectors d and b; _ and b are defined with respect to the tip-path plane coordinate system. The

component of equation (49) is the induced velocity component, perpendicular to the tip-path

plane, used to calculate velocity influence coefficients qk (discussed in subsection "Calculation

of Velocity Influence Coefficients for QMAT Matrix Terms") for generating the QMAT matrix
needed to compute the rotor-induced inflow velocity term (eq. (3a)). For constant circulation

Fa = Pb = Fmax(¢), the 1¢ component of equation (49) reduces to

Fo-- I
and is applied to all vortex line elements, which are modeled in the entire tip vortex wake

region as well as in the far field of the shed wake region.

Velocity Induced at P(r/, ¢) by Vortex Sheet

The vortex sheet element may be visualized as an infinite number of parallel, coplanar vortex

lines, each of infinitesimal constant circulation. The induced velocity contribution due to the
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vortex sheet is the sum of each vortex line contribution. This sum is an integration which starts

at the vortex line located at the 5: = x2 edge of the vortex sheet. (See the geometry illustrated

in fig. 5.) The vortex line is located relative to point P0?, _9) by the vectors g and b'. The

induced velocity contribution from the sheet is obtained by integrating from 5: = x2 to 5: = xl.

The computation is done in the 5:, Y, _ coordinate system, which is oriented with respect to
each individual vortex sheet element. A coordinate transformation is used to obtain the vortex

sheet-induced velocity in terms of the tip-path plane coordinate system (x, y, z). The resulting

velocity component perpendicular to the tip-path plane is (from eq. (B19))

1 Fa
Vvslk - 4_ _x (hzx + Iszz) (51)

/

where Fa is equal to Fmax(¢), Zx and Zz are the coordinate axes transformations (eqs. (B32)

and (B40)), and I1 and/2 are integrals derived in appendix B.

For a vortex sheet element that is just behind the blade in the tip wake region or inboard

trailing wake region, the parameters Ca, Cb, Xl, x2, and Zp (to define I1 and I2 of eq. (51)) are

computed as follows:

For tip wake region,

Ca = 0 ]

cb = A¢

x 1 = 1.0 - 7/

x2 = It(C)-- 71

Zp = O

(52)

and for inboard trailing wake region,

Ca = 0 I

cb = _¢I_(¢)

Xl = h(¢)-

x2 = l0 -

zp = O

(53)

For a vortex sheet element in the shed wake, in the near field adjacent to the wake gen_ating

blade, the sheet-induced velocity is computed by equation (51) with the vectors ff and b from

equations (32) to (35) and (37) to (40). However, the integral I1 in equation (51) is 0 because

ca = 0 for a shed wake region sheet element. The vortex sheet is shed perpendicularly to the

blade; thus, equation (51) simplifies to

1 Fa
Vvs -- 4_r AS: (I2zz)

(54)

for vortex sheet elements in the shed wake region, and the integral /2 is also simplified since

Ca = 0 = zp. As used in equation (54), therefore, integral/2 (by simplification of equations in

appendix B) is given by

J

/2 = _ tan-1 V/-_c2 --c_ tan -1 ------_] (Pc > Cb) (55)

Cb _b (p_ = cb) (56)

12= V_+X2 V/-_+Xl 2
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< ok) (57)

(pc=o) (58)

where Pc is the vortex core radius, which for vortex sheets in all wake regions has the

value Sp,c_a. Factor Sp,c is the size of the core radius in fraction of blade reference chord
length and is user specified. More details regarding Sp,c and core radius arc presented in the
subsection "Vortex Core Model."

Because the vortex element-induced velocities arc known, to compute tile velocity influence

coefficients qk required to generate the QMAT matrix is possible, and this matrix is used to
compute the rotor wake-induced contribution to rotor inflow velocity.

Calculation of Velocity Influence Coej_cients for QMA T Matrix Terms

Each velocity influence coefficient qk used to obtain QMAT matrix terms (eq. (3b)) is

associated with the velocity induced by a particular individual vortex line element or vortex
sheet element in the rotor wake. In the following paragraphs, calculation of coefficients qk for

each of the three wake regions is described.

For the tip wake region, qk corresponding to a uniform strength vortex line element and

including correction factors for vortex roll-up and vortex core effects is given by

qk(_l, ¢, ¢, l, ¢) = Fcft(_)GyL (59)

and qk corresponding to a uniform strength vortex sheet element and including correction

factors for vortex roll-up and vortex core effects is given by

qk(rl, ¢, _, l, ¢) = Fc[1 - ft(_5)]Gv S (60)

where GVL and GVS are the uncorrected velocity influence coefficients corresponding to vortex
line and sheet elements, respectively, and are given by

I'aGVL = VVL (61)

and

FaGVS = VVS (62)

In the foregoing equations applied to the tip vortex region, VVL is the k component of the
vortex line-induced velocity, obtained by equation (50) and VVS is the k component of the

vortex sheet-induced velocity, obtained by equations (51) and (52), wherein the vortex core

radius (discussed in a subsequent subsection) is accounted for. The factor ft(5) is the tip
roll-up factor obtained from equations (4) and (5). The factor Fc in equations (59) and (60)

accounts for vortex core bursting, and the calculation of this factor for the tip vortex wake

region is presented in the subsequent subsection.

For the shed wake region, velocity influence cocfflcients qk corresponding to shed wake

vortex line elements are given by equation (59) with equation (61), in which VVL is calculated

by equation (50). Coefficients qk corresponding to shed wake vortex sheet elements are given

by equation (60) with equation (62) in which VVS is calculated by equations (54) through (58).
However vortex roll-up is not considered in the shed wake. Hence as applied to the shed wake

elements, the factor ft(5) in equation (59) is set to 1 and the factor [1 - ft(5)] in equation (60)
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is set to 1. As applied to the shed wake, the factor Fc in equations (59) and (60) is calculated
as described in the next subsection.

Lastly, consider the inboard trailing wake region. Because this region is comprised only of
vortex sheet elements, values of qk corresponding to this wake region are given by equation (60)

with equation (62), in which VVS is calculated by equations (51) with equations (53), wherein
the vortex core radius (discussed in the subsequent subsection) is accounted for. Since vortex

roll-up is not modeled in the inboard trailing wake region, the factor [1 - ft(5)] in equation (60)
is set to -1 for this region; the negative sign is used because the circulation of the inboard

trailing wake has a strength equal in magnitude to that of the tip vortex wake but opposite in
direction. Also for this wake region, the factor Fc in equation (60) is calculated as described in
the next subsection.

Table IV summarizes the equations and the values of underlying quantities (most described

in the next subsection) employed for qk computation for each of the various wake region
elements. It remains to describe the vortex core radius and the core bursting correction factor,

both of which are needed to complete the calculation of coefficients qk as just described. These

remaining details are presented in the next subsection.

Vortex Core Model

To introduce viscous fluid effects in the rotor wake modeling, vortex core modeling is

implemented for the various vortex elements of the wake. This core modeling incorporates
two features: (1) a vortex core radius, which eliminates unreMistically high vortex-induced
velocities which would otherwise occur in employing the Biot-Savart law at points very close

to a vortex line or sheet; and (2) vortex core bursting. Core bursting is accounted for by the

vortex core bursting factor Fc, which is included in equations (59) and (60) for computing

velocity influence coefficients qk.

The calculation of vortex core radius and core bursting factor Fc is detailed for each of the

three wake regions, in turn, in the following three subparts.

Tip vortex wake core radius and core bursting model. Vortex core bursting occurs when a
tip vortex line encounters a solid body, such as a rotor blade, and is broken up. The circulation

is no longer concentrated in a thin line but is distributed over a region of much greater radial

extent from the original line. Scully (ref. 1) defines Fc, the vortex core bursting factor, as

Fc= q/_c(P) (63)

where %(p) is the vortex core factor, which characterizes the effect of a finite vortex core.

The quantity q] (Johnson's lifting surface correction in ref. 5) characterizes the large variation
in the induced inflow velocity along the span of the blade which is due to close blade-_cortex

encounters. Because this aspect of blade-vortex interaction effects along the span of the blade

is neglected in the present formulation, q/is set equal to 1. The factor Fc is computed for a tip
vortex line segment by using equation (63), in which the term %(p) is calculated as described
in the following paragraphs. However, Fc is set equal to 1 for a tip vortex sheet, since the

vortex core is already accounted for in the calculation of influence coefficient GVS (eq. (62)).

The vortex core factor _tc(P) is the fraction of the total circulation that is within a distance p
of the center of the vortex line element. The core model allows the vortex element to approach

a rotor blade without inducing extremely high unrealistic velocities. The fixed-wing vortex core

model is used, for which _tc(P) is defined as

p2 (64)
7c(p)- l+p 
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The corresponding velocity profile is shown in figure 7. In terms of known vortex element

geometry, %(p) is written as

,_x_ 2
 c(p) = (65)

1×
where the vectors _ and b locate the vortex element relative to the point P(_, ¢); I_ is the

vortex element length (appendix A); and Pc is the vortex core radius, the distance from the
center of the vortex element to where the maximum vortex-induced tangential velocity occurs.

The value of Pc before vortex core bursting occurs is computed as

(66)pc = Sp,c O

and after bursting occurs as

pc = sp,I (67)

where Sp,c is the unburst vortex core radius expressed as a fraction of blade reference chord,

Sp,] is the burst core radius scale factor (the ratio of burst-to-unburst core radius), and a is
the rotor solidity needed to correctly nondimensionalize Pc. Scully (ref. 1) suggests using an

unburst core radius (for both vortex lines and sheets) of 5 percent of reference blade chord (i.e.,

Sp,c = 0.05) and suggests using a burst core radius 40 times-larger than the unburst radius

(i.e., Sp,f = 40.0). The user inputs Sp,c and Sp,$ and the aforementioned suggested values are
the default input values. However, other values of these two parameters may be employed as
desired.

Three requirements are necessary before core bursting occurs:

1. The vortex line segment (or its extension) must intersect the _ blade (or its extension) when

projected onto the tip-path plane. The point of intersection is labeled Pc and is located at
the radial station _c. Providing a small margin at the tip, the magnitude of _c must be
within

0.1 < nc -< 1.01 (68)

where
-yaXb -- xaYb

_c = Ax sin ¢ - Ay cos ¢
+ y (69)

2. The distance that point Pa on the vortex line is from the point Pc must be less than Alxy,

given by

Alxy = Xa - A_? cos ¢ = Ya - Arl sin ¢ (70)
Ax Ay

where Aq = _?c- 7/. Since bursting is expected to occur at or behind the y blade,

0 __ Alzy < 1.0 (71) ..

3. The vortex line segment (or its extension) must pass within a certain distance below (or

above) the 7/blade. The distance perpendicular to the tip-path plane between Pc and the

blade is Zc, given by
zc = za + aoA_ - Alxy(Zb - Za) (72)

2.001 _> ]z_c (73)

The distance Zc must satisfy
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If equations (68), (71), and (73) are satisfied then bursting occurs immediately; therefore,

_b(¢) = _ (74)

If equation (68) is not satisfied but

-1.5 < Alzy < 1.0 (75)

then bursting occurs at

_+A¢
_i+ 3A¢

(-0.5 < Alxy < O)

(-1.0 < Alzu < -0.5)

(-1.5 < Alxy < -1.0)

(76)

Vortex core bursting, as modeled by the foregoing equations, is applied to vortex line
elements in the tip vortex wake for obtaining Fc, to be used in equation (59).

Core bursting is not applied to vortex sheet elements in the tip vortex wake because the

vorticity is distributed over a sheet rather than concentrated into a single line. Unburst core

radius (eq. (66)) is used implicitly in the calculation of GVS (eq. (62)), for vortex sheet elements

in the tip vortex wake. Since core radius is already accounted for in the calculation of Gvs,
no other vortex core correction is needed for tip vortex sheet elements. Thus Fc is set to 1 for

applying equation (60) to vortex sheet elements in the tip vortex wake region.

Table IV summarizes the calculation of vortex core modeling quantities Fc, _c, and Pc for

the tip vortex wake region elements.

Shed wake core radius and core bursting model. Circulation in the shed wake is, in general,

not as intense as that found in the tip vortex wake. The vorticity in shed wake line elements
is assumed not as concentrated as that found in tip vortex wake line elements. Also the

circulation in near-field shed wake sheet elements, being distributed over a sheet, is not as

highly concentrated as it is in the tip vortex line. Therefore, vortex core bursting is not
considered for either sheet or line vortex elements in the shed wake region.

For shed wake vortex line elements, the vortex core factor is computed by using equation (65)

with Pc = 0.4 A¢, and Fc is set directly equal to the vortex core factor, for substitution in

equation (59).

For vortex sheet elements, in the near-field shed wake, the unburst core radius (eq. (66))

is used implicitly in the calculation of GVS (eq. (62)). Since core radius is already accounted

for in the calculation of GVS and core bursting is ignored, no other vortex core correction is
needed for shed wake vortez sheet elements. Thus Fc is set to 1 for applying equation (60) to

the shed wake vortex sheet elements.

Table IV summarizes the calculation of vortex core modeling quantities Fc, 7c, and Pc for

the shed wake elements.

Inboard trailing wake core radius and core bursting model. In the inboard trailing wake

region, only vortex sheet elements are employed (table II). Since the circulation in a vortex
sheet is dispersed over the sheet and not concentrated in a single line, vortex core bursting is

not considered in the inboard trailing wake.

For vortex sheet elements in the inboard trailing wakc, the unburst core radius (eq. (66)),

is used implicitly in the calculation of GVS (cq. (62)). Since core radius is already accounted
for in the calculation of Gvs and core bursting is ignorcd, no other vortex core correction is
needed for vortex elements in the inboard trailing wake region. Thus Fc is set to 1 for applying

equation (60) to the inboard trailing wake sheet elements. Table IV summarizes the calculation
of vortex core modeling quantities Fc, 7c, and pc for the inboard trailing wake region elements.
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HavingcomputedF,, with ttle aforementioned vortex core modeling, the calculation of

velocity influence coefficients qk (previous subsection) can then be completed. Given the

coefficients qi. for each vortex element in tim rotor wake, the QMAT matrix (cq. (3t))) can

be generated. Finally, the rotor total inflow velocity (cq. (3a)), can be computed.

Computational Procedure.

A summary of tile computational steps employed in the RIN Module computer code to

implement the theoretical method is as follows:

1. Compute mean rotor inflow velocity from momentum theory (eq. (17))

2. Compute Fmax(¢), maximum bound circulation at each ¢ from input values of F|)v(7 h ¢)

3. If QMAT exists from previous iteration, skip to step 31; otherwise, initialize QMAT to 0

4. Initialize wake age 6 to 0

5. For given radial position r/ at given azimuth angle ¢, compute d and b associated with
vortex line clement which was trailed from I blade, having offset (_ = 0, and which is in tip

vortex wake segment at ¢; if tip wake distortion input exists, compute distorted geometry;
otherwise compute undistorted geometry (table III)

6. Compute tip vortex roll-up function ft(6) by using equations (4) and (5)

7. If tip vortex roll-up is not yet complete, then compute geometric quantities _, b, A_, and Zra

for distorted (if distortion input is present) or undistorted tip vortex sheet element (table III)

8. Check for core bursting of tip vortex line element, compute tip vortex line element core

radius Pc (eq. (66) or (67)), core factor 7¢(p) (eq. (65)); set ql -- 1 as indicated in table IV;
and compute vortex core bursting factor Fc (cq. (63))

9. Compute velocity VVL induced at P(y,¢) by tip vortex line element by equation (50);

compute GVL by equation (61), with Fa set equal to maximum bound circulation Fmax(¢);
compute velocity influence coefficient qk(y,¢,6,1, O) by using equation (59); and add

coefficient qkO?,_P, 6,1,¢) to QMAT matrix by innermost summation term on right-hand

side of equation (3b)

10. If tip vortex roll-up is not yet complete, compute unburst core radius Pc (eq. (66)) for tip

vortex sheet element, and set vortex core bursting factor Fc to 1 as indicated in table IV

11. If tip vortex roll-up is not yet complete, then compute velocity VVS induced at P(r_, _p) by

tip vortex sheet element by equations (51) and (52), with terms derived in appendix B
which are implicit functions of unburst core radius; compute GVS by equation (62),

with Fa set equal to maximum bound circulation Fmax(¢); and compute velocity influence
coefficient qk(_, ¢, 5, l, ¢), by equation (60), adding it to QMAT matrix term QMAT(r/, ¢, ¢)

by innermost summation term on right-hand side of equation (3b)

12. If ¢ = _ = 0 (i.e., near:field shed wake is under consideration), for current (7/, ¢) location,

compute geometric quantities _, b', A_, and zan for near-field shed wake vortex sheet element,
use distorted shed wake sheet element equations (table III) if tip wake distortion exists,

otherwise use undistorted shed wake sheet element equations (table III)

13. If ¢ _ ¢ (i.e., far-field shed wake is under consideration), for current (r/, ¢) location, compute

geometric quantities g and b for far-field shed wake vortex line element; use distorted shed
wake line element equations (table III) if tip wake distortion exists, otherwise use undistorted

shed wake line element equations (table III)

14. If present shed wake vortex element is sheet (near-field case for current 4)), then compute

unburst core radius Pc (eq. (66)) for shed wake sheet element; set vortex core bursting

factor Fc to 1 and set factor [1.0 - ft(_i)] = +1 as indicated in table IV
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15. If present shed wake vortex element is line (far-field case for current ¢), as indicated
in table IV, compute unburst core radius Pc for shed wake line element; compute core

factor %(p) (eq. (65)) and set vortex core bursting factor Fc -- "Tc(P)

16. If present shed wake vortex element is sheet (near-field case for current ¢), compute
velocity Vvs induced at P(_, ¢) by shed wake sheet element by equations (54) through (58);

compute GVS by equation (62), with Fa set equal to maximum bound circulation Fmax(¢);

compute velocity influence coefficient qk(_, ¢, 5, l, ¢) by equation (60); and apply -qk term
present on right-hand side of equation (3b) to update calculation of QMAT matrix term

QMAT(7/, ¢, ¢)

17. If present shed wake vortex element is line (far-field case for current ¢), compute velocity VVL

induced at P(_,¢) by shed vortex line element by equation (50); compute GVL by

equation (61), with Fa set equal to maximum bound circulation Fmax(¢); compute velocity

influence coefficient qk(71, ¢, 5, I, ¢) by equation (59); and apply -qk term present on right-
hand side of equation (3b) to update calculation of QMAT matrix term QMAT(_/, ¢, ¢)

18. Repeat steps 13, 15, and 17 for shed wake vortex line element which is one step older

(i.e., using ¢ - A¢ instead of ¢ to produce qk(_?, ¢, 5, l, ¢ -- A¢); add it to QMAT matrix
term QMAT(7/, _, ¢) by second qk term present on right-hand side of equation (3b)

19. If ¢ = ¢ = 0, temporarily shift radially boundaries/i(¢) and l0 of near-field inboard trailing

wake region so that boundaries do not coincide with any computation grid stations 7/, to
avoid numerical singularity problems with near-field vortex sheet element; if ¢ # 4, no

adjustment of inboard trailing wake boundaries is needed because far-field region of inboard

trailing wake is under consideration and no numerica] singularity problems will occur with
far-field vortex sheet element

20. For current (_/, ¢) location, compute geometric quantities g, b, A_, and Zm for inboard

trailing wake sheet element by using equations as summarized in table III

21. Compute unburst core radius pc (eq. (66)) for inboard trailing wake sheet element; set vortex

core bursting factor Fc to 1; and set factor [1.0 - ft(_)] = -1.0 as indicated in table IV

22. Compute velocity VVS induced at P(_/,¢) by inboard trailing wake sheet element by

equations (51) and (53) with terms derived in appendix B which are implicit functions
of unburst core radius; compute GVS by equation (62), with Fa set equal to inboard trailing

wake element circulation (equal to maximum bound circulation Fmax(¢)); and compute

velocity influence coefficient qk(_, ¢, 5, l, ¢) by equation (60), adding it to QMAT matrix

term QMAT(q, ¢, ¢) via innermost summation term on right-hand side of equation (3b) to
complete calculation of particular QMAT matrix term QMAT(r/, ¢, ¢)

23. Reduce ¢ to ¢ - A¢ and increase wake age 5 to 5 + A¢; this is to consider next oldest wake

element, which was generated by current l blade at ¢ = ¢ - A¢ or at wake age _ = _ + A¢,

repeat steps 5 through 22

24. Repeat step 23 until all vortex wake elements generated by current l blade for all mr wake
revolutions have been considered for induced effects at location (_/, ¢) on current _/blade

27r
25. Increase _ to consider wake generated by another 1 blade, by setting ¢ -- _ + R_b

26. Repeat steps 4 through 25 until wake from each l blade (N b rotor blades total) has been
considered

27. Advance _/blade to next azimuthal position, ¢ = ¢ + A_b; remain at same radial position 7/

28. Repeat steps 4 through 27 until all azimuthal positions ¢ over rotor disk have been
considered

29. Move to next radial position q on _ blade

30. Repeat steps 4 through 29 until all radial positions _ on 7/blade have been considered (i.e.,
wake-induced effects at all locations (_/, ¢) over rotor disk have been obtained); calculation

of QMAT matrix is then complete
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31. Computerotortotal inflowvelocity)_(77,_) by equation (3a)

32. Compute complex Fourier series coefficients of A(_?, _) by equation (2) and generate output
tables

i
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Appendix A

Velocity Induced by Vortex Line

The velocity induced by a straight vortex line segment dsl is computed by using the Biot-

Savart relation,

dV1 - F1 sin 0 dsl
(A1)

where dV1 is the induced velocity at point P which is located by the vectors d and b"from the

vortex line segment as shown in figure A1. The distance from P to dsl is rl, and the angle
between rl and dsl is 8. The vortex line segment has circulation F]. With the notation of

figure A1, equation (A1) is rewritten in nondimensional form as

1 sin 0 ds
dVvL = F47 r r2 (A2)

The perpendicular distance h is defined as

h
-=cos¢'=sin0
r

(A3)

and the vortex line increment ds is written as

h

ds = d(h tan ¢') -- cos2 de' (A4)¢,

/

Equation (A2) is now rewritten in terms of h and ¢1 as

1 cos ¢/
dVvL = F 41r h d¢I (A5)

The circulation of the vortex line is allowed to vary linearly from Fa at Pa to F b at Pb. The

variation may be written as

h cot a + h tan ¢1

r = ra +(rb - ra) h--/Jtot_ _ h_
(A6)

Equation (A6) is then substituted into equation (A5). The induced velocity at P due to the

vortex line segment is found by integrating from ¢1 _- a _ _ to Ct = _ _ _:

r b - Fa sin a - sin/3 - cot a(cos a + cos _)_
Fa cos oL + cos/3 +

VVL = _ h F-a -h-_o-( a + cot Z) ) (AT)

For a constant circulation Fa = I' b, equation (A7) reduces to

Fa cos a + cos j3 (AS)
VVL -- 47r h

To find VVL in terms of _7and b, the following relations are used:

6 = b- 6, (A9)

v=

= cos (A10)

b'. 6 = b Ic-]cos D (All)
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x _: I_1I_ sin _ (A12)

x g= b I_ sin I? (A13)

gxa"

h --I_lsin a ic_] (A14)

By using the definition of _, the cross products in equations (A12) and (A13) are rewritten in

terms of d and b only

I_×c_:_×(_-_)t--1_ _ _1_)
and

The induced velocity is perpendicular to the r ds plane, which is the same as the g b plane. The

induced velocity in vector form is

(A17)

Substituting these relations into equation (A7) gives the induced velocity due to a vortex line

as

4rr 1_7]_' ff

rb- ra I_t2 - _.
+

ra 1_12+ _]2_2_.

-t- I'a-Fb Ib -laB _.)](_xb)j (h18)r_ l_i_(l_l_+ I__- 2_

For a constant circulation case Fa = Fb, equation (A18) reduces to

,-o(l_l+I_)(l_t_-_
(A19)
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Appendix B

Velocity Induced by Vortex Sheet Segment

The vortex sheet segment is a plane rectangular vortex element. The vortex sheet elements

are located with respect to point P(z/, ¢) by vectors _ and b', as shown in figure B1. The

vectors ff and b extend from point P(_, _b) to points Pa and Pb located on the front edge of the

vortex sheet. The components of the vectors ff and b are written in terms of the right-hand

coordinate system (5:, _), 5) whose origin is located at P(z/, ¢). The _ axis is perpendicular to
the vortex sheet, and the _ and _ axes form a plane parallel to the sheet. The _ axis is parallel

to the front edge, whereas the 2 axis is perpendicular to it and directed forward, as shown in

figure B1. The sheet is of length Ab:, extending from the front edge at 5: = Xl to the back edge
at _ = x2. The width is the magnitude of the vector g, given by

]_ = [b- ff (B1)

The vortex sheet may be visualized as an infinite number of parallel vortex lines each of

infinitesimal circulation. The contribution to the induced velocity at P(y, ¢) due to the vortex
sheet is obtained by integration of the vortex linecontributions. For a constant circulation

vortex sheet the induced velocity contribution is written as

1 Fa _z zl cos (_ + cos _ffd£VV S -- 47r A Sc 2 h
(B2)

The angles a and/_ are formed by the vector pairs (ff and _ and (b' and c_, respectively. The

length h = [f_l is the perpendicular distance from point P(r/, ¢) to the vortex line _ (or its

extension), as shown in figure B2. The unit vector fi is perpendicular to both fz and the _ axis.
I t

To integrate equation (B2), the parameters h, _, a, and/3 must first be defined in terms of 5:.
With the aid of figure B2, the following definitions are derived:

h = v + (B3)

Ca (B4)

cos =

Cb (B5)
c°_ --vf_-_4

5:" (B6)= -_i_ + _,_

where

(-_. a) (B7)
Ca= I¢

Cb= I_ -- Ca (B8)
^

and Zp is the perpendicular segment from P(T/, ¢) to the vortex sheet. The unit vectors i_

and _ are parallel to the _ axis and the $ axis, respectively. Equation (B2) is rewritten as two

integrals after substituting equations (B3), (B4), (Bb), and (B6) as

1 Fa
_rVS = 4--_A---__f.II_ + I2_} } (B9) _
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where

and

11 = + V/ _2el+_2+ z_ c_+ _2+z_ +z_

: -I2= + - _ :_z_

After integrating equations (B10) and (Bll), the integrals are redefined as

(B10)

and

where

(Bll)

I1----tan -1 CaX2 tan -1 CaX----L+tan -1 CbX2 tan -1 CbXl (B12)
ZpS2,a ZpS l,a ZpS2,b ZpS l ,b

1 InI!Sl,a- Ca)(S2,a + Ca)(Sl,b- Cb)(S2,b + Cb)I
/2 = _ L(Sl,aV ca)(s2,----_- _a)(Sl,b¥ Cb)(S2,b--_b)J

(B13)

Sl,a= _/C2a+ x2+ z2p (B14)

Sl,b= _/c_+ x21+ z2p (B15)

82,o= V/d+ _ + 4 (m6)

s2,b= _/c2+ x_+ z2 (B17)

Transformation From Vortex Sheet Coordinates to Tip-Path Plane Coordinates

The vortex sheet coordinate system _, _f, and _ orients each individual vortex Sheet relative

to the point P07, ¢). In order to add the velocity contributions from each individual vortex
sheet, a common coordinate system must be used. The tip-path plane coordinate system

(x, y, z) is a convenient system, since quantities may be easily converted from tip-path plane
coordinates to hub plane coordinates, to which the air loads are referenced. The coordinate

vectors in equation (B9) are redefined in terms of the tip-path plane coordinate vectors as

] [.yz][i]_ : Xy yy zy

_ xz Yz Zz

(B18)

where _, _, and _ are the unit vectors along the _, _, and _ coordinate axes and i, ), and ]¢are
the unit vectors oriented along the tip-path plane coordinate axes x, y, and z. Equation (B9)

written in terms of the tip-path plane coordinates is

1 Fa
(B19)

The coordinate transformation matrix of equation (B18) is obtained by expressing each of

the matrix entries in terms of the vector components of d, b', and _. The vectors define the
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vortexsheetlocationrelativeto point P(*/, ¢) and are defined in terms of the tip-path plane
coordinates as

(B20)

(B21)

(B22)

where

Ax - x b - Xa (B23)

Ay -- Yb - Ya (B24)

Az _ z b -- z a (B25)

From figure B2 and these definitions, the quantities ca and cb are defined as

-_. d -(xa Ax + Ya Ay + Za Az)
-- (B26)

Ca -- ic_ X/Ax 2 + AY 2 + Az 2

and

Cb = 14 -- Ca (B27)

The derivation of the induced velocity from a vortex sheet (eq. (B9)) assumes the circulation

vector _' is oriented along the _ axis. Thus the unit vector along the _ axis _) may then be
written in terms of the x, y, z coordinate system as

(B2S)

Therefore,

Ax (B29)
Xy _--" -]-_

Ay

yy = _ (B30)

nz

zy = ,---_- (B31)
ql

^

The x, y, and z components of the i_ unit vector are found by considering tile vector _"shown
^

in figure B3. The vector _"is parallel to i_ and has a length of A_. The z coordinate of _" at
the _ = x2 end is Zm, and the z coordinate of _' at the _ = Xl end is taken to be the average

^

of za and z b. Thus the z component of i_ is

-- Zrn

zx -- A_ (B32)

The equations for Zm and A_ for each wake region are given in table III.

The other two components of _ (xx and Yx) are found by using the definition of a unit

vector and noting that i_ is perpendicular to _ as follows:

_2=x2 x+yz2+z2=l.0 (B33)

15.2-30



_ ._fj= xx Ax + Yx Ay + zx Az17 = 0.0 (834)

The components xx and Yx are then found by solving equations (B33) and (B34) simultaneously,
giving

-_x ax Az - Ay_/Ax2+ Ay2--zl I__
Xx ---- Ax 2 + Ay 2 (B35)

-_ AzAy+ Ax_/Ax2+ Ay_--z_ M2
Yx = Ax 2 + Ay 2 (B36)

^

The x, y, and z components of the unit vector i_ are found by using the vector cross-product

definition for a right-hand coordinate system:

_ = _ x _9 (B37)

which implies

/

Yx Az - zx Ay

Xz = ic_ (B38)

Zx Ax - xx Az

Yz = 17 (839)

xx Ay - Yx Ax

Zz = 17 (B40)

The parameters Xl, x2, and Zp are defined with the aid of figure B3. The vector h is the

perpendicular dropped from point P(_, ¢) to the _ = Xl edge of the vortex sheet

=_hl+ yh9+ zhk (B41)

and from figure B2,
ca

fz= _ + _- (B42)

The components of f_ may then be written as

X h : X a + Ax c_

Ca

Yh = ya + Ay-_

Zh = Za + AzC_

(B43)

(B44)

(B45)

The parameters x 1 and zp from figure B3 are

Xl = If_] cos6' (B46)

and

zv = ]f_l cos0 (B47)
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From the dot product relations involving fz, _, and _, the quantities Xl and zp may be defined

as

i_. f_ = _5[ ]fz cos0 = zp (B49)

Thus,

Xl = XxXh + YxYh + ZzZh

Zp = XzX h + YzYh + ZzZh

X2 --_ Xl -- A_

(B50)

(B51)

(B52)

Effect of Vortex Core on Vortex Sheet Element

The influence of a vortex core is develope d for a vortex sheet element having constant

circulation. Equation (B2), for which the vortex core radius is 0 (pc = 0), is modified to
include the core radius from the fixed-wing vortex core model given following equation (58).

The result is

_VS=4._..__A..._IFa j(x z12COSh2+p2a +cos f_ (-Zp_ + _.i_)d} (B53)

The only difference between this equation and equation (B2) is the inclusion of pc2 in the
denominator. This changes the character of the integral such that each integral I1 and /2

(eqs. (B10) and (Bll)) is expanded into two parts

I1 -- II,a + Ii,b (B5a)

/2 ---- I2,a -{- I2,b (B55)

where

_S' Ca -zp d_ (B56)
II'a = 2 ¢C2a "4- _C2 -'}- z 2 ._2 + Z24-p2 c

_xx, c b - Zp d'_ (B57)I1, b =
+ + + +

fz zl Ca 5: d:_I2,o= + + + +
(B58)

xl c b :_ d:_
(B59)

There are three solutions for each of the integrals in equations (B56) to (B59). The solution

depends on the magnitude of p2 relative to c2a and %2. The following definitions are used to

write the solutions to the integrals:

zv - V/-_p + p2c (B60)

= ('B0,)
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C_,b-- V_b - P_

Rc,a --- _- c_

Rc,b---- V/_--c_

The integrals are evaluated as

-- CaZp lnI(ZvSl,a- xlRc,a)(ZvS2,a + x2Rc,a)]
I1,o 2zvRc,oL(Z_Sl,o+ xiR_,a)(z_s2,a--xlR_,a)]

X2Sl, a -- x182, a

I1, a = CaZp Sl,aS2,aZ2

CaZp (tan -1 X2Cv'a tan-1 XlCv,a)I1, a -- ZvCv,a ZvS2,a ZvSl,a

CbZp ln[!ZvSl,a- XlRc,b)(ZvS2,b -F X2Rc,b)]

X2Sl, b -- XlS2, b

I1, b : CbZ p 81,bS2,bZ2

CbZp (tan -1 X2Cv, b tan-1 XlCv,b_I1, b = ZvCv,----_b ZvS2,b ZvSl,b ]
%

ca ( sl,a s2,aI2,a Rc,a tan-1 -- - tan-1-- Rc,a Rc,a ]

Ca Ca
I%a _ ....

82,a Sl,a

_-- Ca in[!Sl,a- Cv,a)(S2,a+  o,o)I
I2,a 2Cv,a LiSl,a + _,a)(_2,_ - _,a)J

I2,b Cb (tan-1Sl,b tan-1S2,b '_
= R_,b\ R_,b n_,b/

c b Cb
12, b ---- __ _ __

82,b 81,b

_-- C_b_bIn [ (sl'b -- Cv'b)(S2'b + cv'b)]

12,5 2_,b L(sl,b+ Cv,b)(S2,b -- Cv,b)J

<

(B62)

(B63)

(B64)

(B65)

(B66)

(B67)

(B68)

(B69)

(B70)

(B71)

(B72)

(B73)

(B74)

(B75)

(B76)
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Table I. Relationship Between Array Storage

Sequence and Fourier Series Sequence_ for

Complex Fourier Inflow Coefficients X(m)

Array sequence in Fourier series

output Inflow Velocity Table sequence (eq. (2))

_(1)

_(2)

_(3)

_(Nm - 2)

-_(Yra - 1)

_(Nm)

-_(o)

X(1)

_(2)

x(-@+,)

X(-3)

_(-2)

A(-1)

Table II. Vortex Element Types Used for Modeling Rotor Wake

Wake region Near field Far field

Tip Sheet and line Line
Shed Sheet Line

Inboard trailing Sheet Sheet
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Table III. Equations for Wake Element Geometric Description

Wake element type

Rigid wake tip vortex line
Distorted wake tip vortex line

Rigid wake tip vortex sheet

Distorted wake tip vortex sheet
Rigid wake shed vortex line
Distorted wake shed vortex line

Rigid wake shed vortex sheet

Distorted wake shed vortex sheet

Inboard trailing vortex sheet

Equations for--

(11)-(13)
(19)-(21)

(11)-(13)
(19)-(21)

(11)-(.13)

(19)-(21)
(32a), (33a),

and (37)

(32b), (33b),
and (39)

(41)-(43)

(14)-(16)
(22)-(24)
(14)-(16)
(22)-(24)
(28)-(30)
(28)-(30)
(34), (35),

and (38)
(34), (35),

and (40)
(_)-(46)

A_

(25)
(25)

(31)

(31)

(47)

zm

(26)

(26)

(36)-(38)

(36), (39),

and (40)
(48)

Table IV. Values or Equation for Core Radius and QMAT Element Calculations

[Equation numbers are shown in parentheses]

Wake region/Element

Tip/Line (unburst)

Tip/Line (burst)
Tip/Sheet

Shed/Line

Shed/Sheet
Inboard trailing/Sheet

Pc

(66)

(67)
(66)

0.4A¢

(66)
(66)

_c(P)
(65)
(65)

(65)

F_

_(63)
a(63)

1

_c(P)
1
1

ft(_)
(4)

(4)

1-ft(_) qk
(59)

(59)
(4) (60)

(59)

1 (60)

-1 (60)

aIn equation (63), qf = 1 in present formulation of RIN Module.
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15.3 Rotor Rigid Dynamics (RRD) Module

Stephen J. Jumper

Lockheed Engineering & Sciences Company

Introduction

The purpose of the Rotor Rigid Dynamics (RRD) Module is to calculate the rotor blade

flapping angles which result from a given set of harmonic airloads on the blade. The reference

plane for the calculations is the hub plane, which is defined as the plane perpendicular to the
rotor axis of rotation. This module is designed to be used in an iterative fashion in conjunction

with the Rotor Loads (RLD) Module and the Rotor Inflow (RIN) Module. Harmonic airloads

from the RLD Module (corresponding to a rotor inflow distribution from the RIN Module)

are provided to the RRD Module for calculation of blade flapping angles. The resulting
flapping angles are used subsequently by RLD (and RIN as desired) to recalculate the airloads

distribution, which in turn is input to a second execution of the RRD Module. This cyclic

pattern is continued until convergence is achieved.

The flapping angles are assumed small and correspond to the rigid displacement of the blade
about the rotor flapping hinge, offset from the rotor axis. This rigid flapping displacement can

be described by a differential equation analogous to one that describes a damped harmonic
oscillator with a forcing term. The forcing term is calculated by using the latest harmonic

airloads and the flapping angles from the previous iteration. Tables of Fourier coefficients for

the harmonic forces and the previous flapping angles are provided, respectively, by the RLD

Module and the previous iteration of the RRD Module. The differential equation is solved
to obtain updated values for the Fourier coefficients of flapping angle. These coefficients are

stored in complex form and printed out as Fourier cosine and sine coefficients. Lead-lag motion

is assumed negligible and not computed, likewise for flap-lag coupling.

Symbols

J

a0

al

B1

b

bl

c,c(v)

co,cc(n)

Cd

Cl

c8,c8(n)

c*,c*(n)

first harmonic lateral cyclic blade pitch, rad

complex Fourier coefficient of blade rigid flapping angle relative to hub plane,
rad

real-valued coefficient of imaginary part of _, rad

real part of _, rad

blade coning angle, rad

first harmonic longitudinal flapping relative to hub plane, rad

first harmonic longitudinal cyclic blade pitch, rad

slope of linear portion of lift curve, 1/rad

first harmonic lateral flapping relative to hub plane, rad

blade section chord length, re R

Fourier cosine coefficient for rigid flapping angle, rad

blade section drag force, re qc*

blade section lift, re qc*

Fourier sine coefficient for rigid flapping angle, rad

blade section chord length, m (ft)
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D,D(I)

e

Fz

Fz(,1, _)

Fz(_,n)

AFz(,7, ¢)

r¢

F (z)

g

g*

gi

hi

Icl

L

n(1)

n(r, _b)

L

l

/tip

Mw

AM(n)

m

m*

N_

n

P

Q_

Q_,

q

R

blade section aerodynamic drag force, N/m (lb/ft)

rotor blade flapping hinge radial offset from center of rotor, re R

blade section aerodynamic force in thrust direction, re pf_2R3

complete functional representation of Fz, re pfl2R3

complex Fourier coefficient of blade section aerodynamic force in thrust

direction, re pf_2R3

complete functional representation of force function, re pf_2R3

force due to shaft torque acting at flapping hinge in hub plane, N/m (lb/ft)

spanwise functional representation of F¢, N/m (lb/ft)

acceleration due to gravity, re Rfl 2

acceleration due to gravity, m/s 2 (ft/s 2)

constants defined in text, i -- 1,..., 4

constants defined in text, i --- 1,...,4

flapwise blade moment due to centrifugal force, re pR 5

flapwise blade moment of inertia, re pR 5

lift per unit blade length, N/m (lb/ft)

spanwise functional representation of L, N/m (lb/ft)

complete functional representation of L, N/m (lb/ft)

Lagrangian at blade location P, N-m (lb-ft)

blade spanwise position outboard of flapping hinge, m (if)

blade tip position measured from flapping hinge, m (ft)

flapwise blade moment due to blade weight, re pfl2R5

complex Fourier coefficient of flapwise aerodynamic moment function, re p_2R5

mass per unit length of blade, re pR 2

spanwise functional representation of m, re pR 2

mass per unit length of blade, kg/m (slugs/ft)

spanwise functional representation of m*, kg/m (slugs/if)

number of azimuthal harmonics, that is, number of equal size azimuthal
increments into which one rotor revolution is subdivided and has value equal

to 2 raised to nonzero integer power

harmonic number

blade section location identifier

natural generalized force with respect to fl, N-m (lb-ft)

natural generalized force with respect to ¢, N-m (lb-ft)

airfoil or blade section onset flow dynamic pressure, N/m 2 (lb/ff 2)

blade length from hub to tip (i.e., rotor radius), m (ft)
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J

i

J

r

dr

T

t

V

Vp

Vp(,, ¢)

VT

VT( ,

Voc

V

5W

X, y, Z

Az

¢)

o_

¢)

OLdp

Ac_

¢)

Z(¢)

¢

0

0(_, ¢)

_(_,¢)

#

#P

#T

P

¢

unflapped blade spanwise coordinate from hub to tip, m (ft)

differential length r, m (ft)

kinetic energy at blade location P, N-m (lb-ft)

time, sec

total onset flow velocity to which blade section is exposed, re 12R

onset flow velocity component perpendicular to hub plane, re _R

complete functional representation of Vp, re f_R

onset flow velocity component tangent to hub plane, re f_R

complete functional representation of VT, re _R

rotorcraft translational velocity, m/s (ft/s)

potential energy at blade location P, N-m (lb-ft)

virtual work done on blade location P, N-m (lb-ft)

location in hub-fixed Cartesian. coordinate system, m (ft) (fig. 1)

blade displacement due to flapwise bending, re R

complete functional representation of Az, re R

blade section angle of attack, rad

complete functional representation of a, rad

rotor hub plane angle of attack, positive for leading edge of hub tilted up, rad

increment in blade section angle of attack due to torsional bending, rad

complete functional representation of Aa, rad

blade rigid flapping angle (or natural generalized coordinate), tad

azimuthal functional representation of f/, rad

virtual displacement of natural generalized coordinate _3, rad

Dirac delta function

rotor blade flapping hinge radial offset from center of rotor, m (ft)

location on rotor axis of rotation in cylindrical coordinate system, positive in

rotor thrust direction, m (ft)

blade spanwise position measured from hub to tip, re R

blade pitch angle relative to hub plane, rad

complete functional representation of _, rad

rotor total inflow velocity perpendicular to tip-path plane, re f_R

complete functional representation of )% re _R

rotor advance ratio along wind axis, -

rotor advance ratio component perpendicular to hub plane, --- # sin _dp

rotor advance ratio component tangent to hub plane, ----p cos _dp

air density at flight altitude ambient conditions, kg/m 3 (slugs/ft 3)

local upflow angle at blade section and relative to hub plane, rad
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¢(7, _)

¢

Superscripts:

!

complete functional representation of 0, rad

blade azimuth angle (or natural generalized coordinate), rad

virtual displacement of !b, rad

rotor rotational speed, rad/s

derivative with respect to blade azimuth angle ¢

updated value

Fourier transformed (i.e., Fourier coefficient)

Input

The RRD Module requires inputs in the form of user parameters, an independent variable

array, and data tables provided by other modules or provided by the RRD Module during the

first execution (first iteration). Sign conventions of the various input quantities are presented

in figures 1 through 4 or are described in the present discussion. The user parameters fall
into two categories, those which are input for every execution of tile RRD Module and those

which are calculated results from the first execution of this module and are input only for
the second and subsequent executions in an iterative loop. The user parameters input for

every execution of the RRD Module include blade length, hinge location, rot'or rotation speed,

and advance ratio. Additionally, the slope of the linear portion of the lift curve must be
provided as a single value assumed to be representative of all airfoil sections of the rotor

blade. The number of azimuthal harmonics Nn in the frequency domain (ile., tile number of

harmonics of blade flapping represented by the output complex Fourier coefficients of flapping

angle and corresponding to an azimuthal discretization of one revolution of the rotor in Nn equal

azimuthal increments of size 2rr/Nn in the time domain) must be provided as well. The user
parameters input oniy during the second and Subsequent executions of tim RRD Module are
blade mass-related moments and inertias and other blade chord-related constants, all of which

are computed during the initial execution to build the constant coefficients of the governing
flapping differential equation of motion. Input parameters must remain the same for every

iterative execution of the RRD Module for a given rotor analysis. All input parameters are

listed subsequently.

The computational grid of blade spanwise stations must bc input; this is provided by the

Independent Variable Array. The remaining input quantities are supplied t)y four input tables.

First is the Blade Shape Table, which supplies the blade chord length distribution. This table

is provided by the Blade Shape (RBS) Module, documented in section 10.2 of reference 1,

or by the Improved Blade Shape (IBS) Module, documented in reference 2. Second is the
Mass Density Table, which can be provided directly by the user or can be provided, more

conveniently, by the Lifting Rotor Performance (LRP) Module from the ROTONET Simplified
Rotor Analysis. This table supplies the spanwise distribution of blade mass. Third is the

Harmonic Aerodynamic Loads Table, provided by the latest execution of the Rotor Loads

(RLD) Module, which supplies the blade normal force distribution for the current iterative

execution of the RRD Module. Last is the Flapping Angle Table. The contents of this table

depends upon which iterative execution of the RRD Module is about to bc done. For input to
the initial iterative execution of the RRD Module, this table contains an initial estimate for the

blade flapping in terms of complex Fourier series coefficients. This initial Flapping Angle Table
can be obtained directly from the LRP Module in the ROTONET Simplified Rotor Analysis.

Alternatively, if the Flapping Angle Table created by the LRP Module is not available, the
initial table can be user-created from LRP rotor trim output in a manner described below. For

input to the second and subsequent iterative executions of RRD, the Updated Flapping Angle

Table (sec also section "Outtmt") output from the previous iterativc execution of the RRD
Module must be used.

i
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To create the initial input Blade Flapping Table when thc tal)lc from the LRP Moduh:

is unavailable, the user employs a flapping angle estimate comprised of only the zeroth- and
first-order Fourier sine and cosine series coefficients. For insertion in the initial input Blade

Flapping Table, these sine and cosine series coefficients arc rcexprcssed as four complex vahmd
Fourier series flapping coefficients. These four complex Fourier coefficients are obtained from

LRP-providcd values of coning angle at), lateral and longitudinal first harmonic flapping relative

to the hub plane bl and al (for tail rotors), and lateral and longitudinal cyclic pitch AI and B1
relative to the hub plane (for main rotors). For tail rotor analyses, conversion from the LRP
Fourier sine series format to complex Fourier series format yields the following values for thc

four complex Fouricr flapping coefficients _(n) needed for the initial input Flapping Angle Table

expressed as complex (real value, imaginary value) numbers, where n is equivalent to the array

sequence number of the cocfficient as actually stored in the table, as follows:

_(1) = (ao, O)

_(2)=(a12,_)

_(3)=(0,0)

a(4)_-_ ( a12, bl)2

For main rotor analyses, the flapping-feathering equivalences, al -- B1 and bl =-- -A1, must first
be applied to the LRP-generated cyclic pitch values. Thus for main rotor analyses, the four

complex-valued Fourier flapping coefficients _(n) needed for the initial input Flapping Angle
Table are as follows:

----(ao, O)

B12, A1)2

_(4)=( B1,AI__)

The relationship between the array sequence for _(n) (i.e., sequence of storage in the Flapping
Angle Table) and the azimuthal harmonic or Fourier series sequence for _(n) employed in the

section "Method" is presented in table I.

All user parameters, tables, and data arrays input to the RRD Module for initial as well as

all subsequent executions are as follows:

J

b

e

Y_

R

O_dp

#

User Parameters Required for All Iterations

slope of linear portion of lift curve, 1/rad

rotor blade flapping hinge offset, re R (fig. 4)

number of azimuthal harmonics in frequency domain (i.e., twice number of positive

frequency harmonics and establishes azimuthal discretization of one rotor revolution
with azimuthal increments of size 2n/Nm in time domain, thereby satisfying Nyquist

criterion relating number of time steps to number of frequencies; must have value

equal to 2 raised to nonzero integer power)

blade length from hub to tip (i.e., rotor radius, fig. 1), m (ft)

rotor hub plane angle of attack, positive for hub leading edge tilted up, rad

advance ratio along wind axis, -- _i_

rotor rotational speed, rad/s (fig. 1)
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I,/

lif

Mw

User Parameters Required for Second and Subsequent Iterations

constants used in flapping equation of motion, i = 1,..., 4 (eqs. (52) to (55));

(provided by output from first iteration of RRD)

flapwise blade moment due to centrifugal force (provided by output from first

iteration of RRD), re pR 5

flapwise blade moment of inertia (provided by output from first iteration of

RRD), re pR 5

flapwise blade weight moment (provided by output from first iteration of RRD),

re p_2 R5

7/

n

n

_(n)

n

Independent Variable Array

blade spanwise position, re R (fig. 4)

Blade Shape Table

[From RBS or IBS]

blade spanwise position, re R (fig. 4)

blade section chord length, re R

Mass Density Table

[From LRP]

blade spanwise position, re R (fig. 4)

blade mass per unit length of blade, re pR 2

Harmonic Aerodynamic Loads Table

[From RLD]

blade spanwise position, re R (fig. 4)

azimuthal harmonic number

complex Fourier coefficients of blade section aerodynamic force in thrust

direction, re p_22R 3

Flapping Angle Table for Initial Iteration Only

[From LRP]

azimuthal harmonic number

initial estimated complex Fourier coefficients of blade rigid flapping angle

relative to hub plane, rad

Flapping Angle Table for Second and Subsequent Iterations

[Use Updated Flapping Angle Table output from last prior RRD iteration]

_imuthal harmonic number

complex Fourier coefficients of blade rigid flapping angle relative to hub plane,
rad
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Output

The output generated by the RRD Module varies, depending on which execution iteration
has been performed. From the initial execution only, user parameter output consists of the

blade flapping moment of inertia I_f, flapping moment due to centrifugal force Ic/, flapping
moment due to blade weight Mw, and four constants gi in the flapping equation of motion
used in calculations. These user parameters are to be used as input for all subsequent iterative

executions of the RRD Module, as stated in the section "Input." Every execution of the

RRD Module generates an updated table of blade flapping angles expressed as complex Fourier
coefficients as a function of azimuthal harmonic number. The updated table is intended for

use as input to the subsequent iterative execution of the RRD Module. This table contains

the final blade flapping results upon completion of the final iterative execution of the RRD

Module. The relationship between the array sequence for a(n) (i.e., sequence of storage in

the Updated Flapping Angle Table) and the azimuthal harmonic or Fourier series sequence
for _(n) employed in the section "Method" is presented in table I. Additionally, the equivalent
real-valued Fourier cosine and sine series coefficients Cc(n) and cs(n) of the updated flapping,

as defined in equation (62), are output. However, these coefficients are printed only and are
neither saved as user parameters nor stored in tables.

All user parameters and the table output from the RRD Module are as follows:

gi

Mw

User Parameters

[Output from first iteration only]

constants used in flapping equation of motion, i -- 1,..., 4 (eqs. (52)

to (55))

flapwise blade moment due to centrifugal force, re pR 5

flapwise blade moment of inertia, re pR 5

flapwise blade moment to blade weight, re p_2R5

Method

Updated Flapping Angle Table

azimuthal harmonic number

updated complex Fourier coefficients of blade rigid flapping angle relative to hub

plane, rad (table I)

Derivation of Equation of Motion

The governing equation of motion for a rigidly flapping rotating rotor blade is derived from

energy considerations using Lagrange's equation of motion (ref. 3). The initial portions of
the theoretical development which follows use dimensional quantities; subsequently (where

indicated) conversion to nondimensionalized quantities is made to make the rest of the

development.

Consider the geometry of a rigid rotor blade rotating with an angular frequency _ shown in

figure 1. The blade has a flapping hinge located at a distance E from the axis of rotation. Inplane

lead-lag motion is assumed small relative to flapping motion, and its effect on rotor noise is
assumed negligibly small. Thus lead-lag motion is neglected and no lag hinge is modeled. Only

that portion of the blade outboard of the flapping hinge is assumed to experience lift and drag

aerodynamic forces, and this is considered the working portion of the blade, having length/tip.

A hub-fixed right-handed Cartesian axis system is defined with x positive aft, z positive along
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the rotor axis of rotation in the rotor thrust direction, and the x and y axes lying in the

reference hub plane of the rotor. The rotating blade is a two-degree-of-freedom system having

motion associated with two natural generalized coordinates. The first coordinate is the rigid

flapping angular displacement fl about the flapping hinge, and the second coordinate is the

azimuthal angular displacement or position ¢ of tile blade measured from tile positive x axis in
the reference hub plane. A cylindricM coordinate system is defined with _,, _ (coincident with

the hub-fixed z axis), and a radial axis directed along the unflappcd blade.

Consider an arbitrary infinitesimal section of tile blade at P located a distance I along the

blade outboard of the hinge and having mass m*(1)dl. In cylindrical coordinates, the position
of section P is

z = rcos ¢ (la)

y = rsin ¢ (lb)

z = ¢ (lc)

However from the hinge location and the definition of flapping generalized coordinate _, the

following definitions apply

r = E+ I cos _ (2a)

=/sin fl (25)

Combining equations (1) and (2) yields the position of the blade section P in terms of the

natural generalized coordinates as follows:

x = (_ + l cos fl)cos ¢ (3a) '_..

y = (e + l cos fl)sin ¢ (3b)

z = I sin fl (3c)

The kinetic energy of blade section P is

1 y2
T= -_m*(l)dl (22 + __ $2) (4)

which can be rewritten as a function of the natural generalized coordinates by substituting

equations (3a), (3b), and (3c) in the right-hand side to get:

1 m*(l)dl [(E +/cos fl)29)2 +/2fl2]T=_ (5)

The potential energy of blade section P is

V = m*(l) dlg*z (6)

which can be rewritten as a function of the natural generalized coordinates by substituting

equation (3c) on the right-hand side to get:

V = m*(l) dl g*l sin (7)

The Lagrangian (ref. 1) for the blade section P is defined a.s follows:

L = T - V (8)
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Substituting equations (5) and (6) for tile kinetic and potcntial encrgy, tile Lagrangian 1)ccomcs

L= +l cos +12 2]_ m*(l) dl g*l sin fl (9)

With reference to figure 1 again, the nonconservative forces acting on blade section P arc the

aerodynamic lift L(1)dl, the aerodynamic drag D(1)dl, and thc forcc F¢ 6(/), which is duc to

the torque of the rotor shaft and acts in the plane of rotation. Because the force due to shaft

torque acts only at the blade hinge, l = 0, the Dirae delta function 6(1) has bccn employed.
The virtual work 6W done on the blade section P by the nonconscrvative forces in virtual

displacements 613 and 6_b of the natural generalized coordinates is

6W = L(l) dl ! 6fl + F_ if(l) e 6¢ - D(l) dl (e + 1cos 8) &,b (10)

Rearranging, equation (10) becomes

6W = QZ 6f_ + Q¢ 6¢ (11)

where Q_ and Q¢ are the natural generalized forces with respect to fl and _ at blade section P
and are given by

Qf3 = L(l) l dI (12)

and

Q_p = F¢(l) 6(0 e - D(l)(e + I cos/3) dl (13)

Then the equations of motion for blade section P are Lagrange's equation (ref. 1) applied

separately to the two natural generalized forces as follows:

/

0¢ -- Q¢ (14a)

and

08 - Q/? (145)

where equation (14a) governs the motion in the plane of blade rotation and equation (14b)

governs the flapping motion. These two motion equations are developed further and examined

individually in the following two subsections.

Governing equation for rotational motion in hub plane. Substituting the Lagrangian (eq. (9))

and the generalized force (eq. (13)) into equation (14a) produces the following equation for

inplane rotational motion of blade section P:

m *(1) dl (e +/cos _)2_ - 2 m*(1) dl (e + I cos/_)1/_¢ sin f_

= F¢(I) 6(l)e - D(1)(e + l cos/_) dl (15)

Integration of equation (15) over the entire length of blade outboard of the hinge gives

f0 f0+ I cos 8) 2 dl - 2fib sin fl m* (l)(e + I cos 13)1 dl

/tip=F¢e - D(l)(e + l cos 8) dl (16)
JO

Shaft torque is assumed to be just sufficient to maintain a constant rotor rotation speed,
such that ¢ = f_t, ¢ = f/, and _) = 0, also, fl is assumed small. Thus, equation (16) reduces to

J

/ _0 _tip (!)
1 /tip O(l)(e + I) dl - 2f)j33 m*(1) 1 + I dl (17)

F¢= 7 o
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Equation(17) is the final governingequationfor the rotationalmotion of a rigid rotor
t)ladein whichbladclag motionis neglected.Theequationindicatesthat if bladeflapping
displacement/3iszeroor flappingrate/3iszero,thentheappliedhingeforcefromshafttorque
just balancesthetotal aerodynamicdragoil theblade.

Governing equation for rigid flapping motion. To develop further the equation of motion

for flapping, the Lagrangian (eq. (9)) and generalized force (eq. (12)) are substituted into

Lagrange's equation for flapping (eq. (14b)) to give

m*(l) dll2"_ + m*(1)dlg*l cos _ + m*(l)dl(e + Icos i3)l(b2sin /3= L(1)Idl (18)

Recall that rotor blade rotation speed is assumed constant (i.e., ¢ = f_) and integrate equa-

tion (18) over the entire blade region outboard of the flapping hinge to obtain

; //tipm*(Z)12 +g*cosZf0/tiPm*(1)Zdl
J0

/tip [/tip+ _2sin f_ m*(l)l(e+Icosi_)dl= L(l)ldl
JO JO

(19)

The flapping generalized coordinate _ is assumed to be a small angle; therefore, equation (19)

can be rearranged as follows:

*_'"m* (1) fo "/o/3 12 dl + _3f_2 [/tip m*(l)l(e + l) dl = [/tip L(1) I dl - g* lt,p m*(l) l dl
JO JO

(20)

Comparing equation (20) for rigid flapping with equation (17) for rigid inplane rotation, no
cross coupling occurs between the two because blade lag motion has been neglected. Because

the purpose of tile RRD Module is to compute blade flapping angle j3, the inplane motion

equation (eq. (17)) is not required and is considered no further in this theoretical development.

However, equation (20) for blade flapping can be refined further. Because ¢ = f_t, the following
relationship for the time derivative operator applies:

d2 f12 d2
dr--5 = d_b2 (21)

Also/tip -- R - e, where R is the complete span of the blade from the hub to the tip. Recall
equation (2a) and apply the small angle assumption for the following change of variable:

r = E+ l (22)

where r is the spanwise distance measured from the hub. If/tip is reexpressed and equations (21)

and (22) applied, equation (20) becomes

[_2_Rm.(r)(r_E)2dr] d2_ n dr]____ + [f_2 _ m'(r)r(r-c)

/RL(r)(r c)dr g* _Rrn*(r)(r c)dr (23)

which is the governing equation of motion for rigid flapping in dimensional form.
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It remains to rewrite equation (23) in nondimensional form. The dimensional variables r, dr,

, m*,_, g* and L from equation (23) are reexpressed in terms of nondimensionalized variables z/,

dz/, e, g, m, and Fz as follows:

r = ,R (24)

dr = R dV (25)

E = eR (26)

g* = gRf_ 2 (27)

m*(r) = m(_) pn 2 (28)

L(r, ¢) = Fz07, ¢) Pf_2R3 (29)

where p is dimensional ambient air density, R is the dimensional complete blade length
from hub to tip, the spanwise functional dependency of blade mass distribution is indicated

in equation (28), and the spanwise and azimuthal dependency of blade lift distribution is

introduced in equation (29). Substitution of equations (24) through (29) into equation (23)

yields the rigid flapping equation of motion in nondimensional form:

d2fl 1 1
- e) + -d( 2

= Fz(T?, ¢)(7? - e) dy - m(_/) g(z/- e) d_? (30)

With the definitions of blade flapping moment of inertia, blade flapping moment due to

centrifugal force, and blade flapping moment due to weight, respectively, in nondimensional
terms as follows:

and

feIif ----- m(_l)(zl - e) 2 d_ (31)

I_I = m(,1),7(,7- e) d,7 (32)

_e 1Mw = re(T1) gO? - e) dtl (33)

equation (30) becomes

d2/3 _e 1Ii] -_ + Icf/3 -- Fz(_, _b)(zl - e) dz? - Mw (34)

which is the complete nondimensionalized equation of motion for rigid blade flapping. Unless
otherwise noted, the remaining discussion is written in nondimensional form.

The form of equation (34) is representative of the equation of motion for a simple harmonic
oscillator with a driving term. Equation (34) as written is not a useful expression for solving

the flapping problem because there are no damping (i.e., d/3/d_b) terms explicitly present in the

left-hand response side of the equation. Thus the flapping response from equation (34) is infinite
when driven at the fundamental frequency. However, what is not evident in equation (34) is

that for a rotating, flapping rotor blade, the aerodynamic lift Fz (Zh _b) on the right-hand driving

side of the equation is implicitly a function of/3 and/_ (i.e., d/3/d¢) such that lift introduces

aerodynamic damping into the problem. The aerodynamic lift Fz(_h ¢) is now examined further
to show the functional dependence on/3 and d/3/d_b. This examination allows a reformulation
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of equation (34) in which aerodynamic damping terms are included explicitly and which is
amenable to iterative solution.

Development of Fz07, _P) as a function of flapping and flapping rate. Begin by considering

figure 2 showing the orientation of a blade section of chord c at location (7/, ¢) relative to the

hub plane, defined as the plane perpendicular to the axis of rotor rotation. The velocity of the
onset flow to the local blade section is rcsolvcd into two components. The component normal

to the hub plane is Vp (positive up), and the component lying both parallel to the hub plane

and perpendicular to the blade is V T (positive in the direction opposite the direction of t)ladc

section translation due to rotor rotation). In terms of thcsc vclocity componcnts, tile local

upflow angle ¢ is expressed as

¢ = arctan Yp (35)
Vr

In figure 2, the local section lift and drag are directed perpendicular and parallel, respectively,

to the local onset flow V. Thus Fz (71, ¢) may be written as

1
Fz (_l, _P) --- -_ cO1) ( V 2x_+ V_ )(c I cos ¢ :l: c d sin ¢) (36)

where Vp, VT, ct, c d, and ¢ are all functions of _? and ¢ and the minus sign applies for blade

sections exposed to reversed flow (assuming a flat-plate airfoil behavior of the blade section

regarding drag characteristics in reversed flow versus forward flow). Applying equation (35) to

equation (36) gives

1 V_(clVr ±Fz(_, ¢) = _ c(,) v/V_ + c_Vp) (37)

To linearize, first assume VT >> Vp, which is the case for typical forward flight and is true in

hover or low-speed forward flight for the more outboard stations on the blade. Equation (37)
becomes

Yz(V,¢) =

Next assume that c/>> Cd, since c/ is usually an order of magnitude greater than c d. Equa-

tion (38) becomes
1

FzO?, ¢) = _ c(rl) clVT 2 (39)

Assume cI = badp for the linear portion of the lift curve to get

1
Fz(,, ¢) = i c(,) _Y] (40)

where the lift-curve slope b is assumed to be a single constant value representative of all sections
of the blade and (_ is the local blade section angle of attack relative to the hub plane. The local

angle of attack is a function of the local blade section pitch, local inflow angle, and local blade

torsional bending as follows:

_(_, ¢) = 0(u, ¢)+ ¢(u, ¢)+ A_(_, ¢) (41)

Assume no torsional bending, A_ = 0, so that

_(_, ¢) = 0(u, ¢)+ ¢(u, ¢) (42)

Because VT >> Vp, equation (35) for inflow simplifies to

¢ vp
VT

(43)
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Inserting equations (42) and (43) into equation (40) gives

(44)

Figure 3 illustrates the onset flow velocity components lying in the hub plane of a rotor

translating with velocity Voc through the air and rotating at angular speed Ft. Those velocity

components directed perpendicular to the blade in figalrc 3 contribute to the tangential

velocity VT to which a blade section is exposed. Thus VT is given by the following dimensional

expression:
_RVT = Voo cos OZdp sin _b + _tr (45)

Applying nondimensionalized quantities to equation (45) yields

VT(th _b) = _ + #T sin ¢ (46)

where #T is the rotor advance ratio resolved tangent to the hub plane (i.e., #T = /t cos C_dp).

In the side view of the rotor portrayed in figure 4 are shown all of the contributions to

the onset flow velocity Vp perpendicular to the rotor hub plane to which the blade section is

exposed. In terms of the various contributions, Vp is given by the following equation:

Vp(rl, ¢) = ,_(_1, _)- #Tal - (]3(_b)-t- --

Each term on the right-hand side of equation (47) requires explanation. The first term is
the total rotor inflow velocity normal to the rotor tip-path plane, which is computed by the

Rotor Inflow (RIN) Module. The second term is a required correction to effectively convert the

total inflow velocity from tip-path plane orthogonality to hub plane orthogonality, where a!

is the first harmonic longitudinal flapping relative to the hub plane. The third term is the

component of inplane velocity (the nondimensionalized component parallel to the blade in fig. 3)
resolved normal to the actual flapped blade but (from the small angle assumption applied to

flapping) taken to be normal to the hub plane, where Az is blade flapwise bending deflection

from the rigid flapped position. The last two terms are the contributions existing as a result
of the rigid flapping rate and flapwise bending rate, respectively, of the blade. The rotor

advance ratio /2p--# sin _dp, which is inherent in the velocity component Vp, is implicitly
accounted for within the quantity [)_(rl, ¢)- pTal] by the theory used in the RIN Module,
which provides )_(rl, ¢). Hence #p does not explicitly appear in equation (47).

This analysis considers rigid flapping only, such that bending is assumed nonexistent,

Az = OAz/O_b = O. Thus equation (47) simplifies to

VpO?, g,) = .X(rh _p) - #Tat -- _(¢)ttT cos ¢ -- (rl -- e) df_(¢)
d_p

(48)

Substituting equations (46) and (48) for the velocity components in equation (44) yields

1
Fz(rl, ¢) = _ c(rl) b{O(rh _bXrl + #T sin ¢)2 + ,k(rl, CXrl + tt T sin ¢)

d_(_b)[rl + PT sin CX_ - e_ - 3(_b)[(r] + #T sin CX#T COS _)]

--al [#T(_ -t- sin rl)]} (49)

which is the desired expression of aerodynamic loading in terms of flapping-related

contributions.
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Flapping integral equation of motion with aerodynamic damping.

equation of motion (eq. (34)),

Recall the rigid flapping

d2Z _1Iii _ + Icff_ -=- Fz 07, _)(77 - e) d_ - Mw

The forcing flmction Fz in the equation of motion is comprised of the multiple terms shown in

equation (49). The term d_(¢)/d¢ in equation (49) provides damping to the flapping equations;
this term is the aerodynamic damping. Additionally, equation (49) shows that Fz is composed
of contributions due directly to flapping f_ and due to a component of flapping al; thus there is

a feedback inherent in equation (34). That is, the aerodynamic driving term on the right-hand

side of equation (34) is a function of the flapping response 8, whereas the flapping response/_

oll the left-hand side of equation (34) is a function of driving terms. This feedback, implicit in

equation (34) via equation (49), can be accounted for in solving for flapping by reexpressing the
equation of motion such that aerodynamic damping terms are shown explicitly and the equation
is amenable to an iterative solution. To do this, define AF07, ¢) as the function Fz(_], 0) less

the terms proportional to 8, d_/d¢, and al. Thus from equation (49) obtain

)]AFz07,¢)--- Fz(_,¢)+ de [2 c(_)b(tTT#Tsin ¢X77- e

+_(_b)[_c(_I)bO?T#Tsin CX/ZT cos _b)]

-f- al [ l c(TI) b_r(_7 -t- #T sin ¢)] (50)

By combining equations (34) and (50), the governing equation of motion is rewritten as

/if'_
de 2

. d/_'(!b)

-t- (gl -t- g2 sin ¢) _-_

-t- (Ic/-t- g3 cos ¢ -t- g4 cos ¢ sin ¢)_(¢)

j_e1+ (g3 + g4 sin ¢)al = AFzO?, ¢) (71 - e)dT1 - Mw (51)

where AFz 07, ¢) is given by equation (50) and where constants gl, g2, g3, and g4 are given by

the following equations:

b/xgl ----_ c(r]) 77(7/-- e) 2 dT/ (52)

bDT. [1
g2 : _ Je c(v/) (v/- e) 2 d_ (53)

b#T
t[1 cO?) _?(_7-- e) d_l (54)ga = --_-- Je

g4 : b_l" _e 1 c07 ) (_/- e) d77 (55)

The equation of motion for flapping as given in equation (51) is a differential equation for a
damped harmonic oscillator with a forcing term and is in a form amenable to iterative solution.

The flapping angles in the forcing term on the right-hand side of equation (51), which are shown

15.3-14



in equation (50), are considered values from an initial estimate or results from the previous

iteration. The response or left-hand side of the equation of motion, as written in equation (51),
now contains explicitly a damping term d_/d¢, an al term, and has a modified fl term. All the

flapping variables on the left-hand side of equation (51) are written with a prime to indicate

that they are the new updated values determined by the current iterative call of the RRD

Module and are the response due to the forcing function, based on flapping from the previous
iteration.

Conversion of Governing Differential Equation of Motion Into Solvable Matrix Equation

The final step in the method development is to rewrite the differential equation of flapping

motion (eq. (51)), as an equivalent matrix equation containing a system of linear equations
solvable for each harmonic of the flapping response. First, employ the exponential form of a
finite Fourier series to write

g.12

8(¢)= _ _(n) exp(in¢) (56)
n=-N./2

and

where

1 g./2

_e AFz(Th ¢)O ? - e) d_] = E -A"M(n)exp(in¢)
n=-Nn/2

(57)

AM(n) = rje I -A-_z(Th n)(71 _ e) d_l (58)

Substitute equations (57) and (58) into equation (51); substitute the exponential forms of the
sine and cosine functions; use al = -[_(1) + _(-1)]; take the required derivatives, and sum like

harmonics. This procedure gives the following expressions for the Fourier coefficients of the

flapping angles:

AM(-1)- _(-3) hi - _(-2) h2 - _(0) h4 - _(1)(h5 + _)

_(-1) = h3 +
(59a)

1 [_(0)- Mw - _(-2) hl - _(-1)(h2 - g3)]_(0) =

+ _3 [-a(1)(h4 - g3)- _(2) hs] (59b)

_(1)= AM(1)-a(-1)(hl-_)-a(O)h2-a(2)h4 -_(3)h5 (59c)
h3 -_

I [A---M(n)- _(n-2) hi - _(n- 1) h2 - _(n+ 1) h4 - _(n+2) h5]_(n) =

< n < --_ except n _ 0, +1_59d)

where

g4 (6Oa)
hi = _
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h2 =(n- 1)2 + g32 (60b)

ha = -Iis n2 + igln + Ic] (60c)

h4 = -(n + 1)_ + g32 (60d)

h5 = g44i (60o)

By assuming that there are Nn harmonics contained in AFz(TI, _2) and 13(¢), equations (59a)
to (59d) in matrix notation yield the final governing system of Nn + 1 simultaneous equations

(including equation for zeroth harmonic), written in matrix form, to be solved by this module,
as follows:

• ha ha h5 0

h? ha ha h5 0

hl h2 ha ha h 5

0 h 1 h2 h3 h4

0 h I h 2 h 3

0 hi h2

0 hi

0

0

h5

h4 h5 0

(_+_,) h, (h_+_.) o

(h2-z3) h3 (h4-g3) h5

0 hi h2 h3

0 h 1 h2

0 h 1

0

0

h 5 0

h4 h5

h 3 h 4 h 5 0

h2 h3 h4 h5

hi h2 h3 h4

0 h I h 2 h 3

_(_)

_,(=-_+ _)

_(:_+:)

_(:_+_)

_'(-2)

E'(-])

x _(o)

a_(1)

a"(2)

v(-_-_)

_(-_-_)

_'(-_- _)

=-'(-_)

_-_7(_)

_--_(=-_+,)

_7(:-_ +_)

_-_7(:_+_)

AM(-2)

AM(-1)

= AM(0)- Mw

AM(l)

AM(2)

_-_(_-3)

_(_-2)

_---_(__,)

_--_(_)
(61)

where the first matrix on the left-hand side is constant for a given rotor geometry and operating

conditions; the h coefficients in a given row of the matrix are given by equations (60a)

to (60e) wherein the value for n is the harmonic number associated with the matrix row; the
second matrix on the left-hand side contains the unknown updated values of complex Fourier

coefficients of flapping to be found ( a prime introduced to signify updated values); and the

matrix on the right-hand side is a known function of the old (i.e., "prior iteration") complex

Fourier coefficients of flapping.

Equivalent Sine and Cosine Fourier Series Coefficients of Updated Flapping

Having solved equation (61) for the updated complex Fourier coefficients of flapping g_, the

desire is to convert these to the equivalent real cosine and sine Fourier series coefficients of

flapping Cc and cs satisfying the following sinusoidal Fourier series representation of updated

flapping:
Nnl2

13'(¢) = ao + Z {-co(n) cos n¢ - cs(n) sin n_b} (62)
n= l
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Beginwith equation(56)rewrittenfor updatedflapping
=

N./2

_t'(_b) = _ d(n) exp(in_) (63)

,I=- N,,/2

Applying Euler's identity to convert the exponential to trigonometric functions, equation (63)
becomes

N,/2

_(¢)= _ {_'(n)cos n¢ + id(n)sin n¢} (64)

n=-N,,/2

Expanding the series of equation (64), noting that cosine is an even function and sine an odd

function, and rearranging gives

N./2

_'(O) = _(0) _] {[_(n)+ d(-n)]cos n¢ + i[d(n)-d(-n)]sinn¢}
n=l

(65)

Express complex coefficient _ as the sum of real and imaginary parts

= g(n)+ i <(n) (66)

where _r and _// are each real-valued. Substituting equation (66) into equation (65) and using
the fact that R'(-n) is the complex conjugate of _(n) give

N./2

_'(¢)---- _'(0)-t- Z [2dr(n) cos n¢ - 2_(n)sin he]
rt:l

(67)

Comparing equation (67) with equation (62) shows that the desired real Fourier cosine and sine
coefficients Cc and Cs for updated flapping are given as follows:

where _lr(n ) and _//(n)
equation (66).

cc(n)=-2_r(n ) (68a)

cs(n)= 2di(n) (68b)

are the real-valued real and complex components of _(n) per

Computational Procedure

v

1. During first iteration only, calculate moment of inertia Ii/, moment due to centrifugal

force Ic] , and weight moment Mw from equations (31), (32), and (33); also calculate four
constants gi(i = 1,... ,4) from equations (52), (53), (54), and (55)

2. For current iteration, compute AM(n) by using equations (50), (56), and (58), making use

of "prior iteration" complex Fourier coefficients of flapping from input tables

3. Generate matrix equation for flapping (eq. (61)) by using equations (59) and (60) to establish
known matrix coefficients

4. Solve matrix equation (eq. (61)) for updated complex Fourier coefficients of flapping

5. Store updated complex Fourier coefficients of flapping in output table in array sequence
indicated in table I

6. Compute and output equivalent sine and cosine Fourier series coefficients of updated flapping

by using equations (68a) and (68b)
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Table I. Relationship Between Array Storage

Sequence and Fourier Series Sequence for

Complex Fourier Flapping Coefficients

Array sequence Fourier series

in data tables sequence

_(1)

_(2)

_(3)

_(_)

_(_ +1)
_(_+_)
_(_+_)

_(N. - 2)

"d(Nn -- 1)

_(Yn)

_(0)

_(1)

_(2)

_(_-_)

2

_(-_+_)
_(-_+_)

_(-3)

_(-2)

_(-1)
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15.4 Rotor Wake Geometry (RWG) Module

Casey L. Burley and Stephen J. Jumper

Lockheed Engineering & Sciences Company

Introduction

Helicopter rotors have viscous, vortical wakes which are self-interacting. This self-interaction
modifies the shape of the wake, which complicates the process of predicting the aerodynamic
effect of the wake on the rotor blades. Most wake models use a network of ideal line vortex

segments to model the rotor wake. Were there no self-interaction, the trajectory of the

vortex segments would form a skewed helix. The Rotor Wake Geometry (RWG) Module
uses empirically developed equations to compute the nonhelical wake distortion due to self-
interaction.

The Rotor Inflow (RIN) Module described in section 15.2 calculates the wake-induced
velocity at the rotor disk. To accomplish this, the RIN Module models the wake with a lattice

of straight-line potential vortex segments and planar trapezoidal vortex sheets. These segments
are grouped into an inboard wake sheet and a discrete tip vortex. The tip vortex geometry is

an input to the RIN Module which is provided by the RWG Module.

The most physically accurate methods for determining the wake shape are known as free-

wake methods. These methods iterate between computing the wake-induced velocities at all the
vortex segment nodes and convecting the segments according to the last velocity calculation;

when a reasonably converged shape is obtained, the method stops and computes the downwash

at the rotor disk. Free-wake methods, unfortunately, are very computationally intensive and

require considerable expertise to use. However, for most flight conditions, the wake self-
interactions are such that a simple skewed-helix wake is not accurate enough for detailed airloads

calculations. A fast-executing but physically reasonable method is required.

An empirical method for predicting the wake shape was developed by Egolf and Landgrebe

(ref. 1), which has been implemented in the present module. Wind tunnel measurements of
tip vortex geometry were assembled for a variety of rotors and flight conditions. Inspection

of the data revealed that the distortions of the wake geometry away from the ideal skewed

helical shape were greater in the axial direction than in the longitudinal and lateral directions.
Thus, the empirical model only predicts axial distortion. Likewise, the experimental data

show sensitivity mainly to three parameters: number of blades, rotor thrust level, and the

translational component of inflow. Equations were developed, by using curve fits to the test
data, which predict the wake distortion given the three parameters. The Rotor Wake Geometry

(RWG) Module solves these equations for the given rotor and flight conditions, and determines

the wake geometry. Either the axial distortion or the net tip vortex trajectory may be output
in a table as a function of azimuth.

Symbols

A0, B, M

A1

CT

0

D1, D2, D3

E

G

wake envelope function coefficients

wake envelope function exponent coefficient

rotor thrust, re rp_2R4

tip vortex distortion vector (distortion from rigid helical wake

position), re R

tip vortex distortion in x, y, and z direction, respectively, re R

envelope function

wake geometric shape function
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(g',c)l,(g',s)l

(g'c)2,(g-s)2

g_),2

g_,2

k

m

Nb

Nm

Nrev

72

R

Vo_

x, y, z

XV, YV, Z'O

Zu

Az

_tpp

cosine and sine coefficient, respectively, of wake shape function for one-
or two-bladed rotors for first wake revolution

cosine and sine coefficient, respectively, of wake shape function for three-
or more-bladed rotors for first wake revolution

zeroth coefficient of wake shape function for one- or two-bladed rotors

(,) 0)for first wake revolution (i.e., gn,c 1 for n ---

zeroth coefficient of wake shape function for three- or more-bladed

(')rotors for first wake revolution (i.e., gn,c 2 for n =

cosine and sine coefficient, respectively, of wake shape flmction for one-
or two-bladed rotors after first wake revolution

cosine and sine coefficient, respectively, of wake shape function for three-
or more-bladed rotors after first wake revolution

zeroth coefficient of wake shape function for one- or two-bladed rotors

(") 0)after first wake revolution (i.e., gn,c 1 for n =

zeroth coefficient of wake shape function for three- or more-bladed

(") 0)rotors after first wake revolution (i.e:, gn,c 2 for n --

unit vector along x, y, and z axis, respectively, of rotor coordinate system

vortex segment index

azimuth position increment index

number of rotor blades _ :

number Of azimuthal harmonics in frequency domain (establishes azimuthal

discretization A¢ in time domain for analysis; must have value equal to 2

raised to nonzero integer power)

number of wake revolutions

harmonic number

distorted tip vortex position vector, re R

rotor radius, m (ft)

rotorcraft translational velocity, m (ft/s)

coordinates relative to hub-fixed rotor axis system (x positive aft in tip-path

plane; z positive axially in thrust direction; and y orthogonal to x and z in

right-hand sense), re R

x, y, and z component, respectively, of distorted tip vortex position

vector, re R

undistorted axial wake coordinate, re R

axial distortion, re R

rotor tip-path plane angle of attack (positive for leading edge of tip-path

plane tilted up), tad

wake age of given tip vortex wake segment, rad

phased wake age or azimuth position of given tip vortex wake segment, rad

_V
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J

vf

_k

77

P

PT

P

Xtpp

¢

Cb

A¢

fi

wake age of kth tip vortex wake segment, rad

radial position in tip-path plane (fig. 1), rc R

mean rotor total inflow velocity perpendicular to rotor tip-path plano

(positivc in thrust direction), rc f_R

rotor advance ratio along wind axis, --- Vc_/i_R

rotor advance ratio tangent to tip-path plane, -/z cos O_tp p

air density at flight altitude ambient conditions, kg/m 3 (slugs/ft 3)

skew angle of classical rigid wake (measured positive below tip-path

plane), tad

general blade azimuth angular coordinate, rad

rotor blade azimuth position, rad

rotor blade azimuth increment, 27c/Nm, tad

rotor rotational speed, rad/s

Input

The RWG Module requires input to define the rotor operating conditions, the number of

blades, and the azimuthal resolution and extent of wake to be considered. These inputs are

provided by user parameters and typically have values equal to or consistent with parameters
in both the Rotor Loads (RLD) and Rotor Inflow (RIN) Modules, since the RWG Module is

intended for use in conjunction with the RLD and RIN Modules. Sign conventions for the

various input quantities are as indicated in figures 1 and 2 or as described in this discussion.
Coefficients for the envelope functions used in the axial distortion model are provided by

the tables for the coefficients A0, A1, and M. Fourier series coefficients for the wake shape
functions used in the axial distortion model are provided by the tables for the cosine coefficients,

sine coefficients, and zeroth coefficients. All these coefficients have constant specified values

according to Egolf and Landgrebe (ref. 1). The values with which to build the coefficient input

tables for the RWG Module are given in tables I through XII. These values were extracted from

unpublished work at United Technologies Research Center by T. A. Egolf and D. Edwards.

The user parameters and tables which are input to the RWG Module are as follows:

CT

Nb

Nm

Nrev

¢_tpp

#

User Parameters

rotor thrust, re 7rp_2R 4

number of rotor blades

number of azimuthal harmonics in frequency domain (i.e., twice number of positive

frequency harmonics and establishes azimuthal discretization of each rotor revolution

with azimuthal increments of size A_b = 27r/Nm in time domain for computations;
thereby satisfying Nyquist criterion relating number of time steps to number of

frequencies; must have value equal to 2 raised to nonzero integer power)

number of wake revolutions

rotor tip-path plane angle of attack (positive for leading edge of tip-path plane

tilted up, fig. 2), tad

rotor advance ratio along wind axis, - V_/f_R
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#

Ao(#, CT)

Table of Coefficients A 0

[From table I]

rotor advance ratio along wind axis, __ Voo/_R

rotor thrust, re _pFt2R 4

envelope function coefficients

#

CT

A1

P

Cv

M(p, CT)

Table of Coefficients A1

[From table II]

rotor advance ratio along wind axis, - Vc_/12R

rotor thrust, re 7rp_2R 4

envelope function coefficients

Table of Coefficients M

[From table III]

rotor advance ratio along wind axis, Vcc/12R

rotor thrust, re rp_2R 4

envelope function coefficients

Table of Cosine Coefficients

[From tables IV to VIII

tt rotor advance ratio along wind axis, - VoJgtR

n harmonic number

(JT_,c) 1(#, n) cosine coefficients of wake shape function for one- or two-bladed rotors for
\ ]

first wake revolution

P

(g,_,c)2(#, n) cosine coefficients of wake shape function for three- or more-bladed rotors for
first wake revolution "

cosine coefficients of wake shape function for one- or two-bladed rotors after
first wake revolution

cosine coefficients of wake shape function for three- or more-bladed
rotors after first wake revolution

|

P

n

Table of Sine Coefficients

[From tables VIII to XI]

rotor advance ratio along wind axis, - Vc_/12R

harmonic number

sine coefficients of wake shape function for one- or two-bladed rotors for first
wake revolution

sine coefficients of wake shape function for three- or more-bladed rotors for
first wake revolution

sine coefficients of wake shape function for one- or two-bladed rotors
after first wake revolution

sine coefficients of wake shape function for three- or more-bladed rotors after
first wake revolution
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#

g_,l(P)

gll z x0,2(#)

Table of Zeroth Coefficients

[From table XII]

rotor advance ratio along wind axis, - Voo/ftR

zeroth coefficient of wake shape function for one- or two-bladed rotors for first
wake revolution

zeroth coefficient of wake shape function for three- or more-bladed rotors for first
wake revolution

zeroth coefficient of wake shape function for one- or two-bladed rotors after first
wake revolution

zeroth coefficient of wake shape function for three- or more-bladed rotors after
first wake revolution

Output

Two output options are available for the RWG Module, with the sign conventions of the

various output quantities as indicated in figure 1 oras described in this discussion. With

option 1, the module produces a table of rotor tip vortex distortion components in the x, y,
and z directions. The axial (z) distortion from the axial position of the rigid helical wake

tip vortex is computed; the other two components are output as zero. The distortion values

are given as a function of blade azimuth position and wake age. With option 2, the module
produces a table of tip vortex absolute position components in the x, y, and z directions relative

to the hub-fixed reference frame (z being perpendicular to the tip-path plane and positive up).

The position components are those for the rigid wake helix with the distortion components
included (i.e., the complete distorted wake position). Wake position values are tabulated as a

function of blade azimuth position and wake age. The tables generated by the RWG Module
are as follows:

_b

5

9(¢b,

Wake Distortion Table

[Option 1 output]

rotor blade azimuth position, rad (fig. 1)

wake age, rad (fig. 1)

tip wake distortion vector, re R

i

_b

5

Pv(¢b,

Wake Position Table

[Option 2 output]

rotor blade azimuth position, rad (fig. 1)

wake age, rad (fig. 1)

tip wake position vector, re R

Method

Frequently, the tip vortex wake shed from a rotor blade in forward flight has been modeled

as a rigid helical filament of vorticity with a trajectory defined by the rotor attitude and flight

conditions. With increased interest in air-load prediction and blade-vortex interaction, an

improved wake model that provides more detail of the tip vortex trajectory is required and is
provided by this module. The wake model used in this module differs from the helical model

in that it provides a method for computing the distorted axial (z) coordinate based on the
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rotor operating conditions. The longitudinal (x) and the lateral (y) coordinates of the wake
are computed from the undistorted wake equations.

A mathematical model developed by Egolf and Landgrebe (ref. l) is used to predict tile tip
vortex axial distortion. Found experimentally to be much smaller than the axial (z) distortion,

the longitudinal (x) and lateral (y) distortions are assumed to be zero. The wake geometry data
used to develop the model was limited to a givcn set of rotor designs and flight conditions. The

model is based on a rotor design which is representative of nine different rotor systems, which
include existing military and current rotor designs. The characteristics of the "representative"

design and the nine different rotor systems are tabulated in table XIII. The representative
rotor is either two-bladed or four-bladed with a radius and constant chord which provide rotor

solidity and aspect ratios inclusive of the nine different rotor systems.

Four fundamental parameters were identified as the primary parameters that affect the wake

distortions. They arc the nondimensionalized thrust CT, tile advance ratio #, the number of

rotor blades Nb, and the tip-path plane angle of attack O_tpp. These parameters were chosen,
based on a wake sensitivity study conducted by Landgrcbc and Bellinger (ref. 2). The axial

distortion model is valid over a limited range of these parameters:

0,05 < p < 0.3 (la)

0.0026 < CT < 0.0039 (two-bladed rotor) (lb)

0.0052 < CT < 0.0077 (four-bladed rotor) (lc)

-10 ° < O_tpp _ 6° (ld)

For the range of tip-path plane angle of attack considered, the advance ratio computed with

respect to the tip-path plane is approximately equivalent to the advance ratio computed with

respect to the free-stream velocity

Yoo cos _tpp Ycc (2)

This eliminates the tip-path plane angle of attack as one of the flmdamental wake parameters
for purposes of calculating wake distortion. (Note, however, that this small angle assumption is

waived with regard to calculating wake absolute position and momentum inflow (both detailed

later), since wake position is sensitive to small angles of tip-path plane inclination.) With

the fundamental wake parameters and rotor design defined, a model for the tip vortex axial
distortion was developed by curve fitting an appropriate mathematical relation to experimental

wake geometry data.

Note that for more general applicability, the model as implemented in the RWG Module

computer code is assumed to be extendable to much wider ranges of parameters than those

given in equations (1). Specifically, computations may bc attempted for the following parameter

ranges: 0.0 < # < 1.0; 0.0 < C T _ 0.05; -90 ° _< O_tpp _< 90°; and blazle numbers from one to
eight. However, for inputs greatly outside the ranges in equations (1), module results must be

accepted with caution.

Wake Model for Axial Distortion

The distorted axial wake coordinate z is defined by the addition of the undistorted axial

coordinate Zu and an axial distortion Az as follows:

J
i
!

o

z=Az+zu (3)

The undistorted axial coordinate z.,L is that of the rigid helical wake model and is computed as

z,,=SA,,,,,an (4)
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where Z_mean is tile mean total inflow velocity perpendicular to ttle rotor tip-path plane as

calculated from momentum theory. Inflow velocity Amean is defined in equation (19) and is
discussed in more detail later. The axial distortion Az is computed from a model based oil the

experimental wake tests of Landgrebc, Taylor, Egoif, and Bennett (ref. 3) and Lehman (ref. 4).

In tim tests of references 3 and 4, the axial distortion was found to be a flmction of wake

age 6 and blade azimuth position ¢b. For increasing wake age, the peak of thc axial coordinate

increased in amplitude at approximately a constant rate. The shape of the wake per revolution
was found to be azimuth-angle dependent. The wake was consistently distorted upward on the

sides (azimuth angles of 90 ° and 270°), directed downward in the rear (azimuth angle of 0°), and

remained near the rotor disk in the front (azimuth angle of 180°). From these observations thc

mathematical model for the axial distortion is represented as a multiplication of two functions:

Az = EC (5)

where E is an envelope function, and G is a geometric shape function.

The envelope function E serves to generalize the amplitude of the distortion with wake age.

It is exponential in form for the first two tip vortex revolutions and is linear in form thereafter

as shown in the following equations:

E = AoSexp(A15 ) (5 <_ 47r) (6)

E = M5 + B (5 >_ 4rr) (7)

where A0, A1, and M are known functions of the advance ratio p and the nondimensionalized
thrust CT. The coefficient B is obtained by matching the second part of the envelope function,

which is the linear function having slope M, to the first part at the wake age 5 = 4r. The

coefficients A0, A1, and M are given in tables I, II, and III, respectively.

The geometric shape function C serves to generalize the azimuthal distribution of the
distortions with wake age. The shape function is in the form of a Fourier series with one

set of harmonic coefficients for the first tip vortex revolution and another set of harmonic

coefficients for the following revolutions. Twelve harmonics were found to be adequate for this
function. For rotors with one or two blades, the expressions for the shape function are

12

G = g0,1' - E [('gn,c) 1 cosn_ + (gn,s') 1 sin n_] (0 <5 < 2a') (8a)
n=l

and

12

G = g"o,1--E[(gn,c)l" cosn_T(g_,s)lsinn_] (_ > 27r) (85)
n=l

and for rotors with three or more blades the expressions are

12

G = g0,2 - _ [(gin,c)2 cos n_ -I-(g_,s)2 sin n_]
n=l

(0 < (5 < 27r) (9a)

and

12

G -- go_,2 - E [(gg,c)2 cos n_ + (g_,s)2 sin n_]
n=l

(_ > 27r) (9b)
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(,) (,) ,, ¢0 (') (') " (")g0,1' gn,c 1, gn,s 1, g0,1' ,c 1, gn,s 1, ,2, gn,c 2, gn,s 2, g0,2, gn,c 2,

(-)and gn,.s 2 are functions of tile advance ratio p and are obtained from input tables. The

angle _ is the phased wake azimuth position measured with respect to the positive x axis and

is computed as
-- _f - Cb (10)

where g'b is the blade azinmth angle measured from the positive x axis in the direction of the
blade rotation. These angles and their relationship to the hub-fixed rotor coordinate system

are shown in figure 1. The shape function coefficients were determined from data obtained from
two-bladed and four-bladed rotors. The coefficients determined from the four-bladed rotor data

arc used for rotors containing three or more blades. The shape function coefficients are given

in tables IV through XII.

The tip vortex wake is modeled with straight vortex segments each of length A¢ and

wake age 5. The axial distortion Az of each vortex segment is computed by equation (5).

This computation requires that the envelope and shape functions be evaluated for each wake

segment. The coefficients A0, A1, and M for the envelope function and the Fourier series
coefficients in equations (8) and (9) for the shape function are interpolated from input tables.

The value of the wake age _ for a given vortex segment is computed as

5k = kh¢ (11)

where Af_ = 27r/Nm and k = 1,2, 3,..., (NrevNm + 1). The value of _)b, which is the azimuthal

position of the blade when a given wake segment was shed, is defined as

Cb = (m - 1) A¢ (12)

27r

where m = 1,2,3,..., h_¢"

With these definitions and the input tables of coefficients, the envelope and shape functions

may bc computed for each wake segment of the tip vortex wakes shed from blades located at

each _Pb.

Having computed Az, the tip vortex wake distortion vector is given by

/9(¢b, _) ----D1 (¢b, _) _ + D2(¢b, df) ) + D3(dYb, _) ]e (13)

where the components (due to the assumption of axial distortion only) are given by

D1 (¢b, _) = 0 (14a)

D2(¢b, 5) ----0 (14b)

Da(¢b, _) ----Az (14c)

i

!
!

i

Calculation of Distorted Wake Absolute Position

The calculation of the tip vortex wake distortion itself has been presented in the preceding

subsection. Alternatively, the calculation of the actual absolute position of the tip vortex

distorted wake is now presented. Because the absolute wake position relative to the tip-path

plane is sensitive to even small angles of tip-path plane tilt, to waive the small angle assumption

pertaining to classical wake position and momentma inflow calculation is necessary in the

following discussion.

The distorted tip vortex wake position relative to the hub-fixed Cartesian coordinate system

is given by
Pv (_b, _) ----Xv (_bb, _) _ -1-Yv (_)b, ¢5)3 T Zv (_bb, _) ]¢ (15)
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wherethepositioncoordinatesaregeneratedby takingthecoordinatesof therigidhelixof the
classicaltip vortexwakeandsummingwith thewakedistortioncoordinatesto give

xv -- cos(-¢b + 6)+ #T 6 + Dl(¢b, 6)

Yv = -- sin(--Vb + 6)+ D2(¢b, 6)

zv = --#T 6 tan Xtpp Jr D3(¢b, 5)

(16a)

(16b)

(16c)

where #T is the exact value of advance ratio resolved tangent to the rotor tip-path plane given
as follows (by waiving the small angle assumption in order to maximize the accuracy of the

rigid wake position computations):

/_T : _ cos OLtpp (17)

and where Xtpp is the rigid wake skew angle as shown in figure 2 and given by

Xtpp --_ ta n-1 Amean (18)
_.T

where the mean rotor total inflow velocity Amean is assumed perpendicular to the tip-path plane

and positive in the thrust direction (fig. 2). From momentum theory (ref. 1 or 5) the mean

total inflow velocity is given by

i 2 A2mean) -1/2_mean = _ sin _tpp -- _ CT (_T -_ (19)

where the first term on the right-hand side accounts for the component of the rotor translational

velocity resolved perpendicular to the tip-path plane and the second term on the right-hand
side is the induced inflow contribution, a function of )_mean. Equation (19) can be solved

iteratively by using the Newton-Raphson method as described in reference 6. The solution

usually converges in less than five iterations.

Computational Procedure

1. If wake position output is selected, calculate mean rotor total inflow velocity )lmean (eq. (19))

by using Newton-Raphson iteration as per Johnson (ref. 6)

2. If wake position output is selected, calculate classical rigid wake skew angle Xtpp (eq. (18))

3. Interpolate for envelope function coefficients A0, A1, and M from Tables of Coefficients A0,

Coefficients A1, and Coefficients M

4. Interpolate for shape function harmonic coefficients from Tables of Zeroth Coefficients,
Cosine Coefficients, and Sine Coefficients

5. Compute envelope function coefficient B by matching equations (6) and (7) for 6 --- 4r

6. Set blade azimuth position Cb = 0; set vortex segment index k to 1

7. Compute wake age 6 (eq. (11))

8. Compute phased wake azimuth position 6 (eq. (10))

9. Compute value for envelope function E (eq. (6))

10. Compute value for shape function G (eq. (8a) or (8b), depending on blade number)

11. Compute axial distortion Az (eq. (5)) and then wake distortion vector components

(eqs. (14))
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12. If wake position output option is selected, compute distorted tip vortex wake position

coordinates (eqs. (16))

13. Increase vortex segment index k by 1

14. Repeat steps 7 through 13 until 5 = 27r has been considered

15. Replace equation (Sa) or equation (Sb) in step 10 by equation (ga) or equation (gb),

respectively

16. Continue to repeat steps 7 through 13 until 5 = 47r has been considered

17. Replace equation (6) in step 9 by equation (7)

18. Continue to repeat steps 7 through 13 until 6 = (NrevNm + 1) A¢ has been considered

19. Increase blade azimuth position eb by A¢; reset vortex segment index k to 1

20. Repeat steps 7 through 19 until eb = 27r -- A(; has been considered
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Table I. Coefficients All

All for CT of

# 0.00257 0.00321 0.00386 0.0052 0.0064

0.0

0.05
0.1

0.2

0.3
1.0

0.0

0.0
0.0

0.0

0.0

0.0
0.0

0.07855
0.0432

0.O2582

0.0114
0.0044

0.0

0.08646

0.0508

0.03237
0.01342

0.00599

0.0

0.0949

0.0565
0.03782

0.0153

0.0077

0.0

0.1184
0.0672

0.0523

0.0186

0.0114
0.0

0.1280
0.07621

0.0603

0.0215
0.01509

0.0

0.0077

0.1378
0.0845

0.06356

0.0243
0.0194

0.0

p 0.0

0.0 0.0

0.05 0.0
0.1 0.0

0.2 0.0

0.3 0.0
1.0 0.0

Table II. Coefficients A1

A1 for CT of--

0.00257

-0.4010
-0.0340

-0.02744

0.009

0.009
0.0

0.00321

-0.4289

-0.0422

-0.03383

0.01123
0.01155

0.0

0.00386

-0.4610

-0.0505

-0.03855
0.0136

0.0136

0.0

0.0052

-0.6974

-0.0455
-0.03733

0.0085

0.0140
0.0

0.0064

-0.7555
-0.04102

-0.0344

0.00429

0.01483
0.0

0.0077

-0.7796
-0.0364

-0.03365

0.0
0.0155

0.0

# 0.0

0.0 0.0 -0.00964

0.05 0.0 0.024
0.1 0.0 0.01555

0.2 0.0 0.0135

0.3 0.0 0.005

1.0 0.0 0.0

Table III. Coefficients M

M for CT o_

0.00257 0.00321 0.00386 0.0052 0.0064 0.0077

-0.01079

0.02569

0.01705

0.0160
0.00681

0.0

-0.01182

0.0262

0.01793
0.0183

0.0088

0.0

-0.0132

0.0253
0.02172

0.023

0.0133

0.0

-0.0152
0.02301

0.0253

0.02703

0.01754
0.0

-0.01699

0.022

0.02819

0.0293
0.0228

0.0

i
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Table IV. Cosine Coefficients for First Wake Revolution With Nb = 2

It

0.0

0.05

OA

0.2

0.3

1.0

1

0.0

0.5431

0.4142

0.3083

0.3242

0.0

2

0,0

0.2909

0.2589

0,1744

0.2284

0.0

3

0.0

0.1203

-0.07906

-0.04839

0.09664

0.0

4

0,0

-0.2316

-0.2217

-0.1171

0.03871

0,0

(9",_)1 forn of--

5 6 7 8 9 10 11 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-0.06058 0.07023 0.09355 0.01095 -0.03325 -0.03265 0.01414 0.009648

-0.1085 0.1067 0.1453 -0.01663 -0.07197 -0.06598 0.01370 0.05507

0.02740 0.1225 " 0.01640 -0.05421 -0.06648 -0.04870 0.07158 0.05343

-0.05645 -0.04245 -0.01551 0.01150 0.05188 0.01872 0.03597 -0.009544

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table V. Cosine Coefficients for First Wake Revolution With Nb > 2

i

|

|
I

J

# 1

0,0 0.0

0.05 0.4868

0.1 0.4446

0.2 0.4478

0.3 [}.3029

1.0 0.0

2 3

0.0 0.0

0.1888 0.08617

0.3351 -0.03034

0.1910 -0.09552

0.2061 0.003451

00, 00,

(g',c)_ to, n of_

4 5 6 7 8 9 10 11 12

0,0 0,0 0.0 0.0 0,0 0.0 0.0 0,0 0.0

-0.1146 -0.02613 0.01188 0.03674 0.04598 0.02442 -0.01437 -0.02547 -0.01404

-0.2356 -0.1299 0.03328 0.07490 0.03498 0.01181 0.004139 -0.02021 -0.01559

-0.1554 -0.00009967 0.1185 -0.02189 -0.07070 0.02363 0.01329 0.008995 0.01249

-0.1682 0.03129 0.04551 0.01539 -0.03541 0.00141 0.03781 -0.02788 0.03380

0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0

Table VI. Cosine Coefficients After First Wake Revolution With N b = 2

]
i
i

i

0.05]0

0,1 I{]

0.2 I0

0.3 IO

LO_[ O_

m

1 2

0,0

524_ -0.008749

350_ 0.2351

168_ 0,2641

2001 0.2860

3 0,0

31 4
0,0 0.0

-0,1717 -0.06714

-0.07421 -0.1972

-0.03013 -0,1948

0.04542 0.06488

0.0 0.0

II
(gn,c)l for n of--

5 6 7 8

0.0 0.0 0.0 0.0

0.04930 0.03831 0.008287 -0.01164

-0.04632 0.05132 0.03535 0.01448

0.001859 0.1348 0.02723 -0.01891

-0.01604 -0.1009 -0.01310 -0.009694

0.0 0.0 02 0.0

9

0.0

-0.02388

0.04144

-0.04375

0.09275

0.0

10 11 12

0.0 0.0 0,0

0.009299 -0.01754 0.01962

-0.07089 -0.0184[ 0.06633

-0.07989 0.043451 0.06272

0.1009 -0.0149( -0.05008

0.0 0.0 0.0

Table VII. Cosine Coefficients After First W'ake Revolution With Nb > 2

tt

0.0

0.05

0.1

0.2

0.3

1.0

1

0,0

0.5339

0.3882

0.2967

0.2763

0,0

2

3.0

3.1284

_).3025

0.3333

D.3752

D.0

3 4

0.0 0.0

0,1186 -0.07566

0, 003824 - 0.1126

-0.02219 -0.2629

-0.1282 -0.3081

0,0 0.0

(g_,c)2 for n of--

5 6

0.0 0,0

-0.04552 0.01434

-0.05105 -0.1382

-0.04067 -0.001034

0.05504 0.03955

0.0 0.0

7 8 9 10 11 12

0.0 0.0 0.0 0.0 0.0 0.0

0.03269 0.03894 0.02758 -0.007546 -0.04274 -0.01740

-0.04453 0.04722 0.05040 0.06338 0.00389-0.03519

-0.01643 0.02821 0.005693-0.003044 0.05026 0.0499_

-0.04991 -0.006936 0.09419 0.0006683 -0.07517 0.0133.5

0,0 O.0 0,0 0.0 0.0 0.0
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v
Table VIII. Sine Coefficients for First Wake Revolution With N b = 2

(g_,s)l for n of--

# 1 2 3 4 5 6

o.o o.o o.o o.o o.o - o.o -o.o
0.05 0.009857 0.007551-0.007716-0.00322_-0.001285 0.0136_

0.1-0.06045-0.01903 0.09500 0.06268 0.001792-0.04711

0.2 0.08107 0.08467 0.08735 0.05106-0.04208-0.0465£

0.3 0.3316 0.09213 0.07402 0.1003 0.1084 0.06454

1.o oo o.o o.o o.o o.o o.o

7 8

0.0 0.0

0.01744 0.02074

-0.05932 0.02373

0.04012 0.1550

-0.03742 -0.04106

0.0 0.0

9 10 11 12

-o.o _.ii o.o --_._
-0.00828_ -0.03349 -0.03084 D.C

0.02441 0.00327: 0.00564_ D.C

0.03234 -0.08320 -0.1234 3£

-0.04077 0.05107 0.0531 3£

0.0 0.0 0.0 3£

Table IX. Sine Coefficients for First Wake Revolution With N b > 2

(gPn,s)2 for n o_

1 2 3 4 5 6 "7 8 9 10 11 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.05 0.02058 -0.03543 0.03062 0.03357 -0.006712 -0.02410 -0.02022 -0.003945 -0.0001208 0.02687 0.02241 0.0

0.1 0.06965 0.03261 -0.01534 -0.01918 -0.01597 0.01255 0.008898 0.01557 -0.001293 -0.01014 -0.01902 0.0

0.2 0.07193 0.06562 0.03024 0.01145 0.03581 0.03550 -0.01943 -0.04488 -0.04681 0.02824 0.083610.0

0.3 0.1011 0.09756 0.01537 0.07536 -0.01714 0.0028081-0.001947 0.01138 0.04197 -0.04666 -0.07447 O.O

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0

i

Table X. Sine Coefficients After First Wake Revolution With N b = 2

]!

(gn,s)l for n o_

_u 1 2 3 4 5 6 7 8 9 10 11 12

0.0 0.0 0.0 0.0 0.0 0.0 D.O 0.0 0.0 0.0 0.0 0.0 0.0

0.05 -0.02067 0.009907 0.01491 0.03377 -0.004170 0.01566 -0.05919 0.0131,5 0.007978 0.02085 -0.007146 O.O

0.1 0.073330.02085 0.009696 -0.01893 0.02804 0.03044 -0.05907 -0.03773 -0.01135 0.004707 0.02055 0.0

0.2 0.09529 0.04392 0.04967 -0.008706 -0.009263 0.05591 0.04773 0.02642 -0.01293 -0.01388 -0.07024 0.0

0.3 0.3782 0.1385 0.1193 -0.000525 0.1550 0.03596 --0.07089 -0.05001 -0.08760 0.08754 0.1484 0.0

1.0 0.0 02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table XI. Sine Coefficients After First Wake Revolution With Nb > 2

(g_,s)2 for n of--

1 2 3 4 5 6 7 8 9 I0 II 12

0.0 0.0 0.0 0.0 0.0 02 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.05 -0.01715 0.004771 0.01038 -0.01847 0.006052 0.008082 0.008414 -0.01660 -0.03608 -0.007696 0.01067 0.0

O.1 0.08746 0.04367 0.01236 0.01366 -0.02620 -0.01112 0.01808 0.005745 -0.001458 -0.02794 -0.04836 O.O

0.2 0.04328 0.06146 0.08146 0.04847 0.05215 0.02386 -0.06545 -0.06355 0.03739 -0.002374 -0.01246 0.0

0.3 0.1683 0.09183 0.1149 -0.008674 0.003764 0.03465 -0.02036 -0.05536 -0.06667 -0.03945 -0 0596810.0

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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16. Helicopter Noise Prediction
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16.1 Rotor Tone Noise (RTN) Module

Donald S. Weir and Stephen J. Jumper

Lockheed Engineering & Sciences Company

Introduction

Two types of noise generated by a rotor in flight are discrete tone noise and broadband
noise. Rotor tone noise consists of two contributions: first, thickness noise, which is created

by the displacement of the fluid by the rotor blade, and second, the loading noise due to the

accelerated forces on the fluid corresponding to the variation of blade loading. The purpose

of the Rotor Tone Noise (RTN) Module is to predict analytically the loading and thickness
tone noise for a helicopter main rotor, helicopter tail rotor, or rotor from any other multirotor

rotorcraft in flight.

To compute rotor loading and thickness noise, the RTN Module solves the governing

equation of Ffowcs Williams and Hawkings, given in reference 1, by using the full-surface

formulation and solution method of Farassat, given in reference 2, and presented as the second

Farassat method in reference 3. Quadrupole source terms in the governing equation are
neglected. The rotor is assumed to fly in hover or at forward translational speeds with the

blade tip speed always remaining subsonic. Shock noise, turbulence, and other broadband

noise mechanisms are neglected. The complete blade surface is modeled, and aerodynamic
forces distributed over the entire surface are employed such that the acoustic source distribution

covers the entire blade surface. The rotor blades are allowed to undergo unsteady motions due

to blade rigid flapping about a hinge, elastic flapwise bending, collective and cyclic pitch, and
elastic torsional twist. However, the blade motions, as well as blade loadings, are assumed

to be periodic over one rotor revolution, and blade lead/lag motion is neglected. The rotor
reference plane for the analysis is the hub plane, defined as the plane perpendicular to the

rotor axis of rotation. The RTN Module is designed to make use of bladc motion and blade

aerodynamic loading information as provided directly by the Rotor Loads (RLD) Module and

the Rotor Rigid Dynamics (RRD) Module, in conjunction with the Blade Section Aerodynamics
(RBA) Module and the Blade Section Boundary-Layer (BLM) Module, which are documented

in sections 10.3 and 10.4 of reference 4, or in conjunction with the Improved Blade Section

Boundary-Layer (IBL) Module and the Improved Blade Section Aerodynamics (IBA) Module,

these two being documented in reference 5. However, the required inputs to the RTN Module
can be provided from any other user-supplied source of information. In particular, the RTN

Module is designed to allow alternate use of externally obtained blade aerodynamic data and

optional elastic blade motion data. At specified observer locations fixed with respect to the
rotor hub, the resulting tone noise is provided by the RTN Module as sound pressure levels,

mean-square acoustic pressures, and complex Fourier coefficients of total acoustic pressure as

functions of frequency. The tone noise predicted by the RTN Module is in a format suitable
for subsequent input to the Tone Propagation (PRT) Module, documented in section 12.2 of

reference 4, for propagation to far-field ground observers.

Symbols

A0

A1

r

Ajm, Akm

A5

collective pitch angle at blade root, rad

lateral cyclic pitch angle relative to hub plane, tad

coordinate transformation matrix for blade flapping

coordinatc transformation matrices for blade rotation about pitch change axis

coordinatc transformation matrix for bladc rotation in hub plane

16.1-1



ao

al
a2

a3

aN.J2

B1

b

bl

b2

53

bNml2

@

C

coo

t)= o

f'

fo

h

J

J

k

l

M

M:

Mh

Ms

m

Nb

Nm

complex Fourier coefficient of flapping angle relative to hub plane t)er

equation (23), rad

coning angle, rad (cq. (23))

longitudinal first harmonic flapping relative to hub t)lane (cq. (23)), ra(l

longitudinal second harmonic flapping relative to hub plane (eq. (23) and

table II), rad

longitudinal third harmonic flapping relative to hub plane (table II), ra(t

longitudinal (Nm/2)th harmonic flapping relative to hut) plane (eq. (23) and

table II), rad

longitudinal cyclic pitch angle relative to hub plane, rad

blade tip chord length (fig. 2), re R

lateral first harmonic flapping relative to hub plane (cq. (23)), rad

lateral second harmonic flapping rclativc to hub plane (eq. (23) and

table II), rad

lateral third harmonic flapping relative to hub plane (table II), rad

lateral (Nm/2)th harmonic flapping rclativc to hub plane (eq. (23) and
table II), tad

local blade surface viscous shear stress from skin friction due to fluid flow, re q

local blade surface pressure due to fluid flow over blade, Pl - P_q ,req

nondimensional speed of sound in flight ambient air, re _R

speed of sound in ambient air at flight altitude, m/s (ft/s)

functional representation of surface of blade

frequency, Hz

blade passage (i.e., fundamental) frequency -NbM_ c°c , Hz

local blade thickness at blade tip (fig. 2), re R

Jacobian of r/l, r/3 with respect to _1, _2

time increment index (eq. (39))

exponent for establishing time step size and used for fast Fourier transform,

defined in equation (40)

force per unit area exerted by blade surface on fluid, re p_2R2

Mach number of point on blade

rotorcraft translational flight Mach number

rotor hover tip Mach number

blade section Mach number

azimuthal harmonic number

number of rotor blades

number of azimuthal harmonics (establishes azimuthal resolution per rotor

revolution of data in input tables and must have value equal to 2 raised to

nonzero integer power)

i
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v

N,_

n

P

Poo

P

PT

PL

q

R

Rx

r

S

Tim

t

V

V

Xi

Y;

number of acoustic pressure harmonics desired (must have a value of 2 raised

to a nonzero integer power)

number of time points in single blade acoustic time history (establishes

azimuthal step size of 2_" rad for computations; must have value of 2 raised_t
to nonzero integer power)

acoustic pressure harmonic number

blade surface normal unit vector

normal unit vector with respect to deflected blade surface

local blade surface pressure, _,
Pm':R_ re pQ2R2

blade surface local static pressure, N/m 2 (lb/ft 2)

free stream ambient static pressure, N/m 2 (Ib/ft 2)

acoustic pressure, re pc2o¢

acoustic pressure due to thickness noise, re pc2oo

acoustic pressure due to loading noise, re pc2_

acoustic mean-square pressure, re p2c4

onset flow dynamic pressure at rotor blade section in flight, N/m 2 (lb/ft 2)

rotor radius, m (ft)

hub-to-observer distance (i.e., spherical observer radius), re R

point source-to-observer distance (i.e., magnitude of g), re R

point source-to-observer position vector (i.e., radiation vector), re R

blade surface area, re R 2

name assigned to transformation of equations (28), less the Vi_" terms, and used
in equations (56) to (61)

1
observer time (i.e., reception time), re F_

unit vector tangent to local blade surface

unit vector tangent to local deflected blade surface

rotorcraft translational velocity, re mR

component of rotorcraft translational velocity vector (eq. (17))
i -- 1, 2, and 3, re QR

rotorcraft translational velocity vector, re QR

source velocity, re QR

coordinates in hub-fixed Cartesian coordinate system, re R

observer coordinates in hub-fixed Cartesian coordinate system, m (ft)

nondimensional observer position vector in hub-fixed Cartesian coordinate
system, re R

observer position vector in hub-fixed Cartesian coordinate system, m (ft)
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x

xi

?

Az

_dp

Ac_

observer position (eq. (8)), re R

coordinates in medium-fixed Cartesian coordinate system, re R

observer position vector in medium-fixed Cartesian coordinate system, re R

source position vector in hub-fixed Cartesian coordinate system, re R

source position vector in medium-fixed Cartesian coordinate system, re R

blade flapwise elastic bending displacement increment, re R

local blade section angle of attack, rad

rotor hub plane angle of attack, rad

blade elastic torsional twist increment, tad

blade rigid flapping angle relative to hub plane per equation (23), rad

rotor azimuth angular resolution implicit in input harmonic tables defining blade
flapping, blade bending, and blade flow conditions (see section "Input"),
_ 27r

= :_-mm' rad

rotor blade flapping hinge radial offset from center of rotor, re R

blade surface position (eq. (8)), re R

undeflected blade surface coordinates in blade-fixed rotating Cartesian

coordinate system, re R

deflected blade surface coordinates in blade-fixed rotating Cartesian coordinate

system, re R

deflected blade surface abscissa in hub-fixed rotating Cartesian coordinate

system, re R

deflected blade surface radial (i.e., spanwise) coordinate in blade-fixed rotat-

ing Cartesian coordinate system, re R

deflected blade surface ordinate in blade-fixed rotating Cartesian coordinate

system, re R

blade surface position vector (eq. (6)), re R

observer polar directivity angle, deg

blade angle of rotation about blade pitch change axis (measured from hub plane,

positive for blade leading edge tilted up), rad

blade rigid pitch angle relative to hub plane (eq. (20)), positive for blade leading

edge tilted up, rad

blade surface spanwise coordinate in blade-fixed elliptic coordinate system, re R

blade surface chordwise coordinate in blade-fixed elliptic coordinate system, rad

blade surface chordwise coordinate in blade-fixed elliptic coordinate system,

fraction of 21r rad

air density at flight altitude ambient conditions, kg/m 3 (slug/ft 3)

blade surface viscous shear stress, re p_2R2

source time (i.e., emission time; r = ¢), re

observer azimuthal directivity angle, deg
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r

_t

¢

¢0

Cb

12

¢

Subscripts:

b

I

i

J

k

L

m

n

r

ret

T

rigid twist angle of undeflected blade in figure 4(b); measured from hub
plane, positive for blade leading edge tilted up, rad

rotor blade azimuth angle in hub plane; ¢ equals T (shown in figs. 4(a)
and 5), rad

initial azimuth angular position of reference blade, rad

initial azimuth angular position of additional blades, rad

rotor rotational speed, rad/s

chordwise position on blunt blade tip as shown in figure 2, re R

related to blade

related to blade flapping

component along ith axis or ith component

component along jth axis or jth component, also time step index (eq. (39))

component along kth axis or kth component

loading

component along mth axis or ruth component

normal

in radiation direction or related to blade rotation about blade pitch change axis

evaluated at retarded (i.e., source) time

thickness

The absence of a subscript on a quantity that normally has a subscript indicates the magnitude
of the quantity.

Superscripts:

derivative with respect to source time

Fourier transformed (i.e., Fourier coefficient)

* complex conjugate

vector

unit vector

Input

The computation of rotor tone noise by the full-surface analysis employed by the RTN
Module requires a substantial amount of input, including descriptions of the overall rotor

flight conditions, blade geometry, blade dynamics, blade aerodynamics, observer locations, and

computational grids. This input is provided to the RTN Module by user parameters, five to

seven tables (depending on input options used), and various data arrays. Figures 1 through 5
indicate the sign convention of many of the input quantities. Sign conventions of other input

quantities are described in the following discussion or in the list of inputs.

The first set of inputs are user parameters. The user parameters provide inputs of global

rotor characteristics, rotor flight conditions, blade pitch control angles, and analysis resolution
limits. Specific clarification at this point of the purpose of two of these parameters, ¢0 and Nt,

16.1-5



isuseful.Userparameter'_/'0specifics the blade azimuth position at which to begin calculations.

This parameter is particularly useful, for example, in the analysis (by two separate executions
of the RTN Module) of two individual rotors from the same vehicle, in which ttle second rotor

is azimuthally phased by the amount _b0 relative to the first rotor. For user parameter Nt.,

the azimuthal (i.e., nondimensionalized temporal) spacing employed in the analysis is provided

implicitly as 2rr/Nt rad.

Blade surface geometry is provided to the RLD Module by the Blade Shape Table, from

either the Blade Shape (RBS) (ref. ,i) or the hnproved Blade Shape (IBS) (ref. 5) Module. In
this and several other input tables, the blade chordwisc coordinates arc relative to an elliptic

coordinate system, which is defined fully in the Propeller Analysis System (PAS) and the RBS
Module theoretical descriptions given in sections 10.1 and 10.2 of reference 4. The surface
ordinates and abscissas in the Blade Shape Table describe the undeflected blade shape; that

is, the input blade orientation with respect to the hub plane accounts for rigid blade twist
but does not account for blade pitch, flapping, elastic bending, or elastic twist, deflections.

The input ordinates and abscissas in the table are with respect to the blade-fixed rotating

coordinate system, illustrated in figure 4. The user must ensure that the blade section geometry
in the Blade Shape Table is established such that the axis r/2 is coincident with the blade pitch

change axis because of assumptions applied in geometric transformations employed by the RTN
Module, detailed in the section "Method."

Specification of blade rigid flapping is required. Blade rigid flapping angles in complex
Fourier coefficient form are input to the RTN Module by the Flapping Angle Table from the

RRD Module. Blade rigid flapping angle is measured from the hub plane, positive up. Table I

presents the relationship between the array sequence for complex Fourier coefficients _(m) (i.e.,

storage sequence in the input Flapping Angle Table) and the theoretical complex Fourier series

sequence (right-hand side of eq. (23)) for _(m) employed. If the user possesses blade rigid
flapping information expressed in conventional sine-cosine series form, as sccn in the center of

equation (23), then the input Flapping Angle Table can be user generated with this information

by referring to table II, which indicates the values of the complex Fourier coefficients _(rn)
needed in the Flapping Angle Table as functions of conventional sine-cosine series flapping

coefficients (center of eq. (23)). Note that the azimuthal resolution implicit in the flapping
data contained in the Flapping Angle Table is given by A_) = 27r/Nm tad, where Nm is the
total number of azimuthal harmonics, including the zeroth harmonic, (i.e., number of complex

Fourier coefficients) contained in the table.

To refine the required input descriptions of blade rigid flapping and pitch, both blade

flapwise elastic bending displacement and elastic torsional twist information (if available) can

be provided to the RTN Module by the Blade Bending Table. Note that this table is an optional

input, and the RTN analysis can be performed without this blade elastic deflection data. If
employed, the Blade Bending Table is user created from any available outside source of the
data. The table contains complex Fourier coefficients of the blade incremental displacement

(perpendicular to the hub plane and positive up) resulting from flapwisc elastic bending of
the blade. The table also contains complex Fourier coefficients of the incremental change in

blade pitch (positive for the blade leading edge tilted up) resulting from elastic twisting of the

blade. For a given spanwise location, the relationship between input table storage sequence
for complex Fourier coefficients of elastic bending displacement Az({1, m) an_d elastic torsional

twist A--_(_I, m) and the theoretical complex Fourier series sequence for Az(_l, m) (cq. (24))

and Ac_(_l, rn) (eq. (22)) is analogous to that for the rigid flapping data as indicated in table I.
The azimuthal resolution implicit in the data in the Blade Bending Table must match that of the

data in the Blade Flapping Angle Table; that is, the resolution is given by A¢ = 27r/Nm rad,

where Nm is the total number of azimuthal harmonics, including the zeroth harmonic, (i.e.,

number of complex Fourier coefficients each for the elastic flapping and elastic torsion) contained

in the input table for each spanwisc location.

For the rotor in trimmed flight, local flow conditions at each blade section at any location on

the rotor disk (i.e., for each blade azimuthal location during one rotor revolution) for the blade
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must be provided. This information is input to the RTN Module via the Blade Motion Table

from the RLD Module. Specifically, this input table provides, for each spanwise coordinate,

the blade section angle of attack and blade section Mach number in terms of complex Fourier
series coefficients; therefore, an azimuthal history in the frequency domain is supplied. Blade

section angle of attack is positive for the blade leading edge tilted up. All local blade section

Mach numbers are less than one, consistent with assumptions of the RTN Module analysis. For

a given spanwise location, the relationship between input table storage sequence for complex
Fourier coefficients of angle of attack _(_1, m) and Mach number Ms (_1, m) and the theoretical

complex Fourier series sequence for _(_1, m) (eq. (45)) and Ms(_l, m) (eq. (46)) is analogous to

that for the rigid flapping data as indicated in table I. The azimuthal resolution implicit in the
data in the Blade Motion Table must match that of data in the Blade Flapping Angle Table;

that is, the resolution is given by A¢ = 27r/Nrn rad, where Nm is the total number of azimuthal

harmonies, including the zeroth harmonic, (i.e., number of complex Fourier coefficients each
for angle of attack and Mach number), contained in the input table for each spanwise location.

Blade surface aerodynamic loading information must be provided to the RTN Module by

using one of two input paths, identified as the nonempirical input path and the empirical input

path. The nonempirical input path employs input tables supplied by the RBA Module, IBA
Module, BLM Module, or IBL Module. The empirical input path employs user-created input
tables.

Using the nonempirical input path, aerodynamic pressure distribution on the blade surface

(suction being negative) is required input to the RTN Module by the Local Surface Pressure
Table, obtained from either the RBA or the IBA Module. Additionally, if the nonempirical

input path is used, blade surface viscous shear stress (tangent to the local surface and positive

if directed toward the blade trailing edge) can be input to the RTN Module by using the Local
Skin Friction Table, obtained from either the BLM or the IBL Module. Note that input of the

Local Skin Friction Table is optional. Viscous shear stress input data is useful for maximizing

the accuracy of the noise prediction by the RTN Module, but the analysis can be performed

without these data. In both the Local Surface Pressure and Local Skin Friction Tables, the
blade chordwise coordinates are relative to the elliptic coordinate system defined in section 10.2

of reference 4. Note that in usage, the Local Surface Pressure and Local Skin Friction Tables

are tied to the Blade Motion Table as follows: The Blade Motion Table provides the required

angle of attack and Mach number information (at a given location on the rotor disk) which
is used to extract the proper pressure or viscous shear stress values from the Local Surface
Pressure and Local Skin Friction Tables.

By using the empirical input path, the user has the opportunity of supplying blade pressures
or shear stresses obtained empirically or from analyses other than those of ROTONET modules.

If the empirical input path is employed, empirical blade surface pressure input to the RTN

Module is required and is provided by the Rotor Pressure Data Table, built by the user,

containing a time history (over one rotor revolution) of the surface pressure existing at each
point on the blade surface, with suction pressure being negative. Optionally, within the

empirical input path, externally obtained blade surface viscous shear stress data, if available,
can be input to the RTN Module via the Rotor Shear Stress Data Table. If provided, this z

table contains a time history (over one rotor revolution) of viscous shear stress on the blade
surface acting tangent to the local surface, positive toward the blade trailing edge. In either of

the empirical data tables, the blade chordwise coordinate is relative to the elliptic coordinate
system defined in section 10.2 of reference 4.

Observer positions relative to the rotor hub must be provided by using one of two input

options. First is the spherical input option, by which all observer positions are specified in hub-

fixed spherical coordinate format. Employing the spherical input option, one or more observers

are positioned on a sphere, centered at the hub and having a radius given by a user parameter.

In figure l, the location of each observer on the sphere is defined by polar and azimuthal

directivity angles, which are provided as input via the Observer Directivity Angle Arrays. Use
of the spherical input option is necessary if the noise predicted by the RTN Module is to be
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subsequently submitted to the Tone Propagation (PRT) Module, documented in reference 4,
for propagation to the ground. Second is the Cartesian input option, by Which all observer

positions are specified in hub-fixed Cartesian format. Employing the Cartesian input option,
the dimensional Cartesian components of each observer position X (fig. 1) are input to the RTN

Module via the Observer Table, built by the user. If the Cartesian option is employed, the noise

predicted by the RTN Module cannot be submitted to the PRT Module for propagation. The

Cartesian input option is intended for situations in which the predicted noise is to be mapped

at a specific locus of observers in space, such as the location of the fuselage surface of the
rotorcraft, for example, and subsequent propagation to the ground is not of interest.

For either observer input option and regardless of actual rotor rotation direction, all observer

locations are always input as if the rotor rotation is right-handed. Via an input rotation flag,
sclectable by the user, the RTN Module properly accommodates left-hand rotor rotation cases

during calculations, in a manner transparent to the user.

Finally, the blade surface spanwisc and chordwise computation grids must be input. The
coordinates in the chordwise grid are relative to the elliptic coordinate system defined fully in
the theoretical descriptions of the propeller analysis system (PAS) and the RBS Module given

in reference 4. These grids are provided by the Independent Variable Arrays.

The user parameters, tables, and data arrays input to the RTN Module are as follows:

A0

A1

B1

Mh

Nb

N_

Nt

R

R_

C_(Ip

E

P

¢o

User Parameters

collective pitch angle at blade root (eq. (20)) (positive for blade leading edge

tilted up), tad

lateral cyclic pitch angle relative to hub plane (eq. (20)), tad

longitudinal cyclic pitch angle relative to hub plane (eq. (20)), rad

rotorcraft translational flight Mach number

rotor hover tip Mach number

number of rotor blades

number of acoustic pressure harmonies desired (must have value equal to 2

raised to nonzero integer power)
T

number of time points desired in single blade acoustic time history (establishes

azimuthal step size of _ tad for computations; must have value equal to 2

raised to nonzero integer power and cannot be less than 4Ns)

rotor radius, m (ft)

hub-to-observer distance (i.e., spherical observer radius, used only for spherical

input option), re R

rotor hub plane angle of attack (positive for hub leading edge tilted up), rad

rotor blade flapping hinge radial offset from center of rotor, re R

air density at flight altitude ambient conditions, kg/m 3 (slugs/ft 3)

initial azimuth angular position of reference blade, rad

rotor rotational speed, rad/s
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_2

_1(_1,_2)

03(_1,_2)

Blade Shape Table

[From RBS or IBS]

blade spanwise coordinate, re R

blade chordwise elliptical coordinate, rad

undeflected blade surface abscissa in blade-fixed rotating coordinate system
(fig. 4(b)), re R

undeflected blade surface ordinate in blade-fixed rotating coordinate system

(fig. 4(b)), re R

m

_(m)

Blade Flapping Angle Table

[From RRD]

azimuthal harmonic number

complex Fourier coefficients of flapping angle (positive up from hub plane

(tables I and II)), rad

m

AZ(_I, m)

Aa(_l, m)

Blade Bending Table

[Optional]

blade spanwise coordinate, re R

azimuthal harmonic number

complex Fourier coefficients of blade flapwise elastic bending displacement

increment perpendicular to hub plane (positive up (table I)), re R

complex Fourier coefficients of blade elastic torsional twist increment

(positive for blade leading edge tilted up (table I)), rad

m

_(_1, m)

Ms(_l, m)

Blade Motion Table

[From RLD]

blade spanwise coordinate, re R

azimuthal harmonic number

complex Fourier coefficients of blade section angle of attack (positive for

blade leading edge tilted up (table I)), rad

complex Fourier coefficients of blade section Mach number (ta-
ble I)

v

_z

Ms

Cp(_l, _2, _, Ms)

Local Surface Pressure Table

[From RBA or IBA; required only for nonempirical input path]

blade spanwise coordinate, re R

blade chordwise elliptic coordinate, tad

blade section angle of attack, rad

blade section Mach number

local blade surface pressure due to fluid flow, Pl - Poc (i.e., negative for
q

suction acting on blade surface), re q
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E1

_2

M._

C:(6, _2, ,_, M_)

Local Skin Friction Table

[From BLM or IBL; optional for use with nonempirical input path only]

blade spanwise coordinate, rc R

blade chordwise elliptic coordinate, rad

blade section anglc of attack, rad

blade section Mach number

local blade surface viscous shear stress from blade skin friction due to fluid

flow (positive for shear directed toward blade trailing edge), re q

_2

T

P(_I, _2, T)

T

o(6,_2, _)

0

¢

Rotor Pressure Data Table

[Required only for empirical input path]

blade spanwise coordinate, rc R

blade chordwise elliptic coordinate, rad

1
time at source, re

empirical blade surface pressure, _ (i.e., negative for suction on
p_R"

local surface due to fluid flow), re p_'_2R2

Rotor Shear Stress Data Table

[Optional for use with empirical input path only]

blade spanwise coordinate, re R

blade chordwise elliptical coordinate, tad

1
time at source, re

empirical blade surface viscous shear stress from blade skin friction due to

fluid flow (positive for shear directed toward blade trailing edge), re p_2R2

Observer Directivity Angie Arrays

[For spherical input option only]

observer polar directivity angles (fig. 1), deg

observer azimuthal directivity angle (fig. 1), deg

2

Observer Table

[For Cartesian input option only]

observer position vector relative to hub-fixed Cartesian coordinate system

(fig. 1, table actually stores components X_, where i = 1, 2, and 3, of each

observer position), m (ft)

Independent Variable Arrays

blade spanwise coordinates, 0 < _1 _< i, re R

blade chordwise elliptic coordinates (specified as fractions of 2n, in range

0<_ < i)
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Output

The RTN Module generates two possible sets of outputs. For a given analysis, the set of
outputs actually generated depends on which observer input option (described in the section

"Input") is in effect. Both sets of output are described separately in the following paragraphs.

If the spherical input option is in effect, spectra of mean-square acoustic pressure are
generated at each observer position. These spectra are in three separate output tables, one

each for rotor total noise, rotor loading noise, and rotor thickness noise. In each of these three

tables, the values of observer directivity angles are identical to the input values. For a left-hand
rotor rotation, in which the observers are converted internally by the RTN code to left-hand

coordinates for proper calculation in a manner transparent to the user, the directivity angles

are reconverted to the original right-hand input convention for insertion in the three output
tables. Each output spectra table is in a format suitable for subsequent input to the PRT

Module for noise propagation.

For the aforementioned spectra outputs, complex Fourier coefficients of acoustic pressure

are given with the exp(-iflt) time harmonic convention in the RTN Module, such that all
spectra are understood to be two-sided with _(-n, 0,¢)= p*(n,0,¢). With this convention,

the mean-square pressure {p2) is 2_* for each harmonic.

If the Cartesian input option is in effect, the RTN Module generates an output member

rather than a table. This member provides, at each observer location, the time history of rotor

total acoustic pressure and is identified as the Total Acoustic Pressure Time History.

Regardless of the choice of observer input option in effect, the RTN Module generates, at

each observer location, spectra of sound pressure level (i.e., SPL in dB) corresponding to rotor

total noise, rotor loading noise, and rotor thickness noise. These spectra are provided to aid in

results interpretation. Thus the SPL spectra are printed only and are not generated as output
tables or output members.

The tables and data members generated by the RTN Module are as follows:

0

¢

<p2>(f,,o, ¢)

Total Mean-Square Acoustic Pressure Spectrum Table

[Output only. for spherical input option]

noise harmonic frequencies (n = 1, 2,..., Ns), Hz

observer polar directivity angle (fig. 1), deg

observer azimuthal directivity angle (fig. 1), deg

total mean-square acoustic pressure, re p2c4

0

¢
2 t(pL> o,¢)

Loading Mean-Square Acoustic Pressure Spectrum Table

[Output only for spherical input option]

noise harmonic frequencies (n = 1, 2,..., Ns), Hz

observer polar directivity angle (fig. 1), deg

observer azimuthal directivity angle (fig. 1), deg

loading mean-square acoustic pressure, re p2c4
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Thickness Mean-Square Acoustic Pressure Spectrum Table

[Output only for spherical input option]

noise harmonic frequencies (n = 1, 2,..., Ns), Hz

observer polar directivity angle (fig. 1), deg

observer azimuthal directivity angle (fig. 1), deg

thickness mean-square acoustic pressure, re p2c4

Total Acoustic Pressure Time History

[Output only for Cartesian input option]

blade passage frequency (i.e., fundamental frequency), Hz

time history of total acoustic pressure, re pc 2 (each time history is a series of Nt

acoustic pressure values implicitly a function of observer time t, re _, in sequence

corresponding to t = ¢0, ¢0 + (1/Nt), _bo + (2/Nt), . . . , ¢0 + [(Nt - 1)/Nt]; one

time history per input observer location per output record with output records

implicitly in sequence corresponding to input sequence of observer locations )_P)

Method

Acoustic Formulation

Blade tone noise can be predicted by using the full-surface blade formulation found in

reference 3 with a correction for unsteady blade motions. Beginning with the Ffowcs-Williams-

Hawkings equation (inhomogeneous acoustic wave equation with multipole source terms), the

quadrupole term is discarded and nondimensionalized quantities are used to give

O 002Pot2 c2V2p = [v.lVfl _(f]- _[lilVfl 5(f] (1)

Here function f = f(y, T) = 0 describes the surface of the blade with f > 0 outside the blade;
p, the acoustic pressure; Vn, the normal velocity of the surface of the blade; and li, the force

intensity (force per unit area) acting on the surrounding fluid at the surface of the blade. The
repeated subscript convention is used to denote the scalar product of two vectors.

The first term on the right is the monopole source term, which has become known as the
thickness noise term in aeroacoustics because it results from the blade having a finite thickness.

The sound generated by the fluid motion normal to the blade as the blade travels is described

by this term. The second term is the dipole source term, known as the loading noise term in
aeroacoustics. It describes the sound generated by the local aerodynamic force per unit area

acting on the fluid at the surface of the blade. This local surface stress includes the surface

pressure and the viscous shear stress.

The spatial derivative in the loading noise term can be converted to a time derivative
as described by Farassat (ref. 2). Equation (1) can then be solved with a Green's function

to obtain equation (12) in reference 3 for subsonic blade motion, which is given in terms of

nondimensionalized quantities as follows:

1 0 dS+ ff=o[r2(l_Mr)]retdS47rc2p(x't)= c-_ ff=O [,'(1[con_+t,-Mr)]]ret lr
(2)
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Separating thickness and loading noise gives

0

4rrC2pT(_.,t)= --_ ff=o [r(1 vifii ]- Mi_)J ret
dS (3)

and
10

4_re2pL(_.,t)=c-_ f]=o[r(1 lii'i_ Mii. )] dS + _=o[r2(1 l_i- ]ret - M#'dJ

A position on the blade surface in three dimensions is given vectorially by

dS (4)
ret

_=[_1(_1,_2),_1,_3(_1,_2_

where the items in the brackets are components 7//, for i = 1, 2, or 3. Thus, the differential
surface element area can be written in terms of the spanwise and chordwise parameters by

using a Jacobian,
dS = J d_l d_2 (5)

where the Jacobian of rh, 773with respect to _2, (2 is given by

0(f/l, _3)--I 03 Oq_2g- 0(_1,_2) _l x (6)

The spanwise and chordwise parameters (1 and (2 are relative to an elliptic system described

fully in the descriptions of the Propeller Analysis System and the RBS Module in refcrence 4.
Note that (2 in radians is obtained from the normalized input quantity (_ as (2 = 2;r(_. In
order to solve these noise equations, it is necessary to write them in terms of r only. This is

done with the retarded time relation

r=t_Mhr (7)

which when differentiated yields

O.Or. [ 1 0t] IS,, - Y/ = (1--Mr) 0_ _,_ re_

The derivatives are taken inside the integrals, and the integrals are evaluated with the following

relations:

_r
-- = -vif'i = -cMr (9a)
Or

0____!i = -_jvj_i - vi (9b)
OT r

• .Ovi
r_ _ + (vii'i) 2 - vivi] (9c)OT cr

to obtain

c =0 r(1 --_Iii_i) 2 dS+ Lr_i--M_/)2] dSret =0 ret

(10a)
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and

4_rc2pr(i, t) = c ff=o

0
7.2(1 _ Mii.i)a

(10b)

Equation (10a) is the same as equation (16a) in reference 3 but in nondimensionalizcd form.
Equation (10b) is the same ms equation (16b) of reference 2 except for two additional terms in

equation (10b) that account for thc unsteady motions of the blades and equation (10b) is in
nondimensionalizcd form.

The fiiml step in solving equations (10) is to describe the quantity Li. The force per unit
area of the blade acting on the surrounding fluid is given by

li = Ph,: + ati (11)

so that

ii = Phi + PThi + &ti +aii (12)

The loading noise becomes

/,{ 1 }+ + - (Pa, +,,idM d dS
=0 r2(1 - Miri) 2 ret

+ - ff=o [r2(11c1 _ _Iiri) 3 (pg_i#i _Fcr_i_i)(r]_[i#i _l_c_,i# i _t_c_]i_,i)]
dS (13)

rot

and equation (10b) for thickness noise remains the same.

Equations (10) describe the entire surface of the blade if it is curved across the tip. If,

however, the tip has a flat surface (fig. 2), the differential surface area as given in equation (5)
is undefined. In that case, separate noise integrals at the tip are required which use the

differential area for the blade section at _1 = 1. Writing the integrals for the tip in terms of (2

gives

c r(1 --_/[iT"i) 2 retr/l(l'{2)-""_2 g2

fO 2_ [ liT'i - lil_]i ] .... 0'13(1,_2) a,

i f2r[lir,(r1_Iir__+_c_M_ri=cMiMi)] Or/3(l,_2)

+ c J0 [ r2(1 - M,_,) 3 J rotr/l(l'_2) 0_2 d(2

7Mihi(rJtIig'i+cMiri-cMiMi) _Iifii_+_M, ni] .... O,la(1,(2)d.

r2(1 - Mini) 3 + - M,e,)=jretr_l(l'_2]T _2 (14)

The surface normal and tangential unit vectors are also defined differently on the blunt tip.

The definitions for these unit vectors on the tip and main surface of the blade are given in the

next section. The assumption is made that the surface loads for the most outboard spanwise

blade section provided in input tables can be used for the loads on the tip.
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Coordinate Systems and Geometry

First in this section are descriptions of the Cartesian coordinate systems involved in the

analysis. Second is a description of observer geometry. Third is a description of the source
position geometry and the multistep transformation to obtain it. Fourth is a description of the

radiation geomctry, and last is a description of unit vectors on the blade surface.

Coordinate system descriptions. There are three Cartesian coordinate systems to consider.
First is the hub-fixed system with axes )(4. The acoustic predictions are ultimately desired and

obtained with respect to the hub-fixed system as discussed in the subsection "Computational

Considerations." Figure 1 illustrates this system and the directivity angles that locate the
observer in it.

The second system is one which is fixed to the undisturbed fluid medium and consists of

axes xi. In this, the medium-fixed system, the acoustic predictions are actually calculated.
As shown in figure 3, initially (t = 0) the hub-fixed and medium-fixed systems are coincident.

Then the hub-fixed system translates at rate V with respect to the medium-fixed system.

The third Cartesian system is the blade-fixed rotating system, with axes _i, which is

illustrated in figure 4. The )(3 and rl3 axes, perpendicular to the rotor hub plane, remain
coincident. Initially (T = 0) the r/2 axis (spanwise and assumed coincident with the blade pitch

change axis) is aligned with the X1 axis. The blade-fixed system rotates about the rl3 (or)(3)
axis at rate f_. At any instant of time, the r]2 axis is rotated azimuthally to position _- with

respect to the X1 axis. Thus at time t = T = 0, the blade axis 772 is coincident with both
the X1 and xl axes, and the r]3, X3, and x3 axes are coincident. The blade-fixed rotating

system is used to describe the position of the source on the blade as it rotates and undergoes
unsteady motions. Hence, it is also identified as the source coordinate system. Surface stresses

and vector quantities are originally obtained in this source coordinate system, but they must

subsequentially be transformed to the medium-fixed reference frame for performing actual noise
calculations.

Because the acoustic calculations are made in the medium-fixed coordinate system, it is first

necessary to transform observer position and source position to this system. These geometric

considerations are presented in the rest of this subsection.

Observer position. It is necessary to convert the observer position from the hub-fixed
reference frame to the medium-fixed reference frame. As illustrated in figure 5, the hub-

fixed coordinate system and the hub-fixed observer translate with respect to the medium-fixed

coordinate system at rate V. Thus at sound reception time t, the position of the hub-fixed
observer relative to the medium-fixed system is given by

= 2 + 17t (15a)

or with index notation for the ith vector component,

xi = Xi + _t (15b)

where J( is the observer position vector relative to the hub-fixed system as shown in figures 1

and 5. If the observer position is input in spherical coordinate format, the corresponding

nondimensionalized Cartesian observer position is given by

-_ = (-Rz cos O, Rx sin 0 sin ¢, -Rz sin 0 cos ¢) (16a)

where the terms in parentheses are the components )(4, for i = 1, 2, and 3. If the observer

position is input directly in Cartesian format, it must first be nondimensionalized to give

X' (i = 1,2, and 3) (16b)2 = = -g
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Thevelocityofthehub-fixedsystemwith respectto themedium-fixedsystemin equation(15a)
(i.e.,therotorcrafttranslationalvelocity)isgivenvectorallyby

MI -MI ) (17)= cos  ap, 0, sin

where the terms in parentheses are the components Vi, for i = 1, 2, and 3.

Source position overview. The source position, that is, the position of a specific point on the

blade surface, must be obtained relative to the medium-fixed reference frame at source time r.

This requires a lengthy transformation from the blade-fixed rotating reference frame to the
medium-fixed reference frame which also accounts for the deflected blade position due to blade

dynamics. The necessary transformation is developed in four steps: first, a transformation

from the hub-fixed coordinate system to the medium-fixed system; second, a transformation of
tile deflected blade source location from the blade-fixed system to the hub-fixed system; third,

within the blade-fixed system, a transformation from the undeflected blade surface position

to the deflected blade surface position; fourth, the combining of the three aforementioned
transformations for the final desired transformation from undeflected blade source position

in the blade-fixed reference frame to the deflected blade source position in the medium-fixed

reference frame (needed to perform acoustic calculations). Each of these four transformation
steps is detailed in the following discussion. :

Step 1--hub-fixed to medium-fixed source position transformation"

In figure 5 at sound emission time r, the source position 1_ relative to the hub-fixed system

transforms to the position _7 relative to the medium-fixed system as follows:

_=19+I_r (lSa)

or in index notation,

Yi = Yi + Vir (18b)

where the velocity vector 17 is given by equation (17). The positions 19 and Y/ are obtained

from the second transformation step.

|
!

!

=

!

Step 2--blade-fixed to hub-fixed transformation of deflected blade source position:

The source position on the deflected blade surface relative to the blade-fixed coordinate

system has coordinates _7_,where i = 1, 2, and 3. At source time T, r/_ transforms vectorally

to I9 relative to the hub-fixed system as follows:

sinr cost O] [r/_(_l,_2, r)]
t_= -cost sin r 0 1_(41,¢2,_)1 (19a)

/ !)
0 0 1 Lr/3(_1,¢2, r)J

or in index notation,

Y/(_1, _2, r) = Arj(r) _/j (_1, _2, r) (195)

where the deflected coordinates _7_are obtained from the third transformation step, which
follows.

Step 3--undeflected blade-to-deflected blade source position transformation:

The coordinates r/_ describe a point on the surface of a blade that has been deflected (i.e.,

displaced) due to blade pitch Op(r), flapping _(r), elastic torsional twist Aa(_l, r), and flapwise
elastic bending Az((1, r). Before proceeding to the transformation, each of these four blade
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deflection contributions must be defined. Blade pitch angle _p (positive for the blade leading
edge tilted up from the hub plane) is given by

Op(r) = Ao - A1 cos r - B1 sin T (20)

where A0 is the collective pitch at the blade root; A1, the lateral cyclic pitch; and B1, the

longitudinal cyclic pitch, and all three are known inputs. Blade pitch and elastic torsional

twist are combined to give blade rotation angle Or (positive for leading edge rotated up) about
the blade pitch change axis as follows:

0r(4:, 7.)= 0p(T)+ 7.) (21)

where
Nm/2

Aa(_l, T) = _ Aa(41, m) exp(imT.) (22)

m=-Nm/2

defines the blade elastic torsional twist angular displacement increment. This twist increment

is an optional input to the analysis, by supplying the Fourier coefficients, the right-hand side

of equation (22), by an input table. Blade flapping (positive up from the hub plane) about a
flapping hinge positioned with spanwise offset ¢ is described by

_J

3(7.) = a0 - al cos 7. - bl sin 7. - a2 cos 27. - b2 sin 2T -- ...

Nm Nm

-- aNm/2 COS --_-7. -- bNm/2 sin --_-7. =

Nm/2

exp(imT.)
m=-Nm/2

(23)

where the Fourier coefficients on the right-hand side are known inputs. The incremental blade

linear displacement (positive up from the hub plane) due to blade flapwise elastic bending is

given by
Nm/2

Az(_I, 7.)= Z _-z(41, m) exp(imT.) (24)

m=-Nm/2

and is an optional input to the analysis, it being provided by supplying the Fourier coefficients

on the right-hand side by an input table.

The source position on the undeflected blade surface relative to the blade-fixed coordinate

system has coordinates r/i (given by [rll(_l,42),_l,r/3(41,_2)] for i= 1, 2, and 3) which are

known inputs to the analysis. Within the blade-fixed reference frame, it is necessary to
make a transformation from undeflected blade position r/i to deflected blade position r/_, this

being the third step in developing the overall source position transformation. This third step

transformation is made by applying rotations through angles Or(_l, 7-) and 3(7) and then
translating by displacement Az(_l,7.). To implement the rotation through angle 0r(_1,7.),

the assumption is made that the blade pitch change axis is coincident with the 7/2 axis of

the blade-fixed rotating coordinate system, as indicated in figure 4(b). Then the rotation

through Or(_l, v) is implemented as follows:

r _1 (_1, _2, 7.)-
!

4X

[,13(41, 7.).
cos 00(_1,T) 0 sin Or(_l,T)]

-- 1 0

L-sin 7.)0 cos

- 711 (_1, _'2)-

-_3(_1, _2)

(25a)

or in compact index notation,

T/k (41,42, T) = A_m((l, 7.) rhn (41,42) (25b)
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Thenif thesourcepositionis locatedradiallyoutboardof tile flappinghinge(i.e.,if 41> e),

the rotation through 3(r) is implenmnted as follows:

[ 1, 1 2T,1{i0 ° [i]}[il_(41,42,r)[ = cos _(r) --sin /3(r) (1 -- +

'13(41,42, r)J I sin/3(7) cos/3(r) J r/3(41,42, r) r

(26a)

t,_

or in compact index notation,

r/j (41,42, T) = Af k (r)[rlk ((1, (2, r) -- Ek] + ej (26b)

Lastly, the translation by the amount Az(41, T) is implemented as follows:

_']_ (_1,42, T)]

v_(_l, _2,r)[ =
,7_(_1,42,r)J

I_1(_1'_2'T)] [ ]_2(_1,42, 7-)1 + 00

_a(_X,42, _')J / AZ(_I, _')

(27a)

or in compact index notation,

((1,42,) = _j(41, _z,_) + Az(41, r) (27b)

where the first term on the right-hand side is given by equation (26b). Equations (27) are the
desired transform from undeflected to deflected coordinates; thus blade dynamics is accounted

for. Note that if (1 _< E, equations (26) are not applied, and r/k(41, (2, T) from equations (25) is

used in the right-hand side of equations (27).

Step 4--fina! transformation from blade-fixed undeflected blade source position to medium -

fixed deflected blade source position:

By successive application of the aforementioned three transformation steps, the final overall
transformation is obtained. This final transform takes the undeflected blade source position

relative to the blade-fixed coordinate system (an input), applies the known blade dynamics

displacements to generate the deflected source position, and converts the deflected source
position to the medium-fixcd coordinate system as needed for acoustic calculations. For 41 >

(i.e., for an undeflected source position outboard of the flapping hinge), this final overall

transformation in compact index notation is given by

r f r
Yi = Aij (r}{ Ajk (_-)[Akm (41, r) rhn (41, (2) -- ek] + ej + Azj (41, T)} + V/T (28a)

and for _I -< e (i.e., for a source position at or inboard of the flapping hinge, where flapping

angle/3 is zero) is given by

Yi : A_'(r)[A;rn((l, r)rlm(41,42)+ Azj((1, T)] + V/T (28b)

where the transformation matrices A_.(r), Afjk(7), and Arkm(41, T) are given in equations (19),

(26), and (25), respectiveiy, and where Arjm(41,r) is given by equations (25) with sub-

script k replaced by j. (This replacement is valid because equation (26b) reduces

to _j(_l,42,r)=_k(41,42,T) for 41 _--e due to the absence of flapping.) Quantities ej
and Az({1, T) are shown in equations (26) and (27), respectively, and velocity components l_

are given by equation (17). Note the transformation described in equations (28) for rhn({l, 42)
can be used to transform any vector from the undeflected blade surface to the medium-fixed

coordinate system.
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Radiation vector. Summarizing from equations (15) and (16), if the spherical observer input
format has becn used, the observer position coordinates relative to the medium-fixed system

are given in index notation as follows:

• = (29a)

or if direct Cartesian observer input format has been used, then the observer coordinates in

the medium-fixed system are given as follows:

xi = _- + V/t (29b)

where V/ is given by equation (17).

The source-to-observer position in the medium-fixed coordinate syste m is given by the

radiation vector _', which is defined as

r = x - u (30)

where the components of :_ and y are given by equations (29) and (28), respectively. The
corresponding magnitude of the radiation vector and the unit vector in the radiation direction

are given by

r = Jr'l (31)

and

= - (32)
r

Normal and tangential unit vectors on blade surface and blunt tip. The normal unit vector fi
and tangential unit vector t are obtained on the surface of the undeflected blade and relative

to the blade-fixed rotating reference frame by using the surface coordinates rh((1 , (2) from the

input table as follows:

CO_Ti/O_l X 0_i/0_2 (33)
= 10 i/0(1 x 0vi/0(21

and
0 i/0(2

(34)

The tangential unit vector given by equation (34) is multiplied by a negative sign for integration

over the bottom surface (Tr < _2 < 27r) to ensure the correct signs ofli (eq. (11)) and li (eq. (12)).

On a blunt tip surface, the normal and tangential unit vectors are given by

n(_l, _2) ---- (0, 1,0) (35)

and

t((1, (2) = (1, 0, 0) (36)

The tangential unit vector is multiplied by a negative sign over the bottom surface (Tr < (2 < 2rr)

when integrating for the tip. To obtain expressions for fi((1, (2, t) and t((1, (2, t) in the medium-

fixed system, the transformation described by equations (28), less the V/r term, is used.

Retarded Time

Once the given observer and source positions have been obtained in the medium-fixed
coordinate system, the source time must be determined for a given observer time. The emission

time is related to the observer time in equation (7), which is repeated here:

r=t-Mhr
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Substituting equations (15), (17), and (18) into equation (7), squaring, and rearranging yield
a quadratic equation for the quantity (t - r) as follows:

(37)

Since only a solution for t > v is physically meaningful, the solution is

Since ]7 is a function of v, equation (38) must be solved numerically. Muller's method in

reference 6 provides quick convergence.

Computational Considerations

One important concern is that the Ffowcs-Williams-Hawkings equation is valid only

for an observer that is fixed with respect to the medium. The acoustic prediction is

of interest, however, for an observer moving in a fixed relation to the hub such that

the signal is periodic. This problem is resolved by solving the acoustic wave equation
(evaluating eqs. (10b), (13), and optionally (14) for a single observer time t and loca-

tion (-Rx cos 6, Rz sin #sin ¢, -Rx sin _cos ¢) or for Cartesian input (X_/R, X_/R, X_/R)).
The pressure solution includes the sound generated by all the points on the surface of

the blade at the various source times that reaches the observer at time t. The wave

equation is then solved for the next observer time but with the observer location shifted

to [-Rx cos 0- (Mft cos Otdp)/Mh, Rx sin O sin ¢,-Rz sin 0 cos ¢- (Mst sin Ctdp)/Mh] or for

Cartesian input ([X_ / R] - [Mft cos adp]/M h, X_/ R, [X_/ R] - [Mftsin adp/Mh) to simulate a
moving observer. Each pressure value is collected to give a time pressure history for a given

input (Rx, 8, ¢) or given XI/R. Although the calculation of the acoustic pressure is done in the

coordinate system fixed to the undisturbed medium p(_, t), the observer always has the same

position with respect to the moving hub so that the pressure history can be written as p()(, t),

a more desirable time history form, because g is a function of t, whereas )( is not.

Another point to note is that this analysis is done in the time domain; therefore all quantities
that are represented as harmonic series need to be evaluated for the required value of r. These

quantities include the blade flapping angle j3, blade flapwise elastic bending Az, blade elastic
torsional twist Aa, blade section Mach number Ms, and blade section angle of attack a.

The time increments used to evaluate the noise integrals must be determined. They are

obtained by dividing a single revolution of a blade into evenly spaced time increments using

tj (j-1)2r (j=1,2,3,.. 2 k) (39)----- 2kf_ • ,

where

k = INW[log2(Nt)] (40)

Although these increments are evenly spaced in observer time, they are not equally spaced in
emission time measured at the source. The number of increments 2k is required to facilitate

the use of the fast Fourier transform method to obtain the acoustic spectrum.

The time history of acoustic pressure for one blade (the reference blade) is obtained

beginning at _---¢0. The rotor noise time history can then be obtained by interpolating
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the acoustic pressure time history for that single reference blade shifted in time, 2n/N b, for

each additional blade and summing as follows:

b=l

where r = _)b is the initial position of each blade.

Once the rotor noise time history is known, the fast Fourier transform is used to obtain

the pressure spectrum _()_, n), where n is the sound harmonic number, the first harmonic

frequency being the fundamental (i.e., blade passing) frequency. To obtain the mean-square

acoustic spectrum,

(p2) = 2_* (42)

is used. The sound pressure level is computed as

SPL = 101ogl0(p2_+ 201og\ P_ef ]
(43)

where Pref is reference acoustic pressure which, for air, has the value of 0.00002 N/m 2

(4.1773 × 10 -7 lb/ft2).

Several quantities remain to be calculated in order to generate loading intensity (eq. (11)),

loading intensity derivative (eq. (12)), and the integrands of the noise solution equations

(eqs. (10b), (13), and (14)), all with respect to the deflected blade surface, relative to the

medium-fixed reference frame. Specifically, the quantities to be calculated are P, a, /b, b, fi_,
- I "/

_t, n, t, Mi, and f/i, where the prime denotes a deflected blade surface.

The blade surface pressure P and shear stress a, used in equations (11) and (12) for

computing loading intensity and intensity rate on the fluid in the noise calculations, can be
obtained in one of two ways. The first way is to use the nonempirical input path, where

pressure P and the shear stress a are calculated by using the input analytical values of pressure

and skin friction shear stress Cp and C/, obtained from input tables generated by the RBS and
BLM or the IBS and IBL Modules. The calculations use the following equations:

(44)

and

where

and

(45)

Nm/2

O_----0_(_1,7") ---- Z _(_1, m) exp(imT) (46)

m=-gm/2

Nm/2

M_ = Ms (_1, T) = _ M._(_I, m) exp(imr) (47)

m=- N,./2

The second way to obtain pressure P and shear stress a is by using the empirical input

path, where externally obtained data (via dircct specification of P(_1,_2, v) and a((1, _2, v)

in empirical input tables) are provided.
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All thederivativesrequiredaretakenwith respectto sourcetimerelativeto themedium-
fixed coordinatesystem. Fromequations(44) and (45), the derivativeof bladesurface
pressure/bandthederivativeof bladesurfaceshearstress& aregivenby

I(Ms_2(OCpOM,_ OCpOc_)10M.,Q,+ , (48)

and

( Or --OTTO(2/Oc_Oa) (49)
10M.s 1 Ms'_2(OCf OM_

_(_, _:, r)- i_ o, c/+ _ _/ \-_7,_ +
i

where a = a((1, r), Ms = M._((1, T), Cp = Cp(_l, _2, a, his), and C.f = C/'((1, (2, a, Ms). These
expressions for ib and & can be evaluated with a finite difference method applying module input
tables.

The normal and tangential unit vectors at the deflected blade surface are f' and t', relative to

the medium-fixed reference frame. These vectors are obtained by applying the transformation

given by equations (28), less the ViT term, to the undeflected surface unit vectors fi and t,
relative to the blade-fixed rotating reference frame. To find source Mach number Mi, and the

21 ":'1

derivatives n , t , and f/i, all relative to the medium-fixed reference system for the deflected

blade, it is necessary to obtain the time derivative of the entire transformation (eqs. (28)), used
to transform fi, t, and _i to fi_, t_, and Yi. Since none of the quantities fi, t, and v/i are dependent

on time when described in relation to the undeflected blade in the blade-fixed rotating reference

frame, obtaining the derivative of the transformation in equations (28) and applying that to fit,
_/ L I

_f, and rlm(_l, _2) to obtain n, t , and fl i is sufficient. The derivative of the transformation is

now developed by examining source Mach number. Source Mach number is given by

]tii= vi -- l Oyi -- l (OA_(r){ Afjk(r_Arkrn(_l'r)_Tm(_l'_2)-cCOT C gk]-t-_J-t- AZj(_I'T)}

)]+ A_j (r) _ [_kmk_l,T) Vm(_l,_2) - _kl+ L o_ ,m(51,52

+ Or J
(5o)

The derivatives of the various transformation matrices are:

rcosTsin i][sio. cost0 (51)

V

i

Ii 0OAfjk(T) 0_(r) -- sin B(_-) - cos f_ (7)

_T -- -_V COS _(T) sin _ (_')J

(52)

16.1-22



where

Nm/2

m5(m) exp(imr)

m=-Nm/2

(53)

and

OArkm(_,, r) = 00r(_l, r)
Or 0r sin0r 0 cos Or ]

0 0 0

cos0r 0 -sin0r

(54)

where

00r(_l, r)
OT

Nm/2 r

= AI sin r - B1 cos r + i y]_ m Aa(_l, m) exp(imr)

m=-Nm/2

(55)

The derivative of the bending is given by

OAzj (_1, T)

Or

Nm/2

= i _ m Az({1, m) exp(irnr) (56)

m=-Nm/2

If Tim denotes the transformation given by equations (28), less the V/r term, equation (50) can

be written concisely as

Mi = l [-_--_.rlm(_l,_2)+ Vi] (57)

The normal and tangential unit vectors relative to the deflected surface transform to the
medium-fixed reference frame as follows:

ht = ni^, ---- 7]m nm(_l, _2) (58)

and

_t = ti^! ---- 7]m im(_l, _2) (59)

where the unit vectors on the right-hand side are given by equations (33) and (34). The
derivatives of the normal and tangential unit vectors in the medium-fixed reference frame are

given by

_ 0¢V OTim
-- 0-T-T = ---if'---rim(el,C2) (60)LIT

and

:.t Ott __ _m
t -- 0r Or tm(_l,_2) (61)

Note that equations (58) through (61) are employed in equations (11) and (12) for calculation

of force intensity li(_l, _2, T) and its derivative ii(_l, _2, r). Vector components of f/transform
to the medium-fixed reference frame as follows:

fi i 1 02yi 1 02Tim- c _ - _ _ vm(_l, _2) (62)



or

1 02yi

c OT 2

1 rO2Ar

L' I , 1= -c _ Ajk (T_Akm (_1, T) _?m(_], _2) -- ¢k] + ¢j + AZj (_1, T)

oArj(_)loG(_),. ,.
+ _ _ _ L_k_l, _),m(_1,_2)- _k]

+ _ _ _ L<_k_,_)_(_l,_2)--_kl

Ay (_:)[OArkm(_l,T) )] OAzj(_l,r)}+ jk [ -_r ,m(_l,_s + ar

{ 02A/jk(r)r_r ,,.q-A_j(T) _T 2 [.,'_kmk;1,T)_Tm(_l,_2)--_k]

& L Or ' r)'Tm(¢l

+ & L _ r)_m(_l

(63)

I
i

i
!

where

_v 2 ---- cos r -sin r
0 0

(64)

1 [!00 0 02fl(v) - sin fl(r)
-cos fl(T) sin fl(r) + 0__2

-sin fl('r) --cos fl(v)J cos fl('r)

(65)

Nml2
Osfl(r)

OrS -- E m s_(m) exp(imr)
m=-Nm/2

(66) %
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and

Or 2 Or 2
L-cos0r 0 -sin0rJ

[_cos ro-sinor]+ [ Or ' 0 0 0 (67)
sin Or 0 -cOS0r

02Or(_l,T)

0r 2
= A1 cOS r + BI sin r -

Nm/2

E m2 _--_(41, m) exp(imr)

m=-Nm/2

02Az(41, r) _
0T 2

Nm/2

E m 2 7_-z(41, m) exp(imr)

m=-Nm/2

(68)

(69)

J

Computational Procedure

1. Determine observer time increments by using equation (39)

2. For first input observer position (Rx, 0, ¢ (spherical format) or ._'/r (Cartesian format))

and for initial observer time t, make initial estimate for source time v based on 1_ = 0

3. Find source location coordinates (r/l(41, _2),_1, r/3(41,42)) on undeflected blade relative to

blade-fixed coordinate system

4. Find dynamic source location coordinates r/_(41, _2, r) on dynamically deflected blade, given
in equations (27) in blade-fixed coordinate system; specifically apply equations (25), (26),

and (27) to surface location found in step 3

5. Find source and observer locations in medium-fixed system !7 and :_, respectively; for if, use

equations (18) with equations (17) and (19); for Z, use equations (15) with equations (16)
and (17)

6. Determine radiation vector by using equation (30) with equations (28) and (29)

7. Apply Muller's method to equation (38) to obtain 7-

8. Find P(_I, _2, 7-) and optionally a(41, _2, r); for empirical data input option, P(_I, 42, r) is

obtained directly from Rotor Pressure Data Table and a(41,42, r) is obtained directly from
optional Rotor Blade Shear Stress Data Table, if provided; otherwise a(41, {2, T) = 0; for

nonempirical input option, P(41, {2, r) is computed by equation (44), whereas a(_l, 42, r)

is computed by equation (45), if optional Local Skin Friction Table is input, otherwise

a(_l,_2, T) = 0; if li is required on blade tip (blunt tip case), averages are take of P(1, 42, r)

and P(1, 1 - _2, T) and of a(1, {2, r) and a(1, 1 - {2, r)

9. Calculate unit vectors h and t for undeflected blade surface by using equations (33) and (34),

respectively, and transform to medium-fixed system for deflected blade using transformation

described by equations (28), via equations (58) and (59)

10. Find derivatives with respect to source time /b and b from equations (48) and (49) with

finite differences and Ct', i', Mi, and /_i in the medium-fixed reference frame by using

equations (60), (61), (57), and (63), respectively

11. Compute li({l,{2, r) and ii(41,{2, r ) by using equations (ll) and (12), via equations (44),

(45), (48), (49), (58), (59), (60), and (61)
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12. Calculate integrands in equations (10b), (13), and optionally (14), including w'.ctor

operations

13. Rcpcat steps 3 through 12 for each _2 at present ¢1 with previous v for each new initial

estimate

14. Repeat steps 3 through 13 for each ¢1, using last T for new initial estimate

15. Calculate integrals in equations (10b), (13), and optionally (14)

16. Repeat steps 3 through 15 for each observer tiInc

17. For each additional blade, interpolate time-shifted acoustic pressure history; sum over all

blades with equation (41) to obtain acoustic timc history for complete rotor

18. Apply fast Fourier transform to obtain acoustic spectra

19. Calculate mean-square acoustic pressure spectrum and sound pressure levcl according to

equations (42) and (43)

20. If spherical observer input format option is used, repeat steps 3 through 19 for each observer

polar directivity angle 0; otherwise, repeat steps 3 through 19 for each remaining input

Cartesian observer position (Xr/R)

21. If spherical observer input format option is used, repeat steps 3 through 20 for each observer

azimuthal directivity angle ¢
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TableI. RelationshipBetweenArrayStorageSequenceandFourier
SeriesSequencefor Complex Fourier Flapping Coefficients

"Tabulated relationship also applies analogously for other input ]
tables for following complex Fourier coefficients: _-Z(_l, m), |

_-_(_l,m), _(_l,m), and Ms(_l,m) (see eqs. (24), (22),|
(46), and (47), respectively) J

Array sequence in Fourier series

input Flapping Angle Table sequence (eq. (23))

_(1)

_(2)

_(3)

_(-N_ + 1)

-d(Nm -- 2)

-d(Ym - 1)

-5(Nm)

-a(o)

_(1)

_(2)

_(-_ - 1)

"d(Nm/2 )+-d(- Nm/2)
2

_(--_ + 1)

_(-3)

_(-2)

_(-1)

J
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Table II. Contents of Flapping Angle Table From RRD Module
in Terms of Conventional Sine Series Flapping Coefficients

Complex Fourier coefficient

(array entry in input data tables)

_(1)'

_(2)

_(3)

"5(Nm - 2)

-5(Win - 1)

"5(Nm )

Function of real-valued

sine series coefficients

(eq. (23))

a0 + i0

-a( Nm/2I-1; ib( N,,,/2I-

--aNm/2 + iO

--a(Nm/2)-l-ib(Nm/2)-I
2

--a(_Vm12)-22ib(N_/2)-2
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16.2 Rotor Broadband Noise (RBN) Module

Cascy L. Burlcy, Donald S. Weir, and Stephen J. Jumper

Lockheed Enginccring & Sciences Company

Introduction

J

Helicopter rotors generate broadband as well as tone noise. As tone noise has been reduced

by way of rotor design, the relativc broadband content of rotor noise has increased. The
Rotor Broadband Noise (RBN) Module uses empirical methods for modeling four broadband

noise mechanisms that contribute to the rotor noise. Figure 1 illustrates the underlying flow

phenomena responsible for the four mechanisms modeled herein: (1) turbulent-boundary-layer-
trailing-edge noise separated-flow noise, (2) laminar-boundary-layer vortex-shedding noise,

(3) trailing-edge-bluntness-vortex-shedding noise, and (4) tip vortex formation noise.

Firstly for the turbulent-boundary-layer trailing-edge noise separated-flow noise contribu-

tion, two alternative prediction methods are available in the RBN Modulc. One method is

that developed by Schlinker and Amiet (ref. 1) and is identified as the TBLCAL model in the
RBN Module. The other, newer method was developed by Brooks, Pope, and Marcolini (ref. 2)
and is labeled the TETCAL model in the RBN Module. The distinctions between thcsc two

methods are apparent in their descriptions found in the section "Method."

Secondly for the laminar-boundary-layer vortex-shedding noise contribution, one prediction

method is available. It was developed by Brooks, Pope, and Marcolini (ref. 2) and is identified
as the LBLCAL model in the RBN Module.

Thirdly for the trailing-edge-bluntness vortex-shedding noise contribution, two prediction

methods are available in the RBN Module. One is by Grosveld (ref. 3) and is labeled the
TEBCAL model. The other, newer method was developed by Brooks, Pope, and Marcolini

(ref. 2) and is identified as the TB2CAL model. The distinctions between these two methods

are apparent in their descriptions found in the section "Method."

Fourthly for the tip vortex formation noise contribution, one prediction method is available
in the RBN Module. This method was developed by Brooks and Marcolini (ref. 4), also

presented in reference 2, and is identified as the TVFCAL model.

Each of the six prediction models for the four broadband noise mechanisms is based on
scaled empirical data. For each prediction model, the founding empirical database has bccn

developed either solely or partly from two-dimensional airfoil tests, where the NACA 0012
airfoil or another similar airfoil type typical of rotor blade sections has been used. Because of

the data scaling inherent in these prediction models, each model is assumed applicable to airfoil

shapes different from the ones used to create the model. Though the basis of each model is

purely two-dimensional test data, the methods as implemented in the RBN Module are assumed
valid for application to three-dimensional rotating rotor blades by considering the flow at each

differential blade section to be locally two-dimensional. Additionally for implcmenting each

prediction model in the RBN Module, the acoustic source associated with each blade section
is assumed to be regarded as a point source situated at the blade section trailing edge.

Applying the prediction models to a rotor analysis, the assumption used in the RBN Module
is that the rotor is in hovering or steady equilibrium flight at translational speeds for which

the blade tips remain subsonic. The reference frame for the analysis is the hub plane, defined

as the plane perpendicular to the rotor axis of rotation. The RBN Module accounts for all

retarded time effects and for blade motion effects in the analysis. Specifically, the blade is

assumed to undergo rigid flapping about a hinge and to undergo collective and cyclic pitch

motions. However, rigid blade lead/lag motion and all elastic blade deflections arc neglected.
Note that other sources of rotor broadband noise, such as noise duc to rotor turbulent inflow,
are not considered in the RBN Module.
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The RBNModuleis designedto useinput from eitherthe SimplifiedRotor Analysisor
theHigherHarmonicLoadsAnalysisof ROTONET.FromtheSimplifiedRotorAnalysis,local
bladesectionflowconditionsaresuppliedby the Lifting RotorPerformance(LRP) Module.
Alternativelyfrom theHigherHarmonicLoadsAnalysis,localbladesectionflowconditions
and bladeflappingare suppliedby the RotorLoads(RLD) Moduleand the RotorRigid
Dynamics(RRD)Module,respectively.Additionally,theRBNModuleusesbladegeometric
informationsuppliedby eithertheBladeShape(RBS)Moduleor the ImprovedBladeShape
(IBS)Module,documentedin references5and6,respectively.Furthermore,theRBNModule
employsbladesectionboundary-layerinformationfromeitherthe BladeSectionBoundary-
Layer(BLM) Moduleof reference5 or the ImprovedBladeSectionBoundary-Layer(IBL)
Moduleof reference6. However,user-suppliedinputsfromoutsidesourcesofinformationmay
besubstituted.

The noiseanalysisin the RBN Modulehasbeendevelopedfor two differentobserver
conditions,oneof whichcanbeusedwith a choiceof two differentobserverinput formats.
Firstlyis thestandardflyovercondition,inwhichtherotortranslateswithrespectto aspherical
arrayof observersfixedin spacewith respectto the fluid medium.This conditionproperly
introducesall existingDoppler-shiftcontributions(includingthat of hubtranslationalspeed)
in theRBN-predictednoise' necessaryfor subsequentnoisepropagation.Secondly:is thewind
tunnelcondition,in whichthearrayOfObserversis fixedin positionwith respectto therotor
hub. In applyingthe wind tunnelcondition,two formatchoicesfor specifyingthe observer
arrayareavailable.Onechoiceis thestandardsphericalarrayspecification.Ti_eotherchoice
is thearbitrarilyshapedarrayspecificationin whichobservercoordinatesareprovidedbydirect
Cartesianinput (usefulfor mappingnoiseonthesurfaceof arotorcraftairframe,for example).
Whenusedwitheitherchoiceof observerarrayspecificationformat,thewindtunnelcondition
properlyintroducesDoppler-shiftcontributionsof rotor rotationand flow speedonly; this
conditionis the desiredchoicewhenthe RBN-predictednoiseis to becomparedwith wind
tunneltestdataandnoisepropagationis not of interest.However,for a hoveranalysisthe
RBN-predictednoiseis in a form suitablefor subsequentpropagationwhenthe windtunnel
conditionis useciin conjunctionwith thesphericalol_serverarra_;spech_cat_onformat.

ForagivenRBNanalysis,the user may selectively choose the=broadband noise mechanisms

to be included by activating or deactivating each of the pertinent prediction models available
in the module. If the observers are specified by using the spherical array format, then the

result of the selected models is a single table of mean-square acoustic pressure as a function

of one-third-octave band frequency, observer polar directivity angle, and observer azimuthal

directivity angle. This table is in a format suitable for subsequent submission to the Propagation

(PRO) Module, documented in reference 7, for propagation to far-field ground observers. If the
observers are specified by using the direct Cartesian input format, where the RBN-predicted
noise is not to be subsequently propagated, then the result of the selected models is a single

output data member, containing mean-square acoustic pressure as a function of one-third-octave
band frequency and Cartesian observer coordinates.

Symbols

A0

A1

B1

C1,C2,63

cc._

c

collective pitch angle at blade root, rad

lateral cyclic pitch angle relative to hub plane, rad

complex Fourier coefficient of blade rigid flapping angle relative to hub

plane, rad

longitudinal cyclic pitch angle relative to hub plane, rad

coefficients in retarded time equation

speed of sound in ambient air at flight altitude, m/s (ft/s)

blade section chord length, m (if)
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C*

Ctip

D

02

e

F

f

fm ,3, fm ,4

fo

A

G1

G2

G3

G4, G5

h

h*

Ka(f), K4(f)

M

Mc

My
Mh

Mm

_lsm

m

Nm

blade section chord length, re R

blade tip chord length, re R

directivity function in turbulent boundary-layer trailing-edge noise mod-

eling, tip vortex formation noise modeling, and trailing-edge bluntness
noise model TB2CAL

directivity function in trailing-edge bluntness noise model TEBCAL

rotor blade flapping hinge radial offset from center of rotor, re R

spectrum function

frequency, Hz

center frequency Hz (in table III, fmax,3 or fmax,4 as appropriate)

center frequencies for calculating constants Ka(f) and K4(f) in model

TEBCAL (eqs. (63) and (64)), nz

observer frequency, Hz

source frequency, Hz

function related to Strouhal number in laminar-boundary-layer-vortex-

shedding noise model LBLCAL

function related to Reynolds number in laminar-boundary-layer-vortex-

shedding noise model LBLCAL

function related to angle of attack in laminar-boundary-layer-vortex-

shedding noise model LBLCAL

spectral shape functions in trailing-edge-bluntness-vortex-shedding noise
model TB2CAL

blade section trailing-edge thickness, re R

blade section trailing-edge thickness, re c

constants for given frequency, used in trailing-edge bluntness-vortex-
shedding noise model TEBCAL (table III)

spanwise extent of blade tip vortex separation region at trailing

edge, re R

blade section Mach number

turbulence convection Mach number, re M

rotorcraft translational flight Mach number

rotor hover tip Mach number

Mach number along separation streamline

Mach number vector of source relative to fluid medium

Mach number vector of source relative to observer

azimuthal harmonic number (summation index in complex Fourier

series)

number of rotor blades

number of azimuthal harmonics, that is, number of equal size azimuthal

increments into which one rotor revolution is subdivided and has value

equal to 2 raised to nonzero integer power
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n

Pref

Px,Py,Pz

R

Rx

Re

Rec_

r

r x , ry, r z

rl,r2,r3

?

SPL

SPLp

SPLs

SPLa

St

St"

St"

t

Um

X1, X2, X3

X, y, Z

Xm, 1, Xrn,2, Xm,3

summation index in Fourier sine/cosine series for flapping

reference pressure for dB conversion, N/m 2 (lb/ft 2)

coordinates of reception-time source position relative to observer in local

blade section trailing-edge-fixed Cartesian coordinate system, re R

2 4
mean-square acoustic pressure, re pocc_

2 4
P c_ %c

mean-square acoustic pressure per unit span, re

2 4
mean-square acoustic pressure at single instant in time, re pccccc

rotor radius, m (ft) = -

hub-to-observer distance (i.e., spherical observer radius), re R

Reynolds number

coc R
reference Reynolds number, - --

/]

distance from observer to source (i.e., magnitude of _, re R

components of source-to-observer position vector _* in local blade section
trailing-edge-fixed Cartesian coordinate system, re R

components of source-to-observer position vector ?" in medium-fixed

Cartesian coordinate system, re R

source-to-observer position vector (i.e., radiation vector), re R

unit vector in direction of _'

sound pressure level, dB

sound pressure level associated with pressure side of blade section in

model TETCAL, dB :

sound pressure level associated with suction side of blade section in

model TETCAL, dB

sound pressure level due to nonzero angle of attack in model

TETCAL, dB

Strouhal number

Strouhal number related to tip vortex formation noise

Strouhal number for trailing-edge bluntness noise model TB2CAL

1

observer time (i.e., reception time), re

maximum velocity along separation streamline, re f_R

rotorcraft translational flight velocity vector, re f}R

axes of hub-fixed Cartesian coordinate system (figs. 2, 3, and 5 through 8)

observer position vector in hub-fixed Cartesian coordinate system, re R

axes of local blade section trailing-edge-fixed Cartesian coordinate

system (fig. 4)

axcs of medium-fixed Cartesian coordinate system (figs. 2 and 6

through 8)

i
_i

!

!

!
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?

Oldp

 tip(¢)

6

61

6u

_t

r/1, r]2, _3

_l,l

_3,l

rll ,t

173.t

observer position vector in medium-fixed Cartesian coordinate system

(figs. 6 through 8), re R

source position vector in hub-fixed Cartesian coordinate system (figs. 5

througtl 8), re R

source position vector in medium-fixed Cartesian coordinate system

(figs. 6 through 8), rc R

blade section angle of attack, rad

blade tip angle of attack correction factor

rotor hub plane angle of attack, rad

blade tip effective angle of attack, rad

blade tip geometric angle of attack, rad

blade section angle of attack at zero lift (i.e., angle of zero lift), deg

blade rigid flapping angle relative to hub plane, tad

real-valued Fourier sine/cosine series coefficient of blade rigid flapping
angle relative to hub plane, rad

boundary-layer thickness, re R

lower surface boundary-layer thickness at blade section trailing
edge, re c

boundary-layer thickness on pressure surface side of blade section at
trailing edge, re R

upper surface boundary-layer thickness at blade section trailing

edge, re c

boundary-layer displacement thickness, re R

average boundary-layer displacement thickness for trailing-edge blunt-

ness noise model TB2CAL (eqs. (66)), re R

lower surface boundary-layer displacement thickness at blade section

trailing edge, re c

upper surface boundary-layer displacement thickness at blade section
trailing edge, re c

blade section trailing-edge angle, deg

empirical constant for surface pressure integral scale

deflected blade source position vector components in blade-fixed rotating

Cartesian coordinate system, re R

undeflected blade section leading-edge abscissa in blade-fixed rotating
Cartesian coordinate system, re R

undeflected blade section leading-edge ordinate in blade-fixed rotating
Cartesian coordinate system, re R

undeflected blade section trailing-edge abscissa in blade-fixed rotating
Cartesian coordinate system, re R

undeflected blade section trailing-edge ordinate in blade-fixed rotating

Cartesian coordinate system, re R
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0

0

0_

OT

A(])

/2

Pec

o"

T

¢

¢
_2

Subscripts:

f

fp

LBLCAL

peak

TB2CAL

TETCAL

tot

1/3

Superscript:

Input

deflected blade source position vector in blade-fixed rotating Cartesian
coordinate system, re R

observer polar directivity angle relative to medium-fixed reference frame

for flyover condition option or relative to hub-fixed reference frame for

wind tunnel condition option, deg

observer polar angle in local blade section trailing-edge-fixed source

coordinate system (fig. 4), rad

blade root pitch angle relative to hub plane (positive for blade leading
edge tilted up), rad

blade section rigid twist angle (positive for blade leading edge tilted

up), rad

power spectral density function of unsteady surface pressure

kinematic viscosity of ambient air at flight altitude, m2/s (ft2/s)

blade spanwise coordinate, re R

air density at flight altitude ambient conditions, kg/m 3 (slugs/ft 3)

shorthand term in directivity function in TBLCAL model, (eq. (43)

or (47)), re R

1

source time (i.e., emission time), re

observer azimuthal directivity angle relative to medium-fixed reference

frame for flyover condition option or relative to hub-fixed reference
frame for wind tunnel condition option, deg

observer azimuth angle in local blade section trailing-edge-fixed source

coordinate system (fig. 4), rad

rotor blade azimuth angle in hub plane, _- (figs. 5, 7, and 8), rad

rotor rotational speed, rad/s

blade flapping-transformed coordinates (matrix subscript)

blade flapping- and pitch-transformed coordinates (matrix subscript)

associated with LBLCAL model

peak or maximum value

associated with TB2CAL model

associated with TETCAL model

summed or resultant contribution from all selected noise prediction
models

associated with one-third-octave band

Fourier transform (i.e., complex Fourier coefficient)

The computation of rotor broadband noise by the RBN Module requires inputs consisting

of descriptions of the overall rotor flight conditions, blade planform and section geometry,
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blade dynamics, blade local flow conditions and aerodynamic boundary-layer profiles, observer
locations, frequencies for calculation, and computational grids. This input is provided to the

RBN Module by user parameters, input tables, and several data arrays. Sign conventions of

the various input quantities are shown in figures 2 through 10 and/or are described in the list

of inputs.

The first set of inputs are user parameters. These quantify the global rotor geometry, rotor

flight conditions, blade flapping and blade pitch control angles, and the size of the spherical
locus of observers. Blade flapping is typically supplied by input parameters; however, if an

alternate optional input table of flapping angles is used from the Rotor Rigid Dynamics (RRD)

Module, then the user parameters for flapping are ignored. Two of the user parameters provide

the reference Reynolds number of the flow and the turbulence convective Mach number, both

required by the prediction models TBLCAL and TETCAL in the RBN Module. The single
input value of turbulence convective Mach number is assumed representative for all rotor blade

sections. Details regarding turbulence convective Mach number are given in the TBLCAL and

TETCAL model descriptions in the section "Method" and in references 1 and 2.

A geometric description of the rotor blade is required by the RBN Module and is provided

by both the Blade Shape Table, from either the RBS Module or the IBS Module, and the
Trailing-Edge Thickness Table, which is user generated or obtained from the IBS Module. The

Blade Shape Table provides the undeflected blade section surface location relative to the blade-
fixed rotating reference frame (fig. 3). Undeflected geometry is that which includes tl_e installed

blade section position, with rigid blade twist, but excludes displacements due to blade flapping

and pitch control. Note the user must ensure that the blade section geometry in the Blade

Shape Table is established such that the r/2 axis is coincident with the blade pitch change axis
because of assumptions applied in geometric transformations employed by the RBN Module,
detailed in the section "Method." When the geometric description of the blade section trailing

edge is refined, the Trailing-Edge Thickness Table provides both the finite thickness of the
blade section trailing edge and the trailing-edge angle (fig. 10).

Local flow conditions at each blade section at any location on the rotor disk (i.e., for each

blade azimuthal location during one rotor revolution) for the rotor blade with the rotor in

trimmed flight must be provided. This information is provided by a choice of two paths as
described in the next paragraphs.

With the first input path, the local flow conditions are input to the RBN Module by the
Rotor Performance Table from the LRP Module. Specifically, this input table provides, for

each spanwise location, the blade section angle of attack and blade section Mach number in the

time domain. Blade section angle of attack is positive for the blade leading edge tilted up. All
Mach number values for the local blade section are less than one, consistent with assumptions

of the RBN Module analysis. This first input path is the default and enables the prediction of

broadband noise, based on rotor performance calculated by the ROTONET Simplified Rotor

Analysis.

Optionally, the second input path provides local flow conditions to the RBN Module by
the Blade Motion Table from the Rotor Loads Module. Contrary to the Rotor Performance

Table, the Blade Motion Table contains angle of attack and Mach number information in the

frequency domain for each spanwise location (with sign conventions the same as those in the

Rotor Performance Table).

Specifically the input tabulated data are in the form of complex Fourier coefficients

describing one rotor revolution, which has been discretized into Nm equal-size azimuthal
increments in the time domain so that fast Fourier transform (FFT) techniques have accurately

provided Nm azimuthal harmonics in the frequency domain. The quantity Nm must always
have a value which is equal to an integer multiple of 2; the actual value is obtained implicitly
from the size of the Blade Motion Table during input to the RBN Module. The form of the

Fourier series associated with these tabulated complex Fourier coefficients is shown in table _. •

Table I also presents the relationship between the array sequence for the complex Fourier
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coefficientsM(_, m) and _(_, m) (i.e., storage sequence in the input Blade Motion Table) and
the theoretical complex Fourier series sequence. This second input path is offered to enable the

prediction of broadband noise, based on rotor performance calculated by the ROTONET Higher
Harmonic Loads Analysis. If the Blade Motion Table has been input to the RBN Module, the

Rotor Performance Table, if present, is ignored; then the RBN computer code automatically

(transparently to the user by performing inverse fast Fourier transforms) converts the frequency
domain input of the Blade Motion Table to time domain data necessary for use in the broadband

noise analysis.

If the aforementioned optional, second input path is in effect, blade rigid flapping data

(as predicted by the ROTONET Higher Harmonic Loads Analysis) must be provided by the
Flapping Angle Table, from the RRD Module. This table provides blade rigid flapping angles in

complex Fourier coefficient form. Table II presents the relationship between the array sequence

for complex Fourier coefficients _(m) (i.e., storage sequence in the input Flapping Angle Table)
and the theoretical complex Fourier series sequence (right-hand side of eq. (25b)) for _(m)

employed in the section "Method."

The Fourier coefficients in the Flapping Angle Table describe the flapping over one rotor

revolution, which has been discretized into Nm equal-size azimuthal increments in the time
domain so that fast Fourier transform techniques accurately have provided Nm azimuthal

harmonics in the frequency domain. The quantity Nm must always have a value which is

equal to an integer multiple of 2; the actual value is obtained implicitly from the size of the

Flapping Angle Table during input to the RBN Module. If the Flapping Angle Table has been
input to module RBN, then the input user parameters _i, if present, are ignored.

The two-dimensional aerodynamic characteristics of each blade section are required by the

RBN Module. These characteristics are provided by two input tables. First is the Zero Lift

Angle Table, which must be created by the user or is obtained from the IBA Module. For each

given blade section, this table provides the zero lift angle of attack s0, an implicit function
of the airfoil shape installed at the blade section. Second is the Boundary-Layer-Thickness

Table, generated by either the BLM module or the IBL module. This table provides the flow

boundary-layer thickness and boundary-layer displacement thickness existing at the trailing-

edge upper and lower surface locations at each blade section. The RBN Module uses the

Boundary-Layer-Thickness Table in conjunction with the Rotor Performance Table to obtain
the in-flight boundary-layer properties on the blade as follows: at a given blade section location

on the rotor disk, the actual flow conditions of angle of attack and Mach number extracted
from the Rotor Performance Table are used in the Boundary-Layer-Thickness Table to get the

actual blade section boundary-layer-thickness properties existing during flight.

Germane to predicting the contribution of the tip vortex formation noise to broadband

noise, the RBN Module also requires a three-dimensional aerodynamic correction factor, which

is provided by the Tip Angle Correction Table. In this uscr-created table (for each blade

azimuth position) the blade tip angle correction _c used to correct (by simple scaling) the frcc
air blade tip section angle of attack for the effect of flight in other than free air (i.e., for wind

tunnel conditions) is given. This correction factor has a value of 1 if free air angles of attack
without correction are desired. Further details regarding this input correction factor are found

in the TVFCAL model methodology, described in the section "Method."

As previously mentioned in the Introduction and detailed in the section "Method," the
RBN Module offers a choice of two conditions for considering observers during a given analysis:

the flyover condition and the wind tunnel condition. The flyover condition requires the

specification of observers in spherical coordinate format. The wind tunnel condition allows for

the specification of observer coordinates in either sph _rical coordinate format or in Cartesian
coordinate format. For a given analysis in thc RBN Module, the user selects, with an input flag,
the combination of observer condition and observer coordinate format to bc employed. The

flyover condition (spherical observer format required) can bc selected for either a hovering rotor
or a rotor in translational flight. The flyover condition must be sclccted if the RBN-predicted

broadband noise output is to be subsequently propagated to the ground, by the PRO Module,

V
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to simulate a rotorcraft flyover. The wind tunnel condition (with either observer format in

effect) must be selected if the RBN-predictcd noise is to bc compared with wind tunnel test
measurements of broadband noise, a situation in which subsequent propagation of tile RBN-

predicted noise is not of interest. However, if the spherical observer format is in effect, then the
wind tunnel condition can be selected for the situation in which the rotor is in hovering flight

and propagation of the RBN-predicted noise is subsequently done by using the PRO Module.

For a given analysis all observer positions must bc provided by one of two formats: the

spherical coordinate format or the Cartesian format. The permissible format choice depends
on the observer condition that is in effect. Spherical coordinate input format is required if

the flyover condition in is effect, so that RBN-prcdicted results can be propagated with the
PRO Module. Either the spherical coordinate format or the Cartesian format can be used

when the wind tunnel condition is in effect, the spherical format being the one more commonly

used. The Cartesian format allows any arbitrary locus of observers (not necessarily a spherical

locus) to be specified and is applicable, for example, to an RBN analysis in which broadband

noise is predicted at the locus of observers on the surface of the rotorcraft fuselage and noise
propagation to the ground is not of interest. If the Cartesian format is selected, RBN-predicted

noise cannot be subsequently propagated correctly with the PRO Module.

To employ the spherical observer format, one or more observers are situated on a sphere

having a fixed radius defined by an input user parameter. For input specification of the
observers, the center of the sphere is coincident with the initial (t = T = 0) spatial location of

the rotor hub. In figure 2, the location of each observer on the sphere is defined by polar and

azimuthal directivity angles measured with respect to the hub-fixed Cartesian coordinate axes.

These observer directivity angles are input to the RBN Module by the Observer Directivity

Angle Arrays.

Alternatively to employ the Cartesian observer format, the input parameter for observer

radius and the Observer Directivity Angle Arrays are ignored. The three Cartesian coordinates

of each observer relative to the hub-fixed Cartesian axes (fig. 2) are directly input to the RBN

Module by the Cartesian Observer Table.

For any combination of observer condition and observer input format and regardless of
actual rotor rotation direction, all observer locations are always input to the RBN Module as

if the rotor rotation is right handed. With an input flag, selectable by the user, the RBN

Module properly accommodates left-hand rotor rotation cases during calculations, in a manner

transparent to the user.

It is also necessary to provide the one-third-octave band center frequencies (i.e., observer

frequencies) for which the broadband noise spectral values are to be computed. These
frequencies are input to module RBN by the Frequency Array. Section 5.1 in reference 7 offers

a list of the proper one-third-octave band center frequencies to be included in the Frequency

Array. Note that the minimum frequency value input in the Frequency Array should not be

greater than the rotor fundamental (i.e., blade passage) frequency.

Computational grids of blade spanwise coordinates and blade azimuthal positions must bc

provided to the RBN Module. These grids establish the spatial resolution of computation

points (i.e., distribution of noise sources) over the rotor disk. Both the spanwise computation
grid and the azimuthal grid are input by the Independent Variable Arrays.

Finally, the RBN Module computer code has input flags (not shown in the list of inputs),
which allow the user to select and deselect each of the six prediction models contained in the

module. Thus the user can selectively include or exclude noise contributions from any of the four

broadband noise mechanisms during a particular RBN analysis. Regardless of the combination

of models selected for a particular prediction, all the aforementioned input quantities must bc

input to the RBN Module.

All user parameters, tables, and data arrays input to the RBN Module are as follows:
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A0

A1

B1

Coc

e

M:

Mh

Yb

R

Rz

aec_

P_

User Parameters

collective pitch angle at blade root (eq. (24)) (positive for blade leading

edge tilted up), tad

lateral cyclic pitch angle relative to hub plane (sign per eq. (24)), tad

longitudinal cyclic pitch angle relative to hub plane (sign per eq. (24)), rad

speed of sound in ambient air at flight altitude, m/s (R/s)

rotor blade flapping hinge radial offset from center of rotor, re R

turbulence convection Mach number employed by TBLCAL and TETCAL
models

rotorcraft translational flight Mach number

rotor hover tip Mach number

number of rotor blades

rotor radius, m (ft)

hub-to-observer distance (i.e., spherical observer radius, used only when
spherical observer input format is in effect), re R

reference Reynolds number used by TBLCAL and TETCAL models,

__ c(x_R

v

rotor hub plane angle of attack (positive for hub leading edge tilted

up), rad

real-valued Fourier sine/cosine series coefficients of blade rigid flapping

angle (per eq. (25a), where blade flapping is positive up from hub plane;

note that this input is ignored if the optional Flapping Angle Table is

input), rad

air density at flight altitude ambient conditions, kg/m 3 (slug/ft 3)

Blade Shape Table

[From RBS or IBS]

blade spanwise position, re R

undeflected blade section leading-edge abscissa in blade-fixed rotating

Cartesian coordinate system (fig. 3(b)), re R

undeflected blade section leading-edge ordinate in blade-fixed rotating

Cartesian coordinate system (fig. 3(b)), re R

blade section chord length, re R

blade section rigid twist angle, rad (fig. 3(b))

Trailing-Edge-Thickness Table

[User generated or from IBS]

blade spanwise position, re R

blade section trailing-edge thickness, re c (fig. 10)

blade section trailing-edge angle, deg (fig. 10)
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¢)

¢)

Rotor Performance Table

[From LRP; ignored if Blade Motion Table is used]

blade spanwise position, re R

blade azimuth angle, rad

blade section angle of attack (positive for blade section leading edge

tilted up with respect to local onset flow), rad

blade section Mach number

m

M (_, m)

m)

Blade Motion Table

[From RLD; optional; if used, replaces Rotor Performance Table]

blade spanwise position, re R

azimuthal harmonic number

complex Fourier coefficients of blade section Mach number (table I)

complex Fourier coefficients of blade section angle of attack (positive for

blade section leading edge tilted up with respect to local onset flow)," rad

(table I)

J

m

Flapping Angle Table

[From RRD; optional; if used, replaces user parameters f_i]

azimuthal harmonic number

complex Fourier coefficients of blade rigid flapping angle
(blade flapping is positive up from hub plane, see eq. (25b)

and table II), rad

Zero-Lift Angle Table

[User generated or from IBA]

blade spanwise position, re R

blade section angle of attack at zero lift (positive for blade section

leading edge tilted up), deg

wJ

O_

M

6u (_, a, M)

61(_, o_,M)

6_(_, a, M)

Boundary-Layer-Thickness Table

[From BLM or IBL]

blade spanwise position, re R

blade section angle of attack, deg

blade section Mach number

blade section upper surface trailing-edge boundary-layer thickness, re c

(fig. 10)

blade section lower surface trailing-edge boundary-layer thickness, re c

(fig. 10)

blade section upper surface trailing-edge boundary-layer displacement

thickness, re e
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blade section lower surface trailing-edge boundary-layer displacement
thickness, re c

(9

2

Tip Angle Correction Table

blade azimuth angle, rad

blade tip angle of attack correction factor (eq. (73))

Observer Directivity Angle Arrays

[Used only when spherical observer input format is in effect]

observer polar directivity angle relative to hub-fixed reference

frame at initial time, deg (fig. 2)

observer azimuthal directivity angle relative to hub-fixed refer-

ence frame at initial time, deg (fig. 2)

Cartesian Observer Table

[Used only when Cartesian observer input format is in effect]

observer position vector relative to hub-fixed Cartesian coordinate

system, m, (ft) (fig. 2; table actually stores X1, X2, and X3 axis
components of each observer position vector)

Yo

Frequency Array

one-third-octave band center frequencies (i.e., desired observer

frequencies), Hz

¢

Independent Variable Arrays

blade spanwise position, re R

blade azimuth angles (specified in fractions of 27r rad; should

be evenly spaced over one rotor revolution, with values ranging

from 0 to 1)

Output

The RBN Module generates two possible sets of outputs. For a given analysis, the outputs

actually generated depend on which observer input format (described in the section "Input")

is used. Both sets of outputs are described separately.

If the spherical observer input format is used, then the RBN Module produces a single table,
identified as the Broadband Noise Table. This output table contains the summed one-third-

octave band mean-square acoustic pressure spectrum containing the contributions from each of
the broadband noise mechanisms which have been activated by the user for a particular RBN

analysis. In the table, the mean-square pressure is given as a function of requested observer
frequency, observer polar directivity angle, and observer azimuthal directivity angle. If the

flyover condition (refer to the Introduction) regarding observers is in effect, proper accounting

of Doppler shifting due to both rotor rotational speed and rotorcraft (i.e., hub) translational

speed has been made in the output noise. Hence, if the flyover condition is in effect, the output

table can be directly input to the PRO Module for correct propagation tO far-field ground
observers. If the wind tunnel condition regarding observers is in effect, proper accounting

of Doppler shifting due to rotor rotational speed and flow speed (no hub-to-observer relative
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translational motion contribution exists) has been made in the output noise. Hence, if the wind

tunnel condition is in effect for the analysis of a hovering rotor, then the noise results in the

output table from the RBN Module can be subsequently propagated to ground obscrvers via
the PRO Module. If the wind tunnel condition is in effect for the analysis of a rotor not in

hovering flight, then the RBN-predicted noise results in the output table can be compared to

wind tunnel measurements of rotor broadband noise, and this is a situation in which subsequent

propagation of the predicted noise to ground observers is neither of interest nor appropriate.
Note that for a left-hand rotor rotation configuration, the observer directivity angles, which

were all input to the RBN Module in a right-hand convention and subsequently converted

automatically by the RBN code to a left-hand convention during computations, are correctly
restored by the RBN code to the original right-hand convention for insertion in the output
table.

If the Cartesian observer input format is used, then the RBN Module generates an output
data member rather than a table. This member is identified as the "Broadband Noise Data

Member." This output data member contains the summed one-third-octave band mean-square

acoustic pressure spectrum containing the contributions from each of the broadband noise
mechanisms which have been activated by the user for a particular RBN analysis. In the data

member, the mean-square pressure is given as a function of requested observer frequency and

observer Cartesian coordinates. Because only the wind tunnel condition (refer to the section

"Input") is in effect if the Cartesian observer input format is used, proper accounting of Doppler

shifting due to rotor rotational speed and flow speed (no hub-to-observer relative translational

motion contribution exists) has been made in the acoustic pressures in the output data member.
Thus the RBN-predicted noise results in the output data member can be compared with wind

tunnel measurements of rotor broadband noise. However, the acoustic results in the output

data member cannot be subsequently propagated (by the PRO Module) to far-field ground
observers because of the format of the data member and the type of Doppler shifting applied

to the predicted noise contained in the data member. Finally it must be noted that for a left-

hand rotor rotation configuration, the Cartesian observer coordinates, which were all input to
RBN in a right-hand convention and subsequently converted automatically by the RBN code

to a left-hand convention during computations, are correctly restored by the RBN code to the

original right-hand convention for insertion in the output data member.

The output table and data member produced by the RBN Module are as follows:

/o

O

<P2>(fo, _, (I))tot

Broadband Noise Table

[Output only when spherical observer input format is used]

observer frequency (requested one-third-octave band center frequency

values), Hz

observer polar directivity angle (same as input specification,

fig. 2), deg

observer azimuthal directivity angle (same as input specification,

fig. 2), deg

rotor broadband mean-square acoustic pressure (containing contribu-
tions from those noise mechanisms which have been user-activated for

particular analysis under consideration), re p2c4

J /o

Broadband Noise Data Member

[Output only when Cartesian observer input format is used]

observer frequency (requested one-third-octave band center fre-

quency values), Hz
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<P2> (fo, X)tot

observer position vector relative to hub-fixed Cartesian coordinate

system, m, (ft) (fig. 2; each output record storing X1, X2, and

)(3 axis components of an observer position vector, one observer
per output record)

rotor broadband mean-square acoustic pressure (containing con-
tributions from those noise mechanisms which have been user-

activated for particular analysis under consideration), re p2c_

Method

Synopsis

The major assumptions underlying the RBN Module have been given in th e Introduction.
Before detailing the necessary geometric calculations and each of the six prediction models,

summarizing those aspects of the RBN methodology which are common to all the models is
useful. In each noise model, an empirical correlation exists for the noise source based on a local

blade section-fixed rotating reference frame, to be detailed further in the next subsection. The

source-to-observer geometry must first be obtained in.a reference frame fixed with respect to

the fluid medium (described later), and the retarded time equation !S solved for the source. The
source-to-observer geometry must then be transformed to the local blade section-fixed rotating

reference frame while ensuring that rigid blade motions due to flapping and cyclic pitch are

accounted for. By applying the appropriate Doppler-shift correction, the observer frequency

(the input-specified frequency at which final predicted noise is to be presented) is converted to

the corresponding source frequency at which the noise calculations must actually be performed
(the noise mechanism model formulas are derived as a function source frequency). The Doppler

frequency shifting applied depends on the choice of observer condition and source/observer

kinematics, all to be detailed later. With a given noise model, individual source-generated
noise spectra are computed at the source time for the specified observer frequency byusing the

appropriate source frequency. For each selected noise model, the individual source-generated

spectra are summed over blade span (except for the case of tip vortex formation noise, for which
the spectra are generated only at the blade tip section) and averaged in the blade azimuthal

direction, with all rotor blades accounted for. This summing and averaging processproduces
a rotor-integrated spectra of the broadband noise contributed by the selected noise model.

Finally the rotor-integrated spectral contributions from each of the selected noise models are
summed to produce the final resulting total rotor broadband noise signal at each observer.

The remainder of the scction "Method" is topically divided into 11 subsections to provide

details of the aforementioned RBN methodology. The first five subsections establish the source

frequencies as well as source position and observer position, both relative to the local blade-

section-fixed (i.e., source) coordinate system and necessary before each noise prediction model
can be applied. More specifically, these first five subsections define the reference frames, detail

the generation of source-to-observer geometry including required transformations between axis

systems, present two choices of observer condition and the retarded time equation for each,
and present Doppler shift corrections for obtaining the source frequency corresponding to the

requested observer frequency. In the sixth through ninth subsections, the four broadband noise

mechanisms employed in the RBN Module are considered, with the methods underlying each
of the six prediction models presented. The tenth subsection describes the calculation of the

final rotor broadband signal by combining the various noise mechanism contributions. The last
subsection summarizes the computational steps implemented in the computer code of the RBN

Module for performing the complete broadband noise prediction.

Coordinate System Descriptions

There are four Cartesian coordinate systems to consider in the RBN Module. It is simplest

to describe the first two together. First is the hub-fixed Cartesian coordinate system, with axes

i

!
!
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X1, X2, and X 3. Second is the system which is fixed with respect to the fluid medium and is

called the medium-fixed system, with axes xm,1, Xrn,2, and Xrn,3. Initially (t = 0), the hub-fixed
and medium-fixed systems are coincident in figure 2. Then the hub-fixed system translates at

rate V with respect to the medium-fixed system. Employing either the flyover condition or the
wind tunnel condition, each detailed in the next subsection, the position of observers remains

fixed with respect to either the medium-fixed system or the hub-fixed system, respectively.

For the hub-fixed and medium-fixed systems, consider first the spherical observer input

option, usable for either the flyover condition or the wind tunnel condition and by which a

spherical locus of observers is specified. Initially, as input, this spherical locus of observers is
centered at the coincident origins of the hub-fixed and medium-fixed systems. The location of

each observer relative to the two initially coincident reference frames is specified by directivity

angles as shown in figure 2. For each observer in the spherical format, the directivity angles
remain constant with respect to the Cartesian reference frame where the observer sphere

remains fixed; thus, the observer directivity angles serve as an identifier of observer position

unchanged with time. Consider second the Cartesian observer input format, usable only for
the wind tunnel condition where the locus of observers is of arbitrary shape. Initially, as input,

and at all subsequent times, this arbitrarily shaped locus of observers is fixed with respect to
the hub-fixed Cartesian coordinate system (fig. 2).

The medium-fixed coordinate system is the reference frame to which all blade section source
coordinates and all observer coordinates are transformed for solving the retarded time equation,

needed to obtain the source time corresponding to a given observer time.

The third Cartesian coordinate system in the RBN Module is the blade-fixed rotating

system, as illustrated in figure 3, with axes 7h, _, and _3 and with the origin remaining
coincident with the origin of the hub-fixed reference frame. The axes )(3 and _, perpendicular

to the hub plane, remain coincident. Initially (r --- 0), the _ axis (along the blade span and
assumed coincident with the blade pitch change axis) is aligned with the axis X1. The blade-

fixed system rotates about the axis _3 at rate ft. At any instant of time the axis r/2 is rotated

to azimuthal position T (numerically equal to ¢) with respect to the axis X1 as shown in

figure 3(a). The undeflected blade section geometry is input to the RBN analysis with respect
to the blade-fixed rotating system. Also, this system is the most convenient one for introducing

the deflected blade position (position including blade flapping and pitch motion) to facilitate

transforming deflected blade position to other coordinate systems.

The fourth and final Cartesian coordinate system in the RBN Module is the local blade

section trailing-edge-fixed coordinate system, with axes x, y, and z, illustrated in figure 4.

Because the origin of this local reference frame is at the blade section trailing edge, which is
the assumed acoustic point source location for the blade section, this reference frame is also
called the local source coordinate system. In figure 4, a segment of blade is shown; the blade

has an arbitrary deflected (flapped/pitched) orientation with respect to the hub plane. The

axis x is parallel to the blade section chord line and directed positive aft relative to the blade
section. The axis y is directed along the blade segment trailing edge, positive toward the blade

tip. The axis z is perpendicular to the plane of the blade segment, positive up, forming a right-
hand coordinate system. In the local source coordinate system the actual broadband noise

calculation is performed by each of the prediction models. A local source coordinate system is
established at each blade section to compute the noise from that section.

To transform source-to-observer geometry to the local source coordinate system is necessary

before implementing each of the noise models. The necessary transformations are described in

a subsequent subsection. First, however, we must establish the source-to-observer geometry in
the hub-fixed and medium-fixed reference frames in order to calculate retarded time.

Source-to-Observer Geometry and Retarded Time

To develop the retarded time equation, obtaining the observer and source position coor-
dinates relative to the hub-fixed reference frame is necessary. Then for each of. two separate
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observer conditions, the source-to-observer geometry is transformed to the medium-fixed refer-
ence frame and the retarded time equation derived.

In figure 5, the acoustic point source on a blade section is at source position 12 relative to
the hub in the hub-fixed frame at source time r. The sound emitted by the source at time

r radiates along the path defined by the source-to-observer position vector _ (i.e., radiation

vector) and is received by the observer at time t, when the observer is at position )( relative

to the hub-fixed frame. A retarded time equation is required to relate the source time T to

the observer time t. The required time for sound to travel from source to observer is given in
dimensionless form as

t - r = Mhr (1)

where r = Igt.

The source position at a section of the deflected blade is defined by the vector _(_, r)

in the blade-fixed rotating coordinate system centered at the rotor hub and is obtained by

transforming the input undeflected blade geometry detailed in the subsequent subsection. The

coordinates of position vector _(_, T) are transformed from the blade-fixed rotating reference

frame to the hub-fixed reference frame by

12= -cost sinr r/2(_,r) (2)

0 0 L_/3(_, r) fp

where matrix subscript fp indicates flap- and pitch-transformed blade coordinates (i.e., the

deflected blade position). If the spherical observer input format is used, then from figure 2 the

observer position in the hub-fixed coordinate system at time t = 0 is

)( = (-Rz cos O, Rz sin O sin _, -Rz sin O cos _) (3)

where Rz = [)_[ is the input initial observer distance from the hub (i.e., the radius of the

spherical locus of observers), O and q_ are the input values of the polar and azimuthal directivity

angles, and the terms in parentheses are the X1, )(2, and X 3 components, respectively. If the
Cartesian observer format is employed, then hub-fixed Cartesian components of the observer

position )( are supplied directly from user inputs.

Initially (at time t =0), as shown in figure 6, the origin of the hub-fixed coordinate system is

coincident with the origin of the medium-fixed coordinate system. Then with time, as indicated

in figures 7 and 8, the hub (i.e., hub-fixed coordinate system) translates at a constant forward

velocity V, which is given by

1

= Mhh (-Mr cos C_dp, 0,-M/sin adp ) (4)

relative to the medium-fixed reference frame. The first two velocity components in equation (4)

are parallel to the hub plane, and the third component is perpendicular to the hub plane.

Two options exist for defining the observer position as a function of time. The first option is

the flyover condition, where the input observer remains fixed with respect to the fluid medium,
and the hub moves with time with respect to the input observer position. Thus, the flyover

condition accounts for flight velocity-induced Doppler shifting of broadband noise computed

at the observer, such that the broadband noise predicted by the RBN Module is suitable for

subsequent input to the PRO Module for simulating rotor flyovers. The second option is the
wind tunnel condition, where the observer remains fixed with respect to the hub, and both

the hub and observer move together with respect to the fluid medium. Thus with the wind

tunnel option, the Doppler shifting contribution duc to relative translational motion between
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hub andobserverdoesnot exist,suchthat tile computednoisecanbecomparedwith wind
tunneltestmeasurednoise.Notethat thetwoobserverconditionoptionsarcequivalentif tile
rotor is in hoveringflight,providedthat thesphericalobserverinput formatisusedwith both
options.Detailsof Dopplerfrequencyshiftingarepresentedin a later subsection.Foreachof
the twoobserverconditionoptions,thetransformationof source-to-observergeometryto the
medium-fixedreferenceframediffers,suchthat eachof the twooptionsresultsin a different
retardedtimeequation.

Flyover condition: geometry and retarded time. Initially (at time t = 0), as shown in figure 6

and in the right-hand side of figure 7, the hub is coincident with the origin of the medium-fixed
coordinate system. At the time of sound emission r (center of fig. 7), the hub has translated a

distance Vv relative to the fluid medium, and the reference blade has rotated by an azimuth

angular amount numerically equal (due to nondimensionalization of time) to T. Thus relative

to the medium-fixed coordinate system, the position of the source on the reference blade at

emission time r is given by

= ? + Dr (5)

Subsequently at the time of sound reception t (left-hand side of fig. 7), the hub has translated

a distance Vt relative to the fluid medium. However, the input observer position is kept fixed

for all time with respect to the fluid medium, such that the position of the observer relative to
the fluid)medium is given by the initial input hub-fixed position as

_rn ----2 (6)

By referring to figure 7 and using equations (5) and (6), the vector Y defining the source-to-
observer position relative to the medium-fixed reference frame is given at a given instant in

time for the flyover condition by

(7)

Thus in the medium-fixed reference frame, the retarded time equation (eq. (1)) becomes

t-r=M hX-?-Vv (8)

Squaring equation (8) and rearranging yield a quadratic equation of the form

C1 v2 + C2r - C3 = 0 (9)

where the coefficients are

CI=I-M_V 2

Ca =-M2 9-)_ 2 +t 2

(10)

(11)

(12)

Applying the quadratic formula yields the final form of the retarded time equation applicable

to the flyover condition as. follows:

r _ v-- = 0 (13)
2C_

J

where the negative sign in front of the radical is selected to ensure that only the physically
realistic case of V < t is selected. Equation (13) cannot be explicitly solved for v, since Y is
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a functionof r as given by equation (2); however, it will converge to a solution quite rapidly

with Muller's method given in reference 8.

Wind tunnel condition: geometry and retarded time. Initially (at time t = 0), as shown

in figure 6 and in the right-hand side of figure 8, the hub is coincident with the origin of the
medium-fixed coordinate system. At the time of sound emission r (center of fig. 8), the hub

has translated a distance Vr relative to the fluid medium, and the reference blade has rotated

by an azimuth angular amount numerically equal (due to nondimensionalization of time) to
T. Thus relative to the medium-fixed coordinate system, the position _m of the source on the

reference blade at emission time r for the wind tunnel condition option is the same as that for

the flyover condition option and is given by equation (5), which is repeated here:

_m=?+_

Subsequently at the time of sound reception t (left-hand side of fig. 8), both the hub and the

observer (the observer remaining hub-fixed for the wind tunnel condition) have translated a

distance 17t relative to the fluid medium. Thus relative to the medium-fixed coordinate system,

the position of the hub-fixed observer at reception time t is given by

X_rn = 2 + Vt (14)

By referring to figure 8 and using equations (5) and (14), the vector _' defining the source-to-
observer position relative to the medium-fixed reference frame is given at a given instant in

time for the wind tunnel condition by

= (_m - Ym)= 2 + ?t - ? - "_ (15)

With equation (15) used in equation (1), the retarded time equation becomes

(16)

Squaring equation (16) and rearranging yield a quadratic equation of the form

cl(t - _)2 + c2(t - _) + ca = o (17)

where the coefficients are

) (18)

(19)

(20)

Applying the quadratic formula yields the final form of the retarded time equation applicable
to the wind tunnel condition as follows:

-c_ + v/c_ 4C1C3
t - r - = 0 (21)

2C1

where the positive sign in front of the radical is selected to ensure that only the physically
realistic case of T < t is selected. As is true with equation (13), equation (21), cannot be

explicitly solved for _" but will converge to a solution quite rapidly by using Muller's method

given in reference 8.
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Blade Motion Description and Undeflected-to-Deflected Blade Surface Coordinate

Transformation

To complete the transformation found in equation (2), the position _(_, r) of the blade

section trailing edge (i.e., acoustic source) on the deflected blacle must now be obtained with
respect to the blade-fixed rotating reference frame. A transformation for this deflected position

is obtained from the input undeflected blade position by applying blade dynamics.

First consider the undefiected blade. Relative to the blade-fixed rotating coordinate system,

the geometry of each undeflected blade section is defined as shown in figure 3(b) by specification

of the blade section leading-edge abscissa _l,l, leading-edge ordinate _73,1, chord length c*, and
rigid twist angle 0T, each of which is obtained from an input table. The blade section trailing-
edge position is of interest because, by assumption, the acoustic point source is situated there.

In figure 3(b), the trailing-edge coordinates at a section on the undeflected blade are the

abscissa, defined from input quantities as

771,t (_) : 711,1 (_) + C* (_) COS _T (_) (22)

and the ordinate, given by

r/3,t(_) ---- _73,l(_) -- C*(_) sin OT(_) (23)

Consider next the blade dynamics. As it rotates, the blade undergoes pitching motion

(positive for leading edge tilted up from the hub plane) about the blade pitch change axis. The

blade pitch angle is given by

0r(v) = A0 - A1 cos r - B1 sin r (24)

where A0 is the collective pitch at the blade root, A1 is the lateral cyclic pitch, and B1 is the

longitudinal cyclic pitch, all three of which are known inputs to the analysis. Additionally, the
rotor blade is free to flap about a flapping hinge located a distance e from the rotor hub as

shown in figure 9. Flapping angle _ (positive for flapping up from the hub plane) is defined by

the finite Fourier series having either sine/cosine form or complex exponential form, depending

on the choice of module inputs, as follows:

4

_(T) = /30 -- _ []_2n--1 COS (nv) + An sin (nv)] (25a)
n=l

or

(Nm/2)-I

;3(v)---- _ _(m) exp(imr) (25b)

m=(-Nm/2)+Z

where equation (25a) applies if standard module input is used, in which the real-valued Fourier
coefficients are inputs to the analysis by user parameters; alternatively, equation (25b) applies

if optional input from the Higher Harmonic Loads Analysis of ROTONET is used, in which the

complex Fourier coefficients are obtained from the optional input flapping table and the value
of Nm is given implicitly by the size of the input table. The summation limits in equation (25b)

are set to exclude the _(Nm/2) and _(-Nm/2) coefficient terms. These terms are excluded,
because the individual values of the complex Fourier coefficients 5(Nm/2) and _(-N,n/2) are

not provided in the input flapping angle table. Instead as indicated in the right column of

table I, only the real-valued arithmetic average of the complex Fourier coefficients _(Nm/2)

and "5(-Nm/2) is available in the input flapping angle table, and this average value is not valid
for use in equation (25b). Regardless of whether equation (25a) or (25b) is applicable, _ is a

known quantity for the analysis.
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Relative to the blade-fixed rotating coordinate system, a transformation from undeflected

source (i.e., trailing edge) position to deflected position is done in two steps. In the first step,

undeflected position coordinates (r]l,t(_), _, r/3,t(_)) are displaced by application of flapping.
For blade sections outboard of the flapping hinge (i.e., _ > e), this transformation step is

m(_,_')[ = cos
!

_(_, T) J.f sin _3
° [il)[i]- sin/3 t _ +

cos _ J L_3,t(_)

(26)

where the matrix subscript f denotes flap-rotated position. Otherwise, if the blade section is

inboard of the flapping hinge (i.e., _ < e) or for any spanwise station where no flapping occurs,
then the first transformation step is simply

1m(_, T)[ =
m(_, T) Jl ,73,t(_)J

(27)

In the second step, the flapped blade position is rotated by the root blade pitch angle. In

making this rotation, the blade pitch change axis is assumed coincident with the axis _2 of the

blade-fixed rotating coordinate system, as indicated in figure 3(b). This gives

Ico0r0sin0r]F l  r,]
_3(_,r)Jfp L-sin Or 0 cos er L_3(_,T) ]

(28)

Equation (28) provides the source position (i.e., blade section trailing-edge position) coordinates

of the deflected blade relative to the blade-fixed rotating reference frame. The deflected blade

source position ]_ relative to the hub-fixed reference frame is then obtained from input blade

coordinates by substituting equation (28) into equation (2). The final necessary geometric

transformation to consider is one which converts the source-to-observer geometry from the

medium-fixed reference frame directly to the local trailing-edge fixed source coordinate system.

Transformation to Source Coordinate System

As in the preceding two subsections, the source-to-observer geometry has been obtained

relative to the medium-fixed reference frame. Specifically the source-to-observer position vector

F is given by equation (7) for the flyover condition and equation (15) for the wind tunnel
condition. Vector _ is given at source time % which is obtained by solution of the retarded

time equation (eq. (13) for the flyover condition or eq. (21) for the wind tunnel condition).

To establish this geometry in final format necessary for actually carrying out noise predic-

tions by the various prediction models, transforming vector _ at time _- to the local source

coordinate system (fig. 4) fixed to the trailing edge of the blade section under consideration
is necessary. This transformation is the same regardless of the choice of observer condition

(flyover or wind tunnel) and is carried out in four steps. Firstly, the components (rl, r2, r3)

of F, which are in the medium-fixed reference frame, are converted to the blade-fixed rotating

reference frame. Secondly, a rotation is made to account for blade root pitch angle. Thirdly,

a rotation is made to account for blade flapping angle. Finally, a rotation by the rigid twist
angle at the blade section is made for alignment with the local blade section chord line. These

four steps are accomplished by inverting the transformations applied in equations (2), (28),

and either (26) or (27); carrying them out in the sequence of equations just stated; and then

16.2-20



rotatingbyrigid twist angle.Forasourcesituatedona bladesectioninboardof theflapping
hinge(i.e.,_ _<e), the complete transformation is

[] Io o 1Io olt0' :][]rx co OT 0 sl 0T co 0r 0 -- s 0r [ sin r -- cos T 0 rl

ry = 1 1 c r sin v r2

rz l_sin0 T 0 cos0 T _ll_sin0r 0 COS0r _1 0 r3

(29)

and for a source situated outboard of the flapping hinge (i.e., _ > e), the complete transforma-
tion is

Ic°:°SioO ]/[i][i0 01ry = 1 + cos/3 sin/3

rz I. sin 0T 0 cos 0T J I, -sin /3 cos/3 J

Irc°s:°sio°lcos i]i ll[i]))1 ,cos 
\1_ sin 0r 0 cos Or J 0 r 3

(30)

Note that lengths are preserved in the transformation given by equation (29) or (30), such that

the magnitude of _"is unchanged and is given by

(31)

based on coordinates in the local source coordinate system. It is not valid for the observer

to be coincident with the local noise source (i.e., with the trailing edge of the blade section
under consideration); thus, r must be nonzero. The position of the observer relative to the

local source coordinate system is oriented (fig. 4) by the polar angle 0 and azimuthal angle ¢

which are calculated, respectively, by

cos 0 = --rx (32)
r

and rz
tan ¢ = -- (33)

ry

If the source-to-observer position is such that ry = rz = 0, then 0 = 0 and ¢ is arbitrary.

The angle ¢ is assigned a value of zero in this case. Equations (31), (32), and (33) provide
the source-to-observer geometry in the form required for implementation of the various noise
models.

Finally, before actually applying the noise models, it is necessary to calculate the source

frequency (at which the actual noise calculation is made) corresponding to the specified observer

frequency for which the noise is desired. This calculation is done by applying Doppler shifting
to the observer frequency.

Doppler Frequency Shift and Source�Observer Kinematics

To predict the noise in terms of the standard one-third-octave band frequency values at
the observer is desired. The computed source frequency must include a Doppler frequency

correction to yield the proper noise result at the corresponding observer frequency. As presented

by Roy (ref. 9), the general expression relating the source frequency to the observer frequency
for a source in motion relative to the observer and the fluid medium is

i /_so "
fo = 1 + (34)
fs 1-/Qsm "_
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wheretheright-handsideis the Doppler-shiftcorrection.In equation(34),-_smisthe Mach
numbervectorof thesourcerelativeto thefluid mediumand/_sois theMachnumbervector
of the sourcerelativeto the observer,asshownin figures7 and8. Theunit vector? points
in thewavenormaldirection. Forthe low subsonicforwardspeedsof helicopters,the wave
normaldirectionand the propagationdirectionareassumedthe same;therefore,_ = _/r.
Separate implementations of equation (34) are required for the flyover condition and wind

tunnel condition as detailed in the following two subsections.

Flyover condition: Doppler correction. For the flyover case, the observer is at rest with

respect to the fluid medium so that 2t_/so equals. 2t_sm. Thus, equation (34) reduces to

%_

fo 1 (35)
fs=l-  o.e

The motion of the source relative to the observer is described by

where 1_ and V are defined by equations (2) and (4), respectively. Taking the time derivative

of 1_ requires successive application of the chain rule to equations (2), (28), and either (26)

or (27) to produce the derivative term in equation (36).

Wind tunnel condition: Doppler correction. For the wind tunnel condition, the Doppler

shift is calculated directly by using equation (34), which is repeated here:

fo 1+

and the Mach number vectors are given by

._.?

1 -- A_sm "_

l Iso= Mh (37)

and

/tfsm -- h_so + MhV (38)

In equations (37) and (38), 1_ and t_ are defined by equations (2) and (4), respectively. Taking

the time derivative of ]_ requires successive applications of the chain rule to equations (2), (28),

and either (26) or (27) to provide the derivative term in equation (37).

The necessary source frequency is calculated. Division of the input-specified observer

frequency fo by equation (35) or (34) yields the necessary source frequency fs for noise
calculations for the flyover condition and wind tunnel condition, respectively.

To this point in the discussion of the RBN method source/observer kinematics, source
frequency, and source-to-observer geometry relative to the local source reference frame have

been established. Application of the various noise prediction models can now be performed.

Turbulent-Boundary-Layer-Trailing-Edge Noise--Separated-Flow Noise

There are two methods available in the RBN Module to predict turbulent-boundary-layer-

trailing-edge noise-separated-flow noise. The first is that of Schlinker and Amiet (ref. 1) and

is implemented as the TBLCAL model. The method underlying model TBLCAL is detailed
completely. The more recent method is that developed by Brooks, Pope, and Marcolini (ref. 2).

This method is based on the analysis of Ffowcs Williams and Hall (ref. 10) but includes recently
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developedspectralscalingfor thedependenceof airfoilsize,airfoilangleof attack,andairfoil
localonsetflowvelocity,wheretheairfoil is takento be the localbladesectionin theusage
of theRBNModule.ImplementedastheTETCAL modelin theRBNModule,onlythefinal
governingnoiseequationassociatedwith thissecondmethodispresentedin thisreportbecause
themethodis derivedfully in reference2.

TBLCAL model. The first model, TBLCAL by Schlinker and Amiet (ref. 1), employs a

scaling law developed from theoretical and empirical results for a two-dimensional airfoil. The
rotor blade is divided into a series of two-dimensional sections. The noise is predicted based

on the local angle of attack and Mach number for each section at the appropriate source time

using the scaling law. The noise produced by the entire rotor is then computed by integrating

along the blade, averaging over one revolution, and accounting for all blades.

The scaling law developed in reference 1 is written in the form of the mean-square pressure

per unit span expressed in terms of nondimensionalized quantities as

(p2') ((, t, St, O, (I))= (5.279 x IO-7)-_M5D(O,¢)F(St) (39a)

if the spherical observer input format is used, or as

(p2')((, t, St, )_)= (5.279 x IO-7)-_M5D(O,¢)F(St) (39b)

if the Cartesian observer input format is used, where r is the source-to-observer distance, given

by the magnitude of either equation (7) or (15) (depending on the choice of observer condition)

and where 5 is the turbulent boundary-layer thickness at the blade section trailing edge. The

boundary-layer thickness 5 is given by

= t2 + (40)

where c* is used to convert the nondimensionalization from one based on c to one based on R.

The boundary-layer thicknesses 61 and 5u on the lower and upper surfaces at the trailing edge,

as shown in figure 10, are determined by interpolating the input table using the appropriate
values of _, a, and local flow Reynolds number for the blade section. The Reynolds number,

based on blade section chord length, is defined in terms of nondimensionalized quantities as

Re = c*MRec¢ (41)

The correct values of a and M are interpolated from the input performance table. The

directivity function D(O, ¢) and the spectrum functions F(St) are defined by using the high-

frequency directivity function, found in reference 1, and the Fink spectrum function in
reference 11. The directivity function is expressed in the current notation as

D(O, ¢) =
sin 2 t7sin 2 ¢ (1/Mc) 2

(1 + Mcos_7)4{(1/Mc) + [1/(1 - M2)][M - (px/a)]} 2

(I/M_) + [1/(1- M2)](M + [p2 + (1- M2)p211121a}

x (llMc)+ [II(i - M)]

a(M + 1) )Pz + [p2 _#_(1 - M2)p2z] 1/2
(42)

7

where 0 and 4bare obtained by equations (32) and (33) and a is defined as

_r --__[p2 -t-(1- M2)(p 2 -t-piz)] 1/2 (43)
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andpz, py, and pz are identified as the reception-time position coordinates of the blade section
trailing-edge source relative to the observer. The reception-time position accounts for the
motion of the source which occurs during the delay time between sound emission and sound

reception by the observer. Coordinates Pz, Py, and Pz are relative to the local source coordinate
system (fig. 4) and are given by

Pz = r(M + cos 0) (44)

py = r sin 0 cos ¢ (45)

Pz = r sin O sin ¢

Using equations (44), (45), and (46) in equation (43), the quantity a simplifies to

(46)

k_

a=r(l+Mcos O) (47)

The directivity function given in equation (42) is singular for the case of Pz = 0 and Pz _< 0;

however, the equation reduces to a finite limiting form by applying l'H_pital's rule. For Px <_ 0
and Pz = 0,

1 (1�Me) 2

D(a, 0) = r2(1 + Mcos o)a{(1/Mc) + [1/(1 - M2)][M -(px/a)]} 2

(llMc) +__[1/(1 - M2)](M + lP lla) 21p_la

x [ (liMe) + [11(1 - M)] J 1 - M
(48)

and for Px > 0 and Pz = O,

D(O, O) = 0

The spectrum function F(St) is written in the current notation as

(49)

FiSt ) --- 0.613(10St) 4 [(10St) 3/2 -F 0.5]-4

where the Strouhal number St is given by

(5O)

]
st = (51)

The scaling law given in equations (39) is evaluated for each value of the blade spanwise
coordinate _ and azimuth angle !b -- t. Integrating for all sources over the rotor disk, accounting

for all rotor blades, and employing the source frequency corresponding to the given observer

frequency, the rotor-integrated mean-square sound pressure at a given observer and for a given
observer frequency value is

fLl((pl)(fo, O,¢)= _Nb : p2,)(_,t, St, O,¢)d_d,

if the spherical observer input format is used, or

(52a)

(P2)(f°'X) = _Nbi_: L l(p2,)(<'t'St>_()d_dt (52b)

if the Cartesian observer input format is used, where St, being a direct function of _, t, and fs,

is also an implicit function of fo, via the applied Doppler-shift correction. Equations (52) are
the desired rotor broadband noise contribution from the turbulent-boundary-layer-trailing-edge

noise- separated-flow noise mechanism, as predicted by model TBLCAL.
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TETCAL model. The second and newer method for turbulent-boundary-layer trailing-edge

noise separated-flow noisc is by Brooks, Pope, and Marcolini (rcf. 2). Dcvclopmcnt of this
method, implemented as the TETCAL model in the RBN Module, was motivated by research

which showed that, contrary to what was assumed in the method of Schlinker and Amiet (ref. 1),
the normalized levels, spectral shape, and Strouhal number arc dependent on airfoil size, airfoil
angle of attack, and airfoil local onset flow velocity, where the airfoil is taken as the local blade

section in the RBN Module usage.

In this newer model the desired noise spectrum in a one-third-octave presentation, for a

given observer and observer frequency, generated by the trailing-edge source at a given blade

section is predicted by

SPLTETCAL -_ 10 log(10 SPL''/10 + 10SPL,_/10 + 10 SPLp/10) (53)

where the term containing SPL_ is the noise for nonzero angle of attack; the term containing

SPLs is for noise associated with the suction side of the blade section at an angle of attack of

0 °, and the term containing SPLp is for noise associated with the pressure side of the blade

section at an angle of attack of 0°. The quantities SPLa, SPLs, and SPLp are all functions of
blade section size, onset flow velocity at the blade section, boundary-layer thickness at the blade

section trailing edge, and the directivity function D(0, ¢). All three of the SPL quantities are

evaluated at the source frequency corresponding (by Doppler shifting) to the desired observer
frequency.

As implemented in reference 2, the directivity function implicitly contained in equation (53)
is given by a combination of a high-frequency approximation expression and a low-frequency

approximation expression. However, as implemented in the RBN Module, the directivity

function implicitly contained in equation (53) is given by the more general expression (eq. (42)),
where angles 0 and ¢ are given by equations (32) and (33).

In reference 2, the model for turbulent-boundary-layer-trailing-edge noise -separated-flow

noise is developed for airfoils at zero or positive angles of attack only. As implemented in the

RBN Module, however, the TETCAL model is extended to negative angles of attack. Therefore

to compute the TETCAL model noise caused by a blade section having a negative value of angle
of attack, the absolute value of blade section angle of attack is used and the directivity function

D(0, ¢) is computed as if the observer is moved from its input position relative to the blade
section to a position on the opposite side of the blade section chord line. To effect this special

D(0, ¢) cdmputation for negative angle of attack situations, the quantity -rz is employed in

the calculation of ¢ (eq. (33)) for use in computing the directivity function (eq. (42)).

Because the derivation of equation (53) is presented in section 5.1 of reference 2, it is not

included here. With the exception of the aforementioned implementation of the directivity

function D(0, ¢), the details of equation (53) are implemented as presented in section 5.1 of
reference 2; therefore, they are not included here.

Corresponding to the sound pressure level given by equation (53) is a value of mean-
square pressure generated by the local source. In a manner analogous to that given in

equation (52), the source-generated mean-square pressure is integrated over the rotor disk

to account for all sources on all blades at the source frequencies corresponding to the desired
observer frequency. This integration yields the desired rotor-integrated mean-square pressure

(p21(fo, e, 4) or (p2)(fo,._(), depending on the choice of observer input format, at a given

observer for the desired observer frequency, which is the desired rotor broadband noise

contribution from the mechanism for turbulent-boundary-layer trailing-edge noise scparated-

flow noise, as predicted by model TETCAL. This model is an improved alternative to the

Schlinker and Amiet model (TBLCAL) discussed previously.
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Laminar-Boundary-Layer- Vortex-Shedding Noise (LBL CAL Model)

Vortex-shedding noise can occur when a laminar boundary layer exists over most of at
least one side of an airfoil (i.e., blade section). The vortex shedding may become part of an

acoustically excited aerodynamic feedback loop between the trailing edge and a source on the
blade surface where Tollmien-Schlichting instability waves originate in the laminar boundary

layer. The spectrum of the resulting noise is composed of quasi-tones which are related to the
vortex-shedding rate and to the laminar-boundary-layer thickness at the trailing edge of the

blade section.

A single method for predicting laminar-boundary-layer vortex-shedding noise is imple-
mented in the RBN Module as the LBLCAL model and is summarized here. The scaling

approach used in this model is similar to that used for the turbulent-boundary-layer-trailing-

edge noise separated-flow noise mhthod in section 5.1 of reference 2. A universal spectral

shape and Strouhal number dependency are modeled in terms of boundary-layer parameters,
Mach number, angle of attack, and Reynolds number. -,

In a one-third-octave band noise spectrum presentation, the laminar-boundary-layer-vortex-

shedding noise at a given observer generated by a source located at the blade section trailing

edge is predicted by

['M5_pc * D(O, )SPLLBLCAL = 10 log_ r_ ¢) + G1 + G2 + (73 (54)

where the equation is taken from reference 2, with the logarithm argument rewritten in terms of

nondimensionalized quantities. In equation (54), G1 is a function of Strouhal number, which is
a function of the source frequency corresponding (via Doppler shifting) to the desired observer

frequency of the final noise result, G2 is a function of blade section Reynolds number (eq. (41)),
and G3 is a function of blade section angle of attack. Also in equation (54), dip is the boundary-

layer thickness existing on the pressure surface side of the blade section at the trailing edge.

The blade section angle of attack determines Which side of the blade section is the pressure

side. Thus if a < 0,
5p = c*_u (55)

and if _ > 0,
dip= c*diz (56)

where diu and diI are input values of upper "and lower surface boundary-layer thickness at the

blade section trailing edge, and the input value c* is required for proper nondimensionalization.

As implemented in reference 2, the directivity function D(/9, ¢) is given by a high-frequency ap-
proximation expression. However, as implemented in the RBN Module, D(/9, ¢) in equation (54)

is given by the more general expression (eq. (42)), where 19and ¢ are given by equations (32)

and (33). If _ < 0, angle ¢ is computed by using a value of -rz in equation (33), and D(O, ¢)

(eq. (42)) is computed as if the observer is moved from the input position to a position on the
opposite side of the chord line of the blade section having the negative value of c_. This special

accommodation for negative angles of attack is needed in the RBN Module because the model

as developed in reference 2 is formulated only for zero and positive angles of attack. With the
exceptions of the aforementioned implementations of dip and D(/9, ¢), the details of equation (54)

and the associated functions are implemented as shown in section 5.2 of reference 2.

Corresponding to the sound pressure level given by equation (54) is a value of mean-square

pressure generated by the local source. In a manner analogous to that given in equations (52),
the source-generated mean-square pressure is integrated over the rotor disk to account for all
sources on all blades at the source frequencies corresponding to the desired observer frequency.

This integration yields the desired rotor-integrated mean-square pressure _p2_(fo, O,_) or

(p2>(fo,._), depending on the choice of observer input format, at a given observer for the
desired observer frequency, which is the desired rotor broadband noise contribution from the

mechanism for laminar-boundary-layer-vortex-shedding noise, as predicted by model LBLCAL.
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Trailing-Edge-Bluntness-Vortex-Shedding Noise

Trailing-edge-bluntness-vortex-shedding noise is a result of the fluctuating pressure differ-

ential at the blade section trailing edge. The fluctuating pressure differential is due to the

vortex shedding caused by a blunt trailing edge. Two prediction methods are provided for this
noise mechanism. The first method is that developed by Grosveld (ref. 3) and is implemented
as the TEBCAL model in the RBN Module. The second and more recent method is that of

Brooks, Pope, and Marcolini (ref. 2) and is implemented in the RBN Module as the TB2CAL
model. These two models are described individually in each of the following two subsections.

TEBCAL model. Grosveld (ref. 3) used the data of Brooks and Hodgson (ref. 12) to obtain

a scaling law for the trailing-edge-bluntness-vortex-shedding noise. For the vortex shedding

frequencies for flows behind thick struts, wings, and flat plates, the peak Strouhal number
is 0.25, based on the trailing-edge thickness h. For flows about these geometries, the turbulent-

boundary-layer-displacement thickness 5* is much smaller than h, and the associated trailing-

edge bluntness noise follows a velocity dependence U 6. For flows where 5* is approximately
equal to or less than h, the peak Strouhal number was found to be approximately 0.1 (ref. 12).

In this case, the noise generated from the blunt trailing edge follows a U 5"3 dependence.

For rotor blade noise, h is blade section trailing-edge thickness and is defined as follows:

h = h'c* (57)

where h* is the input value of trailing-edge thickness at a particular blade section, non-
dimensionalized with respect to blade section chord length, and input quantity c* is required

so that h is nondimensionalized with respect to rotor radius, as necessary for use in the RBN

analysis. At the trailing edge of the blade section, the turbulent boundary-layer-displacement

thickness 5* is given by

5"- + (58)
2

where/i_ and 5_*are input values of blade section boundary-layer-displacement thickness at the
upper (i.e., suction surface) and lower (i.e., pressure surface) sides, respectively, at the trailing
edge. Input quantity c* is required to convert the nondimensionalization from one based on

blade section chord length to one based on rotor radius.

With the aforementioned velocity dependencies as well as directivity patterns presented by

Howe (ref. 13), model TEBCAL uses scaling laws derived for the mean-square pressure per
unit span generated at an observer in the acoustic far field due to a source at the blade section

trailing edge and given in the following relations:

For h/tf* > 1.3,

10 -5 [M6h 02(8, ¢) g3(f)] (59a)[p2'_(_,t, fo, O, * ) =3.0867 x
\ / J

if the spherical observer input format is used, or

=3.0867× 10-5
\ /, - M6h D2(8, ¢) K3(I)]-Tx-

(59b)

if the Cartesian observer input format is used, where

sin 2 0 sin 2 ¢

D2(6, _b) = (1 + Mcos 0) 6
(60)
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and for hi6* < 1.3,

t,io,e,3)= 2.6072× 10-7

if the spherical observer input format is used, or

M5'3h K4(f)]D2(O, ¢)
(61a)

M5'3 h ](p2')(_,t, fo, 2) = 2.6072 x 10-7 [_ D2(O,¢)K4(f)

if the Cartesian observer input format is used, where

(61b)

2 sin 2 (0/2) sin 2 _b (62)
D2(0,¢) = (1 + Mcos 8)3(1 + (M- Me) cos 0) 2

In equations (59) through (62), 0, and ¢ are given by equations (32) and (33). Note that r is
given by the magnitude of equation (7) or equation (15), depending on the choice of observer

condition in effect. Quantities M and Mc are obtained from module inputs.

The frequency-dependent constants Ka(f)and Ka(f) in equations (59) and (61) were

obtained from trailing-edge-bluntness noise measurements of Brooks and Hodgson (ref. 12).
The measurements show that the bluntness nome m significant for a limited range of frequencies;

thus, the constants K3(f) and K4(f) are given only over that range. The range of frequencies

is centered around the frequency at which the constant K3(f) or Ka(f) is a maximum. For
K3(f), this frequency is

fmax,3 - h + (5/4)

and for K4(f),
i Coo

fmax,4 = 0.1-_- (_-) (64)

where the turbulent-boundary-layer thickness 6 is given by equation (40).

Values of K3(f) and K4(f) are given in table III for the seven one-third-octave band source

frequencies centered at fmax,3 or fmax,4- The mean-square pressure for the bluntness noise
given in equations (59) or (61) is computed at each of these frequencies for each blade spanwise
coordinate _ and azimuth angle _b = t. To obtain the mean-square pressure as a function of

the specified observer frequency, the value of the mean-square pressure actually computed at

each given source frequency is assigned to the observer frequency which is closest to the source
frequency. The Doppler-corrected source frequency used for actual noise calculation is obtained

by applying the Doppler frequency correction (eq. (35) for the flyover condition or eq. (34) for

the wind tunnel condition) to the specified observer frequency. When integrating for all sources

over the rotor disk and accounting for all rotor blades, the rotor-integrated mean-square sound
pressure for a given observer position at the dcsired observer frequency fo is

o.o)-- o. (65a)

if the spherical observer input format is used, or

,, (¢')(ct,:o, dt (65b)

if the Cartesian observer input format is used. Equations (65) give the desired rotor broad-

band noise contribution from the trailing-edge-bluntness-vortex-shedding noise mechanism, as

predicted by the TEBCAL model.
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TB2CAL model. The second and more recent method, by Brooks, Pope, and Marcolini

(ref. 2), for predicting trailing-edge-bluntness vortex-shedding noise is similar to that of

Grosveld (rcf. 3) in that both include a scaling on Mach number and Strouhal frequency.
However, the new method includes an additional scaling factor based on the trailing-edge angle

and includes empirical factors and functions based on a new set of data. The final scaling law

from this method, implemented as the TB2CAL model in the RBN Module, is presented here.

In a one-third-octave band noise spectrum presentation, the trailing-edge-bluntness vortex-

shedding noise at a given observer due to a source at the blade section trailing edge is predicted

by

d

(hD) (6__vg)(6_vg St')
M 5.5 (0,¢) +G4 ,et +G5 Et,

SPLTB2CAL = 10log , Stpeak

and

SPLTB2CAL = -c_

(M <_ 0.45)

(66a)

(M > 0.45) (66b)

where equation (66a) is taken from reference 2, with the logarithm argument rewritten in terms
of nondimensionalized quantities, and M is the local blade section Mach number, a direct input

quantity. As implemented by equation (66b), the bluntness noise contribution by a given blade
section is ignored if the Mach number of that blade section exceeds a cutoff value of 0.45.

The noise cutoff given by equation (66b) is a refinement of the TB2CAL prediction model as
recommended in appendix C of reference 2. In equation (66a), r is given by the magnitude of

equation (7) or (15), depending on the choice of observer condition. Also in equation (66a), St m

is the Strouhal number computed as a function of three quantities: (1) the source frequency fs

corresponding (via the appropriate Doppler-shift correction) to the desired observer frequency

fo, (2) the blade section trailing-edge angle ct, and (3) the ratio h/6avg. Trailing-edge angle Et is
an input quantity converted to radians and is illustrated in figure 10. Trailing-edge thickness h

(fig. 10) is given by equation (57). The average value of boundary-layer-displacement thickness

at the blade section trailing edge 6avg is given by

_"¢avg 5_ + 5"* -- _/c* (67)
2

J

where 6u and 67 are input values of upper and lower surface boundary-layer-displacement
thickness at the blade section trailing edge, and the input value of c* is required for proper
nondimensionalization. The functions G4 and G5 in equation (66a) define the spectral shape

for a wide range of h/6av as functions of the trailing-edge geometry and as functions of other
empirical functions base'on Strouhal number. As implemented in reference 2, the directivity

function D(O, ¢) is given by an expression based on a high-frequency approximation. However,

as implemented in the RBN Module, D(O, ¢) in equation (66a) is given by the more general
expression (eq. (42)); and angles 0 and ¢ are obtained by equations (32) and (33). If _ < 0,

angle ¢ is computed by using a value of --rz in equation (33), and D(O, ¢) (eq. (42)) is computed
as if the observer is moved from the input position to a position on the opposite side of the

chord line of the blade section having the negative value of c_. This special accommodation

for negative angles of attack is needed in the RBN Module because the model as developed

in reference 2 is formulated only for zero and positive angles of attack. With the exception of

D(O, ¢), the implementation of the functions contained in equation (66a), is exactly as detailed
in section 5.4 of reference '2.

Corresponding to the sound pressure level given by equations (66) is a value of mean-square

pressure generated by the local source. In a manner analogous to that given in equations (65),

the source-generated mean-square pressure is integrated over the rotor disk to account for all
sources on all blades at the source frequencies corresponding to the desired observer frequency.

This integration yields the desired rotor-integrated mean-square pressure <p2_(fo, O, _P) or

# /
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p2)(fo X), depending on the choice of observer input format, at a given observer for the

desired observer frequency, which is the desired rotor broadband noise contribution from the

trailing-edge-bluntness vortex-shedding noise mechanism, as predicted by model TB2CAL.
This model is an improved alternative to the TEBCAL model described previously.

Tip Vortex Formation Noise (TVFCAL Model)

Tip vortex formation noise has been identified with the turbulence in the separated flow

induced by the formation of the blade tip vortex (refl 14). The flow Over the blade tip consists
of a vortex with a thick, viscous, highly turbulent core. The passage of the turbulent core over

the trailing edge at the blade tip region and into the wake is regarded as the mechanism of

noise production.

The prediction model TVFCAL incorporates the method developed by Brooks and Marcolini

(ref. 4) and is also found in reference 2.

The study of Brooks and Marcolini isolated the tip vortex formation noise by comparing
the aerodynamic and acoustic test results of two-dimensional (2D) and three-dimensional (3D)

airfoil models. The premise is that the 3D models produce both tip noise and turbulent-

boundary-layer-trailing-edge noise (TBL-TE), whereas the 2D models produce only TBL-TE

noise. The TVFCAL prediction model resulting from the study is in general agreement with

the model of George, Najjar, and Kim (ref. 14).

The expression for the one-third-octave band sound pressure level predicted at an observer

due to tip vortex formation noise radiated from a point source positioned at the blade tip

trailing edge is

_, [M2M312D(O,¢)] .,,, [0.2308c4p2_[Mc_ 2

SPL1/3 - lomg L -_ ] = Iulog _ _64r3(Pre f )_--M ) + 10 log[A(StH)] (68)

where l is the spanwise extent (inboard from the blade tip trailing edge) of the region of

separation due to the tip vortex, M is the input blade section Mach number at the tip, Mc

is the input turbulence convection Mach number, Mm is the Mach number corresponding to
the maximum velocity Um along a separation streamline, r is the source-to-observer distance,

A(St _) is the power spectral density function of the surface pressure, _ is an empirical constant,

and D(O,¢) is the directivity function. The directivity function D(O,¢) used for tip vortex
formation noise is assumed to be the same as that for turbulent'boundary-layer-trailing-edge

noise separated-flow noise (per model TBLCAL). Equation (68) is written such that the left-

hand side represents a scaled one-third-octave band sound pressure level and the right-hand
side contains the undetermined parameters A(St _) and _. Instead of trying to define these

parameters directly, Brooks and Marcolini obtained tip vortex noise spectra for a range of flow

velocities, aspect ratios, and angles of attack. From these spectra, a representative spectrum

was chosen and scaled by the second term on the left-hand side of equation (68). The spectrum
was then curve fit with a parabola centered about a peak Strouhal number of 0.5. The curve

is given as

Scaled SPL1/3 ----126.0- 30.5[log(St") + 0.3] 2 (69)

The Strouhal number St _1is defined as

St"= A--_l (70)
Urn

where fs is a one-third-octave band source frequency corresponding (via the appropriate

Doppler-shift calculation per equation (34) or (35)) to the desired observer frequency, and
l and Um are obtained from

l
-- o.oo81atl (71)_t

etip
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Mm _ (1 + O.036[at])M (72)

where c_ip is the chord length of the blade tip section and M is the Mach number at the tip.
Both equations (70) and (71) were suggested by George and Chou (ref. 15). Equations (70)

and (71) have been modified by Brooks and Marcolini to be proportional to the "effective"

angle of attack at the tip, which is defined as

a t ---- ac(¢) atip(_) (73)

where, as the theory of reference 2 is implemented in the RBN Module, atip(¢) is the geometric
angle of attack of the blade tip measured with respect to the zero-lift line of the blade tip airfoil

section and ac(¢) is a correction factor which accounts for the lift distribution over the blade tip
region. Tip angle correction factor ac(¢) is the ratio of the spanwise lift distribution slope for

the actual rotor blade tip region to the spanwise lift distribution slope for the reference blade,

employed by Brooks, Pope, and Marcolini in reference 2 for the original theory development.
This tip angle correction factor is determined from analysis as outlined in reference 4 and is
input to the RBN Module as a function of azimuth position. When the spanwise lift distribution

approximates that of large-aspect-ratio blades of rectangular planform at spanwise uniform

inflow velocity (i.e., blades like the reference blade used in ref. 2), ac(¢) = 1.0. Depending on

the choice of module inputs, the geometric angle of attack atip(¢) at the blade tip is given by

7r

atip(¢) ---- a(_ ---- 1, ¢) - _ a0(_ = 1) (74a)

i
4

or

-1atip(_) ) : "_(_ = 1, m) exp(im_b) -- _-6 aO(_ = 1) (74b)
km=(-Nm/2)+l

where a0(_ = 1) in both equations (74a) and (74b) is the zero-lift angle of attack of the blade

tip airfoil and is provided by an input table; a(_ = 1, ¢) is the blade tip section angle of attack

(measured with respect to the chord line of the tip airfoil section), which is provided by the
Rotor Performance Table if standard module input is employed; _(_ = 1, m) is the complex

Fourier coefficient of blade tip section angle of attack (measured with respect to the chord

line of the tip airfoil section), which is provided by the optional input Blade Motion Table if
the input from the Higher Harmonic Loads Analysis of ROTONET is employed; Nm is given

implicitly by the size of the Blade Motion Table; and the factor 7r/180 converts the input value

of a0 to radians.

Equation (74a) or (74b) is used in equation (73) to obtain at, needed to compute the various

terms in the sound pressure level equation (eq. (68)). By substituting the right-hand side of

equation (69) into the right-hand side of equation (68), using the logarithm, the relating source
time T to observer time t via the retarded time equation (eq. (13) or (21)), the tip vortex

formation noise generated by the blade tip at a given instant in time is expressed in terms of

mean-square pressure as

<p2tt)(t, St", O, _) ---- M2M3ml2 D(0, ¢) 10{_ 2 log(pooc2oo/pret)+12.6_3.05[log(St")+0.3]2)
r 2

(75a)

if the spherical observer input format is used, or

(p2,,)(t, St,,,)_ ) = M2M312 D(0,¢)10{_21ogCp_c2/pr_)+12.6_3.05[log(St")+0.312 }r2
(75b)

if the Cartesian observer input format is used, where the exponent containing Pref is required

for the proper nondimensionalization of (p2,,_, Pref is reference acoustic pressure, which has a
\ [
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value of 0.00002 N/m 2 (4.1773 x 10 -7" lb/ft 2) for air, and r is the source-to-observer distance

given by the magnitude of either equation (7) or (15), depending on the choice of observer
condition. If at is zero or positive, the function D(O, ¢) is given by equation (42), (48), or (49),

with 0 and ¢ obtained from equations (32) and (33). If cq is negative, the quantity -rz is

employed in equation (33) to compute directivity angle ¢ such that D(O, ¢) is computed as if
the observer is moved from the input position to a position on the opposite side of the chord line

of the blade section having the negative value of at. This special accommodation for negative

values of at is needed in the RBN Module, because the tip vortex formation noise model as

developed in reference 2 is formulated only for zero and positive airfoil angles of attack.

By integrating over the rotor azimuth angle (_.e., over time) and accounting for all blades,

the rotor-integrated mean-squar e pressure for a given observer position and desired observer

frequency fo is

(p2)(:o, O, ¢) = _Nb/" (p'")(t,St",O, _) dt (76a)

if the spherical observer input format is used, or

(P2) (f°'_) = 2_/_:(P2") (t'St"')_)dt
(76b)

if the Cartesian observer input format is used, where St", being a direct function of l, Urn, and

fs, is an implicit function of fo, by the applied Doppler-shift correction. Equations (76) give
the desired rotor broadband noise contribution from the tip vortex formation noise mechanism,

as predicted by the TVFCAL model.

At this point in the RBN methodology description, each of the individual contributions
to broadband noise due to the four noise mechanisms modeled in the RBN Module have

been presented. Having computed the individual noise contributions due to each mechanism,

combining the contributions to obtain the final total rotor broadband noise result is now done.

Final Rotor Broadband Noise

The foregoing subsections have described the methods for obtaining broadband noise
contributions of each of the four broadband noise mechanisms. For any given single noise

prediction by the RBN Module, contributions from all four noise mechanisms are not necessarily

included simultaneously. Any combination of mechanisms can be selected for a given prediction.

For a given analysis, the resulting total mean-square acoustic pressure at a given observer

position and observer frequency is obtained by summing the rotor average mean-square, ,ac°ustic

pressures calculated by each of the selected noise mechanism models: TETCAL ((_p2) that

comes from integration of the individual acoustic pressures that correspond to eq. (53)) or

LBLCAL ((p2) that comes from integration of the individual acousticTBLCAL (eqs. (52));

pressures that correspond to eq. (54)); TB2CAL ((p2) that comes from integration of the

individual acoustic pressures that correspond to eqs. (66)) or TEBCAL (eqs. (65)); and/or

TVFCAL (eqs. (76)). This summed mean-square pressure containing all selected mechanism

contributions is, ,_P2_(f°' 0, _)tot or (p2)(fo,)()tot, depending on the choice of observer input

format. Finally, the total rotor broadband noise is exl,rcssed as a one-third-octave band sound

pressure level as

20 log (p_c2_)
SPLtot(/o, O, (I)) = lOlog(p2)(f,,, O, (I))tot + \ _]

(77a)
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if the spherical observer input format is used, or

sPatot(fo, ._ ) --101og(p2/(fo, ._)tot-{-20log(p°cc2_ (77b)

if the Cartesian observer input format is used, where Pref is reference acoustic pressure, which
has a value of 0.00002 N/m 2 (4.1773 x 10 -7 lb/ft 2) for air.

Computational Procedure

/

1. For given observer polar directivity angle, polar azimuthal angle, and radius of observer

sphere, compute observer position 5_ by equation (3), if spherical input option used;

alternatively, obtain observer position )_ directly from input array, if Cartesian observer

option used

2. Obtain first blade spanwise location and initial observer time value from input spanwise

position _ and azimuth angle ¢ arrays; compute initial estimate for retarded time v by

using equation (13) or (21) with ]2 _- 0

3. Iteratively solve equation (13) or (21) in conjunction with equation (2) by using Muller's

method to obtain converged retarded time solution _" and source position Y

4. Compute _" with equation (7) or (15) and transform the coordinates to local trailing-edge-

fixed source coordinate system by equation (29) or (30)

5. Compute angles _ and ¢ by equations (32) and (33)

6. Compute frequency correction by equation (34) or (35) and obtain source frequency fs

(needed in noise models) corresponding to desired observer frequency fo under consideration

7. Compute turbulent-boundary-layer-trailing-edge noise due to the source situated at the
current spanwise position by equation (53) and expressions derived in section 5.1 of

reference 2 if TETCAL model selected; alternatively, use equations (39) if TBLCAL selected

8. If TVFCAL is selected, compute tip vortex formation noise by using equations (75) if last

spanwise position (i.e., blade tip section) under consideration

9. If LBLCAL is selected, compute laminar-boundary-layer-vortex-shedding noise due to

source at current spanwise position by using equation (54) and equations developed in
section 5.2 of reference 2

10. If TB2CAL is selected, compute trailing-edge-bluntness-vortex-shedding noise due to source

at current spanwise position by using equations (66) and other related equations developed
in section 5.4 of reference 2

11. Repeat steps 6 to 10 for each source frequency

12. If TEBCAL (instead of TB2CAL) is selected, compute bluntness noise due to source at

current spanwise position by using equations (59) or (61) for one-third-octave band source

frequencies given in table III

13. Repeat steps 3 to 12 for each blade spanwise position (for initial estimates in step 3, use

results of previous step 3 calculation from previous spanwise position)

14. Repeat steps 3 to 13 for each observer time value, equal to values in input azimuth angle ¢
array (for initial estimates in step 3, use results of previous step calculation from previous

observer time)

15. If TETCAL is selected, integrate over rotor disk for rotor-integrated turbulent-boundary-

layer-trailing-edge noise--separated-flow noise contribution for each observer frequency for
observer position under consideration (specifically, integrate mean-square pressures due to

16.2-33



each blade source obtained from all repetitions of step 7); alternatively, if TBLCAL is

selected, integrate equations (52) for rotor-integrated noise contribution for each frequency
for obscrvcr position under consideration

16. If TVFCAL is sclcctcd, integrate for rotor average tip vortex formation noise contribution

for each obscrvcr frequency for observer position under consideration by using equations (76)

17. If LBLCAL is selected, integrate over rotor disk for rotor-integrated laminar-boundary-
layer vortex-shedding noise contribution for each observer frequency for observer position

under consideration (specifically, integrate mean-square pressures due to each blade source

obtained from all repetitions of step 9)

18. If TB2CAL is selected, integrateover rotordisk forrotor-integrated trailing-edge-bluntness-
vortex-shedding noise contribution for each observer frequency for observer position under

consideration (specifically, integrate the mean-square pressures due to each blade source
obtained from all repetitions of step 10); alternatively if TEBCAL is selected, integrate

equations (65) for rotor-integrated noise contribution for each observer frequency for

observer position under consideration

19. Sum rotor-integrated mean-square acoustic pressures from each selected noise source

model for each observer frequency for observer position under consideration to obtain

(p2)(fo, O, (I))tot or(p2)(fo, X)tot, depending on choice of observer input format, and insert

result in output table

20. Calculate final one-third-octave band spectrum of total rotor broadband noise in form of

sound pressure level by equations (77) by using results of step 19

21. If spherical observer input format used, repeat steps 1 to 20 for each input observer polar

directivity angle

22. If spherical observer input format used, repeat steps 1 to 21 for each input observer azimuthal

directivity angle

23. If Cartesian observer input format used, repeat steps 1 to 20 for each input observer

position )(

i
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Table I. Relationship Between Array Storage Sequence and Fourier

Series Sequence for Complex Fourier Coefficients of Local Mach
Number M(_, m)*

For complex Fourier coefficients of blade section angle of attack ]

K(_, m), tabulation and Fourier series apply analogously J

Array sequence in input

Blade Motion Table Fourier series sequence

M(_, 1)

M(_, 2)

M(_, 3)

M(_, -_ + 3)

M(_, Nm - 2)

M(_, Ym - 1)

M(_, Nm)

M(4, O)

-_(_, 1)

M(_, 2)

1)

M(_, -3)

_(_, -2)

M(_, -1)

Nml2
*Fourier series is as follows: M(_, _) = _ M(_, m) exp(im¢), where

m=- Nml2

Nm, number of azimuthal harmonics, is defined implicitly by size of input Blade

Motion Table.
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Table II. Relationship Between Array Storage Sequence and Fourier

Series Sequence for Complex Fourier Flapping Coefficients _(m)

Array sequence in input Fourier series sequence

Flapping Angle Table (cq. (255))*

_(1)

_(2)

_(3)

-d(Nm - 2)

-d(Nm - 1)

"d(Nm)

_(o)

_(1)

_(2)

1)

_(=-_ + 2)

_(-3)

_(-2)

_(-1)

*The value of Nm, number of azimuthal harmonics, is defined implicitly
by size of input Flapping Angle Table.

Table III. Frequency-Dependent Scaling Factors Used in Bluntness
Noise Computation

Relative one-third-octave

band source frequencies ga(f) K4(f)

10-0-3fmax

10-0"2fmax

10-0"lfmax

fm_x
100"1 fmax

100"2fmax

100"3fmax

1.38 x 10 -3

2.88 x 10 -2

2.24 x 10 -1

4.79 x 10 -1

8.91 x 10 -2

4.27 x 10 -3

5.25 x 10 -5

2.63 x 10-2

5.75 x I0-I

4.27

9.33

1.78

8.32 x 10-2

1.00 x 10-3
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16.3 Multirotor Source Noise (MSN) Module

Donald S. Weir and Stephen J. Jumper

Lockheed Engineering & Sciences Company

Introduction

A variety of propeller and rotorcraft configurations have similar or identical tone noise

sources. The far-field noise due to the sum of these sources has interference patterns with

constructive and destructive interference, governed by the relative geometry between the

observer and the various noise sources and their relative phases. Because propeller and rotor
tone noise is a predominantly linear phenomenon, noise predictions for each isolated source

can be superimposed. The Multirotor Source Noise (MSN) Module performs this superposition

for identical tone noise sources (i.e., rotors or propellers) and facilities translation of observer

coordinates between the individual rotor/propeller coordinate systems and the aircraft system.

To have identical sources, as assumed by the MSN Module, requires that (1) the sources
operate at the same rotational speed and (2) the sources have the same number of blades.

Meeting these two requirements ensures that "the acoustic time histories of the two sources, as
generated by source noise modules, are of equal length and that the two signals contain the

same fundamental frequency and multiples thereof; thus, the signals are correlated and can bc
summed directly.

Propeller configurations in which the superposition principle is valid and to which the

MSN Module is applicable include traditional two and four wing-mounted propellers, pusher-
puller configurations, and counterrotating propellers. Rotor configurations to which the MSN

Module is applicable include coaxial rotors, scissors-type rotors (treated as multiple rotors

having a common hub location but different phases), synchromeshed rotors, tandem rotors,
and side-by-side rotors such as those used on tilt-rotor aircraft.

Although the MSN Module code will perform calculations based on the tone noise acoustic

pressure input from any two sources, the results are valid only if the sources are similar, as

defined above. Therefore before attempting to use the MSN Module, it is incumbent upon the

user to ensure a priori that the two signals to be combined arc from similar sources. Note, for
example, that the MSN Module is not applicable for combining the tone noise from the main

rotor and the tail rotor of a conventional helicopter, because of dissimilar rotational speeds of
main and tail rotors; the MSN results obtained from such an application would not be valid.

The MSN Module can be used with predictions from the Lifting Rotor Noise (LRN) and

Rotor Tone Noise (RTN) Modules for helicopter rotors, and the Subsonic Propeller Noise
(SPN) and Transonic Propeller Noise (TPN) Modules for propellers; these two propeller-related

modules are documented in sections ll.1 and 11.2 of reference 1. The MSN Module is designed

to combine the tone noise from two sources (i.e., rotors or propellers); by recursive use of MSN,
additional sources can be combined as required. Broadband noise sources are considered to

have random phase, and thus will not have interference effects. Thus, combining broadband

noise sources is performed subsequent to noise propagation, by using the Noise Level (LEV)

Module, presented in section 6.1 of reference 2. Likewise, the combining of tone noise signals
from two or more dissimilar sources, which is not a valid application of MSN, is performed
subsequent to noise propagation, by using the LEV Module.

In the remaining sections the word "rotor" (except when used to identify a specific coordinate

system type) can be interpreted to mean either a rotor, propeller, or any other rotating source
of discrete tone noise.

J
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P2

R1

R2
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V
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22

X,Y,Z

XI, Y1, Z1

x2, z2

_2

Xl _ Yl, Zl

X2, Y2, Z2

OZl

Symbols

coc speed of sound in air at flight ambient altitude, m/s (ft/s)

f frequency, Hz

fb blade passage frequency (i.e., fundamental frequency), Hz

k observer index

N total number of acoustic pressure harmonics (must have value equal to 2

raised to nonzero integer power)

harmonic number

total acoustic pressure, re pco¢ 2

acoustic pressure of rotor 1, re pcoc 2

acoustic pressure of rotor 2, re pc_ 2

mean square acoustic pressure, re p2coo 4

radius of first rotor, m (ft)

radius of second rotor, m (ft)

vehicle origin-to-observer distance (i.e., spherical observer radius), m (ft)

fraction of blade passing period

rotorcraft translational velocity (i.e., free-stream velocity, figs. 1

and 2), m/s (ft/s)

desired observer position in vehicle coordinate system, m (ft)

first rotor hub position relative to vehicle coordinate system, m (ft)

second rotor hub position relative to vehicle coordinate system, m (ft)

axes of vehicle coordinate system (fig. 1); also coordinates of desired observer

position 3_, m (ft)

coordinates of first rotor hub position X1, m (ft)

coordinates of second rotor hub position )(2, m (ft)

observer position relative to first rotor coordinate system, m (ft)

observer position relative to second rotor coordinate system, m (ft)

coordinates of observer position Xl, m (ft)

coordinates of observer position x2, m (ft)

angle of attack of first rotor hub plane (i.e., first rotor hub plane incidence

angle with respect to second rotor hub plane and/or with respect to vehicle

X-Y plane), rad

a2 angle of attack of second rotor hub plane (i.e., second rotor hub plane
incidence angle with respect to first rotor hub plane and/or with respect to

vehicle X-Y plane), rad

0 observer polar directivity angle, deg

p air density at flight altitude ambient conditions, kg/m 3 (slugs/ft 3)

¢ observer azimuthal directivity angle, deg
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Superscripts:

Fourier transformed

* complex conjugate

Input

The MSN Module has two different sets of input data requirements depending on whether

the first or second execution, referred to as mode 1 or mode 2, respectively, is being performed.
Figures 1 and 2 indicate the sign convention of the various input quantities. The first execution

sets up observer arrays, and the second sums the tone noise. Furthermore, each mode has two

different sets of input data requirements depending on whether spherical or Cartesian overall
observer input format is used. Note that the observer input format used for mode 1 must then
also be used for mode 2.

The mode 1 inputs define the position of the two rotor systems and the desired overall

observer positions relative to a reference vehicle coordinate system. The vehicle coordinate

origin may be placed at any convenient location relative to the vehicle but is typically placed
between the two rotor hubs. Rotor system position and the angular orientation of the rotor

hub plane with respect to the vehicle are input via user parameters. As shown in figure 1, the
hub-fixed rotor system axes and the vehicle coordinate system axes may be in either the rotor
standard Cartesian convention or the propeller Cartesian convention. Rotor standard Cartesian

convention applies to helicopters or tilt rotors operating in helicopter mode. Propeller Cartesian

convention applies to vehicle configurations such as twin-engine airplanes or tilt-rotors operating
in airplane mode. Propeller Cartesian convention is used for analyses employing the SPN or
TPN Module (ref. 1).

Regardless of the Cartesian axes convention selected, the desired overall observer positions

relative to the vehicle coordinate system are provided to the MSN Module by using one of two

input options. First is the spherical input option, where one or more observers are positioned

on a sphere, centered at the vehicle coordinate origin and having a radius given by a user
parameter. As shown in figure 1, the location of each observer on the sphere is defined by polar

and azimuthal directivity angles, which are provided as input via the Observer Directivity Angle

Arrays. Use of the spherical input option is necessary if the summed tone noise calculated by the

MSN Module is to be subsequently submitted to the PRT Module (ref. 2) for propagation to the
ground. Second is the Cartesian input option, where all overall observer positions are directly

specified in Cartesian coordinates relative to the vehicle coordinate origin. With the use of the

Cartesian input option, the Cartesian position vector relative to the vehicle coordinate origin,
as shown in figures 1 and 2, for each observer is input to the MSN Module via the Cartesian

Observer Positions Table, built by the user. If the Cartesian input option is employed, then the
summed tone noise calculated by the MSN Module cannot be submitted to the PRT Module for

propagation. The Cartesian input option is intended for situations in which the summed noise

is to be mapped at a specific locus of observers in space, such as the location of the fuselage,

for example, and subsequent propagation to the ground is not of interest. The spherical input
option is the default. The Cartesian input option is activated by the presence of the Cartesian

Observer Positions Table in the MSN input stream. Note that if both the Spherical Observer

Angle Arrays and the Cartesian Observer Positions Table are present in the input stream, then
the spherical input option is ignored and the Cartesian input option takes effect.

The mode 2 inputs provide information required for summing the pair of individual rotor

acoustic time histories. The desired number of harmonics of summed tone noise is input via a

user parameter. The overall observer locations relative to the vehicle coordinate system must be
re-input with the same option (spherical or Cartesian) that was employed previously in mode 1.

Thus for the spherical input option, the same observer radius user parameter and Spherical
Observer Angle Array values are input for mode 2 as were previously input for mode 1. For

the Cartesian input option, the same Cartesian Observer Positions Table is input for mode 2
as was previously input for mode 1.
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Lastly, the acoustic time histories for each rotor are input for mode 2 via tile Rotor 1 Acoustic

Pressure Time History and Rotor 2 Acoustic Pressure Time History input data members.

Usually these input acoustic pressure time history data members arc provided by one of the

source tone noise modules LRN, RTN, SPN, or TPN, which will have been executed (after
mode 1 cxecution of MSN) for each individual rotor at cach of tile transformed hub-fixed

observers produced by mode 1 MSN execution. (Sec scction "Output.") However, these input
acoustic pressure time history members may be composed of measured data, provided that each

input member contains rotor data _t eact! of the transformed hub-fixed o!?servers produced by
mode 1 MSN execution. Notc that all individual input time histories contained in the two
Acoustic Pressure Time History input data mcmbcrs must include the same number of time

points. The number of time points must be a nonzero integer power of 2 and be at lea.st four

times as large as the desired number of noise harmonics.

The user parameters, data arrays, and data members input to the MSN Module h_r mode 1
and mode 2 calculations are as follows:

T8

R1

R2

21

22

c_ 1

_2

User Parameters for Mode 1 Input

vehicle origin-to-observer distance (i.e., spherical observer radius), m (ft)

radius of first rotor (informational only), m (ft)

radius of second rotor (informational only), m (ft)

first rotor hub position relative to vehicle coordinate system, m (ft)

second rotor hub position relative to vehicle coordinate system, m (ft)

angle of attack of first rotor hub plane (i.e., first rotor hub plane incidence angle
with respect to second rotor hub plane and/or with respect to vehicle X-Y plane;

hub leading edge "up" is positive for rotors, and hub upper edge aft is positive
for propellers), rad

angle of attack of second rotor hub plane (i.e., second rotor hub plane incidence

angle with respect to first rotor hub plane and/or with respect to vehicle

X-Y plane; hub leading edge up is positive for rotors, and hub upper edge aft is

positive for propellers), rad

r8

N

User Parameters for Mode 2 Input

vehicle origin-to-observer distance (i.e., spherical observer radius), m (ft)

total number of acoustic pressure harmonics to be generated in summed tone

noise results (must have value equal to 2 raised to nonzero integer power)

0

¢

Spherical Observer Angle Arrays

[Mode 1 and mode 2 input; for spherical input option only]

observer polar diiectivity angle, deg

observer azimuthal directivity angle, deg

2(k)

Cartesian Observer Positions Table

[Mode 1 and mode 2 input; for Cartesian input option only]

overall observer position relative to vehicle coordinate system (kth table record

contains observer corresponding implicitly to kth observer index; each record
actually contains components X, Y, and Z of observer position), m (ft)
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Rotor 1 Acoustic Pressure Time History for Mode 2 Input

[From LRN, RTN, SPN, or TPN]

blade passage frequency (i.e., fundamental frequency), Hz

time history of acoustic pressure for first rotor (each history record contains
series of acoustic pressure values, each value implicitly function of fraction t

of blade passage period, with history duration being 1 complete rotor revolu-
tion period; in kth history record there is 1 complete time history implicitly

function of kth transformed first rotor hub-fixed observer position xl (k),

corresponding to kth input overall observer )((k)), re pcoo 2

h

p2(t, Z2(k))

Rotor 2 Acoustic Pressure Time History for Mode 2 Input

[From LRN, RTN, SPN, or TPN]

blade passage frequency (i.e., fundamental frequency), Hz

time history of acoustic pressure for second rotor (each history record con-
tains series of acoustic pressure values, each value implicitly function of

fraction t of blade passage period, with history duration being 1 complete

rotor revolution period; in kth history record there is 1 complete time history
implicitly function of kth transformed second rotor hub-fixed observer

position _2(k), corresponding to kth input overall observer ._(k)), re pccc 2

Output

The output from the MSN Module consists of two sets: One from mode 1 execution and
the other from mode 2 execution. Output from the two modes is discussed separately.

Mode 1 Output

In mode 1 the MSN Module produces tables of transformed observer positions (always in

Cartesian coordinates) which have been transformed from the overall vehicle reference frame
to the rotor hub-fixed reference frame in either the standard rotor or the propeller coordinate

system convention. Two such tables are generated, one for the first rotor and one for the second
rotor, identified as the Rotor 1 Observer Positions Table and the Rotor 2 Observer Positions

Table. The sequence of observers in these output tables corresponds to the sequence of original

input overall observer positions for which the combined acoustic signature is to be obtained in
mode 2.

Mode 2 Output

In mode 2 the MSN Module produces a time history of multirotor (first rotor plus second
rotor) acoustic pressure. One such time history is generated for each input overall observer

position relative to the vehicle reference frame. Contained in the multirotor pressure time

history is the sum of the two individual rotor time histories, each of which was provided by a
tone noise module prediction for the same observer, the position of which had been transformed

(MSN mode 1 output) relative to the respective individual rotor hub-fixed reference frame for

the individual rotor prediction. The multirotor acoustic pressure time histories are output in a

data member, rather than a data table, identified as the multirotor time history member. This
output member is always generated during mode 2 MSN calculations, regardless of the type of

observer input option in effect.

If the spherical input option (see section "Input") is in effect, then the MSN Module also
generates the Multirotor Source Noise Table during mode 2. This table contains the multirotor

acoustic signature, for each input overall observer, expressed as multirotor mean-square acoustic
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pressureasa functionof frequency,observerpolardirectivityangle,andobserverazimuthal
directivityangle.Thisoutputtableis suitablefor subsequentsubmissionto the PRTModule
for soundpropagationto theground.

Additionallyfor Mode2, the MSNModuleprovidesspectraof soundpressurelevel(i.e.,
SPLin dB) to aid in resultsinterpretation.However,thesespectraareprintedonlyandare
notprovidedasoutputuserparameters,tables,or arrays.Spectraloutputisalwaysgenerated,
regardlessof thetypeof observerinputoptionin effect.

Outputtablesanddatamembersgeneratedby theMSNModulefor mode1andmode2
areasfollows:

11(k)

Rotor 1 Observer Positions Table

[Mode 1 output]

observer position relative to hub-fixed coordinate system of first rotor (kth table
record contains observer corresponding implicitly to kth observer index of origi-

nal input overall observer; each record actually contains components Xl, Yl,
and Zl of observer position), m (ft)

k

 2(k)

Rotor 2 Observer Coordinates Table

[Mode 1 output]

observer index

observer position relative to hub-fixed coordinate system of second rotor

(kth table record contains observer corresponding implicitly to kth observer
index of original input overall observer; each record actually contains

components x2, Y2, and z2 of observer position), m (ft)

h

Multirotor Time History Member

[Mode 2 output]

blade passage frequency (i.e., fundamental frequency), Hz

time history of multirotor total acoustic pressure (each history record contains
series of acoustic pressure values, each value implicitly function of fraction t of

blade passage period, with history duration being 1 complete rotor revolution

period; in kth history record there is one complete time history implicitly

function of kth input overall observer position )((k)), re pcc¢ 2

x,._

Multirotor Source Noise Table

[Mode 2 output, only if spherical inpflt option is in effect]

f frequency, Hz

0 observer polar directivity angle, deg

¢ observer azimuthal directivity angle, deg

<p2(f, O, ¢)) multirotor mean-square acoustic pressure, re p2coo4

Method

The method for obtaining the acoustic interaction between the two rotor systems is based

on the key assumptions of rotor similarity and equal length correlated signals, the requirement_
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for which have already been described in the Introduction. In addition, the number of equally

spaced time points in the pressure time histories must be identical.

The MSN Module contains two separate calculation modes, called mode 1 and mode 2,

which must be performed chronologically. The method for mode 1 is a transformation of input
overall observer coordinates from the vehicle reference frame to the individual rotor reference

frames. This transformation must account for the relative positioning of the rotor hubs and

the differences in angle of attack of the two rotors. Thus, mode 1 establishes the observer
geometry allowing for individual rotor tone noise predictions to be done for each observer.

Having performed the mode 1 calculations of the MSN Module, the source noise due to each

individual rotor is predicted at each transformed observer location generated by mode 1. Other

source noise modules of choice (LRN, RTN, SPN, or TPN) are used for these individual rotor
predictions. The user must execute the source noise modules with the proper direction of rotor

rotation, initial blade azimuthal position, rotor hub plane angle of attack, and number of time

points. Then the MSN Module is reexecuted by using mode 2. The method for mode 2 is a

simple summing of the acoustic time histories for each rotor as predicted by the appropriate

source noise module. This summing produces the desired multirotor noise at each overall
vehicle-fixed observer. The methodologies for mode 1 and mode 2 are discussed in more detail

in the following sections.

Mode 1 Methodology

As shown in figure l(a) and (b) (rotor standard axes convention and propeller axes
convention, respectively), a reference vehicle coordinate system is established (axes X, Y,

and Z), which is a body axis system at zero angle of attack (axes X and Z in fig. l(a) and (b),

respectively, aligned with the free stream). Associated with each individual rotor is a hub-fixed
Cartesian coordinate system with axes Xl, Yl, and Zl and x2, Y2, and z2 for the first and second

rotor, respectively. Relative to the vehicle coordinate system ' the specified hub positions )(1

and )(2 provide the relative positioning of the rotors. The individual rotor orientation angles al

and a2 are specified as shown in figure 1. These angles are used to define the inclination of

the installed rotor hub plane relative to the vehicle coordinate system or to define the relative
inclination of the first rotor relative to the second. Also, each desired observer position is

specified with respect to the vehicle reference axis system in either spherical format (rs, 0, ¢)

or direct Cartesian format J_, to be discussed later.

Typically in spherical observer input format analyses in which the objective is to compute

multirotor acoustic pressure at an array of observers for purposes of subsequent propagation

to distant ground observers, the angles al and a2 represent relative inclinations between rotor
planes, and rotor orientations with respect to the fuselage are irrelevant (al = a2 = 0 are used).

However, in Cartesian observer input format analyses, in which the objective is to compute

multirotor acoustic pressure at specific points in space, such as fuselage surface locations, the

angles al and a2 refer to the fixed installed inclination of each rotor hub plane relative to the

vehicle coordinate system (i.e., al and a2 are not necessarily zero).

The mode 1 transformation to be developed transforms each desired observer position from

the vehicle-fixed system to the individual hub-fixed system of each rotor. If the desired observers
have been provided in spherical format, it is first necessary to convert the observer radius,

observer polar directivity angles, and observer azimuthal directivity angles to vehicle-fixed

Cartesian coordinates of observer position )(. Referring to figure l(a), if the rotor standard

axes convention is applicable (i.e., noise from the LRN or the RTN Module is to be summed in

mode 2), the conversion of observer position (in the vehicle-fixed reference frame) from spherical

to Cartesian format, is given by

)( = (-r_ cos 0, r_ sin 0 sin ¢, -rs sin 0 cos ¢) (I)
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Similarly(fig.l(b)), if thepropelleraxesconventionis applicable(i.e.,noisefromtheSPNor
theTPN Moduleis to besummedin mode2), theconversionis givenby

= (-r.qsin0 cos ¢, rs sin 0 sin ¢, rs cos 0) (2)

For the rotor standard axes convention for the first rotor, the vehicle-fixed position )( is

translated by the vector )(1 = (X1, ]I1, Z1), followed by a rotation through the rotor orientation

angle ol. Thereby (fig. 2(a)), the required transformation to compute the observer position

with respect to the hub-fixed (source) coordinate system of the first rotor :_1 is

0Sio l{[i]_1 = yl = 0 1 - II1

Zl . sin o_1 0 cos C_l J Z1

(3)

Similarly for the second rotor, the transformation is

ic:0So  ](ti]I']):_2---- Y2 ---- 1 -- Y2

z2 ksin_2 0 coso2 g Z2

(4)

For the propeller coordinate system convention, the same translation and rotation occurs.

Referring to figure 2(b) (note the change in hub-fixed axes label notation from that employed
in the SPN and the TPN Module documentation of ref. 1), the transformation for each rotor

is the same in the propeller coordinate system axes convention as that in the rotor standard
coordinate axes convention. Thus, equations (3) and (4) are valid for both the rotor standard

or propeller axes system conventions. However, the user must ensure that the translations (hub

positions) )(1 and )(2 are defined consistent with the applicable (propeller or rotor standard)
axes convention.

Mode 2 Methodology

During mode 2 calculations in the MSN Module, the predicted time histories from the two
rotors are summed to yield the desired multirotor acoustic time history. The noise prediction

for each rotor must be performed at the proper blade passage frequency, blade initial position,

and hub plane angle of attack to ensure compatibility. The summing is done on a value-by-value

basis for a given observer identified, regardless of the frame of reference, by observer index k
as follows:

p(t,)((k))= pl[t, Zl(k)]+ p2[t,:_2(k)] (5)

for all values of t. Next, thc Fourier transform of the summed time history is performed with
a fast Fourier transform. The transform convention is

N

p(f,)((k)) = E p[t,)((k)]exp(-int) (6)
n=l

Finally, the multirotor mean-square acoustic pressure (p2[f,)((k)])= 2_*, where _" is the

complex conjugate of _. Multirotor mean-square acoustic pressure is computed only if the
spherical format of observer input is used. If mean-square acoustic pressure is computed,

then an output table of these values is built using (1) the input values of directivity angles

and ¢, which correspond to the appropriate overall observer index and (2) the frequency values

f = nfb , where n is the harmonic number.
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