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Abstract

High-speed commercial flight transportation is being studied for

intercontinental operations in the 21st century. The projected oper-

ational characteristics for these aircraft arc examined, the radiation

environment as it is now known is presented, and the relevant health

issues are discussed. Based on a critical examination of the data, a

number of specific issues need to be addressed to ensure an adequate

knowledge of the ionizing radiation health risks of these aircraft oper-

ations. Large uncertainties in our knowledge of the physical fields for

high-energy neutrons and multiply-charged ion components need to be

reduced. Improved methods for estimating risks in prenatal exposure

need to be developed. A firm basis for solar flare monitoring and

forecasting needs to be developed with means of exposure abatement.

Introduction

High-speed flight research in support of the de-

velopment of an economically competitive and en-

vironmentally sound supersonic transport is a high

priority within NASA aeronautical programs (ref. 1).

The commercial target for this aircraft is the rapidly

growing international travel market which would sup-

port 500 to 1000 aircraft worth $200 billion in man-

ufacturing orders. Environmental issues including

sonic boom, terminal noise, and impact on the ozone

layer are being addressed (refs. 2 and 3). The prob-
lem of ionizing radiation exposure at subsonic flight
altitudes has received recent worldwide attention

(ref. 4) because of the recommended lowering of ex-
posure limits (refs. 5 and 6) and focuses the need to

examine more closely the impact of the significantly

higher ionizing-radiation levels and the peculiar na-

ture of the radiations present at the much higher su-

personic flight altitudes (60 000 to 80 000 ft). The

present report examines our current state of knowl-

edge of the high-altitude environment and its impact

on supersonic flight operations.

When the possibility of high-altitude supersonic

commercial aviation was first seriously proposed,

Foelsche (ref. 7) brought to light a number of con-

cerns with respect to atmospheric ionizing radiation.

Subsequently, a detailed study of the atmospheric

ionizing-radiation components at high altitudes was

conducted from 1965 to 1971 at the Langley Research

Center (LaRC) by Foelsche et al. (ref. 8). Prior to

that study the role of atmospheric neutrons in radi-

ation exposure was generally regarded as negligible

(ref. 9). However, the neutrons were found in the
LaRC study to be the major contributor to aircraft

exposures. This study utilized an instrument package

consisting of tissue equivalent ion chambers, organic
scintillator neutron spectrometers, and nuclear emul-

sion. A theoretical program to predict atmospheric

radiation levels and to specifically extend the neutron

spectrum into the range outside that measured by the
scintillator spectrometer was also developed (ref. 10).

The fast neutron spectrum (1 to 10 MeV) due to

galactic cosmic rays was found to be nearly indepen-
dent of solar modulation. However, the neutron spec-

trum produced by solar cosmic rays was found to vary

from event to event. An overview of that program is

given by Foelsche in reference 11. The conclusion of
this previous work was that high-altitude commercial

aviation required special considerations for radiation

protection (refs. 12 through 14), whereas the most ex-

posed flights for pre-1980 subsonic airlines were well

within the exposure limits of the general population

(refs. 8, 12, and 14).

Several factors have changed since those stud-

ies: (1) the highly ionizing components are found
to be more biologically damaging than previously as-

sumed and the associated quality factors have been

increased (refs. 6 and 15); (2) recent epidemiological

studies (especially data on solid tumors) and more

recent atomic bomb (A-bomb) survivor dosimetry

have resulted in higher radiation risk coefficients for

gamma rays (refs. 16 and 17) so that reduced per-
missible exposure limits are being proposed (refs. 5

and 6); (3) "an urgent need is recognized for bet-
ter estimates of the risk of cancer from low levels

of radiation" (ref. 18); (4) subsequent to deregula-

tion of the airline industry, flight crews are logging

greatly increased flight hours (refs. 19 through 24);

(5) a new class of long-haul commercial aircraft is

being developed on which personnel for two crew

shifts will be simultaneously aboard a single flight

leading to increased exposures for a fixed number of

flight duty hours (ref. 25); and (6) airline crew mem-
bers are now classified as radiation workers (refs. 6



and 26). Although the Langley database on biologi-
cally important radiation components appears to be
the most complete and comprehensive available, at
present, updating with new quality factors, addition
of previously unresolved radiation components, and
providing for easy use by the health physics commu-

nity are required (ref. 27). Since the commission of
these past measurements about 30 years ago, no sys-
tematic studies of the physical fields present in the
stratosphere have been made. As a result of renewed
interest within NASA in high-altitude aircraft such
as the National Aero-Space Plane, the High-Speed
Civil Transport (HSCT), and the Hypersonic Trans-
port (refs. 28 through 30), a review of the present
state of knowledge seems appropriate. The purpose
of the present report is to review our current knowl-
edge of the radiation environment in the upper atmo-
sphere and its impact on radiation safety of passen-
gers and crew. Necessary research to fill gaps in our
understanding is identified to support a High-Speed
Civil Transport radiation safety assurance program.

Establishing a policy for the radiation safety of
high-speed aircraft is beyond the purview of this re-
port. In view of the evidence presented herein and
the prevailing issues surrounding even subsonic air-
craft as a result of the lowering of accepted exposure
limits in the face of rising quality factors, it seems
clear to the authors that a policy should be defined to
address the issues involved. These issues are the ones

we attempt to bring to light, and several questions
that may help in establishing the required policy are
now posed:

1. How will the acceptance of newly proposed ex-
posure limits and quality factors (or weighting
factors) affect the potential use of the high-
speed aircraft in the international commercial
market?

2. How will sufficient information be presented to

individual pilots to ensure passenger safety in
the event of a large solar particle event?

3. To what degree should NASA consider the
uncertainty in radiobiological response to this
unique radiation environment associated with
these aircraft?

4. To what degree should NASA consider the en-
vironmental uncertainty associated with these
aircraft?

5. How will exposure data for flights and indi-
vidual crew members be generated for career
planning and possible litigation?

We will not attempt to formulate answers to these
questions or to formulate a policy, but rather we will

examine our present state of knowledge in an effort
to clarify the technical issues involved.

Basic Concepts in Radiation Protection

This report will be_read by those both famil-
iar and unfamiliar with ionizing-radiation protection.
Therefore, to make the report more useful to the non-
specialist, this section is a simplified, brief outline of

a far more complex issue and may be disregarded by
the specialist. Furthermore, we limit our discussion
to only those topics which are applicable to high-
altitude aircraft exposure.

Human Response to Radiation

The human response to ionizing radiation on
which protection standards are currently based is
mainly fatal cancer risks and, to a lesser degree, de-
velopmentai injury. Cancer induction is referred to
as a "stochastic effect" because the tumor progresses
from a single cell transformed by the radiation field.
The cell transformation is a rare statistical event,
the probability of which increases with increasing
exposure. 1 The severity of stochastic injury is inde-
pendent of the exposure level. In distinction, de-
velopmental injury is referred to as a "deterministic
effect" which results from damage to whole tissues
during organogenesis. It can result from the killing
of progenitor cells or from altered gene expression
in which cell differentiation and structural forma-

tion are affected. Unlike stochastic effects, the level
of severity of deterministic injury increases with in-
creasing exposure. Other biological end points, such
as embryonic lethality, may yet have impact on future
regulatory standards as information on biological in-
jury improves (ref. 31).

The primary source of knowledge on human radi-
ation risk is from the exposure data of the two nu-
clear weapons of World War II. The primary data on
fatal cancer risk and mental retardation in prenatal

exposure are from analysis of the A-bomb radiation
exposures (refs. 16 and 17). Because of the latency
of progression from single transformed cell to clinical
tumor and improvement in estimates of the exposure
fields in the A-bomb detonations, there has been a
steady increase in estimates in radiation-induced risk
coefficients for excess fatal cancer (number of excess
fatal cancers per 100 exposed individuals per Gy of
gamma ray exposure) as shown (ref. 32) in figure 1.

1 Exposure is a field quantity related dose (later, dose

equivalent) in a small tissue mass. (See ref. 8.)
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Figure 1. Trends in estimated fatal cancer risk coefficient.

More recently, data compiled on nonfatal cancer will

undoubtedly have future effects on protection stan-

dards (ref. 33). The projection of such trends into the

future is difficult. For example, the latest A-bomb

dosimetry reduced the neutron dose estimates; this
caused an increase in the estimated risk coefficient

(ref. 17). The risk may decrease as knowledge of

the A-bomb exposure levels improves. For exam-

ple, there is evidence that neutron exposures in the

Hiroshima event may be larger than estimated in the

1986 evaluation (ref. 34), which, if validated, would

lead to smaller risk coefficients. In contrast, risk coef-

ficients may continue to increase as the epidemiolog-

ical data become more complete or as data from the

Chernobyl exposures are collected. Data on child-

hood leukemia from prenatal exposure are mainly

from diagnostic X-ray data (ref. 35) and are consis-

tent with the A-bomb exposure data (ref. 17). None

of these human exposure data contain significant con-

tributions from neutrons or multiply-charged ions,
the effects of which must be estimated from addi-

tional sources, such as animal experiments.

Exposure Limits

Exposure limits are defined so that radiation-
induced fatal cancer risks are limited to on the or-

der of or less than the fatal accident risks of ordi-

nary occupations Ion the order of 10-4/yr, ref. 36).

Correspondingly, the increase in the fatal cancer risk

coefficient (fig. 1) causes a corresponding decrease in

allowed exposure limits, but the relation is modified

by a dose rate effectiveness factor (DREF, the factor

by which the biological effect is reduced as a result of

prolonging the exposure period at a greatly reduced

dose rate). This factor arises because the human
response database is for acute exposures in distinc-

tion to career exposures obtained in small fractions

over many years to which exposure limits are applied.

Risks are generally greater for acute exposures as op-
posed to exposures over several years. The dose rate

effectiveness factor for human gamma ray exposure

used by various groups is a conservative value rang-

ing from 2 (ref. 17) to 2.5 (ref. 36) and is observed
in animal experiments to vary from 2 to 10 (ref. 17).

The DREF is an added source of uncertainty in re-

lating the acute exposure response data to chronic

career exposure limits.

Since the current standards for the nuclear indus-

try were established in the United States as shown

in table 1 (ref. 37), new epidemiological studies espe-

cially of the A-bomb survivors and a reevaluation of

the A-bomb dosimetry have been made. The result of

Table 1. Current and Projected Maximum Allowable Exposure Limits

Exposure condition

Occupational:
Annual
Lifetime

Pregnancy (total)
Pregnancy (monthly)

Present

United States

10 CFR Part 20

(ref. 37)

"5O

[50 (Age - 18)]
5

Maximum allowable exposure, mSv

Proposed

NCRP rep. 116

(ref. 4)

5O
bl0 × Age

0.5

Proposed
United States

NUREG/BR-0117

(ref. 38)

Public:
Annual, many years dl

Annual, occasional
Pregnancy (total)
Pregnancy (monthly)

aNot to exceed 30 roSy in any quarter year.

bRecommended limit for new designs is 10 roSy/yr.

CAbdomen surface for X-rays, 1 roSy/n ufero.

d5 mSv allowed with prior approval of NRC.

50

5

0.5

Proposed

ICRP publ. 60

(ref. 6)

20

c2

1

c2



the latest dosimetry reduces the contributions from
neutron exposures in the A-bomb data to be near
negligible. Thus, the A-bomb exposures are now es-
timated to be mainly from gamma rays. The lat-
est resulting health risk coefficients are given by the
UNSCEAR report (ref. 16), BEIR V report (ref. 17),

and the ICRP (ref. 6). New standards have been
proposed for the U.S. (refs. 5, 38, and 39) and inter-
nationally (ref. 6) as shown in table 1. Only the last
column of limits proposed by the ICRP are specifi-
cally recommended for aircraft operations (ref. 6).

Strictly speaking, the exposure limits in table 1
are based on risks due to gamma ray exposures
at high dose rate and a conservative DREF. The
problem of extrapolation to other radiation types is
discussed in the next section.

Quality Factors and Weighting Factors

Gamma ray exposures occur through small quan-
tal releases of energy randomly dispersed within the
cell. The greater fraction of the cell volume is rela-
tively insensitive to radiation injury, and reasonably

high exposures to gamma rays (many gamma ray
traversals) are required to result in injury of the small
sensitive sites within the cell. Since many gamma ray
traversals are implied, the rate of traversal is an im-
portant factor in the resulting injury because the cell
can efficiently repair damage in small quantities. In
distinction, the more heavily ionizing particulate ra-
diation deposits relatively large quantities of energy
per unit pathlength (linear energy transfer (LET))
and is able to damage a sensitive site with a single
traversal. Consequently, the rate of arrival of high-
LET particles is less important as a determinant in
resultant injury. The absorbed dose always relates to

the energy deposits per traversal multiplied by the
number of traversing rays. The dose from gamma
rays (the energy deposit is dispersed evenly over the
cell) relates to the accumulation of sufficient energy
within a sensitive site to result in biological injury,
whereas dose for heavily ionizing particulate radia-
tion relates to the probability that the sensitive site
was in fact hit by the traversai. For heavily ionizing
particles, the energy deposit lies close to the parti-

cle path. A given level of injury can be achieved by
different dose levels of different radiation types and
different dose rates. The relative biological effective-
ness (RBE) is defined as the ratio of dose of gamma
rays to the dose of radiation type i (for a given dose

rate) which results in the same injury level and the
RBE is strongly correlated to the LET and exhibits
strong dose rate dependence as expected from the
previous discussion. Since gamma rays are less ef-
ficient in causing injury at low dose rate, the RBE

will increase for decreasing dose rate and presumably
reach a maximum ((RBE)M). The RBE is used to
extrapolate the human exposure risk coefficients for
gamma rays to arbitrary radiation types.

The RBE depends on the biological end point
being tested in addition Lto the radiation type. The
RBE for the specific environmental components is
related to radiation risks but cannot be evaluated in

controlled human experiments. Estimates of RBE

for specific biological end points are evaluated with
animal and cell models and always provide some

uncertainty in application to estimation of risks in
human exposures. Values of the estimated maximum

(RBE)M are given in table 2 for-various biological
end points for fission neutron exposures (ref. 15).
One should keep in mind that (RBE)M relates not
only to the effectiveness by which high-LET radiation
can cause injury but to the ability of the biological
system to repair injury from low dose rate gamma
ray exposure (that is, (RBE)M is proportional to
DREF).

Table 2. (RBE)M for Fission Neutrons

Tumor induction ....... _3-_200

Life shortening .......... 15-45

Transformation ......... 35-70

Cytogenic studies ........ 40-50

Genetic end points in mammalian

systems ............ 10--45

Other end points:

Ocular lens opacification . . . 25-200

Micronucleus assay ....... 6--60

Testes weight loss ....... 5-20

The RBE is the result of an experimental mea-
surement and is most closely related to risk. The
quality factor (or the more recently introduced
weighting factor) is a defined quantity by the judg-

ment of an august committee for use in radiation
protection. The quality factor is a unique function of
LET (fig. 2) and applicable to stochastic end points
(e.g., fatal cancer). A quality factor for developmen-
tal injury has not been defined and the need for such
a factor is discussed further.

The precisely defined relationship of quality fac-
tor to LET has, according to the ICRP (ref. 6), lead
to assumptions that the quality factor is known to

greater precision than is warranted by the available
data on RBE. Consequently, the ICRP recommends
against the use of quality factors and recommends an
alternative approach through the use of the radiation
weighting factors Wit in table 3 for radiation protec-
tion practice. Furthermore, note that the use of the
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quality factor to estimate fatal cancer risks should
include the caution that such risk estimates contain

large inherent uncertainties.

In summary, radiation risks are related to the

equivalent gamma ray dose Deq given in terms of the
RBE values for each radiation component of dose Di
as

Deq = E(RBE)iDi (1)
i

where the gamma ray risk coefficients are taken from

epidemiological studies. Older recommendations for

radiation protection would limit the exposures esti-
mated by the dose equivalent H as

dDi

where Q(L) is the corresponding quality factor for

LET value L as shown in figure 2 and the sum

over each radiation type i. The latest ICRP-

recommended exposure estimates use "equivalent

dose" H E in terms of weighting factors

HE=___WRDR (3)
R

where R denotes the radiation components noted in

table 3. Note that risk estimates require knowledge

of the physical properties of the radiation fields and

their associated RBE values and use of equation (1).

Use of equation (2) or (3) implies dosimetric methods

and incorporates large inherent uncertainty in risk

estimates by virtue of introducing the quality or

weighting factor.

The defined quality factors and weighting factors

are given for only stochastic end points (cancer risks).
Because of the possibility of exposure during preg-

nancy, many of the concerns are for deterministic (de-

velopmental) effects for which quality and weighting

factors are currently undefined. Recent experiments

with mice embryo hemopoiesis reveal large RBE for

alpha particles that cause severe development injury

(ref. 40). Such effects would be underestimated by a

factor of 10 to 20 if the stochastic quality factors are

used (ref. 40). As we will show, the high-altitude ex-

posures are dominated by highly ionizing (large LET)

particulate radiation and appropriate quality factors
for developmental injury are a critical issue.

Radiation Environment

The normal radiations (background) present in

the upper atmosphere are produced by galactic cos-
mic rays incident from above. During periods of in-

creased solar activity, some solar flares produce large
fluences of ions of modest to high energies which, if

they intersect the Earth, can cause large localized

Table 3. Recently Recommended Radiation Weighting Factors

WR from--

Radiation component

X- and 3,-rays, electrons, positrons, and muons ............
Neutrons with energy of--

<10 keV ............................

10 to 100 keV .........................

>100 to 2 MeV .........................

>2 to 20 MeV .........................

>20 MeV ...........................
Protons with energy of._

>2 MeV ............................

Alpha particles, fission fragments, and nonrelativistic heavy nuclei . . .

ICRP publ. 60
(ref. 6)

5

10

20

10

5

5

20

NCRP rep. 116
(ref. 5)

5

10

2O

10

5

2

20



transientsin atmospheric radiation levels. The re-

mote possibility is always present that a high-altitude
nuclear test will result in contamination of exterior

surfaces of the airplane and the cabin interior if air

filtering is inadequate.

Background Radiation Levels

The background radiation levels are generated in

the high atmosphere by the galactic cosmic rays con-

sisting of energetic nuclei (ions) of all of the known

elements (ref. 41). The dominant ions are protons

(_90 percent) with significant numbers of alpha par-

ticles (_10 percent). The remaining ions (few per-

cent) consist of all the elements having atomic num-

bers through uranium. The energy spectrum of the

cosmic radiations is very broad and their energies

exceed 1018 eV. Two thirds of the ionic energy trans-

ported into the atmosphere is carried by the proton

flux. The remaining one third is almost equally di-

vided among the alpha particles and heavier ions.

The galactic cosmic rays have two barriers to over-

come before arrival at the atmosphere of the Earth.

The first barrier is the interplanetary plasma with

its magnetic irregularities produced by the expan-

sion into space of the solar plasma in which the local

solar magnetic field is frozen. The properties of the

interplanetary plasma are determined by the plasma

emission at the solar surface and wary over the solar

sunspot cycle shown in figure 3. The second bar-

rier is the geomagnetic field. Near the geomagnetic
equator, incoming ions tend to be deflected back into

space before reaching the atmosphere. Only the most

energetic ions and the ions with the least ratio of
charge to mass (complex nuclei) are able to penetrate

the geomagnetic field in equatorial regions. Near

the geomagnetic poles, the geomagnetic field lines

are vertical and ions of all charges and energies fol-

low helical trajectories into the atmosphere where the
most intense atmospheric radiation levels are found

in the polar regions. During times of solar geomag-

netic storms, the easy access to the atmosphere at

the poles is extended to middle latitudes; this causes
large increases in dose rates at those latitudes.

The dose equivalent is defined (eq. (2)) as the sum

of the dose from each radiation component Di times

the corresponding average quality factor Qi, which is

a weighting factor (ref. 6) that indicates some radia-

tions produce a higher biological risk for a given ab-

sorbed energy. Our current knowledge on biological

response consists of a combination of experimental

data and theoretical models. The method by which

these are combined for an estimate of stratospheric

exposure is now defined. The dose to tissue (energy

absorbed per unit mass) is approximated by measur-
ing the electrical current in a tissue equivalent ion

chamber and consists of many contributions as

D = D 7 + De + D# + Dr + Dn + Dp

+ D d + Dt + DHe + DLi + ... (4)

where the successive terms refer to dose from gamma

rays, electrons, muons, pious, neutrons, protons,

deuterons, tritons, helium ions, lithium ions, and

other multiply-charged ions. The dose is not a good

indicator of biological injury because many of 'the

contributing particle types have RBE values which

are greater than unity. We estimate the biological

effectiveness herein by use of the quality factor given
in equation (2). We use computational models to es-

timate many of the individual components in equa-

tion (4) and the average quality factor for each type

by equation (2). The dose equivalent is obtained by

adding individual dose contributions with their as-

sociated quality factors and may be arranged in the

following format:

H= D + E(-Qi - 1)Di (5)
i
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where the sum now contains contributions only from

particles whose quality factors are greater than unity.

Note, this is the same procedure used in reference 8.
The basic data used in the current estimates are now

described.

Air ionization. The air ionization was mea-

sured during the 1950's and 1960's in steel-walled,

argon-filled ion chambers (the steel-argon combina-
tion was used to minimize wall effects and could be

operated at high pressure). (See refs. 42 and 43.) The

ion chamber responds well to the charged-particle en-

vironment but is virtually transparent to the biolog-

ically important neutrons. (Note, the main mech-

anism for transferring neutron kinetic energy into

tissue dose is through collision with the hydrogen
constituents of tissue, which are not present in the

steel-walled ion chamber.) The accepted accuracy of

the air ionization measurements is 5 to 10 percent.

Measurements made during solar cycle 19, including

detailed latitude surveys near solar minimum (1954)

and solar maximum (1958), are used in the present
estimates.

Atmospheric neutrons. The fast neutrons

(1 to 10 MeV) were measured (refs. 8 and 44) with

anticoincidence encapsulated scintillation counters

and pulse shape discrimination for rejection of

charged particle and gamma ray events. The es-

timated detector-response functions were known to
10 percent over their limited calibration range, and a

few percent drift was observed during flights in bal-

loons and various aircraft. The fast neutron flux was

measured during the solar cycle 20 (fig. 3) from so-

lax minimum (1964) to solar maximum (1968) and

through the solar-activity decline to 1971. Extensive

surveys as a function of latitude were made near solar
minimum and maximum.

The neutron spectrum was extended below 1 and

above 10 MeV by Monte Carlo transport-code calcu-

lations (ref. 8) as shown in figure 4. Only about 25 to

30 percent of the contribution to dose or dose equiv-

alent was contributed by the measured fast spec-

trum. The remaining 70 percent of the neutron expo-

sure rests on unverified theoretical predictions made

by scaling proton reactions to approximate neutron

production from multiply-charged ions. If one as-

sumes that this scaling procedure is accurate then

the biological exposure is accurately known from cur-
rent environmental measurements (ref. 27). A recent

analysis by Reitz (ref. 45) has emphasized the un-

certainty in the neutron spectrum especially above
10 MeV. Recent experiments on neutron yields in

heavy ion collisions show that this procedure is a

poor approximation as shown in figure 5. Clearly

the niobium cross section (ref. 46) is not propor-

tional to the cross section for protons (ref. 47) since

their spectral shapes axe entirely different. The high-

energy neutrons may be significantly underestimated

by the scaling procedures used in deriving current

atmospheric environmental models (refs. 10, 11, 22,

and 27).
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Figure 4. High-altitude (Geomagnetic latitude _ 69°) neutron spectrum, dose rates, and dose equivalent rate measured and

calculated at HSCT altitudes (_50 g/era 2 or 70000 ft) on August 3, 1965.



Nb + AI (1.27 era) p + Al
104 .r O 3° _ O 7.5°

0 O0 O0 0 0 0 O12" 030 °
0 o 0 20_ 0 600

o 103 1_> _ 1-10 0 0 ZX40°lx56° ,' A1500 (_O

[]o o
8==102 r_ZXAQ¢_)--_ [][] O 5 O00 riO
._ rxix Ix zX 0zXZX0-_ 0 Oo O0

r_ ix A OO 0O O

._- k A A '_O o A O
101 r_ Ix A O [] O A O

rx A El
Ix 8 o

10o I I I I I I I I_ I_ I
0 100 200 300 400 500 600 0 100 200 300

Energy, MeV/nucleon Energy, MeV

Figure 5. Neutron production spectra from 250 MeV/amu reactions in Al with Nb and proton beams.

The neutron spectrum was measured by Hewitt
et al. (ref. 48) by using Bonner spheres and is shown
in figure 6 with a compilation of results from sev-

eral sources (ref. 45). Clearly the high-energy spec-
trum (E > 10 MeV) is uncertain by a factor of 5
(dashed lines), a fact of critical importance to neu-
tron exposure estimates. A modern estimate of the
calibration of the Bomaer spheres and recently im-
proved analysis techniques indicate that the inferred
spectra of Hewitt et al. are too low in the 100 MeV

region; this makes the already important high-energy
neutrons possibly the dominant player in biological
exposure. Clearly, the high-energy neutron spectrum
uncertainty needs to be resolved (refs. 4 and 45).

Tissue ionization. The tissue equivalent ion
chamber is a plastic-walled chamber with a methane

and nitrogen fill to simulate tissue equivalence. Al-
though the tissue equivalent ion chamber was used
on relatively few flights, it provides a sufficient data-
base to test the accuracy of the combined use of air
ionization rate and neutron flux to estimate tissue
ionization dose. Tissue ionization estimates from air

ionization and fast neutron flux data agree to within
15 percent (refs. 8 and 27). It must be emphasized
that this ion chamber measures tissue dose (energy
absorbed per unit mass) and does not include the

important biological modifying factors (RBE, qual-
ity factor). These factors are discussed more fully in
a subsequent section.

Target fragmentation. Among the most dam-
aging radiation constituents are the nuclear-reaction

i o Factor
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Neutron energy, MeV

Figure 6. Neutron spectrum measured by Hewitt et al. with a
spectrum measured by Hess and calculated by Armstrong
et al. and Merker et al. (Data from ref. 45.)

products produced by reactions with biological tissue
(refs. 49, 50, and 51). The fragment contributions in
current atmospheric models were estimated by ob-
serving nuclear reactions in the gel molecules (amino
acids and water) of nuclear emulsions. The theo-

retical ratios of nuclear fragmentation by protons to
that of neutrons were used to estimate the charged-
particle contribution. The average quality factor for
the charged components due to nuclear stars (re-
ferred to as "stars" because of their appearance in



nuclear emulsion) was then found from the emulsion

data. These quality factors were used to extrapolate

the air ionization data to nuclear star dose equiv-

alent in time, latitude, and altitude. This method

was used for the limited experimental data set and
could be improved.

Multiply-charged ions. Although the iron

group ions at the top of the atmosphere contribute

nearly half of the biologically important radiation ex-

posure, they will typically suffer two to three nuclear

events before reaching stratospheric cruise altitudes

of commercial high-speed aircraft of the near future.

Exposure at these altitudes depends critically on the

types of remaining fragments after these collisions.

Presently, cross-section data are insufficient for expo-

sure estimates without attendant uncertainty. Two

limiting physical processes bracket the contributions

from nuclear collision events: (1) extreme periph-

eral collisions where a single nucleon is removed from

the ion projectile on collision and (2) extreme cen-

tral collisions in which the projectile ion fully dis-
sociates into nucleonic constituents (the latter ap-

proximation is that used in current environmental

models (refs. 8, 10, 22, and 27)). The calculated

integral LET contributions from charged particles to
dose equivalent at 80 000 ft for these limits are shown

in figure 7. Also shown in the figure are the nominal
values from the current LaRC database. The uncer-

tainty in nuclear collision cross sections could result

in uncertainty in contributions to dose equivalent for

LET values above 10 keV/#m between 25 to 70 per-

cent. Clearly, this is a serious limitation in current

environmental models which yield results near the

lower limit. Comparison with atmospheric air shower
data measured by Webber and Ormes (ref. 52) shows

that the environment represented as a calculation us-

ing the midpoint between nominal cross sections and
the extreme peripheral values yields a slightly con-

servative estimate of the atmospheric environment

as shown in figure 8. Present atmospheric expo-
sure models (refs. 12, 14, 22, and 27) greatly under-

estimate the effects of these high-LET multiply-

charged ion components.

Total exposure. Based on this discussion, we

now estimate the range of exposures in flight at high

latitudes during solar minimum. The tissue dose D
is taken from the ion chamber data and calculated

neutron dose and is assumed within 15 percent. The

quality factors of gamma rays, electrons, and muons

are taken as unity. The pion quality factor is as-
sumed on the order of 2 and the estimate is taken

from reference 45 as shown in table 4. The neutron

contribution for (Qn - 1)Dn is calculated from the

neutron flux as given in reference 8. The remain-

100
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10 -1 100 101 102 103 104

L, keV/lxm

Figure 7. Dose equivalent fraction at 80 000 ft from greater

LET values (polar region at solar minimum).
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Figure 8. Vertical ion flux in upper stratosphere measured

by Webber and Ormes (ref. 52) and present conservative
model.

ing contributions are estimated by extrapolating the

measurements of Webber et al. (ref. 52) by using the

HZETRN code (a galactic cosmic ray transport code,

ref. 53) with the results shown in figure 8 and table 4

and applying the uncertainty range associated with

figure 7. As can be seen from table 4, the uncertainty

in the neutron flux is very important at supersonic

altitudes whereas uncertainty in the HZE flux domi-

nates at hypersonic altitudes.
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Table4.Background BiologicalExposureComponents atHigh-SpeedAltitudes

inPolarRegionsDuringSolarMinimum (1977)

Component 60 000 ft 70 000 ft 80 000 ft I00 000 ft

5.9-7.8 6.9-9.1 7.4-9.7 7.4-9.81_, #Gy-hr -1 ...........

(_- 1)b_: ...........
Subnuclear, #Sv-hr -1 ......

Neutrons, #Sv-hr -1 .......

Z = 1, #Sv-hr -1 ........

Z -- 2, #Sv-hr -1 ........
Z > 2, _Sv-hr -1 ........

_0.01

4.5-18.o

_1.5

_2.4

0.2-0.6

_o.01

5.0-20.0

_1.8

_2.6

0.6--1.7

_0.01

5.1-20.2

_2.0

_2.8

1.3-3.8

2.1-8.4

_2.5

_3.1

9.6-12.7

H, mSv/1000 hr at 40 000 ft HTmSv/1000 hrat 50 000 ft

-_-+- i _---+-.'--:-

"4 " : :

H, mSv/1000 hr at 65 000 ft H, mSv/1000 hr at7.3 000 ft ....

Figure 9. Background exposure levels in upper atmosphere at solar minimum.

As we discuss in the next section, the dose equiv-

alent results based on quality factors are under-
estimates of the neutron exposure since higher

weighting factors are recommended for neutron equiv-

alent dose as opposed to dose equivalent as the stan-

dard in protection practice (ref. 6). The appropri-

ate weighting factors for multiply-charged ions are

unclear, but the importance of their contribution to

dose equivalent is evident from table 4. Clearly, the

major share of the dose equivalent is from radiation

of high LET for which there is little or no human

experience (ref. 18).

The values for total dose equivalent (in free air

which we refer to as "exposure" ) for 1000 hr of flight

are shown in figure 9 for solar minimum conditions.

These are the maximum background exposure con-

ditions. The variation of background exposure over

the solar cycle is shown in figure 10. The radiation

levels may vary over the solar cycle by as much as a

factor of 2 in polar regions but vary only by 20 per-

cent near the equator. Greater solar cycle variation

is seen at high-speed operational altitudes than at
subsonic altitudes.

10



(Hsol)min/(Hsol)ma x at 40 000 ft (Hsol)min/(Hsol)ma x at 50 000 fi

(Hsol)min](Hsol)ma x at 65 000 It . '_ " _J_ . i

i -.! i

Figure 10. Maximum solar modulation ratio in atmospheric radiation levels.

According to current atmospheric radiation mod-

els (refs. 22 and 27), the main exposure from high-
LET components is from neutrons produced in abun-

dance through nuclear reactions of galactic cosmic

rays (ref. 8). This is clearly true for exposures in
the altitude range from 60 000 to 80 000 ft as seen

in table 4 where various radiation components are

displayed. From table 4, large uncertainties in the

neutron spectral flux clearly leave the total exposure

uncertain by a large factor. Other high-LET compo-

nents are uncertain by about a factor of 2 because of

uncertainty in nuclear fragmentation cross sections as

shown in table 4. At higher altitudes above 80 000 ft,

the multiply-charged ions dominate the exposures.

There are no current environmental models repre-

senting these exposure fields.

Transient Exposures

Solar flares axe associated with the magnetic ir-

regularities in the solar surface (sunspots). During

some solar flares, energetic particles are emitted with

sufficient energy (greater than 100 MeV) such that

their interactions in the atmosphere of the Earth pro-

duce many neutrons and other biologically damag-

ing components (ref. 8) which penetrate deep into
the atmosphere of the Earth. Measurements of fast
neutron flux and tissue ionization were made in two

flights with an RB-57F (an older Air Force super-
sonic airplane) during the solar event of March 30-

31, 1969 (ref. 8). The dose equivalent increase
inferred from the measurements at 65000 ft was

13 pSv/hr above background at altitude (nearly dou-

bling the dose equivalent rate over background lev-
els), whereas ground level neutron monitors showed

only a 5-percent increase above the background neu-

tron count rate at the Deep River Neutron Moni-

tor station (fig. 11). We may use this measurement

in which the ratio of increase of background dose
equivalent rate at an altitude of 65 000 ft is about

20 times greater than the increase of background neu-

tron monitor count rate at ground level observed for

11
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Figure 11. Energetic solar events measured on ground and at HSCT altitudes.

March 1969 to estimate the exposures at 65 000 ft

for other much larger ground-level events which have

been observed by ground-level neutron monitors for

which corresponding high-altitude measurements are

not available. For example, the November 1960

and February 1956 events are shown in figure 11.

If we scale the ground-level increase according to

the March 1969 measurements, large exposures can

occur over a period of a few to several hours at high

altitudes. The equivalent exposure of several years

of the crew at background levels could be received in

a few hours at 65 000 ft during such events. Even

higher exposures would be encountered at higher

altitudes.

Although the energy spectra of the particle fluxes

of the February 1956 event are not exactly known, an

upper and lower bound has been established (ref. 8)

for the event maximum from limited balloon mea-

surements and neutron monitor data at several lo-

cations. These spectra have been used as input to

high-energy transport codes (ref. 8) at the LaRC and

ORNL (HETC, a high-energy transport code, ref. 54)

and are shown in figure 12. It is important to note

that the 72000-percent increase for the February

1956 event corresponds to approximately 10 mSv/hr

at 65 000 ft (58 g/cm 2 depth) in the atmosphere near

the lower limit estimate shown in figure 12.
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Figure 12. Calculated upper and lower limits for dose rate of

February 1956 solar event.
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Exposure Estimates

The exposures for three flight regimes--subsonic
flight, near-term supersonic flight, and long-term hy-
personic flight--are considered. Both national and
international air routes are well established for sub-

sonic operations. Supersonic operations will mainly
compete in the international flight market with sub-
sonic flights limited to airspace over large bodies of
water (ref. 55). Hypersonic operations near Mach 5
appear feasible (ref. 56) and will mainly operate on
international flights over water.

The projected routes (ref. 55) for a Mach 2.4
HSCT are shown in figure 13. Note that the fuel

usage is a rough indicator of the number of annual
flights. When comparing figure 13 with the geo-
graphic distribution of exposure rates in figure 9, one
sees that the main Atlantic routes pass through a
portion of the northern polar region defined as the
plateau in dose rate around the north pole. The same
holds for popular flights from the U.S. and Europe to
Tokyo. Even flights from Los Angeles to Tokyo pass

near the edge of the polar region at its nearest ap-

proach to Alaska. We consider three flight paths indi-
cated as both subsonic and supersonic routes (ref. 55)
for analysis: (1) London to New York (LHR-NYC)
which is in the heart of the Atlantic corridor, (2) Lon-
don to Anchorage (LHR-ANC) which is a connecting
flight to Tokyo, and (3) Frankfurt to Tokyo (FRA-
NRT) with a stop in Helsinki. We have evaluated
the solar minimum exposures averaged along these

routes for present day subsonic flight at 39000 ft
and supersonic flight over waterways at 65 000 ft (re-
stricted to 31000 ft over land). The nominal expo-
sures are calculated by using current environmental
models (ref. 27). The uncertainties shown in table 4
are applied to the models to estimate an upper and
lower limit. The exposure rates are shown along the
three routes in figure 14. The sudden rise and fall
in exposure rates near 1500 and 5200 miles in fig-
ure 14(f) is due to the change in altitude at the coast

line. The average exposure rates are used to evalu-
ate the annual crew exposure in figure 15 for differ-
ent assumed number of block hours (time from when

901
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Figure 13. Projected air routes of commercial HSCT operations in 2015 at Mach 2.4.
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(f) Supersonic flight (M = 2.4) from Frankfurt to Tokyo.

Figure 14. The exposure rates along three flight paths for present day commercial operations and HSCT at Mach 2.4.
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Figure 15. Annual crew exposures for subsonic and Mach 2.4
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wheels are unblocked for the roll back from the gate

to reblocking on arrival). Also shown in figure 15 are
the solar flare exposures for the February 1956 event

if it occurred while the aircraft was in the polar region
and a timely descent to 35 000 ft was made.

The three routes chosen for analysis in figure 15

pass through the north magnetic polar cap and are

among the most exposed routes. The London to
New York route is one of the most traveled inter-

national flights in the world. The exposures depend
on the number of block hours with 700 to 900 hr

as a typical range for present day subsonic flights.
The block hours of 500 to 900 were assumed for the

Mach 2.4 operation. The uncertainty in exposure
estimates is in accordance with the environmental

uncertainty in table 4. The design occupational ex-

posure limit recommended by NCRP for new opera-

tions or procedures of 10 mSv (ref. 5) is shown. Such

a limit may be exceeded, depending on the number of
block hours flown in the year of solar minimum. Also

shown is the recommended prenatal exposure limit of

the ICRP (ref. 6). If the ICRP limit for prenatal ex-

posure is accepted as a regulatory standard then an

appropriate policy needs to be implemented. The

limits are not a goal for the design but rather a limit

above which some positive action to reduce exposure

is required. The design goal with respect to regu-

latory requirements is to keep exposures as low as

reasonably achievable (ALARA principal). An issue

with respect to the environmental impact statement

flights along specific air routes for assumed number of block hours.

for the HSCT will be the implementation of ALARA

into the aircraft design and operation.

The higher exposure levels in supersonic flight
for the same number of block hours result from the

higher average exposure rates at higher altitudes.

In both supersonic and present day subsonic oper-

ations, the exposures are nearly equal to or possibly

greater than the "new design limit" recommended

by NCRP. Special consideration needs to be given to

the prenatal exposures since exposure limits are eas-
ily exceeded. Pregnant crew rotation or restriction to

less exposed routes needs to be examined as an op-

tion. "For example, one of the safety measures may

be a recommendation for women to refrain from fly-

ing on high-altitude airliners during the initial weeks

of pregnancy in order to exclude possible radiation

damage of embryo cells during the organogenesis

period." (ref. 57).

The exposures for frequent flyers with 10 round

trips assumed annually are shown in figure 16. The

higher exposure for subsonic flights along the same
route results from the longer flight time; the business

class frequent flyer would be substantially less ex-

posed on the Mach 2.4 HSCT. Clearly, 10 trips or less

would be allowable during the period of gestation.

The exact number of allowable trips before 1 mSv
is exceeded cannot be determined without reduction

of the uncertainty in the exposure rates. The 1-mSv

limit is also the allowable limit for the traveling public
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Figure16. Frequentflyerannualexposureforsubsonicand Mach 2.4flightsalongspecificairroutesforI0round trips.

(ref. 6), and the impact of the frequency with which
they fly cannot be adequately addressed without re-
duction of the associated environmental uncertain-

ties. In the event of a large high-energy solar flare
such as the one that occurred in February 1956, large

exposures can occur in passage through the polar re-

gion. These events are very rare, but means of pro-

tecting passengers in such an event requires adequate

monitoring and sut_cient aircraft capability to evade

the exposure.

Crew exposures are evaluated for Mach 3.2 and

Mach 5 for the three routes and shown in figure 17.

The trend in increasingdose equivalent rate with in-

creasingaltitudeisclearlyseen as increased exposure
for a fixednumber of block hours. The lower uncer-

taintyin exposures isdue to the lesserimportance of

atmospheric neutrons (table 4). The frequent flyer

exposures (10 round tripsper year) shown in figure18

continue to decrease with increasing Mach number

because of the shorter exposure periods.

There are several contexts in which high-altitude

exposures could be viewed. One context is to com-

pare these exposures with those of other radiation

workers. The average exposure of a radiation worker
in the nuclear industry is about 2 mSv/yr (ref. 36,

p. 153). The most exposed radiation worker sub-

group in the nuclear industry is the fuel cycle work-

ers who currently receive 6 mSv/yr as a subgroup

average (ref. 36, p. 153). The average astronaut ca-

reer exposure is 20 mSv, yielding an annual aver-

age of 4 mSv with a 5-year career assumed (ref. 58).

With the data in figure 15 and table 4, the back-

ground exposure of the stratospheric air crew would

be on the order of 7 to 15 mSv during solar mini-

mum along northern routes at the higher altitudes,

nearly double the annual exposure of the fuel cycle

workers in the nuclear industry. Should the crew en-

counter a solar event like that of February 1956 and

take no action to reduce exposure, the exposure of

that flight could be as high as _60 mSv or more
for supersonic and hypersonic flight. The passengers

would likewise be exposed at these levels for a single

flight in a February 1956 event. Otherwise, passen-
gers would receive no more than 0.16 mSv per round

trip (8 hr). A business traveler or diplomatic courier

may make 1 trip/wk along high-latitude routes and

receive exposures similar to the crew. These results
are summarized in table 5.
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Comparison With Occupationally Exposed

Clearly, the average air crew member may be

exposed to a much higher level of radiation than

the average fuel cycle worker in the nuclear industry

(although a few workers in the nuclear industry will

have exposures near 50 mSv/yr) or the average as-

tronaut. The crew and passengers may receive even

greater exposures in the event of a large solar flare.

Most passengers may be only nominally exposed to

background levels on a single round trip (on the order

of 0.16 mSv), but they could receive high exposures

on a single flight during a large solar flare. The

background exposures of frequent flyers also could

exceed the average exposures obtained in the nuclear

industry.
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Table 5. Occupational and High-Latitude Exposure Estimates

Exposure condition

Occupational:

Fuel cycle workers
All workers

Astronaut

Air crew (500 hr):
Mach 0.85

Mach 2.4

Mach 3.2

Mach 5.0

Passengers (Mach 2.4):

1 round trip/yr

1 round trip/wk

Exposure, mSv

Exceptionala
Annual

6

2

_7

_10

_13

_15

_0.16

_8

(February 1956)

_i000

_5

_60

_100

_130

_60

_60

aNo attempt made to evade exposure.

bwith 5-yr career assumed.

Comparison With Present Exposure

Standards

A second context from which the exposures can be

viewed isaccording to safetystandards used for the

protection of workers and the public from ionizing-

radiation sources. Present standards (ref.37) within

the United States (table 1,firstcolumn) requireoc-

cupational exposures to be lessthan 50 mSv in any

year except in the event ofpregnancy forwhich 5 mSv

only are allowed in the period of gestation. In any

given year, a planned or unplanned emergency can

allow a higher exposure provided that an accumula-

tion of dose does not exceed the exposure as given

by the formula [0.05 x (Age - 18)] Sv, there isno

pregnancy, and a dose rate of 30 roSy/quarter isnot

exceeded. The most difficultexposure standards for

the crew to be met isthe 5-roSy limitin the event

of pregnancy and the 30-mSv limit for any quarter

year. The limitsfor pregnancy can be exceeded by

background levelsin about 31 round trips(approxi-

mately 6 too) and by a solarflarein 1 day. The crew

would never fitwithin the exposure standards forthe

general public (table 1). The lessfrequently flying

passenger could make 6 round tripsper year without

exceeding the present 1-mSv limitfor the public un-

less a large solarevent occurs. (The general public

would be allowed up to 5 mSv in an emergency.)

The main health concern in the event of a large

solarflareisfor pregnant crew members and passen-

gers. Clearly,in some cases the exposures could be

in excess of currently accepted exposure standards.

Strictlyspeaking, no current regulationsfor aircraft

operations existand we have merely referredto stan-

dards of safe practice in radiation-related human
endeavors.

Comparison With Proposed Standards

Since the standards presentlyin forcewere estab-

lished in the United States (ref.37), new epidemio-

logicalstudiesespeciallyofthe A-bomb survivors and

a reevaluation of the A-bomb dosimetry have been

made. The resultof the latestdosimetry reduces the

contributions from neutron exposures in the A-bomb

data to near negligible.Thus, the A-bomb exposures

are now estimated to be mainly from gamma rays.

The latestresultinghealth riskcoefficientsare given

by the UNSCEAR report (ref.16) and BEIR V re-

port (ref.17). New standards for the United States

have been proposed (refs.5 and 38) and are shown
in table 1. The crew would be limitedto a maximum

annual exposure of 50 mSv which could be exceeded

in the year of a large solar event, but the problem

of exposure during pregnancy remains. The general
public could be limited to 6 round trips per year,

and the solar flare problem remains. Such reduced

standards, if adopted, could have a major impact on

protection practices of high-altitude and subsonic air-

craft (refs. 4 and 27). The 0.5-mSv limit for any

month recommended by the NCRP (ref. 5) would

be particularly limiting for pregnant crew members

and some passengers (such a limit is reached in only

3 round trips). The ability to do meaningful sched-
uling to less exposed routes depends on decreasing

the present environmental exposure uncertainty and

record keeping of crew exposures.

On the basis of the UNSCEAR report, the

International Commission on Radiological Protec-

tion (ICRP) has proposed new protection standards

(ref. 6). The ICRP recommended l-roSy in utero

limit during the period of gestation which could be

reached in only 6 round trips (within a few weeks for

the crew); this will provide a major impact on female

crew members. Indeed, such an exposure limit could

be exceeded even before the pregnancy is confirmed

and would negatively impact individual careers.

Associated Health Risks

Aside from the legal and possible regulatory im-

plications of exposing the public and crew to po-

tentially high levels of radiation (under the NRC

there are reporting requirements), the primary health

concern is exposure of pregnant occupants in high-
altitude aircraft. The risk coefficient for severe men-

tal retardation of an unborn child is 40 percent/Sv

for exposures in the first 8-16 weeks (ref. 6, p. 147)
and for childhood leukemia or solid tumor incidence
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is about 2 percent/Sv for exposure during the ges-

tation period (ref. 17, p. 149). At any given time at

cruise altitude, there may be approximately 180 preg-
nant women of which 40 are in their first 8-16 weeks

of gestation. (See appendix.) The estimated risk of

mental retardation due to an exposure of 60 mSv is

2.4 percent compared with a natural risk of 0.4 per-

cent (ref. 59), and the estimated risk of childhood

leukemia is 0.12 percent. The risk to the unborn

child of an airline crew member is somewhat higher

than for regular passengers because of background

exposure.

The estimated health risks of the crew on the basis

of exposure are small (ref. 22). Studies of air crews of

the Canadian airlines reveal substantially increased

risks of several types of cancers (ref. 60). It is not
known whether the cause of these cancers is due to

ionizing radiation or other agents but is conceivably

related to uncertainty in the health risk from the

unique radiations in the upper atmosphere (ref. 60).
Astronaut health risks are expected to be an order of

magnitude smaller than the air crew, and observed
astronaut radiation-related health risks are, in fact,

small (ref. 61).

A large fraction of the transient exposure is from

high-energy neutrons produced in the overlaying at-

mosphere. Actual response may be different than
those estimated, but no human data are available for

such exposures. The problem of solar flares remains
as a critical issue.

Exposure Abatement

From the previous discussion, it is clear that high

exposures can occur, but the associated risk of those
exposures is uncertain since most of the exposure is

from high-LET components, for which little or no hu-

man or animal exposure data are available on which

to establish exposure risks and limits. Even the lev-

els of the exposure components are uncertain be-

cause there are insufficient measurements of the high-

energy neutrons and the multiply-charged ions and

presently available computational models are not suf-

ficiently accurate because of a lack of nuclear cross-

section data. Yet, an exposure abatement program

must first provide a means of evaluating risk from all

the important environmental components and eval-
uate the effects on those environmental components

by altering the material arrangement, chemical com-

position of the aircraft structure and components,

and possibly the operating altitude and route, de-

pending on solar activity. For example, a variation

of 10 to 30 percent was measured aboard present day

commercial transports (ref. 62). To take advantage

of design and operational options, one must under-
stand the inherent health risk contribution of each

radiation component and the important design and

all operation parameters affecting those components.

As was noted in the previous section, important en-

vironmental component s have not been adequately

measured and their biological effects are not well un-

derstood (refs. 18 and 63); therefore, serious uncer-

tainty is left in our ability to control the magnitude

and effects of exposure based on our current state of

knowledge.

This discussion raises a number of issues that

must be resolved in the three categories of radiobiol-

ogy, environmental physics, and engineering design.

Although these issues are now discussed separately,
the issues are interconnected.

Radiobiological Issues

Most of our knowledge on human radiation risk

is from the exposure data of the nuclear weapons

of World War II. The primary data on fatal cancer

risk and mental retardation for prenatal exposure

are from analysis of those exposed to the A-bomb

(ref. 17). Data on childhood leukemia from pre-

natal exposure are mainly from diagnostic X-ray

data (ref. 35) and are consistent with A-bomb ex-
posure data (ref. 17). Uncertainty arises in applying

these acute exposure risk data to individuals exposed

chronically over their career; none of the available hu-

man exposure data contain significant contributions

from neutron or multiply-charged ions, the effects of

which must be estimated from other sources by using

model biological systems. These issues and the resul-

tant uncertainty were discussed in previous sections.

A principal concern in aircraft exposure is for devel-

opmental injury due to prenatal exposure for which

quality factors are not even defined (refs. 5 and 6).

Prenatal Exposure

Embryonic lethality in animal experiments occurs

at low doses (_0.1 Gy) before and immediately after

implantation (refs. 16 and 17). Although lethality

occurs at higher doses at later stages of pregnancy,

sensitivity at a particular time in gestation is not

known. Further studies are being prepared in which

early lethality will be studied in present commercial

airline operations (ref. 31).

Malformations characteristic of the stage of

organogenesis, especially in the periods of cell pro-

liferation and organization, result from cell killing

(ref. 17) or altered gene expression (ref. 40). Mod-

ification of brain structures resulting in radiation-
induced mental retardation in humans is a known
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risk at the time of cortex formation (very sensitive
for 8-16 weeks, reduced sensitivity for 16-25 weeks,
and greatly reduced sensitivity after 25 weeks). In-
telligence quotient losses of 30 points/Sv in the most
sensitive period are observed (ref. 6). Competition
with lethality may be in part the cause for reduced

sensitivity prior to 8 weeks, but such a competition
related effect is not clear (ref. 6).

Quality factors for developmental injury are not

yet defined. If cell killing is the primary injury mech-
anism then quality factors on the order of 2 to 20

in the high-LET region would appear appropriate
from mammalian cell culture experiments (refs. 40

and 64). On the other hand, if damage to the genome
is the effective criterion, then genomic instability,

chromosome damage, or sister chromatid exchange
may be more appropriate for which very large (per-
haps infinite) RBE's have been measured (refs. 65
through 67). Recent studies with mouse embryo find
low-energy alpha particles to be extremely damaging
to developing hemopoiesis (ref. 40) and very large
RBE's on the order of 250 to 360 may be appro-
priate. An argument may be given that the latter
RBE's may be appropriate as follows. The damage
to hemopoiesis results from the disorganization of the
stroma which shapes and controls the stem cell pop-
ulations and not direct damage to the stem popula-
tion. The organization of the stroma is affected by
growth control factors which axe functions of gene
expression. It is this altered gene expression which
is likely the main disorganizational factor in mental
retaxdation and not cell killing. Recent studies on
chick embryo neural development with X-ray expo-
sures show significant alteration in the distribution
of neurites (ref. 68).

Childhood leukemia induction is most apparent in
prenatal X-ray exposures, but results are consistent
with A-bomb exposures within the statistical uncer-
tainty (ref. 6). The induction rate seems indepen-
dent of the time of exposure during gestation, and
the risk of fatal childhood cancer is estimated to be

2.6 x 10-2/Sv (ref. 17). The quality factor for sto-
chastic processes would be appropriate. However, the

use of DREF m 2 may be inappropriate in that high-
LET exposures show an enhancement of cell transfor-
mation (ref. 69) and life shortening in mice (inverse

dose rate effect, ref. 70). Clearly, present radiation
protection practice may significantly underestimate
the risk to the developing embryo.

Neutron Exposures

The risk associated with gamma ray exposure is
relatively well-defined and is the primary source of

2O

current radiation protection practice. Biological ex-
periments are used to estimate relative biological ef-
fectiveness of different radiation types on which the
definition of quality factor rests. Such an extrapola-
tion depends on the existence of appropriate experi-
ments. The most common neutron exposures utilize
neutron beams generated by fission reactions with

some degree of moderation. The fission spectrum
of 235U is shown in figure 19 along with the his-

togram generated by the Monte Carlo calculations
shown in figure 4. The contribution to neutron dose
per energy decade at 70 000 ft shown as the dashed
histogram in figure 4 is indicated by the histogram
in figure 19. Clearly over half of the neutron expo-
sure at 70 000 ft is from neutrons with energies above
10 MeV, which are not representative of the fission
neutron spectrum. The only known representative
ground-based neutron exposure facility is the white
neutron source (WNS) at the Los Alamos National
Laboratory for which the spectrum is also shown in
figure 19 together with a calculation of the cosmic ray
neutron spectrum. Unfortunately, there have been
no systematic biological studies utilizing this facility
for use in establishing risk estimates.
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_. 101 [r ..... Fission neutrons
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Neutron energy,MeV

Figure 19. Calculated neutron spectrum at ?0000 ft and high
latitudes near solar minimum (histogram) with typical
fission neutron spectrum and 15° spectral distribution of
white neutron source.

An interesting point with respect to high-energy
neutron exposures is that the energy deposit is
through nuclear reaction events of the more massive
nuclei of the tissue system. The LET distribution
of multiply-charged secondary products from 1-GeV
neutron reactions is shown in figure 20. Also shown
is the LET distribution of the _9p2 u alpha decay for
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Figure 20. LET distribution produced by 1-GeV neutron in

tissue along with 239pu alpha decay spectrum.

which large RBE's are observed for hemopoiesis. The

importance of these high-LET nuclear events require

better understanding.

Neutron RBE values have been measured (ref. 71)

for 400 MeV and several biological end points. RBE
values of 6 to 10 have been measured for lens opacifi-

cation and spermatogonia survival. In the spermato-

gonia survival experiments, the RBE was found to

increase with decreasing dose as D -1/2 below 0.1-Gy

exposures so that (RBE)M is not yet achieved. As

yet, no such values of (RBE)M are available for the

neutrons in the atmosphere but the large (RBE)M
values in table 2 and the measurements of Bianchi

et al. (ref. 71) clearly emphasize their potential im-

portance in aircraft safety.

Multiply-Charged Ion Exposures

Our prior atmospheric radiation models did not

include the multiply-charged ions. Risk estimates for

these particles are problematic because insufficient
data exist to determine the RBE's with which to

extrapolate the gamma ray exposure data (ref. 36).

Such ions may produce effects and associated end

points for which gamma ray exposures are incapable

(that is, RBE is effectively infinite). Such RBE val-

ues are found in cellular exposures in the measure-

ment of sister chromatic exchanges in resting human
w 238lymphocytes irradiated ith Pu alpha particles

(ref. 67) by the observation of abnormalities in stem

cell colonies surviving similar alpha particle irradi-

ations (ref. 65) and by the partial disintegration of

chromosomes after irradiation with multiply-charged

ion beams (ref. 66). Todd (ref. 72) has postulated

that biological effects may occur at the tissue level

by a single heavy ion traversal (ref. 72) for which

there is no corresponding gamma ray effect.

These unusual features of multiply-charged ion
exposures result from the characteristics of the en-

ergy deposited around their trajectories. The aver-

age dose distribution D(t) as a function of transverse

distance t from the path of the ion (ref. 73) is shown

for several 1 GeV/amu ions in figure 21. Clearly, the

effects of proton exposures are dominated by those

trajectories which pass through the cell nucleus. In

distinction, the gold ions produce significant expo-
sures far from their trajectory. We use the curves

in figure 21 to estimate cell killing and neoplastic

transformation (the first step in cancer formation)

surrounding the particle trajectory as shown in fig-

ure 22. The probability of cell killing is taken as

Pd(t_) = 1 - e -l)(t)/Dd

where D d (_.2.6 Gy) is the dose for which only

37 percent of the cells survive. The probability

of a transformed cell being formed in a concentric
cylindrical shell of radius t is taken as

Pr(O: 2A[ -e ed(t)]
a

where a is the cell radius (here taken as 5/_m) and Dt

(_120 Gy) is the transformation sensitivity. Clearly,

the lesion formed in the tissue system by relativistic

gold ions will be a core of dead cells surrounded by a
cylindrical shell of potentially transformed cells. An

estimate of such a transformed cell being formed by
the passage of relativistic gold is 10 percent/cm. As

the tissue responds to healing in the central core, the

growth activity in surrounding cells is likely to pro-

mote a transformed cell to a malignant phenotype.

This is the essence of Todd's mechanism (ref. 72)

which is peculiar to very heavy ion exposures. The

heavier ions are quickly attenuated in the atmosphere

but measurable numbers of secondary fragments pen-

etrate to HSCT altitudes (fig. 8).

Since the population at risk in commercial air

traffic spans all ages and the preborn, one must con-

sider the effects of multiply-charged ion injury at all

ages of development. Such cell-killing effects dur-
ing organogenesis and development could conceivably

lead to serious effects for which we now have no quan-

titative experience. Also cell mutation in the periph-

ery of the tract was the basis of Todd's mechanism

and such mutational events may have importance in
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other tissues. For example, the prevalence of trans-
mittable mutation events occurring in relativistic Fe

exposures of mouse testes is 50 times higher than the
direct hit rate; thus the importance of the energy
distribution about the ion path is indicated (ref. 74).

Environmental Physics Issues

The exposure of the high-speed commercial air
crew is high compared with other exposed groups

(including the nuclear fuel cycle workers), and a sig-
nificant fraction of the accepted exposure limits is

achieved and possibly exceeded for pregnant crew

members. For these reasons alone, improved environ-
mental models must be developed for crew exposures.

This is even more criticalas proposed exposure lim-
its and new methods for estimating biological risks

(increased quality factor and radiation weighting fac-
tors) will further increase exposure estimates and
make it more difficult to keep exposures within ac-

ceptable limits. This is especially true at the high-
est stratospheric altitudes, where significant expo-
sures with multiply-charged ions occur. These added
factors further emphasis the need for development
of more accurate environmental models suitable for

crew exposure estimates. In this section, the issues
of better defining the physical radiation environment
are discussed. In the present contexL it is very im-
portant to emphasize the knowledge of the physi-
cal fields including spectral distribution and particle

type experienced by the crew and passengers rather
than the reduced quantities such as dose and dose
equivalent which are derived from the application of
quality factors or weighting factors because such bi-
ological weighting factors are being revised and will
probably be further revised before supersonic and hy-
personic aircraft go into operation.

High-Energy Neutrons

From the previous analysis, it is clear that the
high-energy neutron fields are still not known and
are very controversial (ref. 75) and that large uncer-
tainties in the corresponding dose exist. Still, it is
well established that the high-energy neutrons are
an important contributing factor in the overall ex-
posure. Therefore, a fundamental neutron measure-
ment program is required, and an improved environ-
mental model should be developed.

Multiply-Charged Ions

A survey of the multiply-charged ion data mea-
sured in the stratosphere is required to assess our cur-
rent database of measured data in the upper atmo-

sphere. These data will be used to evaluate current
computation models for estimating this component.
These particular components are in a rapid transi-
tion zone between 60 000 and 80 000 ft and their rate

of decline with atmosphere depth is important to the

design process of high-speed aircraft.

Onboard Radiation Levels

The exposures of the crew and passengers occur
within a massive structure with shielding characteris-

tics dependent on the radiation components present,
the construction materials employed, and the avia-

tion fuel present. A more complete transport code
is required for the evaluation of the environment and
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the shielding effects of the primary structure and sub-

systems. Furthermore, the geometry models of the
exposed individuals are required because substantial

self-shielding will reduce organ exposures.

Transient Exposures

During solar particle events, the radiation levels

in polar regions will increase to high exposure lev-

els, and action must be taken to protect the crew

and passengers. An atmospheric exposure model for

transient solar events needs to be developed which

incorporates the National Oceanographic and Atmo-

spheric Administration (NOAA) satellite solar flare

data. This exposure model will provide a real time

worldwide guide for HSCT operations to minimize

exposure and to provide a basis for decision making

on trajectory modification.

Engineering Design Issues

A well-established fact is that the neutron com-

ponent is increased by the presence of an aluminum

aircraft structure and conversely attenuated in avi-

ation fuel and in biological tissues (refs. 8, 27, 44,

and 62). Using a polymer composite instead of alu-

minum for the primary structure could lead to re-

ductions in the onboard exposures. Such effects are

dependent on the types of particles and their energies

present at the altitude of interest; improved environ-

mental models for the physical fields are required.

In the event of large solar flare, adequate informa-

tion must be displayed to the pilot for an informed

decision on appropriate action. For example, decent

to lower altitude requires one to know how much

lower and the existence of an alternate landing site
if the change in fuel consumption requires. A second

alternative is to move away from the polar region to

reduce exposure at cruise altitude and seek an alter-

native landing site if necessary. Whether such de-
cision making is made onboard or as a part of air

traffic control has important implications on the air-

craft operation. In any event, an adequate onboard

monitoring system is required to record the events

and related exposures. If high exposures occur, re-

porting requirements on the exposure conditions will

undoubtedly be required.

Concluding Remarks

Although the atmospheric radiation environment
is better understood than when the commercial su-

personic transport was first proposed in the 1960's,

knowledge of the components which are biologically

most important rests on theoretical predictions which

have not been verified experimentally. Furthermore,

there are little biological data on exposures to these
components on which to base risk estimates. With

the anticipated lowering of recommended exposure
limits, these issues become even more important.

The purpose of the present paper is to clarify cur-

rent knowledge to define a means to resolve the radi-
ation safety issues associated with future high-speed
aircraft.

NASA Langley Research Center
Hampton, VA 23681-0001
March 2, 1995
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Appendix

High-Speed Civil Transport Aircraft

Parameters

This appendix provides details relevant to an
advanced high-speed passenger air transport for
service in the 21st century between the United

States, Europe, Asia, and the Pacific Rim (refs. 28
through 30). A fleet of 500+ aircraft with 300 pas-
sengers each is envisioned so that approximately
25 000 passengers (men, women, and children) will
be at cruise altitude at any given time during any

day (assuming two flights per day at 50 percent oc-
cupancy). Approximately 18 000 of those passengers
are expected to be traveling the North Atlantic or
North Pacific routes according to the worldwide dis-
tribution of such flights (ref. 34). Of those on board
at any given time, assuming standard Western popu-
lation distribution, 180 are expected to be pregnant,
with 60 in the first trimester, of which 30 may be

unaware of their pregnancy. A typical flight will
last approximately 4 hr at altitudes between 60 000
and 80000 ft, depending on design of the aircraft
(Mach 2.4 aircraft will cruise at 65000 ft). The
HSCT crew is assumed to make 2 to 3 trips per week
and accumulate flight time of 400 to 500 hr at cruise
altitude per year. These factors are summarized in
table A1.

Table A1. Personnel and Passenger Parameters

Altitude, ft ............... 60 000-80 000

People aloft ................. 25 000

People on northern routes at any given time . . 18 000

Pregnant ..................... 180

In first trimester ................. 60

Crew time at altitude, hr/yr .......... 400-500

Table A2. Aircraft Parameters

Aircraft in fleet .................. 500

Passengers .................... 300

Weight with zero fuel, lb ............ 300 000

Weight of fuel, lb ............... 500 000

Wall areal density, g/cm 2 ............. 3-4

Wall material .... Polymer composite or aluminum alloy

The planned aircraft will weigh about 300 000 lb
without fuel and carry up to 500 000 lb of fuel. The
unfueled aircraft weight is 33 percent basic structure,
12 percent power plant, 33 percent onboard systems,
and the remaining 21 percent payload. The fuel is
kerosene based, and a 5-percent reserve is planned on
arrival at the destination gate. The basic structural
elements of the HSCT may be aluminum alloys or

polymer composites. The skin areal density will be
from 1.4 to 1.9 lb/ft 2 (approximately 3 to 4 g/cm2).
These parameters are summarized in table A2.
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