Unique Features of a New Nickel-Hydrogen 2-Cell CPV

James R. Wheeler Eagle Picher Ind., Joplin MO

Abstract

Two-cell nickel-hydrogen common pressure vessel (CPV) units with some unusual design features have been successfully built and tested. The features of interest are half-normal platinum loading for the negative electrodes, the use of rabbit-ear terminals for a CPV unit, and the incorporation of a wall wick. The units have a nominal capacity of 20 Ah and are 3.5 inches in diameter. Electrical performance data is provided. The data support the growing viability of the 2-cell CPV design concept.

Cell Description

The unit described in the tests described here is a 3½ inch-diameter RNHC 20-5. It is a two-cell common-pressure-vessel design with a nominal capacity of 20 Ah. Its construction is identical to that of a 40 Ah tandem-stack ManTech cell, except that the two stack-halves are internally connected in series rather than parallel. One of the units is shown in figure 1. As can be seen, this unit has rabbit-ear terminals, which has the advantage of reducing battery height and cell-to-cell interconnection mass.

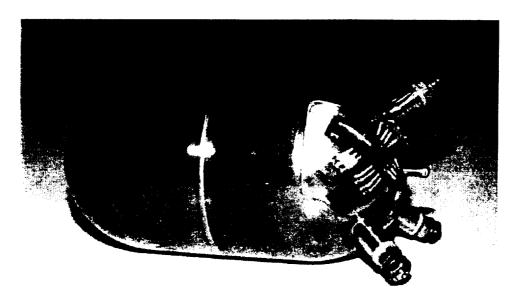


Figure 1. RNHC 20-5

PRECEDING PAGE BLANK NOT FEMALE

By "ManTech" is meant an Eagle Picher design which uses pineapple-slice-shaped electrodes and stack elements, a central polysulfone core, continuous nickel-foil leads on electrodes, and a wall-wick to ensure a recirculating path to return and equilibrate electrolyte throughout the cell stack. Also unlike an IPV, there is no separator/electrolyte bridge provided between the cell stacks. Although not present in these units, a hydrophobic Teflon strip adjacent to the weld ring on either side is planned for future units to discourage any possible long-term ionic migration through electrolyte film between the two internal cells.

Other features include a spring washer for uniform stack compression and separator/electrolyte contact with the cell wall to facilitate heat transfer. The positive electrode material is 80% slurry. The active material loading was a standard 1.65 g/ccv.

The separator material is two layers of zirconium-oxide cloth per positive electrode. Having two layers was desired because the intended functions were for operation in low earth orbit (LEO). The double separator design results in more weight for the unit, much of which is electrolyte.

Unusual Features

These units have some unusual features which distinguish them from normal production:

The use of a wall wick in a 2-cell CPV unit.

The negative electrodes were loaded to a platinum level of 4 g. per cm², which is half the normal loading.

This is the first 3.5 inch-diameter CPV unit with rabbit-ear terminals to be built by Eagle Picher. The third terminal on this unit is a special test terminal (center voltage tap) which is connected internally between the two cells. It is not necessary to the unit's function and would not be present in flight units.

The slurry plaque for the positive electrodes was manufactured in Eagle Picher's Range-Line plant in Joplin, Missouri. This is notable since all of EP's flight production thus far has come from its Colorado plant. The plaque design is otherwise identical however.

Performance

Seven units of this design were built and tested using conventional acceptance-type tests and a 2C (40 amp) pulse test. The pulse was applied for 20 seconds after 15 minutes of discharge at the normal rate of 10 amps (C/2). The performance of the units in testing was essentially what would be expected for individual-pressure-vessel cells, allowing for the double voltage of these units. The test results are shown in table 1, and the charge and discharge curves at 10°C and 0°C are shown in figures 2 through 5. It is noteworthy that the charge retention of these units, at 88% for a 72-hour open-circuit stand, is virtually the same as for an IPV with the same separator. The cells showed no ill effects of the 2C (40 amp) pulse. Average minimum voltage at the end of the pulse was 2.36 volts (IPV equivalent: 1.18 volts).

Table 1. RNHC 20-5 CPV AVERAGE PERFORMANCE

Test _	2.0 Volts	2.2 Volts	Max. Chg. Volts
10°C Capacity (Ah)	22.19	21.99	3.051
0°C Capacity (Ah)	24.34	23.81	3.132
10°C High Rate (Ah)	23.77	23.61	3.046
10°C 72-Hr. C.R.*	20.91	20.77	3.045

^{* 88.0%}

Conclusions

The results of the tests support the viability of the 2-cell CPV design at a time when interest in this concept for nickel-hydrogen batteries is growing. With half as many interconnects in a 2-cell CPV battery and somewhat less pressure-vessel weight per cell, they represent a significant potential weight-savings at the battery level¹. Fears of internal electrolyte bridging in two-cell unit have proven unfounded, and now the compatibility of the wall wick with the 2-cell CPV concept has also been demonstrated.

Two cell CPV's have already flown in the MISTI, TUBSAT and APEX programs², and common use in the future seems likely. The use of single rather than double layer separator would be appropriate for GEO applications and would make the weight of the battery more attractive. Had this unit been a single-layer design, its weight would have been 1146.6g., a savings of 106.3g (computer-design projection). The cost would be improved as well since the separator is an expensive component.

The successful manufacture and testing of the units documented here add to the growing literature for 2-cell CPV's, and in addition show that reduced platinum loading of negative electrodes can be combined with the CPV concept. The compatibility of the rabbit-ear terminal configuration is also affirmed with this work. The use of slurry plaque from a different source was shown to perform to the same standards as that from the more-usual one.

Acknowledgments

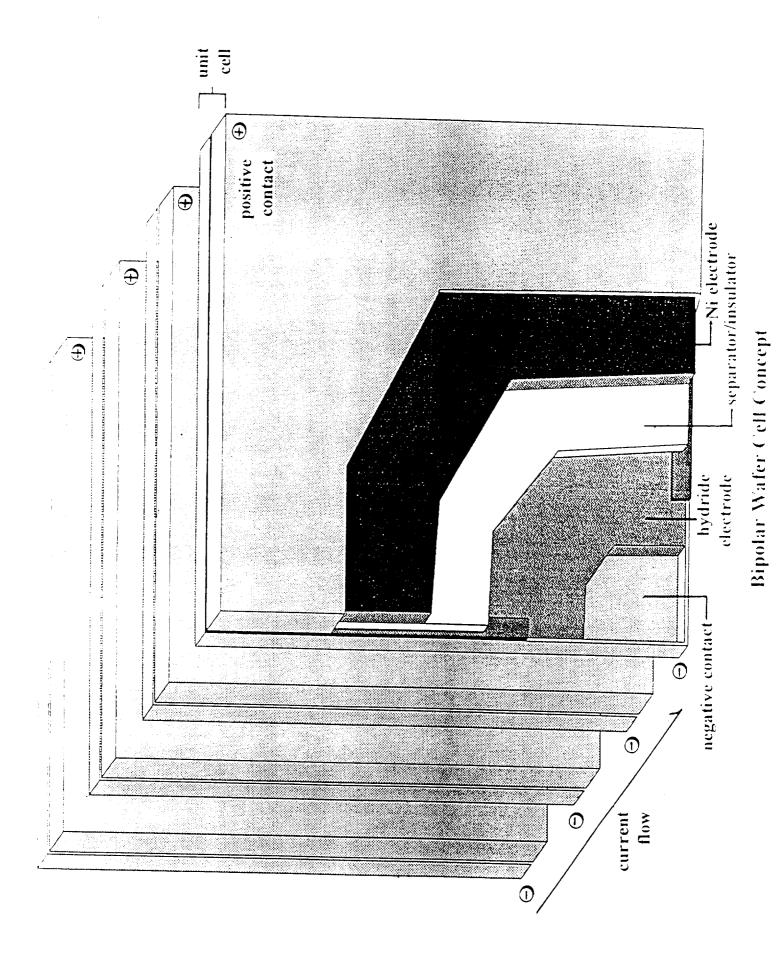
David Cooke managed the assembly and testing of the RNHC 20-5. His contributions are gratefully acknowledged.

¹ Otzinger, B. M., and Wheeler, J. R., "Common Pressure Vessel Nickel Hydrogen Battery Development", Vol. III, p. 1381, IECEC Proceedings, 1989.

² Coates, D. K., and Fox, C. L., "Current Status of Nickel-Hydrogen Battery Technology Development", Part 1, pp. 75-80, IECEC Proceedings, 1994

•		

Status Of Bipolar Nickel-Metal Hvdride Development

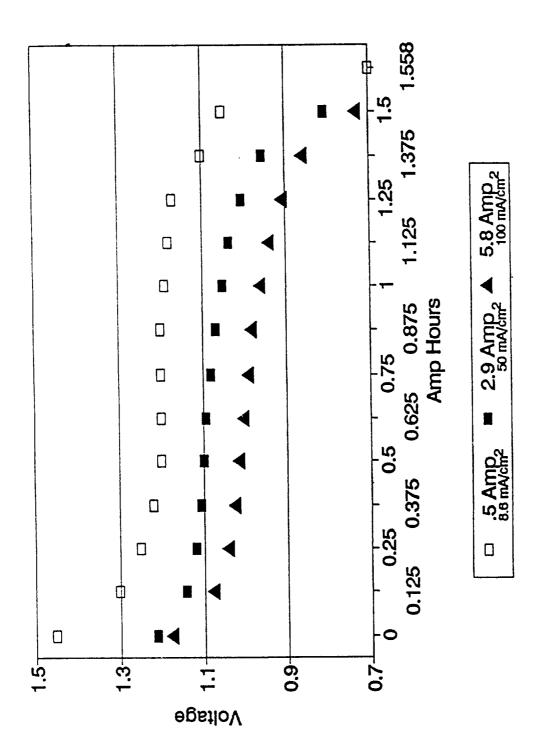

November 15, 1994

Martin Klein

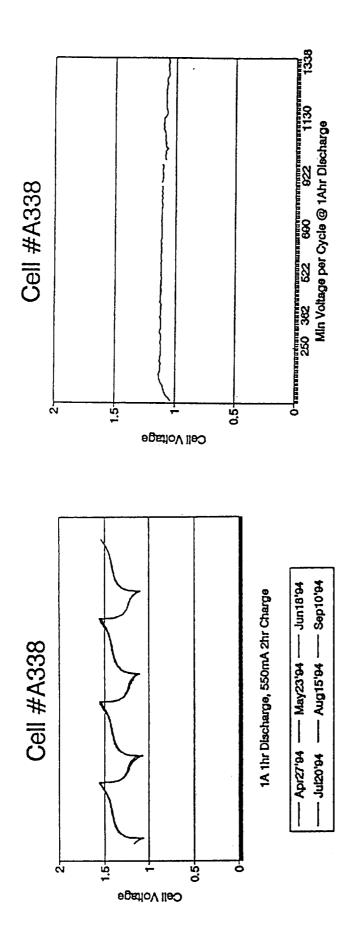
Electro Energy, Inc. Shelter Rock Lane Danbury, CT 06810 203-797-2699 $Ni(OH)_2 + OH$ ----- $NiOOH + H_2O + e^ M + e^-$ ----- 1/2 MH + OH

 $Ni(OH)_2 + M$ ----- NiOOH + 1/2 MH

Cell Reactions

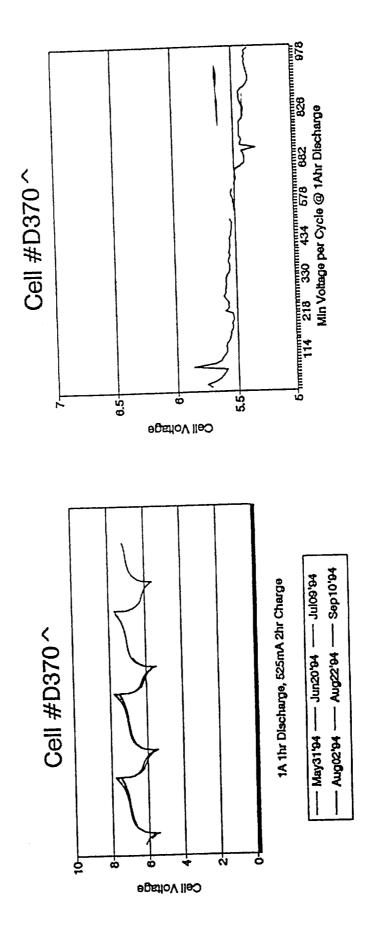

- Commercial sintered nickel electrodes
- Plastic-bonded nickel electrodes fabricated at EEI
- Pasted nickel foam electrodes fabricated at EEI
- polypropylene, or plastic-bonded inorganic compounds Separator material consisting of non-woven nylon,
- Hydride materials consisting of various rare earth AB5 alloys similar to the International Common Samples.

Major Component Variables

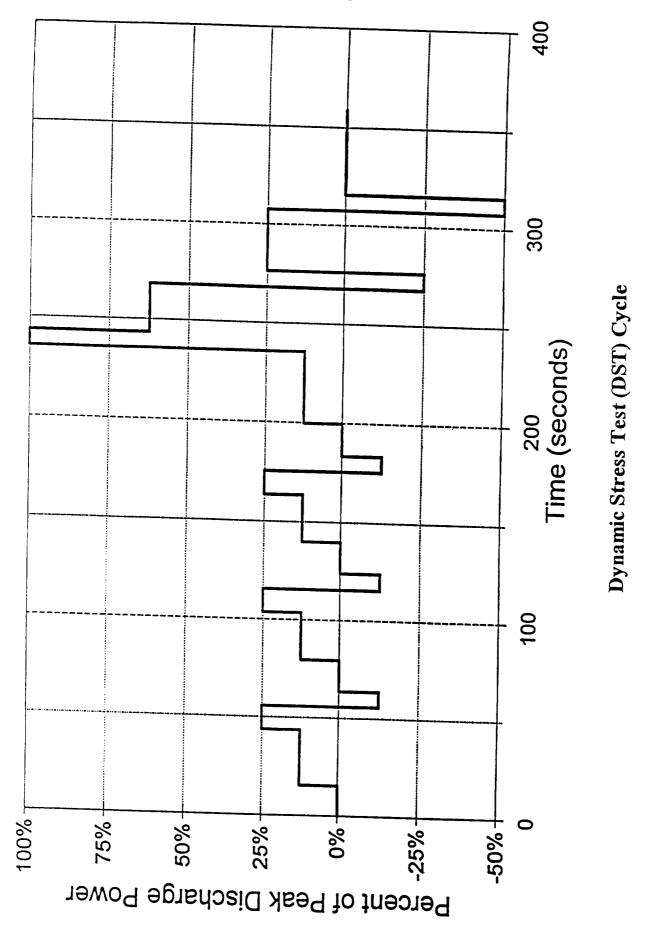

IBA MH No. 1	MmNi3.55Co0.75Mn0.4Alo.3
IBA MH No. 3	MmN13.5C00.7A10.8 LmNi alloy
IBA MIH No. 4	$^{\text{Ti}_{1.6}\text{V}_{2.2}\text{Zr}_{1.6}\text{Ni}_{4.2}\text{Cr}_{0.7}}$
IBA MIH No. 5	MmNi3.5Co _{0.7} Al _{0.8}
IBA MIH No. 6	MmNi - Coo oMno 1Alo 3

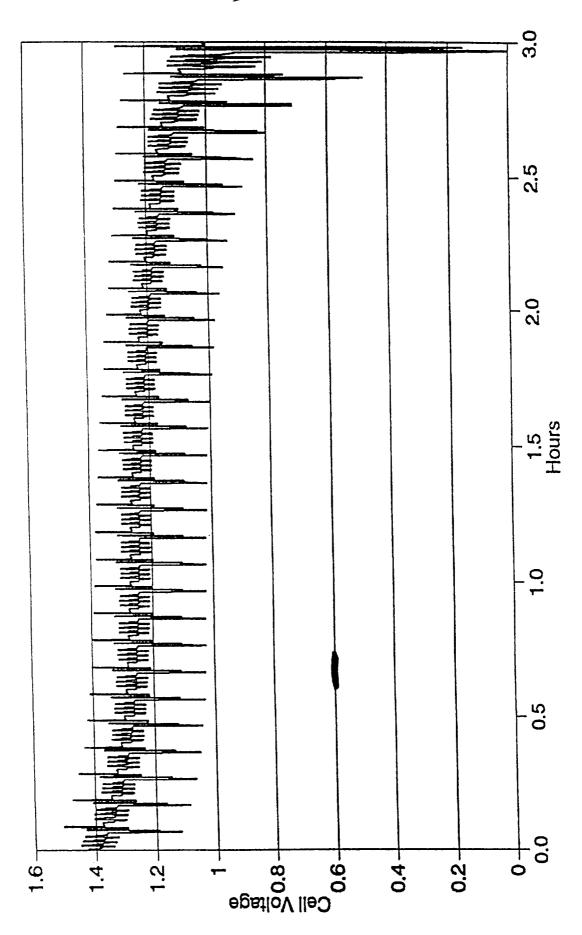
0.00000

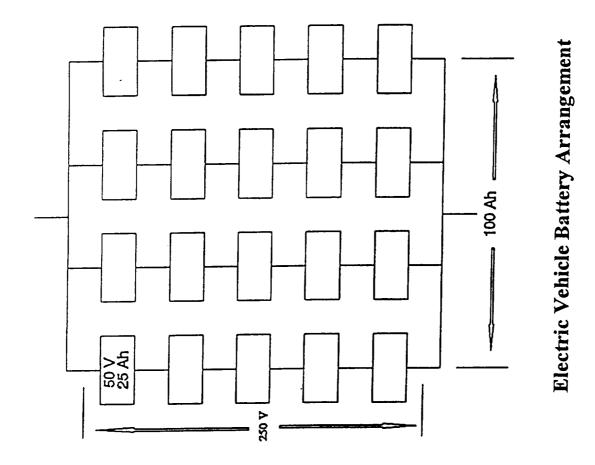
International Common Samples of MH Alloys



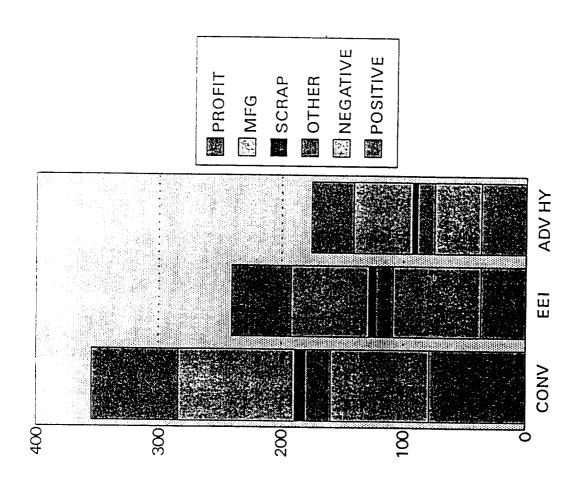
Bipolar Cell Rate Tests


Single Vented Wafer Cell 3" x 3" Electrodes 1.5 Ah Nominal Capacity Cycle 66% DoD, 1 h Discharge/2 h Charge


Plastic Bonded, Nickel Electrode, Life Test



Vented 5 Cell Pack, Life Test



100 Ah 250 V BATTERY PARAMETERS

NO. PARALLEL MODULES	4
VOLTAGE, CAPACITY,	250 V, 100 Ah
ENERGY	25 kWh
DIMENSION (in.)	10 x 40 x 23 (150
WEIGHT (inc. hardware)(5%)	420 kg
E.D. GRAVIMETRIC	60 Wh/kg
E.D. VOLUMETRIC	167 ₩h/l

100 Ah 250 V Battery Parameters

Estimated Ni-MH Cost Analysis (\$/kWh)

Nickel-Metal Hydride Battery System a leading contender for EV Applications.

Bipolar approach has cost and power advantages.

Results of single and multi-cells demonstrate stabioity of materials of construction and power capability.

Growth potential Improved Nickel and Hydride 80 to 100 Wh/kg

Summary

RECHARGEABLE LITHIUM - STATUS OF SAFT ACTIVITIES

J.L. FIRMIN

SAFT

C. BASTIEN

SAFT

1994 NASA WORKSHOP HUNTSVILLE, ALABAMA

PRESENTATION CONTENT

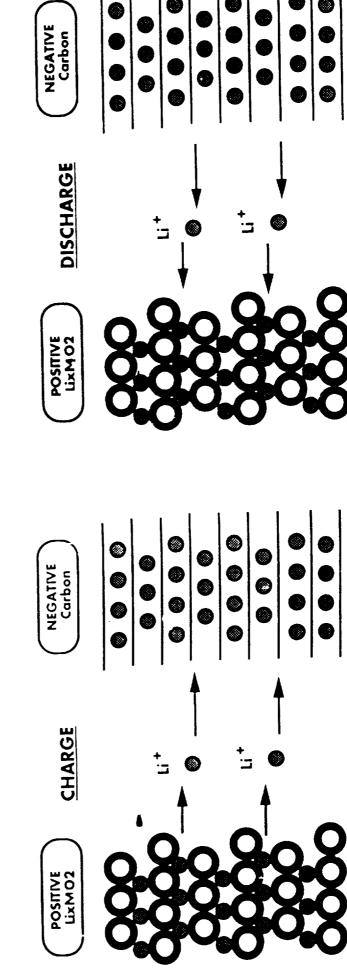
• HISTORY

• LI - ION TECHNOLOGY

• SAFT STRATEGY

SAFT SPACE PLAN

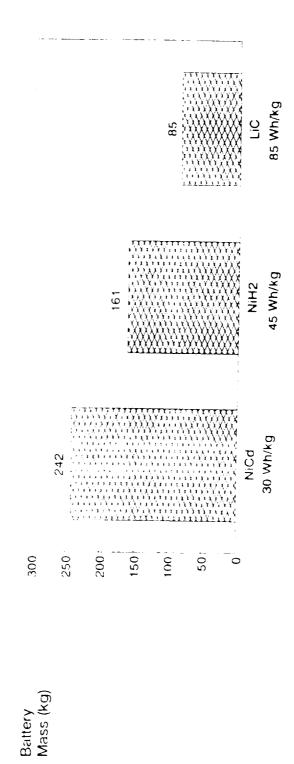
• ELECTRONICS


PRODUCT PERFORMANCES AND CHARACTERISTICS

HISTORY

SINCE 1964, SAFT HAS BEEN ONE OF THE PIONEERS OF THE LITHIUM BATTERY CHEMISTRY.

- TODAY, SAFT IS THE WORLD LEADER OF LISO₂ AND LISOCL₂ PRIMARY BATTERIES 1
- **OVER THE LAST TWO YEARS**, SAFT HAS DEVELOPPED LIV₂O₅ AND LINIO₂ RECHARGEABLE CELLS FOR MILITARY APPLICATIONS. 1
- MORE RECENTLY, A NEW TYPE OF RECHARGEABLE LITHIUM HAS BEEN DEVELOPPED FOR LONGER LIFE AND IMPROVED SAFETY: Li -ION 1


LI-ION TECHNOLOGY

LI - ION TECHNOLOGY

• A lighter energy: Estimation of a 4.5 kW geostationary satellite battery mass in function of the electrochemical couple.

MASS GAIN BETWEEN A NIH2 AND LIC BATTERY :

76 kg (for a 4.5 kW powerful satellite)

FACTOR 2

LI-ION TECHNOLOGY

• And more than that !

		Y	Alkaline family	y	Lithium	
		Standard	Standard Enhanced			
		Ni-Cd	Ni-cd	Ni-MH	Li-Ion	
_	Nominal capacity (mAh)	+	++	++++		
2	Volumetric Energy (Wh/l)	-	+	+	++++	ţ
3	Weight Energy Density (Wh/Kg)	•	+	+ +	+++	\
ব	Nominal Voltage	1.2V	1.2V	1.2V	3.6V	1
٧.	Charge retention	+	++	+	+++	\
9	Cycle life	++++	+	+	+	
7	High rate charge	+++	++	+	+	
∞	Memory effect	•	.1	+	+ + + +	1
6	Overcharge ability	++++	++	+		
01	Overdischarge ability	++++	++	++		
=	11 Internal resistance during cycling	+++++	++	+	+	
12	Cost per Wh (in same shape) +	++	++	+	ı	
	cost of the charger / electronics				(today)	

A GENERAL PURPOSE TECHNOLOGY

LITHIUM RECHARGEABLE

A NEW, GENERAL PURPOSE, ELECTROCHEMISTRY

WHICH CAN HAVE AS BRIGHT A FUTURE AS

NICH HAS EXPERIENCED IN THE LAST 20 YEARS.

SAFT, STRATEGY

SAFT PERCEIVE RECHARGEABLE LITHIUM AS A GENERAL PURPOSE TECHNOLOGY

→ 1 Electrochemistry

→ 1 Electrode definition and process

→ 1 Kind of equipment

: PORTABLE, ELECTRIC VEHICLE, SPACE **→** Several applications

: Cylindrical, Prismatic, Plastic battery **→** Several shapes

→ Several sizes

: Small, Medium, Large

→ The R&D effort can be supported by a larger turn over

GUIDELINES

• SAFT WILL HAVE ITS OWN PROPRIETARY TECHNOLOGY (Linio2/Graphite)

2 THINK DIFFERENTLY

→ Rechargeable lithium has unique features:
 Voltage
 Thin, flexible electrodes
 Electronics control

Cost advantages

→ New concepts: format, plastic can, battery design, association cell / electronics ...

© CLOSE COOPERATION WITH CUSTOMERS

ORGANISATION

RESEARCH	ALCATEL ALS	ALCATEL ALSTHOM CORPORATE
	RESEARCH CENTER	RESEARCH CENTER - MARCOUSSIS (France)
MARKETING	MARKETING ST	MARKETING STRATEGIC COMMITTEE
	SAFT WORLDWIDE SAL	SAFT WORLDWIDE SALES & SUBSIDIARIES NETWORK
	CYLINDRICAL CELLS	Valdese North Carólina (USA)
DEVELOPMENT	PLASTIC BATTERY	
ENGINEERING	MEDIUM PRISMATIC	
	ELECTRIC VEHICLE	Poitiers (France)
	SPACE	
GENERAL MANAGEMENT OF THE PROGRAM	SAFT ADVANC	SAFT ADVANCED BATTERIES GROUP

SAFT SPACE PLAN

GEOSTATIONARY SATELLITES 2 APPLICATIONS:

Low earth orbit (LEO) 2 years missions, LAUNCHERS, PROBES

• USE MULTI-APPLICATION TECHNOLOGY (PORTABLE, ELECTRIC VEHICLE, SPACE)

■ INCLUDE FLIGHT VALIDATIONS IN DEVELOPMENT PLANS

● HAVE A GROUND BATTERY QUALIFICATION IN 1998

STRATEGY:

CELL OFFER

ΞĨ
\equiv
\neg
_
TE
\equiv
5
\triangleleft
S
\sim
\simeq
7
Ž
_
- ▼.
S
LSC
Ü
_

LEO 2 years missions, LAUNCHERS, PROBES

Based on Electric Vehicle experience 40 Ah - 200 Ah

Same cell as for military and commercial applications

5 Ah

Same basic materials and electrodes process

No specific space cell development

Space Battery and Electronics development

Specific space cell development

Space Battery and Electronics development

Technical Objectives:

Battery: 100 Wh/kg

50 Wh/l

Cell: 140 Wh/kg 260 Wh/I

Cell: 100 Wh/kg Battery: 70 Wh/kg 20 Wh/I

240 Wh/I

Cycle-life: 10 000 cycles - 20% DOD

Cycle life: 1500 cycles - 80% DOD - 15 years + Ionic propulsion (TBD)

1994 NASA Aerospace Battery Workshop

RECHARGEABLE LITHIUM - Status of SAFT Activities

RESEARCH:

Increase cycle life (storage and fading)

Increase gravimetric energy

Limit corrosion

Study charge & discharge control parameters and their aging

CELL DEVELOPMENT

Electric & Mechanical connection with thin electrodes supports

Stack blocking

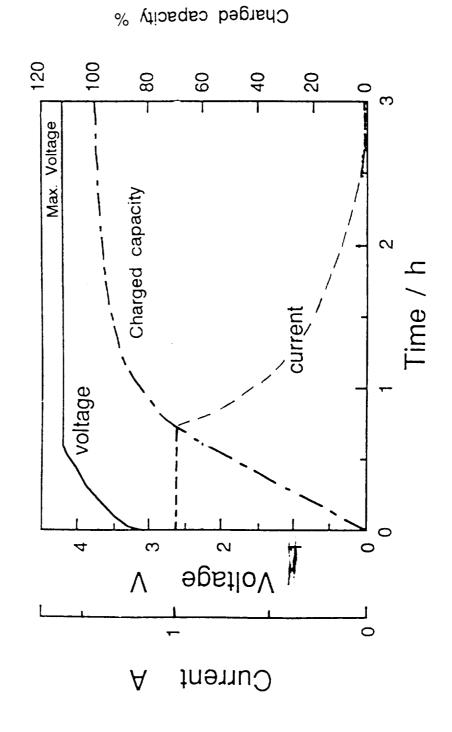
Formation mode (no plates formation available)

Charge mode

BATTERY & ELECTRONICS:

• Electronics management design

Promote new concepts


S A F T

RECHARGEABLE LITHIUM - Status of SAFT Activities

SCHEDULE

Flight validation Flight validation 98 FOR 6 CDR 96 95 DISCRETE COMPONENTS HYBRIDATION TEO, LAUNCHERS, PROBES APPLICATIONS ELECTROCHEMICAL CHARACTERSATION BATTERIES PRELIMINARY DESIGNS GEOSTATIONARY APPLICATIONS BATTERY QUALIFICATION (2 QM) BATTERY DEVELOPMENT (1 EM) ELECTRONICS MANAGEMENT CONCEPTS CELL QUALIFICATION (50) FRESH CELL ACTIVITIES BATTERY QUALIFICATION BATTERY DEVELOPMENT CYCLING CELL QUALIFICATION CELL DEVELOPMENT CELL DEVELOPMENT SPECIFIC RESEARCH

LI-ION CHARGE MODE

ELECTRONICS

ELECTRONICS CONCEPTS:

The difficulty comes from the voltage management mode for cells in series

2 families of concepts:

→ BATTERY CHARGE MODE WITHOUT CELL BY-PASS: Management by the cell with highest voltage

Constant current

Constant current by steps

Constant current and battery constant voltage

♦ Easy to manage (same as NiCd & NiH₂)

Limit cell capacity performances

ELECTRONICS

→ BATTERY CHARGE MODE WITH CELL BY-PASS: Management of each cell

Constant current and constant voltage ensured on each cell by electronic control

Scaranteed to use the maximum cell capacity Compensate cells dispersion

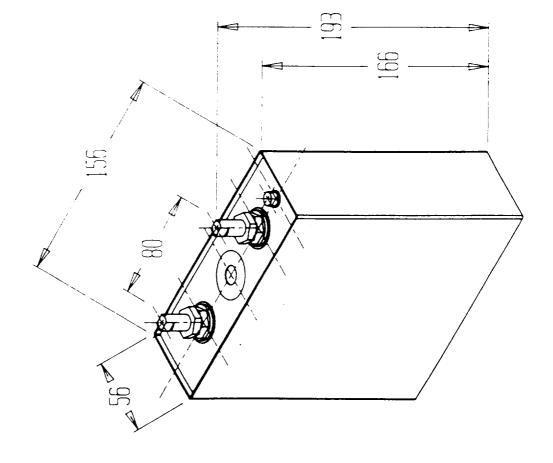
Cost (to be evaluated at system level) Poew Electronic concept to study

SAFT's AIM IS TO DELIVER A COMPLETE BATTERY SYSTEM

PRODUCT PERFORMANCES AND CHARACTERISTICS

MAIN REQUIREMENTS COMPARISON

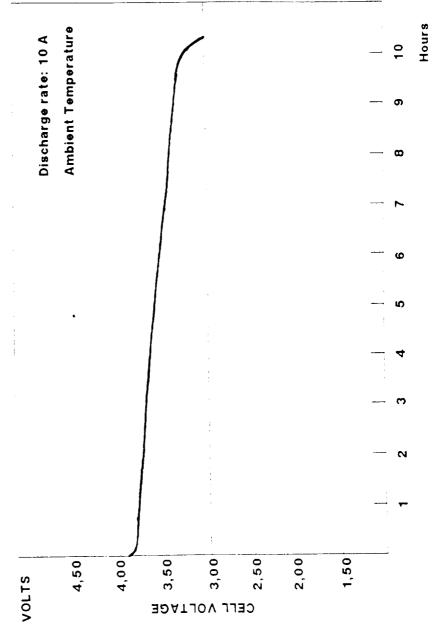
eı			
y W	PORTABI I:	FLECTRIC VEHICLE	SPACE
Keguirements		0.7000	CDO to C/1 \$
Carrier rate	C/20 to C	C/10 to C	C 120 W C 1.3
Commercial	C/8 to C	C/5 to 2C	C/1.5
Discharge rate	The to 3C	up to 3C	Up to C
Peak discitalige	0°C to 50°C	- 20°C to + 50°C	pqı
Charge Lemperature range	-20°C to +60°C	id.	tbd
Discharge Temperature range	-40°C to +85°C	.pi	tbd
Organie Temperanne range	> 120 Wh/kg (Beg. of life)	140 Wh/kg (Beg. of life)	100 Wlvkg (End of life)
Oravincino Linorgy	Cell	Battery	Battery
I ife time	>1000 cycles 100%DOD with	>1000 cycles 100%DOD with	1500 cycles 80 % DOD
	>70% Nominal Capacity	>80% Nominal Capacity	+ ionic propulsion
	4 vears	10 years	15 years
Charge retention	< 10 % after 1 month 20°C		< 25 % after 72 h 20°C
	< 10 % after 8 days 45°C		


Advanced Technologies Session

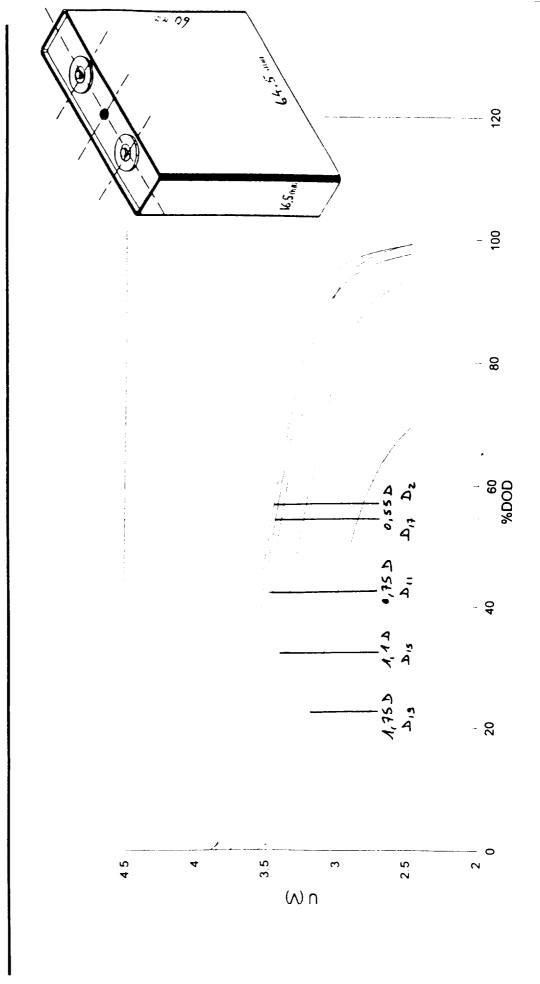
. 135 days rest period in between 45 days use

. Launchers vibrations & shocks

. 15 years life time and more than 10 000 cycles


LI - ION 100 AH CELL SCHEMATIC

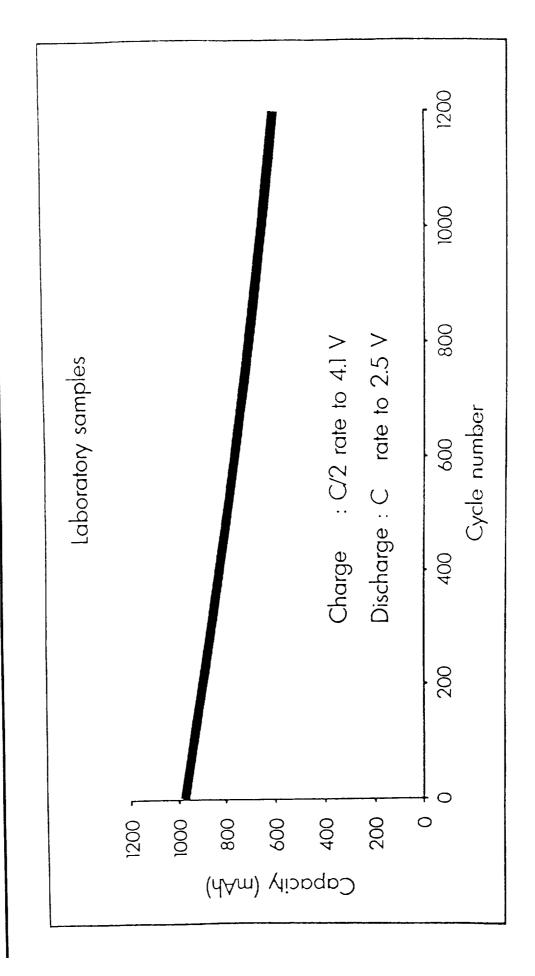
Dimensions in mm


RECHARGEABLE LITHIUM - Status of SAFT Activities

100 AII DISCHARGE CURVE

DISCHARGE PROFILE OF A 100 AH LINIO2/GRAPHITE PRISMATIC CELL (CYCLE 5)

RECHARGEABLE LITHIUM - Status of SAFT Activities



ADVANCED BATTERIES SAFT

RECHARGEABLE LITHIUM - Status of SAFT Activities

CYCLE LIFE ON LABORATORY SAMPLES

S A F T
ADVANCED BATTERIES

RECHARGEABLE LITHIUM - Status of SAFT Activities

AA CELL PERFORMANCES COMPARISON

	Standard NiCd	Top of the range NiCd	Nickel metal hydride	Li-lon
Nominal capacity (mAh)	900 - 200	006	1200	400 to 550
Nominal vo ll age (volts)	4.2	1.2	7	3.6
Weight energy density (Wh/kg)	35 - 40	50	09	80 - 110
Volumetric energy density (Wh/1)	100 - 110	140	180	190 to 260
Cycle life (number of cycles)	1000	1000	500 - 1000	500 - 1000

ORIGINAL PAGE IS OF POOR QUALITY

٠.		

<u>ה</u>

OF LI-ION CELLS **PERFORMANCE EVALUATION** CYCLE LIFE

Rao Surampudi, Dave Perrone, Ron Nauman, Chen-Kuo Huang Ratnakumar Bugga, Gerald Halpert

NASA Battery Workshop Huntsville Alabama November 15-17, 1994

PRICEDING PAGE BLANK NOT FILME

Outline

• Objective

Cell Description

Test Plans

Charge/Discharge Characteristics

Cycle Life Performance

40% DOD

100% DOD

Summary

Objective

Determine Cycle Life Performance of Lithium lon Cells at 100% DOD and 40% DOD (NASA stress test)

Cycling Parameters 100% DOD Test

Charging

- Constant Current @ 100mA
- **EOC Voltage to 4.2 volts cutoff**

Discharging

- Constant Current @ 200mA
- EOD Voltage to 3.0 volts cutoff

Open Circuit Period

- End of Charge: 30 minutes
- End of Discharge: 30 minutes

Cell Description

Type I

Anode: Carbon (Coke)

Cathode: LiCoO₂

Electrolyte: EC-Based Electrolyte

Rated Capacity: 1 ampere-hour

OCV: 3.8 volts

Dimensions

Length= 64.1 mm

Diameter = 18.2 mm

Weight = 40 grams

Manufactured by Sony

Specific Energy: 70.0 Watt-Hours/Kg

Cell Description

Type II

Anode: Carbon (Coke)

Cathode: LiCoO₂

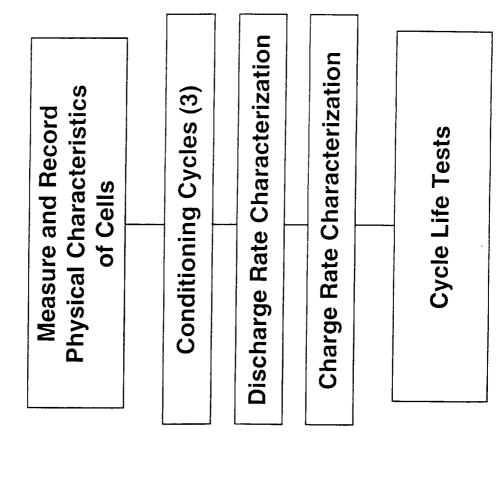
Electrolyte: EC-Based Electrolyte

Rated Capacity: 1 ampere-hour

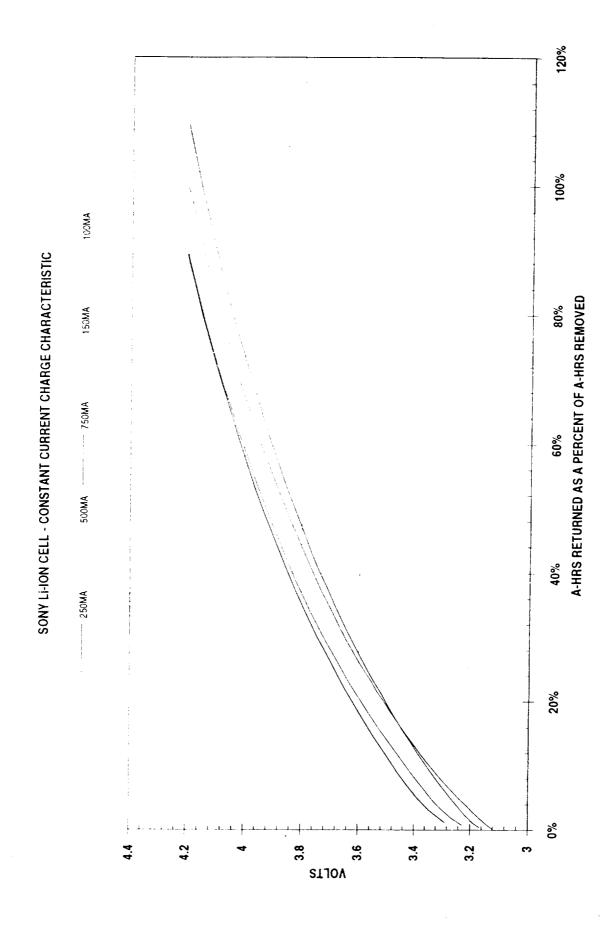
OCV: 3.8 volts

Dimensions

Length= 51 mm

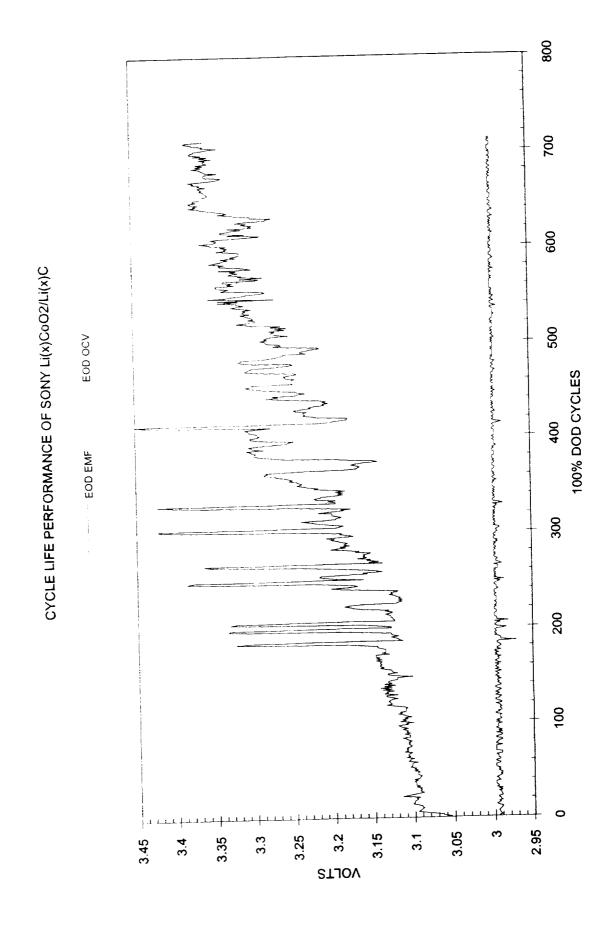

Diameter = 21 mm

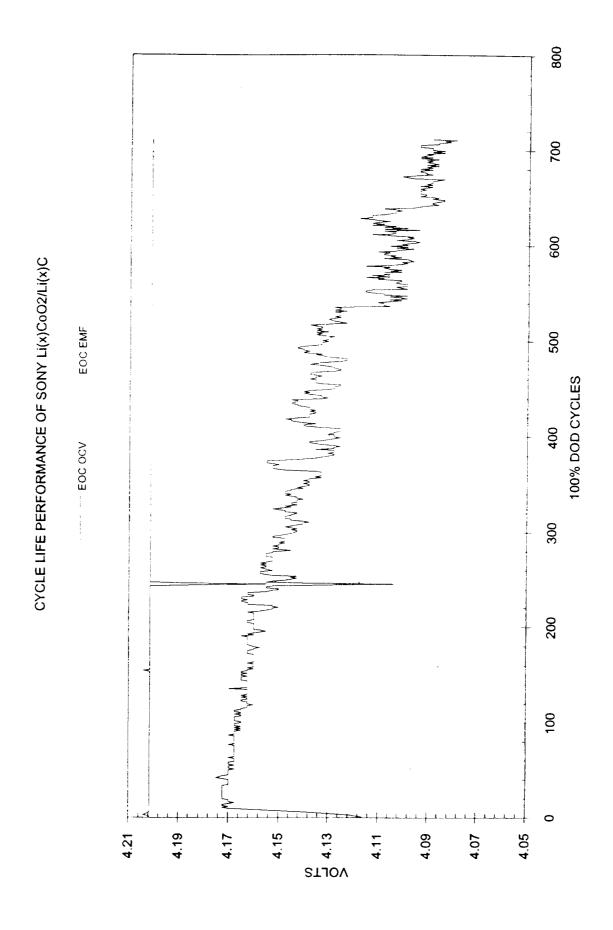
Weight = 40 grams

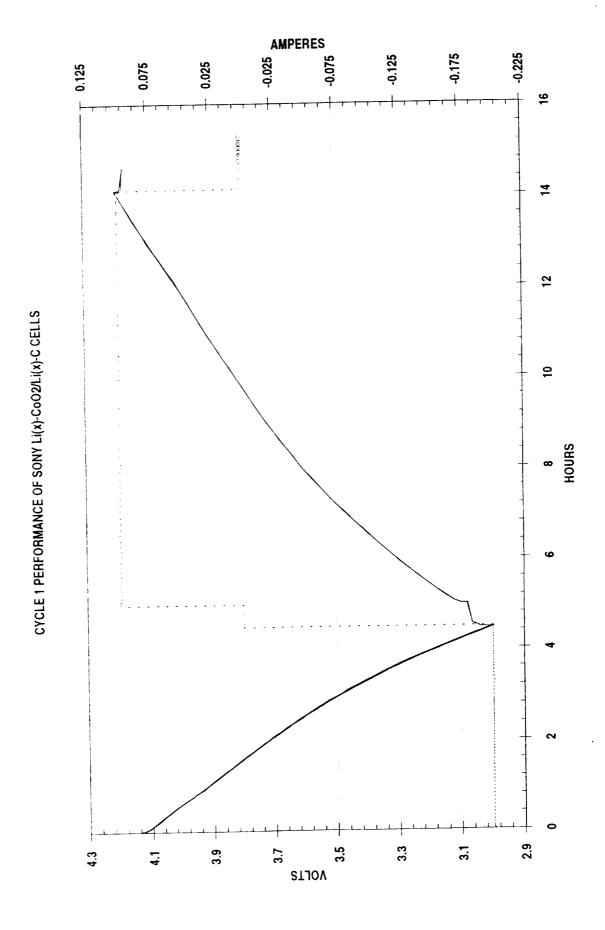

Manufactured by Sony

Specific Energy: 80.5 Watt-Hours/Kg

Test Plan Overview

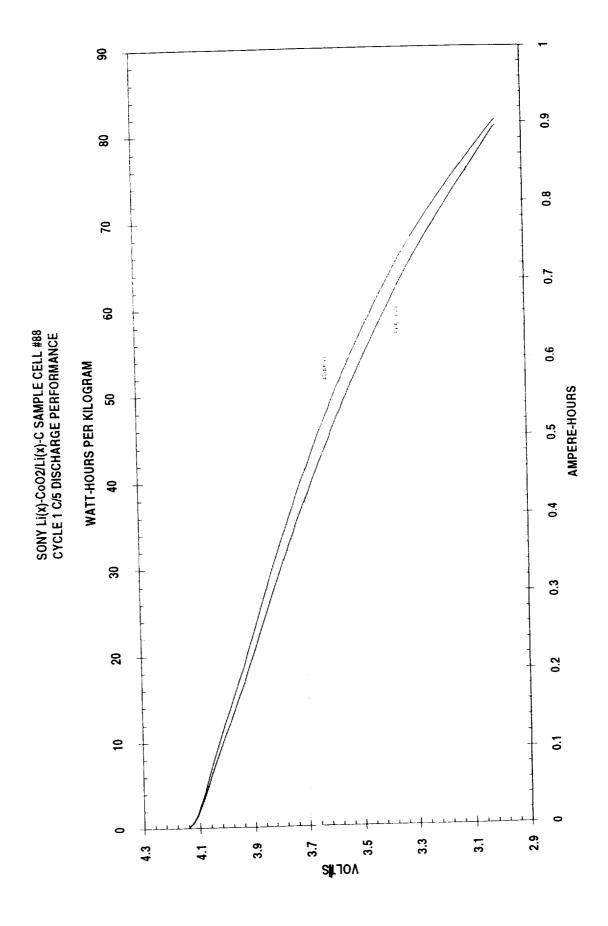


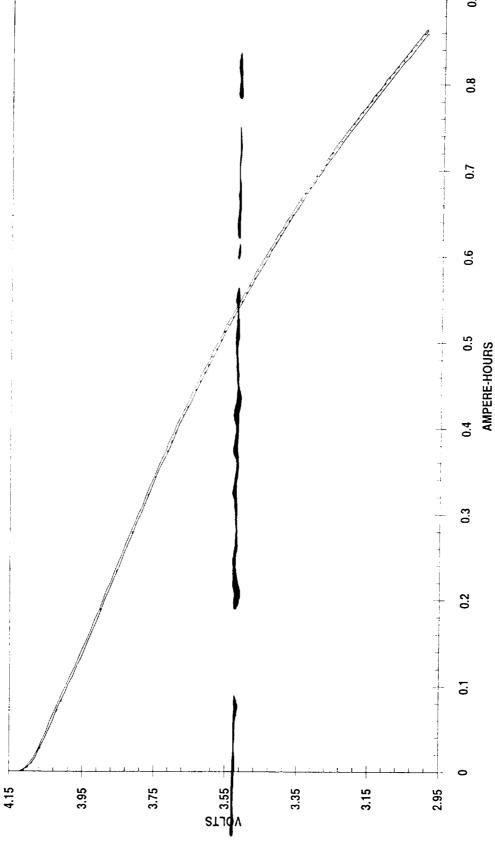

7.0 9.0 SONY LI-ION CELL PERFORMANCE AT 31 DEGREES CELSIUS 0.2 AMPERE DISCHARGE TO 3.0 VOLTS PER CELL CUT OFF 0.5 AMPERE-HOURS --- CYCLE 3 0.4 - CYCLE 2 0.3 0.2 SOUMA CC CHARGE TO 4.2 VOLTS 0.1 2.9 STJOV Ž 3.3 3.1 3.9 3.7

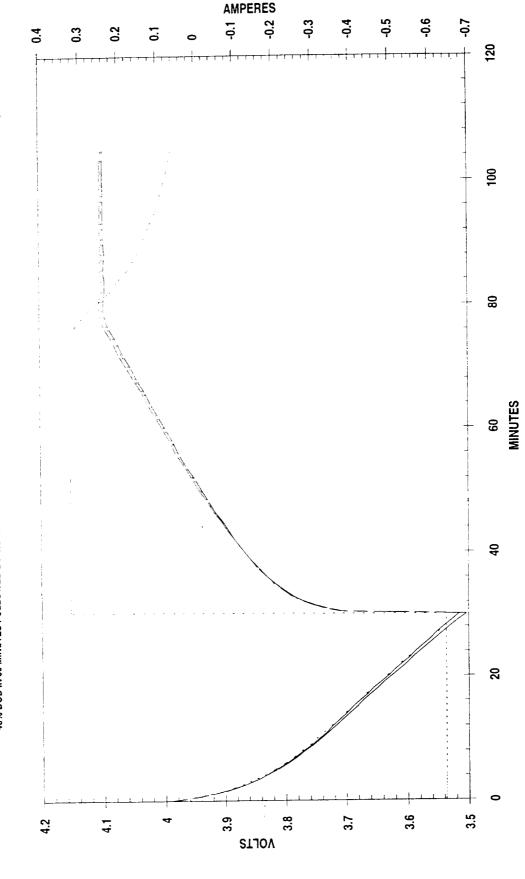


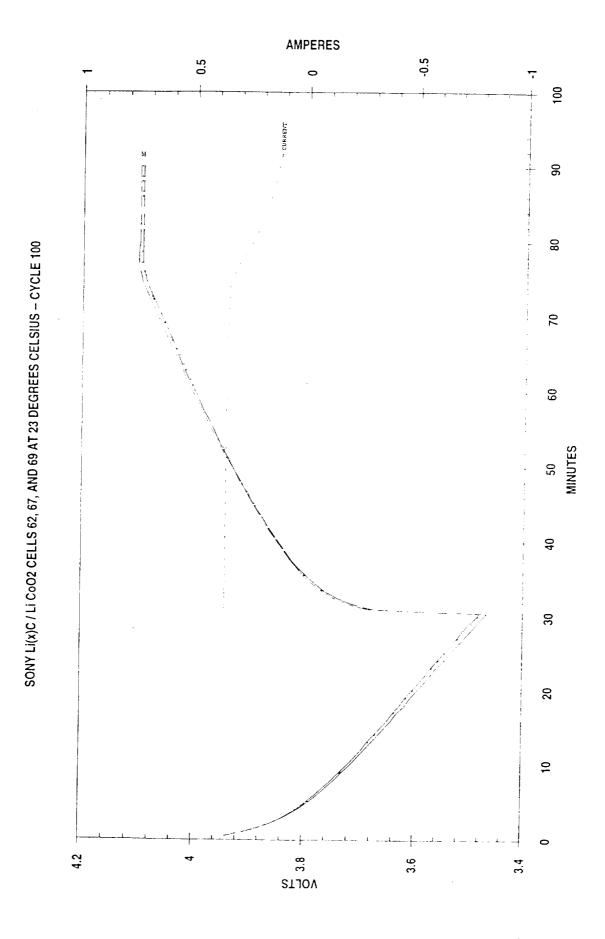
0.8 0.7 SONY LI-ION CELL - DISCHARGE PERFORMANCE AT VARIOUS CURRENTS AT 25 DEGREES CELSIUS 0.83 AMPERES 9.0 0.75 AMPERES 0.5 AMPERE-HOURS 0.5 AMPERES 0.3 0.25 AMPERES 0.2 0.1 3.3 3.9 3.7 3.1 7 VOLTS

100% DOD CYCLE LIFE PERFORMANCE OF SONY SAMPLE 03022-50 0.2 AMPERES DISCHARGE TO 3.0 VOLTS AND 0.1 AMPERES CHARGE TO 4.2 VOLTS 9.0 0.4 **АМРЕЯЕ-НОИЯ**




1000 800 2nd GEN. 009 Cycles **4**00 28 Ampere 0.8 Hours 0.7 0.85

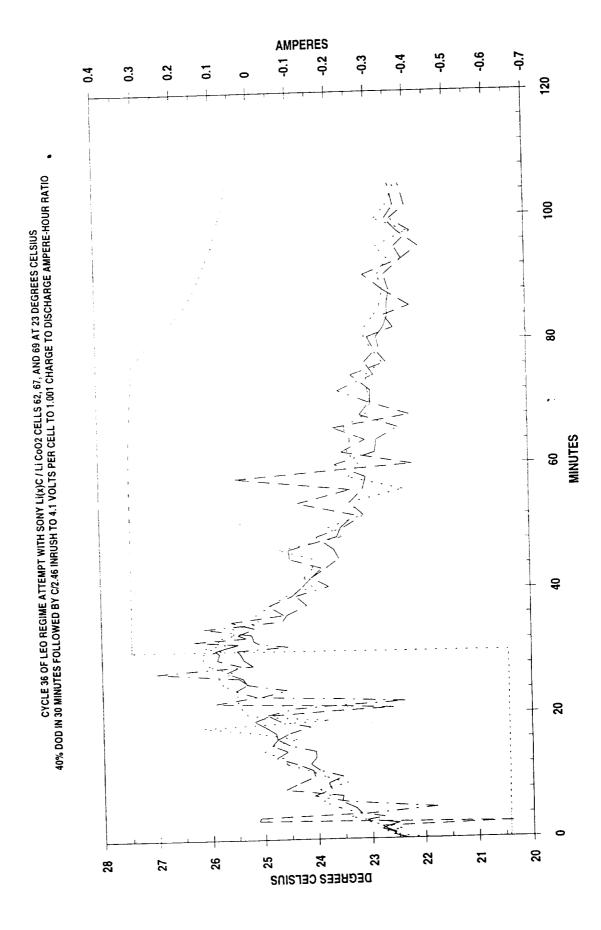

COMPARISON OF PERFORMANCES IN FIRST AND SECOND GENERATION "LITHIUM-ION" CELLS CYCLES VS. DISCHARGE AMPERE-HOURS AT 23 DEGREES CELSIUS

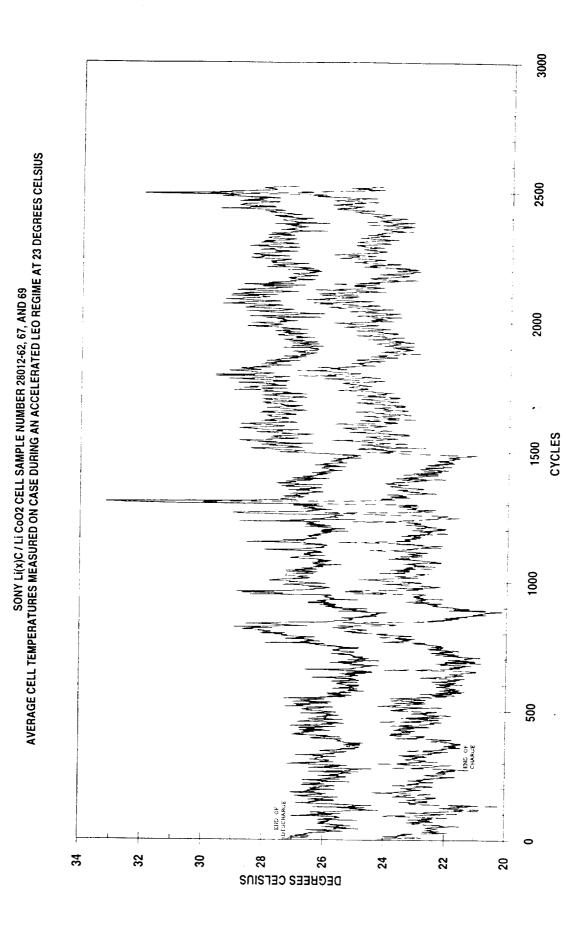

OF ROOM PAGE IN

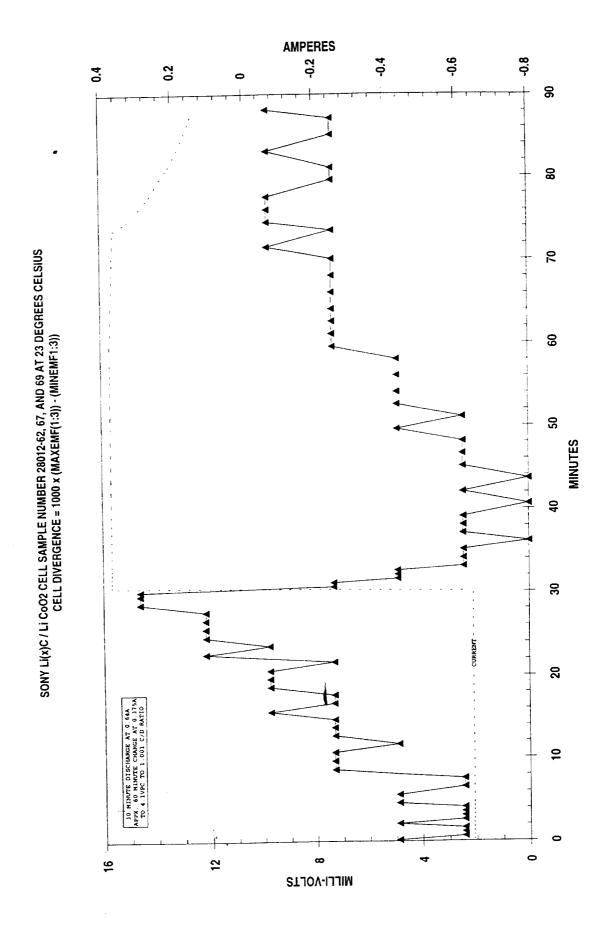
SONY LI(x)C / LI CoO2/ CELLS 62, 67, AND 69 DISCHARGE 1 AT 0.2 AMPERES TO 3.0 VOLTS PER CELL AT 23 DEGREES CELSIUS

CYCLE 36 OF LEO REGIME ATTEMPT WITH SONY LI(x)C / LI CoO2 CELLS 62, 67, AND 69 AT 23 DEGREES CELSIUS 40% DOD IN 30 MINUTES FOLLOWED BY C/2.46 INRUSH TO 4.1 VOLTS PER CELL TO 1.001 CHARGE TO DISCHARGE AMPERE-HOUR RATIO

0.98 0.97 0.99 1.01 1.02 1.04 1.03 3000 2500 SONY Li(x)C/Li CoO2 CELL SAMPLE NUMBER 28012-62, 67, AND 69 CYCLES VS. DISCHARGE AMPERE-HOURS DURING AN ACCELERATED LEO REGIME AT 23 DEGREES CELSIUS 2000 CYCLES 1500 1000 200 0.26 0.22 0.34 0.3 0.38 0.42 AMPERE-HOURS

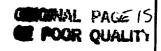

3000 2500 SONY LI(x)C / LI CoO2 CELL SAMPLE NUMBER 28012-62, 67, AND 69 AT 23 DEGREES CELSIUS CYCLES VS. END OF DISCHARGE CELL VOLTAGES DURING AN ACCELERATED LEO REGIME 2000 1500 1000 200 3.5 2.5 VOLTS


-551-


1.04 1.12 1.08 1.16 7. 3000 SONY Li(x)C / Li CoO2 CELL SAMPLE NUMBER 28012-62, 67, AND 69 CYCLES VS. AVERAGE WATT-HOURS DURING AN ACCELERATED LEO REGIME AT 23 DEGREES CELSIUS 2500 2000 1500 CYCLES 1000 200 1.15 Ξ 1.35 SAUOH-TTAW

-552-

3000 EOC VOLTS CELLS 62,67,69 EOD VOLTS CELLS 62,67,69 SONY LI-ION END OF CHARGE/END OF DISCHARGE VOLTS VS CYCLES 2500 Manney Miller Commence of the Party of the P 2000 CYCLES 1500 8 200 4.2 YOLTAGE ო



Summary

- capacity, second generation cell delivered 1) First Generation Cell yielded 780 mAh 860 mAh capacity.
- generation cell appears to exceed the first. 2) Cycle life performance of the second
- demonstrated 2500 cycles at 40% DOD, and 3) Accelerated "LEO" testing has already continues to cycle.
- 4) Energy density per volume is larger with the second generation cells.
- demonstrates good fabrication techniques. 5) Cell performance is consistent which

	•		
	•		

Round Table Discussion of Advanced Technology for Space Applications

Gerald Halpert, Jet Propulsion Laboratory

NASA BATTERY WORKSHOP MARSHALL SPACE FLIGHT CENTER HUNTSVILLE, ALABAMA November 1994

OPEN DISCUSSION
On the Subject of

WHAT WILL IT TAKE TO GET ADVANCED BATTERY TECHNOLOGY INTO SPACE APPLICATIONS?

Chairman: Gerald Halpert
Jet Propulsion Laboratory
Notes by Michelle Manzo, NASA LeRC

OPENING REMARKS - G. Halpert

New battery technologies have been improving over the last several years. It took almost 20 years for NASA to use a Ni-H2 battery. Even then it was used on Hubble Space Telescope as a replacement for a Ni-Cd battery in which life limiting concerns had been raised. What do we have to do to use Ni-MH or Li-ion batteries in space? How do we qualify cells and batteries for space missions?

If you ask the spacecraft Manager or project manager, he or she will ask where has it been used previously and what is the experience with the device? Even though there may be significant test data, and the mass and volume is lower or the mission capability can be increased, the project manager will generally opt for a previously used battery system. The philosophy is "Not on my spacecraft."

The subject is open for discussion to all attendees. I hope you will participate. The first speaker is Dave Pickett from Hughes.

ATTENDEE PARTICIPATION

Pickett - It took 8 years to fly modern Ni-Cd and 11 years to for Ni-H2. A compelling reason is needed for implementation of new technology, whether it be economics, or other. It takes time, and someone willing to take the risk. Usually, commercial needs lead the way.

The new technologies are Ni-MH, Li-ion, and CPV Ni-H2. Larger IPV are being considered as well as CPV. Predictions for spaceflight of Ni-MH, 5 years, and Li Ion 8-10 years. This is the time it takes from cell test to battery integration.

E. Darcy - Safety issues with Li make Ni-MH more of a near term option.

- J. Firmin Safety tests have been conducted. Requirements need to be defined and tech must meet the requirements.
- G. Methlie Agreement with safety issue. Ni-MH intermediate term is needed. Difficult to accelerate verification.
- M. Klein Ni-MH is the battery of choice for next 10-15 years. Aerospace should leverage off commercial.
- C. Lurie High cost for qualification of Ni-Cd to Ni-MH. Not clear that it offers significant advantages at battery level. Li-Ion will probably ultimately replace Ni-MH. Probably cannot justify costs.
- G. Dudley Wh efficiency less for Ni-MH than Ni-Cd.
- C. Lurie Ni-MH advantage is improved round trip efficiency, thus, smaller array.
- W. Tracinski Possible use for all technologies to optimize for all applications.
- G. Methlie Project forward by looking backward. If end up with one system, you better be right. Also need multiple vendors.
- D. Maurer Need all technologies. Li-Ion a long way off. Need several technologies going at once. The mechanism for demo in space will be in small s/c.
- A. Dunnett Cheaper and faster, not better. No new battery systems seen without compelling reason. Ni-MH will not be qualified with Ni-Cd and Ni-MH available. Li-Ion is the next step.
- G. Halpert What is the necessary incentive to go Li-Ion? Does your company support R&D on Li-Ion?
- A. Dunnett Lower battery weight, more propellant, increase in payload. My organization does not support Li-Ion or other R & D.
- E. Darcy The time line is long without terrestrial applications. Ni-MH make sense in todays environment.
- C. Lurie Small satellites are new visions for aerospace. They become the platform for new technology.
- M. Anderman Ni-MH advantages depend on DOD capability and life as a function of DOD.
- V. Kennedy -Responding to a question on Na-S, acceptance and abuse tests are being worked.
- Johnson -Go on to far term technologies. Let other Intermediates develop in commercial

- technology. Sponsor research in space for space applications.
- G. Methlie Commercial base does not guarantee success in space.
- J.Firmin Same battery as EV commercial? Need to begin improvement at early stages to influence development.
- P. O'Donnell Need dual-use drivers. Can't take terrestrial alone. Need to work on parallel paths.
- J. Firman Limit documentation for qualification of new technologies for space. Documentation is costly.
- C. Lurie Dual answer. Small satellites, Yes, DOD/NASA, no.
- C. Lurie On the capacity fade issue It still exists but we have an understanding. TRW prefers to deal with Ni precharge issues.
- G. Halpert Managers want low cost but also want guarantees that product will work. Thus, costs will remain high. However, we are careful. Not always battery failures, e.g., Magellan failure was arrays not battery.
- S. House Phillips Lab will not support development of Ni-Mh. Lithium-ion possible substitution to Na-S and Ni-H2. 7 year test is required.
- M. Toft To get new technology into orbit, which product has been shown to be best understood. Elimination of documentation and visibility is the wrong way to go. Vendor data is valuable. It holds clues to success. If you show understanding, customers will be willing to pay.
- C. Bennett There is a large database for Ni-H2. Varied parameters, no consistent production. Need to use a model.
- G. Halpert Why do we have all these variations in product? (No response)
- J. Armantrout Historically we have used database for decisions. Develop a standard for a 5Kw satellite. Need more standardized designs.
- J. Wheeler The process is: The manufacturer recommends to the customer, then customer has strong preferences including plate and cell designs. The manufacturer is at the customer's mercy. There are multiple paths to success. Let the customer make the selection.
- C. Garner Cooperative efforts work well.
- G. Methlie Commercial look at products.

- S. Surampudi Technology is driven by customer. Customer was leader. Leader disappeared replaced by managers. They want the best products without supporting costs.
- G. Halpert Are there any planned Ni-Mh flights?
- B. Bragg Shuttle orbiter GFE. Ni-MH flown in IBM think pad. To be flown in helmet light. NASA/JSC approves specific designs and specific applications no blanket chemistry approval. OSHA and EPA have environmental concerns. Japanese Ni-MH flight in 1998 will follow European's and Amercians.
- A. Dunnett The delta performance improvement does not warrant development of Ni-Mh over Ni-Cd.
- G. Halpert Are there any planned Li-Ion flights?
- S. Surampudi JPL use in 1997. Small spacecraft 5-10 Ah cells. 45 new technologies evaluated for new spacecraft. Li-Ion was selected. Looking at Li-Ion instead of Ni-MH because no apparent payoff over Ni-H2. The fallback is Ni-Cd compelling reason is size.

Session adjourned

Many thanks to Michelle Manzo for taking these notes

Nickel-Hydrogen / Nickel-Cadmium Data Session

	i		