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SUMMARY

Using global interpolation functions (GIFs). boundary element solutions are

obt, ailled for two-dimensional laminar flows. Two schemes are proposed for

handling the convective terms. The first treats convection as a forcing func-

tion. and converts the flow equations to l)seudo-Poisson equations. In the

second scheme, some convective effect is incorl)orated into the fundamental

solution used in constructing t he pertinent integral equations. The lid-driven

cavity flow is selected as the benchmark t)roblem.

INTRODUCTION

The boundary element method (BEM) has traditionally been applied to prob-

lems governed by linear differential equations..-\t the core of the basic BEM

computational process is the flmdamental solution talso referred to as the

free-space (;reen's function) defined as the iml)utse response of the governing

equation to a unit action. This fundamental solution is either too difficult

or impossil)le to derive tbr practi('al llonlinear problems. Recently. with the
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introduction of the so-calledDual Reciprocity techniques (see e.9., Nardini

,.(,: Brebbia [1982]: Brebbia tt al.. [1991]: Partridge et al.. [1992]; Cheng et

al.. [1993]: Lafe [1993]: Lafe &" ('heng [19.94]). the method is being proposed

for certain classes of nonlinear proMems.

Using t he Dual Reciprocit.v approach, a given problem is typically decom-

posed into two paris - the linear and nonlinear portions. The solution to the

linear portion is represented by a boundary integral whose kernel consists

of the fundamental solution to the linear governing equation. The nonlin-

ear part is rel)resented by either 1) local bases functions (Brebbia et al.,

[1991]): or 2) global interl)olation functions (GIFS) (Lafe [199:1]). In either

case. the boundary integral expressions and interpolation functions contain

coefficients whose values are to 1)e determined by enforcing the boundary

conditions. When the "'direct BEM'" approach is followed the unknown coef-

ficients are in essence the unknown physical variables (velocity components,

pressure, temperature) of the problem. On the olher hand. using the "indi-

rect BE.M'" approach, the unknown are the weights/strengths of the boundary

sources/dipoles and the local/global interpolating functions. The computa-

tional intensity of the indirect approach is much less than for the direct.

In this paper, we develop a (;IF-based indirect BEM code for two- di-

mensional steady-state incoml)ressible Navier-Stokes equation. Test results

are shown for the lid-driven cavity problem.

GOVERNING EQUATIONS

The gov¢'rning equations are:

O_l OU

O,--7+Ou - o

o,, Ou l #,, ,, ( o",, o2,,)
"o.5+ = o,-:.+ + or2/

"b-7.,...+ "e)u - p 0u + 7 \0.,_ + 0u_/

(1)

where (u. _') are the velocity colnponenls in the .r and y directions respec-

tively, p is the pressure, p is the density, and p is the viscosity. Let

X = .,'/L
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3" = .ql L

t" = ,I-_

I" = _'1-_

p = ,,1
With these tile governing eqllations become:

Of_ 01
-- + - o (4)
OX OY

. i-)l Or" OP I ( O_t" @l'_
t _ + vo_. _ ox + _ _,o.\_ + o__/ (s)

_ + _ o_ - o_ + _ \o.\_ + o__1 (6)

where Ihe Revnold's Nuinber R, = p-FLII,.

BOUNDARY INTEGRAL EQUATIONS

In order to converl the above into I)oundarv integral equations two ap-

1)roaches have been followed. In the first apl)roach, lhe entire system of equa-

lions is converted into an elliptic syslem, with the convective term wholly

embedded in the right-hand-side forcing function. There is concern about

the suitability of the elliplic system to adequalely represent the convective

forces at moderale Io high Revnold's mmfi)er regimes. The second approach

rec! ifi_'s this Ihroue, h a more dire('l 1)erl urbal ion-based analysis which is more

suiled Io ca l)l uring collxecl ire effects as lhe Reynold's nunll)er increases.

Approach I

The above equal ions are converted inlo an elliplic svslem:

V_U = F, (7)

v:_= & (s)

V'_f' = f'_ (9)

where
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.al" .av ,)P_

r_= .,(a_a, _),a,)

(10)

t.(x. Y)

l(.x. Y)

p(.\'. _')

in which

Boundary Integral Equations

The associaled indirect I)oundary integral equations are:

= fr w,(X'.)")g(.\".I":.\.Y) (IF + _.:/I_._,.(X.Y) (11)
A.

= ./r ,.2(-\"._"),j(.\". _": .\. _) dr + _ .__,,._,.(.\.r) (12)
A-

= .£ w3(X', l")g(X', l": .\. _) dF + _ 3:)_.Olk(.\', Y) (13)
k

,,=,,,[/.,-.,")' )')q
:¢i_.Ma.(X. }) = F,(A. Y) (14)

k

V2_k(.\ ._') = Mk(.g. Y)

The funct ions M_. (X.)") are the interpolation funct ions used in represent-

ing the convective terms. If we choose

.1I_. = co.,(m_.X)co.,(,,_._') (15)

it is easih" shown (Lafe [1993]) that

cos ())__..\ )co., (, _.V )
_Pk = (16)

(,ft. + ,,,_)

Approach II

Our aim here is 1o have a better incorl)oration of the convective effects in

the driving differential ol)erator. Let

( = lo+l_

l = lo+ li

P = Po+P,
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where([o. 1o. Po) denote solutions Io a convection-fi'ee flow tield, while ([71, 1,], Pa)

represent t he convective effects, ttence

., [OtoO o OtoO o]

17)

:8)

:9)

while

1V'2l', - o,(to. Io./',. li. P,)
IL

!V-'l ] - o2(_o, l;. l,. l i. Pi)
IL

!V_P, - oa( lo. Io. l,. I ].Pl)
"2

= .ll(t,,.l;.Po) + I,,(U,.14) (20)

= .[,(to. lo. Po) + h2([_.',._]) (21)

= h:_(I',. I ] ) (22)

where

. " " OPI
= lOl:' Ol;jg Ol_ Olol;+_

o, o_ + _ , + _o777+ 0_---:- OX

c.oOli 0Io .Oil aloe, ot:,,
o_ : 0_+7.vu,+_0_+_ ,+ig=

Ol_'oOl] 0I'o?)l'1 0/'o 0I] OIO O('l
03 - +'

O.k OY i)} OX ?)Y O.\ OX O}

.O_o , Ol.o 0t3,,
.fl = ( o0._ + I, 0]----:"+ OA--=

.013 I'0I° OPo
.h = t oh--_ + o957+ o_--=.

h l = l'l 0171 Of'l
• _ + _,:0_----=
.Oil 01]

h2 = _'0_ +I]Ol
Or, Ol] O/.10l ]

]13 --
OX OY OY OX

The exlernal boundary condi! ions are imposed on ( I o. I o. Po). Therefore the

va,'iables (I:. l]./71 ) are allowed to enjoy holnogen,'ous boundary conditions.

ORIGINAL PAGE IS

OF. POOR QUALITY
237



Boundary Integral Equations

Tile velocity components (l_, I u). which are governedI)3"Laplace's equa-
tions, can i)e representedby "pure" boundary integral equation using the
fundanlenta]solution for potential flow. Howeverthe pressureterm, because
of the non-zeroforcing function, will include global interpolation functions.

Therefore. the indirect I)oundarv integral equationsfor the convection-
fi'eevariablesare:

I:o(-\. 1) f_ u,o,(-V'. )")g( V' Y'= . . :X.)) elf (23)

10(.V,}) ._ w02(.V'. " " Y':= } )g(.\ . .\.)) dF (24)

i •P0(.V. l) = U'os(.V'. I")g(.V'. Y': .V. )) dr + _ .30k_.(-\. Y) (25)

where (w01. u'02. u'03) are fictitious sources while 4# are the GIFS.

The convective effects (['1. I1. t91) are represented by GIFS. For flows in

simple geometries it is possible to select GIFS which aulomatically satisfy

the required homogeneous boundary conditions.
Hence

U_(X. )') = y]. .:l_.k_.(.V. )) (26)
k

li(X. 1") = Y'_ 32t, q',.(-V. 1) (27)
k

P,(.V. 1) = _ ,,h_.tPt.(.\'. Y) (28)
k

in which (.31_., 32t., 3.u.) are the pertinenl coefficients for the GIFS. These

parameters are calculated by enforcing

1. Equations ('20-'2"2) at. selected ('ollocation points within the flow region
and

2. Homogeneous conditions at selected boundary l)oints.

Tile chief advantage of tile first apl)roach is tile simplicity and size of

the global coefficient matrices, derived from the Laplace equation solver.

This Iranslates into a compacl, fast. and highly efficient numerical imple-

mentation. The drawback is ils iteralive characler since the forcing function
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del)ends on tile solulion being sought. ('onvergence is difficult to achieve for

large Reynold's munber l)ecause the governing ellip_ ic system becomes singu-

lar. and canno! adequately represenl t he underlying physics of the problem.

The second approach, which in essence separates the convection-free flow

from the lnain flow. allows for a more direct representation of the asymptotic

limits of the Revnold's number. Furthermore. by products of higher-order

terms (i.e.. setting hi -- h2 = h3 = 0. the solutions can be obtained without

iteration. Itowever. the coefficien! matrix is larger and the approach involves

a greater level of COml)utational intensity.

NUMERICAL IMPLEMENTATION

Approach I

We subdivide the boundary into ,_ elements. Let .\'k(x) (/," = 1,2,'''rib)

represent the bases functions describing the distribution of w on F. In the

examples being reported in this paper, constant bases functions are being

used for the fictitious strengths w; on the boundary. By selecting each of the

n_ boundary poinls as successive origins of in!egration, the pertinent integral

equations ('an be asselnbled into the system:

__,air,'_. = bi i = l.2.....m, (29)
k=l

where

{ Jr, .v,.(x,)g(x,.x,) dx' xi E r¢ (30)oil. = fr_ .\_.(x')Og/On(x'.x,) dx' xi E FQ

( _txi )_ V',d ,4iO);i Xi E F¢_'=' (31)I,, = o¢/0,,(x,i- E'/", ,_/_,j/o,, ,,, e rQ

Therefore. we have ,,, equations to determine wkwhere ¢ = (l. l.I').

(k = 1.2.... ,_,). Symbolically equation (2.9)can I)e written in the alternative
form:

AW =/3 (32)

which can be inverted to give:

W = ./-1-'/3 (33)

ORIG|NAL P._k_3_'i_
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The whole processboils down to the iterative solution of equations (14)

and (33), with repeated updating off using (10). Tile iterative steps are:

1. Start with a Irial F (i.,.. F, values for i = l.'2.---nd).

"2. Obtain 3 from equation (1-t).

3. Obtain 14/' using equation (33).

4. Use discretized forms of the al)propriate imegral equations to compute

(l). X'7_ at all 1_4 I)Oillts. This provides a I)et|er estimate fox" F.

5. Go back to Step "2 if convergence condition is still unsatisfied.

Note 1hat the malrix inversions in equations If 1) and (33) need only be per-

formed once. for fixed boundary problems. The vectors 14; and ,'3 are the

quamities whose valtws change during _he iteralive process. Once conver-

gence is reached, the discrelized inlegral equal ions can be used routinely to

obtain q_ = (/_. I-P)or the gradient at any poinl (x)of inl.erest.

Approach II

The numerical implement at ion for 1he convect ion-free quant it ies (/_o, 1,'0, P0)

is similar to the one followed in Approach I. with the coefficiem s for the GIFS

set to zero for the velocities. No iteralion is required.

The convective-flow quantities are calculaled t hrough the coefficients (3v,., 82k. 5'sk)

whose values are obtained by solving the following coefficient inatrices:

u T o T ;; T

Z + Z +Z = c,,
k=l k=l k=l

tl T tl T n T

k=l k=i k=l

nT nT r_T

k=l k=l /,'=1

i = l.'2.'"n d (34)

= 1,2,'--rid (35)

= 1.'2....ha (36)

t_ T

h_-/:'l.,_- = 0 .i = 1.'2...-,,,,
k=l

(37)
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nT

__, ,h_.E2.i_- = 0 j = 1.'2.. . .1_,,
k=l

r_ T

_., :ll_.E:)ik = 0 j = 1.'2." " ,_,,
k=l

(38)

(39)

where if tile" higher order terlns are neglected)

.tlik

.42ik

Uli#

J_2ik

J_3 i L.

('lik

( "2ik

F,,

F_i

El3 I:

Et,j_.

I V2qj_.(x,) /o(xi Oqq. OqJ_., OUook(xi)
- 6', - )_(x,)- _i,(x,)_tx,)- O.-V

Ot o

- 0) (x,)_t.(xi)

O_(x '- _ )
Olo

- _\- (x,)q,_.(x_)

= lv-'%Cxi) /o(x/ OqJ_. O_.,x , OVoR, - )_(x,) - _i,(x,)-_ -,, - -b-VCk(x,)
Oqq.

- _(x,)
01o Oqq., t)l_,, 0_.

- _-V(x_)_.x._x,)+_x,,7)5=(x,)
i)l ". t)t_ _. ill ". 0_ _.

= -_{x;)_(x,)+ _(x,._(x,)

= lv2q,_.(xi)
-)

¢ Ol ",,
= ,,(x;)_(xi)

0Io
= /o(x,)_(x_)
= 0

Ol ". 'x ' O Po
+ li,(x;i t-_Tt ,j + _(x;I

. 0Io, OP,,ixi)
+ io/x,i/-_x,)+ _-_

• _.(x.,) if x., E F,,

OqJ_.

Oo (x.i) if x i G FQ,

In the above ¢P - (I" |'. P): Q =_ (Ol/O,,.Ol/O,,.i)P/O,_): ,,r = 3(rib + n_),

and x, = (.V. }) for 2D flows.
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TEST RESULTS

We examined tile lid-driven cavity flow prol)lem depicted in Fig. 1. A unit

horizonlal velocity is imposed on the lid (al_ = l ). while the no-slip bound-

arv condilion I = I = 0 is imposed o11 all solid walls. The boundary

condition for the pressure oll all walls is (Fletcher [1991]):

OP 1 0 (0[ 0I'_
07_ - R, O., \_; OX }

A typical convergence profile, using A1)proach I. is shown (R, = 15) in Fig.

"2. The horizontal velocity at the vertical center-line is shown in Fig. 3.
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CONCLUSIONS

A boun(larv dement code. based on tile use of global interpolation func-

tions, for solving the Navier ,Stokes equations have been proposed in this

l)al)er. The avoidance of any domain integralion shows tile enormous power

of the techniqu(-'..\s long as the underlying physics of the problem is ade-

quately rel)resented in the fundamental solutions used as tile kernel of the in-

tegral equations, accurate simulal ions call I)e carried out for moderate to high

Reynold's numl)er flows. Only Irigononlelric bases have been used to repre-

sent tile nonlinear convective lerlns. Investigations are currently underway

for eml)loying olher bases including lhose derived fronl o,'thogonal functions

' ]such ( he)vchev polynomials, wavelets, and cellular automata transforms.

Three-dimellsional GIF-base(I BE.M ('ode for inlernal flows are also being

develol)ed.
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Figure 1: Lid-driven Cavity Problem
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