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SUMMARY

An algorithm has been developed for time-dependent forced convective diffusion-reaction

having convection by a recirculating flow field within the drop that is hydrodynamically coupled at

the interface with a convective external flow field that at infinity becomes a uniform free--streaming

flow. The concentration field inside the droplet is likewise coupled with that outside by boundary

conditions at the interface. A chemical reaction can take place either inside or outside the droplet,

or reactions can take place in both phases.

The algorithm has been implemented, and for comparison results are shown here for the

case of no reaction in either phase and for the case of an external first order reaction, both for

unsteady behaviour. For pure interphase mass transfer, concentration isocontours, local and average

Sherwood numbers, and average droplet concentrations have been obtained as a function of the

physical properties and external flow field. For mass transfer enhanced by an external reaction, in

addition to the above forms of results, we present the enhancement factor, with the results now

also depending upon the (dimensionless) rate of reaction.

INTRODUCTION

There are many industrialand environmental processesin which two-phase fluid-liquid

systems are in use. Gases may be dispersedas bubbles in liquidphases,such as occurs in bubble

columns and sparged vessels.Liquidsmay be dispersedin gases,such as occurs in scrubbersand

in the atmosphere. And a liquidthat isimmiscible or partiallymisciblein another liquidmay

be dispersedin a liquid-liquidspray column extractoror reactor. The design of such systems

may involveheat transfer,eitherintentionallyor incidentally,but the widestrange ofapplications

involvesmass transfer.

Interphasemass transfermay proceed intoor out of the dispersedphase. One (ormore)

chemical reaction(s)may takeplacein eitherthe dispersedor the continuousphase in order to en-

hance the rateofmass transfer.In two-phasereactions,certainofthe reactantsmay be transferred

from one phase intothe other,where the reactiontakesplace,and the reactionproducts may then

be transferredback intothe firstphase.Reactionsmay alsooccur in both phases.

Because ofthefinite,generallysmallvolume ofeach drop orbubble,interphasemass transfer

unaccompanied by chemical reactionis inherentlyunsteady,regardlessof the directionof mass

transfer.Even ifthereisa reactionthat admits ofa steady statein the drop or bubble,unsteady

behavior may neverthelessbe ofpracticaleven primary importance.

The continuousphase isinevitablyin motion relativeto the dispersedphase,and forclean

systems (containingfor instanceno surfaceactiveagents)the motion in the two phases willbe

hydrodynamically coupled.
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The genera]formulationcouldtakeintoaccount eitherlinearornonlinearchemica]reactions

in eitheror both phases,and itcould incorporateany velocityfieldthat can be expressed as a

functionof r and d. Neitherare variablepropertiesexcluded.

In order to demonstrate the utilityof the algorithm,for concretenesswe undertake the

mathematica] descriptionof a liquid-liquidsystem in which a firstorder reactiontakes placein

the continuous phase. The dispersedphase issufficientlydilutethat the dropletswhich sediment

(eitherfallingunder theirweight or risingbecause of buoyancy) may be assumed isolatedin an

infinitemedium, both with regardto fluidmechanics and to diffusionand reaction.The droplets

are taken smallenough thatinterfacia]tensiondominates shape effectsand they are spherica].Al-

though the approach we take and the methods we use do not requirethatthat viscositydominates

flow effectsand that the velocityfieldshave low Reynolds numbers, we nonthelessconsiderthe

hydrodynamically coupled Hadamard -Rybczinsky profileforcirculationwithinthe dropletdriven

by an externalvelocityfieldthat becomes a uniform streaming flowfarfrom the droplet.Physi-

caland chemica] propertiesare assumed constant,which would be the casefor diluteisothermal

systems, and we thus ana]yzeinterphasemass transferforthe forcedconvectivediffusion-reaction

single-dropsystem. We investigatespecifica]lythe roleof the reactionrate,as measured by an

appropriateDamk6hler number, the solubilityof the solutein the phases,as expressedby the lin-

ear distributioncoefficient(Henry'slaw),the ratioof convectionto diffusion,as measured by the

Pecletnumber, and the ratioofthe viscositiesand thatofmoleculardiffusivitiesof the two phases.

GOVERNING EQUATIONS

The dimensionlessforcedconvectivediffusion-reactionequationsgoverning the solutecon-

centrationsin the drop C0 < r < I) and the continuous(I < r < oo) phases,i= 1,2,respectively,

can be representedin the form

0c(i)0"-'_"% K! i)v(i)'Vc(i)= K(i)V2c(i)- K!i)c(i), (i)

where i = 1correspondstothe interne/domain 0 < r < 1,and i= 2 to the externa]one 1 _<r < oo.

The dimensionalparabolicpartialdifferentia]equationshave been rendered dimensionless

using the dropletradiusR as the characteristiclengthscale.The concentrationsare measured in

unitsof the initia]drivingforce,

in which

c (i) = H(i)6(i) _ H6,.., ,i= 1,2, (2)
_o- H_oo

f

H(i)= _ i, i=l

[H, i=2,

with H the Henry's "law" distribution coefficient, and

(3)

t=0: 6(I)=60, 6(2)=6oo. (4)

The characteristictime scalecan be selected,forexample, on the basisofthe fastestphysical

or chemical process,occurringin the system, viz.,

"r.= min('rc(oi)v, -'(_),die, _'(')rxn, i= 1,2), (5)
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in which

r( 0 _ R ,r(O R 2 r(d) 1
bc°"_ /(0(_)Uoo' dJ_-- D(0' rxn= k-'_' i= 1,2. (6)

The diffusivitiesand rate constantsforthe firstorder chemicalreactionsare denoted by D(0 and

k(0,respectively,and the K's representdifferentcombinationsofstandard dimensionlessparameters

fordifferentchoicesofr.,as indicatedin Table 1.

Although our numerical implementation of the algorithm requiresonly that the velocity

fieldsin the two phases be separable,we have selectedthe Hadamard - R.ybczinskysolutionfor

the convectingvelocitiesin the dispersedand continuous phases to establishconnectionswith

earlierresearch[7,8, 9]. In thisinstance,the characteristicvelocityin each phase, with Uoo the

freestreaminguniform flowat infinity,istaken as

in which

with the viscosityratio

U(')= f(')(/_)U_, i= 1,2, (z)

1

/I)(#)_ 2(i + #)' f(2)(/_)=i, (8)

The equations (10) are the ones used in the sequel,reflectingthe selectionof r(n)di_as the

unitoftime:

• ,------_._ac(0\

aT +-T" \ " a, ,-

-D(2) _--/_-_ [(1- A )-_--] } (10)

-DaI_-D-_" c(d)+ _o- H6oo] ' i= 1,2,

with A = cos@, subjectto the boundary conditionsat the dropletinterface,

1 : I c(1) = c(2)
7"

t ac(I) ac(2)
H.D = --b7-

and at the limits of the overall domain,

(11)

_' -- 0 : C (1) < O0 (12)

r_co: c(2)_0

Periodicboundary conditionsin the anglevariable,

(13)
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ac(i) _=0,=a_ = 0, i: 1,2,

are satisfiedautomaticallyafterintroductionofthe new independent variableA.

The concentrationsare subjectto the initialconditions:

(14)

t "-- 0 : C (1) -" i, C (2) "- 0 (15)

The actualdirectionof mass transfermay be out of or intothe drop, depending upon the

drivingforce(c0- H_oo), even though the formulationof the problem suggeststransferfrom the

droplet.

The oppositedirectionof mass transferin the actualproblem would lead tothe appearance

ofthe inhomogeneous partinthe reactionterms in (10)(butonly when the correspondingK (0 # 0).

THE ALGORITHM

The problem islinear,and we usethe Galerkinspectralmethod forthe spatialdiscretization.

The advantages of thismethod are wellknown [I,2].

Boundary conditionsat the originofthe droplet(12)and at infinity(13)and the symmetry

boundary conditions(15) are implemented by the Lanczos tau-method [1,2,14].

We expressthe unknown functionsc(i)(%A,r)in a customary manner,

M

c(i)(7'A'r)----E c(m/)(r'r)Pm(A), d- 1,2, (16)
rn,=0

in which the P,_(A)arethe Legendre polynomialsoforder m and the unknown coefficientfunctions

c_)(_-,r) are termed "radialfunctions"forbrevityin the sequel.

The discretizationin the radialdirectionisperformed in somewhat differentways for the
internaland externaldomains.

Using equation (10) for mass transferinsidethe droplet (i- I),itis a simple matter to

show thatfunctionsc_)(r,r) obey the followingrestrictions:

c_')(_,r= 0)= 0, t # o, (lZ)

°el') =0, t#l,
_7" r=O

evenfunctionof 1

,)- oddfunctionof

(18)

k:O, 1 .... (19)

On the basisoftheserestrictions,the radialfunctionsinsidethe dropletwere approximated

by a seriesin even Chebyshev polynomials:

N(1)

c_)(r,r)=6.,,o'ao(r)-Fr_"'_"]_ ¢_?,,(r)T2._2(r), m=O,l,...,M, (20)

in which the Tn(r ) are Chebyshev polynomials of the first kind of order p, and
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= 2, j--0,i,... (21)

sl- 1, _2j+I-3, i-- 1,2,... (22)

Using (20)we automaticallysatisfyboundary condition(12) and avoid the singularityat

the originof the drop;the functiona0(r) representsthe valueof the concentrationat the origin.

Such an expansion on the interval0 _ r < 1 isvalidas the even Chebyshev polynomials

form a complete setfor the type offunctionsconsidered[10].

The use of halfthe commonly used interval[-I,I]permitsus to double the highestorder

of the polynomialsused,leavingthe number ofterms in the seriesunaltered.

The nonuniformityof the distributionof nodes in the spectralmethod (theirnumber in

closeproximity to the surfaceishigherthan near the origin)matches the physicsof the problem

as the concentrationgradientnear the interfaceismuch larger.

For the semi-infiniteexternaldomain we implement the widelyused procedure of truncat-

ing it at an appropriatelylargeradiustoo,farenough from the interfaceto make negligiblethe

disturbanceintroducedby truncation.The boundary conditionat infinity(13)isnow imposed on

thisartificialboundary. Itcouldbe imposed as "hard", "soft"[12]or "behavioral"[1,13].We use

the "hard" one,

r = too: c(_)= 0 (23)

because itimmediately resultsin the originalboundary condition(13) ifroo _ oo.

Itisnecessaryto realizethatby doingthiswe are changingthephysicalsenseofthe problem.

The decreaseto zeroof the concentrationinfinitelyfarfrom itssourceiscaused physicallyby the

spreadingof a finiteamount of the speciesover an infinitespatialvolume. After introductionof

the boundary sphereat r = too,we model thisdecreaseby imposing what amounts to an infinitely

fastheterogeneous reactionon the artificialboundary too.The only justificationfor thisisan a

poster{or{one, _iz.,by checkingthat the increaseof too does not alterthe solutionin the vicinity

of the dropletand inparticularthe interphasemass transfer.

Our computations have confirmedthisand show that when too ischosen sufficientlylarge

the choiceof the particulartype of boundary conditionsmentioned above does not influencethe

resultantconcentrationdistributionin regionswhere itsvaluedifferssignificantlyfrom zero.

The domain i < r < r_o ismapped onto the interval-i < z < I in such a way that the

point z - 1 matches r -- i and the point z -- -1 matches r - too.Among the wide varietyof

possiblemappings two are used more oftenthan others,the exponentialand rationalones [1,2].

A comparison by Grosch and Orszag [11]has shown that the lattermapping has some advantages

over the former.

Specifically,we use

,.-(i+6)
= (24)

0
where 6 isthe parameter representingthe distancebetween the dropletsurfaceand point mapped

into z - 0. Itisworth mentioning that we have alsoimplemented the exponentialmapping and

could findno advantages foritoverthe rationalmapping.

The radialfunctionsinthe externaldomain are expanded as
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N(=)

c_}(r,z)= __, ¢_!,(r) Z,(z), m=O, 1,...,M, (25)

where the Z.(z), n = 1, 2,..., N (2) are linear combinations of Chebyshev polynomials, each satis-

fying the boundary condition following from (13):

Z,(z = -i) = O, n = 1,2,...,N(2). (26)

We take

z3 (z) = i

= + 1

Thus, we reduce the system of partial differential equations for two initially unknown func-

tions c(1)(% A,r) and c(2)(r, :_, r) to s larger system of ordinary differential equations in v, for

a0(_'), ¢_?,,, ¢_?,,, m=0,1,...,M, (28)

n ! = 1,2,...,N 0), n2 = 1,2,...,N (2).

The total number of these unknown functions is 1 + (M + 1) (N(1) + N(2)).

In order to obtain equations for these functions we use the conventional Petrov - Galerkin

method, i.e., the basis functions are taken as the test functions [2]. We define two inner products:

f_" f01 dr(f,g)(I)= dl f .g

f f(f, g)(2) = d:_ f .g

Forming by (29) the inner product of (10) for i = 1 with the test functions

(29)

(30)

PoCk)To(r), P,,,CA)r _''T2.,-2(r), m= 0,1,...,M, nl = 1,2,...,N 0)- 1, (31)

and by (30) the inner product of (10) for i = 2 with the test functions

P_(A) Z,,Cz), m=0,1,...,M, R2=1,2,...,N (2)-1, (32)

we obtain two vector equations

A (i) de_(i)d--_= (-K!i)B (i'') + K(di)B (i'd) - K(,.i)B (i'')) • qb(1) + K_(i) b (') , i = 1,2. (33)

Here A (i), B (i'c), B (i'd), B (is) are {1 + (M + 1)(N (/) - 1), 1 + (M + 1)N (i)} matrices,

b (i) - {1 + (M + 1)N (/)} are the vectors of inhomogeneous terms, and qb(i)(_-) - {1 + (M + 1)N(/)}

are the unknown vectors,

@(x)(_.) = ( no, ._(1) ._(1) ,¢_!1, _(1) )r, (34)
_'0,1 ' " " " _"0,N(*) ' ...... ' WM,N(*)
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,_(2) _(2) _(2) _(2) )r. (35)4,(2)("r) --" ( W0,1''" "_'0,N(2)'''" %WM,l''''' %WM,N(2)

The remaining 2 (M + i) equationsare derivedfrom the boundary conditions(ii).

Upon substituting(20) and (25)into (11),multiplyingby P,,(A), m = 0,I,...,M and

integratingI from -1 to I,we obtaintwo setsofM+I linearalgebraicequations:

Q(1).4,0)= Q¢2).4,(2) (36)

H.D.S0)-4, O) = S(2).4,(2), (37)

where Q(i), S(0 are {(M + i), (M + i)(I+ N(_))}matrices,i= 1,2.

By expressing._(I) and -_(_)_m,N(1) _m,N(2), m = 0,I,...,M, using the system (36)-(37) and

substitutingin the system (33),we arrivefinallyat the system of I + (M + 1)(N(*)+ N(2) - 2)

linearODEs:

d4,

g- j

The constant matrices B (c),

diffusive,and reactiveterms in the originalequation(10),b isan {I + (M" + I)(N0) + N(2) _ 2)}

constantvector,and 4,(r) isthe vectorof unknown functions

= (B(C)+ B (_)+ B(')).4,+ b. (38)

B (_)and B(') correspond respectivelyto the convective,

_(,) _(,) , _(2) _(2) , ._(!)M. ¢(i) _(2) _(n) _r4, (39)
'/'0,1," • "_V0,N(_)-I '/'0,1,• " •_V0,N(2)_ 1 " • ' " " " M',N(*)-I ' _Air,l' " " "_M',N(2)-I )

and not simply a concatenationofvectors4,0) and 4,(2).

The matrices A, B (_)and B(') are block-diagonal.They allhave M+I nonzero square

{NO)+N(_)-2, N0)+N(2)-2)} matriceson theirmain diagonalsand theirfirst1+(N(1)+N(2)-2)

elements inthe firstrow and the firstcolumn arenonzero.

The matricesB (c)that resultfrom transformingthe convectiveterms alsohave blockstruc-

turewith the same block sizes.However, they are no longer block-diagonaland the amount of

nonzero block-diagonalsdepends on the velocityfieldsv(0, i = 1,2. The higherthe degreeof l

thatisinvolvedin the velocityfieldexpressions,the greaterwillbe the couplingbetween the radial

functionsofdifferentorders.And the increaseofthe orderofthiscouplingleadsto a corresponding

increasein the number of nonzero block diagonalsin B (c).

For the Hadamard - Rybczinsky field,forexample,thesematricesareblock-tridiagonal,but

forthe velocityfieldin [15],validforhigherReynolds numbers, itwould be block-pentadiagonal.

The discontinuousinitialconditions(15) are not appropriatefor computations. Instead,

we used the analyticalsolutionfor the pure diffusioncase (no convection,no chemical reaction)

derivedin [16].The concentrationdistributionsforverysmall time valueswere expanded overour

basisfunctionsT2,-2(r) and Z,, n = 1,2,...to initializethe computations, and the coefficients

obtained were used as initialconditionsfora0(r), #_!,, ,and _b_!,2, m = 0,1,...,AI, _I =

1,2,...,N0)-I, n2= 1,2,...,N(2)-I.

For time discretizationof the system (38)we used the first-orderbackward Euler method.

Defining4,"as vector4,at the n-th time stepofmagnitude At- and

B = B (c)+ B (d)+ B (_), (40)

system (38) can be rewrittenas
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(A- ArB).A4,"+I = ArB.4, '_ + Arb, (41)

where

A4, "+I = 4' "+I - 4'". (42)

Every time step system of linear equations (41) was solved by regular Gauss elimination

(preceded by LU decomposition) with the following iterative refinement [3]. The matrix on the

left side of (41) has the same structure as the matrix B; as mentioned, it is block-tricliagonal

for the Hadamard-P_ybczinsky velocity field. Our attempts to apply block-elimination methods (in
particular, the block Thomas algorithm [4]) failed, presumably because block LU factorization does

not involve pivoting, which is essential when diagonal dominance does not occur (which is the case
for high Peclet numbers).

We considered the matrix on the left side of (41) as a banded one with bandwidth 1 +

3 (N (x)+ N(2) - 2).

As long as this matrix depends on the time step and its factorization is a time-consuming

process, only two values of the time step were used for each run. A smaller one was used for an

initial time period and an another one for the subsequent time range.

The numbers of terms in series (16), (20), and (25) depend on the steepness of the con-
centration gradients and were different for different values of Peclet and Damkbhler numbers. The

maximum numbers used were M -- 87, N0) = 25, N(2) = 97.

As is well known [1, 2], an increase in the number of terms in a spectral series (especially

in the series in Chebyshev polynomials) leads to very high condition numbers for the resulting

system of linear equations. This was alleviated by using double precision in all computations and,
as mentioned above by application of the iterative refinement to the solution obtained with the

Gauss elimination procedure.

QUANTITIES OF INTEREST

The most practically interesting quantity in extraction problems is the amount of material ex-

tracted by a particular instant in time. For the problem under consideration (i.e., when species are

extracted from the droplet) this can be conveniently characterized by the time-dependent average

dimensionless concentration of species remaining in the drop:

2 1

This quantity changes in time as a result of mass transfer out of the droplet. The local and

surface average rates of this transfer are characterized by corresponding mass transfer coefficients,

the quantities which when multiplied by the driving force give the respective mass transfer rate.

The nondimensional mass transfer coefficient is usually referred to as the Sherwood number Sh,
which is anaJogous to the Nusselt number in heat transfer problems.

Different kinds of Sherwood number can be introduced, depending on the driving force on
which they are based and the domain to which they are related.

For the problem of single-drop extraction, the instantaneous driving force F (d_) for mass

transfer is the difference between the concentration of the transferring species in the droplet and

that far away from it, taking into account the step change of the concentration at the interface due

to solubility,
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F(&) = _I) _ H_, (44)

where _i) is the dimensional average concentration of species in the droplet.

Often the Sherwood number is based on the maximum possible (in our case, initial) driving

force:

F0(a_)= a0- Ha_. (45)

Here we consider only the external Sherwood number, i.e., the nondimensional rate of

transferof speciesfrom the externalsideof dropletsurfaceintothe externalflow.

The localand average externalSherwood numbers definedon the basisof the maximum

drivingforceare respectively:

acc_> (46)
Shloc,O= -2H.D Or ,=I

and

_1 0c(I)Sho = -H.D dA.
I 87 r=l

Corresponding valuesbased on the instantaneousdrivingforceare:

• Shloc,O
Shloc - c__(1)

(47)

(48)

Sao (49)
Sh- c-(*)"

The chemical reactionin the externalregionincreasesthe rateof the extraction,and this

increaseischaracterizedby the enhancement factor,which isthe ratioofthe correspondingmass

transferrates[5]:

E - Sh(Da_2l) # O) (50)

Sh(Da_)= 0)

COMPUTATIONAL RESULTS AND DISCUSSION

The resultsofthe computations to be presentedcoverthe followingrangesofparameters:

0.25 _ D < 4,

0<_ Pe (2)<_500,

0 <_ Da_ ) < 1000,

H=/_=I.

The characteristic time scale was chosen as

r, = r (2)
cliff, (51)
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which isjustthe Fouriernumber based on the diffusioncoefficientof the externalfluid.The times

appearingon the plotsare expressedintheseunits.The valuesofPecletnumber Pe and Damk6hler

number Da presentedon the plotscorrespond to Pe(2)and r}a(2) respectively.II,

To illustratequalitivelythe processof pure mass transfer(no reaction)from the droplet,

we presentin FiguresI-3 the isocontoursof constantspeciesconcentrationat differenttimes for

variouslevelsof externalconvection(Pe (2)= I0,200,500, respectively).The well known and

intuitivelyexpected increaseofmass transferwith increasingconvectionisapparent.

The influenceof internalcirculationon the development of the mass transferprocessis

illustratedin Figures 4-5 where we presentthe isoconcentrationcontours for the same external

Pecletnumber (Pe (2)= 500) _md differentratiosof internaland externaldiffusivities(D = 0.25

and D = 4.0).
For ]3 --0.25the internalconvectionismuch stronger,in the sensethat the value ofPe(I)

islarger.As a consequence the concentrationisocontoursinsidethe dropletliecloseto the internal

streamlines,a resultalreadyobtainednumericallyby Johns and Beckmann [7]for the specialcase

of mass transferresistancesolelyinsidethe droplet.The coincidenceof internalisocontourswith

internalstreamlinesalsoconstitutedthe basic assumption of Kronig and Brink's model of mass

transferin a circulatingdrop [6].From a simplecomparison of the isocontourlevelsin Figures4

and 5 alone one infersthat the mass transferfrom a dropletfor ]:)=4ismuch more intensethan

for ]:)=0.25.The reasonthat the internalPecletnumber Pe (I)isgreaterforD --0.25 isnot that

the internalcirculationisgreater,foritisnot (_ --1),but that the internaldiffusivityissmaller.

Nonetheless,itiscustomary forbrevityto describean increasein Pecletnumber as an increase

in convection,ratherthan the more lengthy but more accurateincreaseof the ratioof convection

to diffusion.In thisusage,one may phrase the conclusiondrawn from Figures I-5 as follows:

increasedconvectionoutsidethe dropletincreasesthe rateofextraction,but increasedconvection

insidesuppressesmass transfer.

The influenceof the externalreactionrate on the concentrationdistributionis shown in

Figures 2, 6 and 7. As could have easilybeen anticipated,an increasein _.nn.(2)Izresultsin faster

extractionand an almostimmediate disappearenceofextractedspeciesoutsidethe droplet(almost

no speciespresentforDa_ )= 100 in Figure 7).

Figures8 and 9 show the effectofreactionrateon thelocalSherwood number. The valuesof

Shloc,ogo to zerowith time forallvaluesofthe anglevariabled,although the surfacedistributionof

Sherwood number based on the instantaneousdrivingforceapproaches a nonvanishing asymptote.

An increasein the reactionratethus resultsin a generalincreaseofmass transferand ofvaluesof

the Sherwood numbers, but the temporal variationofvaluesoflocalSherwood numbers at different

locationsislesstransparent,warrantingfurtherinvestigation.

Figure 10 reflectsthe behaviorof averageSherwood number S/zin time for differentvalues

of the externalPecletnumber Pe (_)forthe no-reactioncase.The oscillationsof S/twere obtained

computationallyby differentinvestigatorsincludingJohns and Beckmann [7]and Oliverand Chung

[9],who solvedthe conjugateunsteady heattransferproblem, which ismathematicallyequivalentto

the mass transferproblem under considerationwhen thereisno chemicalreactioninvolved.These

oscillationsare causedby theinternalcirculation,with the most detailedphysicalexplanationbeing

given by Brignellin [8].Consequently,the periodof theseoscillationsissmallerand the amplitute

greaterthe higherthePecletnumber is.The strongerconvectionalsoleadsto a highermass transfer

rateas itcreatesthe thinnerdiffusionboundary layerson the both sidesofthe dropletsurface.

Figure 11 illustratesthe influenceof the rateofexternalchemical reactionon the average

Sherwood number. The plotsconfirm the conclusionsmade above on the increaseof the rateof

extractionwith the increasingexternalconvectionand rateofexternalchemical reaction.
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In a more apparent way, this is reflected in Figure 12, where the decrease of the average

droplet concentration with time is shown. From this picture we can also deduce the very important

conclusion that an increase in the reaction rate beyond some specific value will not benefit the

extraction results (the diffences between the average droplet concentration for Da_ ) values of 300

and 1000 are quite small).

Figure 13 shows the effect of reaction rates on the values and temporal evolution of the

enhancement factor E. The oscillations here are the consequences of internal circulation, the same

as for the corresponding average Sherwood number on Figure 10. The values of E corresponding

to the same reaction rate are higher for smaller Pe(2) (lower convection). A possible explanation

could be that the corresponding values of Da_ 2), which are just the ratios of Da(x_ ) and Pe(2), are

smaller for higher Pe (_).

In closing, we want to emphasize that the purpose of this article has been to present the

numerical algorithm we have developed and to illustrate some of the kinds of results that can be

obtained for this concrete situation. Our subsequent articles will include additional results for other

classes of forced convective diffusion-reaction problems for single drops, as well as more detailed

analyses of these and other results.
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NOMENCLATURE

_0

_(_)

c(i)

D (i)

D

D@ )

D.(i)

E

/(i)

H

k(i)

M

N(i)

pe(i)

7"

R

t

v.¢o
U.o
v(i)

P

p(_)

7"

r,(i)
conv

rdi(i)

r(_)
xn

-dimensional value of the uniform concentration in the origin of the droplet at t = 0

-dimensional value of the concentration far from the drop

-dimensional concentration in the i-th domain, i = 1, 2

-dimensionless concentration in the i-th domain, i = 1, 2

-molecular diffusivity of the solute in the fluid in the i-th domain, i = 1, 2

-molecular diffusivity ratio, D(1)/D(2)

the i-th domain , ...k(i) R
-first DamkShler number in ft,J(p) U_' i = 1, 2

_mD_(i)2
-second Damkghler number in the i-th domain, _, i = 1, 2

-enhancement factor, eq.(50)

-factor showing the viscosity ratio dependence of the

velocity scale in the i-th domain, i = 1, 2

-distribution coefficient (Henry "law" constant)

-chemical reaction rate constant in the i-th domain, i = 1,2

-highest order of the Legendre polynomials used in the expansion

in the angular direction

-number of terms in the expansion of radial functions in the i-th domain , i = 1, 2

-Peclet number in the i-th domain, 2 U_/(i)(_) R
D(_) , i = 1,2

-dimensionless radial coordinate

-droplet radius
-dimensional time

-characteristic velocity scale in the i-th domain, i - I, 2

-velocity of the flow at the infinity

-velocity field in the i-th domain nondimensionalized

by the corresponding velocity scale U! i), i -- I, 2

-polar angle in spherical coordinate system
: COS

-molecular viscosities ratio, p(1)/p(2)

-molecular viscosity of the fluid in the i-th domain, i - I, 2
-dimensionless time

/_ i=1,2
-convection time scale in the i-th domain, f(i)(_) U_'

R2
-diffusion time scale in the i-th domain, D---'_' i = 1, 2

-chemical reaction time scale in the i-th domain, ,1_, i = 1, 2
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Table 1: Coefficients in eq.(1) depending on the choice of _', (i,j = 1,2)

v(J)diff

ony

r(J)
n
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Fig. 10 Time evolution of average Sherwood number Sh for Da=0 at different values of Pe
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