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Abstract

The U.S. Air Force and National Oceanic Atmo-

spheric Agency (NOAA) space environmental

operations centers are facing increasingly com-

plex challenges meeting the needs of their grow-

ing user community. These centers provide

current space environmental information and

short term forecasts of geomagnetic activity.

Recent advances in modeling and data access

have provided sophisticated tools for making

accurate and timely forecasts, but have intro-

duced new problems associated with handling

and analyzing large quantities of complex data.

AI techniques have been considered as potential

solutions to some of these problems. Fielding

AI systems has proven more difficult than

expected, in part because of operational con-

straints. Using systems which have been dem-

onstrated successfully in the operational

environment will provide a basis for a useful

data fusion and analysis capability.

Our approach uses a general purpose AI system

already in operational use within the military

intelligence community, called the Temporal

Analysis System (TAS). TAS is an operational

suite of tools supporting data processing, data

visualization, historical analysis, situation

assessment and predictive analysis. TAS

includes expert system tools to analyze incom-

ing events for indications of particular situations

and predicts future activity. The expert system

operates on a knowledge base of temporal pat-

terns encoded using a knowledge representation

called Temporal Transition Models ('VFMs) and

an event database maintained by the other TAS

tools. The system also includes a robust knowl-

edge acquisition and maintenance tool for creat-

ing TTMs using a graphical specification

language. The ability to manipulate TTMs in a

graphical format gives non-computer specialists

an intuitive way of accessing and editing the

knowledge base. To support space environmen-

tal analyses, we used TAS's ability to define

domain specific event analysis abstractions. The

prototype system defines events covering reports

of natural phenomena such as solar flares, bursts,

geomagnetic storms, and five others pertinent to

space environmental analysis. With our prelimi-

nary event definitions we experimented with

TAS's support for temporal pattern analysis

using X-ray flare and geomagnetic storm fore-

casts as case studies. We are currendy working

on a framework for integrating advanced graph-

ics and space environmental models into this

analytical environment.

1.0 Introduction

Since the first discovery of radio emissions from

the sun, it has become increasingly apparent that

solar activity can have a significant impact on
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the operation of communication and space-based

systems. As we deploy increasingly sophisti-

cated communication and satellite systems,

understanding the impact of solar activity has

become a significant factor in the proper opera-

tion and protection of these systems. Because of

this need, the U.S. Air Force and NOAA have

established units charged with monitoring the

sun and the space environment and alerting

potential customers of dangerous geomagnetic

conditions that can effect their systems.

Since their establishment, the Air Force Space

Forecast Center (SFC) and NOAA's Space Envi-

ronmental Service Center (SESC) are facing an

increasing challenge as the size and diversity of

requirements provided by their user community

has grown. Their fundamental problem, analyz-

ing and predicting the properties of the space

environment, is still a difficult scientific chal-

lenge. Other more traditional problems result

from serving a growing number of customers

without a corresponding increase in staff size.

Supporting modern space systems has added to

the challenge by requiring more timely and

accurate forecasts. Producing these kinds of

forecasts has led the Air Force to embark on an

ambitious project of developing a comprehen-

sive set of space environmental specification and

forecast models (Schunk et. al., 1992) and to the

creation of the NSF sponsored Geosphere Envi-

ronmental Modeling program. Although these

efforts have been initially successful, problems

related to operationally handling and analyzing

the large quantities of complex data still need to

be addressed.

Because these problems are perceived as being

structured, but not amenable to algorithmic

approaches, Artificial Intelligence (AI) has been

a natural choice for researchers attempting to

find solutions. Indeed, there is a fairly lengthy

history of attempts to introduce AI into space

environmental analysis (Joselyn, 1993; Schunk

et. al, 1992; Shaw, 1989; Burov et. al., 1980).

Previous attempts to use AI have focused on

special research areas and have resulted in lira-

ited success in the operational environment.

Reasons include difficulty in using and under-

standing AI based programs in an operational

setting. Typically users are reluctant to trust AI

methods because of the lack of visibility into the

reasoning processes. Another problem is that

the output normally has to be reformatted to be

operationally useful. In addition, users have

varying degrees of confidence in the expert who

provided the knowledge. Past experience has

shown that expert systems are expensive to build

and difficult to maintain (Jesse, 1993). While

these factors may pose operational problems

(Joselyn, 1993; Schunk et. al., 1992) we believe

that previous efforts have demonstrated that

expert systems represent a sound method for

solving some of these analysis problems.

Because of past problems with introducing AI

systems into an operational context, we have

focused on the operational integration issues. To

improve our chances of producing a workable

solution, we began development using an AI

system that has already been successfully used

in an operational environment and is flexible

enough to the support the analytical tasks we

wished to address.

Starting with a basic AI framework we have

built a system that performs basic assessments

and predictions of the space environment. This
framework is extensible so it can be used to

address problems related to the introduction of

new technology aimed at improving forecaster

analyses. We plan to augment our current sys-
tem with advanced visualization techniques and

space environmental models. These methods are

aimed at increasing a forecasters diagnostic and

prognostic abilities, however using them can

demand more time then a forecaster in an opera-

tional environment can afford. Intelligent con-

trol of these systems will reduce the analysts'

workload and allow them to take advantage of

the new insight these methods provide. Integrat-

ing these capabilities will provide feedback on

the flexibility of the intelligent framework and
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an assessment of the effort required to integrate

other new technologies.

2.0 Temporal Analysis System

Temporal analysis is a commonly used method-

ology in the military intelligence environment.

Temporal analysis involves the study of events

as a function of time to determine patterns of
behavior. In this context, an event is a discrete

activity that is monitored by the analyst. Aside

from a specific type, all events are associated

with a time and duration. In this application,

events are observations of solar activity and the

solar-terrestrial environment. The temporal anal-

ysis technique involves displaying the events on

a timeline. By displaying historical examples of

a particular phenomenon in this manner, analysts

are able to establish correlations between

observed events and the occurrence of the phe-

nomenon. Once identified, these patterns are

recorded and used as a basis for analyzing and

new data and making predictions. The practical

application of this technique relies heavily on
meaningful data fusion and data visualization

support.

Because of our focus on operational support

issues, we chose to use a general purpose system

already in use within the military intelligence

community, called the Temporal Analysis Sys-

tem (TAS). The TAS core suite of operational

tools supports data processing, data visualiza-

tion, historical analysis, geographical analysis,

situation assessment and predictive analysis.

These functions are supported by seven major

applications: Timeline, Map, Query Panel,

Chalkboard, Dictionary, Model Developer, and

Knowledge-Based Predictive Analysis and Situ-

ation Assessment (K-PASA). The Map which

supports geographical analyses and Chalkboard

which supports generic data presentation have so
far been omitted from this effort.

TAS has a domain information-based architec-

ture. The database structure and application
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FIGURE 1. TAS Domain Structure.

functionality are separated into general and

domain-specific layers. The temporal analysis
paradigm provides a broad abstraction around

which a significant portion of the system can be

built without referring to domain specifics. Sup-

port for a particular analysis domain is confined

to a separate layer. We often refer to the applica-

tion specific part of the database and system

functions as the domain-dependent layer or sim-

ply the "domain". New domains can be layered

on top of the core architecture so that new sys-
tems can be built reusing 80 to 90% of the core

functionality (Figure 1). This approach also has

the advantage that functionality developed for

one domain is often general enough that it can be

promoted to a core capability and shared among

the various operational users. The degree of

reusability is illustrated by the number of

domains currently supported by TAS. These

domains include foreign Command, Control and

Communications (C3), strategic air, counter-

drug, counter terrorism, and criminal investiga-
tion.

Data be entered into the database in several

ways. The Timeline and Map applications pro-

vide basic data entry and maintenance facilities.
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FIGURE 2. Example Timeline Display.

Event data can be loaded manually as well as

from real-time message traffic using the local

Automatic Message-Handling System

(AMHS). Data can also be imported from exter-
nal historical databases and translated into TAS

event specifications.

The Timeline graphically displays events as a

function of time (Figure 2). Different event

types are identified by icons. For example, in

the space environmental domain a radio dish

represents radio burst events, a sun with spots

represents sunspot report events, and a sun with

an eruptive prominence represents general disk

and limb activity. Detailed event information

can be viewed by clicking an event icon with the

mouse. The Timeline supports various data fil-

tering mechanisms designed to aid in the tempo-

ral analysis process. Types of filters include

event type, icon, keyword, and Area of Interest

(AOI). The analyst can customize the Time-

line's appearance by changing icon colors,

placement, and timescale to create a visually

meaningful display. Annotations can be added
to communicate additional information such as

priority or special significance of a particular

event. All of these functions contribute to pro-

vide the analyst with an integrated visual sum-

mary of complex, multi-source, heterogeneous

data.

The Query Panel provides a point and click

interface for retrieving data. The user can per-

form ad hoe queries and have the results piped to

external applications for viewing. Displays cur-

rently supported are the Timeline, Map, a histo-

gram tool, and a table tool. The Query Panel

uses a set of descriptions that provide the

attributes and sources that comprise an entity or

concept in the users environment. This abstracts

the user from the underlying Database Manage-

ment System (DBMS) and makes it possible to

add databases or layer the Query Panel over new

databases without modifying the code. The

Query Panel graphical interface generates a

semi-natural language (SNL) description of the

query as it is being built. This capability allows

the user to keep track of complex queries and

understand their requestwithout having to know

the underling data access mechanism (for exam-

ple, SQL).

The Chalkboard and Dictionary applications are

relatively minor. The Chalkboard is a generic

drawing tool used to develop briefings. The Dic-

tionary is a user defined lexicon of information.
This information includes terminology, defini-

tions and synonym relationships relevant to the

specific application domain. Other TAS applica-
tions use the Dictionary data to identify key-

words and synonyms in incoming data.

The applications discussed so far aid analysts

with the manual process of temporal analysis.

K-PASA and the Model Developer are expert

system tools which help automate temporal anal-

ysis by analyzing incoming events for patterns.

Model Developer is a knowledge acquisition

tool is used to define the knowledge baseupon

which expert system operates. K-PASA is the

engine that compares events against the models

stored in the knowledge base to identify situa-

tions of interest. The user may select the types

of activities that the system should search for

among the incoming events. Assessments are

displayed in a list ordered by decreasing confi-

dence. The user may select an assessment and



receiveeither anexplanationor a prediction of

future activity.

3.0 Knowledge Acquisition & Analysis

Expert systems face a number of special chal-

lenges in operational environments. Knowledge

may rapidly evolve and require that the knowl-

edge base be constantly maintained. Hard cod-

ing systems or systems that require specialized

AI knowledge prove to be neither cost effective

nor logistically practical. Consequently, the

knowledge base must be maintainable by a user

who works with the system on a day to day

basis. This requires a flexible and simple knowl-

edge representation that is easy for users to
understand and use.

K-PASA operates on a knowledge base of tem-

poral patterns that are encoded using a knowl-

edge representation called Temporal Transition

Models ('iq'Ms or "models") in conjunction with

the event database. _'Ms are specifications of

generalized event patterns that characterize a

particular activity of interest. TTMs combine

concepts derived from Augmented Transition

Networks (ATNs) used in Natural Language

Processing (Woods, 1970) and decision trees.

Like ATNs, TTMs are composed of states and

transitions. States correspond to events in the

application area. Transitions describe the tem-

poral relationships between events. States spec-

ify the type and characteristics of events which

may match the state. For example, a state may

specify a type 1B flare that occurs in region

7640. State syntax supports several operators

which may be used to constrain event

attributes. These operators can be used to define

equality, subset or numerical comparison specifi-

cations. Temporal constraints can be absolute

like "occurs only at noon local time", or can be

relative such as "follows in one to ten minutes".

Multiple transitions from a particular state are

considered a branch. Transitions in a branch are

designated as either "AND" or "OR" transitions.

The evaluation of AND/OR transitions is similar

to decision trees where OR branches are evalu-

ated independently and AND branches are eval-

uated together. Each transition has an associated

confidence factor assigned by the user. The con-

fidence factor represents the incremental belief

that the reported events indicate the phenome-

non described in the TTM. Refer to Jesse

(1993), for details on the confidence specifica-

tion and evaluation implementation.

For a simple pedagogical example consider a

two state TTM that begins with the observation

of disk and limb activity (DALAS) with a transi-

tion to an optical solar flare within two to twelve

hours (Figure 3A). If no state attribute con-

straints are in place then the simple existence of

a DALAS event satisfies that state. If the system

is asked to make a prediction at this point it will

only predict the existence of a flare, because in

this model the final state is not constrained. For

the model to be fully satisfied, a flare event must

be detected two to twelve hours after the initial

DALAS event. New models can be evolved or

updated from existing models. One option for

refining this model could be limiting the first

event to certain types of DALAS that are more

likely to produce flares: more energetic types

such as loops, surges, or eruptive prominences

(Figure 3B). The final state could also be more

specific by constraining the flare to type 1B or

greater. K-PASA is capable of evaluating both
models.

Associated with TTMs is a graphical specifica-

tion language developed to be consistent with

the manual analysis methods. This language uti-
lizes the same icon notation found in the TAS

timeline. The Model Developer implements this

graphical language allowing the user to maintain

the expert system's knowledge base by means of

manipulating the 'I'TMs. The ability to manipu-

late TTMs in a graphical format gives non-com-

puter specialists an intuitive way of accessing

the knowledge base. The ease with which the

knowledge base can be created and maintained



by domain rather then computer specialists has

directly contributed to TAS's operational success

(Jesse, 1993).

K-PASA performs its assessments by mapping

events to TTMs. The core comparison process

starts at the TTMs' initial states' specifications.

If one or more initial states are satisfied then the

system searches for events that satisfy the subse-

quent transitions and states. This TTM traversal

process continues until all TTM branches either

terminate or no events satisfy the next transition/

state specifications.

The 'VrM traversal process uses two techniques

to increase the flexibility with which models can

be applied and accommodate deviations from

expected patterns. Deviations can be expected

when critical events go unobserved, unreported

or if the full range of behavior for the phenom-

ena is not captured by the model. These tech-

Event = DALAS Event = FLARE

Type___Any

2-12 Hours _"-_N_

Confidence

Increment = 0.20

3A - Simple DALAS-FLARE Model:

"Any DALAS activity has a 0.20 confidence
of transitioning to a flare."

Event = DALAS

Type = Loops, Surges, or
Prominences.

2-12 Hours
Confidence

Increment = 0.40

Event = FLARE

Type = Any

3B - Extended DALAS-FLARE Model:

"Any energetic DALAS activity has a 0.40
confidence of transitioning to a flare."

FIGURE 3. Example TTMs.

niques are partial state activation and non-linear

processing.

Partial state activation allows user acceptable

deviations within the reported events. The

degree of tolerance in partial state activation is
defined in the states. Each state attribute speci-

fication has an associated activation threshold.

The possible thresholds are COMPLETE (exact

match), UNKNOWN (unknown values are

acceptable but a a lower confidence), and MIS-

MATCH (wrong values are acceptable but at an
even lower confidence). The level of state acti-

vation is derived from the "completeness" of the

fit measured by a weighted average of the degree

for which each attribute specification has been

satisfied. This average is factored into the over-

all assessment confidence.

Non-linear traversal provides additional flexibil-

ity in processing the overall TTM structure.

Instead of strictly adhering to the event

sequences specified in the TTM, K-PASA will

also search for skipped activity and relax the

temporal constraints. Relaxing temporal con-

straints is performed by expanding the expected

timeframe defined by the transitions by user

defined temporal variances. These variances are
relative to the timeframe for which the events

should have occurred. As the temporal variance

increases, the confidence in the assessment

decreases.

Another type of problem is introduced when

data is spread across multiple reports. Some-

times, instead of being entered into the system as

a single event, information on about a single
occurrence is entered as several events. K-

PASA compensates for this problem by search-

ing for and combining events that together sat-

isfy a single state. These multiple events
contribute to the creation of a meta-event. K-

PASA, during the event mapping process, will

aggregate those events in order to satisfy the

state. A related problem is that an event may be

encapsulated into a larger event. The system

.... :! . _* 8



will also parse larger events to find embedded

events.

K-PASA is integrated with the Dictionary in

order to utilize synonym relationships when

comparing events to state specifications. Syn-

onym relationships in the Dictionary define ter-

minology equivalency. Examples include

acronyms or alternative spellings. Without this

integration the user would have to enter all

phrases and their associated synonyms in the

state specification, even though they semanti-

cally represent the same activity.

K-PASA predictive analysis processing is rela-

tively straight forward. The system predicts

future events by looking at states yet to be ful-

filled. Paths stemming from the last states

matched in the assessment are analyzed using

the event(s) matching those last states as time

references. The constraints in the state specifica-

tion provide additional information about the

predicted event attributes.

In addition to providing analysis capabilities, K-

PASA contains an explanation subsystem which

justifies system conclusions using a combination

of graphics and natural language text (Figure

4). The graphics include a view of the model,

with the satisfied states filled, and a view of the

timeline that shows only the events which satisfy
:.$%-_._!:!:_:_:_:_!_.,.':::._..'.._: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

!_._ii!!!_i___ii_!_!_i_!ii_::::::::::::::::::::::::::::::::::::::::::::::::::::::::...... ... :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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FI6On_ 4. Explanation Subsystem

the model. The graphics allow for quick superfi-

cial explanation in situations where the analyst is

pressed for time. The natural language text pro-

vides explanation details when the user has the

time and inclination for a more in-depth expla-

nation. Simply reciting the events which

matched the TTM is not appropriate. The text

must be comprehensive enough to communicate

the reasoning behind the assessment without

overwhelming the user with irrelevant details.

To provide this capability, the text is structured

in multiple paragraphs with each paragraph

describing the events supporting a particular

concept satisfied in the TTMs. The prediction

explanation is presented in a similar fashion.

The TTM associated with the assessment is

shown with the satisfied states filled. States

associated with predicted events are highlighted

in yellow. The text describes each predicted

event along with the expected timeframe of
occurrence.

4.0 Space Environmental Domain

Automation of the analytical processes within

the forecast centers has been heavily biased

towards quantitative methods. These methods

include statistical techniques and more recently

numerical modeling. While there is a strong

agreement that these tools are necessary for

improving forecasts, there is some concern that

not enough is known about how to properly

integrate them into the forecasting process. This

stems from the lack of understanding about the

physical processes involved and having no well

defined analysis model of how the data should

be integrated. Human forecasters are able to

produce forecasts by working around these prob-

lems. They do this largely by applying their

experience to determine likely behavior where

the quantitative tools cannot be used. This pro-

cess of predicting results without the use of a

mathematical model is known as model-free

estimation (Kosko, 1992). Understanding fore-

casting as a model-free estimation process pro-
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vides additional insight into the requirements for

intelligent tools.

TAS is especially well suited for the role of sup-

porting qualitative estimation and data integra-

tion. As previously shown, TAS focuses on

capturing heuristic knowledge. It does not

require that a mathematical model be known, but

it can use the output of quantitative techniques

for analysis. TAS also supports a well defined

analysis methodology, which provides a high

level framework for systematically integrating

various observations. Operational TAS users

have reported that the use of the temporal pattern

matching methodology closely follows their

own reasoning processes when performing event

identification, situation assessment, and activity

prediction (Jesse, 1993).

For example, in a geomagnetic substorm fore-

cast situation, an analyst might consider current

flare activity, the state of the interplanetary mag-

netic field (IMF), and the configuration of the

magnetosphere (e.g. the current dipole tilt,

etc.). There are quantitative models which pro-

vide at least some degree of insight into these

effects, but there is no model which quantita-

tively describes the relationships. The forecaster

accommodates these factors by weighing past

experience and considering the similarities and

differences in the current pattern. TAS works in

conceptually the same manner. From the discus-

sion above, we could build a simple four state

model that integrates flare event data such as

indicators of the IMF (e.g. solar sector boundary

crossings) and magnetospheric indicators (e.g.

the time from the last equinox to predict sub-

storm activity).

The first step in implementing the space environ-

ment domain, after determining its suitability for

applying temporal analysis, was to identify the

key abstractions or events that would be needed.

This process usually requires an ongoing dialog

between the software engineers and several

domain experts. We utilized a wealth of litera-

ture from the SFC, SESC, and the space physics

community and relied on the experience of one

of our authors (six years of various space envi-

ronmental assignments within the military) for

our prototype. The framework which abstracts

domain specific information from the core func-

tionality allowed easy implementation of the

specific event abstractions that we needed. Our

first prototype was aimed at building a simple

proof-of-concept demo. Extending the proto-

type will require working with a broader variety

of domain experts.

In order to keep the level of effort in line with

our goal of only providing an initial proof of

concept we narrowed the area of investigation to

flare and geomagnetic storm forecasting. Some

simple guidelines were established which made

the final implementation of the system more use-

ful. For example, we designed event definitions

that corresponded to data which could be

extracted from real-time message traffic, thus

alleviating the need for manual entry of events.

After some initial iterations, we settled on eight

event types: BURST, DALAS, FLARE, NEU-

TRAL LINE, SPOT, STORM, SWEEP, and X-

RAY. Table 1 shows these events, a brief

description of each, and the message sources

from which they can be derived. In order to

keep in step with the operational flavor of the

work, with one exception, we used the govern-

ment message formats (USAFETAC/UH-86/

003, 1986) to dictate the possible event

attributes.

The first step in developing the domain was

designing the logical database tables and build-

ing the database. The primary database design
constraint in the TAS architecture is that the

tables must be normalized so that all of the

domain independent data resides in a single

generic event data table. The index between the

domain independent and domain dependent data

is a unique event sequence number. After the

creation of the database, certain domain depen-
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dent portions of the code were modified. These

portions were primarily concerned with inserting

event data into and extracting it from the data-

base. In addition, new icons were created which

helped visually represent the new event types.

The actual code changes required about four

man-weeks for the initial prototype plus two

weeks for testing and refinement.

5.0 Preliminary Experiments

Once the fairly straight forward process of build-

ing the domain was complete, we began a series

of tests focusing on the ability to bring knowl-

edge into the system and conduct analyses. This

primarily consisted of building models, con-

structing test data, and using K-PASA to com-

pare the test data with the models.

The first set of models were based on fairly sim-

ple high level descriptions of possible solar

causes for geomagnetic storms (AWS Course

2546-001, 1989; Nishida, 1979; SESC Forecast-

ers Manual, 1989). The basic pattern consisted

of a long term precursor (up to a day in

advance), an energetic event, detection by satel-

lite sensors, then followed by a storm. For

example one of the models consisted of an initial
DALAS event that was constrained to be one of

the more energetic types. It was followed by an

TABLE 1. Space Domain Event Types.

',.'....,_,,,_ ",.._.J

FIGURE S. Sample Preliminary Models.

optical flare event after a 0 to 1 hour transition.

The flare was followed by a GOES x-ray report

after a 0 to 3 hour transition and then a storm

event after another 1 to 6 hours. Additional tran-

sitions allowed for sequences that bypassed one

or two of the initial states. Alternatively, the

non-linear processing could have been used to
handle such cases. Several similar models were

built with different constraints, event types

(SWEEPS instead of DALAS etc.) and transition

values (Figure 5). In conjunction with an artifi-

cial set of test data, these first models simply val-

idated the ability to create and evaluate models.

The next set of models, captured more detailed

behavior and could realistically be compared to

actual data. These models were based upon a

Event Message Sources Description

BURST SEON BURST messages.

DALAS SEON DALAS messages.

FLARE SEON FLARE messages.

NEUTRAL SESC neutral line analysis
LINE charts.

SPOT SEON SPOTS messages.

STORM SESC/SFC STORM messages.

SWEEP SEON SWEEP messages.

X-RAY GOES X-RAY messages.

Solar discrete radio burst information.

Disk and limb activity summary reports.

Solar optical flare information.

Orientation, and special characteristics of the
solar neutral line.

Sun spot characteristics, by region.

Geomagnetic storm information.

Solar swept frequency radio burst information.

X-ray measurements from the GOES satellites.
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paper by Burov (Burov et. al., 1980) as cited by

Sawyer (Sawyer et. al., 1986). Burov's paper

extrapolated rules that could be used by a

generic rule-based system using a cluster analy-

sis technique with archived x-ray flare data.

Burov's rules mixed negative logic (A flare will

not occur if...) and positive logic (A flare will

occur if...). Since TAS is event oriented and is

not geared towards making an assessment driven

by the absence of events, the first step was to

invert the negative logic. This process was per-

formed using a semi-analytical method that uti-

lized basic symbolic logic. This method

compensated for some of the vagaries of the

English language and ensured global consis-

tency as individual rules were modified. During

the process of defining a TTM for the Burov

rules, the use of the Model Developer had a

number of advantages as a documentation tool.

The ease of use and the clarity of the TTM

graphical specification language resulted in an

unambiguous and easy-to-follow representation

of the knowledge. Evaluation of the Burov rules

required more data than the seven events could

supply. One or two of these were ignored, based

on the premise that they represented rare special

cases, or on belief that the data would not be

available in an operational environment. For

one or two others, reasonable proxies that were

available from the current event attributes were

substituted. However, since the Burov rules

used neutral line characteristics in several ways,

this necessitated the addition of a NEUTRAL

LINE event. Fortunately this analysis is fairly

easy to perform and should only be required to

be entered by a user once a day.

The final results were documented as four mod-

els. The model representation appears on

inspection to capture all of the salient points of
the Burov rules. The model representation also

has several advantages. As mentioned above,

the graphical displays provide a powerful

method for documenting the process encapsu-

lated in the model. Also, in conjunction with K-

PASA, the TTMs can help the analyst by provid-

ing intermediate assessments of the confidence
that a flare will occur. Since the Burov rules do

not associate a quantitative value to individual

steps, the transition confidences were approxi-

mated and will be refined later by comparisons

with real data.

6.0 Future Work

We are currently developing a framework for

integrating advanced graphics and space envi-

ronmental models into this analytical environ-

ment. This framework will be based on an

extended decision support architecture with a

central information manager. This intelligent

system will configure and execute the appropri-

ate subsystems, as necessary, to support analyst

tasks. Examples of potential subsystems include

data formatting modules, visualization displays,

environmental models, and report generation

tools. The planning process will be knowledge-
based and utilize criteria such as the forecast

product development steps, subsystem execution

requirements, and current operational status.

Preliminary analysis has indicated that case-

based reasoning (CBR) techniques are a viable

approach.

As users evaluate the system, additional modifi-

cations to the existing prototype will be required.

Existing event types will require modification

and new ones added to the system. This process

can be accelerated by training analysts on the

knowledge specification tool, allowing them to

construct models, and validating those models

with operational data.

Additionally, we plan to reconfigure the TAS

AMHS to accept the message formats needed to

experiment with the real-time mode. Other

enhancements will require precisely defining an

inter-process interface to K-PASA so that the

new capabilities can be added such as the envi-

ronmental models.
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7.0 Summary

As with many other fields, space environmental

forecasters are facing a potentially overwhelm-

ing information overload. AI techniques can be

utilized to mitigate the problems associated with

handling and analyzing large quantities of com-

plex data. AI tools, such as TAS, that are opera-

tional in other areas have the potential to solve

some of the problems. Whether TAS can be uti-

lized in an space environment operational setting

remains to be seen. However, its demonstrated

successes elsewhere indicate this approach will

prove sound. Once this method of AI assistance

is determined to be valid, we hope to expand the
framework to include various other data visual-

ization techniques and space environmental
models.
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