
N95- 27378

Automated Database Design from Natural Language Input* /0. /_

Fernando Gomez

Department of Computer Science, University of Central Florida

Orlando, FL 32816

gomez@cs.ucf.edu (407) 823-2764

Carlos Segami

Dept of Mathematics and Computer Science, Barry University

Miami Shores, FL 33161

Carl Delaune

NASA Kennedy Space Center

Abstract 1 Introduction

Users and programmers of small systems

typically do not have the skills needed to

design a database schema from an English

description of a problem. This paper de-

scribes a system that automatically designs

databases for such small applications from

English descriptions provided by end-users.

Although the system has been motivated

by the space applications at Kennedy Space

Center, and portions of it have been de-

signed with that idea in mind, it can be

applied to different situations. The system

consists of two major components: a natu-

ral language understander and a problem-

solver. The paper describes briefly the

knowledge representation structures con-

structed by the natural language under-

stander, and, then, explains the problem-
solver in detail.

*This research is being funded by NASA-KSC
Contract NAG-10-0120

In this paper, we describe a system that

constructs logical database designs from

English sentences entered by users with

no knowledge of databases or program-

ming. The logical design used is the entity-

relationship model (E-R) (Chen, 1976).

The set of user's statements describing a

database has been called a user view (Na-

vathe and Elmasri, 1986). The techniques

for extracting user's views or the relevant

components of a logical database from a user

are based on elicitation methods. Several

methodologies have been developed for aid-

ing the extraction process (Baldissera et al.,

1979; Martin, 1981; Ceri, 1983; Albano et

al., 1985). More recently, expert systems

techniques have been applied to the cre-

ation of an E-R model from user's specifica-

tions. The VCS system (Storey, 1988) elic-

its the entities, attributes and relations from

the user by asking him/her questions formu-

lated in English. In VCS, the user's replies

29

are limited to saying "yes/no" and listing

the entities, attributes and relations sepa-

rated by blanks. The approach presented in

this paper, however, aims at identifying the

entities, attributes and relations from the

English descriptions of a problem. For in-

stance, a typical database problem for which

our system can build a logical design is the

following:

Each person keeps a record of doc-

uments of interest. The source

and the time of each document

are stored with the location of the

document. Documents may be

books, identified by author name

and title. Documents may be also

journal articles, identified by jour-

nal volume number, author name

and title. Documents may be pri-

vate correspondence, identified by

sender and date.

Our system will identify the entities, at-

tributes, key attributes and relations in this

passage, and the hierarchical relations be-

tween the entity "document" and its sub-

concepts "book," "journal article," and

"private correspondence." The two main

components of our system are a natural lan-

guage understander (NLU) and a problem-

solver. Although research on using natu-

ral language processing (NLP) for interfac-

ing databases has been intensive and has

achieved certain success (Ballard and Tin-

kham, 1984; Grosz et al., 1987; Bates et

al., 1986), research on the construction of

logical databases from natural language has

been scarce, but the reader may see (Ker-

sten, 1987; Alshawi, 1985). These earlier

attempts are based on syntax. Our ap-

proach, however, involves a parse of the

sentence, a semantic interpretation of the

output produced by the parser, the con-

struction of knowledge representation struc-

tures from the logical forms of the sentence,

3O

and the integration of these structures into

memory. Figure 1 depicts the main compo-

nents of the natural language understander

module. This model of comprehension of ex-

pository texts has been under development

for some years now (Gomez, 1985; Gomez

and Segami, 1991; Gomez et al., 1993).

More recently this model has been applied

to the acquisition of knowledge from ency-

clopedic texts (Gomez et al., 1994) and is

the same model being applied here as the

front-end to the problem-solver.

The key idea in our approach is to use the

final knowledge representation structures as

the input to the problem-solver, rather than

to use the syntactic output of the parser.

The construction of the final knowledge rep-

resentation structures is done as follows.

The semantic interpretation phase, if suc-

cessful, has built a relation and a set of the-

matic roles for each sentence. Let us call

the thematic roles of the relation the entities

for that relation. All the n entities of a n-

ary relation are represented as objects in our

language, and links are created pointing to

the representation of the relation, which is

represented as a separate structure called an

a-structure. For instance, for the sentence A

company sells books of history to customers,

the NLU builds a 3-ary relation with "sell"

as the relation and "company," "books of

history," and "customers" as entities or ar-

guments of the relation. These three argu-

ments will be represented as separate ob-

jects in our representation. The words "re-

lation" and "entities" as used in the preced-

ing paragraph should not be confused with

the notions of "relation," and "entities" in

the E-R model. Although not identical to

the E-R model, this representation is very

close to it, making it relatively easy for the

the problem-solver to decide which entities

and relations in our representation stand for

entities, attributes and relations in the E-R

model.

L

Integration

hierarchy of I / / knowledge structures

concepts V I "

words concel:c,sand I " l

relati_s I J knowledge structures

Analyzer Interpreter knowledge structures

Problem

Solver

ENGLISH

TEXT

Figure 1: Main Components of the Natural Language Understanding Module

Knowledge Representation Model Building

StructuresandLogical Forms Rules

C

Entity-Relation

Model

specific rules

generalrules

Figure 2: Main Components of the Problem Solver

31

Figure 2 depicts the main components of

the problem-solver. There are two major

sources of knowledge used by the problem-

solver: the logical database under construc-

tion (LDB) and the knowledge structures

being built by the NLU. The key idea in

the problem-solver has been to decouple the

rules that recognize relations, entities and

attributes on the basis of the semantics of

concepts and the relations built by the NLU

from those rules that base their recogni-

tion on the entities, attributes and relations

already in the LDB. The former rules are

called specific rules because they depend

on the semantics of the verbs and concepts

in the sentence, and the latter are called

generic rules because they are independent

of the semantics of the sentence.

This paper is organized as follows. The

next section describes the knowledge repre-

sentation structures used by the problem-

solver. The remainder of the paper explains

the problem-solver, with two major sections

describing in detail the specific and generic

rules, and their role in constructing an E-R

model from the user's sentences. In the last

section, we give our conclusions, point out

some of the limitations of the system, and

future research. An appendix containing an

annotated sample session with the system,

which is written in Common Lisp and runs

on Sparc workstations, ends the paper.

2 Knowledge Represen-

tation Structures

Each sentence entered by the user defines

one or more conceptual relations. Concep-

tual relations can have one, two or more

arguments, and are classified, accordingly,

as unary, binary or n-ary. Also, conceptual

relations can be classified as actions or de-

scriptions, depending on the type of their

verbal concept.

Nominal concepts that refer to physical or

abstract objects are represented as frame-

like structures, called object-structures. A

sample object-structure corresponding to the

concept "company" is shown below:

(company

(is-a (organization))

(buy (item ($more (@a6731))))

)

The slots in object-structures correspond to

conceptual relations, which are also repre-

sented as frame-like structures, called a-

structures. In the example above, the

second slot corresponds to an instance of

the conceptual relation "buy" ("a company

purchases items from a number of suppli-

ers"), represented by the a-structure @a6731
shown below:

(@a6731

(instance-of (action))

(args (company) (item) (supplier))

(pr (buy))

(actor (company (q (all))))

(theme (item (q (?))))

(from-poss (supplier (q (some))))

(time (present))

The "args" slot in this structure contains

the arguments of the relation, the "pr" slot

contains the verbal concept, and the rest of

the slots are the semantic cases, also called

thematic roles, of the relation. The "q" slot

stands for quantifier, and contains the value

of the quantifier for that concept. The value

of the quantifier may be not only "all" and

"some," but also "most," "many," "few,"

etc. A question mark means that the value

of the quantifier is unknown. See (Gomez

and Segami, 1991) for a detailed discus-

sion of these quantifiers, and the meaning

of these structures expressed in first order

predicate calculus (FOPC).

32

Restrictive modifiers, i.e., complex noun

groups, restrictive relative clauses, or nouns

modified by prepositional phrases, are rep-

resented by an object structure character-

ized by the presence of a "characteristic fea-

tures" slot, called a cf-slot. The content of

the cfslot identifies this concept uniquely by

providing the necessary and sufficient con-

ditions that define it. The structure is iden-

tified by a dummy name (a gensym). Thus,

in the sentence The person who detects the

problem writes a problem report, the restric-

tive relative clause "the person who detects

the problem" is represented by the object
structure:

(@x5354 (cf (instance-of (person))

(@a5679)))

This structure contains the two charac-

teristic features of the concept: "x5354

instance-of person", and "x5354 detect

problem". Note that the second characteris-

tic feature is represented by the a-structure

@a5659 shown below. What appears in the

cf-slot is simply the name, a gensym, of the
a-structure.

(@a5679

(instance-of (cf-structure))

(args (©x5354) (problem))

(pr (detect))

(actor (@x5354 (q (constant))))

(theme (problem (q (?))))

(time (present))

Thus, a cf-slot contains one is-a/instance-of

slot plus one or more names of a-structures.

We see, then, that the representation of the

concepts and relations underlying a sentence
consists of a collection of a-structures and

object-structures. As an example, for the

sentence The person who detects the problem

writes a problem report, the NLU builds the

following representation structures:

(problem-report

(is-a (report))

(write,by

(@x5354 ($more (@a5757))))

)

(@a5679

(instance-of (cf-structure))

(args (_x5354) (problem))

(pr (detect))

(actor (©x5354 (q (constant))))

(theme (problem (q (?))))

(time (present))

(_x5354

(cf (instance-of (person))

(@a5679))

(detect (problem ($more (©a5735))))

(write

(problem-report

($more (@a5757))))

)

(@a5735

(instance-of (action))

(args (@x5354) (problem))

(pr (detect))

(actor (@x5354 (q (constant))))

(theme (problem (q (?))))

(time (present))

(problem

(detectZby

(@x5354 ($more (@a5735))))

)

(©a5757

(instance-of (action))

(args (©x5354) (problem-report))

(pr (write))

(actor (@x5354 (q (all))))

(theme (problem-report (q (?))))

(time (present))

33

3 The Problem-Solver

The problem-solver is a rule-based system

that identifies relations, entities and at-

tributes based on the representation struc-

tures built by the NLU and on the current

state of the database design. Essentially,

the problem solver does its work by access-

ing the structures that represent concep-

tual relations, that is, a-structures. Object-

structures are considered only when they de-

fine hierarchical relations and in order to ac-

cess the a-structures within cf-slots. The al-

gorithm implemented by the problem-solver

consists of two passes. All structures are ex-

amined in the first pass, where some struc-

tures may result in the creation of database

relations, entities or attributes, others struc-

tures may cause no action by the problem-

solver, and, finally, other may be saved to

be considered in the second pass, after the

problem-solver has had a chance to gather

possibly pertinent information from other

structures.

Two distinct sets of rules comprise the

problem-solver, generic rules and specific

rules. Specific rules are tried first. If they

do not succeed, then the generic rules are

tried. Specific rules take advantage of the

semantic cues in a conceptual relation, when

such cues are relevant to the database de-

sign. These rules are, therefore, attached

to verbal concepts and are fired when the

verbal concept in the a-structure being con-

sidered has rules attached to it. Examples

of specific rules are those that construct hi-

erarchical relations among entities, or those

that identify key attributes. Generic rules,

on the other hand, are fired regardless of

the verbal concept in a conceptual relation.

They base their actions on the arguments of

the relation and on the elements currently

defined in the database design. They are

in turn classified as unary, binary and n-ary

rules and are applied to unary, binary and

n-ary conceptual relations, respectively.

A main driver in the problem-solver con-

trols the order in which the representation

structures are examined and the order and

kinds of rules that are applied in each case.

The first structure examined by the prob-

lem solver is always the structure that rep-

resents the main clause in the sentence (the

main relation). The problem-solver then

descends to the structures representing the

arguments of the main relation and to ex-

planatory relative clauses, if any. The ar-

guments of the main relation may result

in some action by the problem-solver only

if their object-structure contains a cf-slot,

that is, only if the argument is described

by a complex noun phrase. In this case, the

problem-solver acts on the a-structures that

are part of the cf-slot of the argument. Let

us consider a simple example. Suppose the

following two sentences are read:

An organization keeps track of cus-

tomers, identified by customer id.

The name and address of cus-

tomers are stored.

The first sentence consists of a main clause

and a subclause. The main clause in-

troduces the conceptual relation "organiza-

tion keep-track-of customer" and the sub-

clause, an explanatory relative clause, in-
troduces the relation "customer identified-

by customer-id". The problem-solver deals

first with the main relation. Since no spe-

cific rules are attached to "keep-track-of,"

a binary generic rule defines "organization"

as an entity and "customer," tentatively, as

an attribute of "organization." The prob-

lem solver then examines the arguments of

the main relation, "organization" and "cus-

tomer." Because both arguments are repre-

sented by object-structures without cf-slots,

34

they lead to no action on the part of the

problem-solver. Next, the problem-solver

examines the conceptual relation introduced

by the explanatory relative clause. The ver-

bal concept in this relation has a specific

rule attached to it that identifies "customer-

id" as a key attribute of "customer." Be-

cause "customer" is currently defined as an

attribute in the database design, the rule re-

defines it as an entity, and uses the previous

clause to define a database relation. Thus,

after the first sentence the problem-solver

has built two entities, "organization" and

"customer," a key attribute for "customer,"

"customer-id," and a database relation, "or-

ganization keep-track-of customer."

Next, the second sentence is read. This

sentence defines a unary conceptual rela-

tion. Its verbal concept has specific rules at-

tached to it, which try to identify the argu-

ments of the relation as database attributes.

In this case, "name" and "address" are iden-

tified as attributes of "customer." We now

discuss in detail the different kinds of rules

in the problem-solver.

4 Specific Rules

As described above, specific rules are de-

fined for a verbal concept when its seman-

tics indicate that an action specific to the

concept must be performed by the problem-

solver. Such is the case, for example, with

verbal concepts that define hierarchical re-

lations among entities, or those that define

key attributes.

Hierarchical Relations Hierarchical rela-

tions among entities are introduced by the

is-a verbal concept. Apart from sentences

that explicitly define is-a relations, such as

A manager is an employee, this relation also

results from other constructions. For exam-

ple, for the paragraph:

Each person keeps a record of doc-

uments of interest. Documents

may be books, identified by au-

thor name and title, journal arti-

cles, identified by journal volume,

number, author name, and title,

and private correspondence, iden-

tified by sender and date.

the problem-solver creates the entities "doc-

ument," "book," "journal article," and "pri-

vate correspondence," and it establishes the

conceptual relations:

• "book is-a document"

• "journal article is-a document"

• "private correspondence is-a docu-
ment"

These conceptual relations are not trans-

lated into database relations, but are main-

tained by the problem-solver to keep track

of the inheritance of attributes among enti-
ties.

Verbal Concepts that Introduce Attributes

Some verbal concepts strongly suggest

that the arguments in the conceptual rela-

tion describe attributes of entities. Some

specific rules are attached to these verbal

concepts in order to identify the attributes

and their corresponding entities. The en-

tities may or may not be explicitly identi-

fied in the relation. Consider, for example,

the sentences: The source, the time, and

the location of each document are stored,

The hour and the length of use are recorded,

The organization keeps a record of the ad-

dresses of the suppliers. All these sentences

are associated with the "store-information"

verbal concept, and the arguments in these

relations, ("the source of each document,"

"the time of each document," "the loca-

tion of each document," "the hour," "the

35

length of use," "the addresses of the suppli-

ers") all seem to describe attributes of enti-

ties. Whether or not they are taken as at-

tributes depends on the current state of the

database under construction. If the argu-

ment describes a property or characteristic

pertaining to a concept that has been de-

fined as an entity by previous _statements,

then this property is taken as an attribute

of the entity. Such is the case, for exam-

ple, with "the location of the document," if

"document" has previously been defined as

an entity. If this is the case, then "location"

is taken to be an attribute of "document."

Thus, after reading the second sentence in

the paragraph:

Each person keeps a record of doc-

uments of interest. The source, the

time, and the location of each doc-

ument are stored.

the problem-solver identifies "source,"

"time," and "location" as attributes of

"document." In this example, the identi-

fication of attributes and entities by the

problem-solver is possible because all three

arguments of the conceptual relation are

represented by object-structures with a cf-

slot. An examination of the a-structures

referenced in the d-slot allows the problem-

solver to reach its determination. The same

mechanism is used to identify "address" as

an attribute of "supplier" from the sentence

The organization keeps a record of the ad-

dresses of the suppliers.
A different situation is illustrated by the

sentence The hour and the length of use are

recorded. Here, the arguments of the rela-

tion, "hour" and "length of use," do not ex-

plicitly link these possible attributes with

any concept, that is, with any previously de-

fined entity. The problem-solver first tries

to recognize these concepts by examining
the attributes and entities already identi-

fied. If this fails, an interaction with the

user is started, in which the problem-solver

inquires about entities that might be asso-

ciated with the arguments of the relation.

A similar mechanism is used for concep-

tual relations with the "interest-off verbal

concept, such as, "the registration number,

the registration termination and the address

of a registration office in each state are of

interest." The actions taken for this primi-

tive are the same as the actions for "store-

information."

Verbal Concepts that Define Key At-

tributes

Key attributes are typically introduced

by the verb "identify" in the passive form,

as in Items are identified by item type, or A

person, identified by a person id, can own

any number of vehicles. Thus, either the

main clause is passive, or it contains an

explanatory relative clause in the passive

form. Many times, however, key attributes

are also introduced by restrictive relative

clauses, i.e., Each vehicle is registered in one

or more states identified by state name. The

distinction is important for the problem-

solver because the representation structures

built for the two cases are different. As we

saw above, an argument in a conceptual re-

lation described by a noun restricted by a

relative clause is represented by an object-

structure with a cf-slot. An examination of

the a-structures in the cf-slot leads us to the

"identify by" relation. On the other hand,

when an argument in a relation is described

by a noun followed by an explanatory rela-

tive clause, the representation of the argu-

ment does not contain a cf-slot. Instead, the

"identify by" relation appears as a concep-

tual relation in the object-structure of the

argument. For this reason, after examining

the main relation the main driver looks for

explanatory relative clauses in the sentence

and passes the corresponding a-structure to

the rule-firing engine.

36

Other constructions that lead to key at-

tributes result from certain adjectives: Each

major has a unique name, Each building

in an organization has a different building

name, The meeting rooms have their own

room number. In all these cases, the ver-

bal concept is "property-r," and the second

argument of the conceptual relation is an

instance of the LTM (long-term memory)

category "name" (names of things). Thus,

a specific rule is attached to "property-r"

which examines the representation of the

second argument of the relation to verify

that it is an instance of "name" modified by

the property "unique." Note that the repre-

sentation of "unique name" constructed by
the NLU is:

(©x5476 (cf (is-a (name)) (©a5482)))

(@a5482

(instance-of (cf-structure))

(args (©x5476) (unique))

(pr (property-r))

(descr-subj (©x5476 (q (all))))

(descr-obj (unique (q (?))))

5 Generic Rules

The second category of rules that comprise

the problem-solver are the generic rules. As

noted above, these rules are not associated

with any particular verbal concept and do

their work based only on the arguments

of the conceptual relation and the current

state of the database design. The steps

taken by these rules differ significantly, de-

pending on whether they are unary, binary

or n-ary rules. Generally, unary rules result

in the definition of attributes; binary rules

may define attributes, entities and relations;

while n-ary rules result in the definition of

database relations. Typically, most sen-

tences in a database description introduce

37

binary relations. Unary relations normally

derive from sentences in the passive form,

with verb phrases such as, "are stored,"

"are recorded," "are of interest," etc.; al-

though we can find sentences like There are

six warehouse locations.

Unary Rules

When a conceptual relation has a single

argument, three cases must be considered:

the argument has already been defined as an

entity; it has been defined as an attribute;

or it does not exist in the database being

designed. In each of these cases, the con-

ceptual relation may or may not introduce

constraints. These situations are summa-

rized in the following table:

Argument Constraint

casel: • Entity Yes/No

case2: Attribute Yes/No

case3: Does not exist Yes/No

In the first case, the system interacts with

the user to inquire if another entity in the

database constitutes a second argument of

the conceptual relation. If so, a database

relation is created. Otherwise, no action is

taken. In the second case, the system in-

quires if the argument is an attribute of an

existing entity. If so, the argument is de-

fined as an attribute of the user-supplied en-

tity. Otherwise, no action is taken. In the

third case, if no entities or attributes are

currently defined in the database, the ar-

gument is defined as an entity. Otherwise,
an interaction with the user is started. In

all these cases, if the conceptual relation in-

troduces constraints, these constraints are

added to the corresponding relation.

Binary Rules

These rules are applied to conceptual re-

lations with two arguments. For each argu-

ment the possibilities are: it exists in the

database as an entity; it exists as an at-

tribute; or it does not exist in the database.

easel:

case2:

case3:

case4:

caseS:

case6:

case7:

case8:

caseg:

caselO

Argument 1

Entity

Entity

Attribute

Does not Exist

Entity

Attribute

Does not Exist

Entity

Attribute

Does not Exist

Argument 2 Relation

Ent ity Yes

Eat ity No

Eat ity No

Entity No

Attribute No

Attribute No

Attribute No

Does not Exist No

Does not Exist No

Does not Exist No

Constraint

Yes/No

Yes/No

Yes/No

Yes/No

Yes/No

Yes/No

Yes/No

Yes/No

Yes/No

Yes/No

Figure 3: Binary Rule Cases

If the two arguments exist in the database

as entities, then the corresponding relation

may or may not be defined in the database.

These cases are summarized in Figure 3.

The first column indicates whether the

first argument of the conceptual relation ex-

ists in the database as an entity, attribute,

or whether it does not exist. The second

column applies similarly to the second argu-

ment. The third column indicates whether

the relation already exists between the two

arguments. The fourth column indicates

whether the conceptual relation defines con-

straints.

In each of these cases the problem-solver

defines entities, attributes or relations, up-

dates relations, or adds constraints to a re-

lation. Let us consider case 2. Suppose that

"company" and "books" are entities in the

database, and that the relation "sell" does

not exist in the database. If the user enters

the sentence The company sells books, the

problem-solver defines the database rela-

tion "sell" with arguments "company" and

"books." Similarly, if the user enters The

company sells books, and "company" and

"books" do not exist in the database de-

sign, then the problem-solver creates the en-

tity "company" and defines "book" as an

attribute of "company." In each of the ten

cases, the actions taken by the problem-

solver are the following:

Case 1 Update the relation between argu-

ment 1 and argument 2. Some new in-

formation may be present in the con-

ceptual relation, such as, quantifica-

tion.

Case 2 Build a new relation for argument

1 and argument 2.

Case 3 Convert argument 1 into an entity

and build a new relation for argument

1 and argument 2.

Case 4 If the relation is l:n (meaning the

quantifier of argument 1 is 1 and the

quantifier of argument 2 is greater than

1), then create a new entity for argu-
ment 1 and build a new relation for ar-

gument 1 and argument 2. Else, add

argument 1 as an attribute of argument

2.

Case 5 Convert argument 2 into an entity

and build a new relation for argument

1 and argument 2.

38

Case 6 Convert both argument 1 and ar-

gument 2 into entities and build a new

relation for argument 1 and argument
2.

Case 7 If the relation is l:n, then create a

new entity for argument 1, convert ar-

gument 2 into an entity, and build a

new relation for argument 1 and argu-

ment 2. Else, convert argument 2 into

an entity and add argument 1 as an at-

tribute of argument 2.

Case 8 If the relation is l:n, then create a

new entity for argument 2, and build

a new relation for argument 1 and ar-

gument 2. Else, add argument 2 as an

attribute of argument 1.

Case 9 If the relation is l:n, then convert

argument 1 into an entity, create a new

entity for argument 2, and build a new

relation for argument 1 and argument

2. Else, convert argument 1 into an

entity, and add argument 2 as an at-

tribute of argument 1.

Case 10 If the relations is l:n, then create

a new entity for argument 1, create a

new entity for argument 2 and build a

new relation for argument 1 and argu-

ment 2. Else, create a new entity for

argument 1, and add argument 2 as an

attribute of argument 1.

In each of the previous cases, if the con-

ceptual relation defines some constraints,

these constraints are added to the database

relation.

N-ary Rules

These rules differ from unary and binary

rules in that the final result is always an

n-ary database relation for the supplied ar-

guments. The following table contains the

possible cases.

Entities Relation Constraints

case1: Yes Yes Yes/No

case2: Yes No Yes/No

case3: No No Yes/No

The first column indicates whether all of

the arguments of the conceptual relation ex-

ist as entities in the database. The second

column indicates whether or not an n-ary

database relation exists for the given argu-
ments. The third column indicates whether

or not one or more constraints are implied

by the conceptual relation.

The problem-solver actions are as follows:

Case 1 Update the relation between the

given arguments.

Case 2 Build a new relation for the given

arguments.

Case 3 Create a new entity for each of the

given arguments which does not have

an associated entity in the database

and build a new n-ary relation for the

given arguments.

As before, in each case if the conceptual

relation defines some constraints, these con-

straints are added to the database relation.

6 Conclusion

We have described an approach to the auto-

mated construction of logical database de-

signs for small application domains. The

method hinges on using as input for the

problem-solver elaborate knowledge repre-
sentation structures constructed from the

logical form of the sentences. Because these

structures have a close relation to the rep-

resentation used in the E-R model, a set

of generic rules for the problem-solver can

39

be systematically derived from these knowl-

edge representation structures and the state

of the logical database under construction.

One of the limitations of the system is

that, if the NLU is unable to fully interpret a

sentence, the problem-solver is not even ac-

tivated. The user is then asked to rephrase

the sentence for which no semantic inter-

pretation was found. But, in many cases

there is sufficient information in the partial

semantic interpretation for identifying the

entities, attributes and relations. In order

to make the system more robust, we need to

pass whatever partial information the NLU

has constructed to the problem-solver. In

other words, to make the problem-solver

work with less-than-ideal semantic interpre-

tations becomes an imperative for achieving

a robust system that does not fail on seem-

ingly easy sentences.

Because the method is based on semantic

interpretation, a user needs to convey to the

system some background knowledge about

the words he/she is using to describe the

database application so that the NLU can

produce a semantic interpretation. Hence, a

major unfinished goal of this work is to de-

sign and implement a knowledge acquisition

interface by means of which end-users can

convey the background knowledge needed

by the system to construct a database model

for the user's application. We have done

some initial investigation of this problem

and, in most cases, this is going to require

only a mouse click on the part of the user

to select one concept among a set of con-

cepts presented by the system. This is pos-

sible because the system already operates

with a rich ontology of concepts. For in-

stance, suppose that a user wants to write a

description of a database including the word

"shuttle." He/she will be asked to choose be-

tween the three possible meanings of "shut-

tle": 1) a vehicle to transport things, 2) an

instrument when playing badminton, or 3)

a reel. This component is essential for the

system to be transported across domains.

The goal is to allow the user to tune the

system to each specific area of application,

without the intervention of programmers,

knowledge-engineers or linguists.

The initial goal of this research was to

design a problem-solver that would identify

relations, entities and attributes with little

or no help from the user, and this papeI _

has provided a detailed description of the

problem-solver. However, if one brings the

user into the loop, the system described in

this paper is greatly enhanced. The user

can refine the final design of the database

by clicking in the entities, attributes and

relations. This clicking may result in delet-

ing wrongly identified entities, or attributes,

and rearranging some of the entities, rela-
tions and attributes. The nature of this in-

teraction will be the object of future reports.

References

Albano, A., De Antonellis, V., & Di Leva,

A. (Eds.) (1985). Computer-Aided

database design. North-Holland

Alshawi, H. (1985). Creating relational

databases from English texts. In Proc.

of the 2nd IEEE Conference on Artifi-

cial Intelligence Applications, 449-454.

Ballard, B. and Tinkham, N. (1984).

A grammatical framework for trans-

portable natural language processing.

Computational Linguistics, 10, 2, 81-

96.

Baldsissera, C., Ceri, S., Palegatti, G., &

Bracchi, G. (1979). Interactive and for-

mal specification of user's views in data

base design. In Proceedings of the In-

ternational Conference on Very Large

Data Bases, 262-272.

4O

t

r-is

r

=

2

=

Bates, M., Moser, M., & Stallard,

D.(1986). The IRUS transportable nat-

ural language database interface. In M.

Evens (Ed.) Expert Database Systems,

Benjamin/Cummings, 617-631.

Ceri, S. (Ed.). (1983) Methodologies and

tools for data base design. North Hol-

land Publishing Company.

Chen, P. (1976). The entity-relationship

model: Toward a unified view of data.

A CM Transactions on Database Sys-

tems, 1.1, 9-36.

Gomez, F., and Segami, C. (1989). The

recognition and integration of concepts

in understanding scientific texts. Jour-

nal of Experimental and Theoretical

Artificial Intelligence. 1,51-77.

Gomez, F., Segami, C., and Hull, R.

(1993). Prepositional attachment,

prepositional meaning and determina-

tion of primitives and thematic Roles.

UCF Technical Report.

Gomez, F., and Segami, C. (1991)

Classification-Based reasoning. IEEE

Transactions on Systems, Man and Cy-

bernetics, 21,3, 644-659.

Gomez, F., Hull, R., & Segami, C. (1994)

Acquiring knowledge from encyclope-

dic texts. In Proceedings of the ACL

4th conference on applications of nat-

ural language processing. Morgan and

Kaufmann.

Grosz, B., Appelt, D., Martin, P., &

Pereira, F. (1987). TEAM: an exper-

iment in the design of transportable

natural-language interfaces. Artificial

Intelligence, 32, 2, 173-243.

Kersten, M.L. (1987). A conceptual mod-

elling expert system. In Spaccapietra,

S. (Ed.). The entity-relationship ap-

proach. North Holland, 35-47.

Martin, J. (1981). An end user's guide for

data bases. Pretince-Hall, Englewood

Cliffs, N.J.

Navathe, S.B., & Elmasri, R., & Larson,

J. (1986). Integrating user views in

database design. Computer, Jan., 50-

62.

Storey, V. (1988). View Creation. ICIT

Press.

APPENDIX

Sample Session with the Problem Solver

>>> a problem report is written if

an anomaly is detected during an

operation.

REMARKS: The input sentence is first pro-

cessed by the NLU, where it goes through

the phases of parsing and interpretation,

formation of concepts, recognition of con-

cepts, and long-term memory integration of

concepts. As an illustration, we show the

output of the parser and the representation

structures built for the current sentence:

Parser Output:

g5301

(subj ((parse ((udt a) (adj problem)

(noun report)))

(ref (indefinite))

(plural nil)

(interp (problem-report

(q (all))))
(semantic-role (theme)))

verb ((aux (is))

(main-verb write written)

(tense pres) (voice passive)

(num sing) (prim (write)))

conj ((if) (interp (if (q (?)))))

sub-cl ((parse ((g5442)))

(sub-clause (g5442))

41

=_

(interp (proposition

(q (?))))))

g5442

(sub] ((parse ((udt an)

(noun anomaly)))

(ref (indefinite))

(plural nil)

(interp (anomaly (q (all))))

(semantic-role (theme)))

verb ((aux (is))

(main-verb detect detected)

(tense pres) (voice passive)

(num sing) (prim (detect)))

prep ((parse (during ((udt an)

(noun operation))))

(ref (indefinite))

(plural nil)

(interp (operation (q (?))))

(attach-to (verb (strongly)))

(semantic-role (at-time))))

Representation Structures:

(problem-report

(is-a (report)))

(operation

(is-a (thing))

(related-to (@a5Z02)))

(_a5702

(args (anomaly) (operation))

(pr (detect%by))

(theme (anomaly (q (all))))

(at-time (operation (q (?))))

(instance-of (proposition))

(time (present)))

(@a5757

(args (problem-report))

(pr (write%by))

(theme (problem-report

(q (all))))

(instance-of (action))

(time (present)))

REMARKS, these structures are passed to

the Problem Solver:

42

PROBLEM SOLVER PASS NUMBER 1

Integrating structure:

(@a12754 (args (problem-report))

(pr (write%by))

(theme (problem-report (q (all))))

(instance-of (action)))

firing default-a-structure-delay-

integration rule

PROBLEM SOLVER PASS NUMBER 2

Integrating structure:

(@a12754 (args (problem-report))

(pr (write%by))

(theme (problem-report (q (all))))

(instance-of (action)))

firing unary-case-3-a rule

creating an entity

Entity: problem-report

REMARKS: Because the structure @a12754

represents a unary relation, the problem

solver delays its processing until the second

pass. In the second pass, unary rule 3 fires,

which defines the entity problem-report.

::: next statement

('x' to exit, 'help' to see menu)

>>> each problem report is

identified by a unique number.

PROBLEM SOLVER PASS NUMBER 1

Integrating structure:

(©a13079 (args (problem-report)

(©x13oo8))
(pr (identified-by))

(descr-sub3 (problem-report

(q (each))))

(descr-obj (@x13008 (q (?))))

(instance-of (description)))

• %

?

firing prim-implies-key rule

adding a key attribute to an entity

Entity: problem-report

Attribute: @x13008

REMARKS: a specific rule identifies

@x13008 (unique number) as a key attribute

of problem report.

::: next statement

('x' to exit, 'help' to see menu)

>>> each problem report contains

the name of the person who detected

the problem.

PROBLEM SOLVER PASS NUMBER 1

Integrating structure:

(@a13864 (args (problem-report)

(@x13792))

(pr (consist-of))

(descr-subj (problem-report

(q (each))))

(descr-obj (_x13792 (q (?))))

(instance-of (description)))

firing consist-of-first-arg-entity

rule

adding an attribute to an entity

Entity: problem-report

Attribute: _x13792

REMARKS: a specific rule identifies

@x13792 as an attribute of problem-report.

@x13792 represents the concept "name of

the person who detected the problem."

::: next statement

('x' to exit, 'help' to see menu)

>>> each problem report contains

the location of the procedure.

PROBLEM SOLVER PASS NUMBER 1

43

Integrating structure:

(@a14428 (args (problem-report)

(@x14356))

(pr (consist-of))

(descr-subj (problem-report

(q (each))))

(descr-obj (©x14356 (q (?))))

(instance-of (description)))

firing consist-of-first-arg-entity
rule

adding an attribute to an entity

Entity: problem-report

Attribute: @x14356

REMARKS: @x14356 represents the con-

cept "location of the procedure."

>>> each problem report contains

the name of the procedure that was

being run when the anomaly was

detected.

PROBLEM SOLVER PASS NUMBER 1

Integrating structure:

(@a15516 (args (problem-report)

(@x15444))

(pr (consist-of))

(descr-subj (problem-report

(q (each))))

(descr-obj (@x15444 (q (?))))

(instance-of (description)))

firing consist-of-first-arg-entity

rule

adding an attribute to an entity

Entity: problem-report

Attribute: @x15444

REMARKS: Qx15444 represents the con-

cept "name of the procedure "

::: next statement

('x' to exit, 'help' to see menu)

>>> a problem report is classified

as "open" while the problem remains

unsolved.

PROBLEM SOLVER PASS NUMBER i

Integrating structure:

(_a16385 (args (problem-report)

(open))

(pr (designate_by))

(theme (problem-report

(q (all))))
(designation (open (q (constant))))

(instance-of (action)))

firing binary-case-8-c rule

adding an attribute to an entity

Entity: problem-report

Attribute: open

::: next statement

('x' to exit, 'help' to see menu)

>>> a problem report is classified

as "closed" when the problem is

solved.

PROBLEM SOLVER PASS NUMBER 1

Integrating structure:

(@a17090 (args (problem-report)

(closed))

(pr (designate_by))

(theme (problem-report

(q (all))))
(designation (closed

(q (constant))))

(instance-of (action)))

firing binary-case-8-c rule

adding an attribute to an entity

Entity: problem-report

Attribute: closed

>>> (entities)

The following entities were created:

Entity Name

problem-report

Immediate Parent Entities

Key Attributes

number:

@x13008 (cf (is-a number)

(@a13014))

Non-Key Attributes

name :

@x13792

location:

_x14356

name:

_x15444

open

closed

(cf (is-a (name))

(@a13798))

(cf (is-a (location))

(@a14362))

(cf (is-a (name))

(@a15450))

REMARKS: After reading the paragraph,

the problem solver has created the entity

problem-report, with one key attribute and

five other attributes.

::: next statement

('x' to exit, 'help' to see menu)

44

