
A User-System Interface Agent

Nagi T. Wakim

Sadanand Srivastava

Mehdi Bousaidi

Gin-Hua Goh

Center for Research in Distributed Computing

Department of Computer Science

Bowie State University

Bowie, MD 20715

N95- 27379

 jss$

ABSTRACT

Agent-based technologies answer to

several challenges posed by additional

information processing requirements in

today's computing environments. In

particular, (1) users desire interaction

with computing devices in a mode which

is similar to that is used between people,

(2) the efficiency and successful

completion of information processing

tasks often require a high-level of

expertise in complex and multiple

domains, (3) information processing

tasks often require handling of large

volumes of data and, therefore,

continuous and endless processing

activities.

The concept of an agent is an attempt to

address these new challenges by

introducing information processing

environments in which (1) users can

communicate with a system in a natural

way, (2) an agent is a specialist and a

self-learner and, therefore, it qualifies to

be trusted to perform tasks independent

of the human user, and (3) an agent is an

entity that is continuously active

performing tasks that are either

delegated to it or self-imposed.

The work described in this paper focuses

on the development of an interface agent

for users of a complex information

processing environment (IPE). This

activity is part of an on-going effort to

build a model for developing agent-

based information systems. Such

systems will be highly applicable to

environments which require a high-

degree of automation, such as, flight

control operations and/or processing of

large volumes of data in complex

domains, such as, the EOSDIS

environment and other multi-

disciplinary, scientific data systems.

The concept of an agent as an

information processing entity is fully

described with emphasis on

characteristics of special interest to the

User-System Interface Agent (USIA).

Issues such as agent "existence" and

"qualification" are discussed in this

paper. Based on a definition of an agent

and its main characteristics, we propose

an architecture for the development of

interface agents for users of an IPE that

is agent-oriented and whose resources

are likely to be distributed and

heterogeneous in nature.

45

The architecture of USIA is outlined in

two main components: (1) the user

interface which is concerned with issues

as user dialog and interaction, user

modeling, and adaptation to user profile

and (2) the system interface part which
deals with identification of IPE

capabilities, task understanding and

feasibility assessment, and task

delegation and coordination of assistant

agents.

OVERVIEW OF AN AGENT-BASED

MODEL

There are almost as many definitions of

agents as there are researchers in this

field. Traditionally agents have been

defined according to their capabilities

and architectures. For Miley,

"intelligent agents" are nothing but

programs "that learn the habits of a user,

receive instructions, and then run off to

receive or manipulate data" [Miley

1993]. Others, on the other hand,

perceive agents as specialized action-
oriented entities that can form a

collaborative working-group and acquire

their knowledge from past experiences

available to each other as a they

collectively attempt to solve a problem

[Lashkari 1994]. While Shohamdefines

his agent as an entity that is perceived to

have different states in line with mental

components such as belief, capability,

choices, and commitments [Shoham

1993]. Lastly, Ted Selker sees an agent

as a program "that simulates a human

relationship, by doing something that

another person could do" [Selker 1994].

However, we define an agent as an entity

that is capable of performing information

processing tasks which are delegated to

it with incomplete specifications. An

agent may be represented by a

processing element, hardware or

software, which is qualified to perform

tasks in a particular domain.

Agent Characteristics

An agent can best be described by the

following main conceptual and

operational characteristics:

• Existence

An agent exists as a processing element.

It is created either by initiation or

through cloning. A cloned agent inherits

the same capabilities and qualification as

its parent. However, an agent that is
initiated for the first time will evolve to

qualify through training.

• Self-Determination

An agent must be able to describe its

capabilities to potential users/clients.

This property, which is a type of

reflection, is essential in order for an

agent to determine whether or not to

delegate a task to a particular agent.

• Delegation

An agent must be able to accept

delegated tasks as well as be able to

delegate tasks to other agents.

Therefore, an agent may play the role of

a client or a server depending on its

responsibility in performing a task.

However, delegation should occur only

after it has been determined that an agent

is capable of performing a task.

46

• Operation

There is a number of capabilities which

define the operational aspects of an

agent:

(1) Concurrency: being able to operate

in parallel and, therefore, contributing to

animproved system performance.

(2) Autonomy: requiring minimum

intervention from other agents or users

and, therefore, possessing a greater level

of independence.

(3) Cloning: being able to reproduce

itself with identical capabilities and,

therefore, maximizing system reliability

and performance through dynamic

parallelism.

(4) Migration: being able to relocate

from one node to another in a distributed

system. This can lead to improved

efficiency through balancing workload,

minimizing network communications,

and providing locality of service.

(5) Persistence: being able to try

different possibilities in a solution space

until a task is performed provided no
time constraint is violated.

• Communication

An agent can communicate with other

agents in four different ways:

(1) Direct manipulation takes place when

an agent directly instructs another agent

to render a service. This is used in

support of task delegation.

(2) Confirmation is a way for an agent to

ask another to confirm an action, usually

by responding with yes or no.

(3) Feedback is a way of providing

positive or negative reinforcement after

the completion of a task. This helps

agents assess their own performance and

learn from their own experience.

(4) Negotiation is a way for two agents

to enter into a brief dialog in order to

agree on some terms and/or constraints

before a task is delegated.

The Qualification and Trust Factor

Since agents are intended to perform

complex tasks, mostly independent of

the human user, it is essential that an

agent be qualified to perform tasks in a

particular domain. Therefore, we extend

our prior definition of an agent to

include qualification while

recommending that a computer process

does not qualify to be an agent unless it

meets the following:

The process's program must be

correct. That is, it must conform to

design specifications and testing

standards based on proven software

engineering principles. However, a

correct program does not imply that

the corresponding agent will be able

to perform all the tasks delegated to

it.

The process must have access to a

knowledge base within a well

defined domain. The knowledge base

itself must be correct, that is, its facts

and rules are consistent and it has

been verified by a (human) domain

47

expert. However, completeness is

not a prerequisite to correctness.

It is important that all of agent's

qualification standards be observed, for

it to qualify to perform various tasks,

and be trusted [Lashkari 1994] by the

users or the agents it assists. All agents

become qualified after a period of

training through which the knowledge

base itself is built. Once an agent

becomes qualified, it is then ready to

assume its responsibilities. Therefore,

since an agent is a representative of a

user (directly or indirectly) with an

opportunity of being delegated tasks, it

has to be trusted based on certain level

of confidence which can only be

determined through qualification.

MULTI-AGENT BASED SYSTEMS

A multi-agent based system is an

environment in which a community of

agents work collaboratively on solving

problems with a common domain.

However, each individual agent has a

particular role to play which depends on

the expertise and the specialization of

the agent.

Since agents are highly specialized and

are often distributed over a network of

computers, it becomes more difficult to

provide potential users with transparent

access to system services. Therefore, we

introduce an interface agent to facilitate

such access.

THE USER-SYSTEM INTERFACE

AGENT (USIA)

USIA is a special agent that may be

thought of as a "middle-man" between
human users and an information

processing environment (IPE). An

USIA may also be viewed as a front-end

system which provides human users with

a transparent interface to a community of

agents of which each agent may have a

different type of expertise and, hence, a

special interface protocol. Therefore,

without an USIA, a user who is in need

of information processing services will

need to first locate other agents in the

IPE that are capable of performing its

task and then learn to interact directly

with each of them based on their

interface protocols.

USIA offers an intuitive approach to the

way a user can request services from an

agent-based system by shifting the

burden of locating and interacting with

agents from the user to itself.

Main Responsibilities of USIA

USIA accommodates interaction with a

whole spectrum of users ranging from

novices to experts. In doing so, it

performs a series of tasks:

User Dialog: USIA provides its

users with interaction capabilities

through a graphical interface which

offers two types of interaction media:

(1) a taxonomy-based 'select-and-

combine' type of interface that is

dynamically derived from domain-

specific services which are available

in the IPE and (2) a restricted query

language that is simple enough for

novice users to state their fuzzy and

often ambiguous requests, but is

capable enough for expert users to

state their specific and often

complete requests.

• User Adaptation: The main

advantage of USIA over a common

48

interface system is that it is capable

of monitoring user interaction with

the IPE and, based on user modeling

techniques, it is capable of adapting

to changes in user profiles. The

purpose of user modeling is to give

USIA the ability to predict user

behavior and, hence, assist the user

more efficiently. USIA is also

capable of gathering unobstructively

usage patterns and offers facilities to

automate them and build a

knowledge base of user models.

This knowledge base is then used in

two ways: (1) to aid in resolving

ambiguity in user requests and,

hence, understanding them and (2) to

predict possible next steps in user

requests and, therefore, minimize

interaction.

Task Understanding and Delegation:

In order for USIA to handle high-

level requests for processing

information (e.g., data searches), it

needs to complete a number of steps:

(1) be aware of the capabilities of the

IPE as reflected in a knowledge base

and the services provided by the

Agent Manager, (2) analyze and

understand a request, (3) decompose

a request into a set of tasks, (4)

assess service feasibility based on the

current state of IPE capabilities, i.e.,

availability of agents with the needed

specialty, (5) delegate tasks to

qualified agents, and (6) coordinate

execution and assemble and

communicate results back to the

user.

A Real-WorldAnalogy of USIA: The

Hotel Concierge

One way to model USIA is to think of it

as a concierge in a hotel environment

whose main role is to assist hotel patrons

in obtaining services which are in turn

provided by various types of specialists.

The pool of resources available to the

concierge may include specialists such

as car rental agents, travel agents,

laundry cleaning agents, and taxi cab

dispatcher agents.

As Figure 1 illustrates, a hotel concierge

is an interface between a hotel guest

(i.e., a user) and the specialist agents

(i.e., the IPE). A hotel patron may ask

for a variety of services from the

concierge. Once the concierge accepts a

service request, it then identifies the

appropriate specialists and delegate

responsibilities to them.

rm_

Figure I. A Real-World Anaglogy of USIA,

Suppose, for example, that a guest

desires to take a vacation somewhere,

and would like the concierge to handle

all the necessary arrangements, such as

air travel, hotel accommodation, and tour

guides. All the guest has to do is to

present him/herself to the concierge and
to ask for the services with the desired

specifications, such as, intended date and

time, travel destination, and cost range.

The guest may also specify any special

preferences that he/she might have

49

concerning choice of an airline, the type

of seat, and the type of meal.

The main point here is that the

concierge, which is a special type of

agent, must be able to provide different

types of support and, therefore, handle

the following different modes of

interaction. However, in all cases, we

assume that the service requester (i.e., a

hotel patron) always has a goal or a

purpose, such as, the intent to take a
vacation.

1) The user knows the task (i.e., what to

request, such as, arrange a vacation to

Bermuda for two people during the

month of January), knows the task is

feasible, has the expertise (i.e., the

'know how'), but needs someone else to

perform the task for him.

2) The user knows the task, knows the

task is feasible, but does not have the

expertise to perform the task.

3) The user knows the task but has no

information on its feasibility.

4) The user only has a goal but has no

knowledge of what to do, whether or not

it is can be done, or how to do it.

Obviously, each type of user requires a
different level of attention from the

concierge and, therefore, the kind and

length of dialog will vary with each type

of user.

This example highlights an important

role that a user interface agent can play

in providing services transparently and

efficiently to various types of users

whose requests may

sources of expertise

serviced.

require several
in order to be

• ArchitecturalHighlights

As illustrated in Figure 2, the

architecture of USIA is comprised of

two main components: the User Interface

(UI), and the System Interface (SI). The

User Interface is responsible for

facilitating the interaction with human

users, monitoring their behavior in order

to learn their habits, and be able to adapt

in order to better serve their needs. In

tum, UI interacts with the System

Interface which is responsible for

interacting with a community of

specialty agents in the IPE in order to

process service requests.

i:_

IPE

Figure 2. USIA's High Level Architecture.

Figure 3 outlines a detailed architecture

of an USIA prototype system which has

been developed as a front-end to an

agent-based system, known as AFLOAT

[Truszkowski 1993], for Report

Generation in the Flight Operations

domain at the NASA/Goddard Space

Flight Center.

50

Figure 3. USIA Prototype Architecture.

• The User Interface Module

The primary goal of the UI module is to

formulate a user request for information

processing services and pass it to the

System Interface for processing. In the

first phase of development, USIA

employs two interaction mechanisms, as

shown in Figure 4-a:

.

.

The user is presented with a

dynamically generated, domain-

driven taxonomy of windows from

which the user 'selects-and-

combines' services based on which a

request statement is formulated by

the system. Figure 4-b shows a

snapshot of sample windows for the

Flight Operations Report Generation
domain.

The user types in a service request as

a query statement chosen from a

restricted, intuitive language which

was developed for this domain. This

language has capabilities which

range from being able to show

available services and generate

reports to being able to display and

mail reports. The following are

some examples statements:

• show category command and data

handling subsystems

generate category command and data

handling subsystems report orbit decay

starting 11/10/84 ending 12/13/84 in
graphics

• mail report orbit-decay-1

tom@internet, anne@internet

to

51

Orahpic output

Please select from the reports below:.

J Batt4_j Health and Safety

Solar Array Performance

Thermal System

-I MPS Heater Duty Cycle

C_ritical MP_ Events" Summary

i OenerateAU] I Glenerat_ Selectimx] CANCEL]

Figure 4-b. Graphical User Interface to a Report Generation and Managerment Application.

Once a request has been formulated, it is

passed on to the System Interface for

processing. Upon execution, results are

then presented to the user through UI.

Figure 5 illustrates the main steps of UI.

This version of USIA incorporates

minimal user modeling techniques which

include capturing user requests and

logging them for comparative analysis in

order to predict future user behavior in

requesting services. It also allows for

automating tasks based on users

preferences for routine and off-line

processing. However, efforts are

underway in the second phase of USIA's

development to employ a significant

user modeling component which
addresses issues such as: (a) modeling of
individual users as well as classes of user

populations, (b) a structure for user

models, (c) techniques for identifying

changes in users behavior and to reflect

them in the corresponding models, and

(d) methods for adapting to changes in
user models in order to serve the end

user more efficiently.

....... I

I

I

t

Figure 5. User Interface Flowchart.

On sips]

R_a_Maasgw

52

• The System Interface Module

The goal of the SI module is to process a

service request which has been received

from a user via the UI module. Each

request is first parsed and analyzed for

grammatical and semantically

correctness. Upon detecting any errors

(including ambiguity), USIA attempts to

correct the request based on its

knowledge of the domain and the user

(through user modeling) and may enter

in a dialog with the user for request

clarification purposes if necessary.

In addition, SI is responsible for

decomposing a request into tasks- a task

is defined as one unit of work which can

be delegated to a single agent at one

time. Therefore, depending on the

available pool of specialty agents, a

service request may be decomposed into

one or more tasks. Also, a request may
be either local or remote. A local

request is one which can be processed by

USIA and need not be delegated to

another agent, for example: a request to

list reports which have been already

generated and are saved in the user's

work space.

However, a remote request is executed

by delegating each of its corresponding

tasks to an agent that is capable of

performing it. In order for USIA to

assess the feasibility of a request, it

utilizes an Information Base (IB) which

catalogs information on all which are

available in the IPE at that particular

time. For each agent, the IB stores a list

of its skills which is used by USIA in

order to determine which, if any, agent is

capable of performing a particular task.

Upon making such a determination, SI

formulates a special message and

delegates the task to the agent while

assisted by an Agent Manager (AM),

which is responsible for locating the

agent and dispatching the message (i.e.,

the task) to it. In our present

configuration, there is one AM for each

node of a distributed IPE.

I
Figure 6. System Interface Flowchart.

Once a task is delegated and performed

by an agent, its results are communicated

to a Results Manager via the lB. The

Results Manager is a special daemon

which is responsible for assembling

outcomes from processing a request (by

executing one or more tasks) and for

informing the UI module, which in turn

notifies the user. Once results are ready,

a user may choose to display them

and/or save them. Special agents are

utilized depending on the type and

format of the result object.

Upon request by user, special agents are

utilized to display the results depending

on the format and type of a result object.

53

Integrating UI and S! Modules

Figure 7 illustrates the cyclic flow of

high-level activities from the user

through the different components of

USIA and the interaction with the IPE,

via the Agent Manager and the

Information Base, and back to the user.

We should note that the whole

processing of a request is done in the

background and transparently from the

user.

zk
pkkupmqu_ _ Suh_tr_gtU • _*ri

t I F /
I /
l=="

Figure 7: User Interface ,it, Syilem Intimate Interaction

CONCLUSION

An Assessment

The first version of USIA demonstrated

a few limitations at the User Interface

level. Our form of domain restricted

query language proved to be not as

flexible as we had hoped, especially for

novice users. The taxonomy of windows

option was also a bit cumbersome to use,

simply because the user had to go

through several levels before a request

could be formulated. Also, we noticed

that, specially for requests that might

require extended time to be serviced,

there is a need to display status

information during the different

processing stages of a request and to

allow the user to abort a request at any

time after it has been delegated to USIA.

Further Work

The above limitations and other

proposed features have posed several

challenges in the USIA project. Work is

already underway in the second phase of

development to make progress in two

main areas: ease of use and intelligence.

To this end, the following issues and

features are being addressed:

• Provide for a two-way voice

interface for interaction between

users and USIA.

Provide for a full natural language

processing capability for interface

and request delegation purposes.

Incorporate a capable user modeling

subsystem which would support

modeling of different user types in a

multi-domain environment.

Our experience has been challenging but

enjoyable. We believe that any progress

in this field is bound to have a

significant impact on the way people

perceive and work with computers.

ACKNOWLEDGMENTS

We wish to acknowledge the

participation of other members of the

USIA project, specially Alexander

Glockner, Amit Thukral, Gayathri Rao,

Jerome Farley and Mark Flemming. We

are thankful for their valuable

contribution.

REFERENCES

1. Michael Miley (Agent Technology)

MacWeek, Apr. 19, 1993.

i

!

m

4

=

54

o

°

.

.

.

.

,

Yezdi Lashkari, Metral Max, and

Maes Pattie. 1994. Collaborative

Interface Agents. In proceedings of

the National Conference on Artificial

Intelligence, 444-449, Seattle,

Washington: AAAI Press.

Yoav Shoham. 1993. Agent-

oriented programming. Artificial

Intelligence, Vol. 60 (1), pp. 51-92,
Elsevier.

Henry Kautz, Selman Bart, Coen,

Michael, Ketchpel Steven, and

Ramming Chris. 1994. An

experiment in the Design of Software

Agents. In proceedings of the

National Conference on Artificial

Intelligence, 438-443, Seattle,

Washington: AAAI Press.

Norman Donald. 1994. How Might

People Interact with Agents.

Communications of the ACM, Vol.

37, N.7, pp. 68-71.

Etzioni Oren, Weld Daniel. 1994. A

Softbot-Based Interface to the

Intemet. Communications of the

ACM, Vol. 37, N. 7, pp. 72-76.

Ted Selker. 1994. "Coach: A

Teaching Agent That Learns".

Communications of the ACM, Vol.

37, N.7, pp. 92-99.

Truszkowski, Moore, Odubiyi.

1993. Working paper on "A Multi-

Agent-Oriented Approach to Support

Satellite Flight Operations Analysis.

NASA/Goddard Space Flight Center.

Greenbelt, MD.

55

