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Abstract

In this paper the autonomy concept used by ESA and NASA is critically evalu-

ated. Moreover, a more proper ground-control/spacecraft organizational structure is

proposed on the basis of a new, more elaborated concept of autonomy. In an extended

theoretical discussion its definitional properties and functionalities are established. The

rather basic property of adaptivity leads to the categorization of behaviour into the

modes of satisfaction and avoidance behaviour. However, the autonomy property with

the most profound consequences is goal-robustness. The mechanism that implements

goal-robustness tests newly generated goals and externally received goals on consis-

tency with high-level goals. If goals appear not to be good instantiations or more

acceptable replacements of existing goals, they are rejected. This means that ground-

control has to cooperate with the spacecraft instead of (intermittently) commanding
it.

Introduction

In current spacecraft control engineering two theoretical approaches can be distinguished,

viz. [1] equipping spacecraft with autonomy, making them less dependent on ground con-

trol and [2] distributing intelligent functions to optimize performance on pre-defined system

requirements. Spacecraft autonomy is viewed as a major design goal by leading institu-

tions such as NASA and the European Space Agency (ESA). The main reason for making

spacecraft less dependent on ground control, cf. [1], is that total control of the spacecraft is

practically unfeasible due to e.g. limited visibility of on-board events. The reason for dis-

tributing intelligent functions, of. [2], is optimization from the point of view of the complete

ground-control/spacecraft organization e.g. reduction of operation costs and localization of

computational resources, cf. (Grant, 1994; Aarup et ai., 1994).
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Usually autonomy is defined loosely, which inevitably leads to problems when it is attempted

to be used as a design specification cf. (Easter & Staehle, 1984). We critically evaluate the

autonomy concept developed by ESA in section 2. From this it will be clear that, before

trying to use it, the concept of autonomy needs to be defined first, which is the aim of this

paper. The concept of autonomy is developed from contrasting two possible organizational

design stances as known in Distributed Artificial Intelligence (DAI), viz. Multi-Agent Sys-

tems (MAS) and Distributed Problem Solving (DPS) in section 3, that correspond to the

design stances [1] and [2]. In MAS and [1] the emphasis is on autonomy, while in DPS it is

on dividing and localizing the functionality of the whole system. It will be pointed out that

the functionality of autonomy and the property of independence 1 belong to MAS. Although

DPS and MAS may be seen as poles of a continuum, the predominant pole determines both

the agent architecture and the organizational possibilities.

In section 4 and 5 we will engage in a full discussion of the origin of autonomy and its func-

tionafity. The argument runs as follows: agents that are exposed to uncertain circumstances

in which they want to persist have to be adaptive. Systems theory provides an elementary

architecture that is maximally adaptive (a feedback system) but has one fundamental inabil-

ity: it can't change its own goals. Yet, an agent that is based on a feedback architecture can

generate or receive new goals, but they have to be instantiations of the unchangeable, high-

level goals. In this respect changes to, or generation of goals is restricted, which provides a

heuristic warranty to goal approach; this is called goal robustness. Goal robustness provides

independence from other agents, it will only commit itself to goals that conform with its

high-level goals. Independence is thus specified and is a major characteristic of autonomous

agents. Finally, we will evaluate what the application in spacecraft architecture of this newly

developed concept of autonomy would mean.

2 Spacecraft Autonomy and Automation: a Critical Evaluation

The autonomy concept as developed by ESA (the Standard Generic Approach to Spacecraft

Autonomy and Automation; SGASAA, cf. (Pidgeon etal., 1992) was primarily intended to

enable spacecraft to continue with their mission, in case of temporary loss of contact with

ground control. Any spacecraft that can't be controlled from the ground station and has

no means of controlling itself soon perishes. Additional motivations for making spacecraft

more independent from ground control, are that due to small communication bandwidths

of deep space missions there is little visibili'ty of on-board events and, additionally, long

transmission time weaken promptness of the spacecrafts reaction. Also, operation costs

would be significantly reduced because there is no need for continuous presence of "marching

armies" of ground controllers 2.

XIndependence is often equated with autonomy, as in (Easter & Stachle, 1984, p. 2-1): "Spacecraft
Autonomy: The independence of the man/machine flight system from direct, real-time control by the ground
over a specified period of time _. In this paper, by independence 'withdrawal from or dismissal of control' is
meant. The paper is intended to specify the meaning of independence through defining autonomy.

2Although this quote is taken from a JPL paper (Easter & Staehle, 1984) it also reflects the SGASAA

viewpoint rather weft.
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Basically, the SGASAA concept proposes that the spacecraft should posses a copy of high-

level ground-control command sequences or goals (contained in the Master Schedule), so that

in the event of a communication failure the spacecraft is able to plan in order to reach the

high-level goals. Independent planning is done under supervision of an Onboard Management

System that, according to the concept, is able to reschedule the Master Schedule, monitors

task execution, co-ordinates and controls the various subsystems and payload managers.

Planning is hierarchical in the sense that there is a network of plans with at the top the most

abstract Long-Term Operations Plan that defines the objectives for an entire mission, and at

the bottom Elementary Commands. Also fault diagnosis and recovery should be performed
onboard in case a failure coincides with communication loss. There are three modes of

operation, viz. [1] routine mode, in which nominal and expected tasks are executed, [2]

crisis mode that deals with unexpected events that results in plan failure and [3] check-out

mode that checks the proper functioning of the soft- and hardware.

SGASAA has two major drawbacks that raise questions about the alleged autonomy of a

spacecraft with SGASAA functionality, viz. [1] the origin of the Master Schedule and [2]

the ability of fault diagnosis and recovery. The Master schedule is completely synthesized

at the ground station and it consists purely of expandable macro's. The spacecraft only has

the abilities to expand the macro's and set parameters, which cannot be called planning.

Moreover, ground control can bypass the Onboard Management System and directly com-

mand the payloads which would nullify all possible advantages in the case of independent

planning, e.g. the adequacy of decisions based on richer knowledge of the actual situation.

Concerning the second mentioned drawback, it was known from the outset that only ex-

pected failures could be catered for. However, failure recovery should, of course, go beyond

expected failures.

In spite of the SGASAA aims, the spacecraft remains dependent on the ground station for

almost all of its directing functions. In the remaining part of this paper we will develop an

alternative concept of autonomy that has a firm theoretical basis and opens up the way to

total independent functioning of the spacecraft. We will begin by examining two possible

design principles for interacting intelligent systems stemming from Distributed Artificial In-

telligence (DAI), viz. Distributed Problem Solving (DPS) and Multi-Agent Systems (MAS).

3 DPS and MAS as Design Principles for Interacting Agents

Distributed AI (DAI) is the field in which systems are designed that have intelligence dis-

tributed over a number of distributed nodes or agents. The intelligence consists of knowledge

about the problem space (that may or may not be fully specified) and knowledge about

problem solving. Applying DAI techniques is useful when the problem under consideration

is intrinsically distributed, e.g. geographically when monitoring the movements of vehicles

and hypothesizing about their paths, or coordinating the flight movements of aircraft, cf.

(Durfee et al., 1987; Durfee et al., 1988; Steeb et al., 1988). DAI systems can generally be

designed from two perspectives: Distributed Problem Solving (DPS) or Multi-Agent Systems

(MAS). Both systems consist of agents and their organization but DPS takes as its starting
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point a particular problem with an adequate organization of distributed nodes, while MAS

begins with design specifications of individual agents. (Bond & Gasser, 1988, p. 3) define

the two fields as follows:

* DPS considers how the work of solving a particular problem can be divided among

a number of modules, or "nodes", that cooperate at the level of dividing and sharing

knowledge about the problem and about the developing solution.

• MAS is concerned with coordinating intelligent behaviour among a collection of (pos-

sibly pre-existing) autonomous intelligent "agents", how they can coordinate their

knowledge, goals, skills, and plans jointly to take action or to solve problems.

However, these descriptions, however, don't supply a distinctive criterion for the two fields

since there can be many variations of designs that are intermediate. A reason to qualify a

system as either DPS or MAS would, in this view, be only a particular stance with which the

system is designed. A top down design, taking an organizational perspective, would qualify

th system as DPS while a bottom up design, aimed at designing individual agents, would

render a MAS. Figure 1 depicts this view.

DPS MAS

organization I coordination of activities possible cooperationorganization

T
agent-design embedded, strictly determinedbenevolent [ agent-design ] independent

Figure 1: DPS as top-down and MAS as bottom-up designs. The arrows
represent typica/consequences following from starting-point design restric-
tions.

(Durfee & Rosenschein, 1994) propose individually different utility functions and means to

maximize individual payoff as the fundamental difference between DPs and MAS. This is

an underspecification, however, because agents can be designed in such a way that utility

maximization of the individuals contributes to the higher order, organizational goal. Durfee

and Rosenschein therefore consider MAS and DPS properties in more detail to be more

specific about the self-lnterestedness criterion for MAS agents.

Another way to look at the difference is by considering DPS as a subset of MAS through a

certain number of extra assumptions that hold for DPS, viz. [1] the benevolence assumption,

i.e. agents are willing to help each other whenever possible, [2] the common goal assump-

tion, i.e. DPS agents all have the same goal which may be explicitly represented but may

also be embedded in the organization and possible roles agents can assume under Certain
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circumstances, [3] the centralized designer assumption, i.e. the designer controls all aspects

of agent behaviour in a fully specified environment. To summarize: in DPS the agent design

is completely dependent upon the higher order goal and behaviour is completely determined

by organizational choices meant to solve a particular problem.

There are a few problems with these criteria. First, as Durfee & Rosenschein observe, even

with the mentioned assumptions, DPS systems do not necessarily function optimal due to

non-optimal local decisions made by the individual nodes. Also, the extent to which the goals

should differ to categorize them as MAS agents is unclear. Finally, it is possible to equip

agents with a payoff function that instantiates a high-order goal which makes it difficult to

decide whether they are MAS or DPS agents. In fact, this was the reason to view DPS and

MAS designs as spanning a continuum in which both designs may have different starting

points. Table 1 contains a summary of the contrasting properties of DPS and MAS.

Table 1: Contrast/ng DPS and MAS properties

DPS MAS

agent design depends on organisational pre-existing / pre-formed agents
choices

benevolent self-interested

common goals/utility function individual goals/utillty function
fully specified environment unspecified / partly specified

environment

organizational coordination of results and/or societal cooperation on basis of joint plan
tasks formation

global success criteria situation assessment based on goal states

domain-specific problem solving individual problem solving / self-maintenance

Hence, neither the individual utility function, nor the restrictions on MAS that define DPS,

provide a decisive criterion. The problem is that although the possession of individual utility

functions seems s good candidate, it is difficult to determine whether they are dependent on

the social goal. In fact, goals in artificial agents are always dependent on the goals of the

designer _.

Thus, we argue that the only way to be certain that the agents are self-interested and that

their goal structure doesn't depend on the designer's, is that the agent's goal structure has

evolved from scratch in a real environment. This is the case only for living organisms. Hence,

autonomous agents cannot be designed but rather have evolved by themselves. Still, to be

practical, we can maintain a notion of quasi-autonomy. An agent is quasi-autonomous if it

mimics the functionality of autonomous agents. Autonomous agents have to preserve them-

selves, which is the first, and necessary, requirement for self-interestedness. Self-preservation,

in turn, requires adaptability.

3We can be quite fussy about this point and argue that even ff agents have random goals, they axe still

dependent on the designer's goals, because he or she has had reasons (motives) to design the agents' goal
structure in that particular way.
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It will be clear by now, that SGASAA functionality doesn't come near quasi-autonomous

functionality. SGASAA is much closer to the DPS pole, because of the limitless way ground

control can influence the goals of the spacecraft. Nevertheless, taking the fact into account

that spacecraft indeed face uncertain circumstances and that they should preserve themselves

(which is one of the motivations for SGASAA), its design actually should be closer to our

concept of (quasi-)autonomy. In the next section we will again consider the origin of the

goals of adaptive systems and further examine adaptive functionality from a theoretical

perspective to specify what autonomous agents should be capable of.

4 Autonomy as Resulting from Constraints on Adaptation

In this section we will give an explanation of the autonomy feature of independency that in

our view arises from the property of adaptivity. The first observation, drawn from traditional

systems theory, will be that maximally adaptive systems are goaLdirected, i.e. they try to

lift the discrepancy between measurements from situations and an internally represented

goal-state using feedback to guide action. Secondly we will address the origin of the goals

in adaptive systems. Since certain goals can't be changed agent-internally, we also have to

look at the goal development from a intra-specimen perspective, which will be called the

[ylogenesis of goals.

Finally, we will look at a possible architecture that takes elementary adaptive units as

its building blocks to comprise a more general adaptive system that besides the already

facilitated functionality of goal achievement, which we shall call satisfaction behaviour, also

displays goal patching or avoidance behaviour when the threat that a particular goal will

not be achieved becomes too big.

In this section, we primarily establish that adaptive systems contain a core of stable goals,
i.e. a core that can't be influenced. In the next section we will look at what that means for

a system that is capable of generating goals endogenously or capable of receiving external

goals. Figure 2 summarizes what issues will be considered in what order in this and the next

section.

Independence _ Goal-Robustness ,a

Autonomy _
Biological or System

Adaptivity _- theoretical foundation

Goals and Genesis

Figure 2: The taro parts of autonomy and their relationship. Independence
is justitled by the MAS property of adapticeness to uneerta/n circumstances.
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4.1 First Ramifications of Adaptivity: a Systems Theoretic Approach

"l_aditional]y, system theory, cf. (Glisson, 1985), roughly divides (linearlzed) systems into

three categories, viz. [1] I/O systems [2] systems with a state representation or a state vector

[3] feedback systems. I/O systems doesn't have a 'memory' and their output is a (linear)

transformation of the input. Systems with a state representation have an output function

which is dependent on the previous state a_d possibly a direct component from the input.

In feedback systems, output is directed back through a function that contrasts output with

desired output. A block-diagram of an output-feedback system can be found in figure 3, cf.

(Owens, 1978).

e(t) __

feedback loop

Figure 3: A constant output feedback-control system.

The system equations are as follows:

= + e R"
v(t) = v(t) e R", u(t) e R'

The state vector is denoted by z, together with corresponding transformation matrix A it

comprises a 'memory'; u is the input vector with transformation B; Y the output vector that

depends on the state through transformation C. A m × 1 vector of demanded outputs, r(t)

can be constructed, to result in an error vector e(t) = r(t) - y(t) that is fed back into the

system, resulting in the input u(t) = De(g) where D is a constant I × m matrix.

An output feedback control (OFC) system is a straightforward extension of the two simpler

systems. In addition to the I/0 model, 'memory' is added which makes iterated action

possible, and in addition to the state-vector system feedback is added, which makes it possible

to compare output with desired output.

Comparing output with demanded output is a test for performance, or a test to what extent

the situation converges towards the desired state. Demanded output can thus be seen as a

goal and feedback gives an indication of how closely the system has neared the goal-state 4.

The limitations of the OFC system are that only information is processed that a priori was

established as goal-relevant.

According to a classification of (Cariani, 1991, p. 786), there are two types of systems below

4This system-theoretic classification can very well be mapped on the classification of (Genesereth

Silsson, 1987). They distinguish [1] tropistic agents (I/O systems) [2] hysteretic agents (state vector systems)
and [3] knowledge-level systems (OFC systems).
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the adaptive one that don't dispose of the capacity to learn or use a feedback design, viz. [I]

fixed computational and [2] fixed-robotic. They do have the capacity to respectively execute

pre-specified rules and execute fixed percept-action combinations but not to optimize their

percept-action coordination. He calls the OFC system the adaptive device type and there is

another more general adaptive system, vlz. the genera/evolutionary device type. Cariani's

classification can be found in table 2. In the next subsection we will focus on the difference

between the adaptive and the general evolutionary system in order to establish the maximally

feasible adaptive system and its properties.

Table 2: Device types according to Cariani, a representative of A-Life

Device Type "capacities Limitations

fixed reliable execution of pre-specified rules limited to pre-specified rules and states
computational

-fixed robotic reliable execution of fixed percept- no feedback or learning from the
action combinations environment

adaptive performance-dependent optima]ization limited to percept _z action categories
of percept-action coordination fixed by the sensors _ effectors

general creation of new percept _ action cat- time to construct _ test new sensors 8z
evolutionary egories: performance-dependent opti- effectors may be very long

malization within these categories

4.2 Passing Fitness Criteria through the Genome

As we have noted in section 3 the genesis of the goals in adaptive systems plays a key role in

the notion of autonomy. To be genuinely autonomous, the goals of an agent should originate

from the objective of self-preservance in an uncertain environment. The issue we will now

consider concerns the process of genesis, i.e. how goals can evolve and especially the question

whether individual agents are capable of changing or generating a//of their goals themselves

(i.e. intra-specimen) or that change happens inter-specimen.

According to Cariani there exists an adaptive device that is more general than an OFC, viz.

the evolutionary device type. This device is capable of the development of new sensors, estab-

llslfing new computations on new sensory primitives (what he calls eplstemica/ly autonomous,

we will not consider this property further) and constructing their own performance-measuring

apparatuses (this is what he calls motivatlonally autonomous, Ibid. p. 789). Motivationally

autonomous agents change their evaluative criteria (what we have called norms Or goals)

themselves.

OFC systems are directed towards the norm, they evaluate output using the norm. If they

would be able to change their norm, there would be no guiding criterion because the norm

itself has that function. This means that systems capable of changing the norm must do so

arbitrarily. For systems that must maintain themselves changing the goal that they want to

achieve arbitrarily involves a high risk. Goals that are generated arbitrarily may direct the

system to self-destruction. Without a stable prior goal, there is no way new goals can be

tested on adversity or beneficiality. It could even be argued that the general evolutionary

82



devicetype can't be classified as an adaptive system because there is no demanded output,

after all, if something is demanded then a random mutation of it is not necessarily demanded.

If we look at the evolution of natural agents, experiments that randomly change the architec-

ture of organisms take place but inter-specimen rather than intra-speclmen. Mutations take

place from one generation on to the next and the success of this experiment is determined

by fitness criteria s. If a specimen matches the fitness criteria well enough, the changes are

passed through the genome and remain stable in the next specimen. Comparing possible

architectures in terms of systems theory leads to the conclusion that OFC systems have

an advantage because they are goal-directed but only if their norm is a proper representa-

tion of environmental survival conditions, i.e. if the norm has developed under evolutionary

conditions. We call the evolutionary development of goals the fylogenesls of the goals.

Changing evaluative criteria arbltrarl/¥ is unpermittable for individual specimens because it

leaves them without any success criteria of their action which would nullify the advantages

of feedback. From this we conclude that a more general adaptive device through flexibility

of the totality of goals, is not feasible. However, there is an extension of the adaptive device

that consists of layers of OFC systems and has important, indlspensable functionality. We

will turn to this now.

4.3 Reflectiveness in Task Networks of OFC systems

Although Cariani's evolutionary device type doesn't provide a more general adaptive system

than the OFC, the adaptive functionality of an OFC can be extended. Briefly this can

be achieved by recursively linking the OFC systems into a task network so that there is a

hierarchy with at the top level OFC systems representing the fylogenetic goals (we will call

these primitive goals) and at the bottom level OFC systems that perform action primitives

and intermediate subgoals 6.

In comparison to classical planners, cf. (Charniak & McDermott, 1985, ch. 9), task networks

consisting of OFC systems have an important advantage over traditional planning operators.

In traditional planning theory monitoring the execution of a plan is identified as one of the

most intricate problems (Ibid. p. 489, 524). The decision when to abandon a subgoal

(i.e. assessment of the situation to establish the rate of convergence to the goal state), is

of prime importance in plan-execution monitoring. This decision can be based on the rate

of goal-state convergence. However, a single OFC system is not able to change its action

pattern; in fact, it can only amp///'y its attempts. Hence, if convergence is too slow or if

the situation diverges from the goal-state, there should be a possibility to change the action

pattern altogether.

The creation of a task network with OFC systems is straightforward because each OFC has

SFitness is defined in (Koza, 1992, p. 94) as the probability that an individual survives to the age of
reproduction and reproduces. In Artificial Life there are usually other methods of measuring fitness than
reproduction, e.g. in a population of artificial ants it can be the number of food parcels eaten.

ewe will not elaborate much on the linking mechanism because of space limitations. An elaborate

discussion of this can be found in (Nilsson, 1994).
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a description of its goal state in r. If lr is the overall goal and there exists a schedule of

(rl U r2 U ... U r,_) __D_-, a task network for Ir exists. Execution of any current subgoal can be

monitored by examining if the output converges to its desired state:

(rp - yp(t)) -(rp - yp(t + 1)) _< c. Using an abstract matching operator M, then if there is

an alternative goal rq such that rqMr P and zp(t) _ zq(t), then an alternative task network

can be reassembled on the failure of a subgoal. We wi_ cal] this the 'reflective' property of

the system.

In reflective systems two modes of behaviour can be distinguished: satisfaction behaviour in

which a task network is synthesized after which all the subgoals are attempted to be satisfied

and avoldance behaviour in which replanning is initiated to patch up failing (sub)goals. Sole

OFC systems axe not able to find alternatives for their attempts to satisfy their goals, while

reflective systems are (in principle) able to apply alternatives.

With the property of reflectiveness we have completed our specifications for a system that

has maximal adaptivity. Before we continue to examine its properties, we will make one last

remark about the epistemological status of the ontogenetic goals. In the previous section

we argued that a system that has no fixed evaluation criteria is undirected and that the

criteria are fixed by environmental constraints passed on through the genome. We now have

a network of OFC systems that interact through their goal-state descriptions (the respective

r's). Because the OFC systems are hierarchically organized, higher level goals can act as

supervisors of lower level goals and change their goal-state depending on performance which

creates possibilities for percept-action coordination that Cariani only granted the general

evolutionary device type 7.

5 Goal-Robustness, Independence and Autonomy

In the previous section the two main functional modes of goal-directedness, i.e. satisfaction

and avoidance behaviour were discussed, and the canonical position of the goals was estab-

lished through examining the adaptive design. The canonicailty of the goals has another

implication, viz. the property of goal-robustness. If a system has the property of goal-

robustness all of its goals are instantiations of a set of irreducible or primitive goals of which

the existence w_ shown in the previous section. The issue in this section is the functiona_ty

of the system that can generate endogenous or receive external goals.

Section 5.1 demonstrates the connection between the autonomous feature of independence

as proposed by (Castelfranchi, 1994) and the property of goal-robustness. Independence

derives from a mechanism that implements goal-robustness, i.e. only those goals are as-

similated and scheduled that are consistent with the primitive goals. Finally, the criteria

7His claim that a system is only truly emergent if a system places itself outside the observational frame
of the designer is, according to our opinion, mistaken. (Rosen, 1986) has made a case for the informational
equivalency of behavioural determining factors, i.c. genome and state, that shows the fundamental impos-

sibil;ty of reducing observations to one of these factors as an explanation. In fact, this is a methodological
problem of underdetetminedness of observations through which it is in principle not possible to make a
distinction between the adaptive - and the general evolutionary device type.
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for assimilating directives from other agents are formafized which completesthe features
necessaryfor autonomy. Figure 4 schematicallyshowsthe canonicalposition of the goals.

Autonomy

Independence

Adaptivity

conditionalassimilation
of new information

_ C_al-Rob_eu 4

Functionalityof
Goal-directedness

partialplans

avoidance satisfaction
(reactivness)

I
Goals

J

Figure 4: The two parts of autonomy and their relation. Independence is
just//ied by the MAS property" ofadaptiweness to uncerta/a circumstances.

5.1 Criteria for Autonomy

According to CasteIfranchi there are two kinds of autonomy, viz. [1] autonomy from physical

context (from environment) and [2] autonomy from social context (from other agents). He

refers to [1] as the "Descartes Problem": "Which Agent Architecture guaranties that the

Agent is neither completely determined by stimuli (stimulus dependent), nor completely

unreactive to environmental changes?" (p. 52).

We interpret [1] as the question of how action can originate from the agent, i.e. endogenously

rather than completely from the current situation. The embedded feedback systems archi-

tecture, discussed in the previous sections, provides a solution. All the goals in the planning

system are instantiations of the fylogenetic goals, and therefore provide an explanation of

behaviour that doesn't originate from the current situation. Thus, the task network com-

bines situational appropriateness and conformity to the fylogenetic goals s. The execution of

the task network is constantly being monitored, adjusting when necessary and even aban-

doning the current action pattern if it appears to be inadequate. Execution monitoring and

adjustment provides the required reactivity. With the ability to pursue endogenous goals, an

agent could be said to be independent from its environment. Actually, the property that is

intuitively closer to independence is independence from other agents, which is Castelfranchi's
second criterion.

Autonomy from social context means that an agent will not unconditionally follow goals

others propose to it. This follows naturally from the fact that primitive goals are stable and

SExplanation of behaviour of autonomous agents is diachronical rather than synchronical as it is in I/O
systems.
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that the agent's goal-state representations should be consistent, i.e. not have contradictory

goals, we will call this the property of goal-robustness. Providing the agent with goal consis-

tency is a distinct problem that requires various goals to be contrasted along a consistency

measure. It is clear that a consistency measure should be a function of the subjected goal

and the primitive goals. In the next subsection we will look at what this function might look

like.

5.2 Checking New Goals on Consistency

The question of how the goal state of individual agents changes when agents try to influ-

ence each other's goals explicitly, i.e. through communication of directives, is addressed by

(Werner, 1989). He contends, as we do, that in real life situations complete plans cannot be

communicated (Ibid. p. 7) and that goal states can't be changed by others unconditionally

(Ibid. p. 17). However, except for a few well-defined cases in which the organizational

structure determines the conditions under which new goals are assimilated (so called roles),

he doesn't define a function that tests received goals on compatibility with agent-dependent

utility functions. We will make a first attempt in order to specify the property of goal-

robustness that was introduced in the previous Sect_om -

Task networks are usually assembled by searching for task operators that reduce the differ-

ence between the current - and the goal state (cf (Charniak & McDermott, 1985, ch. 9)).

The result is a gos/conjunction lr that can be matched against the current situation repre-

sented in I. In lr there may be a number of variableS, either to be bound to other operators

or to primitives in the situation representation, we wiU denote this as follows: _r0 in which

0 represents the set of free variables °. On assembly of the plan, the setof differences can be

reduced by replacing g0al conjuncts by conjuncts that have greater detail and therefore a

better match with the situation, until the planner has found a max/ms/match Substitution.

In effect this is a reduction of the number of free variables to a substitution such that for all

other substitutions 0_, ]7¢0- I[ < [_rO'- I I.

In a task network the leaves of the planning tree are matched in this way to the situations.

However, we do not only want to know how well a task network fits s particular situation but

also how well a particular taks network instantiates the primitive goals, which is ultimately

where the agent is directed at. Any subgoal can be tested on fit with a higher-level goal from

which a utility value is produced which is maximal when the match is perfect, i.e. when there

are no free variables. On perfect match, a task network will completely be executable and

it wiU realize a high-level goal. Analogous to the matching of a task network to a particular

situation, a particular instantiation lr'0 can be matched to a higher'level g0al _r. Analogous

to maximal fit, maximal utility with respect to g0a_ _ is defined as follows:

vo' o (1)

For a perfect plan the following holds: _r'O c_ lr C I. Overall utility of the instantiation is

9Our notation is a mixture of Charniak & McDermotts, of Wetners and our own.
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defined as follows:
1

E(w, _r', 0) = [_"0 - _"'I _" (2)

In which A,_ is an overall utility value of lr or a constant if lr is a direct instantiation of a

primitive goal. Hence there exists a set of fixed utilities, _ that is a subset of the total set

of utilities and which is indexed to the set of primitive goals _: _ _ _; _ C_ IT and • C_A.

The evaluation function enables the planner to decide which goal and instantiation to choose.

The utility of a particular goal depends recursively on the match with a primitive goal, hence

goals that instantiate a highly rated primitive goal well are preferred above goals that are

either poorer instantiations or linked to lower rated primitive goals. In an environment

where the planning agent is liable to influence, the evaluation function provides a strong

criterion for assimilation of a communicated goal. There are two possible situations: either

the received goal is an instantiation of a priorly uninstantiated goal, or it is a replacement

of an already existing goal. In the first case the criterion for assimilation is that total utRity

must increase: E,_ E(lr_,_r_,O) _ E,_ E(_r_,(_r_ + _r_),0) in which n equals the total number

of goals. In the second case the criterion is that if the received goal can be instantiated

so that it has a higher evaluation value than an already present goal, it will be assimilated

into a task network and executed, otherwise it will be rejected. Formally, the criterion for

accepting the new goal _r_ at the cost of goal lr_ is: E(_,7c_,0) _ E(lr, lr_,O).

6 Conclusions

In the last section we have examined the property of goal-robustness as the last of the de-

sign specifications of an autonomous agent. This property has far-stretching consequences

for spacecraft control. It means that ground control commands will not be unconditionally

accepted, i.e. commands may be rejected when they don't meet the criteria specified above.

The relation ground-control/spacecraft becomes one of cooperation in which joint plan for-

mation is possible by exchanging high-level goals and information. This is the way in which

independent agents cooperate in a real-life situation (Werner, 1989, p. 7). This organiza-

tional structure is more appropriately classified as a MAS. Primarily this is the case because,

due to communication limitation, the spacecraft can't 'think' on the ground and it has to

take decisions directly in response to its environment (when the situation requires prompt

action) or in absence of a consultant (when communication with ground control fails). In

this light the expressed position % fully autonomous space[craft] is neither achievable nor

necessarily desirable." (Easter & Staehle, 1984, p. 5-2) has to be revised, while the question

"... how long a space platform can perform a given function, even in the presence of new

and existing faults, without intervention or direction from ground personnel or equipment"

(Ibid.) can be answered by: indefinite, but more likely better if ground control recommen-

dation is available. In that sense, as we have shown in this paper, we fuUy agree with the

following two standpoints (Ibid. p. 3-4): "No autonomous system is actually free of hu-

man supervision; autonomous systems do not replace humans in this sense." because the

high-level goals are always originating from humans and high-level goals can't be replaced
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by the system itself; "[autonomous systems] provide much more flexibility for determining

the optimal degree, nature and location of human participation in space activities", indeed

they do, because they determine the appropriateness of human advice and direction.
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