
N95- 27383

A Sustainable Genetic Algorithm for

Satellite Resource Allocation

R J Abbott

The A erospace Corporation
and

California State University,
Los Angeles

M L Campbell

The Aerospace Corporation

W C Krenz

The Aerospace Corporation

= An lmortant feature of our applica-

tion is that the amount of time avail.

able for running the scheduler is not

necessarily known in advance. This

requires that the scheduler produce

i reasonably good results after a short

period but that it also continue to Im-
prove its results if allowed to run for

a longer period. We satisfy this re-

quirement by developing what we

call a sustainable genetic algorithm.

A hybrid genetic algorithm is used to

schedule tasks for a satellite, which
can be modelled as a robot whose

task is to retrieve objects from a two

dimensional field. The objective is to
find a schedule that maximizes the

value of objects retrieved. 'l_),plcal of

the real-world tasks to which this

corresponds is the scheduling of

ground contacts for a communica-

tions satellite.

1.0 Introduction

Planning, i.e., deciding in advance on a course

of action, is a long-standing and difficult prob-

lem.[Al90] Planning for a mobile robot is yet

more complex as a result of the interactions

among robot dynamics, horizon planning, and

task valuation. When expressed numerically,

planning problems are frequently ill-condi-
tioned due to the combination of continuous

and discrete variables over which decisions

must be made. Consequently, not only are

standard optimization techniques (such as non-

linear programming) time consuming, they

generally fail to provide satisfactory results. A

good robot planning algorithm should:

a) generate efficient schedules of actions;

b) abide by system-imposed constraints;

c) be flexible enough that different tasking

goals can be realized without major imple-

mentation changes;

d) be implemented in an efficient computa-

tional framework either through an

extremely fast serial algorithm or through

parallelization;

provide reasonable schedules on a short
timeline and better schedules when more

time is available.

e)

This paper discusses a genetic algorithm ap-

proach to robot scheduling. The remainder of

the paper is organized as follows. Problem

Statement describes the robot's problem. Anal-

ysis for a Numerical Approach describes the

equations that would have to be maximized

were the problem to be solved numerically. A

Brief Introduction to Genetic Algorithms pro-

vides an introduction to genetic algorithms.

The Application of Genetic Algorithms to Ob-

ject Retrieval describes our use of genetic al-

gorithms for this problem. Diversity Manage-

ment and Sustainable Genetic Algorithms

103
PRECEDING PAGE BLANK NOT FILMED

describes our techniques for allowing our ge-

netic algorithm to find good results without

population convergence. Results describes our
results.Future Work describes future direc-

tions. Conclusions discusses conclusions and

further work.

2.0 Problem Statement

The problem under consideration can be mod-

elled as the scheduling of a robot whose job it

is to retrieve objects while traversing a field.

The robot moves at a constant rate along a set

of pre-assigned horizontal passes. The robot
has an arm and a hand. The arm has a limited

length (both minimum and maximum) and a

limited angle at which it can operate. (Details
of robot kinematics are not addressed in this

paper.)

Each object has a value and a location in the

field, both known in advance. To retrieve an

object, the robot hand must stay at the object's

location for a given time. The objective is to

retrieve the highest total value of objects.

Additional constraints may be imposed which

make the problem even more complex.

• The value of an object may depend on

which other objects are retrieved.

• The robot may have a net (instead of a

hand) on the end of its arm with which it

may retrieve many objects at once.

• The time required to retrieve an object may

be expressed as a function of the robot's

arm geometry. For instance, it may take

more time to retrieve an object if the arm

has to reach further or if it needs to deviate

from its ideal position.

• The field may contain widely-spaced

objects that need to be retrieved within

some specified planning horizon.

• Some of the objects may have very precise

angles at which they must be accessed.

• There may be a limit to the length of time

the robot may operate during each pass. The

limit may derive from physical constraints

on the robot's operation, such as power or

thermal limitations.

3.0 Analysis for a Numerical
Approach

Initial attempts to produce efficient schedules

were developed in a traditional optimization

framework. Figure 1 shows a test suite of data

that was constructed to illustrate the problem.

A random field of 100 objects was created, and

the robot is given 3 parallel passes through the

field. In this example, three different kinds of

objects are present. They are represented by

different symbols for the different values.

X II

N 14. X 4.11
4. N

• ÷
X X +

H

X + 4. •
4.41(+ X

X X

Pro: -_ x _ .,,<__.... -x.......
X x4.Xx÷ ÷

X X
XI X X •

!

Pro2 :-"-- y----+- +'-
i Y it x

X + X

31 II

II X
Pill'[...........................

X
4' X II +

4.
XX

X

X X4. II
4.

X ll_

II II
4.

)4111

li"Mldlum
+ ÷ X

FIGURE 1. A testbed

The time between the completion of retrieving

one object and the start of retrieving the next

object must be greater than the time required to

move the arm from one object to the next. The

arm dynamics here are modeled simply as a
fixed maneuver rate times the distance be-

tween subsequent objects:

104

(1)

Tu, . (x i, x,_ t) ffi ManRate[.t, - .t,_ l]

where the variables are defined as:

(2)

T_ Time required to retrieve an

object and move to the next one

T (xl) Time at which object xI is
retrieved

TM,,,,(xexl I)

ManRate

Time required to retrieve object

xl

Time required to move from one

object to the next

Maneuver rate of robot arm

(distance/time)

Vector position of point x

More complicated dynamics could be modeled

without loss of applicability of the fundamen-

tal algorithms.

An added complexity is that the robot arm

length and pass coordinates are such that some

of the objects may be retrieved from any of a

number of passes through the field. Objects in

the center of the field, for example, are accessi-

ble from each of the passes; objects at the edge

are accessible from only one pass.

The problem can be cast as an optimization

problem (maximize the value of the objects re-

trieved) subject to the above constraints on ro-

bot reach and dynamics. Mathematically, this

is cast in standard optimization form as:

maxf(x) : g(x)• 0
t_ O)

where the parameter tx over which the set will

be optimized is the set of scheduled times for

each point 'x.' The attributes of each point in-
clude:

X Ig

AValue

Positio_ (4)

where the value determines which objects are

more important, the position drives dynamics

constraints, and the number of accesses to an

object may be used to decide which objects

may be more easily postponed to a later pass.

Other attributes are also possible (for instance,

preferred angles from which an object may be

retrieved or length of time it takes to retrieve

up a particular object). The function to be max-
imized is

f (x) = fl (Value) + f2(Accesses)+ ... (5)

subjectto the dynamic constraintsof the robot

arm (simplifyingfrom Equation (5)):

I "°* 1
8(x) ,, gi(x) ,, [TPickup(X i) + TMas(xexi_ 1)] -Y (6)

Note that the access constraints are implicit in

the set of possible scheduled points. All sched-
uled times outside of the feasible access time

are assumed to be unscheduled points and are

not considered in constraint calculations.

This optimization problem was run using a

number of tools. Standard nonlinear program-

ming algorithms[Mo92] were unsuccessful.

Figure 2 shows a small field example run over-

night using a nonlinear programming algo-

rithm in which a human could easily eyeball a

better schedule in a matter of seconds.

Our conclusion is that even though the prob-

lem (in simplified form) can be expressed

mathematically, numerical solutions are not

easy to find due to ill conditioning. Conse-

quently a more robust and more flexible ap-

proach was explored: genetic algorithms.

105

Pmm3

Pm 2

Pu*l

x I
M at+ X 4, i

4. •
÷

X i÷

•I'.K x

x x

-R x .___.... -x.......
X x+X x+ ÷

XN X X

NX x !

........ E _ 4-- 4- --

at ----+ _ x

4" X

II I

......... X

X
x IlK +

4.

Ill X + II

R II
4-

÷ ÷ X
II[

FIGURE 2. A disappointing result using
non-linear programming

4.0 A Brief Introduction to

Genetic Algorithms

The term Genetic Algorithms [Ho75] includes

a broad class of iterative optimization tech-

niques that employ methods that are modelled

after the way evolution occurs by natural se-

lection in biological systems. The traits com-

mon to all genetic algorithms are discussed in

the following algorithm schema.

1. Populations. Instead of iterating on a single

solution (as in most iterative optimization

methods), a genetic algorithm begins with a

set of (suboptimal) solutions. In keeping

with the biological/evolutionary theme, the

set of candidate solutions is called the popu-

lation. The initial population may be arbi-

trarily or randomly chosen, or it may be

given as an external input.

2. Element transformation. One or more ele-

ments are selected from the population,

modified to produce a new, possibly better

solution, and then put back into the popula-

tion, replacing a then current population ele-

ment. (See Figure 3.)

106

.

Population

FIGURE 3. A generic genetic algorithm

A distinguishing feature of genetic algo-

rithms is the manner in which solutions are

modified and in some cases combined to

produce new solutions.

• A solution may be modified to produce a

new solution in a process called muta-

tion. Nearly all optimization/search tech-

niques use mutation in one form or

another.

• Two or more solutions may be combined

to produce a new solution. The process

of combination can create new solutions

that combine the best attributes of their

predecessors in ways that are very un-

likely under purely random stochastic

methods. This is widely considered as

one of the sources of the efficiency and

broad applicability of genetic algorithms.

Non-determinism. Most search techniques

typically explore a search space by applying

transformations to known elements to pro-

duce other elements. This is true of genetic

algorithms as well. Genetic algorithms dif-

fer from other search techniques in that they

are able to take better advantage of the non-

determinism present in many such transfor-

mations.

Sincegeneticalgorithmswork with popula-

tions of elements, if a transformation

includes a non-deterministic feature, a

genetic algorithm is often able to accommo-

date the multiple outcomes of that transfor-

mation. This is not to say that the

population is allowed to grow exponen-

tially. But since an element is not necessar-

ily removed from a population after a

transformation is applied to it, the same ele-

ment may be transformed by a non-deter-

ministic transformation multiple times,

producing multiple different results. All of

those results have a chance of entering the

population. The better ones are more likely

to stay in the population than the worse

ones.

In practice, non-determinism means that

search transformations often include proba-
bilistic elements.

4. Fitness weighted selection. An application-

specific evaluation function is applied to

each member of the population to rank the

solutions according to what is known as

their fitness.
• When elements are selected for transfor-

mation, preference is given to selecting

the higher ranking solutions.

• When an element is selected to be elimi-

nated, preference is given to eliminating
the lowest ranked solutions.

S. Iteration. The selection/transformation/re-

placement process repeats until some termi-
nation criterion is met. The best ranked

solution(s) are then produced as output.

If genetic algorithms were no more than

searches based on populations and non-deter-

minism, they would differ little from a proba-
bilistic variant of best-first search. As

mentioned above, perhaps the most important

feature of genetic algorithms is that they gen-

erate new population elements by combining

existing population elements. The rationale be-

hind this feature grows out of the observation

that in many search problems, good solutions

107

often have features that are useful in many
contexts.

The object retrieval problem provides some es-

pecially clear examples. If a large group of ob-

jects is close enough together to be retrieved

by placing the net at a point that is within reach

of all of them, that net placement is likely to be

useful in many potential schedules. Similarly,

if two groups of objects are sufficiently close

that the second group can be retrieved by mov-

ing the arm minimally after retrieving the first

group, that pair of arm placements will be a

useful component in many schedules.

When a genetic algorithm allows two (or

more) population elements to combine to pro-

duce a new population element, it allows use-
ful features of the two elements to be

combined in a single element.

Of course, when combining two elements, one

does not necessarily know which features are

useful. Even if one did, useful features are not

always compatible. Non-determinism and fit-

ness-weighted selection deal with that prob-
lem.

• Incompatible feature combinations produce

poorly performing population elements,
which are soon discarded.

• Useful features that are discovered indepen-

dently generally survive in the population

long enough to be combined in new popula-

tion elements. For bit-string based genetic

algorithms, such useful features are called
schemas. Holland's Schema Theorem

[Ho75] characterizes the transmission of
useful schemas.

Genetic algorithms have been applied success-

fully to a wide range of optimization problems,

such as the travelling salesman problem

[Gr85], communication network design

[Da87], natural gas pipeline control[Go83],

image processing [Fi84], and other areas.

Genetic algorithms are a specific case of a

more general concept called evolutionary com-

putation, which includes the related fields of

artificial life, artificial evolution, and complex

adaptive systems. Artificial life refers to simu-

lations of agents acting in some simulated

world. The agents are typically ranked accord-

ing to their success in dealing with the simulat-

ed world, and genetic algorithms are used to

evolve representations of successively better

agents. The agents may interact individually

with the simulated world, or the agents may in-

teract with each other in cooperative or com-

petitive ways within the simulation.

5.0 The Application of Genetic
Algorithms to Object
Retrieval

In our first attempt to apply genetic algorithms

to the object retrieval problem we first used the

general-purpose bit-string based genetic algo-

rithm tool Genesis [Or84] to optimize the nu-
metrical formulation described above. A

satisfactory schedule for a single pass, shown

in Figure 4, was generated with this method.

P--.

x Ill
i as÷ X +as

4" as
I1[4.

X X as"
X 4. _Ill

4. s_4.4g
X

X X

paasa -_ _- .K-_ -x.......
x X÷_4. ÷

FIGURE 4. Result of applying a genetic
algorithm applied to the
numerical formulation

Compared to the results in Figure 2, the genet-

ic algorithm shows marked improvement over

nonlinear programming. However, extension

from the single pass case to a multi-pass case
was not feasible due to the increase in the

number of operations, computation time, and

the complexity of adjudicating retrieving deci-

sions. Thus a more problem-specific genetic

algorithm was implemented. It includes a
number of distinctive features.

1. The population consists of actual schedules,

rather than bit strings. Significant care was

taken to represent schedules in a way that

was not only intuitive, but also space effi-

cient and computationally efficient.

2. Since the population elements are sched-

ules, the genetic operators are all problem-

specific. (This is known as a hybrid genetic

algorithm. [Da91]) Operators are defined

that transform one or two existing schedules
into a new schedule.

3. A number of innovative population man-

agement strategies were employed. As dis-

cussed above, genetic algorithms serve two

masters: short term optimization (hill climb-

ing) and diversity. On the one hand, it is de-

sirable to climb whichever hill one is on; on

the other, one doesn't want the entire popu-

lation to be marooned on a suboptimal peak.

New population diversity techniques were

combined with greedy genetic operators as

a way of achieving both objectives. This is
discussed below.

5.1 Schedule representation

A schedule is a sequence of appointments,

where an appointment is a robot x-position

along with an arm (x, y) position. (Appoint-

ments are given in terms of robot x-positions
instead of time since the robot moves at a con-

stant rate.)

As an illustration, Table 1 displays the begin-

ning of one pass of a schedule.

Except perhaps for the Object windows col-

umn, this table should be self-explanatory. The

Object windows column shows each object's

|

108

window of accessibility in the current pass,

i.e., the range of robot x-positions during

which the object is directly accessible to the

robot hand, i.e., without a net. If, because of

the robot's minimum arm length, there is an in-

ternal subwindow during which the object is

not accessible, the subwindow is shown in an-

gle brackets. This happens to be the case for

the first and third object in the first appoint-

ment but for none of the other objects in the ta-
ble.

5.2 The selectlon/replacementcycle

As the earlier discussion of probabilistic

searchexplained,geneticalgorithmsgenerally

advance through a combination of exploration

and combination.Both explorationand combi-

nation requirethatone take one or more ele-

ments from the search space and produce a

new element in the search space. In many do-

mains, robot objectretrievalincluded,thatis

not a trivialtask.The primary difficultyisthat

the operations thatone performs on a search

space element do not always produce another

valid search space element--in our case a

schedule that satisfies the consistency con-

straints.

The primary consistency constraint on a sched-

ule is that the robot be capable of moving its

arm from one appointment to the next in the

time allowed. A second consistency constraint

is that no object be retrieved (or at least not be

counted) twice.

Because it is not always easy to generate new

population elements that satisfy the consisten-

cy constraints, production of new elements of-

ten involves two steps.

1. Generate a new element which may look

like an element of the search space but

which may or may not actually be a valid el-

ement of the search space.

2. Transform the new element into one that

satisfies the consistency constraints.

TABLE 1. Example partial schedule {the first four appointments in one pass)

j!

i
0.000

0.072

0.138

0.220

(0.292, 0.232) 5

(0.090, 0.142) 8

(0.247, 0.118) 7

(0.257, 0.439) 6

.i.'"

Objects retrieved this appointment

Object
positions

(0.273, 0.252)
(0.275, 0.200)
(0.319, 0.203)

(o.oso, 0.13s)
(0.067, 0.130)
(0.091, 0.142)

(0.238, 0.126)
(0.262, 0.1 SO)
(0.277, 0.092)

(0.233, 0.471)
(0.266, 0.426)
(0.269, 0.439)

ObJect
values

[0.000
[0.000
[o.o3s
[0.000
[0.000
[o.ooo

[0.000
[0.002
[0.061

[0.000
[0.000
[0.004

Object
windows

<0.185 - 0.361 >0.569]
- O.SS8]
<0.294 - 0.344> 0.603]

- 0.301]
- 0.314]
- 0.346]

-0.482]
-o.s22]
- 0.493]

- 0.480]
- o.s38]
- o.s3s]

I09

That is the process shown in Figure 5. The

generation of a new element involves the fol-

lowing steps.

Greedy

actor

OPeratorGenetlc

Proto,Schedule

FIGURE 5. Population generation cycle

1. Select one or two elements from the popula-

tion and transform it (or them) into what is

called a proto-schedule, a structure that may

or may not be a valid schedule.

2,. Operate on the proto-schedule to produce a
valid schedule.

The first transformation is the application of a

genetic operator to one or two population ele-

ments. The second is the application of what

we are calling a schedule compactor. The

schedule compactor is itself a greedy schedul-

er. It transforms a proto-schedule, which may

not satisfy the constraints, into an actual
schedule, which does. We discuss the schedule

compactor first and then the genetic operators.

prospective appointment does not have an as-

signed robot x-position. The compactor's job

is to associate robot x-positions with the given

prospective appointments. It takes a table such

as Table 1, but with no information in the first

column, and for each prospective appointment

it either assigns a robot x-position or deletes

the appointment.

The schedule compactor does that job greedily.

For each pass in the proto-schedule, the com-

pactor makes a single traversal of the list of

prospective appointments and throws out the

ones that are incompatible with the constraints:

the robot arm length, the time required to com-

plete the previous appointment, and the ma-

neuver time required to move the arm from the

previous appointment. The compactor is

greedy in the following ways.

1. Prospective appointments that are consis-
tent with the constraints are scheduled as

early as possible, i.e., the smallest possible
robot x-coordinate consistent with the indi-

cated net placement is selected.

2. Whenever possible, the compactor shifts

objects from one appointment to an earlier

appointment. If this involves shifting the

arm position of the earlier appointment, that

is acceptable as long as no objects are lost.

3. Whenever possible, the compactor adjusts

an appointment's x-y arm position slightly

if doing so would enable the robot to re-

trieve additional objects.

In addition, the compactor drops from pro-

spective appointments any objects that have al-

ready been scheduled. Prospective appoint-

5.3 The greedy Schedule compactor ments that are left without any objects are

Like an actual schedule, a proto-schedule is a

collection of passes, each of which is an or-

dered list of prospective appointments. A pro-

spective appointment is a suggested arm

position along with the list of the objects

reachable from that arm position, as in Table 1.

The only difference between a prospective ap-

pointment and an actual appointment is that a

dropped entirely.

The compactor has a probabilistic feature built

into it. The compactor must compact all passes

of a proto-schedule. The order in which those

passes are compacted may make a difference.

If an object is reachable during multiple passes

(as many are), the pass during which it is re-

trieved may affect other objects. To allow for

I10

all possibilities, the greedy compactor first

constructs a random permutation of the passes

and then compacts them in that order.

5.4 Genetic operators
The genetic operators perform two functions.

1. They are used to explore the search space.

Typically, these are the so called mutation

operators. A mutation operator takes a pop-

ulation element, i.e., a schedule, and trans-

forms it into a prate-schedule. These

transformations may or may not actually

improve the schedule. They are simply ex-

ploration steps.

z. They combine two schedules to produce a

new prate-schedule. The primary function

of the combination operators is to combine

features of good schedules in the hope of

producing a better schedule.

The following mutation operators are defined.

Most of them have a great many opportunities

for non-determinism. These operators may or

may not produce valid schedules. If they don't,

the compactor makes the needed repairs.

• change the pass of an appointment. Move

an appointment from one pass to another.

• schedule an unscheduled object. Retrieve

an object that is not currently in the sched-

ule and create an appointment for it.

• Interlard some unscheduled objects. Sort a
random selection of the unscheduled

objects; allocate them to passes in which

they have windows; and merge them with

the current schedule. The merge process is

the same as that explained below under

meroe two schedules. This operation is simi-

lar to schedule an unscheduled object. The

difference is that it attempts to schedule col-

lections of unscheduled objects instead of

just one.

• schedule a group. Select all the unsched-

uled objects in a group and schedule

appointments for them. (Recall that a group

is an all-or-nothing affair. The robot does

not get credit for retrieving objects in a

group unless the entire group is retrieved.)

There is no corresponding unschedule-oroup

operation. Instead, whenever an element of

the population is selected for transforma-

tion, one of the groups is (probabilistically)
unscheduled.

• exchange appointments. The order of two

adjacent appointments is switched.

• generate a random schedule. Generate a

new, random proto-schedule. There are a

number of probabilistic elements involved.

The objects may first be ordered by value.
In addition, the proto-schedule is generated

by sorting the objects (one object per

appointment) according to either x-y posi-
tion or start-of-window-in-pass. If an object

may be retrieved in a number of passes, the

pass to which it is assigned is also determin-

istically probabilistically.

There is a single combination operator.

• merge two schedules. This operator com-

bines and compacts two population ele-

ments. Appointments from corresponding

passes of two schedules are merged, greed-

ily. The merged result is guaranteed to con-
form to the constraints.

The order condition that drives the merge is

a combination of appointment x-position

and appointment value. If the first available

appointment from one schedule is both ear-
lier than and more valuable than the first

available appointment from the other sched-
ule, it is selected. Otherwise, the schedule

from which the next appointment is taken is
selected at random.

6.0 Sustainable Genetic

Algorithms
In the actual application, we sometimes want

to run the genetic algorithm for an extended

III

d) Evaluation functions that penalize popu- random elements and tournament selection

period. On other occasions, we need a reason-
ably good answer after only a relatively short
run. We therefore want a genetic algorithm that
can both (a) provide good results relatively
quickly and (b) continue to improve if left to
run for an extended time. We call a genetic al-
gorithm with the second property sustainable.

One can produce reasonably good results
quickly by including among our genetic opera-
tors, heuristics defined for the scheduling
problem. Unchecked, however, this practice
leads to population convergence at local maxi-
ma. Special techniques must be made to avoid
such convergence. The following first discuss-
es the mechanisms underlying population con-

vergence and then describes ways to combat it.

set of search space elements that include a par-
ticular solution feature.

Traditionally, solution features that define hy-
perplanes have been called schemas. In sched-
uling, a schema would typically be a sequence

of scheduled events, i.e., a schedule fragment.
All search space elements that contain a partic-

ular schedule fragment may be considered to
be on the same hyperplane. (Each search space

element, i.e., a complete schedule, may lie on
many intersecting hyperplanes simultaneous-

ly.) Useful schedule fragments will tend to be

retained in the population. Hence, the popula-

tion will tend to accumulate on the hyper-

planes defined by useful features.

Since population size generally stays relatively
__ _,_, _.4_.3 _,-1_ _,.I _ _l_

elements to be transformed and (b) the ele-
ments to be discarded.

We use a variant of tournament selection to

make both selections. To select an element for

transformation, a subset of the population, the
selection pool, is chosen randomly and uni-
formly from the entire population. The best (or
best two) element(s) of that pool are selected
for transformation. To select an element to be

discarded, we again choose a subset of the

population; the worst element of the selection

pool is selected for deletion.

Since elements are included in the selection

pool with equal probability, the size of the se-
lection pool is inversely related to the selectiv-

ity of the search. If the pool size were 1, one
would be selecting (for transformation or dele-
tion) an element uniformly from the popula-
tion, i.e., with no regard for how well the

element solved the prob!em. This would mini-
mize convergence, but it would also minimize
the likelihood that good features would be ex-
ploited.

On the other hand, were the pool to be the en-
tire population, one would always select the

best element(s) for transformation and the
worst for deletion. This would maximize con-

vergence, but it would virtually eliminate sig-

nificant diversity.

Our strategy is to allow the size of the selec-

out. New entrants have an opportunity to be

seen. This is comparab!e 1o local tournaments.
As the season progresses, competition tight-
ens; only the better entrants remain in the field.

(Unlike sports, our population does not shrink,

but the likelihood decreases that a poorly per-

forming element will be selected for transfor-
mation.) Toward the end of the season, the

selection pool is large and competition is ex-
treme. Only "world class" elements survive.
But as in competitive sports, because the entire
process is probabilistic, there is always a

chance that an underdog can make it to the "fi-
nals."

This seasonal cycle repeats itself continually.

The selection pool size starts low, grows slow-

ly, and then restarts at a low value for the next
season. New elements with innovative features

continually arise to challenge and add value to
the current champions.

7.0 Results

The following plots illustrate the results of the
genetic algorithm. For simplicity and consis-

tency, these plots are based on a run with the

following parameters.

Object field. The testbed example included
100 objects with values of 1, 2, and 3. The to-
tal of all objects (and hence the best possible

schedule) was 201.

line from point to point) at 10 times the rate of
its horizontal motion. The arm is assumed to

move at a constant rate; there are no start-up or

terminate arm motion penalties.

In this run, which showed typical results, ap-

proximately 40,000 _schedules were consid-

ered. The best schedule had a value of 162.

During the run, nearly 6000 random schedules

were generated. The best of these had a value
of 100. We take this as confirmation that the

genetic operators added value to the search.

Figure 6 is a "fishbone" diagram. It shows the

object field with the passes drawn as horizontal

dashed lines. Each appointment is shown as a
shadowed circle. The robot arm is shown as a

line connecting the appointment to the position

of the robot at the time of the appointment.

pau3

Prom 2

Prom t

x

J_
7--7;7o-,

" ' 0

!

!iLi
0

_ o

I:2!, 4-

FIGURE 6. Arm positiom

Retrieved objects are shown as O's; unre-

trieved object are shown as +'s, x's and *'s.

Recall that some of the objects are in all-or-

nothing groups. Four of the five groups were

retrieved in their entirety. The largest group

was not retrieved. Of the 11 objects in it, 3

were retrieved anyway even though they con-

tributed no value to the schedule. Objects that

appear to be easy picking but were not re-

trieved belong to the unretrieved group.

Figure 7 shows the trajectory of the end of the

arm for this schedule. As this figure makes ap-

parent, no effort was made to minimize arm

motion. The only criterion for preferring one

schedule over another was the total value of

objects retrieved. If desired, such additional

criteria could be added easily.

ii
0 _i II +

.... O_.... --

FIGURE 7. Arm trajectory

As a contrast, Figure 8 shows a schedule gen-

erated by a robot without a net: the "hand"

must retrieve each object individually. Not sur-

prisingly, this schedule is less effective in re-

trieving objects. More importantly, generating
schedule variations of this sort turns out to be

quite simple once the hybrid genetic algorithm

framework is in place.

For each schedule, a partial family history is

maintained. In particular, the values of the

schedule's parent (or parents) is kept along

with the history of the better parent. This asso-

ciates with each schedule a record of that

schedule's best parent back to the time when it

was created as a random schedule.

Figure 9 compares the family history of the
eventual Best Schedule with the best schedule

in the population (Best of Population) at the

time. This plot illustrates two features of this

run.

115

8.0 Future Work

Pmm$

Pro2

Pass I

..... \ _X__12_ _ ___'_.... L;

÷ ,i,

i_lrd?lrT1)l? a & ..nhn$.,s,lSkn,.d. ,m _aJ

i i iiiiiiii iiiiiilli ii!iiilli iii!!iii iiii!i!• i iH':_!.: -: ! !!!'.'!'! ! -"!L _!h:- : :::_:_! _ H!_I

_o" ';o' _o' 0o* m' _o'

FIGURE 9. Best schedule genealogy

1. The eventual best schedule was close to the

best during its entire genealogical history.

(Had it not been, it would probably have

gone extinct.)

2. Significant schedule degradations occurred
before many of the advances. (Unfortunate-

ly, information regarding the nature of the

degradations and whether or not they we
prerequisite to the subsequent advances is

not available.)

Currently we are continuing to explore GA-

based scheduling in two primary areas: scal-

ability studies and new genetic operators. We

are also looking for additional applications of
GA-based scheduling/optimization.

In order to understand the scalability of the hy-

brid GA-based scheduler, we are currently per-

forming a series of timing/profiling experi-

ments over a wide range of problem sizes. By

independently varying the size of the field and
the number of objects, these scheduling runs

will enable us to determine the dependence of

the scheduler on the number and density of ob-

jects vs. the length of the resulting schedules

for each pass. We are currently using a simple

termination condition for the experiments: the

algorithm stops after 10,000 schedules have

been generated and evaluated. Preliminary re-
sults show a roughly linear increase in runtime

vs. problem size for most cases.

Since the merge two schedules operation is

one of the most time consuming hybrid genetic

operations, it is natural to consider a more tra-

ditional genetic crossover operator. This new

genetic operator would combine two schedules

to produce a new population element accord-

ing to the following process. The two sched-

ules, represented as lists, will first be aligned

with respect to time (in some way still to be

determined,) and then the two lists will be tra-

versed in lockstep with respect to time. As the

two lists are traversed, the genetic operator

copies from them to create the child list, with
random crossovers from one parent to the oth-

er. Finally, the resulting proto-schedule is pro-

cessed through the compactor to produce the

new population element. It will be interesting
to observe the effect that this new operator has

on computational efficiency, population diver-

sity, and the resulting schedules.

116

9.0 Conclusions

This study has demonstrated the applicability

of hybrid genetic algorithms to a difficult

scheduling problem. This problem resisted

solution using more traditional techniques. Yet

with a hybrid genetic algorithm good sched-

tries have been generated.

Hybrid genetic algorithms differ from tradi-

tional genetic algorithms in that they make use

of knowledge representation strategies and

heuristics from the problem domain. This was

very important for this problem in two ways.

. It enabled us to represent the population of

schedules in an efficient manner, precluding

the need to transform bitstrings back and
forth to schedules.

2. It allowed us to apply heuristics from the

scheduling domain. Without these heuristics

it is unlikely that we would have been able

to solve the problem.

The primary genetic algorithm challenge is

population management: how to manage the

population so that (a) no one subpopulation

drives out all others and Co) the various domain

heuristics all have a reasonable opportunity to

be applied. Our strategies of continually intro-

ducing new random elements and varying the

competition level appear to have achieved

these objectives.

The genetic algorithm paradigm provides a

framework for selection-based search. As such

it avoids many of the problems inherent in

control-based search strategies. The inclusion

as genetic operators of domain-specific heuris-

tics from control-based algorithms allows one

to combine the best of both approaches.

Acknowledgment

This work was performed at the Aerospace

Corporation under sponsorship of its Aero-

space Sponsored Research Program.

References

[Al90]. Allen, J, J Hendler, A Tare, (eds.),

Readings in Planning, Morgan Kaufmann, San

Mateo, Ca. 1990.

IDa87]. Davis, L and S Coombs, "Genetic al-

gorithms and communication link speed de-

sign: theoretical considerations," Proceedings

of the Second International Conference on Ge-

netic Algorithms, pp 252-256, 1987.

IDa91]. Davis, L (Fxl), Handbook of Genetic

Algorithms, Van Nostrand Reinhold, New

York, 1991.

[Fi84]. Fitzpatrick, JM, JJ Grefenstette, and D

Van Gucht, "Image registration by genetic

search," Proceedings of the IEEE Southeast

Conference, pp 460-464, 1984.

[Go83]. Goldberg, DE, Computer-Aided Gas

Pipeline Operation Using Genetic Algorithms

and Rule Learning, Doctoral Dissertation,

University of Michigan, 1983.

[Gr84]. Grefenstette, JJ, "GENESIS: a system

for using genetic search procedures," Proceed-

ings of a Conference on Intelligent Systems

and Machines, pp 161-165, Rochester, MI,
1984.

[Gr85]. Grefenstette, JJ, R Gopal, B Rosami-

ta, DV Gucht, "Genetic algorithms for the

traveling salesman problem," Proceedings of

International Conference on Genetic Algo-

rithms and their Application, pp 160-165,

Lawrence Erlbaum & Assoc., NJ 1985.

[Ho75]. Holland, JH, A daption in Natural and

Artificial Systems.The University of Michigan

Press, Ann Arbor, Michigan, 1975.

[Mo92]. Moler, C, J Little, and S Bangert,

PRO MATLAB for Sun Workstations: User's

Gui_, The MathWorks, Sherborn, Ma 1993.

117

