
N95-27384

A Rule-Based Shell to Hierarchically Organize HST Observations

Ashim Bose and AndrewGerb

bose_stsci.edu and gerb_stsci.edu

Space Telescope Science Institute
Baltimore, MD 21218

Sf_ #2.-

1. Abstract

An observing program on the Hubble Space Tele-

scope (HST) is described in terms of exposures

that are obtained by one or more of the instru-

ments onboard the HST. These exposures are

organized into a hierarchy of structures for pur-

poses of efficient scheduling of observations. The

process by which exposures get organized into

the higher-level structures is called merging. This

process relies on rules to determine which obser-

vations can be "merged" into the same higher

level structure, and which cannot.

The TRANSformation expert system converts

proposals for astronomical observations with

HST into detailed observing plans. The conver-

sion process includes the task of merging. Within

TRANS, we have implemented a declarative

shell to facilitate merging. This shell offers the

following features: a) an easy way of specifying

rules on when to merge and when not to merge,

b) a straightforward priority mechanism for

resolving conflicts among rules, c) an explanation

facility for recording the merging history, d) a

report generating mechanism to help users under-

stand the reasons for merging, and e) a self-docu-

menting mechanism that documents all the

merging rules that have been defined in the shell,

ordered by priority.

The merging shell is implemented using an

object-oriented paradigm in CLOS. It has been a

part of operational TRANS (after extensive test-

ing) since July 1993. It has fulfilled all peffor-

mance expectations, and has considerably

simplified the process of implementing new or

changed requirements for merging. The users are

pleased with its report-generating and self-docu-

menting features.

2. Introduction

2.1. Planning and Scheduling HST Observa-
tions

Once a proposal for observing with the HST has

been approved, the astronomer submits a detailed

observing plan. This plan contains specific expo-

sures, instrument configurations, and constraints

on exposures. There are a variety of scientific

reasons why an astronomer might place addi-

tional constraints on exposures and between

exposures. For example, exposures may be desig-

nated as acquisition or calibration exposures.

Some exposures might be executed at particular
times, specific orientations on the sky, or within a

designated time interval. In the case of time-vari-

able phenomena (e.g. binary stars, Cepheid vari-

able stars) the proposer may require repeated

observations at specific time intervals (Miller and
Johnston 1991).

2.2. TRANSformation - The Big Picture

The process of converting a proposer's specifica-

tion into a form suitable for scheduling is called
transformation. TIansformation involves several

tasks including determining the ordering of the

observations, grouping to minimize telescope

PRECEDING PAGE BLANK NOT FILMED 119

PAGE II'_ INTENTIONAt.LYBLANK



movement, instrument reconfiguration and other
overheads, providing extra observations and
instrument activities necessary to obtain the
requested data, and organizing observations into a
hierarchy of higher-level structures for purposes
of scheduling observations.

The TRANSformation expert system (TRANS)

converts proposals for astronomical observations
with the HST into detailed observing plans. In
other words it performs all the tasks associated
with the process of transformation, as described
in the previous paragraph. For a detailed descrip-
tion of its workings, see (Gerb 1991). An exten-
sion of Common LISP (Steele 1990) was used for
its implementation.

3. "Merging" Observations into a Hierarchy

Merging is defined as the process of organizing
observations into a four-level hierarchy for pur-

poses of efficient scheduling (Fig. 1).

_Scheduling Units c'_
Observation Sets /

Alignments _ _

Figure l:The Four Merging Levels

At the lowest level are the exposures that are
obtained from the observing plans. During the

process of merging, the ordered exposures are
grouped into contiguous disjoint sets called align-
ments. Alignments are then grouped into obser-
vations sets (obsets) and finally, obsets are

grouped into scheduling units.

All exposures in an alignment must use the same
HST pointing and orientation, must generate sci-
ence and engineering data at the same rate, and
must have only small time gaps between succes-
sive exposure members. Grouping of exposures
into alignments is important for two reasons.
First, exposures in the same alignment can be
commanded for much more efficient use of

spacecraft time. Second, alignments are the basic

units of planning for the downstream scheduling

system.

Obsets are groups of alignments that can be exe-

cuted without a change in the operating mode of
the pointing control system. HST usually depends
on positional monitoring of pairs of stars (called
guide stars) to maintain its pointing. A series of
alignments can be in the same obset ff they all can
use the same guide star pair, or if they do not use
guide stars.

Scheduling Units are groups of obsets that are
scheduled together. When scheduling an obset

requires the next obset to be scheduled immdi-
ately afterwards, both are placed in the same
Scheduling Unit.

While merging, the ordering of objects is pre-
served, i.e. there is no change in the ordering of
observations due to merging. So, if there are n
exposures in an observing plan, numbered 1 thru
n, and they are in ascending order, we first create
a new alignment (numbered 1) for exposure 1.
Then we see if exposure 2 can be put in alignment
1:

If yes, exposure 2 gets included into align-
ment 1. Now, we see if exposure 3 can be

included in alignment 1. If yes, alignment 1

now has three exposures. If no, we create a

new alignment (numbered 2), and exposure

2 goes into alignment 2.

If no, alignment 1 has exposure 1 and we
create a new alignment (numbered 2) that

has exposure 2. Now, we see if exposure 3

can be put in alignment 2. If yes, alignment
2 now has two exposures, exposures 2 and

3. If no, exposure 3 goes into a new align-

ment (numbered 3).

We repeat this process for exposures 4 until n,
always considering the latest new alignment
formed, for exposure inclusion. Once we have all
the alignments, we step up a level, and go through
the alignments in order, grouping them into
obsets. Once this is done, we group the obsets

into scheduling-units. The exposure->alignment
merging process is also illustrated in Fig. 2

120



An unmerged observing plan E_.r_ _ _ _

Exposures I and 2 can _ merged into the
same alignment, because of a merging rule

Ali mlrnenI_

Exposures _'_ _

Exposure 3 starts a new alignment due to
a breaking rule

., Alio_m_.nt_

Exposures

Exposure 4 can be merged into alignment 2
because of a merging rule

Ali£'nrnent _

Figure 2:An illustration of the process of merging at the exposure->alignment level

Within TRANS, merging can be achieved in

two ways. Under manual-merging, the user

prescribes to TRANS how an observing plan

should be merged. This is done through a

"merging-file" that the user sets up before

running TRANS on an observing plan.

Under automatic-merging, the entire merg-

ing process is left to the software. Decisions
on whether to merge an object into a higher-

level-object are based on rules. Rules are of

two types: merging, or breaking. A rule of
type merging (henceforth referred to as a

merging rule) specifies a set of conditions

under which a lower level object can be

included in a higher level object (that may

already contain other lower level objects). A

rule of type breaking (henceforth referred to

as a breaking rule) specifies a set of condi-
tions under which a lower-level-object can-

not be included in a higher-level-object that

already contains other lower-level-objects.
Conflicts might arise when both merging and

breaking rules may be applicable. So, a

scheme for conflict resolution is important.

The following requirements were defined for

the implementation of the TRANS merging
shell:

• an easy way of specifying merging and

breaking rules

• a priority mechansim for resolving conflicts

among rules

• an explanation facility to document the

merging history for an observing plan under

automatic merging

• a facility to validate an observing plan that

is being manually merged

• a self-documenting mechanism that docu-

ments all the merging rules that have been

defined in the shell, ordered by priority.

4. A Declarative Merging Shell

Automatic merging, as described in the previous

section is implemented using the TRANS Merg-

ing Shell. This shell provides mechanisms for

encoding the rules, and defining and using any
associated data structures. It also provides expla-

nation and self-documenting facilities. In describ-

ing the shell, a notation very close to LISP (and

121



CLOS) syntax will be used because of the need to

include implementation details, where necessary.

4.1. The Mechanisms for Declaring Knowledge

An object-oriented approach is taken to imple-
ment the merging shell. There are two kinds of

objects: data objects, and declaran've objects. The

data objects are of the following type: exposure,

alignment, obset, and scheduling-unit. These

objects are doubly-linked to preserve ordering
and facilitate object-traversal in both directions.

The declarative objects are the rules and the slots.

The rules are used to encode the merging criteria.

The slot objects are used to encode knowledge

used to populate some of the slots in the data

objects.

Rules are the primary means of encoding the cri-
teria for merging. A rule is defined using the con-

struct define-rule. Each define-rule declaration

results in the creation a rule object. The template

for a rule is described in Fig. 3.

(define-rule

:type <rule-type>

:name <ride-name>

:level <rule-levels>

:instrument <rule-instruments>

:priority <rule-priority>

:test <rule-test>

:description <rule-description>

Figure 3:The Rule Template

A description of the various parameters in the rule

template is in order.

1.<rule-type> can be either :merging or

:breaking.

2.<ru/e-name> is a short descriptive string

that succintly conveys the meaning of the

rule. It is used for identifying the rule in the

explanation and self-documenting mecha-

nisms, and so has to be unique.

3.<rule-levels> are the one or more merging

levels the rule is applicable at, i.e. 'ex->al,

or 'al->ob, or 'ob->su. The keyword :all

may be used if the rule is applicable to all

merging levels.

4.<rule-instruments> are the one or more

instruments the rule applies to. Again, the

keyword :all may be used if the rule is

applicable to all instruments.

5.<rule-priority> is a real number. It estab-

lishes the priority of a rule, to aid in conflict

resolution. The larger the number, the

higher the priority of the rule. While resolv-

ing conflicts, a rule with higher priority

takes precedence over a rule with lower pri-

ority.

6.<rule-test> is the symbolic expression that

determines if the rule should fire. This

expression is encoded in LISP. References

to the current higher-level-object under con-

sideration (selJ_, and lower-level-object

under consideration (obJ'), can be made in

the symbolic expression.

7.<description> is a string that contains the

detailed description of the rule in english. It

is used by the self-documenting mecha-

nism.

Note that the <rule-test> corresponds to the ante-

cedent part of a traditional production rule. The

symbolic expression that is <rule-test> can be

arbitrarily complex and can refer to any of the

properties of the lower level objects being consid-
ered for merging. It is evaluated by the inference

engine. If the result is a non-null value, the rule is
considered to have fired or activated. The role of

consequent is played by the <rule-type>, which
indicates the action to take in case the <rule-test>

is "true".

An example of a rule is shown in Fig. 4.

122



(define-rule

:name "BREAK EXPOSURES THAT

DO NOT HAVE IDENTICAL

ORIENTATION"

:type :breaking

:level :all

:instrument :all

:priority 2

:test '(not

(identical-orientation-p

(first-ex-in-self self)

(first-ex-in-obj obj)

)

:description

"Break an exposure into a new SU if

it does not have identical upper

and lower limits for absolute and

nominal orientations as the

exposures in the previous SU."

dgure 4:An Example of a Rule Declaration

This rule enforces the condition that observations

that do not have identical spacecraft orienta-

uons , should not be grouped into the same
higher level object. Hence, this rule is of type

"breaking", and applies to all merging levels (ex-

>al, al->ob, and ob->su). It is applicable to all

instruments, and has a low priority. It activates
when the "identical-orientation-p" test fails. This

test is performed using the first lower-level object

in the latest higher-level object (denoted by

*For a detailed description of how orientation con-

straints are dealt with in TRANS, see (Bose and
Gerb 1994).

123

"self') and the current lower-level object under

consideration (denoted by "obj").t So, if we are

at the lowest level of merging (exposure->align-

ment), and the latest alignment to be created is

alignment 3, with exposures 7, 8, and 9, and the

object under consideration is exposure 10, we

merge exposure 10 into alignment 3 only if it has

the identical orientation as exposure 7, otherwise

exposure 10, starts a new alignment (alignment
4). Considering another case, let us assume we

are merging at the intermediate level (alignment-

>obset), and the latest obset to be created is obset

2, with alignments 2 and 3, and the alignment

under consideration is alignment 4. Further

assume alignment 2 has exposure 3 as its first

exposure, and alignment 4 has exposure 10 as its

first exposure. If the orientations of exposures 3

and 10 are identical, alignment 4 gets merged into
obset 2, if not it starts a new obset (obset 3).

The properties of a higher-level-object keep

changing as new lower-level-objects are included
within it by the inferencing mechanism. These

properties are defined using the construct define-

slot (Fig. 5).

(define-slot

:object <object-types>

:name <slot-name>

:initialize-with <initital-value >

:update-with <update-expression>

:update-after <other-slots>

)

Figure 5:The Slot Template

A description of the various parameters of the slot

template is next.

]'The use of the word "self" to refer to the current

higher-level-object is not without significance. A

rule can be considered a method for the higher-

level-objects for the merging level of a rule. "SEW'

would then refer to the current higher-level-object

for which the rule was being executed. For slot

updates, "'self" appears to be a good choice for
obvious reasons.



l.<object-type>is a symbolrepresenting
alignment,obset,or scheduling-unit.

2.<slot-name>is a symbolthat serves as a

unique identifier for this slot.

3.<initial-value> is the value with which the

slot in the relevant data object is initialized

when the object is created.

4.<update-expression> is a symbolic expres-

sion that, when evaluated, yields the value

associated with the slot. This expression can

be arbitrarily complex, and can include ref-

erences to other objects.

5.<other-slots> are the slots that should be

evaluated before this one. This feature

enables an ordering in the evaluation of the
slots.

Both rule and slot declarations result in the cre-

ation of objects of the corresponding types. These
are in addition to the exposure, alignment, obset,

and scheduling-unit objects (data objects) that are

created as needed. Note that slot objects contain

information on attributes of the data objects.

Since the <update-expression> may contain a

reference to another slot in the same object, it is

important to specify the slot-dependencies

through <other-slots>.

An example of a slot declaration is shown in Fig.
6.

(define-slot

:name 'primary-priority
:object 'alignment
:initialize-with -1

:update-after 'primary-exposure
:update-with

'(cond

((equalp obj (primary-exposure self))
(primary-exposure-priority obj))

(t (primary-priority self)))

tigure 6:An Example of a Slot Declaration

This slot is defined for data objects of type align-

mont. Whenever an alignment object is created, a

slot called "primary-priority" is automatically

created and initialized to -1 for the alignment.
Whenever a new lower level exposure object is

added to the alignment object, all the slots in the

alignment object are updated with the result of the

evaluation of the "update-with" expression. In
this case, since the update-with expression con-

tains a reference to another slot called "primary-

exposure", the "primary-exposure" slot needs to

be populated before the "primary-priority" slot.

4.2. The Inference Engine

The Inference Engine (IE) uses the knowledge

encoded in the declared objects alongwith the

data in the data objects to accomplish the process

of merging. The algorithm used is shown in

pseudo-english in Fig. 7.

Algorithm Mer_e:

From lowest to the highest merging level

set obj to first lower-level-object

while lower-level-objects remaining {

deduce decision based on self and obj

if decision is to merge {
merge obj into self

update slots in self}

else

{

set self to new higher-level-object;

set obj to next lower-level-object

}
}

Figure 7:Algorithm Merge Used in the Inferen(

Engine

Merging commences at the lowest (exposure-

>alignment level), and then proceeds to the align-

ment->obset level, and finally obset->scheduling-
unit level. The lower-level objects are merged

into the higher-level objects in order, at each

level. The decision to merge a lower-level-object

into a higher-level-object is based on the priority
of the rule that was activated. Rule activation is

i

124



based on the result of the evaluation of the <rule-

test>, given the current values of slot and obj.

Algorithm deduce-decision which performs rule-
activation is shown in Fig. 8.

#lgorithm Deduce-Decision:

set decision to "break";

set current-priority to highest rule-priority;

while no rule has been activated and there

are rules remaining {

ff all current-priority rules have been

exhausted

set current-priority to

next lower rule-priority;

set ru/e to next unconsidered rule with

current priority;

evaluate <rule-test> using self and obj;

if result is "true" {

;rule has been activated

record <rule-name>;

if <rule-type> is "merging"

set decision to "merge"

}
]
return decision

Figure 8:Algorithm Deduce-Decision Activates

Rules

It operates by attempting to activate rules in

descending order of priority. As soon as a rule
activates, it returns the decsion based on the type
of the rule. The restriction that rules with the

same priority have to be of the same type simpli-

fies rule-ordering (before activation) and conflict-
resolutiuon (after activation). Rule-ordering for

rules with the same priority is no longer impor-
tant because all rules have the same consequence,

i.e. merging or breaking. Conflict-resolution for
rules with the same priority does not arise, again

because all rules have the same consequence, and
so there are no conflicts. If no rules are activated,

125

the default decision is "not to merge", or to
"break".

5. Examples of Merging Shell Usage

Merging shell usage will be illustrated with the

help of two examples.

5.1. Example I

In this example, we make slot and rule declara-
tions to ensure that observations that use the Faint

Guidance Sensors (FGS) should be grouped into
different obsets if they have different spacecraft

pointings. In order to implement this requirement

at the alignment->obset merging level, and keep-

ing in mind that an alignment may have several

exposures, we make use of the concept of pri-

mary-exposure within an alignment, which deter-
mines the pointing of the alignment. We declare a

slot called primary-fgs for obsets, that should
contain a reference to the first primary exposure

within it if the exposure happens to be an FGS

observation (Fig. 9).



(define-slot

:name'primary-fgs

:object'obset
:initialize-with nil

:update-with
'(or (primary-fgsself)

(let ((ex (first-exobj)

(pri (primary-expobj))

(fgs nil))

(while (and(not fgs)ex)

(when

(equalp(si-usedex) )

(set fgs t))

(setq ex (next-ex-in-al ex))
)

(when fgs pri)

)

)

.Figure 9:A Slot Definition for Pdmary-FGS

The rule declaration is shown in Fig. 10. The

<rule-test> essentially states that if se/fcontains

a primary FGS exposure, and obj also has a pri-

mary FGS exposure, and the two primaries do not
have the same pointing, then obj should start a
new obset.

(define-rule

:name "FGS ALIGNMENTS WITH

DIFFERENT POINTINGS"

:type :breaking

:level 'al->ob

:priority 4

:test '(let

((primary-fgs-self (primary-fgs self))

(primary-obj (primary-exp obj))

(and

primary-fgs-self

(fgs-observation-p primary-obj)

(not (same-ex-pointing

primary-fgs-self

primary-obj)

)

)

)

:description

"Each alignment contains an FGS

observation and the alignments have

different pointings."

Figure 10:A Breaking Rule for Faint Guidance
Sensor Observations

5.2. Example 2

This example is more complex, and demonstrates

how higher level macros can be defin_ in LISP
that use the merging shell facilities. Fig. 11 is an

example of the use of such a macro, whose pur-
pose is to prevent grouping of exposures that do

not satisfy the "homogeneity criteria" into the

same higher-level-object. The "homogeneity cri-

teria" is defined to be the comparison of the val-

ues returned by a test that has, as its argument, an

126



exposure from the set of exposures being evalu-

ated. If the values returned by the test for all expo-
sures in the set are identical (a value of nil is

considered to be identical with any other value),

then the set is said to pass the homogeneity crite-
ria, else it fails. The implementation of the macro

itself involves implementation details that are

beyond the scope of this paper.

_efine-homogeneity-breaking-rule

:name "BREAK PURE PARALLELS WITH INCOM
'ATIBLE TARGETS"

:type :breaking

:level '(al->ob)

:priority 5

:test ('let ..<details intentionally left out>)

description

"Pure parallel exposures (s.r. PARALLEL (but not PARAL-
LEL WITH) or s.r. EXTERN PARALLEL WITH) should
aot be merged into the same obset with exposures with
uaeompatible targets. Two exposures have targets incompati-
ble for parallel merging if:

1. Either is a solar system targeL

L Either is an external target and the target names are differ-
_nL

3. One is pure parallel and the other is noL"

_igure ll:An Example of the Use of the Homoge7

_ity Breaking Rule

6. Output Products Generated

The merging shell enables the generation of two

reports that have been found to be extremely use-
ful by both the Users and Developers. The first is

the "Merging Reasons Report". An excerpt from

this report is shown in Fig. 12. This report enumer-
ates the "reasons" why the observations were

grouped in a certain way. The "reasons" are the

names of the rules that were activated by the infer-
encing mechanism.

The second is due to the self-documenting fea-

ture of the shell, that creates a listing of all the

rules that have been defined alongwith their
explanations. An excerpt from such a listing is

shown in Fig. 13. This listing is an integral part

of the TRANS Scripting Guide, that contains

exhaustive documentation on the requirements

implemented within TRANS. The listiing of the

merging rules has been found to be very useful

by the Configuration Management/Quality

Assurance personnel charged with keeping the
TSG up-to-date.

7. Validation of Manual Merging

As was pointed out earlier, an observation plan

may be "manually merged" within TRANS by

explicitly specifying the observation hierarchy
that TRANS should use. This feature allows the

user to circumvent the automatic merging mech-

anism within TRANS. Even while using "man-

ual-merging" however, the user wants to be

informed of all merging and breaking rules that

may have been violated in selecting the specific

manual-merge hierarchy. This task, which is

called "validation of manual merging", is

achieved within TRANS by first merging auto-
matically using the merging and breaking rules,

and then comparing the results to the specified

manual-merging hierarchy. In case of conflict,

the appropriate merging or breaking rule is out-

put alongwith a diagnostic informing the user of

a rule violation. An example of this diagnostic is
shown in Fig. 14.

8. Implementation and Experience

As has already been mentioned, the TRANS

Merging Shell was implemented in CLOS using
an object-oriented paradigm. It should be

pointed out, however, that TRANS is imple-
mented in an extension of LISP called the trans-

formation command language (XCL). XCL is
implemented using the LISP macro facility, and

supports a procedural rule syntax and allows

abstraction for underlying data structures

(Johnston and Gerb 1992). Hence, in order to

127



FRANSFORMATION VERSION DEVELOP 66.0

MERGING REASONS REPORT

GENERATED 12-7-1994 13:32:21

PROPOSAL 274 VERSION C

TRANSFORMED USING FULL-TRANS

;U 0027401:

OBSET 01:

BREAK REASON: NO MERGING RULE

ALIGNMENT 01:

BREAK REASON: NO MERGING RULE

EXPOSURE 01 (1.0000000):

BREAK REASON: NO MERGING RULE

ALIGNMENT 02:

MERGE REASON: MERGE ALIGNMENTS INTO OBSETS, PRIORITY 1

EXPOSURE Ol (2.0000000):

BREAK REASON: NO MERGING RULE

SU 0027402:

OBSET 02:

BREAK REASON: NO MERGING RULE

ALIGNMENT 01:

BREAK REASON: DONT CASUALLY MERGE DIFFERENT CONFIGS OR PRIORITIES, PRIORITY 2

EXPOSURE 01 (3.00000(_):

BREAK REASON: NO MERGING RULE

<report truncated>

Figure 12:An Excerpt from a Merging Reasons Report

128



Merging Exposures into Alignments

This section of the Transformation Scripting Guide was created by the self docu-

menting TRANS Merging Mechanism on 04/15/94, Version #21.

Rules for MERGING_ Priorlt¥:e

Two exposures should be merged into the same alignment if:

I*

.

MERGE PARALLEL WITH AND PR/MARY

Coordinated paralld exposures (exposures with the PARALLEL WITH sr) must be in

the same alignment as their primary. This is not the case when coordinated paralleh are

being treated as pure (which does not apply to exposures with config=S/C).

MERGE PARALLEL WITH SAME PRIMARY

Exposures that are PARALLEL WITH the same primary should be merged into the

same alignment. This is not the case when coordinated parallels are being treated as pure

(which does not apply to exposures with config=S/C).

Rules for BREAKING, Prlorityz 5
Two EXPOSUREs should be broken into different alignments if:

I*

.

BREAK CONDS UNLESS DATA IS IDENTICAL

Exposures with the CON1) sr should never be merged with other exposures in the same

SU unless they are conditional on exactly the same lines with exactly the same conditions

(isnorinS spsces).

BREAK COSTAR/AFM/POM UPLINKS FROM OTHER EXPOSURES

COSTAR exposures with the REQ UPLINK sr should be in their own obset.

because mechanism history keeping cannot be performed with these exposures.

This is

.

.

BREAK DIFFERENT WFPC/WFPC2 MODES

WFPC/WFPC2 exposures with different modes should be in different alignment,.

BREAK EXPOSURES REQUIRING DIFFERENT POINTINGS

Exposures requiring different spacecraft pointings should be broken into separate align-

ments. Exposures are said to have the same pointing if the following two apply:

(a) They point to the same target. (Name must be the same. Same coordinates is not
sufficient.

(b) They have the same V2/V3 pointing. V2/V3 pointing is derived from the qaapertures
table and the POS TARG offsets (see section 2.1 for details on computing V2/V3

point ).

Figure 13:An Excerpt from the TRANS Scripting Guide Illustrating the Self Documenting Feature of

the Merging Shell.

129



_ROR ENCOUNTERED

Exposure 15.0000000 was merged into the IX'eviousscheduling unit due to manual merging.

I'hisviolatesaBREAKING rule called

'BREAK ALIGNMENTS USING DIFFERENT GUIDE STARS' (priority 5).

DIAGNOSTIC TYPE: MERGING RULE VIOLATED DURING MANUAL MERGING

IN PROPOSAL 305

IN OBJECT EXPOSURE

Figure 14:An Example of a Manual Merging Validation Diagnostic

interface with the rest of TRANS, extensive use

was made of XCL facilities for object creation

and indexing. The examples in this paper all use

CLOS syntax to refer to object slots and meth-

ods for ease of understanding. It was felt that

introducing new syntax (XCL) in the examples

was unnecessary.

A brief note on the necessity of having a sepa-

rate mechanism for declaring slots for the data

objects (separate from the actaul class defini-

tions of the data objects) is in order. The slot

defintion mechanism enables the following:

use of arbitrarily complex symbolic

expressions, the evaluations of which yield

values for slot-value updates,

specification of ordering in the updating of

slot-values (important when there are inter-

dependencies between slots),

ease of adding new slots and modifying old

ones, without having to deal with the

implementation of the class definitions,

• separation of the declarative component

(rules and slots) from the implementation.

9. Conclusions

We have described here a declarative shell to

facilitate organization of space observations into a

hierarchy based on pre'specified rules for hierar-

chical organization. Even though the underlying

principles of the shell are relatively simple, it

offers a powerful way of expressing and dealing

with knowledge related to the process of hierar-

chical organization. Its object-oriented implemen-
tation in CLOS provides for a seamless

integration with a large expert system imple-

mented in LISP. The concepts behind the merging

shell can be applied to any space observation pro-

gram where observations have to be organized
into a hierarchical structure for purposes of plan-

ning and scheduling to satisfy resource con-
straints.

REFERENCES

(Bose and Gerb 1994) Bose, A. and Gerb, A. Propagating
Orientation Constraints for the Hubble Space Telescope, (to
appear in) J. of Robotics and Computer Integrated Manu-
facturing.

(Gerb 1991) Gerb, A. Transformation Reborn: A New Gen-
eration Expert System for Planning HST Operations, J. of
Telematics and lnformatics, v.8 n.4.

(Johnston and Gerb 1992) Johnston, M.D. and Gerb, A.

The Merging Shell has been an integral part of Tran_ormation Script Programmer Manual (Rev. K)

the TRANS expert system for over 17 months. It (Miller & Johnston 1991) Miller, G.E. and Johnston. M.D.
has greatly simplified the modification of old
rules and the declaration of new ones. The users

are happy with its facilities for validation of
manual'merging and report generation.

A Case Study of Hubble Space Telescope Proposal Process-
ing, Planning, and Long-Range Scheduling, Proceedings
MAA-91.

(Steele 1990) Steele, G. Common LISP, The Language (2nd
ed.). Bedford, MA: Digital Press.

130


