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ABSTRACT

Due to the complexity of future

space missions and the large amount of data

involved, greater autonomy in data

processing is demanded for mission

operations, training, and vehicle health

management. In this paper, we develop a

fuzzy logic intelligent diagnostic system to

perform data reduction, data analysis, and

fault diagnosis for spacecraft vehicle health

management applications. The diagnostic

system contains a data filter and an

inference engine. The data filter is designed

to intelligently select only the necessary data

for analysis, while the inference engine is

designed for failure detection, warning, and

decision on corrective actions using fuzzy

logic synthesis. Due to its adaptive nature

and on-line learning ability, the diagnostic

system is capable of dealing with

environmental noise, uncertainties, conflict

information, and sensor faults.

1. INTRODUCTION

Automated data analysis plays an

important role in the success of future space

1 This research is supported by NASA

under contract No. NAS9-19266.

missions. The basic concept of automated

data analysis is to extract data measured

from existing systems, reduce them to a

point where logical decisions can be

deducted. Due to the complexity and the

large amount of data involved, greater

autonomy in data analysis and fault diagnosis

is indispensable for mission operations,

training, and vehicle health management.

Being a standard part of next

generation spacecraft, the onboard integrated

vehicle health management system will

process current and historical measurement

data to make failure diagnoses and corrective

decisions. As an important constituent of

the vehicle health management system, a

diagnostic system decides which part of the

measurement data to use, how to preprocess

and process these data, and how to deduce

the judgment and decision from the

processed data. Therefore, the reliability

and effectiveness of the diagnostic system

are closely related to the mission success.

However, the diagnostic system's

performance is complicated by its working

environment: the extremely large amount of

the measurement data, the existence of

uncertainties, and interactive vehicle

operational conditions [Simpson (1994)].

In this paper, we develop a fuzzy

logic intelligent diagnostic system within the

frame of vehicle health management system

221



performing two major functions: (i) data

reduction and information extraction; (ii)

failure detection and diagnosis. These

functions are performed by data filter and

inference engine subsystems respectively.

The data filter is designed to intelligently

select only the necessary data for analysis,

while the inference engine is designed to

provide failure detection, warning, and

corrective action decision, based on fuzzy

logic synthesis and statistical analysis. Due

to its adaptive nature, the diagnostic system

is capable of dealing with environmental

noise, uncertainties, conflict information, and

sensor faults. Assisted by neural networks

with learning algorithms, the system is able

to conduct self-learning from previous flight

data and real-time flight data.

As shown in Fig. 1, the fuzzy logic

diagnostic system can be either an integrated

part of the existing spacecraft control system

(Fig. la), or an attached independent unit to

assist the control system in its working

process (Fig. lb).
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Fig. 1. Diagnostic system and control system

The diagnostic system can be easily

added to and interfaced with existing control
software and testbeds to accelerate the

diagnostic process and to increase the

precision of the diagnosis. Physically, it can

be located either with ground-based control

facilities or with onboard computing

facilities. More specifically, it can be

incorporated into the integrated vehicle

health management systems for the Space

Station and space shuttles.

2. DIAGNOSTIC SYSTEM STRUCTURE

Figure 2 is a schematic diagram of

the general structure of the diagnostic

system. Basically, this system consists of

two subsystems: data filter and inference

engine. The former performs data reduction

and information extraction function, while

the latter performs failure detection and

diagnostics function.

Data Filter. The filter works at two

data sampling frequencies. The important
data are collected and sent to the inference

engine with a high frequency. Conversely,

the less important data are collected and sent

to the inference engine with a low

frequency. The fuzzy inference engine

assigns each data source into one of the

frequency groups. Data are represented by

their current measurements, long-term

characteristic functions, and short-term

characteristic functions. Meanwhile, these

data representations are also stored in a

relational database. Fuzzy logic inference
rules are used in the determination of the

levels of importance for any given data

source. Data fusion is performed by a fuzzy

logic multiple-level, multiple-criteria

aggregation algorithm. The weighting

parameters of the generalized mean operator

are determined by a neural network.
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Fig. 2. System structure

Inference Engine. The inference

engine has three tasks: (1) data analysis; (2)

failure diagnosis; and (3) updating

knowledge base. The inputs of the inference

engine are the outputs of the data filter. The

outputs of the inference engine are the

diagnostic conclusions and corresponding
corrective actions.

The selected fused data set comes

from the data filter. Data analysis is

performed as the first step to decide whether

any failures are existing. Fuzzy relations are

used in the data processing, assisted by

statistical and fuzzy clustering methods.

Diagnosis of the possible system failures is

conducted by the inference engine using

symptom patterns and degrees of conformity

methodologies. A hierarchical clustering

analysis is performed to find the data subset

which causes the failure. Multiple even

conflict criteria are dealt with fuzzy

compatibility calculations.

The knowledge base is updated

during its operation to be adaptive to deal

with unscheduled events, unpredictable

failure, parameter changes due to system

aging. A self-learning neural network is

designed for the training and tuning the

knowledge base during the design and

development stages of the fuzzy logic

system, and for adaptively updating the

knowledge base in real-time operations.

3. DATA REDUCTION AND FUSION

Faulty Conditions. For the design

of a diagnostic system, to have basic

understanding of all the possible faulty

conditions is necessary. First, there are four

types of failures of a system variable with

respect to time and spatial difference: hard

failure (Fig. 3a); gradual failure (Fig. 3b);

soft failure with full recovery (Fig. 3c); and

soft failure without full recovery (Fig. 3d).
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Fig. 3. Failure types

Time
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Fig. 3. Failure types (continued)

Among them, all the failures are to be dealt

with the diagnostic system except the hard

failure which can be handled by an expert

system for a quick conclusion. Next, a

failure can be the result of the following: a

single system failure; a single sensor failure;

multiple system/sensor failures; measurement

inaccuracy; and other faults including display

or reading mistakes. Finally, an observed

failure occurrence can be the result of a

single failure or simultaneous failures.

Data Reduction. One of the

important objectives of the diagnostic

system is to reduce the data it uses to make

failure detection and diagnosis quickly. The

data filter of the fuzzy logic system is

capable of performing this job intelligently

[Wu (1994)]. The principle is sorting data

to different levels according to the level of

importance that a specific data source has in

the detection and diagnosis. The subsystem

works at two data sampling frequencies.

The important data are collected and sent to

the inference engine at the high frequency

which can be the regular frequency used for

data processing. Conversely, the less

important data are sampled for the inference

engine at the low frequency which is a

frequency set for data filtering only. If

some data in the high frequency group are

determined by the inference engine to be

insignificant for decision making, they will

be degraded to the low frequency group.

Conversely, if some data in the low

frequency group are determined by the

inference engine as important for the

decision making, they will be upgraded to

the high frequency group. In this way, the

data needed for decision making can be

reduced considerably, while retaining all

significant information.

Healthy Data and Failure

Signatures. The diagnostic system is

designed for monitoring spacecraft in real

time. It is impossible for the system to
handle all the historical data because of the

limitation of the computing facilities.

However, if we only use the current

measurements, we could miss a lot of

important information residing in historical

data. To solve this problem, we use (i)

current measurements, (ii) long-term

characteristic functions, and (ii) short-term

characteristic functions to represent all the

data. The characteristic functions vary from

data source to data source, generally being

fuzzy sets to store corresponding data

patterns from their sources. This data

representation scheme is helpful in data

fusion, feature extraction, and diagnosis.

For diagnostic purposes, these data

representations are organized in a relational
database.
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In real operation, a failure in a given

part of the spacecraft system comes with

some abnormal features in the data

measurements. It is possible for us to catch

these features, i.e., its failure signature, with

computational methods.

Data Fusion. Using the data

representations we have, data fusion is

performed by a fuzzy logic multiple-level,

multiple-criteria aggregation algorithm

[Loskiewicz-Buczak (1993), Barrett (1992)

and Yager (1992)]. Here, the data fusion

provides all possible anomaly symptoms to

the inference engine instead of making

conclusions by itself.

The generalized mean operator for

data fusion is defined as

g(x l, x 2..... x, ;p; w1, w 2..... wn ) = {t w, x:}l_p'

(1)
where xi's are the input data with the total

number of information sources as n, wi's are

the relative importance factors to be

determined for different criteria, satisfying

w_ + w2+...+w . = 1, (2)

and p is the parameter to be determined.

The generalized mean operator's values lie
between the minimum and the maximum,

and increase with an increase in p. By

varying p between -oo and +oo, the

generalized mean operator can be used as
union or intersection in the extreme cases.

The weighting parameters wi's and p are

determined by a neural network. See

Krishnapuram (1992) for details of this

procedure.

system

4. FuzzY INFERENCE

An inference engine is an expert

assisted by a knowledge base to

perform evaluations. The inputs of the

inference engine are the outputs of the data

filter. The outputs of the inference engine
are the conclusions of the rules that hax;e

been fired. For our system, we use a fuzzy

inference engine [Kandel (1992) and

Zemankova (1989)].

Failure Diagnosis. If the inference

engine determines that there is an anomaly

in vehicle performance, it sends a message

to the failure diagnostics subfunction.

Diagnosis of the possible system failures is

conducted by the inference engine using

fuzzy matching of symptom patterns and

degrees of conformity methodologies.

Using fuzzy logic as the computational tool,

a hierarchical clustering analysis is also

performed to determine the data subsets

causing the failure. Multiple, even

conflicting criteria are dealt with by fuzzy

compatibility calculations. An objective

function matrix is set and adjusted in real-

time operations. Neural networks are used

to achieve near-optimal performance.

Besides the diagnostics function, the

inference engine also presents a list of

possible choices of corrective actions to

vehicle manager.

Knowledge Base Updating. The

knowledge base contains knowledge and

human expertise. It is represented by

production rules as its knowledge

representation method. In the process of

applications, it is updated to be adaptive for

dealing with unscheduled events,

unpredictable failure, parameter changes due

to system aging, and to enhance the

performance.

Neural Network-Fuzzy Inference

Mapping. A neural network is used for

tuning the fuzzy inference engine and its

knowledge base during the design and
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development stages of the fuzzy logic

system, and for its updating in real-time

operations. A mapping between the neural

network and the fuzzy inference engine is

needed. As a generalization of normal fuzzy

logic rules, fuzzy associative memories are

used to be mathematically transferred to
neurons in the neural network. A modified

error backpropagation algorithm is then

applied to the network. Fig. 6 is a schematic

of the mapping.

Training and Tuning. After the

system is built, i.e., with its structure and

algorithms decided and software developed,

we proceed to the training and tuning stage

in the completion of the intelligent system.

First, we train the system with historical data

to initiate system weights at an appropriate

initial point in vector space. The knowledge

base of the inference engine subsystem is

then built. Meanwhile, fuzzy membership

functions are tuned accordingly.

Fuzzification Inference
Defuzzification

Neural Network

Testing and Verification. The

testing and verification of the diagnostic

system are conducted mainly by utilizing

historical data recorded during previous

flights and with existing testbeds. The use

of existing testbeds greatly reduces the time

and cost of system test and verification.

Different performance indices are designed

to test the robustness of the system and the

precision of the diagnosis. Since the system

can be run in parallel with existing systems,

the performance of the diagnostic system is

compared with that of available diagnostic

techniques.

Fig. 4. Neural network-fuzzy inference mapping
6. CONCLUSIONS

5. IMPLEMENTATIONS

System Design. The project

approach uses an optimization process based

on performance comparison. First, the

general structure is decided by study of

system and performance requirements. The

detailed requirements of mission operation

control systems are studied to ensure that the

fuzzy logic system is built to satisfy all the

system requirements. Then, a comparison is

conducted using different performance

criteria to evaluate different structural

details for the diagnostic system.

This paper discusses the principles

and algorithms of a fuzzy logic diagnostic

system designed for the spacecraft

integrated vehicle health management. The

diagnostic system contains a data filter and

an inference engine. The data filter is

designed to intelligently select only the

necessary data for analysis, while the

inference engine is designed for failure

detection, warning, and decision on

corrective actions using fuzzy logic

synthesis. Due to its adaptive nature and on-

line learning ability, the diagnostic system is

capable of dealing with environmental noise,

uncertainties, conflict information, and

sensor faults.

226



REFERENCES

[Barrett, 1992] Barrett, C. R., P. K.

Pattanaik, and M. Salles, "Rationality

and Aggregation of Preferences in an

Ordinary Fuzzy Framework", Fuzzy

Sets and Systems, Vol. 49, pp. 9-13,
1992.

[Kandel, 1992] Kandel, A., Editor, Fuzzy

Expert Systems, CRC Press, Boca

Raton, Florida, 1992.

[Krishnapuram, 1992] Krishnapuram, R.,

and J. Lee, "Fuzzy-Connective-Based

Hierarchical Aggregation Networks for

Decision Making", Fuzzy Sets and

Systems, Vol. 46, 1992.

[Loskiewicz-Buczak, 1993] Loskiewicz-

Buczak, A., and R. E. Uhrig,

"Aggregation of Evidence by Fuzzy Set

Operations for Vibration Monitoring",

Proceedings of the Third International

Conference on Industrial Fuzzy Control

and Intelligent Systems, pp. 204-209,

Houston, Texas, 1993.

[Simpson, 1994] Simpson, W. R., and J.

W. Sheppard, System Test and

Diagnosis, Kluwer Academic

Publishers, Boston, Massachusetts,

1994.

[Wu, 1994] Wu, G. G., "A Large-Size Data

Reduction/Fusion Algorithm for

Spacecraft Vehicle Health Management

Systems", Proceedings of the 1994

First International Joint Conference of

NAFIPS/IFIS/NASA, pp. 375-376, San

Antonio, Texas, 1994.

[Yager, 1992] Yager, R. R., "Higher

Structure in Multi-Criteria Decision

Making", International Journal of

Man-Machine Studies, Vol. 36, pp.

553-570, 1992.

[Zemankova, 1989] Zemankova, M.,

"FILIP: a Fuzzy Logic Intelligent

Information System with Learning

Capabilities", Information Systems,

Vol. 14, pp. 473-486, 1989.

227




