
/ N95- 27395

A Path-oriented Knowledge Representation System:
Defusing the Combinatorial Explosion I

Stefan Feyock

Computer Science Department,

College of William & Mary

Williamsburg, VA 23185

feyock@cs.wm.cdu

Stamos T. Karamouzis

National Research Council Associate

MS 152, NASA Langley Research Center

Hampton, VA 2368143001

stamos@icat.larc.nasa.gov

John S. Barry

Lockhee_ Engineering & Sciences

MS 152, NASA Langley Research Center

Hampton, VA 23681

j.s.barry@larc.nasa.gov

Steven L. Smith

Lockheed Engineering & Sciences

MS 152, NASA Langley Research Center
Hampton, VA 23681

s.l.smith@larc.nasa.gov

#j _7o

{,Io

Abstract

LIMAP is a programming system oriented toward efficient information

manipulation over frxed finite domains, and quantification over paths and

predicates. A generalization of Warshalrs Algorithm to precompute paths

in a sparse matrix representation of semantic nets is employed to allow

questions involving paths between components to be posed and answered

easily. LIMAP's ability to cache all paths between two components in a

matrix cell proved to be a computational obstacle, however, when the

semantic net grew to realistic size. The present paper describes a means of

mitigating this combinatorial explosion to an extent that makes the use of

the LIMAP representation feasible for problems of significant size. The

technique we describe radically reduces the size of the search space in

which LIMAP must operate; semantic nets of more than 500 nodes have

been attacked successfully. Furthermore, it appears that the procedure

described is applicable not only to LIMAP, but to a number of other

combinatorially explosive search space problems found in AI as well.

Introduction

The set of Artificial Intelligence (AI) search/representation techniques referred to as

"weak methods" generally represent problems in terms of states and operators. A typical

problem description specifies one or a few start states, a test for discerning goal states,

and a set of operators for generating successor states from current states. The state space

is implicit, being generated by operator application as search progresses, and in many

cases is potentially infinite.

1 The research reported in this paper was supported in part by NASA Grant NCC-1-159

and NASA Contract NAS 1-19000

253

. 5" J ,,,tr_-_,ir'._.;_L'_f,t,_.,_KPRECEDING PAGE BLANK NOT FILMED p_e_ , .,,

There is a significant subset of practical AI problems, however, that involve a finite

domain that is known and enumerable a priori, and unary or binary predicates over that

domain; semantic net representations constitute an important instance. Well-known

vector- and matrix-based representations can efficiently represent finite domains and

unary/binary predicates and allow effective extraction of path information by generalized

transitive closure/path matrix computations. We have developed an intelligent information

tool, called LIMAP (Feyock and Karamouzis, 1991, 1992), which employs a set of

abstract sparse matrix data types along with a set of operations on them as the basis for

representing and manipulating fmite enumerable domain (FED) problems. The present

paper describes one such problem, and our experiences in attempting to apply the LIMAP

system to its solution. We discuss in particular the solution we developed for overcoming

the combinatorial explosion that occurred with increasing domain size, a technique that is

applicable to a wide class of FED problems.

Problem Description

DRAPHYS

Semantic net representations constitute a significant subclass of FED Problems. We will

begin by describing the DRAPHYS system, which employs a typical example of such a

representation. DRAPHYS (Abb0tt, I991) is a model-based system designed to reason

about a physical system represented by its model; our group's research has centered on the

modeling and diagnosis of jet engine faults. The model of the physical system is a semantic

net consisting of a set of nodes, representing components such as compressors, turbines,

and combustors, as well as a set of four kinds of arcs representing the relations

functionally-affects and physically-affects 2, together with their inverses. Malfunctions are

_agnosed by determining, for each component in the system, whether a possible

propagation path exists linking that component to each symptomatic component. A

possible propagation path is a path that satisfies the constraint that it contains no

instrumented component whose sensor reading is normal.

Figure 2 and Figure 3, below, give pseudocode and LIMAP definitions of DRAPHYS's

mode of operation. It is evident that DRAPHYS must determine, for each component,

whether a path exists to each symptomatic component, and whether the path is in fact a

possible propagation path. The original version of DRAPHYS accomplished this by means

of backtracking search, a procedure that proved to be prohibitively time-consuming for

large systems. Since LIMAP is a system that specializes in producing the set of paths

between nodes of FEDs, it was decided to attempt to apply it to this problem.

2 Component A functionally affects component B if A's malfunction can affect B's operation via a

functional causal path; component A physically affects B if A's malfunction can affect B's

operation via a physical path, such as fragments from A piercing B. A typical unary relation

occurring in this model is is-instrumented(A)

254

The LIMAP Knowledge Representation System

LIMAP is designed to represent semantic nets, which of course are an important class of

representations based on bEDs. LIMAP differs from other net-based representation

systems in its emphasis on the efficient storage of large sparse nets, and on the provision

of a second-order query capability oriented toward queries involving paths. Its design was

motivated by the observation that queries of the form "is there a relation R such that nodes

x and y are in relation xRy?" "is there a path form x to y? a path fulf'dling constraint C?.

where can I go from x? how can I get to x?" arise frequently in AI in general, and in

diagnostic problems like those addressed by DRAPHYS in particular. The foilowlng

section provides a brief overview of LIMAP's query language and design; details can be

found in (Feyock & Karamouzis 92).

LIMAP Overview

The LIMAP DDLIDML

The LIMAP implementation model is based on a representation that employs Boolean and

symbolic vectors and adjacency matrices 3 to represent unary and binary predicates, as well

as an efficient transitive closure computation capability that allows Boolean or symbolic

path matrices to be computed and manipulated.

As is the case for an ordinary first-order database system, LIMAP capabilities are invoked

via a language interface that consists of two parts. One is the data definition language

(DDL) for specifying both the data the system is to contain as well as "meta-data," that is,

information about the structure and constraints that govern the data contained in the

system. The other is the data manipulation language (DML), the subset of the language

concerned with the specification of queries and updates on the data. We will categorize

the LIMAP functions accordingly. A brief summary of the LIMAP DDL and DML follow;

Feyock and Kammouzis (1991) contains a complete listing.

DDL operations: The basic DDL operations are:

DEFREL < name > < specification > < type > < representation >

< specification >:: = (< number >) I (< number > < number >)

<type> :: = boolean I symbolic

<representation> :: = sparse I dense

and

DELREL <name>,

to define or delete a relation, respectively. DEFREL defines a relation by creating a new

array according to the values of the parameters, and binding this array to <name>;

3 An adjacency matrix is a binary matrix representation of a graph. Entry ij is 1 iff a link joins

node i and node j.

255

<specification> stipulates whether the array will be a vector or matrix, as well as the index

range(s); <type> specifies whether the declared relation will be represented by a Boolean

or symbolic array, while <representation> allows the user to choose a sparse or dense

array representation.

I)ML operations: The major DML operations are:

STORE relname value [row] column Store value

RETRIEVE relname [row] column Retrieve contents

TCLOSE relname Transitive closure

PATHS relname row column All paths

MULT relname relname Multiply

TRANSPOSE relname relname Transpose

STORE and RETRIEVE perform the indicated operation on the specified array position,

in accordance with the array's type and representation, while MULT and TRANSPOSE

typify a variety of standard matrix operations made available by LIMAP. Except in

DEFREL it is transparent to the user whether the array representation is sparse or dense.

This transparency extends to the other attributes of the array wherever possible.

Calculating Paths

The TCLOSE and PATHS operations form the core of LIMAP's path manipulation

capability. TCLOSE computes the transitive closure of a semantic net. If G is a semantic
net then the transitive closure G* of G is a network containing an edge <a, b> if and only

if G contains a path (of length 0 or greater) from a to b. TCLOSE employs Warshall's

Algorithm (see, e.g., Horowitz & Sahni, 1976) for computing G* given an adjacency

matrix that represents a network G. Intuitively, the algorithm scans the matrix top to

bottom, left to right. If a 1 is encountered, say in row i, column j, then row i is replaced by

row i OR row j, and the scan continues from position ij.

A straightforward extension, described in (Feyock and Karamouzis, 1991), of Warshall's

Algorithm to symbolic adjacency matrices produces a matrix, termed the path symbolic

adjacency matrix (PSAM), whose ij entry contains the set of all paths from node i to node

j. The extension, shown in Figure 1, consists of storing the paths created by appending all

paths in (i,j) to all paths (j,k) into the cell (i,k). PATHS[i,j] retrieves the set of all paths

from node i to node j by referencing entry ij of the resulting PSAM, thus enabling

quantification over paths.

Let M be an NxN path matrix, i.e., a matrix each of whose entries contains

a set of paths (represented as lists). Initially M[i, j] = {(i j)} i.e., the singleton

set containing a one-step path from i to j, iff there is a link from node i to node j;

if not, M[i, j] = NIL. Then after the following loop is executed, M[i, j]

contains the set of all paths from node i to node j.

256

for k := I to N do ; scan array from top down

for i := I to N do ; scan array from left to fight

if (i _ k & M[i, k] _ NIL) then

for j := I to N do M[i, j] := M[i, j] u (M[i, k] IIM[k, j])

The IIoperater is defined as follows:

If p = (vl vk) and q = (vk vr) then p IIq = (vl vk vt)

Figure 1: Path Matrix Computation

Control Structures

The distinction between procedural and nonprocedural predicate calculus specifications

blurs if the underlying domain is finite, since the FORALL and EXISTS quantifiers map in

an obvious way to loops ranging over the domain elements. It has been our goal to give

the LIMAP DML as non-procedural a character as possible. In particular, LIMAP

notation is an adaptation of the (function-less) predicate calculus, with extensions to allow

data retrieval in addition to data specification. Perhaps surprisingly, we have found that

minimal modifications of the control macros described in (Charniak et al., 1987) were

suitable for the task of expressing the required quantifications. Here is a summary of the

general form of the control structure implemented by these macros:

(FOR ((< variable1 >: IN < set1 >)

(< variable, >: IN < set, >))

[:WHEN <when-expression>]

< FOR-keyword > < expression1 >... < expression. >)

The construct (<variablei>: IN <seti>) causes the variable to iterate over the elements of

the set, which may be specified as a list, a vector, or a matrix row or column. Unless a

false when-expression is present, the FOR-body is evaluated and a result is produced as

governed by the FOR-keyword. Iteration then proceeds to the next set of variable values.

FOR keywords
:ALWAYS

:FILTER

:FIRST

:SAVE

true if all the values of body are true

produce a list of the non-NIL values of body

produce the first non-NIL value of body

produce a list of all values of body.

While the description of these constructs is procedural in form, the effect when

programming in this notation is that of writing FORALLs and EXISTs, with the proviso

that any variable values that are found to "EXIST" are collected in accordance with the

FOR keyword and returned as value. The following section contains an example

application of LIMAP.

257

DRAPHYS in LIMAP

Figure 2 summarizes the operation of the DRAPHYS diagnostic system.

for each C in set-of-components do
if "C has failed" is a valid hypothesis

then add C to set-of-valid-hypotheses;
end for,

component C is a valid hypothesis iff there is a POSSIBLE PROPAGATION PATH

from C to every symptomatic sensor

A path is a POSSIBLE PROPAGATION PATH iff every instrumented

component on the path has at least one symptomatic sensor

If set-of-valid-hypotheses contains
one element: done

more than one element: DRAPHYS waits for more symptoms to develop and

disambiguate the diagnosis.

Figure 2: Basic DRAPHYS Operation

LIMAP allows this procedure to expressed concisely. The code shown in Figure 3 creates

the set of valid hypothes:

(defun determine-hypotheses (components symptomatic-sensors)
; components =(def') set of all components to be

; considered as hypotheses

(for (c :in components)

:when (is-valid-hypothesis c) :filter c))

(defun is-valid-hypothesis (c symptomatic-sensors)

(for (s :in symptomatic-sensors)

:always (exists-bad-path c s)))

(defun exists-bad-path (c s)

(for (p :in (paths 'engine c s)) ; paths from c to s

:first (for (component :in p) :always (not-known-ok component))))

(defun not-known-ok (c)

(or (null (instrumentation c)) (symptomatic c))) ; symptomatic is a boolean vector

(defun instrumentation (c) ; returns list of sensors associated with c

(for (s :in components)

:when (and (is-sensor s) (retrieve 'engine c s)) :save s))

Figure 3: DRAPHYS in LIMAP

i

258

The Size Barrier

The key statement in the Figure 3 code is the line

(for (p :in (paths 'engine c s)) ; paths from c to s

occurring in the exists-bad-path function. (paths 'engine c s) is a reference to the PSAM

for relation paths, and exemplifies the capability to quantize over paths that is a major

strength of LIMAP. It is also the source of a combinatorial explosion in terms of storage

requirements when system size grows. Whereas DRAPHYS precomputes no paths, and

thereby incurs unacceptable runtimes for large problems, LIMAP precomputes all paths,

and encounters space limitations as the domain size grows. In particular, replacing

DRAPHYS' backtracking path search with LIMAP's PSAM capability on the 23-

component jet engine model originally operated on by DRAPHYS significantly improved

the run time performance of the diagnostic reasoner. Increasing the size of the model to

over 100 components, however, produced a PSAM matrix that, despite its sparse

representation, was so large that paging overhead made its use computationally infeasible.

It was evident that precomputing and storing all possible paths between nodes was

unworkable in terms of space. An approach that avoided both the inordinate time

requirements of DRAPHYS and the excessive space consumption of LIMAP was

required.

Node Matrices

The solution that was developed was to modify the extended WarshaU's Algorithm

depicted in Figure 1 so that M[i, j] would store not the entire set of all paths from node i

to node j, but only the nodes occurring on those paths.

Let M be an N×N node matrix, i.e., a matrix each of whose entries contains a set of nodes.

Initially M[i,j] = {i,j} i.e., the set containing the two nodes occurring on the one-step

path from i to j, iff there is a link from node i to node j; if not, M[i, j] - NIL. Then after

the loop in Figure 4 is executed, M[i, j] contains the set of all nodes occurring on paths

from node i to node j. More precisely: after executing the node matrix computation

algorithm, M[i, j] = {n 13path p from node i to node j, and n occurs on p}

for k := 1 to N do ; scan array from top down

for i := 1 to N do ; scan array from left to right

if (i _ k & M[i, k] _ NIL) then

forj := 1 to N do M[i, j] := M[i, j] u (M[i, k] I1M[k. j])

Figure 4: Node Matrix Computation

It is important to note that if it is necessary to establish only the existence of a path

between i and j, the node matrix M is as efficient as the adjacency matrix: a path exists iff

M[i, j] is not NIL. If an actual path between nodes i and j is required, the original

backtracking search method is employed, but with the constraint that the search consider

259

only nodes in the set M[i, j]. If the net is sufficiendy sparse (as is the case in our

application), it is feasible to generate the set of all possible paths between i and j by the

same approach.

Performance Improvement

The time required to compute the set of aLl paths between two nodes of a digraph is

known to be exponential in the number of nodes. The extended WarshaU's Algorithm

employed by LIMAP is 0(nS), while the node matrix computation is 0(n4). The amount of

time saved was found in practiceto increasethe sizeof the problems that could bc

attackedby nearlyan order of magnitude. At leastas important,however, isthe factthat

restricting the search to nodes in M[i, j] can achieve a radical reduction in the size of the

search space, depending on the dcgrcc of sparseness of M. Since a node matrix records

only the set of nodes occurring on any path between i and j, rather than the paths

themselves, it is to be expected that node matrices require significantly less storage than

path matrices. A further source of performance improvement results from the fact that sets

allow the familiar representation in terms of bit strips (bit i is on iff i is in the set) that

allows set union to be implemented as bitwise OR, a highly efficient operation on

csscntiaUy atl machines. Each matrix cntry is then a single binary number of N bits. Not

only matrix storage rcquircmcnts but also matrix creation time are greatly reduced

compared to the PSAM, since the time-consuming link operation is no longer needed.

Furthermore, if the net is sparse, then most bits of most bit strips wiLl be 0, allowing a

number of wcll-known compression techniques to be applied to the entries of the node

matrix. The amount of storage required is NLs.k bits, where s is the cxpected number of

distinct nodes on paths between arbitrary nodes, and k is compression overhead. In the

worst case (no compression) the amount of space required is NLN.log2(N) bits. We thus

have representational parsimony on two levels: the sparse-matrix rcprcscntation facilitcs

afforded by LIMAP, and the bit strip compression technique employed at the level of the

matrix entries. Table 1 summarizes the time and space savings achieved by the node matrix

technique 4.

_ii_2 1...................: : _.......iiii_ _;iiiiiiiii!iiii!iiiiii!i!i!ii!iiiiiiiiiiiiii!ii!iiiiiiiiill_i_
:: :' +'.'<: :_::: ::: :::::::::::::::::::2::::::::!: :::!:::!:::!:? :!:!_.!:!:!:i:i:i:i:i:i:i:i:?i:i:i:?i:i:i:i:i::i ;::

:::::.:.:.:.,.:+:.:.:.:.:.........._::

__ii_iiiiiiiiiiiii!!!!i!!i!!i!iiii!ii!!ii!ii_ii!!iiiiii:ii:i_i

i!_iii_iiil iii{iliiiliiiiiiiiiiiiiiiii!ii!i!i!i!iiiiiiiiii!ii!i!iiiiiiii!!!i!ii!ii!iiiili!iiii
:i:iii__i_iiiiiiiiiiii!!!!ii!iiiiiiiiiil;iii
ii!N_i!iii?_i!i!iiiii!j!!!i!i!ii!!ili!!iii!!!:!iiiiiiii!ii!iiiii:iiiiii!iiii!ii_ii_iiiiil_ii/i!!i_iiii_i:=i=,i_ii

,121111,1.iiii...i.i_.i"i.._i....................................i!i!iE_ =_i;iiiii_!ii!ii!iii!i!iii!iii!iiiii_ii_i!i!i!i!!!i!!_!_i;!;i!i_i_i_!_!_iii!ii_i!iiiii!i!_!_ii_!i_

Time: nominal

Space:nominal

Time: 5 hours

Space:3M

Time: 12 hours

Space: 5M

Attempt abandoned; infeasible

due to paging problems

ii_!ii_iiii!i!i!i!i!iii!iiiii!iiiiiiiiii
Time: nominal

Space: nominal

Time: 30 minutes

Space: 50K

Time: 35 minutes

Space: 61K
Time: 1 hour

Space: 65K

Table I

The "nominal" entries for_e 23-component engine model reflect the fact that most circumstances

tend not to be noticed - or measured - until they become irksome.

260

It is apparent that the task addressed by DRAPHYS is a typical FED problem, and that the

node matrix technique we have described is applicable to FED representations in general.

LIMAP, which was developed to accomodate the requirement for quantifying over paths

as well as individuals in FED representation, runs into space limitations the space

limitations illustrated by Table 1 when processing larger models. If (as is frequently the

ease) the net is sparse, the node matrix technique allows significantly larger systems to be

represented in feasible amounts of space, while retaining sufficient speed to allow

quantization over paths. The example graph (tree, in this ease) depicted in Figure 5

illustrates the striking reduction in search effort that the node matrix technique can
achieve.

I

2 n-3 n-1

n

Figure 5

Suppose the task is to find a path from node 1 to node n. It is evident that depth-fh'st

backtracking search will explore all of nodes l'to n. If a node matrix is used, then the [1,n]

entry will contain {1, n-l, n}, the set of nodes occurring on the path(s) from 1 to n.

Search in this 3-node space is trivial. While this is admittedly an extreme example, we have

found that the use of a node matrix increases the size of the problem that can feasibly be

attempted by nearly an order of magnitude.

Conclusion

An earlier paper (Feyock and Karamouzis, 91) described the LIMAP system that we

developed in response to the need for a higher-order logic capability in FED problems,

particularly the need to quantize over relations and paths in diagnostic systems. Practical

experience with this system showed that while it coped well with models of small to

moderate size, large representations resulted in unacceptable storage requirements. In this

paper we have presented technique that can lead to drastic reductions in search space size,

allowing models of more than 500 nodes to be processed. The procedure described is

applicable not only in the context of LIMAP, but to a number of other combinatorially

explosive search space problems found in AI as well.

261

References

Abbott, K, H. Robust Fault Diagnosis of Physical Systems in Operation, NASA

Technical Memoradum 102767, NASA Langley Research Center, Hampton, Virginia,

1991.

Chamiak, E., et al. Artificial Intelligence Programming (2nd Ed.). Lawrence Earlbaum

Associates, 1987.

Feyock, S, and S. Karamouzis, "Design of an Intelligent Information System for In-Flight

Emergency Assistance," in Proceedings of the 1991 Goddard Conference on Space

Applications of Artificial Intelligence, Greenbelt, MD, May 1991.

Feyock, S, and S. Karamouzis, "A Path-Oriented Matrix-based Knowledge

Representation System," in Proceedings of the Fourth International Conference on Tools

with Artificial Intelligence, Arlington, VA, November 1992.

Horowitz, E., and Sahni, S. Fundamentals of data structures. Computer Science Press,

1976.

262

