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ABSTRACT

An overview of current multigrid techniques for unstructured meshes is given. The basic
principles of the multigrid approach are first outlined. Application of these principles to
unstructured mesh problems is then described, illustrating various different approaches, and
giving examples of practical applications. Advanced multigrid topics, such as the use of
algebraic multigrid methods, and the combination of multigrid techniques with adaptive
meshing strategies are dealt with in subsequent sections. These represent current areas
of research, and the unresolved issues are discussed. The presentation is organized in an
educational manner, for readers familiar with computational fluid dynamics, wishing to

learn more about current unstructured mesh techniques.
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1 Introduction

This chapter is concerned with the use of multigrid methods for solving computational fluid dynam-
ics problems on unstructured meshes. At issue is the efficient solution of the spatially discretized
governing equations in time, in order to obtain the final steady-state solution, or the solution for
the corresponding unsteady problem for a series of arbitrarily large time-steps. As such, the spatial
discretization of the governing equations will not be considered in this chapter, only their temporal
solution. The techniques in this chapter can in principle be applied to any spatial discretiza-
tion, although the implementation details and their effectiveness may vary widely for higher-order
discretizations. In the current discussion, we therefore assume that the equations are spatially
discretized in a second-order accurate fashion, unless otherwise stated.

A standard numerical technique is to separate out the spatial and temporal discretization pro-
cedures. Thus, if the continuous set of governing partial differential equations is given by

du | 9f(w) , dg(w) , Oh(w)

ot oz Jy 8z 0 (1)
then the spatially discretized equations can be written as:
du
7 +R(u)=0 (2)

This represents a large set of spatially coupled ordinary differential equations, where R{u) denotes
the discretization of the spatial derivative terms in equation (1). In order to solve these equations,
they must be integrated in time. For unsteady problems, the accuracy of the time discretization and
integration procedures must be carefully considered. For the solution of steady-state problems, we
are only concerned with the final state where all time derivatives vanish. The actual time integration
procedure or transient path used to arrive at this state is thus of little consequence, and accuracy
of the time integration procedure is not a concern. A particularly simple time discretization can
be constructed as:

un+1 —u"

A7 +R(u") =0 (3)

thus enabling a simple procedure for advancing the solution in time:

™! = 4" — AtR(u") (4)

This constitutes an explicit scheme, since the value of the solution at the new time-step n + 1
can be obtained explicitly from the value at the previous time-step n. By their very construction,
explicit schemes involve only local information (i.e., based on the stencil of the residual R(u")).
They are thus simple to implement, and vectorize and parallelize easily on present-day computer
architectures. However, the efficiency of explicit schemes for hyperbolic equations is limited by
the Courant-Freidrichs-Lewy condition, which states that the maximum permissible time-step for
stability is proportional to the mesh spacing. Thus, as the mesh is refined, smaller time-steps
are required to maintain stability. For unsteady problems, the allowable time-steps may be much
smaller than those required by time-accuracy considerations alone, while for steady-state problems,
this may result in an excessive number of time-steps to reach the steady-state converged solution.
Since the number of variables which must be solved for also increases as the grid is refined, this
results in an O(N?) algorithm, where N represents the total number of grid points. Another



viewpoint is that, since explicit schemes only make use of local information, as the mesh is refined,
a larger number of iterations is required to transmit information across the entire domain. This
type of behavior is obviously unacceptable for large problems, and more efficient solution techniques

are required.
A scheme which is unconditionally stable for any size time-step can be constructed by replacing

equation (3) with

un-{-l —yn
At

i.e., by evaluating the discrete residual at the new time-step n + 1 instead of at the old time-step
n. Since the flow values are not explicitly known at n + 1, the above equation is rewritten as

+R(u™) =0 (5)

(5 + G = ) = ~ALR() (6)
which is obtained by linearizing the residual about the time-step n, thus introducing the Jacobian
matrix %—1}. The term on the left-hand side of the equation represents a large sparse matrix which
must be inverted at each time-step, in order to update the solution. In the limit of an infinitely large
time-step, the first term on the left-hand side vanishes, and Newton’s method is recovered. These
types of implicit schemes have been employed with great success for unstructured grid problems,
either as direct solvers, using a very large time-step and inverting the left-hand side matrix with
a Gaussian elimination technique [1], or as iterative solvers, where finite size time-steps are taken,
and the resulting linear system represented by the left-hand side matrix is solved approximately
at each time-step using an iterative method [2, 3, 4, 5, 6]. In order to simplify the linear system
which must be solved, it is common to use a simplified form of the Jacobian matrix, obtained by
considering a first-order accurate discretization in its construction, while full second-order accuracy
is maintained in the residual construction on the right-hand side of the equation, since this term
determines the accuracy of the solution.

The main difficulty with implicit methods relates to the memory requirements of these tech-
niques. Consider for example, a simple first-order accurate vertex-based discretization of the Euler
equations in three dimensions. A simple discretization of this type can be shown to result in a near-
est neighbor stencil, where all points involved in the stencil of a particular vertex are end-points
of a mesh edge which touches the vertex. The number of non-zero entries of the Jacobian matrix
is thus proportional to the number of edges in the mesh. Since the Euler equations represent a
system of partial differential equations, the Jacobian matrix has a block structure, with each block
counsisting of a 5 by 5 sub-matrix. Thus the total number of non-zero entries in the Jacobian matrix
is given by

(5 x 5) x Number of Edges x 2
+ (5 x5)x Number of Vertices (7)

The factor of 2 arises due to the fact that the matrix is non symmetric, while the second term
represents the diagonal contribution of the matrix. For a typical unstructured tetrahedral mesh,
the number of edges is approximately six to seven times the number of vertices, thus the number
of non-zero entries in the Jacobian matrix reduces to no less than 325N, where N is the total
number of vertices. Since first- and second-order accurate discretizations for the Euler equations
in three-dimensions which employ less than 100 storage locations per grid point are commonplace
(7, 8,9, 10], the use of an implicit method of this type entails a storage overhead at least three to four
times larger than that required by a simple explicit scheme. In fact many implicit schemes incur



storage overheads equivalent to two to three times the Jacobian matrix, making them particularly
undesirable for-large three-dimensional problems.

On the other hand, matrix-free implicit methods are available which never explicitly require
the formation of the Jacobian matrix. As an example, the application of GMRES techniques [11]
to equation (6) may be achieved by only forming the required matrix vector products using finite
difference techniques [12, 13] according to:

QEA“ _ R(u) — R(u + €¢Au)

Ju €
where ¢ represents the magnitude of a small perturbation to the solution vector in the direction
Au. However, to be effective, GMRES methods are usually employed in conjunction with a pre-
conditioning technique, and the most effective preconditioning methods have so far been found to
be those which rely on a Jacobian-type matrix [2], thus incurring similar storage overheads. The
development of an effective matrix-free preconditioner could thus have a dramatic effect on the
usability of strongly implicit methods for large problems.

(8)

Multigrid methods offer ar alternative to implicit methods for efficiently solving large problems,
while incurring low additional memory overheads. A notable property of a well formulated multigrid
algorithm is that the number of multigrid cycles required to achieve a given level of convergence is
independent of the resolution of the mesh. Thus, multigrid methods enable solutions to be obtained
in O(N) operations, where N represents the number of grid points. Linear complexity of this type is
considered to be optimal. Multigrid methods are also very powerful, in that they may be applied to
linear as well as non-linear problems. While multigrid methods have traditionally been considered
in the context of steady-state problems, they may also be utilized to solve unsteady problems. This
is usually achieved by formulating the transient problem as a steady-state problem in pseudo-time
at each time-step [14, 15, 16, 17]. Thus, the essential features of multigrid algorithms can be
examined by restricting the discussion to steady-state problems, and the treatment of unsteady
multigrid is deferred to the chapter on unsteady solution techniques.

The basic idea behind all multigrid strategies is to accelerate the solution of a set of fine
grid equations by computing corrections on a coarser grid. The motivation for this approach
comes from an examination of the error of the numerical solution in the frequency domain. High-
frequency errors, which involve local variations in the solution, are well annihilated by simple
explicit methods. Low-frequency or more global errors are much more insensitive to the application
of explicit methods. This is natural, considering the local nature of the information employed in
explicit schemes. In fact, the convergence rate of explicit schemes usually consists of a rather rapid
initial residual reduction phase, which gradually develops into a much slower residual reduction
phase, corresponding to a situation where all high-frequency errors have been eliminated and low-
frequency errors dominate, as shown in Figure 1. Multigrid strategies capitalize on this rapid initial
error reduction property of explicit schemes. Typically, a multigrid scheme begins by eliminating the
high-frequency errors associated with an initial solution on the fine grid, using an explicit scheme.
Once this has been achieved, further fine grid iterations would result in a convergence degradation.
Therefore, the solution is transferred to a coarser grid. On this grid, the low-frequency errors of
the fine grid manifest themselves as high-frequency errors, and are thus eliminated efficiently using
the same explicit scheme. The coarse-grid corrections computed in this manner are interpolated
back to the fine grid in order to update the solution. This procedure can be applied recursively
on a sequence of coarser and coarser grids, where each grid-level is responsible for eliminating a
particular frequency bandwidth of errors.
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Figure 1: Typical convergence characteristics of explicit schemes.

This interpretation of multigrid is essentially an argument based on the principles of elliptic
equations. While the expected performance of multigrid methods can be rigorously proved for
simple elliptic problems [18], little is known for hyperbolic problems. Multigrid methods have
nevertheless proven themselves for such problems. One interpretation of multigrid methods for
hyperbolic problems is that the sequence of coarser grids enables the use of larger time-steps which
expels disturbances out of the domain more rapidly.

Multigrid strategies are generally considered as convergence acceleration techniques, rather than
solution methods themselves. In fact, they may be applied to any existing relaxation technique,
explicit or implicit. The success of the overall solution strategy depends on the a close matching
between the bandwidth of errors which can be efficiently smoothed on a given grid using the
particular chosen relaxation strategy, with a careful construction of a sequence of coarse grids, in
order to represent the entire error frequency range.

In the case of anisotropic problems, for example, there are two fundamental approaches to
constructing efficient solution schemes. The difficulty with such problems is that simple explicit
methods are incapable of efficiently eliminating the highest frequency errors in both the strong
and weak coupling directions simultaneously (i.e., for a stretched mesh in a boundary layer this
corresponds to the normal and streamwise directions respectively). One approach, often employed
in structured mesh cases, is to increase the error frequency bandwidth which may be handled
efficiently by the base relaxation scheme, by resorting to an implicit relaxation method, such as
approximate factorization (ADI) schemes [19]. The other approach is to recognize precisely which
frequencies are not smoothed effectively by the simple explicit scheme (¢.e., in this case the high-
frequency streamwise errors) and devise a sequence of coarse grids which ensures these errors are
represented at some level as the dominant high-frequency contributions. For anisotropic problems,
this may be achieved through semi-coarsening procedures, where coarse meshes are created by
only coarsening in the direction of strong coupling [20, 21, 22]. In practice, both methods can be
implemented effectively. However, the latter approach is more in the spirit of the multigrid purist,
i.e., to use additional coarse levels to relieve any stiffness associated with spatial effects.

Multigrid methods may also be employed to accelerate the solution of the full non-linear equa-
tion set as shown in equation (2), or they may be used to operate on the linear system which arises
at each time-step in the implicit scheme of equations (6). While applying multigrid to the solution
of the linear system in an implicit scheme affords certain advantages, and has been demonstrated
successfully [23, 24], it forfeits one of the principle advantages of the multigrid method, which is
the low memory overheads required.



One of the drawbacks of multigrid methods is that they require the construction of additional
coarse-grid levels for the solution of the fine-grid equations. The generation of coarse levels reduces
the automation of the solution process, and potentially decreases the robustness, as well as makes
the procedure more problem dependent. This occurs as a result of the appearance of issues such
as proper coarse-grid discretizations and boundary conditions. In fact, the coarse-grid levels are
geometric constructions which in theory should not be required for the solution of a set of algebraic
equations (as in the case of a direct solver). The development of algebraic multigrid methods [25]
represents an attempt to abstract and formalize the ideas inherent in grid-based multigrid strategies
to algebraic sets of equations. These techniques can be particularly attractive in the unstructured-
grid context, since the construction of coarse-grid levels is not always evident, and the presence
of complex geometries with widely varied boundary conditions can substantially complicate the
implementation of grid-based strategies. However, the development of algebraic multigrid methods
has substantially lagged that of geometric multigrid methods, a tribute to the fact that much useful
information can often be acquired from the geometrical representation of the problem.

On the other hand, there is a reverse trend in the literature, known as the de-algebraization
of multigrid [26]. This philosophy consists of viewing multigrid not simply as a convergence accel-
eration technique, but as a broad multilevel approach to simulating continuous partial differential
equations, which may involve adaptive meshing, adaptive cycling strategies, and even multiple
discretizations. A framework for the treatment of coupled problems such as fluid-structure inter-
actions, and inverse design problems can be developed in this manner.

In this chapter, we are principally concerned with the use of multigrid methods to solve compu-
tational fluid dynamics problems on unstructured grids. We begin with a review of the basic multi-
grid principles. Next, the complexities encountered in applying these techniques to unstructured
meshes are discussed. Most of the discussion centers around the construction of the coarse-grid lev-
els. It is the conviction of the author that the most desirable multigrid methods be automated and
stand-alone, i.e., do not depend on a particular grid generation or solution strategy. The degree
to which the various techniques fulfill these requirements is thus examined in their presentation.
In a subsequent section, the similarities and discrepancies between the various methods previously
described are addressed. The arguments presented are then utilized to justify the construction of
a general multigrid agglomeration algorithm for the full Navier-Stokes equations, which has been
employed successfully to solve large three-dimensional problems. The remainder of the chapter
is devoted to the discussion of current research or speculation on techniques for improving the
efficiency and robustness of multigrid methods. These include the construction of better inter-grid
transfer operators and more accurate coarse-grid operators, as well as the development of more
optimal coarsening strategies for coarse mesh generation for anisotropic problems, as well as for
adaptive meshing problems.

2 Basic Multigrid Principles

The basic principles involved in the construction of a multigrid algorithm are discussed in this sec-
tion. These principles are basic in that they do not depend on the particular set of equations being
solved, the discretization and types of grids employed, or the dimensionality of the problem. These
principles are then utilized to demonstrate the construction of a exemplary multigrid algorithm for
solving the Euler or Navier-Stokes equations.

2.1 Multigrid Correction Scheme

Consider the solution of the discrete problem



Lyup = fa (9)

where the subscripts refer to the discretization of the continuous problem on a mesh of spacing
h. The current estimate of the solution u, is denoted as %y, which is obtained by approximately
solving the above equation, using an iterative technique. Since %, does not satisfy the above
equation exactly, its substitution into equation (9) yields

Lyt — fo =14 (10)

where rp, is called the residual, and vanishes only when the exact solution to the discrete problem
is attained. The object of the multigrid scheme is to compute a correction v, such that the exact
solution is given by:

Up = Up + v (11)

Taking the difference of equations (9) and (10}, we obtain

Lyup — Ly = -1y, (12)

If the operator Lj is linear, the above equation may be reduced to an equation for the correction
vy, by substituting equation (11) into equation (12), which yields

Lypvp = —1y, (13)

Assuming that the high-frequency errors in the solution have been eliminated by sufficient fine grid
smoothing cycles, the remaining correction v, which we seek must be smooth, and can therefore
be computed more efficiently on a coarser grid by solving the equation

Lyvy = —I,}lqrh (14)

where the subscript H denotes a coarser grid, and I} is an operator which interpolates residuals
from the fine grid h to the coarse grid H. I ,’:1 is usually called the restriction operator. If the grid
H is coarse enough, equation (14) may be solved exactly (either directly or iteratively). In the
event this is not feasible, the present procedure may be performed recursively on coarser grids,
thus yielding an approximate solution to the above equation. The exact or approximate solution
of vy must then be employed to correct the original fine grid solution. This is achieved as

ﬁzew =Tl,'h+fflvy (15)
where [ f{, which represents the interpolation of the coarse grid corrections vy to the fine grid, is
often called the prolongation operator. Once these fine grid values have been updated, they may
be smoothed again by additional fine grid iterations, and the entire procedure, which constitutes
a single multigrid cycle, may be repeated until overall convergence is attained. This particular
multigrid strategy is called the Correction Scheme, since the coarse grid equations operate directly
on the correction variables v,. It is informative to note that, in the case where the fine grid
solution has been attained, the fine grid residuals vanish, and the right-hand side of the coarse grid
correction equation also vanishes. Equation (14) has a trivial solution in this case, which is vy = 0,
and no additional corrections are produced by the coarse grid, thus ensuring convergence of the
entire multigrid procedure to the appropriate fine grid solution.

-1



2.2 Full Approximation Storage Scheme

The multigrid correction scheme described above is only valid for the case where the operator L
is linear. For non-linear operators, the difference Ljup — L%, in equation (12) can no longer be
replaced by Ljvs, and thus the above scheme must be modified. This is achieved by introducing a
new coarse grid variable @y defined as

— FH_

uy = I up + vy (16)
where Tf represents an operator which interpolates fine grid solution variables to the coarse grid.
The coarse grid equation equivalent to equation (14) can now be written as

Lyuy - LHThHﬁh = —I}flrh (17)

As previously, [, ,fl represents the restriction operator which transfers residuals from fine to coarse

grids. The operators ThH and I may in principle be different from one another.
It is useful to rewrite the above equation as

Lyuy = Sy (18)

where

5H=LHThHHh—I,{1rh (19)

In the above form, the coarse grid equation is seen to take on a similar structure to the original fine
grid equation, with a modified source term. This enables the use of similar techniques for solving
the coarse and fine grid problems. Once the coarse grid equations have been solved, either exactly
or approximately, the fine grid variables are updated as

T = W+ Y - T ) (20)
which can also be written as
T =T+ Ivy (21)

Note that it is the difference between the initial and final coarse grid variables which is used, since
this constitutes the definition of the correction, as per equation (16).
The source term Sy may also be rewritten as

Su=fu+Ty (22)

where

fu = I fa (23)

and



TH = LHThHﬁh - I;{’(Lhuh) (24)

Tx is sometimes called the defect correction [26, 18]. It may be loosely described as the difference
between the coarse grid discretization and the interpolation of the fine grid discretization onto the
coarse grid. The presence of the defect-correction term on the right-hand side of equation (18),
ensures that the fine grid problem is represented by the coarse grid discretization, and that both
coarse and fine grid equations converge to the same solution. This can be seen by considering the
case where fine grid equations have been solved exactly. In this situation, the fine grid residuals all
vanish, as does their interpolated result on the coarse grid. Since the right-hand side of equation
(17) vanishes, the solution interpolated from the fine grid onto the coarse grid (i.e., uy = ThHuh)
satisfies the coarse grid equation exactly, and therefore no further corrections are generated from
the coarse grid.

The ability to directly handle non-linear problems is one of the great advantages of multigrid
algorithms. This obviates the need to linearize the problem, with the possible complications and
overheads which such operations often entail.

2.3 Coarse Grid Operators

The CS (correction scheme) and FAS (full approximation storage) multigrid schemes both result
in the formulation of coarse grid equations which are similar in form to the originating fine grid
equations. While the formulation of these equations has been discussed, the precise manner in
which these equations are discretized on each grid level has not been addressed. Since the coarse
and fine grid equation constructions are similar, the most obvious approach is to discretize them
in the same manner. Thus, for example, the operator Ly can be constructed using the same
discretization procedure as the operator Ly, applied to the coarser grid. This technique is called
rediscretization. It is the most prevalent technique for constructing the discrete coarse grid equa-
tions in computational fluid dynamics problems. Rediscretization techniques generally ensure a
consistent representation of the fine grid problem on all grid levels, and enable the use of identical
solution strategies for coarse and fine grids. This greatly simplifies implementation by permitting
the reuse of many subroutines for the various grid levels.

There are situations where rediscretization techniques are not practical or feasible, however, such
as in the case of algebraic multigrid, where the coarse-grid levels are never explicitly formed. Even
for geometric multigrid methods (as opposed to algebraic methods), rediscretization techniques rely
on the assumed property that the coarse mesh discretization is valid, stable, and approximates the
fine grid problem to a certain degree. These assumptions are not always guaranteed, and may break
down particularly when dealing with complex geometries. An alternative procedure for discretizing
the coarse grid equations is to construct the coarse grid operator as the sequence. of operators

Ly = IF Ly I} (25)

where the first term on the right-hand side represents the restriction operator, and the last term
the prolongation operator. L refers to the original fine grid discrete operator. This construction
is called Galerkin coarse grid operator, since it is a simple matter to show that, if the solution of
Lyu = f, minimizes a functional over all functions spanned by the set of fine grid functions us,
then the solution of I} Ly, Iu = I} f, minimizes the same functional over all functions spanned
by the smaller set of coarse grid functions ug [18]. The advantage of this construction is that it is
entirely algebraic, i.e., once the fine grid discretization and inter-grid transfer operators are known,
the coarse grid operator is implicitly defined, and the geometry of the coarse grid problems does
not enter explicitly into the construction of the solution technique. On the other hand, depending



on the precise forms of the fine grid and inter-grid operators, the resulting coarse grid operator
can be considerably more complex to construct and evaluate than the original fine grid operator,
and than the equivalent coarse grid operator obtained through rediscretization. This, in particular,
may severely limit the possibility of utilizing this approach recursively in-applications involving a
large number of grid levels. Both techniques have been employed for unstructured mesh problems
and will be demonstrated subsequently in this chapter.

2.4 Intergrid Transfer Operators

Particular constructions for the restriction and prolongation operators, as well as for the interpo-
lation of the solution variables in the FAS scheme, remain to be defined. For computational fluid
dynamics problems, the most common choices are either injection or some variant of linear inter-
polation. Injection corresponds to the interpolation operator which preserves a constant function
exactly. As an example, the value of a coarse grid cell would be assigned to all constituent fine
grid cells which are contained inside the coarse grid cell by the injection operator. Structured grid
multigrid methods often employ bilinear (in two dimensions) and trilinear (in three dimensions)
inter-grid transfer operators. For unstructured mesh multigrid methods based on triangular ele-
ments in two dimensions, and tetrahedral elements in three dimensions, simple piecewise linear
interpolation is easily implemented, using the linear finite-element shape functions associated with
these elements. Piecewise linear interpolation operators preserve linear functions exactly.

The accuracy of the restriction and prolongation operators must be sufficient to avoid introduc-
ing excessive errors into the solutions, which can in turn have a detrimental effect on convergence
efficiency. A fundamental rule for the accuracy of the inter-grid transfer operators is given by
(18, 27]:

m; +m, >m (26)

where m, and m, represent the highest degree polynomial plus 1, which the restriction and pro-
longation operators interpolate exactly, respectively. Thus, m, and m, are equal to 1 for injection
operators, while they would be equal to 2 for piecewise linear interpolation operators. m represents
the order of the partial differential equation being solved. For example, for an advection equation,
m = 1, whereas for a Poisson equation, m = 2. In practice, equation (26) is seldom violated since
the use of linear interpolation in at least one of the inter-grid transfer operators is enough to satisfy
the strict inequality for convection-diffusion equations. However, there are schemes which are in
violation of this rule, as will be shown in this chapter.

2.5 Cycling Strategies

Cycling strategies refer to techniques employed to determine when to switch from one grid to
the next, rather than to how to win a race on two wheels. These can be divided into two basic
approaches: adaptive and fixed cycling strategies. Adaptive cycling methods involve the monitoring
of the numerical convergence process. When it is determined that the high-frequency errors on
the current grid have been effectively eliminated, usually by observing a sharp slowdown in the
convergence rate, the jump to a coarser grid is triggered. Although adaptive cycling strategies may
appear more desirable, practical considerations such as simplicity and robustness usually result
in the use of fixed cycling strategies, where a fixed pattern of coarse and fine grid iterations is
prescribed. The two most common cycling patterns are the V-cycle, and the W-cycle, which are
depicted in Figures 2 and 3. The multigrid V-cycle begins on the finest grid of the sequence
(i.e., grid level 4 in Figure 2), where one relaxation or time-step is performed. The solution and
residuals are then interpolated to the next coarser grid, where another time-step is performed. This
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procedure is repeated on each coarser grid until the coarsest grid of the sequence is reached. At
this point, the eoarse grid corrections are prolongated back to each successively finer grid until the

finest grid is reached.
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Figure 2: Multigrid V-Cycle. Figure 3: Multigrid W-Cycle.
T = Time-Step, R = Restriction,
P = Prolongation

This particular variant of the V-cycle, which has been employed extensively for computational fluid
dynamics problems, is sometimes known as a saw-tooth cycle, since no time-stepping is performed
on the coarse-to-fine phase of the cycle. In practice, it is possible to perform single or multiple
time-steps on each grid level in the coarsening phase of the cycle, as well as in the refinement
phase. The approximate complexity of a saw-tooth V-cycle is given by the sum of the complexities
of the various grid levels. For a two-dimensional problem, where the coarsening process involves
the reduction of grid complexity by a factor of 4 (as is typically the case for structured meshes),
the V-cycle complexity is bounded by

N

1 1 1 4
I+-+—=+—+..... = 27
+4+16+32+ <3 (27)
or 4/3 times the complexity of a single fine grid time-step, while in three dimensions this figure
becomes 8/7 (assuming a coarsening ratio of 8:1). The W-cycle is a recursive strategy which
weights coarse grids more heavily, as shown in Figure 3. Use of the W-cycle is often found to be
more efficient overall, and more robust than V-cycles. The complexity of a saw tooth W-cycle in

two dimensions (assuming a coarsening ratio of 4:1) is given by

1 1 1

1+2x4+4x16+8x32+ ..... <2 (28)

Coarsening ratios may vary widely for unstructured mesh multigrid methods, particularly when

used in conjunction with optimal coarsening strategies, or adaptive meshing techniques. For coars-

ening ratios smaller than 4:1, the (asymptotic) W-cycle complexity may become unbounded. Thus,

the choice of a particular cycling strategy must necessarily consider the complexity of the various
grid levels.

The combination of mesh sequencing with a multigrid method (where the solution on the current

grid is initiated from a previously computed solution on a coarser grid) results in a strategy known

as the full multigrid procedure. The basic cycling strategy is depicted in Figure 4, using a saw-tooth
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multigrid V-cycle. Beginning with an initial sequence of grids, the solution on the finest grid of the
sequence is obtained by a multigrid procedure operating on this sequence. A new finer grid is then
added to the sequence, the solution is interpolated onto this new mesh, and multigrid cycling is
resumed on this new larger sequence of meshes. The procedure can be repeated, each time adding
a new finer grid to the sequence, until the desired solution accuracy has been achieved, or the finest
available mesh has been reached. This strategy may be employed with a fixed set of meshes, but

is especially attractive for adaptive meshing problems, where new meshes are generated on the fly,
so to speak.
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Figure 4: Full Multigrid (FMG) Strategy.
T = Time-Step, R = Restriction, P = Prolongation

2.6 Multigrid Algorithm for the Navier-Stokes Equations

The remaining procedure which must be specified in the construction of a multigrid algorithm is
the single grid relaxation or time-stepping procedure. The main requirements of this procedure
are that it be capable of rapidly damping out high-frequency errors. While the convergence of
almost any relaxation scheme may be accelerated through a multigrid procedure, the most effective
multigrid strategy is to rely on a simple and inexpensive relaxation scheme, which is specifically
tailored for annihilating high-frequency errors. All lower frequency errors can then be handled
effectively by the appropriate coarse-grid level. The use of multi-stage time-stepping schemes as
multigrid drivers is one of the most common approaches for both structured and unstructured mesh
problems. In addition to being simple and inexpensive, multi-stage time-stepping schemes can be

optimized to damp high-frequency errors [28, 29, 30]. A typical multi-stage time-stepping scheme
can be written as:

@ = g
v = @ - o AIR(u(®)
v@ = 4@ — a,AtR(uY)
(29)
o9 = 4O _ antR(u(q’l))
2t = ()

where g represents the number of stages, u(™ the initial flow values, and u(®*1) the updated flow
values at the end of the new time-step. «, represents the multi-stage coefficients, which may be
chosen to optimize the high-frequency damping properties of the scheme. For the fine mesh, R(u)
represents the discrete residual, as given in equation (2), which can also be represented as Lyup— f,
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using the notation of equation (10). On the coarse grids, the forcing function Sy of equation (18)
must be included in the R(u) term above.

Having described all essential elements of the multigrid strategy, a particular multigrid algorithm
for the Euler and Navier-Stokes equations can now be described. The.algorithmic steps are as

follows:

Step 1: Identify the first grid as the finest grid level and initialize the solution on this grid.

Coarsening Phase:

Step 2: Perform a single time-step on the current grid using the scheme of equations (29).

Step 3: If the current grid is the coarsest grid go to step 7.

Step 4: Compute the residuals on the fine grid using the latest available solution values.

Step 5: Restrict these residuals to the next coarser grid and interpolate the solution variables onto
the next coarser grid.

Step 6: Identify this next coarser grid as the current grid. Initialize the solution on this grid with
the variables interpolated from the previous fine grid, and construct the defect correction which
constitutes the right-hand side of the discrete coarse grid equations (i.e., equation (18)) using these
values and the restricted residuals. Go to step 2.

Refinement Phase:

Step 7: If the current grid is the finest grid, go to Step 2, otherwise identify the next finer grid as
the current grid.

Step 8: Compute the corrections on the previous coarse grid and prolongate them to the current
fine grid.

Step 9: Go to Step 7.

The above algorithm describes a typical implementation of an FAS multigrid scheme applied to
fluid flow problems. This description constitutes a single multigrid cycle, and the entire process is
applied repetitively until convergence of the fine grid problem is attained, which is determined by
monitoring the magnitude of the fine grid residuals. This particular scheme corresponds to the use
of a fixed saw-tooth V-cycle, which is the simplest to describe algorithmically. Other cycle types
such as W-cycles and cycles with time-stepping in the refinement stages may also be employed.
Note that in the case where only a single grid is specified, the coarsest and finest grids are identical,
and the algorithm bounces back and forth between steps 2,3 and 7, thus reproducing the single
grid algorithm. As mentioned previously, the restriction and prolongation operators are usually
implemented as piecewise linear interpolation operators or injection operators for computational
fluid dynamics multigrid methods.

3 Application to Unstructured Grids

The previous section described the construction of generic multigrid methods without regards to
the types of grids on which these methods are to be applied. This section deals with the specifics of
implementing such methods on unstructured meshes. The main difficulty with unstructured multi-
grid methods concerns the construction of the coarse mesh levels. For structured mesh multigrid
methods, a coarse mesh can be derived from a given fine mesh by omitting every 2nd point in each
coordinate direction. Recursive application of this procedure results in a sequence of coarse meshes
where the complexity of the meshes decreases by a factor of 4:1 in two dimensions and 8:1 in three
dimensions, for each successively coarser level.

For unstructured meshes, such techniques are no longer feasible. Due to the lack of mesh
structure, simple coarsening strategies do not result in consistent coarse grid triangulations. A
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variety of techniques have been proposed for unstructured multigrid coarse mesh constructions.
These vary from methods which attempt to reproduce the nested property of structured mesh
multigrid methods {31, 32, 33], to techniques which permit the use of arbitrary (triangular or non-
triangular) coarse meshes [8, 9, 24, 34, 35, 36, 37, 38, 39, 40, 41], to algebraic methods which never
consider the construction of coarse meshes altogether [25]. In general, all methods are capable of
delivering similar efficiencies, and the issues involved in choosing a particular method include ease
of implementation, degree of automation, and robustness for highly complex geometries. These
issues will be addressed throughout the presentation of the various methods.

3.1 Nested-Mesh Subdivision

One of the simplest unstructured mesh multigrid strategies is to generate a sequence of finer meshes
from an initial coarse mesh by recursively subdividing the cells of the mesh [31, 32, 33], either
globally, or adaptively, using the subdivision rules described in the chapter on grid generation.
This results in a fully nested sequence of grids, as shown in Figure 5, and enables a particularly
simple construction of the inter-grid transfer operators.

Figure 5: Original coarse mesh and adaptively subdivided fine mesh illustrating the nested
construction of the fine and coarse levels, and the simple interpolation strategy for newly
added vertices.

For example, in the context of a vertex scheme, the values at the vertices which are common to
coarse and fine grids are simply transferred by injection. Similarly, the newly introduced fine grid
points always lie midway along a coarse grid edge, and thus the values at these points may be
transferred by averaging the two values at the end points of the coarse grid containing edge, which
corresponds to linear interpolation. For a cell-centered scheme, volume weighted restriction is easily
achieved by identifying the fine grid constituent cells of each coarse grid cell, and summing their
weighted values. Another advantage of this approach is that it is easily automated.

This method has a somewhat inverted nature, i.e., it begins with a coarse mesh and subsequently
generates finer meshes, whereas most multigrid methods begin with the finest mesh and construct
coarser levels. There are several disadvantages associated with such a strategy. The most obvious
is the lack of flexibility in handling problems on a specified fine grid of unknown origin. In fact,
this approach requires a tight coupling between the grid generation and the multigrid solution
strategies, and has thus often been implemented in the context of adaptive meshing problems. The
other difficulties are somewhat more subtle, but are interrelated. They concern the ability of the
coarsest initial grid to provide efficient convergence properties for the multigrid algorithm, and
the quality of the resulting fine grid. In a multigrid process, the coarsest grid of the sequence
determines the convergence rate of the algorithm, while the finest grid determines the accuracy
of the solution. The present multigrid strategy places conflicting demands on the coarse mesh
construction. On the one hand, a very coarse mesh is desired, since this enables a rapid multigrid
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convergence. However, the use of very coarse initial meshes may result in poor quality fine meshes,
particularly when using simple subdivision refinement techniques. This, in turn, has a detrimental
effect on solution accuracy. '

One technique to alleviate these problems is to employ a relatively fine initial mesh, and make
use of a direct or implicit solution procedure on this coarsest mesh alone, in order to maintain
favorable convergence rates, with minimal storage overheads.

3.2 Overset Meshes

An alternate approach to unstructured multigrid methods is to generate a sequence of completely
independent coarse and fine meshes, and use linear interpolation to transfer variables back and forth
between the various meshes of the sequence, within a multigrid cycle [8, 9, 35, 36, 37, 38, 39]. The
meshes may be generated using any grid generation technique, and will generally be non-nested,
and may even not contain any common points. The only requirement is that they conform to the
same domain boundaries. This technique is more flexible than the nested subdivision approach,
since the fine and coarse meshes are not constrained, and may be optimized independently for
accuracy and speed of convergence respectively. Furthermore, this approach can be applied to a
problem with a prespecified fine mesh.

On the other hand, the construction of the inter-grid transfer operators becomes more involved.
For static grid problems (i.e., usually the case for steady-state problems), these operators may be
precomputed and stored for use in the multigrid cycle. In the context of vertex-based schemes,
it is most natural to use piecewise linear interpolation for the prolongation operator. For a given
fine grid vertex to which we seek the interpolated value, the enclosing coarse grid triangle (or
tetrahedron in three dimensions) must first be determined. (An efficient algorithm for achieving
this will be given shortly.) Once this is known, the linearly interpolated value at the fine grid
vertex can be obtained as a weighted average of the values of the three forming vertices of the
coarse enclosing triangle, as shown in Figure 6. The weights may be determined using the linear
finite-element shape functions associated with triangular elements. The final expression may be
written as:

wp = —W; + '—CW2 + —Ws (30)

where w, represents the fine grid interpolated value at point p, and W3, W;, W3 represent the
coarse grid variables at the three vertices of the enclosing triangle. The coefficients ay, a3, a3,
represent the triangle areas as depicted in Figure 6, and Ac denotes the area of the coarse grid
enclosing triangle. Thus, identification of the enclosing triangle determines the addresses of the
interpolation stencil, while the above formula determines the weights of the stencil. Note that in
the above formula, when the fine grid vertex p coincides with a coarse grid vertex, the coefficient
associated with the coinciding vertex becomes unity, the other coefficients vanish, and the formula
reduces to injection. The entire prolongation operator can be stored as a set of three addresses
and three weights for each fine grid vertex (four quantities in three dimensions), which are used to
compute the interpolated values at each multigrid cycle as per equation (30).

A common form for the restriction operator is to construct it as the transpose of the prolongation
operator [18, 25]:

(31)
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Figure 6: Definition of linear interpolation coefficients for fine grid vertex p contained in
coarse grid triangle 123.

Geometrically, this corresponds to distributing the residual of a fine grid vertex p to the three
vertices of the enclosing coarse grid triangle, with the same weights given by the linear prolongation
operator defined in equation (30). This is an accumulation process, and each coarse grid vertex P
receives residual contributions from all fine grid points which fall in any coarse grid triangles which
contain P, as shown in Figure 7.

Figure 7: [Illustration of conservative Figure 8: Illustration of a graph-traversal
residual restriction for overset-mesh vertex search algorithm for locating the enclosing
scheme. Each coarse grid vertex receives triangle of vertex b knowing the enclosing
contributions from multiple fine grid ver- triangle for vertex a .

tices.

Since the restriction and prolongation operators are transposes of one another, a single set of ad-
dresses and coefficients are required to define both operators. This particular form of the restriction
operator results in a conservative transfer of residuals from fine to coarse grids, i.e., the sum of
the fine grid residuals is equal to the sum of the transferred residuals on the coarse grid. Thus,
non-zero fine grid residuals will result in non-zero restricted residual sets, in the absence of local
cancellations. However, such local cancellations correspond to high-frequency residual variations,
which should be easily handled by the fine grid time-stepping procedure.
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The third transfer operator which must be defined for the FAS scheme, T,Ij, represents the
transfer of fine-grid solution variables to coarser grids. In this case, a conservative transfer of vari-
ables is no longer of concern, since the coarse grid equations are only used to compute corrections.
Accuracy of the transfer operator is of more importance. Thus, piecewise linear interpolation is
employed. While the construction of the operator is similar to that described previously for the
prolongation operator, the roles of the coarse and fine grids are reversed, i.e., we wish to deter-
mine the value at a coarse grid point from fine grid values. This requires the determination of the
fine grid triangle which encloses each coarse grid vertex, and the computation of the interpolation
weights in an analogous manner. Thus, an extra set of weights and addresses must be computed
and stored for this operator.

The inter-grid transfer operators are constructed in a pre-processing operation, prior to initia-
tion of the multigrid solution procedure. This must be performed for each successive pair of grids in
the multigrid sequence. If a subroutine is constructed which takes as input two arbitrary meshes,
and outputs the weights and coefficients of the prolongation/restriction operator, then a simple

. .. . . +H . . .
technique for obtaining the weights and coefficients of the I}, operator is to switch the input order
of the two meshes.

An essential step in the construction of the inter-grid transfer operators is the determination of
the enclosing triangle on one grid for each vertex of the other grid. A naive implementation of this
operation consists of checking every triangle on the first grid for each vertex of the second grid.
This results in an O(N?) algorithm, where N represents the number of grid points of either one
of the grids involved, and would be more expensive than the flow solution procedure itself. The
complexity can be reduced to O(N) by making use of graph-traversal type algorithms, as illustrated
in Figure 8. Assuming the enclosing triangle for a given vertex a on Grid 1 has been determined,
we seek the enclosing triangle for a neighboring Grid 1 vertex b. Since this new vertex is in the
neighborhood of the previous vertex, a good starting guess for the enclosing triangle would be the
triangle which was found to enclose the previous vertex. This triangle is first tested, and if the
test fails, we search all three neighbors of this triangle. If these tests fail, we search the neighbors
of these neighbors, and continue in this fashion until the enclosing triangle is located. In order to
implement this type of algorithm, it is useful to reorder the vertices of Grid 1 using in a wavefront-
type pattern which guarantees that, for each successive vertex in the list, there exists a neighbor
of this vertex which precedes this vertex in the list. Once this reordering has been executed, the
neighboring vertex which precedes each current vertex in the ordered list is stored. A neighbor list
for the triangles of Grid 2 must also be constructed (i.e., a list of the three neighboring triangles
for each triangle of Grid 2), as well as a list of previously tested triangles. The search algorithm
can then be implemented as follows:

Step 1: Choose the first Grid 1 vertex in the list and locate its enclosing triangle on Grid 2. (In
the worst case this may involve searching all coarse grid triangles). .
Step 2: Choose the next Grid 1 vertex in the list and (re)initialize the list of tested triangles. Set
the current position to the beginning of the tested triangle list.

Step 3: Identify the neighbor of the current vertex which precedes it in the list, and get the address
of its enclosing triangle.

Step 4: Test this triangle to see if it encloses the current vertex. If the test is positive, go to Step
2, otherwise put the triangle address in the list of tested triangles.

Step 5: Choose the next triangle in tested triangle list, and test all three neighbors of this triangle
(if they have not already been tested). For each triangle, if the test is positive, go to Step 2,
otherwise put the triangle address in the list of tested triangles.

Step 6: Go to Step 5
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The process terminates when the end of the ordered vertex list is reached. In practice, the search
for the first vertex may be bypassed or shortened by placing a boundary vertex at the start of
the list, and making use of known boundary information. For subsequent vertices the enclosing
triangle is usually located in a single or a small number of searches. The overall efficiency of the
procedure depends mostly on the relative densities of the two grids, rather than their individual
size. This procedure can be implemented equally well in three dimensions, replacing triangles with

tetrahedra.

N

ey e W AV
A
I&é"ﬁl‘%’“’gﬁ#ﬁ{&!&gﬁgm}"!"v A

> v;%lé:vv

- Af;":v,““ﬁnv“;m;,‘;;‘
: &%, O RRROS RN
® .. - A, (NN 3
s R AN AR ]
B &\Y@;V%V

AV

s S N g Av g
R é"v"“‘?vv e )
S e e AW g v T AVAN : IRk
AV O UV NLT, 5 AV AT ST A o oo, A & ' 6, o &
R SIS AIIOEISEI N e, SR N 2 &
3 S, v, Y Pavav, o A%, = > 7L % X 3
N S RSSO | Sl SRR N A IO I
Avx";w{“. n TSN O . - RS o] !" TAY AV‘V g A
T %k‘% AV"'Q‘;""'%:Q“"E" 220 O 45"') A A2y
SO0 LRSS RS2

SSRGS

A
o

&8

R

Figure 9: Ilustration of sequence of grids employed to compute transonic flow over an
aircraft configuration. The finest mesh contains 804,000 vertices and 4.5 million tetrahedra.

Figures 9 through 11 illustrate, as an example, the application of the overset-mesh multigrid tech-
nique to the solution of the Euler equations on three-dimensional tetrahedral meshes for a generic
transport aircraft configuration using a vertex-based scheme. The finest mesh contains 804,000
vertices and approximately 4.5 million tetrahedra. A total of four mesh levels were employed in
the multigrid sequence. The first, second, third, and fourth levels are depicted in Figure 9. The
construction of all inter-grid transfer operators was achieved in the equivalent time required for
two multigrid cycles, and thus represents an insignificant fraction of the overall solution time. The
solution is depicted as a set of Mach contours on the aircraft surface in Figure 10. The freestream
Mach number for this case is 0.768 and the incidence is 1.16 degrees. In Figure 11, the multigrid
convergence rates using a V-cycle and a W-cycle, and the single-grid convergence rate are compared
by plotting the history of the average flowfield density residuals versus the number of cycles. The
multigrid method realizes a six order reduction over 100 W-cycles. Even though a multigrid W-cycle
requires approximately twice the CPU time of an equivalent coarse grid cycle, the overall efficiency
of the multigrid process for this case can be seen to be an order of magnitude larger than that of
the single-grid (explicit) scheme. The entire multigrid run requires 96 Mwords of memory and a
total of 45 minutes of CPU time on a single processor of the CRAY-C90. This observed multigrid
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convergence rate is comparable to those obtained on structured meshes for similar problems using
structured mesh multigrid algorithms [42, 43].
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Flgure. 10: Compute(.i Mach coiriltours.for Figure 11: Convergence rates of V- and W-
transonic flow over‘ an aircraft configuration. cycle overset-mesh multigrid schemes com-
Mach = 0.768, Incidence=1.16 degrees. pared with single-grid explicit scheme.

The above description and examples concern multigrid implementations for vertex-based schemes.
For cell-centered schemes, inter-grid transfers are typically based on volume weighting. For exam-
ple, in the case where the coarse and fine grid cells are nested, the fine grid variables are transferred
to the coarse grid by summing all variables of the nested fine grid cells for each coarse grid cell,
weighted by the fraction of the fine grid cell volume to the enclosing coarse grid cell volume. In the
case of non-nested overset meshes, a fine grid variable is transferred to the coarse grid according

to the relation

Agc

Cc

We= 3w (32)

finegridcells

where the ¢ and f subscripts denote coarse and fine variables respectively, and Aj. represents the
intersection area between the particular fine grid cell and the coarse grid cell of area A.. In general,
most intersections between a given pair of coarse and fine grid cells will be empty, and the sum need
only be performed over the cells or non-zero intersections, as depicted in Figure 12. Equivalent
prolongation operators can be constructed in a similar manner by reversing the role of the coarse
and fine grids.
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Are

Figure 12: Illustration of intersected area between coarse and fine grid triangle pair for
cell-centered multigrid scheme.

In order to construct such transfer operators, all intersecting cell areas must be determined, as
well as the addresses of their originating coarse and fine grid cells. As is evident from Figure 12,
these intersecting areas may take the form of complex polygons in two dimensions or polyhedra
in three dimensions. These intersecting areas may be determined efficiently by first computing
all intersections between the fine and coarse grid edges. The intersected edges of both grids thus
constitutes a set of segments, and each segment is tagged with the address of its coarse and fine
forming cells. In a single loop over all edge segments it is now possible to calculate the areas of all
intersected cells using the Green-contour integration rule. This technique was implemented in [34]
and is also referred to as Ramshaw’s algorithm [44]. The determination of all intersected edges can
be performed in O(N) time by first determining the enclosing coarse grid triangle for each fine grid
vertex, using the graph-traversal algorithm described above.

3.3 Automated Coarse Mesh Construction

One of the main disadvantages of the overset-mesh multigrid algorithm is the non-automatic nature
of the coarse grid construction. The user is required to manually generate the coarse-grid levels
using an appropriate grid generator. A variety of techniques have been proposed to automate this
procedure [45, 46, 47]. Most of them are based on producing a sequence of coarse mesh levels
from a given fine mesh. This usually involves the removal of selected fine grid vertices and the
retriangulation of the remaining grid points. The retriangulation procedure may be accomplished
as a global operation, by regenerating the triangulation of the remaining coarse grid points, or
incrementally, by removing each selected point sequentially and locally reconfiguring the mesh
connectivity. For example, a reverse Delaunay point-insertion may be utilized in two-dimensions to
remove mesh points. These techniques result in vertex-nested meshes, where the coarse grid vertices
form a subset of the fine grid vertices, as shown in Figure 13. The triangulations themselves are
not necessarily nested, since the connectivity of the coarse mesh need not be related to that of the
fine mesh. Although the vertex-nested property may be employed to simplify the construction of
the inter-grid transfer operators (i.e., for example the ThH operator reduces to simple injection), the
construction techniques discussed in the previous section for overset-mesh multigrid methods are
equally applicable in this case.
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Figure 13: Dlustration of a vertex-nested Figure 14: Determination of a subset of
coarse and fine mesh pair. points C for the construction of a coarse
level grid as a maximal independent set of
the fine grid graph. Every F point is dom-
inated (adjacent) to a coarse grid C point.

The point-removal procedure of automated coarsening strategies can be configured to generate
"optimal” or near-optimal coarse meshes. This, of course, assumes some definition of optimal coars-
ening. A common strategy is to attempt to reproduce the coarsening characteristics encountered
in structured mesh multigrid methods. Thus, coarse meshes which contain approximately half the
resolution of the originating fine mesh in each coordinate direction throughout the entire domain
are generally sought. If the fine grid is considered as a graph (i.e., a collection of vertices and
edges), then the problem may be stated in graph-theoretical terms as the construction of the max-
imal independent set of minimal cardinality (size) of the original graph. A subset of the vertices of
a graph is termed an independent set if no two vertices of this subset are adjacent in the original
graph. An independent set is maximal if any vertex not in the set is dominated (or adjacent) to at
least one vertex of the set, as shown in Figure 14. The problem of generating maximal independent
sets of minimum cardinality is nP complete (i.e., cannot be achieved in polynomial time), and thus
heuristic algorithms which generate near-optimal maximal independent sets are often employed.
These are generally formulated as wavefront greedy-type algorithms, were the points being chosen
form a front which propagates throughout the domain. Each chosen point corresponds to a common
coarse and fine grid vertex. Each time a new point in the wavefront is chosen, all neighbors of this
point which have not already been deleted are removed. The front is then advanced by placing
the chosen point and all its deleted neighbors behind the front. The algorithm is greedy in that it
never undoes what is done, 7.e., once a vertex is removed, it can never be reintroduced to resolve
a conflicting situation. Such techniques are thus suboptimal, but are extremely fast, and result
in coarse mesh levels which deliver competitive convergence rates. A more detailed description of
an algorithm for constructing maximal independent sets will be given in the following section on
agglomeration multigrid methods.

For certain problems, the uniform coarsening characteristics of maximal independent sets which
mimic structured mesh multigrid methods may be far from optimal. This is particularly true for
problems with large disparities in length scales and anisotropic problems. This topic is treated in
more detail in section 4.4.

21



3.4 Agglomeration Methods

While automated coarsening strategies may relieve some of the practical difficulties in constructing
coarse mesh levels for unstructured mesh multigrid algorithms, they do not address the issue of the
robustness of the coarse grid constructions. For example, it may often be found that an automated
coarsening procedure has removed one or several boundary mesh points which critically define
the geometry, and the resulting changes in geometry between grid levels produces a slowdown or
failure of the multigrid algorithm. In fact, the triangulation of a coarse point-set about a complex
geometry can prove to be a difficult task. This may occur as a consequence of geometry features
which are finer than the prescribed grid resolution, resulting in step changes in the geometry or
even of the topology in going from a given mesh to the next coarser mesh.

These difficulties can be handled effectively by the agglomeration multigrid method [24, 40, 41].
Agglomeration methods are control-volume-based methods, and can thus be applied to either cell-
centered or vertex-based schemes. For cell-centered schemes, the control-volumes are taken as the
triangles themselves, whereas for a vertex-based scheme the control volumes are taken as the cells
defined by the dual mesh formed by drawing the triangle median segments, as shown in Figure 15.

Figure 15: Median Dual Control-Volume for a Triangular Mesh.

The idea of the agglomeration method is to fuse together or agglomerate neighboring fine grid
control volumes, creating a smaller set of larger polygonal (or polyhedral in three dimensions)
control volumes. This process can be performed recursively, as shown in Figure 16, thus generating
an entire sequence of coarse agglomerated meshes. The degree of the coarse agglomerated polygons
increases on each coarser mesh level, but they always conform exactly to the original fine grid
boundaries. The discretization, however, must be modified to enable the use of polyhedral cells on
the coarse meshes.

The techniques employed for creating the coarse agglomerated grids are similar to the automated
coarsening strategies described in the previous section. In fact there is a duality between agglom-
eration of control-volumes and point-removal. If each agglomerated control-volume is thought of as
consisting of its seed point, i.e., the point corresponding to the control volume from which the ag-
glomeration process was initiated, and its agglomerated control-volumes (or corresponding points),
as shown in Figure 17, then the seed point corresponds to a point which is retained for the coarse
grid in the point-removal procedure, and the agglomerated points correspond to deleted points.
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Figure 16: Original fine triangular mesh, its dual mesh, and coarse agglomerated mesh
levels.
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A wavefront greedy-type algorithm has been developed by the author and his co-workers for con-
structing coarse agglomerated grids which are maximal independent sets of the fine grid. The

algorithm is detailed below:

Step 1: Pick a starting vertex on a surface element. Agglomerate control volumes associated with
its neighboring vertices which are not already agglomerated.
Step 2: Define a front as comprised of the exterior faces of the agglomerated control volumes.
Place the exposed edges in a queue.
Step 3: Pick the new starting vertex as the unprocessed vertex incident to a new starting edge
which is chosen from the following choices given by order of priority:

e An edge on the front that is on the solid wall.

e An edge on the solid wall.

e An edge on the front that is on the far-field boundary.

o An edge on the far field boundary.

e The first edge in the queue.

Step 4: Agglomerate all neighboring control volumes of the current point which have not already
been agglomerated to another vertex.
Step 5: Update the front and go to step 2 until the control volumes for all vertices have been

agglomerated.

The queue of active vertices forms a wavefront which travels through the domain much like the
advancing-front grid generation procedure. Once all the boundary vertices have been processed,
the front edges form a simple queue, and they are extracted in the same order which they were
inserted into the list. We have experimented with the use of more sophisticated priority queues
to guide the advancement of the front. This has been implemented as a heap-list of the front
edges, ordered either by the smallest edge length or the vertex closest to the interior boundary. In
these implementations, a more regular propagation of the front is achieved by always choosing the
smallest edge in the front, as in advancing-front grid generation strategies, or by always choosing
the vertex closest to the inner boundary, thus advancing out from the inner boundary in equal
distance level sets. In practice, little difference in overall multigrid performance has been noticed

with these variants.

Figure 17: Illustration of seed point and Figure 18: Replacement of segmented ag-

agglomerated points in the agglomeration glomerated edge by straight-line edge for

coarse grid construction strategy. flux integrations on coarse level agglomer-
ated grid.
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The algorithm executes in a time proportional to the number of vertices, and requires an insignif-
icant amount of CPU time compared to the flow solution procedure. Coarse agglomerated meshes
are produced which contain approximately four times fewer control volumes in two dimensions and
eight times fewer control volumes in three dimensions than the previous finer grid.

The coarse level discretization is achieved by applying a finite-volume formulation to the com-
plex polygonal control-volumes on these levels. A flux is computed for each edge of the polygonal
control volume, using the average of the flow variables of each control-volume, on either side of
the edge. A flux balance for each control volume is computed by integrating the fluxes around all
boundary edges of the control volume. While the number of coarse level control volumes decreases
approximately by a factor of four (eight in three dimensions) when going from a fine grid to the
next coarser level, the number of edges only decreases by a factor of two (both in two and three
dimensions) due to the increasing complexity of the control volumes on the coarser meshes. Since
the complexity of updating the discrete coarse grid equations is closely related to the number of
edges on these grids, this results in a substantial increase in the complexity of the overall multigrid
cycle compared to using similarly coarsened triangular meshes. However, this complexity may be
reduced by replacing each set of segmented edges which border on the same two agglomerated
cells by a single straight edge, as shown in Figure 18. This step involves no approximation, since
the flux across each segmented portion of the original edge involves the same flow variables, and
invokes the edge normal in a linear fashion. Thus, the use of a single straight edge corresponds to
the summation of all fluxes of the segmented edge. With this improvement, the effective number
of edges decreases proportionally to the number of control-volumes when going from fine to coarse
agglomerated grid levels, in both two and three dimensions, and the standard multigrid cycle com-
plexity is recovered. The use of an edge-based data-structure, which stores the addresses of the
cells on either side of each edge, and the x and y (and z in three dimensions) components of the
edge normal area, is particularly attractive, since it enables the fine and coarse levels to be treated
analogously, in spite of the non-triangular nature of the coarse grid cells.

The construction of the inter-grid transfer operators for agglomeration multigrid methods is
particularly simple, since the coarse and fine level control volumes are fully nested. Fine to coarse
residual restrictions are performed using volume weighting. Thus, the coarse restricted residual
in a given control-volume is simply the sum of the residuals of the constituent fine grid control
volumes, weighted by the ratio of the fine grid cell volume to the agglomerated coarse grid cell
volume. The same operator is employed to transfer the flow variables from fine to coarse levels for
the FAS scheme (i.e., the ThH operator). Simple injection is employed for the prolongation operator.
The correction computed on a coarse level agglomerated cell is applied directly and equally to all
fine-level control volumes which are contained within the coarse level cell. This simple minded
prolongation scheme is clearly less accurate than the linear interpolation strategy employed in the
overset-mesh multigrid algorithm. However, because of the complex shapes of the coarse level cells,
and since a piecewise constant coarse level solution is assumed, linear interpolation prolongation
operators are not easily constructed. This is an unfortunate consequence of the use of coarse
agglomerated levels, and will be addressed in more detail in section 4.2.

As an example of the efficiency of the agglomeration multigrid approach, the same example
shown in Figures 9 through 11, for the overset-mesh multigrid method has been recomputed with
the agglomeration approach [41]. Figure 19 depicts four of a total of six coarse agglomerated mesh
levels, based on the finest mesh of Figure 9, which were employed for this calculation.
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Figure 19: Several agglomerated levels employed in the calculation of flow over aircraft
configuration.

As previously, the finest mesh contains 804,000 vertices and 4.5 million cells. However, in this case,
a total of seven mesh levels were employed in the multigrid procedure. The coarsest mesh contains
only 99 agglomerated cells. Recall that in the overset-mesh case, only four levels were possible, due
to the difficulties involved in constructing consistent coarser meshes. The agglomeration procedure
for generating the six coarser levels required approximately the equivalent amount of CPU time of
two multigrid cycles. The flowfield conditions and the final solution are identical to those described
in section 3.2.

The convergence rate given in Figure 20 illustrates how the efficiency of the agglomeration
procedure parallels that of the overset-mesh approach, delivering a residual reduction of 6 orders
of magnitude in 100 W-cycles. The amount of CPU time required per multigrid cycle is approxi-
mately the same for the agglomeration and overset-mesh multigrid algorithms, which corresponds
to approximately double that of a single-grid explicit time-step. Therefore, as in the overset-mesh
case, the agglomeration multigrid procedure provides an order of magnitude increase in solution
efficiency over the single-grid approach. In addition, it affords a completely automatic coarse level
construction, and enables the use of additional coarse levels over the overset-mesh procedure. In
this particular case, the additional mesh levels provided an increased convergence rate over a four
level agglomerated approach, but were not able to outperform the four level convergence rate of
the overset-mesh multigrid approach. This case required approximately 50 minutes of CPU time
on a single CRAY-C90 processor, and 97 Mwords of memory.
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Figure 20: Convergence rate of agglomeration multigrid algorithm compared with overset-
mesh multigrid algorithm and single-grid algorithm for computation of flow over aircraft configu-
ration.

3.5 Algebraic Multigrid Methods

Algebraic multigrid methods are methods that enable the efficient solution of systems of algebraic
equations, which are not necessarily derived from the spatial discretization of a partial differential
equation [25]. In fact, the notion of a grid, of linear interpolation in space, and spatial smoothness
are not always possible in this context. Thus, algebraic multigrid methods require the redefinition
of such concepts in the context of algebraic rather than geometric quantities, in order to make use
of traditional multigrid principles. In some sense, algebraic multigrid represents an abstraction
or generalization of the fundamental multigrid procedures, and may lead to more fundamental
understanding of the multigrid solution principles, and perhaps more general strategies. However,
these methods are not nearly as well developed as their geometric counterparts, and are usually
more cumbersome and restrictive. For example, present algebraic multigrid methods are only
applicable to linear problems.
Consider the problem defined by the set of algebraic equations

Az =b (33)

or, for an N by N matrix,

N
Za,-jxj =b fori=1,2,..,N (34)
=1

The multigrid solution process consists of deriving a smaller set of equations from the above set,
denoted as

Az, = b, (35)
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or
Ne¢
Zac,-j:ccj =b,; for i=12,...,.N. (36)
=1

where N, represents the number of coarse level variables, and the matrix A, with elements a.;;
remains to be defined. The variables z; are usually taken as a subset of the fine level set of variables
z;. Restriction and prolongation operators which map fine to coarse (I/) and coarse to fine (I}})
variables must also be defined. Once these steps have been accomplished, a multigrid cycle may be
written as

e — Gxold + II}-LI{(AC)_IbC _ mgld] (37)

where G represents the fine grid smoother, and it is assumed that the coarse grid matrix A. may
be easily inverted. The above sequence of operators represents a two-grid multigrid cycle. This is
described here for simplicity, and in practice, a multiple level cycle may be defined by recursive
application of the above two-grid procedure.

A standard algebraic multigrid construction is to take the restriction operator as the transpose
of the prolongation operator:

I =) (38)

as was done in the overset-mesh multigrid algorithm, and to use the Galerkin coarse grid operator
construction to define the coarse level matrix A.:

T
A. = (Ify) ATh (39)

as described in section 2.3. Once these steps are taken, the complete algebraic multigrid algorithm is
determined solely by the definition of the prolongation operator and the set of coarse level variables.

Since geometric information is not available, the coarse level variable sets must be determined
from the algebraic information contained in the matrix A. To do this, we make use of the graph of
the matrix A. The graph of a sparse matrix is defined as the graph which is obtained by drawing
an edge between the two vertices which correspond to the row and column number of each non-
zero entry in the matrix. An algorithm which generates a maximal independent set of this graph
may be utilized to construct a coarse level subset of variables, just as in the agglomeration or
automated coarsening approaches for geometric multigrid. Algebraic multigrid, however, adds an
extra degree of sophistication to the process, by considering the magnitude of the non-zero matrix
entries. Coarsening is performed preferentially along edges associated with large matrix entries,
since this represents neighboring equations which are strongly coupled, and which will thus have
similar errors (i.e., the error distribution will be smooth in that direction). For problems which
result from stretched mesh discretizations, this reproduces the effect of semi-coarsening.

In order to construct a suitable prolongation operator, we require that smooth error be in the
range of interpolation. This assumes a definition of the concept of smoothness in an algebraic sense.
An algebraically smooth error may be defined as an error which is slow to converge using a simple
relaxation scheme, t.e.,

|Gell ~ el (40)
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This definition means nothing more than the error must be handled by the coarser grid. However,
it provides a basis for constructing a smooth operator. Since simple relaxation schemes generally
refer to explicit schemes, which compute updates based on the residual, equation (40) implies a
small residual for smooth errors:

Ae=1~0 (41)

Prolongation to fine level variables which are not contained on the coarse level may be computed
by setting the residuals at those points to zero:

Zaijvj =0 (42)

where v; represents the prolongated correction at vertex j. If v.; represents the coarse grid correc-
tion, an algebraically smooth prolongation operator can therefore be defined as follows:

v = Uy fori € coarse grid
1 N
v o= TZ“UW fori 3 coarsegrid (43)

Thus, for fine grid points which are contained in the coarse grid, corrections are obtained by
injection of the coarse grid values, whereas for fine grid points which are not contained in the
coarse grid, corrections are obtained by application of equation (42). The summation need only be
performed over the non-zero elements a;; of row i of the matrix A, which corresponds to the graph
neighbors of vertex i. In the event all such neighbors are coarse grid points, an explicit formula
for the prolongation operator is obtained from equation (43). In practice, all such neighboring
values are seldom contained in the coarse grid. Equation (43) may then be solved approximately
by applying the same process to each neighboring point which is not a coarse grid point. This
process may be applied recursively, each time enlarging the stencil for the prolongation of the value
v;. An approximate stencil may then be constructed by deleting all points of the stencil which are
not coarse grid points. In [25], for example, a construction of this type using up to two levels of
neighbors is described in detail. This results in an approximate but explicit form of the prolongation
operator, which can be constructed as a preprocessing operation and then employed throughout
the multigrid solution process.

One of the drawbacks of algebraic multigrid methods is the complexity of their construction.
The prolongation operator described above is not only used to transfer corrections from coarse to
fine grids, but also enters into the construction of the coarse grid operator through equation (39).
Thus, a prolongation operator with large or widely varying stencils may result in considerably
complex coarse grid operators. In fact, the coarse grid operator obtained through equation (39)
is usually much denser (contains relatively more non-zero elements) than the original fine grid
operator, which results in increased coarse grid complexities for the multigrid cycle. Thus, the
construction of algebraic multigrid methods necessarily involves a trade-off between accuracy of
the operators and complexity of the coarse grids.

3.6 Similarities Between Agglomeration and Automated Node Nested Methods

The unstructured multigrid approaches described above have been presented in order of decreasing
geometric and increasing automatic and algebraic character. Many of these methods involve similar
techniques, and some can even be shown to be completely equivalent under certain conditions.

29



For example, it has been shown how the agglomeration process can be interpreted as a point-
removal technique. There is complete duality between these two techniques: the agglomeration
procedure operates on control volumes of the dual mesh, while the point-removal technique operates
on vertices of the original mesh. However, a notable difference between these two methods is that
the end result of the agglomeration procedure not only consists of a coarse set of control volumes,
but also an implied graph upon which the coarse grid operator is based, i.e, the graph obtained by
drawing an edge between every pair of neighboring agglomerated control volumes. On the other
hand, the point-removal technique only determines a coarse level set of vertices, without any implied
graph. The graph of the coarse level operator is determined by retriangulating these vertices, a
step which in principle may be completely independent of the coarsening process.

The question then arises as to whether the implied graph of an agglomerated coarse grid is
representative of some particular triangulation. If this is so, then the agglomeration procedure
becomes completely equivalent to a combined point-removal and retriangulation technique for con-
structing coarse triangular meshes, with the consequence that agglomeration multigrid becomes
nothing more than an overset triangular mesh multigrid technique where the coarse meshes are
generated automatically.

By examining a coarse agglomerated grid, one can identify points on the grid where three
agglomerated cells meet, as shown in Figure 21.

Figure 21: Ilustration of dual triangu- Figure 22: Contributions of edges interior
lation implied by agglomerated grid. Any to agglomerated cell cancel out for convec-
point within the agglomerated cells may be tion equation, while those along common
employed as the triangle vertices. boundaries may be summed.

These points define triangular cells, which can be constructed by joining the centroids of the three
neighboring agglomerated cells together with three straight-line edges. The union of these edges
constitutes a dual of the agglomerated grid, which is seen to be a triangular mesh of the agglom-
erated cell centroids. In fact, the centroids were chosen here for convenience, and any point within
the agglomerated cells may be used to define the vertices of the triangulation. Another choice
would be to draw the edges joining the centroids of the original control volume which initiated the
agglomeration of each coarse cell, i.e., the seed points of the cells. Since these seed points form a
subset of the original triangular mesh vertices, an agglomeration procedure of this type becomes
completely equivalent to a point-removal and retriangulation process, and the agglomeration multi-
grid approach becomes identical to the overset-mesh approach. This also permits the use of linear
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interpolation for the restriction and prolongation operators as implemented in the latter approach.
(Recall that this was not possible in the agglomeration formulation).

One of the difficulties with this interpretation is that the triangular meshes derived from the
a,gglomeration"process in this manner may not always be valid, i.e., cross-overs may occur which
result in negative area triangles. While such situations can often be remedied by displacing the
vertices of the triangulation within the agglomerated cells, since there is an added degree of freedom
in choosing the precise location of these points, uncorrectable triangulations inevitably occur. This
highlights the main advantage of the agglomeration process, that is, its ability to construct valid
coarse grids, regardless of the geometry. The fact that the coarse agglomerated grids conform
exactly to the boundaries of the domain on every level is another manifestation of this principle.
The robustness of the coarse level agglomeration construction is largely due to the fact that the
agglomerated control volumes are formed by directly summing fine grid control volumes. Thus,
the coarse level discrete equations may be thought of as formed by the sum of the subset of fine
level discrete equations which are contained in each coarse agglomerated cell. Many desirable
properties which may have been built into the fine level discretization, (i.e., positivity, diagonal
dominance, etc.) can therefore be assured on the coarse level equations. This algebraic character
of the agglomeration procedure is one of its greatest assets.

3.7 Similarities Between Agglomeration and Algebraic Methods: Construction
of an Agglomeration Method for the Navier-Stokes Equations

As we have hinted above, agglomeration techniques can also be interpreted as algebraic multigrid
methods. In fact, our current implementation of agglomeration multigrid follows the algebraic in-
terpretation as closely as possible [41, 48, 49]. The basic premise is that convergence acceleration
techniques should not be bound by geometry-based constraints, and the removal of the influence of
geometry from the multigrid process should lead to a more robust strategy. Consider, for example,
the application of boundary conditions on the coarse agglomerated grids. For very large cells which
overlap regions of the boundary which correspond to multiple different boundary conditions, the
application of coarse level boundary conditions is ambiguous. Rather than physically applying
boundary conditions on the coarse grid, an algebraic approach consists of inferring a possibly com-
posite coarse level boundary condition from the boundary conditions and their associated equations
on all constituent fine grid cells of the coarse agglomerated cell.

The use of an edge-based data-structure to represent discretizations in the agglomeration multi-
grid method not only permits a similar treatment of all coarse and fine-grid levels, but also provides
an algebraic interpretation of the procedure, since the set of edges of the discretization on a given
level may be viewed as the graph of the sparse matrix defined by the discrete operator. In fact,
the algebraic point of view of agglomeration multigrid has not only resulted in a more robust algo-
rithm, but has also enabled the extension of agglomeration multigrid techniques to other types of
equations, such as the Navier-Stokes equations, and turbulence transport equations [48, 49, 50].

For a discrete operator which relies on a nearest neighbor stencil on a triangular or tetrahedral
grid, the graph of its sparse matrix is equivalent to the graph of the grid. In such cases, the ag-
glomeration procedure defined above becomes equivalent to an algebraic procedure for constructing
coarse-level equations sets. In fact, the methods described in the algebraic multigrid literature may
be utilized in agglomeration multigrid methods, while the maximal independent-set techniques de-
vised for agglomeration methods may also be applied to algebraic strategies. A notable difference
between the two approaches is that, while the agglomeration procedure itself defines the stencil of
the coarse level operator, i.e., the stencil of nearest agglomerated cell neighbors, in the algebraic
multigrid case, the coarse grid stencil is defined by the Galerkin construction of the coarse grid
operator (c.f. equation (39)). In fact, algebraic multigrid does not even contain the notion of a
nearest neighbor, since the coarsening process does not generate its own graph. The stencils of
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the Galerkin coarse grid operator are in general much more dense than those of an agglomerated
nearest-neighber graph, and are much more expensive to evaluate. This becomes particularly dif-
ficult in multi-level applications (as opposed to two-level applications), where the process must be
invoked recursively.

Under certain conditions, the stencil of the Galerkin coarse grid operator becomes equivalent
to a nearest neighbor stencil. For example, the agglomeration algorithm described previously for
an advection equation or the Euler equations employs an injection operator for the prolongation
operator, and volume weighted summation for the restriction operator. If A represents the fine
grid discrete operator, then the Galerkin coarse grid operator

A= IFATLL (44)

using injection and volume-weighting for prolongation and restriction, respectively, can be viewed
as an equation summation technique, where each coarse grid discrete equation associated with an
agglomerated cell is obtained by summing all the discrete equations of the fine level within the
given agglomerated cell, and replacing the fine grid variables by the corresponding coarse grid
variables. When the discrete equations for an advection equation are expressed in edge format, the
contributions along all edges interior to the agglomerated cell cancel out, while all edge contributions
which border on two neighboring agglomerated cells may simply be summed, as shown in Figure 22.
This procedure naturally results in a nearest neighbor stencil, and in fact reproduces the same coarse
level discrete equations for an advection equation obtained by the finite-volume analysis of the
coarse agglomerated cell. For the Euler equations, complete equivalence can also be demonstrated
provided the non-linearities of the equations are handled appropriately.

Therefore, in this case, the agglomeration and Galerkin coarse grid operator constructions are
equivalent, providing a further demonstration of the algebraic character of the agglomeration pro-
cedure. This is particularly convenient, since it provides a mechanism for extending agglomeration
procedures to equations of higher degree, such the Poisson equation, or the diffusion terms of the
Navier-Stokes equations. The discretization of such equations on a mesh of complex polygonal
control-volumes is not obvious, since this usually requires the computation of gradients as an in-
termediate step. However, using the above Galerkin construction, with the injection prolongation
and volume-weighted summation restriction operator, a simple nearest neighbor stencil form of the
coarse grid equations is obtained. In fact, if we employ the same edge-based representation in the
discretization of the diffusion terms [36, 51}, a similar equation summing technique can be invoked
to construct the coarse grid equations.

Coarse Grid Coarse Grid Op. | Restriction | Prolongation | Convergence
Independent Rediscretization Linear Linear 0.100
Triangulated Seed Pts | Rediscretization Linear Linear 0.125
Agglomerated Galerkin Injection Injection 0.512
Agglomerated Scaled Galerkin Injection Injection 0.254

Table 1: Effect of coarse grid operator for agglomeration multigrid.
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Table 1 compares the convergence rate obtained by this method for the solution of Laplace’s
equation on a two-grid agglomerated system, using the fine grid and first coarse-level agglomerated
grid depicted in Figure 16, with that of a two grid overset mesh multigrid approach, using a coarse
triangular grid generated independently, and a coarse triangular grid based on the seed points of
the coarse agglomerated grid. For all tabulated results, a multigrid V-cycle is employed, with 3
Jacobi pre- and post-smoothing sweeps on the fine grid, and 200 sweeps on the coarse grid (in order
to fully converge the coarse grid equations of the two-grid system). In both cases, the convergence
rates are much faster for the overset-mesh multigrid approach, using a geometric discretization
for the coarse grid operator, than that achieved with the Galerkin coarse grid operator within the
agglomeration framework. This degradation of convergence may be due to the different coarse grid
operator, or the prolongation and restriction operators (which are taken as linear interpolation in
the overset grid method, and injection in the agglomeration approach). The effect of the relative
"quality” of the coarse grid can be assessed by the difference in convergence rates between the
overset grid method using an independent coarse grid, and using the triangulated agglomeration
grid. These differences are rather small thus demonstrating the suitability of the agglomerated
grid.

The main problem with the above formulation is that the accuracy of the transfer operators
is insufficient to guarantee efficient convergence rates. A necessary relation for ensuring multigrid
efficiency is given by [18, 27]:

m, + my, > m (45)

where m, and m,, are defined as the highest degree plus one of the polynomials that are interpolated
exactly by the restriction operator I, ,{1 and prolongation operator [ ﬁ- respectively, and m is the
order of the partial differential equation to be solved. In this case, injection is used for the transfer
operators, thus m, and m, are both equal to 1. Since the order of Laplace’s equation is 2, the strict
inequality is not satisfied. It is interesting to note that in the case of the convection equation (or
the Euler equations) the strict inequality is satisfied since the order of the equations is 1, rather
than 2. This explains the success of the control-volume formulation of the coarse grid equations
for inviscid problems in the agglomeration multigrid approach.

A B C

Figure 23: Simple one-dimensional two-grid multigrid example.

The accuracy of the restriction and/or prolongation operators must therefore be increased for
diffusion-type problems. This will affect both the transfer operators themselves, and the coarse
grid operator. Rather than strictly adhering to the construction given by equation (4), which can
become considerably involved for more complex interpolation operators, we seek a simplified coarse
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grid operator by examining a one dimensional example. The discretization of a Poisson equation
on a one dimensional grid yields the discrete equation:

Ujpl — 2U; + Ui-q

h2
If a coarse grid is constructed by agglomerating neighboring pairs of cells, as shown in Figure 23,
the restriction operator based on injection corresponds to simple summation of the z and : — 1

residuals.
The prolongation operator based on injection reads

=f (46)

Uiz = Uj—1 = UA
U; = Ui+1 = UB (47)

Uit+1 = Uiz = UC

where the overbar indicates coarse grid values. The discrete coarse grid equation at B is obtained
by the Galerkin construction:

IF A Ihe = I f, (48)

which yields:

Ug— 2up+Uc '

This obviously results in an inconsistency with the fine grid discretization, for if we were to directly
discretize the Poisson equation on the coarse grid we obtain

uUg —2up +Uc

The left-hand sides of equations (49) and (50) differ by a factor of 2. This inconsistency is entirely
due to the use of an inadequate prolongation operator. If we use linear interpolation for the
prolongation operator, t.e.,

U —§H +1ﬂ

1—1—4A 4B

u<—lﬁ +-3—H 51
1—4A 4B ( )

u; —3_+1ﬂ

z+1—4A 4C

but retain injection for the restriction operator, it can be verified that equation (50) is recovered
as the resulting Galerkin coarse grid operator. Note also that the inequality of equation (45) is
satisfied for this case. This one-dimensional example suggests a simple fix for the multi-dimensional
Galerkin coarse grid operator using injection [48, 50]. We replace the operator I H A1 with

_ ATy

AC - 271—1 (52)
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where n = 2,3, .., k represents the coarse-grid levels. In Table 1, this modified or scaled coarse grid
operator can be seen to show a significant improvement in convergence rate over the original coarse
grid operator for the two grid system. The advantage of this construction is that the coarse grid
operator still telies on the nearest neighbor stencil, and maintains low complexity.

Armed with this result, we may now proceed to construct an agglomeration multigrid strategy
for the Reynolds-averaged Navier-Stokes equations [49]. The graph-based agglomeration procedure
described in section 3.4 is employed to construct coarse levels using a slightly modified version of
the maximal independent set algorithm. Volume weighted summation is employed for restricting
residuals and flow variables to coarser grid levels, while injection is employed for transferring coarse
level corrections back to the fine grid. The coarse level operator is obtained using the Galerkin
construction for the convective terms, while the scaled Galerkin result of equation (52) is employed
for the viscous terms. The coarse grid operator is thus given by

Ac = Acinviscid + Acuiscous

I}{I Aviscous Ilhj (53)

I Ainviscia Iy + on-1

A
where n represents the grid level. The turbulence model of Spalart and Allmaras [52] is employed
to account for turbulence effects. This model consists of a single field-equation which contains
convective, diffusive and source terms. The turbulence equation is solved decoupled from the flow
equations, but in a similar multigrid fashion. The convergence of the flow and turbulence equations
is accelerated by the use of local time-stepping and residual averaging on all mesh levels.

As an example, this procedure has been employed to compute the flow over a rectangular wing
with a partial-span flap mounted in a wind-tunnel. The mesh for this case was generated using
the advancing layers method [53], and is highly stretched in the regions near the airfoil surfaces.
The solution was obtained on two different meshes, a coarse mesh of 300,00 vertices (or 1.7 million
tetrahedra) with a normal wall spacing of 102 at the airfoil surfaces, and a finer mesh of 2.3 million
vertices (or 13.6 million tetrahedra) with a wall spacing of 5 x 10~6. This fine mesh represents a
uniform refinement of the coarser mesh. The coarser mesh is depicted in Figure 24, along with the
set of coarse level agglomerated grids used in the calculation, while the fine grid is shown in Figure
95. A total of five mesh levels were employed for the coarse mesh calculation, and a total of six
mesh levels were used for the fine mesh calculation. The fine grid solution is depicted qualitatively
in Figure 26, as a set of Mach contours on the wind-tunnel wall, and density contours on the airfoil
surface. The freestream Mach number is 0.2 for this case, the Reynolds number is 2 million, and
the incidence is 10 degrees. The convergence rates of the multigrid scheme for these two cases are
depicted in Figure 27, as a history of the RMS average of the density residuals throughout the
flowfield and the lift coefficient versus the number of multigrid cycles. In both cases, convergence
of four to five orders of magnitude is obtained in three to four hundred multigrid W-cycles. The
most notable feature of this comparison is the fact that the convergence rates for the coarse and
fine grids are almost identical. Considering the fact that the fine grid contains eight times the
resolution of the coarse grid, this provides a strong indication of the grid independent convergence
rate property of multigrid for very large three-dimensional problems. This type of convergence
rate is equivalent to that obtained with similar schemes on structured meshes [43, 54]. The fine
grid calculation required a total of 425 Mwords of memory, and 18 hours of total CPU time for
300 multigrid cycles on a CRAY C-90. Using all 16 processors of the machine in parallel, this
calculation was achieved in 1.25 hours of wall clock time.
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Figure 27: Convergence rates on coarse (300,000 points) and fine (2.4 million points) grid
for flow over partial-span flap wing.

4 Additional Multigrid Topics

4.1 Additive Correction Schemes

Many multigrid-like methods have been developed for both geometric and algebraic problems.
These have been used in a straight multigrid-like fashion, involving the creation and solution of
multiple coarse level problems [55, 56, 57], or in domain decomposition strategies, as techniques
for providing a level of global coupling between the various domains, which are usually solved
implicitly within each domain [46, 58, 59]. Multigrid is an intuitively appealing procedure, and
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many of the proposed multi-level methods have been developed purely based on intuition. This
approach, however, runs the risk of resulting in an algorithm which may violate certain basic
multigrid principles, thus producing a less than optimal scheme.

The so-called additive correction schemes have been employed to canstruct efficient solution
procedures for anisotropic convection problems [55]. The derivation of these schemes is particularly
simple, and can be performed entirely in an algebraic setting. The idea is to group together
neighboring subsets of fine-grid points, and to construct coarse level equations by directly summing
these fine level equations. The fine grid variables are then rewritten as their current value plus
a coarse grid correction, and the resulting equations are solved. As an example, consider the
discretization of a Poisson equation on the one-dimensional fine grid of Figure 23, with a coarse
grid defined by pairwise addition of neighboring cells. The fine grid equations at cells ¢ and 7 + 1

are given by

Uipr — 2U; + Uiy

2 fi (54)
Uiy — 22Uy + Uy
1 h22+ - = fin (55)
respectively. By summing these two equations, we obtain the coarse grid equation for cell B:
1+ z+h2 t 1 — fi + fi+1 (56)
We seek corrections to the fine grid variables of the form
uip2 = ulh+ec
uipn = ufi+cB
(57)
u = uwl4ep
uicp = ud +ca

where ca, g, cc represent coarse grid corrections at cells 4, B, and C respectively. Substituting
equations (57) into equation (56) we obtain:

ca-2ptcc uld ~2uptrutd

B2 fi - R
old _o 91d+ old
+ fian - T (58)

which is easily seen to be similar to the coarse grid equation defined by the multigrid correction
scheme, since the right-hand side of equation (58) represents a restriction of fine grid residuals. This
represents a simple intuitive and algebraic approach for deriving a multigrid correction scheme.
However, the conventional multigrid correction scheme using rediscretization for the coarse grid
operator yields

ca—2cg+ec  Ti+Tip1

4h? - 2 (59)

where r; is defined as the residual

wold _ oyold + uold
r= fi — =4 h; = (60)
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Since these residuals are defined in a point-wise manner, the volume weighted residual restriction
results in a simple averaging of the residuals r; and r;+;. The coarse grid equation generated by
the additive correction scheme is thus inconsistent with equation (59). This is the same problem
encountered with the agglomeration multigrid scheme, and is due to the implied use of injection
for the prolongation operator in the additive correction scheme. While these schemes have been
successful for certain classes of problems, they cannot be expected to perform optimally even for a
simple Poisson equation.

4.2 Algebraically Smooth Prolongation Operators

One of the failings of the ACS schemes is their implied use of simple injection as a prolongation
operator. In this section we briefly discuss a strategy for constructing algebraically smooth pro-
longation operators, and examine their effect on overall convergence. As stated in section 3.5, an
algebraically smooth error may be defined as one which can no longer be reduced effectively on the
fine grid using an explicit operator. This usually implies that the residual of the error is small in
some sense compared to the error itself, since explicit smoothers involve the use of the residual to
compute updates to the solution. Thus, the relation

Ae=r~0 (61)

provides a definition of a smooth error e, where A represents the operator on the current grid, and
r the residual. Since the operator A usually involves a local stencil, equation (61) describes an
error for which the value at the point in question and at neighboring points is distributed in such
a manner as to approximately satisfy the discrete equation locally. For example, for a Galerkin
discretization of a Laplacian, the above equation implies that the error has a linear distribution in
the vicinity of the point in question, without specifying the slope of this linear distribution. Any
highly oscillatory quantities in this region would lead to a large residual. In this case, the error
is also geometrically smooth. In the general case, however, the use of equation (61) represents an
algebraic extension of the concept of smoothness.

In the context of an algebraic multigrid method, or a node-nested multigrid strategy, where the
coarse-grid points comprise a subset of the fine-grid points, or an agglomeration strategy, where the
seed points of the coarse agglomerated cells represent a subset of the fine-grid vertices, a smooth
prolongation operator may be defined as

v = U forti € coarse grid
1 N
vio= —— E a;;v; fori > coarsegrid (62)
T

At fine-grid points which are common to the coarse grid (or seed points in the agglomeration algo-
rithm), values are prolongated by injection, whereas at remaining fine-grid points, the prolongated
values are obtained by setting the fine grid residual to zero. Here the coefficients a;; represent the
non-zero elements of the operator matrix A. This prolongation construction has been described in
section 3.5. As previously mentioned, if all neighboring vertices of ¢ are coarse-grid vertices, i.e.,
all the v; values, then equation (62) yields an explicit formula for smooth prolongation at point
i. However, since this is seldom the case, additional approximations are required. By applying
equation (62) recursively to the neighboring points of ¢ which are not coarse-grid points, and trun-
cating the resulting large stencil at some level, such that it involves only coarse-grid points, an
approximate explicit formula for the prolongated correction at point i is obtained, as described in
section 3.5. An alternate approach [48] is to consider the exact prolongation operator defined by
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setting all residuals equal to zero at points such as ¢, in equation (62), which represent all fine-grid
points not contained in the coarse grid, and to solve these equations approximately. This can be
achieved by iterative means (i.e., multiple Jacobi iterations). These iterations are similar to those
of the base fine grid solver, since the same operator is involved. However, the appropriate boundary
condition in this case is:

v; = v,  forti € coarsegrid (63)

where v.; represents the corrections at the coarse-grid points which are injected to the equivalent
fine-grid points. The fact that the same iterative solver as the base fine grid solver can be employed
makes this implicit prolongation operator simple to construct. The application of equation (63) as
a boundary condition ensures rapid convergence of any simple iterative scheme, since in general
each fine-grid point which is not a coarse-grid point will be surrounded by coarse-grid points,
which are only one or two neighbor distances away. In particular, for the construction described
in sections 3.3 and 3.4, where the coarse-grid points constitute a maximal independent set of the
fine-grid points, each fine-grid point is either a coarse-grid point, or a neighbor of a coarse-grid
point. For Laplace’s equation, this implicit prolongation operator preserves a linear distribution
exactly, and closely approximates the prolongation obtained by triangulating the coarse-grid points
and using piecewise linear interpolation, as described previously for the overset-mesh multigrid
approach. (Since different triangulations of the coarse-grid points lead to different piecewise linear
interpolation operators, the two approaches will not be identical in general).

This approach is demonstrated for Laplace’s equation using the same two grid system of section
3.7, i.e. the fine and first coarse-level agglomerated grid of Figure 16, in section 3.7. The agglomer-
ation multigrid approach is employed in this case. Recalling the dual nature of the agglomeration
procedure, the seed points of the coarse agglomerated grid are taken as the common coarse and
fine-grid points. Three pre- and post-smoothing Jacobi cycles are executed on the fine grid, and
the coarse grid is solved ”exactly” (using 200 Jacobi iterations).

Coarse Grid Coarse Grid Op. | Restriction Prolongation Convergence Rate
Triangulated Seed Pts | Rediscretization Linear Linear 0.125
Agglomerated Scaled Galerkin | Injection Injection 0.254
Agglomerated Scaled Galerkin Linear Linear 0.159
Agglomerated Scaled Galerkin | Injection Linear 0.171
Agglomerated Scaled Galerkin | Injection | Implicit (50 cycles) 0.177
Agglomerated Scaled Galerkin Injection Implicit (5 cycles) 0.178
Agglomerated Scaled Galerkin | Injection Implicit (2 cycles) 0.195

Table 2: Effect inter-grid transfer operators for agglomeration multigrid.

In Table 2, the convergence rate of the overset-grid method using the triangulated seed points
as a coarse grid and the standard agglomeration algorithm are compared. The former algorithm
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uses linear interpolation for both restriction and prolongation with a geometric discretization of
the coarse grid equations, while the latter employs injection for both inter-grid transfer operators
(volume weighted averaging for the residual restriction is considered as an injection operation),
and the Galerkin coarse-grid operator rescaled for consistency as given. by equation (52). The
slower convergence of the agglomeration method is accelerated when the same linear interpolation
operators used in the overset-mesh method are explicitly used in the agglomeration method. In
fact, even if linear interpolation is employed only in the prolongation operator, most of the benefit
is achieved, as can be seen from the fourth entry in the table. In the remaining three entries in the
table, the use of the implicit prolongation operator is clearly seen to produce nearly identical results
to the same scheme using the linear interpolation prolongation operator. Furthermore, the overall
multigrid convergence rate degrades only slightly when decreasing the number of iterations used
to solve the implicit prolongation operator from 50 to 2, supporting the claim that these (implicit
prolongation) equations converge rapidly.

The implicit prolongation operator construction can be particularly advantageous for complex
non-linear problems. For example, in the event that a maximum principle or a positivity condition
is built into the single-grid relaxation scheme, injection or even linear interpolation prolongations
cannot guarantee the preservation of such properties throughout the multigrid process, particularly
for non-linear equations. However, such properties are preserved in a natural manner by the implicit
prolongation operator. This is easily seen since the seed points inherit the property from the coarse
grid solution, while the other fine-grid points receive corrections generated using fine grid iterations.
It is also interesting to note that for hyperbolic problems, many modifications to the simple linear
interpolation prolongation operator have been suggested, in order to account for the hyperbolic
nature of the problem [21, 37]. The present implicit formulation should presumably take such
effects into account automatically.
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Figure 28: Fine unstructured mesh for ~Figure 29: Multigrid Convergence rates
computation of turbulent flow over RAE  obtained with injection and implicit pro-

2822 airfoil. (Number of vertices = 18840).  longation operators for turbulent flow over
RAE 2822 airfoil.

In Figure 29, the convergence rates of the overset-mesh multigrid approach and the agglomera-
tion multigrid approach using the implicit prolongation operator are compared for the computation
of viscous turbulent flow over an RAE 2822 airfoil on the grid of Figure 28. For this case, the
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freestream Mach number is 0.73, the Reynolds number is 6.5 million, and the incidence is 2.31
degrees. Turbulence effects are accounted for by the single-equation model of Spalart-Allmaras
[52], which is also solved using the multigrid procedure. As previously, the implicit prolongation
operator is computed by injecting corrections to the fine-grid points which correspond to coarse
agglomerated-grid seed-points, and performing multi-stage time-stepping on the remaining fine-
grid points, while holding the seed-point values constant. The agglomeration algorithm using an
injection prolongation operator is noticeably slower than the rate obtained with the implicit pro-
longation operator, which even outperforms the overset-mesh method using linear interpolation.
In this case, where the equations are non-linear, the implicit prolongation operator presumably
provides smoother fine grid corrections than a linear-interpolation-based prolongation operator.
When many iterations are required to solve the implicit prolongation equations, the procedure
is obviously not practical, since these iterations are very expensive, i.e., they correspond to fine grid
iterations. Unfortunately, even though most of the convergence acceleration benefit in Figure 29
can be obtained with only 2 sub-iterations for the implicit prolongation equations, the procedure
is still not worth the gain in convergence speed it affords for this case. Thus, the usefulness of
the implicit prolongation operator depends on the ability to inexpensively approximate or solve
the equations associated with this operator. This represents a topic of current research. The
above examples, however, serve to demonstrate the potential of an algebraically-based smooth

prolongation operator.

4.3 Better Coarse Grid Operators

The construction of the scaled Galerkin coarse-grid operator for diffusion problems defined in
equation (52) is somewhat heuristic in nature, and is apparently not as effective as the operator
obtained through rediscretization, even when identical inter-grid transfer operators are employed,
as can be inferred from Table 2. The possibility of constructing more efficient coarse grid operators
must therefore be considered. One possibility would be to investigate the use of a Galerkin coarse
grid operator [, {1 Al ;} where [ ?I is the implicit prolongation operator described above. However,
due to the implicit form of I}, this construction is not straight-forward. For linear problems,
an explicit form of the prolongation operator could be constructed in a preprocessing phase by
(approximately) inverting the matrix which corresponds to the system of equations (62).

In order to investigate the effect of more accurate prolongation operators in the Galerkin coarse
grid operator construction, the solution of Laplace’s equation on the two-grid system composed of
the finest and first level agglomerated grid of Figure 16 is chosen as a test problem. The convergence
of the rediscretized and scaled coarse grid operator constructed using injection, and the coarse grid
operator constructed using piecewise linear interpolation are compared in Table 3.

The piecewise linear interpolation operator itself is that obtained by triangulating the coarse grid
seed points, and is precisely the operator used for prolongation by the overset-mesh multigrid pro-
cedure operating on an equivalent coarse grid of triangulated seed points. While this construction
for the prolongation operator may not be possible in the general case, it is readily available in this
case (explicitly constructed in the overset-mesh code), and affords a direct comparison with the
overset-mesh multigrid method, where the coarse grid operator is constructed by rediscretization.

Clearly, the Galerkin coarse grid operator based on linear interpolation is much more effective
than even the geometric coarse grid operator used in the overset-mesh approach. This demonstrates
that Galerkin coarse grid operators can be even more effective than rediscretization techniques.
However, even though this scheme contains the same number of coarse-grid points (or coarse level
variables), the matrix of the coarse grid operator is no longer based on the implied agglomeration
graph, and is much denser. This is the result of the operator no longer relying exclusively on
nearest neighbor stencils. Coarse grid evaluations are over three times more expensive than in
the other cases. This method is therefore not practical, particularly for multi-level applications.
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Coarse Grid Coarse Grid Op. Restriction | Prolongation | Convergence

Independent Rediscretization Linear Linear 0.100
Triangulated Seed Pts Rediscretization Linear Linear 0.125
Agglomerated Scaled Galerkin Linear Linear 0.159
Agglomerated Full Galerkin (Using Linear Linear 0.060

Linear Int. for I and I.rh{)

Table 3: Effect of coarse grid operator in agglomeration multigrid.

There are various possibilities for alleviating this difficulty, although some degree of compromise is
usually required. One approach is to choose the coarse-grid points in the agglomeration or point-
removal process such that the resulting stencil size of the Galerkin coarse grid operator is minimized.
Simultaneously, the explicit stencils of the restriction and prolongation operators may be truncated,
preserving only the strongest coefficients in the stencil. The combination of these two effects has
been shown to produce coarse grid stencils of near constant complexity when applied recursively
on sequences of coarse meshes [25]. Another approach is to attempt to approximate the coarse
grid stencil, or to decompose it into the sum of several stencils, and to delete or approximate one
or various of these individual stencils [60]. Finally, the additional cost of evaluating more complex
coarse grid operators may be offset partially by reducing the complexity of the coarse grids (i.e., the
number of coarse-grid points), although this approach runs the risk of under-representing particular
error frequencies. Clearly, additional research is required before more sophisticated coarse grid
operators can be utilized effectively.

4.4 Optimal Coarsening Strategies for Anisotropic Problems

While the use of unstructured meshes was initially viewed as a complicating factor for the im-
plementation of multigrid methods, the added flexibility of unstructured meshes turns out to be
a great advantage for devising more efficient multigrid strategies. For structured meshes, the
usual coarsening strategy consists of deleting every second point in each coordinate direction. For
strongly anisotropic problems, involving highly-stretched meshes, local smoothers are only effective
at smoothing the error in the direction of strongest coupling (small mesh spacing), leaving the high-
frequency error components in the direction of high stretching relatively unsmoothed. A common
technique to remedy this situation is to resort to semi-coarsened meshes, where the next coarser
mesh is constructed by removing every second point in one coordinate direction only, i.e., the di-
rection of strong coupling. The difficulty of this approach is that different regions of a structured
mesh may exhibit stretchings in different coordinate directions. Thus, a uniform semi-coarsening
in a single direction is not sufficient, and generally, two semi-coarsened meshes are required, one
for each coordinate direction in two dimensions. For recursive coarsening, this results in a diamond
shaped pattern of coarse meshes, as shown in Figure 30. In three dimensions, the situation becomes
prohibitively complicated and expensive.
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Figure 30: Sequence of coarse meshes required for two-dimensional semi-coarsening of an
8 x 8 fine structured mesh.

Unstructured multigrid methods, on the other hand, offer the possibility of generating optimally
coarsened meshes, where each coarse mesh is tailored to represent precisely the error frequencies
which could not be smoothed efficiently on the previous finer mesh. This can be accomplished either
algebraically, by agglomeration, or by point removal techniques using the overset-mesh method.
In fact, the coarsening strategy and the multigrid approach can be treated independently from
one another. Such optimal coarsening strategies offer the possibility of resolving stiffness due to
anisotropy and disparate length scales in an efficient manner. Although these techniques are only
beginning to be appreciated for unstructured mesh multigrid methods, they have been exploited
in certain implementations of the Additive Correction Scheme [55, 57], and in algebraic multigrid
methods [25].

One of the central ideas in optimal coarsening strategies is to coarsen in the direction of strong
coupling, i.e., to remove or agglomerate fine-grid points which are strongly coupled to a current
coarse-grid point. In the geometric context, strong coupling occurs for closely spaced points,
whereas in the algebraic context strong coupling refers to a non-zero entry in the sparse matrix which
has alarge magnitude, i.e., a;; > 1in equation (34). Since these matrix entries correspond to edges
in the graph of the matrix, the weight of the edge determines the amount of coupling between the
two end-points associated with the edge. Therefore, in order to achieve more optimal coarsenings,
the simple graph-based techniques discussed in sections 3.3 and 3.4, such as those concerned with
maximal independent sets, must be replaced with weighted-graph techniques, where weights are
associated with each edge of the graph, which are then taken into consideration by the algorithm
in deciding how to coarsen.

The operator stencil coefficients usually represent a good choice for defining the graph weights.
This assumes that the operator may be expressed in an edge-based format with a single coefficient
for each edge. This may not always be possible. For example, non-symmetric operators result in the
association of two weights per edge, one for each direction of the edge, while the edge coeflicients
generated by non-linear operators are non-constant and may vary at each time-step. While these
cases may be handled via certain simplifying assumptions, the case of a system of equations, such
as the Euler or Navier Stokes equations is even more difficult, since the edge-weight becomes a
matrix.

For these reasons, we will concern ourselves uniquely with the discrete Laplacian in the remain-
der of this section. For this operator, a unique stencil coeflicient may be associated with each edge
of the graph. By defining the edge weights in this manner, the coarsening algorithm produces the
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same behavior for a uniform Laplacian of the form

Ugzr + Uyy = 0 (64)

discretized on a mesh with a stretching ratio of ¢, as for the anisotropic Laplacian of the form

€Ugz + Uyy = 0 (65)

discretized on a uniform mesh.

The coarsening algorithm should be able to handle arbitrarily anisotropic meshes, but should
also be able to reproduce structured-mesh semi-coarsening patterns for uniformly anisotropic prob-
lems on structured meshes. A simple-minded technique for graph-weighted coarsening would be
to modify step 4 in the algorithm described in section 3.4, by only agglomerating or removing the
neighboring point which has the strongest connection to the current seed point or coarse-grid point.
In the event this point has already been removed by some other neighboring coarse-grid point, the
next strongest connecting point may be chosen. The difficulty with this approach is that in regions
where the anisotropic character is weak, the algorithm does not revert to the multi-directional
coarsening strategy of the original algorithm. A more sophisticated approach is to precompute the
average connection strength at each vertex, and then to coarsen the neighbor j of a coarse grid
vertex ¢ only if

1 Ivne:gh
lai;| > B - > lal . (66)
newg k#1

where Nyign Tepresents the number of neighbors of 7, or number of non-zero entries in the it* row
of matrix A. J is a parameter which determines the degree of anisotropic coarsening. For § = 0
unweighted coarsening is recovered, while when 3 = 1 coarsening occurs only along connections
stronger than the average. In [25] a value of 8 = 0.5 is suggested, which reproduces directional
coarsening in regions of strong anisotropies, and full or unweighted coarsening elsewhere.

Mesh Method of Coarsening MG Rate

Cartesian Structured, Full-Coarsening 0.15
Tchebychev | Structured, Full-Coarsening 0.52
Tchebychev | Structured, Semi-Coarsening 0.50

Tchebychev Unstructured, Directional 0.14

Table 4: Convergence rate of directional coarsening multigrid on Tchebychev mesh of various
stretchings.

In Table 4 and Figure 31, the solution of a Laplacian on a Tchebychev mesh is illustrated, using
a similar coarsening strategy. The triangular Tchebychev mesh is initially structured, but contains
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conflicting stretching directions for simple structured semi-coarsening methods. As shown in the
table, when structured full-coarsening or semi-coarsening in one direction is employed, a dramatic
reduction in multigrid efficiency results. On the other hand, when the directional unstructured
coarsening strategy is employed, using the meshes depicted in Figure 31, the optimal convergence
rate achieved on an equally spaced cartesian mesh is recovered. In all cases, a multigrid W-cycle is
employed, using two Jacobi iterations on the refinement as well as coarsening phases of the cycle.

In this case, the coarsening strategy consists of removing the neighboring vertex with the
strongest available connection as the front is advanced, and retriangulating the coarse-grid point-set
using a min-max triangulation [61].

Figure 31: Triangulated Tchebychev mesh and three coarse level meshes obtained by
directional coarsening.

The three-dimensional agglomerated grids displayed in Figure 24, of section 3.7, were actually
generated using the coarsening criterion of equation (66), with the value 8 = 0.0001. In this case,
since the Navier-Stokes equations represent a system of equations, the edge coefficient was taken as
the inverse of the edge length, which represents a geometric definition. The low value of 3 produces
directional coarsening only in the highly stretched regions of the mesh, near the airfoil surface,
in the initial phases of the coarsening process. Figure 32 depicts the coarse agglomerated meshes
which result when a value of 3 = 0.1 is employed. As expected, semi-coarsening is much more
prevalent. For example, the span-wise resolution of the mesh is essentially constant throughout all
levels. However, the quality of the coarser meshes appears to degrade. The problem stems from the
complexity of the coarse grids. In highly anisotropic regions, a 2:1 coarsening is generally produced
by the weighted-graph techniques, while in the isotropic regions, an 8:1 coarsening results. When
the process is applied recursively, the isotropic regions of the mesh are coarsened much faster than
the non-isotropic regions, thus resulting in large disparities in neighboring cell sizes, as can be
seen in the coarse grids of Figure 32. This, in turn, has a negative impact on the effectiveness of
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the coarse grid operator. A secondary effect is to increase the complexity of the coarse grids (as

compared to an unweighted graph algorithm), thus increasing the cost of a multigrid cycle, and

obviating the possibility of using W-cycles.
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5 Multigrid Techniques for Adaptive Meshing Problems

In addition to their flexibility for discretizing complex geometries, another great advantage of
unstructured meshes is the ease with which adaptive meshing techniques may be incorporated.
Although most work on adaptive meshing methods has concentrated on the logistics of refining
the mesh and the formulation of suitable refinement criteria, efficient solution techniques for the
resulting discrete equations are also required in order to enable both fast and accurate solutions.
Adaptive meshing, in particular, provides a natural setting for the use of multigrid solvers. The
various refined meshes generated from the adaptive process can be used to form the set of coarse
and fine meshes of the multigrid scquence. The multigrid algorithm can then be used to accelerate
the convergence to steady-state of the discrete equations on the finest adaptive mesh. In fact. the
synergy between the two techniques is greater than may be initially apparent, and has roots in the

ideas of multi-resolution (see Figure 33).
; Fine adapted level

Coarse global level

Figure 33: Ilustration of the ideal multi-resolution principle of adaptive meshing com-
bined with multigrid where each mesh Jevel of the multigrid sequence represents a unique

resolution scale.

The role of the adaptation process is o identify regions of the domain where the resolution of
smaller scales is required and to generate these required new mesh levels, while the role of the
multigrid solver is to eliminate the various high- and low-frequency errors of the solution on the
grid level which best represents them. This has led to the development of methods such as the FAC
(Full Adaptive Composite) method [62], and to the notion of the de-algebraization of multigrid, as
described by Brandt [26], where the multigrid procedure is no longer viewed simply as a fast solver
for discrete equation sets, but rather as part of a complete strategy for approximating the solution
to the continuous partial differential equation. Spatial convergence is achieved by the adaptation
process, while temporal or numerical convergence is achieved by the multigrid procedure.
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Figure 36: Multigrid and adaptive mesh convergence history for flow over four-element
airfoil.

As an example, consider the solution process depicted in Figures 34 through 36. All of the
techniques employed in this solution strategy have been described in the preceding sections. The
overset-mesh multigrid approach is used to solve the steady-state Euler equations about an idealized
four-element airfoil geometry on the grid of Figure 34. A total of seven meshes are employed in
the multigrid sequence, of which the four coarsest meshes were generated using a global Delaunay
triangulation procedure, and the remaining three meshes were generated adaptively, throughout
the solution process, using local point-insertion followed by Delaunay reconnection. The initial
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fine mesh contains a total of 6,466 points, while the final adapted mesh depicted in Figure 34
contains 22,792 vertices. The full multigrid strategy described in section 2.5 (c.f. Figure 4) is
employed. The process begins by multigrid cycling on the four coarsest meshes of the sequence.
Once a satisfactory solution on the initial fine mesh is obtained, a new adaptively generated mesh
is constructed, the patterns for interpolation between this new grid and the previous grid are
computed, the solution is interpolated to the new grid, and the multigrid process is resumed on the
new sequence of meshes which contains the new adaptively generated grid as the finest mesh. Figure
36 depicts the convergence rate for this case, where 100 multigrid W-cycles are performed at each
level of adaptivity. The slopes of the various multigrid convergence histories are nearly identical
on the four different mesh levels, demonstrating the mesh independent convergence property of the
multigrid algorithm. Convergence on the final mesh is only slightly slower than that on the initial
levels, resulting in an average reduction rate of 0.925. The convergence history of the computed
lift coefficient is also plotted. The effect of spatial grid convergence can be seen by the diminishing
differences between the final lift values on consecutively finer meshes. This figure provides an
illustration of the concept of using adaptive-multigrid as a method for solving the continuous set
of partial differential equations, with the lift coefficient converging to the infinite resolution value,
and the multigrid procedure driving the numerical solution on each level. The solution is depicted
in Figure 35, as a set of computed Mach contours. The freestream Mach number is 0.2, and the
incidence is 0 degrees for this case. This entire run, including all mesh adaptivity, was achieved in
approximately 2 hours on an SGI Indigo R4000 workstation.

Although the previous example demonstrates the effectiveness of multigrid as an efficient so-
lution strategy for adaptive meshing problems, certain characteristics of adaptive problems can
degrade the overall efficiency of the above multigrid approach. These manifest themselves, not as
degradations of the observed convergence rates, but rather as unwanted increases in complexity
(number of operations) of the multigrid cycle. For example, in the non-adaptive two dimensional
case, the complexity of a V-cycle is bounded by 4/3 work units, and that of a W-cycle by 2 work
units, where a work unit is defined as the equivalent work of one fine grid iteration (see Figures 2
and 3 for the definition of these cycles). The above bounds are computed assuming each coarser
mesh level contains 1/4 the number of points of the previous level. In the case of adaptively gen-
erated meshes, where such relations between the complexities of the various mesh levels no longer
hold, the V-cycle complexity becomes equal to the sum of the complexities of all meshes in the
sequence, while the W-cycle complexity can become so high as to make it impractical.

Even the V-cycle complexity is much higher than it need be. For adaptively refined meshes,
refinement only occurs in localized regions of the mesh, and there are large regions of the domain
where the mesh resolution is essentially unaltered between mesh levels. Repeatedly time-stepping
in these regions of the mesh on various levels represents a waste of computational effort. In this
section, two strategies which overcome this increase in complexity for V-cycles are described. A
third approach, which results in optimum complexity, thus enabling the use of V or W cycles, is
finally discussed.

5.1 The Zonal Fine Grid Scheme

The basic idea behind this scheme [63, 64] is to omit time-stepping in regions of the mesh which have
not been refined with regards to the previous level. A crude implementation consists of making use
of the same multigrid strategy as described previously, but blanking out the appropriate vertices on
each mesh level. In actual fact, the fine mesh consists only of the regions which have been refined,
with possibly some extra buffer layers. The method can be implemented by storing only these
regions at each level in order to save memory (although this has not been done in the following

example).
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Figure 37: Adapted mesh employed to compute inviscid flow over tandem airfoil configu-
ration.

Figure 38: Third and fourth adaptive levels in the zonal fine-grid scheme for computation
of flow over tandem airfoil configuration.
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As an example, consider the adaptive mesh used to compute the inviscid flow over a tandem
airfoil configuration, shown in Figure 37. This mesh is the result of 6 levels of adaptivity. For
the zonal fine grid scheme, the 3rd and 4th adaptive levels are depicted in Figure 38. Figure 39
compares the convergence rates of the zonal-fine grid scheme with that of the global multigrid
scheme described previously for this case. There are in fact 8 mesh levels in both multigrid cases,
2 initial global levels, and 6 adaptively generated levels. ('The global levels are identical for both
schemes). The [reestream Mach number is 0.7, and the incidence is 3 degrees. Both multigrid
schemes converge at nearly identical rates, in terms of residual reduction per cycle. This result
verifies the fact that multigrid time-stepping in regions where no change in resolution occurs is
unnecessary. The advantage of the zonal fine grid scheme is the result of the reduction in complexity
of the multigrid cycle, as shown in Figure 40, where the convergence rates are compared in terms
of work units. For this case, the zonal fine grid scheme is seen to be roughly twice as efficient as
the global multigrid approach.

This so-called zonal fine grid scheme is the unstructured-mesh equivalent of the fast-adaptive-
composite scheme (FAC) [62], and as such embodies the principles of multi-resolution as depicted
in Figure 33. Each mesh level is responsible for resolving a particular range of scales, and highly
disparate length scales are not found on any common mesh, as would be the case in a global mesh
with localized regions of adaptive refinement.

One of the drawbacks of this method is that the final solution lies on a composite mesh which
is spread over various multigrid levels. Aside from practical difficulties involved in postprocessing
the solution, this complicates other issues, such as the requirement of constructing a conservative
discretization in the final solution, as well as the use of different schemes on fine and coarse mesh

levels.



5.2 The Zonal Coarse Grid Scheme

The idea of the zonal coarse grid scheme is to overcome the difficulties encountered in the zonal
fine grid scheme due to the composite nature of the final solution, by maintaining a global fine grid
upon which the final solution is based. In order to maintain favorable complexity, time-stepping
is omitted on the coarser meshes in regions of the domain where no niesh- refinement takes place
between two consecutive levels. This strategy is illustrated in Figure 41,
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Figure 41: lllustration of the relationship between the zonal fine-grid scheme, the zonal
coarse-grid scheme, and the global multigrid scheme using linear one-dimensional meshes.

using one-dimensional linear meshes, and compared to the zonal fine-grid and global multigrid
strategies. The overall complexity of the zonal fine-grid and coarse-grid schemes are necessarily
identical. As can be inferred from the figure, the zonal fine grid and coarse grid schemes are
equivalent, except that in the former case the non refined mesh regions are represented on the
coarse level meshes, whereas in the latter, these are assigned to the finest possible mesh level.
Hence, the zonal coarse grid scheme simply corresponds to a reordering of the local unrefined and
refined mesh regions.

The convergence rate of the zonal coarse grid scheme is compared with that of the zonal fine
grid scheme and the global multigrid scheme for the transonic tandem-airfoil case on the mesh of
Figure 37. As expected, all three methods yield similar convergence rates on a per cycle basis,
while the zonal fine and coarse grid schemes achieve a factor two gain in efficiency over the global
multigrid scheme in this case, due to the reduction in complexity, as shown in Figure 40. Thus,
the zonal coarse grid scheme is equivalent to the zonal fine grid scheme in terms of efficiency. but
enables the final solution to be computed on a global fine grid. The disadvantage of this approach
is that each time a new adaptively refined mesh is generated, the zonal coarse meshes must be
reassigned to the appropriate levels.

5.3 Aggressive Coarsening Strategies

While the zonal fine and coarse grid schemes achieve substantial reduction in the complexity of a
multigrid cycle for adaptively generated meshes, the use of a W-cycle with such schemes is still
impractical, due to the relative com plexities of the various mesh levels. Since the W-cycle performs
frequent visits to the coarse level meshes within a single cycle, the mesh complexity must be reduced



by at least a factor of four when going to the next coarser level, in order to guarantee a bound on
the overall W-cycle complexity, as the number of mesh levels increases. Another characteristic of
the zonal multigrid schemes described above is that they rely on the adaptive refinement history in
order to identify the coarse and fine mesh levels. Such methods cannot be used effectively in cases
where this information is not available, or in the case of a mesh of arbitrary construction, which
may conlain large variations in cell sizes.

The point removal, agglomeration, or algebraic coarsening strategies discussed in the previous
section can be employed to overcome these difficulties. These represent automated coarsening
strategies, which are used to coarsen the given fine grid, without cousideration of the adaptive
construction history of the grid. The use of such techniques for adaptively generated meshes
represents a philosophy in which multigrid is decoupled form the adaptive process, and employed
simply as a fast solver for a discrete fine-grid problem, much in the same manner as an implicit or
direct solver would be employed.

Aggressive coarsening relates to the attempt in an automated coarsening process to optimize
the complexity of the generated coarse mesh levels. For a multigrid sioother which is designed to
damp high-frequency errors (as is usually the case), the optimal reduction in coarse grid complexity
between two successive levels is 4:1 in two dimensions, and 8:1 in three dimensions. For isotropic
problems, the unweighted graph techniques described in the previous section, (i.e., which rely on
maximal independent sets) generally achieve near optimal coarse grid complexities, thus enabling
the use of V or W-cycles. However, although the complexity of the multigrid cycle may be optimal,
the overall solution efficiency can only be competitive provided the multigrid convergence rate does
not degrade substantially.
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Figure 42: Resulting coarse mesh using two passes of aggressive coarsening and equivalent
mesh level used in global multigrid sequence.



Figure 42 provides a comparison between the coarse mesh level obtained by two passes of aggressive
coarsening on the fine mesh of Figure 37, and the equivalent mesh from the global multigrid sequence
(6th level out of 8). Because each cell of the original grid is forced to “grow™ at the same rate, the
large outer boundary cells are seen to grow much more rapidly throughout the coarsening process
than the small refined cells in the shock region of the fine mesh. This results in large discontinuities
in cell size which become even more pronounced on the coarser levels. This, in turn, may degrade
the observed convergence rate of a multigrid scheme based on these mesh levels. This is the same
problem encountered with directional coarsening strategies for anisotropic problems (c.f. Figure 32
of section 4.4). These methods are evidently in complete violation of the multi-resolution principle
associated with (adaptive) multigrid methods, where each mesh level is responsible for a given
range of scales. Not only does each mesh level contain a wide range of scales in these approaches,
but the bandwidth of this range increases on the coarser mesh levels.

Nevertheless, for many adaptive problems, aggressive coarsening strategies are highly desirable,
both due to their fully automatic nature, and their low complexity. Such methods could obviously
be improved by trading off complexity for more regularity in the coarse mesh levels, and thus better
multigrid efficiency. However, this task generally requires global information about the current fine
mesh construction (i.e., in the adaptive mesh case, the history of refinement). This has important
implications for the future design of optimal automated coarsening techniques, both for adaptive
problems, and for anisotropic problems, since at present, most of these methods rely exclusively on
local information, such as that given by equation (66) for constructing coarser levels.

6 Conclusion

As was pointed out eleven years ago, in a similar VKI lecture series [26], multigrid methods are
very powerful techniques which in principle can be utilized to solve almost any type of numerical
problem in a near optimal fashion. At that time, unstructured mesh techniques for computational
fluid dynamics were in their infancy, and multigrid methods had not yet been considered for such
problems. Today, unstructured multigrid methods are among the most efficient techniques for
solving large unstructured mesh problems, and have seen widespread application. While incurring
additional complications, the application of multigrid methods to unstructured meshes opens up
new possibilities for developing more efficient algorithms. One of the themes of the above presen-
tation has been to stress the abstraction or algebraization of the process, while pointing out the
similarities with more traditional approaches. This emphasis stems from the belief that convergence
acceleration techniques should not be bound by geometry-based constraints, and the removal of
the influence of the geometry from the multigrid process should lead to a more robust strategy. Of
course, completely algebraic multigrid methods for complex non-linear problems are not available,
and much research is still required in this area.

Other treatises on multigrid methods have stressed the de-algebraization of multigrid, invoking
multi-resolution principles, and advocating the use of multigrid methods as part of a comprehensive
grid-based strategy for approximating solutions to the continuous partial differential equations.
These two views of multigrid methods need not necessarily be in conflict with one another. The
determination of the relevant length scales of a discrete problem and their assignment to appropriate
levels, as well as the integration of multigrid principles with adaptive meshing techniques can be
pursued either as a grid-based approach, or in a more abstract or algebraic setting. The extraction
of the relevant information from the problem is the main issue.

Although current multigrid techniques are relatively efficient, there are many unresolved issues
which require further investigation. These include the construction of more efficient coarse grid
operators, the use of more accurate inter-grid transfer operators, and the development of optimal
coarsening strategies for anisotropic as well as adaptive meshing problems. Finally, at a more fun-
damental level, additional insight is required to resolve the discrepancies between existing multigrid

33



efficiencies for elliptic and hyperbolic problems [65].
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