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ABSTRACT

An overview of current multigrid techniques for unstructured meshes is given. The basic

principles of the multigrid approach are first outlined. Application of these principles to

unstructured mesh problems is then described, illustrating various different approaches, and

giving examples of practical applications. Advanced multigrid topics, such as the use of

algebraic multigrid methods, and the combination of multigrid techniques with adaptive

meshing strategies are dealt with in subsequent sections. These represent current areas

of research, and the unresolved issues are discussed. The presentation is organized in an

educational manner, for readers familiar with computational fluid dynamics, wishing to

learn more about current unstructured mesh techniques.
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1 Introduction

This chapter is concerned with the use of multigrid methods for solving computational fluid dynam-

ics problems off unstructured meshes. At issue is the efficient solution of the spatially discretized

governing equations in time, in order to obtain the final steady-state solution, or the solution for

the corresponding unsteady problem for a series of arbitrarily large time-steps. As such, the spatial

discretization of the governing equations will not be considered in this chapter, only their temporal

solution. The techniques in this chapter can in principle be applied to any spatial discretiza-

tion, although the implementation details and their effectiveness may vary widely for higher-order

discretizations. In the current discussion, we therefore assume that the equations are spatially

discretized in a second-order accurate fashion, unless otherwise stated.

A standard numerical technique is to separate out the spatial and temporal discretization pro-

cedures. Thus, if the continuous set of governing partial differential equations is given by

Oh(u)Ou O/(u) + Og(u) + -o (1)
0--7+ 7;-- o-----Z Oz

then the spatially discretized equations can be written as:

du

+ R(u) = o (2)

This represents a large set of spatially coupled ordinary differential equations, where R(u) denotes

the discretization of the spatial derivative terms in equation (1). In order to solve these equations,

they must be integrated in time. For unsteady problems, the accuracy of the time discretization and

integration procedures must be carefully considered. For the solution of steady-state problems, we

are only concerned with the final state where all time derivatives vanish. The actual time integration

procedure or transient path used to arrive at this state is thus of little consequence, and accuracy

of the time integration procedure is not a concern. A particularly simple time discretization can
be constructed as:

_n+l _ un

At
+ R(un) = 0 (3)

thus enabling a simple procedure for advancing the solution in time:

u n+l = u n- AtR(u n) (4)

This constitutes an explicit scheme, since the value of the solution at the new time-step n + 1

can be obtained explicitly from the value at the previous time-step n. By their very construction,

explicit schemes involve only local information (i.e., based on the stencil of the residual R(un)).

They are thus simple to implement, and vectorize and parallelize easily on present-day computer

architectures. However, the efficiency of explicit schemes for hyperbolic equations is limited by

the Courant-Freidrichs-Lewy condition, which states that the maximum permissible time-step for

stability is proportional to the mesh spacing. Thus, as the mesh is refined, smaller time-steps

are required to maintain stability. For unsteady problems, the allowable time-steps may be much

smaller than those required by time-accuracy considerations alone, while for steady-state problems,

this may result in an excessive number of time-steps to reach the steady-state converged solution.

Since the number of variables which must be solved for also increases as the grid is refined, this

results in an O(N 2) algorithm, where N represents the total number of grid points. Another
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viewpointis that, sinceexplicitschemesonly makeuseof localinformation,asthemeshis refined,
a largernumberof iterationsis requiredto transmit informationacrossthe entiredomain. This
typeof behaviorisobviouslyunacceptablefor largeproblems,andmoreefficientsolutiontechniques
arerequired.

A schemewhichis unconditionallystablefor anysizetime-stepcanbeconstructedby replacing
equation(3) with

un%l _ U n

At
%R(u n+l) : 0 (5)

i.e., by evaluating the discrete residual at the new time-step n + 1 instead of at the old time-step

n. Since the flow values are not explicitly known at n + 1, the above equation is rewritten as

(_._+IOR](u_+'_u'"- u_) = -At R(u n) (6)

which is obtained by linearizing the residual about the time-step n, thus introducing the Jacobian
OR

matrix -g_. The term on the left-hand side of the equation represents a large sparse matrix which

must be inverted at each time-step, in order to update the solution. In the limit of an infinitely large

time-step, the first term on the left-hand side vanishes, and Newton's method is recovered. These

types of implicit schemes have been employed with great success for unstructured grid problems,

either as direct solvers, using a very large time-step and inverting the left-hand side matrix with

a Gaussian elimination technique [1], or as iterative solvers, where finite size time-steps are taken,

and the resulting linear system represented by the left-hand side matrix is solved approximately

at each time-step using an iterative method [2, 3, 4, 5, 6]. In order to simplify the linear system

which must be solved, it is common to use a simplified form of the Jacobian matrix, obtained by

considering a first-order accurate discretization in its construction, while full second-order accuracy

is maintained in the residual construction on the right-hand side of the equation, since this term

determines the accuracy of the solution.

The main difficulty with implicit methods relates to the memory requirements of these tech-

niques. Consider for example, a simple first-order accurate vertex-based discretization of the Euler

equations in three dimensions. A simple discretization of this type can be shown to result in a near-

est neighbor stencil, where all points involved in the stencil of a particular vertex are end-points

of a mesh edge which touches the vertex. The number of non-zero entries of the Jacobian matrix

is thus proportional to the number of edges in the mesh. Since the Euler equations represent a

system of partial differential equations, the Jacobian matrix has a block structure, with each block

consisting of a 5 by 5 sub-matrix. Thus the total number of non-zero entries in the Jacobian matrix

is given by

(5 × 5) × Number of Edges x 2

+ (5 × 5) × Number of Vertices (7)

The factor of 2 arises due to the fact that the matrix is non symmetric, while the second term

represents the diagonal contribution of the matrix. For a typical unstructured tetrahedral mesh,

the number of edges is approximately six to seven times the number of vertices, thus the number

of non-zero entries in the Jacobian matrix reduces to no less than 325N, where N is the total

number of vertices. Since first- and second-order accurate discretizations for the Euler equations

in three-dimensions which employ less than 100 storage locations per grid point are commonplace

[7, 8, 9, 10], the use of an implicit method of this type entails a storage overhead at least three to four

times larger than that required by a simple explicit scheme. In fact many implicit schemes incur



storageoverheadsequivalentto twoto threetimesthe Jacobianmatrix, makingthem particularly
undesirablefor-largethree-dimensionalproblems.

On the other hand, matrix-freeimplicit methodsare availablewhichneverexplicitly require
the formationof the Jacobianmatrix. As anexample,the applicationof GMREStechniques[11]
to equation(6) maybeachievedby only formingtherequiredmatrix vectorproductsusingfinite
differencetechniques[12,13]accordingto:

ORA = R(u) - R(u + E u) (S)

where e represents the magnitude of a small perturbation to the solution vector in the direction

Au. However, to be effective, GMRES methods are usually employed in conjunction with a pre-

conditioning technique, and the most effective preconditioning methods have so far been found to

be those which rely on a Jacobian-type matrix [2], thus incurring similar storage overheads. The

development of an effective matrix-free preconditioner could thus have a dramatic effect on the

usability of strongly implicit methods for large problems.

Multigrid methods offer an alternative to implicit methods for efficiently solving large problems,

while incurring low additional memory overheads. A notable property of a well formulated multigrid

algorithm is that the number of multigrid cycles required to achieve a given level of convergence is

independent of the resolution of the mesh. Thus, multigrid methods enable solutions to be obtained

in O(N) operations, where N represents the number of grid points. Linear complexity of this type is

considered to be optimal. Multigrid methods are also very powerful, in that they may be applied to

linear as well as non-linear problems. While multigrid methods have traditionally been considered

in the context of steady-state problems, they may also be utilized to solve unsteady problems. This

is usually achieved by formulating the transient problem as a steady-state problem in pseudo-time

at each time-step [14, 15, 16, 17]. Thus, the essential features of multigrid algorithms can be

examined by restricting the discussion to steady-state problems, and the treatment of unsteady

multigrid is deferred to the chapter on unsteady solution techniques.

The basic idea behind all multigrid strategies is to accelerate the solution of a set of fine

grid equations by computing corrections on a coarser grid. The motivation for this approach

comes from an examination of the error of the numerical solution in the frequency domain. High-

frequency errors, which involve local variations in the solution, are well annihilated by simple

explicit methods. Low-frequency or more global errors are much more insensitive to the application

of explicit methods. This is natural, considering the local nature of the information employed in

explicit schemes. In fact, the convergence rate of explicit schemes usually consists of a rather rapid

initial residual reduction phase, which gradually develops into a much slower residual reduction

phase, corresponding to a situation where all high-frequency errors have been eliminated and low-

frequency errors dominate, as shown in Figure 1. Multigrid strategies capitalize on this rapid initial

error reduction property of explicit schemes. Typically, a multigrid scheme begins by eliminating the

high-frequency errors associated with an initial solution on the fine grid, using an explicit scheme.

Once this has been achieved, further fine grid iterations would result in a convergence degradation.

Therefore, the solution is transferred to a coarser grid. On this grid, the low-frequency errors of

the fine grid manifest themselves as high-frequency errors, and are thus eliminated efficiently using

the same explicit scheme. The coarse-grid corrections computed in this manner are interpolated

back to the fine grid in order to update the solution. This procedure can be applied recursively

on a sequence of coarser and coarser grids, where each grid-level is responsible for eliminating a

particular frequency bandwidth of errors.
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Figure 1: Typical convergence characteristics of explicit schemes.

This interpretation of multigrid is essentially an argument based on the principles of elliptic

equations. While the expected performance of multigrid methods can be rigorously proved for

simple elliptic problems [18], little is known for hyperbolic problems. Multigrid methods have

nevertheless proven themselves for such problems. One interpretation of multigrid methods for

hyperbolic problems is that the sequence of coarser grids enables the use of larger time-steps which

expels disturbances out of the domain more rapidly.

Multigrid strategies are generally considered as convergence acceleration techniques, rather than

solution methods themselves. In fact, they may be apphed to any existing relaxation technique,

explicit or implicit. The success of the overall solution strategy depends on the a close matching

between the bandwidth of errors which can be efficiently smoothed on a given grid using the

particular chosen relaxation strategy, with a careful construction of a sequence of coarse grids, in

order to represent the entire error frequency range.

In the case of anisotropic problems, for example, there are two fundamental approaches to

constructing efficient solution schemes. The difficulty with such problems is that simple explicit

methods are incapable of efficiently eliminating the highest frequency errors in both the strong

and weak coupling directions simultaneously (i.e., for a stretched mesh in a boundary layer this

corresponds to the normal and streamwise directions respectively). One approach, often employed

in structured mesh cases, is to increase the error frequency bandwidth which may be handled

efficiently by the base relaxation scheme, by resorting to an implicit relaxation method, such as

approximate factorization (ADI) schemes [19]. The other approach is to recognize precisely which

frequencies are not smoothed effectively by the simple explicit scheme (i.e., in this case the high-

frequency streamwise errors) and devise a sequence of coarse grids which ensures these errors are

represented at some level as the dominant high-frequency contributions. For anisotropic problems,

this may be achieved through semi-coarsening procedures, where coarse meshes are created by

only coarsening in the direction of strong coupling [20, 21, 22]. In practice, both methods can be

implemented effectively. However, the latter approach is more in the spirit of the multigrid purist,

i.e., to use additional coarse levels to relieve any stiffness associated with spatial effects.

Multigrid methods may also be employed to accelerate the solution of the full non-linear equa-

tion set as shown in equation (2), or they may be used to operate on the linear system which arises

at each time-step in the implicit scheme of equations (6). While applying multigrid to the solution

of the linear system in an implicit scheme affords certain advantages, and has been demonstrated

successfully [23, 24], it forfeits one of the principle advantages of the multigrid method, which is

the low memory overheads required.



Oneof the drawbacksof multigridmethodsis that they requirethe constructionof additional
coarse-gridlevelsfor the solutionof thefine-gridequations.Thegenerationof coarselevelsreduces
the automationof the solutionprocess,and potentiallydecreasesthe robustness,aswell asmakes
the proceduremoreproblemdependent.This occursasa result of the appearanceof issuessuch
as propercoarse-griddiscretizationsand boundaryconditions.In fact, the coarse-gridlevelsare
geometricconstructions which in theory should not be required for the solution of a set of algebraic

equations (as in the case of a direct solver). The development of algebraic multigrid methods [25]

represents an attempt to abstract and formalize the ideas inherent in grid-based multigrid strategies

to algebraic sets of equations. These techniques can be particularly attractive in the unstructured-

grid context, since the construction of coarse-grid levels is not always evident, and the presence

of complex geometries with widely varied boundary conditions can substantially complicate the

implementation of grid-based strategies. However, the development of algebraic multigrid methods

has substantially lagged that of geometric multigrid methods, a tribute to the fact that much useful

information can often be acquired from the geometrical representation of the problem.

On the other hand, there is a reverse trend in the literature, known as the de-algebraization

of multigrid [26]. This philosophy consists of viewing multigrid not simply as a convergence accel-

eration technique, but as a broad multilevel approach to simulating continuous partial differential

equations, which may involve adaptive meshing, adaptive cycling strategies, and even multiple

discretizations. A framework for the treatment of coupled problems such as fluid-structure inter-

actions, and inverse design problems can be developed in this manner.

In this chapter, we are principally concerned with the use of multigrid methods to solve compu-

tational fluid dynamics problems on unstructured grids. We begin with a review of the basic multi-

grid principles. Next, the complexities encountered in applying these techniques to unstructured

meshes are discussed. Most of the discussion centers around the construction of the coarse-grid lev-

els. It is the conviction of the author that the most desirable multigrid methods be automated and

stand-alone, i.e., do not depend on a particular grid generation or solution strategy. The degree

to which the various techniques fulfill these requirements is thus examined in their presentation.

In a subsequent section, the similarities and discrepancies between the various methods previously

described are addressed. The arguments presented are then utilized to justify the construction of

a general multigrid agglomeration algorithm for the full Navier-Stokes equations, which has been

employed successfully to solve large three-dimensional problems. The remainder of the chapter

is devoted to the discussion of current research or speculation on techniques for improving the

efficiency and robustness of multigrid methods. These include the construction of better inter-grid

transfer operators and more accurate coarse-grid operators, as well as the development of more

optimal coarsening strategies for coarse mesh generation for anisotropic problems, as well as for

adaptive meshing problems.

2 Basic Multigrid Principles

The basic principles involved in the construction of a multigrid algorithm are discussed in this sec-

tion. These principles are basic in that they do not depend on the particular set of equations being

solved, the discretization and types of grids employed, or the dimensionality of the problem. These

principles are then utilized to demonstrate the construction of a exemplary multigrid algorithm for

solving the Euler or Navier-Stokes equations.

2.1 Multigrid Correction Scheme

Consider the solution of the discrete problem
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Lhuh = fh (9)

where the suSscripts refer to the discretization of the continuous problem on a mesh of spacing

h. The current estimate of the solution uh is denoted as uh, which is obtained by approximately

solving the above equation, using an iterative technique. Since Uh does not satisfy the above

equation exactly, its substitution into equation (9) yields

Lh h - A = rh (10)

where r h is called the residual, and vanishes only when the exact solution to the discrete problem

is attained. The object of the multigrid scheme is to compute a correction Vh such that the exact

solution is given by:

Uh = -Uh+ Vh

Taking the difference of equations (9) and (10), we obtain

(ii)

LhUh -- Lh-_h = --rh (12)

If the operator Lh is linear, the above equation may be reduced to an equation for the correction

Vh by substituting equation (11) into equation (12), which yields

LhVh = --rh (13)

Assuming that the high-frequency errors in the solution have been eliminated by sufficient fine grid

smoothing cycles, the remaining correction vh which we seek must be smooth, and can therefore

be computed more efficiently on a coarser grid by solving the equation

LHVH = --IHrh (14)

where the subscript H denotes a coarser grid, and I H is an operator which interpolates residuals

from the fine grid h to the coarse grid H. I H is usually called the restriction operator. If the grid

H is coarse enough, equation (14) may be solved exactly (either directly or iteratively). In the

event this is not feasible, the present procedure may be performed recursively on coarser grids,

thus yielding an approximate solution to the above equation. The exact or approximate solution

of VH must then be employed to correct the originalfine grid solution. This is achieved as

= + I vH (15)

where Ih, which represents the interpolation of the coarse grid corrections VH to the fine grid, is

often called the prolongation operator. Once these fine grid values have been updated, they may

be smoothed again by additional fine grid iterations, and the entire procedure, which constitutes

a single multigrid cycle, may be repeated until overall convergence is attained. This particular

multigrid strategy is called the Correction Scheme, since the coarse grid equations operate directly

on the correction variables v_. It is informative to note that, in the case where the fine grid

solution has been attained, the fine grid residuals vanish, and the right-hand side of the coarse grid

correction equation also vanishes. Equation (14) has a trivial solution in this case, which is VH = 0,

and no additional corrections are produced by the coarse grid, thus ensuring convergence of the

entire multigrid procedure to the appropriate fine grid solution.



2.2 Full Approximation Storage Scheme

The multigrid correction scheme described above is only valid for the case where the operator Lh

is linear. For non-linear operators, the difference LhU h -- Lh_h in equation (12) can no longer be

replaced by LhYh, and thus the above scheme must be modified. This is achieved by introducing a

new coarse grid variable _H defined as

-H
UH : Ih _h + VH (16)

_H
where I h represents an operator which interpolates fine grid solution variables to the coarse grid.

The coarse grid equation equivalent to equation (14) can now be written as

LH_H- LHTH_h =--IHrh (17)

As previously, I H represents the restriction operator which transfers residuals from fine to coarse

grids. The operators i H and I H may in principle be different from one another.

It is useful to rewrite the above equation as

where

LHUH = SH (18)

(19)

In the above form, the coarse grid equation is seen to take on a similar structure to the original fine

grid equation, with a modified source term. This enables the use of similar techniques for solving

the coarse and fine grid problems. Once the coarse grid equations have been solved, either exactly

or approximately, the fine grid variables are updated as

which can also be written as

= + I v. (21)

Note that it is the difference between the initial and final coarse grid variables which is used, since

this constitutes the definition of the correction, as per equation (16).

The source term SH may also be rewritten as

where

SH = fH + rH (22)

and

fH=IHJ:h (23)



(24)

r/-/ is sometimes called the defect correction [26, 18]. It may be loosely described as the difference

between the coarse grid discretization and the interpolation of the fine grid discretization onto the

coarse grid. The presence of the defect-correction term on the right-hand side of equation (18),

ensures that the fine grid problem is represented by the coarse grid discretization, and that both

coarse and fine grid equations converge to the same solution. This can be seen by considering the

case where fine grid equations have been solved exactly. In this situation, the fine grid residuals all

vanish, as does their interpolated result on the coarse grid. Since the right-hand side of equation

(17) vanishes, the solution interpolated from the fine grid onto the coarse grid (i.e., ug = lHuh)

satisfies the coarse grid equation exactly, and therefore no further corrections are generated from

the coarse grid.

The ability to directly handle non-linear problems is one of the great advantages of multigrid

algorithms. This obviates the need to linearize the problem, with the possible complications and

overheads which such operations often entail.

2.3 Coarse Grid Operators

The CS (correction scheme) and FAS (full approximation storage) multigrid schemes both result

in the formulation of coarse grid equations which are similar in form to the originating fine grid

equations. While the formulation of these equations has been discussed, the precise manner in

which these equations are discretized on each grid level has not been addressed. Since the coarse

and fine grid equation constructions are similar, the most obvious approach is to discretize them

in the same manner. Thus, for example, the operator LH can be constructed using the same

discretization procedure as the operator Lh, applied to the coarser grid. This technique is called

rediscretization. It is the most prevalent technique for constructing the discrete coarse grid equa-

tions in computational fluid dynamics problems. Rediscretization techniques generally ensure a

consistent representation of the fine grid problem on all grid levels, and enable the use of identical

solution strategies for coarse and fine grids. This greatly simplifies implementation by permitting

the reuse of many subroutines for the various grid levels.

There are situations where rediscretization techniques are not practical or feasible, however, such

as in the case of algebraic multigrid, where the coarse-grid levels are never explicitly formed. Even

for geometric multigrid methods (as opposed to algebraic methods), rediscretization techniques rely

on the assumed property that the coarse mesh discretization is valid, stable, and approximates the

fine grid problem to a certain degree. These assumptions are not always guaranteed, and may break

down particularly when dealing with complex geometries. An alternative procedure for discretizing

the coarse grid equations is to construct the coarse grid operator as the sequence, of operators

L. = Lh (25)

where the first term on the right-hand side represents the restriction operator, and the last term

the prolongation operator. Lh refers to the original fine grid discrete operator. This construction

is called Galerkin coarse grid operator, since it is a simple matter to show that, if the solution of

Lhu = fh minimizes a functional over all functions spanned by the set of fine grid functions uh,

then the solution of I H Lh Ihu = IHfh minimizes the same functional over all functions spanned

by the smaller set of coarse grid functions UH [18]. The advantage of this construction is that it is

entirely algebraic, i.e., once the fine grid discretization and inter-grid transfer operators are known,

the coarse grid operator is implicitly defined, and the geometry of the coarse grid problems does

not enter explicitly into the construction of the solution technique. On the other hand, depending



on the precise forms of the fine grid and inter-grid operators, the resulti.ng coarse grid operator

can be considerably more complex to construct and evaluate than the original fine grid operator,

and than the equivalent coarse grid operator obtained through rediscretization. This, in particular,

may severely limit the possibility of utilizing this approach recursively in-applications involving a

large number of grid levels. Both techniques have been employed for unstructured mesh problems

and will be demonstrated subsequently in this chapter.

2.4 Intergrid Transfer Operators

Particular constructions for the restriction and prolongation operators, as well as for the interpo-

lation of the solution variables in the FAS scheme, remain to be defined. For computational fluid

dynamics problems, the most common choices are either injection or some variant of linear inter-

polation. Injection corresponds to the interpolation operator which preserves a constant function

exactly. As an example, the value of a coarse grid cell would be assigned to all constituent fine

grid cells which are contained inside the coarse grid cell by the injection operator. Structured grid

multigrid methods often employ bilinear (in two dimensions) and trilinear (in three dimensions)

inter-grid transfer operators. For unstructured mesh multigrid methods based on triangular ele-

ments in two dimensions, and tetrahedral elements in three dimensions, simple piecewise linear

interpolation is easily implemented, using the linear finite-element shape functions associated with

these elements. Piecewise linear interpolation operators preserve linear functions exactly.

The accuracy of the restriction and prolongation operators must be sufficient to avoid introduc-

ing excessive errors into the solutions, which can in turn have a detrimental effect on convergence

efficiency. A fundamental rule for the accuracy of the inter-grid transfer operators is given by

[is, 27]:

mr+mp>m (26)

where mT and mp represent the highest degree polynomial plus 1, which the restriction and pro-

longation operators interpolate exactly, respectively. Thus, mr and mp are equal to 1 for injection

operators, while they would be equal to 2 for piecewise linear interpolation operators, m represents

the order of the partial differential equation being solved. For example, for an advection equation,

m = 1, whereas for a Poisson equation, m = 2. In practice, equation (26) is seldom violated since

the use of linear interpolation in at least one of the inter-grid transfer operators is enough to satisfy

the strict inequality for convection-diffusion equations. However, there are schemes which are in

violation of this rule, as will be shown in this chapter.

2.5 Cycling Strategies

Cycling strategies refer to techniques employed to determine when to switch from one grid to

the next, rather than to how to win a race on two wheels. These can be divided into two basic

approaches: adaptive and fixed cycling strategies. Adaptive cycling methods involve the monitoring

of the numerical convergence process. When it is determined that the high-frequency errors on

the current grid have been effectively eliminated, usually by observing a sharp slowdown in the

convergence rate, the jump to a coarser grid is triggered. Although adaptive cycling strategies may

appear more desirable, practical considerations such as simplicity and robustness usually result

in the use of fixed cycling strategies, where a fixed pattern of coarse and fine grid iterations is

prescribed. The two most common cycling patterns are the V-cycle, and the W-cycle, which are

depicted in Figures 2 and 3. The multigrid V-cycle begins on the finest grid of the sequence

(i.e., grid level 4 in Figure 2), where one relaxation or time-step is performed. The solution and

residuals are then interpolated to the next coarser grid, where another time-step is performed. This

10



procedureis repeatedoneachcoarsergrid until the coarsestgrid of the sequenceis reached.At
this point, the coarsegrid correctionsareprolongatedbackto eachsuccessivelyfinergrid until the
finestgrid is reached.

\ J
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Figure 2: Multigrid V-Cycle.

T = Time-Step, R = Restriction,

P = Prolongation

Figure 3: Mnltigrid W-Cycle.

This particular variant of the V-cycle, which has been employed extensively for computational fluid

dynamics problems, is sometimes known as a saw-tooth cycle, since no time-stepping is performed

on the coarse-to-fine phase of the cycle. In practice, it is possible to perform single or multiple

time-steps on each grid level in the coarsening phase of the cycle, as well as in the refinement

phase. The approximate complexity of a saw-tooth V-cycle is given by the sum of the complexities

of the various grid levels. For a two-dimensional problem, where the coarsening process involves

the reduction of grid complexity by a factor of 4 (as is typically the case for structured meshes),

the V-cycle complexity is bounded by

1 1 '1 4

1+ _ + ]--_ + _-_ + ..... < 5 (27)

or 4/3 times the complexity of a single fine grid time-step, while in three dimensions this figure

becomes 8/7 (assuming a coarsening ratio of 8:1). The W-cycle is a recursive strategy which

weights coarse grids more heavily, as shown in Figure 3. Use of the W-cycle is often found to be

more efficient overall, and more robust than V-cycles. The complexity of a saw tooth W-cycle in

two dimensions (assuming a coarsening ratio of 4:1) is given by

1 1 1
1+2× 5+4× 1--_+8 × _--_+ ..... <2 (28)

Coarsening ratios may vary widely for unstructured mesh multigrid methods, particularly when

used in conjunction with optimal coarsening strategies, or adaptive meshing techniques. For coars-

ening ratios smaller than 4:1, the (asymptotic) W-cycle complexity may become unbounded. Thus,

the choice of a particular cycling strategy must necessarily consider the complexity of the various

grid levels.
The combination of mesh sequencing with a multigrid method (where the solution on the current

grid is initiated from a previously computed solution on a coarser grid) results in a strategy known

as the full multigrid procedure. The basic cycling strategy is depicted in Figure 4, using a saw-tooth
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multigrid V-cycle.Beginningwith an initial sequenceof grids,the solution on the finest grid of the

sequence is obtained by a multigrid procedure operating on this sequence. A new finer grid is then

added to the sequence, the solution is interpolated onto this new mesh, and multigrid cycling is

resumed on this new larger sequence of meshes. The procedure can be repeated, each time adding

a new finer grid to the sequence, until the desired solution accuracy has been achieved, or the finest
available mesh has been reached. This strategy may be employed with a fixed set of meshes, but

is especially attractive for adaptive meshing problems, where new meshes are generated on the fly,

so to speak.

Grid Level 4

Grid Level 3

Grid Level 2

Grid Level 1

Figure 4: Full Multigrid (FMG) Strategy.

T = Time-Step, R = Restriction, P = Prolongation

2.6 Multigrid Algorithm for the Navier-Stokes Equations

The remaining procedure which must be specified in the construction of a multigrid algorithm is

the single grid relaxation or time-stepping procedure. The main requirements of this procedure

are that it be capable of rapidly damping out high-frequency errors. While the convergence of

almost any relaxation scheme may be accelerated through a multigrid procedure, the most effective

multigrid strategy is to rely on a simple and inexpensive relaxation scheme, which is specifically

tailored for annihilating high-frequency errors. All lower frequency errors can then be handled

effectively by the appropriate coarse-grid level. The use of multi-stage time-stepping schemes as

multigrid drivers is one of the most common approaches for both structured and unstructured mesh

problems. In addition to being simple and inexpensive, multi-stage time-stepping schemes can be

optimized to damp high-frequency errors [28, 29, 30]. A typical multi-stage time-stepping scheme

can be written as:

u (0) = u ('_)

u(1) = u (0) _ alAtR(u(°))

u(2) = u (°) _ a2AtR(u(1))

(29)

u(q) = u (°) _ aqAtR(u(q-1))

u ('_+a) = u(q)

where q represents the number of stages, u (n) the initial flow values, and u (n+l) the updated flow

values at the end of the new time-step, aq represents the multi-stage coefficients, which may be

chosen to optimize the high-frequency damping properties of the scheme. For the fine mesh, It(u)

represents the discrete residual, as given in equation (2), which can also be represented as LhUh--fh,
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usingthenotation of equation(10).On the coarsegrids,theforcingfunction SH of equation (18)

must be included in the R(u) term above.

Having described all essential elements of the multigrid strategy, a particular multigrid algorithm

for the Euler and Navier-Stokes equations can now be described. The.algorithmic steps are as

follows:

Step 1: Identify the first grid as the finest grid level and initialize the solution on this grid.

Coarsening Phase:

Step 2: Perform a single time-step on the current grid using the scheme of equations (29).

Step 3: If the current grid is the coarsest grid go to step 7.

Step 4: Compute the residuals on the fine grid using the latest available solution values.

Step 5: Restrict these residuals to the next coarser grid and interpolate the solution variables onto

the next coarser grid.

Step 6: Identify this next coarser grid as the current grid. Initialize the solution on this grid with

the variables interpolated from the previous fine grid, and construct the defect correction which

constitutes the right-hand side of the discrete coarse grid equations (i.e., equation (18)) using these

values and the restricted residuals. Go to step 2.

Refinement Phase:

Step 7: If the current grid is the finest grid, go to Step 2, otherwise identify the next finer grid as

the current grid.

Step 8: Compute the corrections on the previous coarse grid and prolongate them to the current

fine grid.

Step 9: Go to Step 7.

The above algorithm describes a typical implementation of an FAS multigrid scheme applied to

fluid flow problems. This description constitutes a single multigrid cycle, and the entire process is

applied repetitively until convergence of the fine grid problem is attained, which is determined by

monitoring the magnitude of the fine grid residuals. This particular scheme corresponds to the use

of a fixed saw-tooth V-cycle, which is the simplest to describe algorithmically. Other cycle types

such as W-cycles and cycles with time-stepping in the refinement stages may also be employed.

Note that in the case where only a single grid is specified, the coarsest and finest grids are identical,

and the algorithm bounces back and forth between steps 2,3 and 7, thus reproducing the single

grid algorithm. As mentioned previously, the restriction and prolongation operators are usually

implemented as piecewise linear interpolation operators or injection operators for computational

fluid dynamics multigrid methods.

3 Application to Unstructured Grids

The previous section described the construction of generic multigrid methods without regards to

the types of grids on which these methods are to be applied. This section deals with the specifics of

implementing such methods on unstructured meshes. The main difficulty with unstructured multi-

grid methods concerns the construction of the coarse mesh levels. For structured mesh multigrid

methods, a coarse mesh can be derived from a given fine mesh by omitting every 2nd point in each

coordinate direction. Recursive application of this procedure results in a sequence of coarse meshes

where the complex_ity of the meshes decreases by a factor of 4:1 in two dimensions and 8:1 in three

dimensions, for each successively coarser level.

For unstructured meshes, such techniques are no longer feasible. Due to the lack of mesh

structure, simple coarsening strategies do not result in consistent coarse grid triangulations. A
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varietyof techniqueshavebeenproposedfor unstructuredmultigrid coarsemeshconstructions.
Thesevary from methodswhich attempt to reproducethe nestedproperty of structuredmesh
multigrid methods[31,32,33],to techniqueswhichpermit the useof arbitrary (triangularor non-
triangular) coarsemeshes[8,9, 24,34,35,36,37,38,39,40,41],to algebraicmethodswhichnever
considerthe constructionof coarsemeshesaltogether[25]. In general,all methodsarecapableof
deliveringsimilarefficiencies,andthe issuesinvolvedin choosinga particularmethodincludeease
of implementation,degreeof automation,androbustnessfor highly complexgeometries.These
issueswill beaddressedthroughoutthe presentationof the variousmethods.

3.1 Nested-Mesh Subdivision

One of the simplest unstructured mesh multigrid strategies is to generate a sequence of finer meshes

from an initial coarse mesh by recursively subdividing the cells of the mesh [31, 32, 33], either

globally, or adaptively, using the subdivision rules described in the chapter on grid generation.

This results in a fully nested sequence of grids, as shown in Figure 5, and enables a particularly

simple construction of the inter-grid transfer operators.

Figure 5: Original coarse mesh and adaptively subdivided fine mesh illustrating the nested

construction of the fine and coarse levels, and the simple interpolation strategy for newly
added vertices.

For example, in the context of a vertex scheme, the values at the vertices which are common to

coarse and fine grids are simply transferred by injection. Similarly, the newly introduced fine grid

points always lie midway along a coarse grid edge, and thus the values at these points may be

transferred by averaging the two values at the end points of the coarse grid containing edge, which

corresponds to linear interpolation. For a cell-centered scheme, volume weighted restriction is easily

achieved by identifying the fine grid constituent cells of each coarse grid cell, and summing their

weighted values. Another advantage of this approach is that it is easily automated.

This method has a somewhat inverted nature, i.e., it begins with a coarse mesh and subsequently

generates finer meshes, whereas most multigrid methods begin with the finest mesh and construct

coarser levels. There are several disadvantages associated with such a strategy. The most obvious

is the lack of flexibility in handling problems on a specified fine grid of unknown origin. In fact,

this approach requires a tight coupling between the grid generation and the multigrid solution

strategies, and has thus often been implemented in the context of adaptive meshing problems. The

other difficulties are somewhat more subtle, but are interrelated. They concern the ability of the

coarsest initial grid to provide efficient convergence properties for the multigrid algorithm, and

the quality of the resulting fine grid. In a multigrid process, the coarsest grid of the sequence

determines the convergence rate of the algorithm, while the finest grid determines the accuracy

of the solution. The present multigrid strategy places conflicting demands on the coarse mesh

construction. On the one hand, a very coarse mesh is desired, since this enables a rapid multigrid
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convergence.However,the useof verycoarseinitial meshesmayresult in p.oorquality finemeshes,
particularlywhenusingsimplesubdivisionrefinementtechniques.This,in turn, hasa detrimental
effecton solutionaccuracy.

Onetechniqueto alleviatetheseproblemsis to employa relativelyfineinitial mesh,andmake
useof a director implicit solutionprocedureon this coarsestmeshalone,in order to maintain
favorableconvergencerates,with minimal storageoverheads.

3.2 Overset Meshes

An alternateapproachto unstructuredmultigridmethodsis to generatea sequenceof completely
independentcoarseandfinemeshes,anduselinearinterpolationto transfervariablesbackandforth
betweenthevariousmeshesof the sequence,within a multigridcycle[8,9, 35,36,37,38,39]. The
meshesmaybegeneratedusinganygrid generationtechnique,and will generallybe non-nested,
andmayevennot containanycommonpoints.Theonly requirementis that they conformto the
samedomainboundaries.This techniqueis moreflexiblethan the nestedsubdivisionapproach,
sincethe fineand coarsemeshesare not constrained,and may be optimizedindependentlyfor
accuracyandspeedof convergencerespectively.Furthermore,this approachcanbe appliedto a
problemwith a prespecifiedfinemesh.

Ontheotherhand,theconstructionof the inter-gridtransferoperatorsbecomesmoreinvolved.
Forstatic grid problems(i.e., usuallythe casefor steady-stateproblems),theseoperatorsmaybe
precomputedand storedfor usein the multigrid cycle. In the contextof vertex-basedschemes,
it is mostnatural to usepiecewiselinear interpolationfor the prolongationoperator. For a given
fine grid vertex to whichweseekthe interpolatedvalue,the enclosingcoarsegrid triangle (or
tetrahedronin threedimensions)mustfirst bedetermined.(An efficientalgorithm for achieving
this will be givenshortly.) Oncethis is known,the linearly interpolatedvalueat the fine grid
vertexcan beobtainedas a weightedaverageof the valuesof the three forming verticesof the
coarseenclosingtriangle,asshownin Figure6. The weightsmaybedeterminedusingthe linear
finite-elementshapefunctionsassociatedwith triangular elements.The final expressionmay be
written as:

o1wp = --w1 + w: + w3 (30)
Ac c c

where wp represents the fine grid interpolated value at point p, and 14_, W2, W'3 represent the

coarse grid variables at the three vertices of the enclosing triangle. The coefficients al, a2, a3,

represent the triangle areas as depicted in Figure 6, and Ac denotes the area of the coarse grid

enclosing triangle. Thus, identification of the enclosing triangle determines the addresses of the

interpolation stencil, while the above formula determines the weights of the stencil. Note that in

the above formula, when the fine grid vertex p coincides with a coarse grid vertex, the coefficient

associated with the coinciding vertex becomes unity, the other coefficients vanish, and the formula

reduces to injection. The entire prolongation operator can be stored as a set of three addresses

and three weights for each fine grid vertex (four quantities in three dimensions), which are used to

compute the interpolated values at each multigrid cycle as per equation (30).

A common form for the restriction operator is to construct it as the transpose of the prolongation

operator [18, 25]:

= r (31)
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Figure 6: Definitionof linear interpolation coefficients for fine grid vertex p contained in

coarse grid triangle 123.

Geometrically, this corresponds to distributing the residual of a fine grid vertex p to the three

vertices of the enclosing coarse grid triangle, with the same weights given by the linear prolongation

operator defined in equation (30). This is an accumulation process, and each coarse grid vertex P

receives residual contributions from all fine grid points which fall in any coarse grid triangles which

contain P, as shown in Figure 7.

./.-..........o ....... \

Figure 7: Illustration of conservative
residual restriction for overset-mesh vertex

scheme. Each coarse grid vertex receives

contributions from multiple fine grid ver-
tices.

Figure 8: Illustration of a graph-traversal

search algorithm for locating the enclosing

triangle of vertex b knowing the enclosing

triangle for vertex a .

Since the restriction and prolongation operators are transposes of one another, a single set of ad-

dresses and coefficients are required to define both operators. This particular form of the restriction

operator results in a conservative transfer of residuals from fine to coarse grids, i.e., the sum of

the fine grid residuals is equal to the sum of the transferred residuals on the coarse grid. Thus,

non-zero fine grid residuals will result in non-zero restricted residual sets, in the absence of local

cancellations. However, such local cancellations correspond to high-frequency residual variations,

which should be easily handled by the fine grid time-stepping procedure.
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The third transfer operator which must be defined for the FAS scheme, Ih, represents the

transfer of finegrid solution variables to coarser grids. In this case, a conservative transfer of vari-

ables is no longer of concern, since the coarse grid equations are only used to compute corrections.

Accuracy of the transfer operator is of more importance. Thus, piecewise linear interpolation is

employed. While the construction of the operator is similar to that described previously for the

prolongation operator, the roles of the coarse and fine grids are reversed_ i.e., we wish to deter-

mine the value at a coarse grid point from fine grid values. This requires the determination of the

fine grid triangle which encloses each coarse grid vertex, and the computation of the interpolation

weights in an analogous manner. Thus, an extra set of weights and addresses must be computed

and stored for this operator.

The inter-grid transfer operators are constructed in a pre-processing operation, prior to initia-

tion of the multigrid solution procedure. This must be performed for each successive pair of grids in

the multigrid sequence. If a subroutine is constructed which takes as input two arbitrary meshes,

and outputs the weights and coefficients of the prolongation/restriction operator, then a simple
-H

technique for obtaining the weights and coefficients of the I h operator is to switch the input order

of the two meshes.

An essential step in the construction of the inter-grid transfer operators is the determination of

the enclosing triangle on one grid for each vertex of the other grid. A naive implementation of this

operation consists of checking every triangle on the first grid for each vertex of the second grid.

This results in an O(N 2) algorithm, where N represents the number of grid points of either one

of the grids involved, and would be more expensive than the flow solution procedure itself. The

complexity can be reduced to O(N) by making use of graph-traversal type algorithms, as illustrated

in Figure 8. Assuming the enclosing triangle for a given vertex a on Grid 1 has been determined,

we seek the enclosing triangle for a neighboring Grid 1 vertex b. Since this new vertex is in the

neighborhood of the previous vertex, a good starting guess for the enclosing triangle would be the

triangle which was found to enclose the previous vertex. This triangle is first tested, and if the

test fails, we search all three neighbors of this triangle. If these tests fail, we search the neighbors

of these neighbors, and continue in this fashion until the enclosing triangle is located. In order to

implement this type of algorithm, it is useful to reorder the vertices of Grid 1 using in a wavefront-

type pattern which guarantees that, for each successive vertex in the list, there exists a neighbor

of this vertex which precedes this vertex in the list. Once this reordering has been executed, the

neighboring vertex which precedes each current vertex in the ordered list is stored. A neighbor list

for the triangles of Grid 2 must also be constructed (i.e., a list of the three neighboring triangles

for each triangle of Grid 2), as well as a list of previously tested triangles. The search algorithm

can then be implemented as follows:

Step 1: Choose the first Grid 1 vertex in the list and locate its enclosing triangle on Grid 2..(In

the worst case this may involve searching all coarse grid triangles).

Step 2: Choose the next Grid 1 vertex in the list and (re)initialize the list of tested triangles. Set

the current position to the beginning of the tested triangle list.

Step 3: Identify the neighbor of the current vertex which precedes it in the list, and get the address

of its enclosing triangle.

Step 4: Test this triangle to see if it encloses the current vertex. If the test is positive, go to Step

2, otherwise put the triangle address in the list of tested triangles.

Step 5: Choose the next triangle in tested triangle list, and test all three neighbors of this triangle

(if they have not already been tested). For each triangle, if the test is positive, go to Step 2,
otherwise put the triangle address in the list of tested triangles.

Step 6: Go to Step 5
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Theprocessterminateswhenthe endof theorderedvertexlist is reached.In practice,the search
for the first vertex may bebypassedor shortenedby placinga boundaryvertex at the start of
the list, and makinguseof knownboundaryinformation. For subsequentverticesthe enclosing
triangle is usuallylocatedin a singleor a smallnumberof searches.The overallefficiencyof the
proceduredependsmostlyon the relativedensitiesof the two grids, rather than their individual
size.This procedurecanbeimplementedequallywell in threedimensions,replacingtriangleswith
tetrahedra.

Figure 9: Illustration of sequenceof gridsemployedto computetransonicflow overan
aircraft configuration.Thefinestmeshcontains804,000verticesand4.5million tetrahedra.

Figures9 through 11illustrate,asanexample,theapplicationof the overset-meshmultigrid tech-
niqueto the solutionof the Eulerequationson three-dimensionaltetrahedralmeshesfor a generic
transport aircraft configurationusinga vertex-basedscheme.The finestmeshcontains804,000
verticesand approximately4.5million tetrahedra.A total of four meshlevelswereemployedin
the multigrid sequence.The first, second,third, and fourth levelsaredepictedin Figure9. The
constructionof all inter-gridtransferoperatorswasachievedin the equivalenttime requiredfor
two multigrid cycles,andthusrepresentsan insignificantfractionof theoverallsolutiontime. The
solutionis depictedasa setof Machcontourson the aircraftsurfacein Figure10.The freestream
Machnumberfor this caseis 0.768and the incidenceis 1.16degrees.In Figure11, the multigrid
convergenceratesusingaV-cycleanda W-cycle,andthe single-gridconvergenceratearecompared
by plotting the historyof the averageflowfielddensityresidualsversusthe numberof cycles.The
multigridmethodrealizesasixorderreductionover100W-cycles.EventhoughamultigridW-cycle
requiresapproximatelytwicethe CPUtimeof anequivalentcoarsegrid cycle,the overallefficiency
of the multigrid processfor this casecanbeseento beanorderof magnitudelarger than that of
the single-grid(explicit) scheme.Theentire multigrid run requires96Mwordsof memoryand a
total of 45minutesof CPUtime ona singleprocessorof the CRAY-C90.This observedmultigrid
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convergencerate is comparableto thoseobtainedonstructuredmeshesfor similarproblemsusing
structuredmeshmultigridalgorithms[42,43].

Figure 10: ComputedMachcontoursfor
transonicflowoveranaircraftconfiguration.
Mach= 0.768, Incidence= 1.16 degrees.

__ SINGLE GRID
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.......... W-CYCLE MULTIGRID
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Figure 11: Convergence rates of V- and W-

cycle overset-mesh multigrid schemes com-

pared with single-grid explicit scheme.

The above description and examples concern multigrid implementations for vertex-based schemes.

For cell-centered schemes, inter-grid transfers are typically based on volume weighting. For exam-

ple, in the case where the coarse and fine grid cells are nested, the fine grid variables are transferred

to the coarse grid by summing all variables of the nested fine grid cells for each coarse grid cell,

weighted by the fraction of the fine grid cell volume to the enclosing coarse grid cell volume. In the

case of non-nested overset meshes, a fine grid variable is transferred to the coarse grid according

to the relation

Ale (32)wc = Z wf-a7
fine grid cells

where the c and f subscripts denote coarse and fine variables respectively, and Arc represents the

intersection area between the particular fine grid cell and the coarse grid cell of area Ac. In general,

most intersections between a given pair of coarse and fine grid cells will be empty, and the sum need

only be performed over the ceils or non-zero intersections, as depicted in Figure 12. Equivalent

prolongation operators can be constructed in a similar manner by reversing the role of the coarse

and fine grids.
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Figure 12: Illustration of intersectedareabetweencoarseand fine grid trianglepair for
cell-centeredmultigrid scheme.

In order to construct such transfer operators, all intersecting cell areas must be determined, as

well as the addresses of their originating coarse and fine grid cells. As is evident from Figure 12,

these intersecting areas may take the form of complex polygons in two dimensions or polyhedra

in three dimensions. These intersecting areas may be determined efficiently by first computing

all intersections between the fine and coarse grid edges. The intersected edges of both grids thus

constitutes a set of segments, and each segment is tagged with the address of its coarse and fine

forming cells. In a single loop over all edge segments it is now possible to calculate the areas of all

intersected ceils using the Green-contour integration rule. This technique was implemented in [34]

and is also referred to as Ramshaw's algorithm [44]. The determination of all intersected edges can

be performed in O(N) time by first determining the enclosing coarse grid triangle for each fine grid

vertex, using the graph-traversal algorithm described above.

3.3 Automated Coarse Mesh Construction

One of the main disadvantages of the overset-mesh multigrid algorithm is the non-automatic nature

of the coarse grid construction. The user is required to manually generate the coarse-grid levels

using an appropriate grid generator. A variety of techniques have been proposed to automate this

procedure [45, 46, 47]. Most of them are based on producing a sequence of coarse mesh levels

from a given fine mesh. This usually involves the removal of selected fine grid vertices and the

retriangulation of the remaining grid points. The retriangulation procedure may be accomplished

as a global operation, by regenerating the triangulation of the remaining coarse grid points, or

incrementally, by removing each selected point sequentially and locally reconfiguring the mesh

connectivity. For example, a reverse Delaunay point-insertion may be utilized in two-dimensions to

remove mesh points. These techniques result in vertex-nested meshes, where the coarse grid vertices

form a subset of the fine grid vertices, as shown in Figure 13. The triangulations themselves are

not necessarily nested, since the connectivity of the coarse mesh need not be related to that of the

fine mesh. Although the vertex-nested property may be employed to simplify the construction of
--H

the inter-grid transfer operators (i.e., for example the I h operator reduces to simple injection), the

construction techniques discussed in the previous section for overset-mesh multigrid methods are

equally applicable in this case.
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Figure 13: Illustration of a vertex-nested

coarse and fine mesh pair.

Figure 14: Determination of a subset of

points C for the construction of a coarse

level grid as a maximal independent set of

the fine grid graph. Every F point is dom-

inated (adjacent) to a coarse grid C point.

The point-removal procedure of automated coarsening strategies can be configured to generate

"optimal" or near-optimal coarse meshes. This, of course, assumes some definition of optimal coars-

ening. A common strategy is to attempt to reproduce the coarsening characteristics encountered

in structured mesh multigrid methods. Thus, coarse meshes which contain approximately half the

resolution of the originating fine mesh in each coordinate direction throughout the entire domain

are generally sought. If the fine grid is considered as a graph (i.e., a collection of vertices and

edges), then the problem may be stated in graph-theoretical terms as the construction of the max-

imal independent set of minimal cardinality (size) of the original graph. A subset of the vertices of

a graph is termed an independent set if no two vertices of this subset are adjacent in the original

graph. An independent set is maximal if any vertex not in the set is dominated (or adjacent) to at

least one vertex of the set, as shown in Figure 14. The problem of generating maximal independent

sets of minimum cardinality is nP complete (i.e., cannot be achieved in polynomial time), and thus

heuristic algorithms which generate near-optimal maximal independent sets are often employed.

These are generally formulated as wavefront greedy-type algorithms, were the points being chosen

form a front which propagates throughout the domain. Each chosen point corresponds to a common

coarse and fine grid vertex. Each time a new point in the wavefront is chosen, all neighbors of this

point which have not already been deleted are removed. The front is then advanced by placing

the chosen point and all its deleted neighbors behind the front. The algorithm is greedy in that it

never undoes what is done, i.e., once a vertex is removed, it can never be reintroduced to resolve

a conflicting situation. Such techniques are thus suboptimal, but are extremely fast, and result

in coarse mesh levels which deliver competitive convergence rates. A more detailed description of

an algorithm for constructing maximal independent sets will be given in the following section on

agglomeration multigrid methods.

For certain problems, the uniform coarsening characteristics of maximal independent sets which

mimic structured mesh multigrid methods may be far from optimal. This is particularly true for

problems with large disparities in length scales and anisotropic problems. This topic is treated in
more detail in section 4.4.
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3.4 Agglomeration Methods

While automated coarsening strategies may relieve some of the practical difficulties in constructing

coarse mesh le'_els for unstructured mesh multigrid algorithms, they do not address the issue of the

robustness of the coarse grid constructions. For example, it may often be i'ound that an automated

coarsening procedure has removed one or several boundary mesh points which critically define

the geometry, and the resulting changes in geometry between grid levels produces a slowdown or
failure of the multigrid algorithm. In fact, the triangulation of a coarse point-set about a complex

geometry can prove to be a difficult task. This may occur as a consequence of geometry features

which are finer than the prescribed grid resolution, resulting in step changes in the geometry or

even of the topology in going from a given mesh to the next coarser mesh.

These difficulties can be handled effectively by the agglomeration multigrid method [24, 40, 41].

Agglomeration methods are control-volume-based methods, and can thus be applied to either cell-
centered or vertex-based schemes. For cell-centered schemes, the control-volumes are taken as the

triangles themselves, whereas for a vertex-based scheme the control volumes are taken as the cells

defined by the dual mesh formed by drawing the triangle median segments, as shown in Figure 1.5.

i
i
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Figure 15: Median Dual Control-Volume for a Triangular Mesh.

The idea of the agglomeration method is to fuse together or agglomerate neighboring fine grid

control volumes, creating a smaller set of larger polygonal (or polyhedral in three dimensions)

control volumes. This process can be performed recursively, as shown in Figure 16, thus generating

an entire sequence of coarse agglomerated meshes. The degree of the coarse agglomerated polygons

increases on each coarser mesh level, but they always conform exactly to the original fine grid

boundaries. The discretization, however, must be modified to enable the use of polyhedral cells on

the coarse meshes.

The techniques employed for creating the coarse agglomerated grids are similar to the automated

coarsening strategies described in the previous section. In fact there is a duality between agglom-

eration of control-volumes and point-removal. If each agglomerated control-volume is thought of as

consisting of its seed point, i.e., the point corresponding to the control volume from which the ag-

glomeration process was initiated, and its agglomerated control-volumes (or corresponding points),

as shown in Figure 17, then the seed point corresponds to a point which is retained for the coarse

grid in the point-removal procedure, and the agglomerated points correspond to deleted points.
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Figure 16: Original fine triangular mesh, its dual mesh, and coarse agglomerated mesh
levels.
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A wavefrontgreedy-typealgorithmhasbeendevelopedby the authorand his co-workersfor con-
structing coarseagglomeratedgrids which aremaximal independentsetsof the fine grid. The
algorithmis detailedbelow:

Step 1: Picka startingvertexona surfaceelement.Agglomeratecontrolvolumesassociatedwith
its neighboringverticeswhicharenot alreadyagglomerated.
Step 2: Definea front ascomprisedof the exteriorfacesof the agglomeratedcontrol volumes.
Placethe exposededgesin a queue.
Step 3: Pick the new starting vertex as the unprocessed vertex incident to a new starting edge

which is chosen from the following choices given by order of priority:
• An edge on the front that is on the solid wall.

• An edge on the solid wall.

• An edge on the front that is on the far-field boundary.

• An edge on the far field boundary.

• The first edge in the queue.

Step 4: Agglomerate all neighboring control volumes of the current point which have not already

been agglomerated to another vertex.

Step 5: Update the front and go to step 2 until the control volumes for all vertices have been

agglomerated.

The queue of active vertices forms a wavefront which travels through the domain much like the

advancing-front grid generation procedure. Once all the boundary vertices have been processed,

the front edges form a simple queue, and they are extracted in the same order which they were

inserted into the list. We have experimented with the use of more sophisticated priority queues

to guide the advancement of the front. This has been implemented as a heap-list of the front

edges, ordered either by the smallest edge length or the vertex closest to the interior boundary. In

these implementations, a more regular propagation of the front is achieved by always choosing the

smallest edge in the front, as in advancing-front grid generation strategies, or by always choosing

the vertex closest to the inner boundary, thus advancing out from the inner boundary in equal

distance level sets. In practice, little difference in overall multigrid performance has been noticed

with these variants.

i i i i i

Figure 17: Illustration of seed point and

agglomerated points in the agglomeration

coarse grid construction strategy.

Figure 18: Replacement of segmented ag-

glomerated edge by straight-line edge for

flux integrations on coarse level agglomer-

ated grid.
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Thealgorithmexecutesin atimeproportionalto thenumberof vertices,andrequiresan insignif-
icantamountof CPUtime comparedto theflowsolutionprocedure.Coarseagglomeratedmeshes
areproducedwhichcontainapproximatelyfour timesfewercontrolvolumesin two dimensionsand
eighttimesfewercontrolvolumesin threedimensionsthan the previousfinergrid.

The coarseleveldiscretizationis achievedby applyinga finite-volumeformulationto the com-
plexpolygonalcontrol-volumeson theselevels.A flux is computedfor eachedgeof the polygonal
control volume,usingthe averageof the flow variablesof eachcontrol-volume,on either sideof
the edge.A flux balancefor eachcontrolvolumeis computedby integratingthe fluxesaroundall
boundaryedgesof thecontrolvolume.Whilethe numberof coarselevelcontrolvolumesdecreases
approximatelyby a factor of four (eightin threedimensions)whengoingfrom a fine grid to the
next coarserlevel,the numberof edgesonly decreasesby a factor of two (both in two and three
dimensions)dueto theincreasingcomplexityof the controlvolumeson the coarsermeshes.Since
the complexityof updatingthe discretecoarsegrid equationsis closelyrelatedto the numberof
edgeson thesegrids,this resultsin asubstantialincreasein thecomplexityof theoverallmultigrid
cyclecomparedto usingsimilarly coarsenedtriangularmeshes.However,this complexitymaybe
reducedby replacingeachset of segmentededgeswhich borderon the sametwo agglomerated
cellsby a singlestraightedge,asshownin Figure18. This stepinvolvesnoapproximation,since
the flux acrosseachsegmentedportionof theoriginaledgeinvolvesthe sameflowvariables,and
invokesthe edgenormalin a linear fashion. Thus, the use of a single straight edge corresponds to

the summation of all fluxes of the segmented edge. With this improvement, the effective number

of edges decreases proportionally to the number of control-volumes when going from fine to coarse

agglomerated grid levels, in both two and three dimensions, and the standard multigrid cycle com-

plexity is recovered. The use of an edge-based data-structure, which stores the addresses of the

cells on either side of each edge, and the x and y (and z in three dimensions) components of the

edge normal area, is particularly attractive, since it enables the fine and coarse levels to be treated

analogously, in spite of the non-triangular nature of the coarse grid cells.

The construction of the inter-grid transfer operators for agglomeration multigrid methods is

particularly simple, since the coarse and fine level control volumes are fully nested. Fine to coarse

residual restrictions are performed using volume weighting. Thus, the coarse restricted residual

in a given control-volume is simply the sum of the residuals of the constituent fine grid control

volumes, weighted by the ratio of the fine grid cell volume to the agglomerated coarse grid cell

volume. The same operator is employed to transfer the flow variables from fine to coarse levels for

the FAS scheme (i.e., the Ih/-/operator). Simple injection is employed for the prolongation operator.

The correction computed on a coarse level agglomerated cell is applied directly and equally to all

fine-level control volumes which are contained within the coarse level cell. This simple minded

prolongation scheme is clearly less accurate than the linear interpolation strategy employed in the

overset-mesh multigrid algorithm. However, because of the complex shapes of the coarse level ceils,

and since a piecewise constant coarse level solution is assumed, linear interpolation prolongation

operators are not easily constructed. This is an unfortunate consequence of the use of coarse

agglomerated levels, and will be addressed in more detail in section 4.2.

As an example of the efficiency of the agglomeration multigrid approach, the same example

shown in Figures 9 through 11, for the overset-mesh multigrid method has been recomputed with

the agglomeration approach [41]. Figure 19 depicts four of a total of six coarse agglomerated mesh

levels, based on the finest mesh of Figure 9, which were employed for this calculation.
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Figure 19: Several agglomerated levels employed in the calculation of flow over aircraft

configuration.

As previously, the finest mesh contains 804,000 vertices and 4.5 million cells. However, in this case,

a total of seven mesh levels were employed in the multigrid procedure. The coarsest mesh contains

only 99 agglomerated cells. Recall that in the overset-mesh case, only four levels were possible, due

to the difficulties involved in constructing consistent coarser meshes. The agglomeration procedure

for generating the six coarser levels required approximately the equivalent _mount of CPU time of

two multigrid cycles. The flowfield conditions and the final solution are identical to those described

in section 3.2.

The convergence rate given in Figure 20 illustrates how the efficiency of the agglomeration

procedure parallels that of the overset-mesh _pproach, delivering a residual reduction of 6 orders

of magnitude in 100 W-cycles. The amount of CPU time required per multigrid cycle is approxi-

mately the same for the agglomeration and overset-mesh multigrid algorithms, which corresponds

to approximately double that of a single-grid explicit time-step. Therefore, as in the overset-mesh

case, the agglomeration multigrid procedure provides an order of magnitude increase in solution

efficiency over the single-grid approach. In addition, it affords a completely automatic coarse level

construction, and enables the use of additional coarse levels over the overset-mesh procedure. In

this particular case, the additional mesh levels provided an increased convergence rate over a four

level agglomerated approach, but were not able to outperform the four level convergence rate of

the overset-mesh multigrid approach. This case required approximately 50 minutes of CPU time

on a single CRAY-C90 processor, and 97 Mwords of memory.
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Figure 20: Convergence rate of agglomeration multigrid algorithm compared with overset-

mesh multigrid algorithm and single-grid algorithm for computation of flow over aircraft configu-
ration.

3.5 Algebraic Multigrid Methods

Algebraic multigrid methods are methods that enable the efficient solution of systems of algebraic

equations, which are not necessarily derived from the spatial discretization of a partial differential

equation [25]. In fact, the notion of a grid, of linear interpolation in space, and spatial smoothness

are not always possible in this context. Thus, algebraic multigrid methods require the redefinition

of such concepts in the context of algebraic rather than geometric quantities, in order to make use

of traditional multigrid principles. In some sense, algebraic multigrid represents an abstraction

or generalization of the fundamental multigrid procedures, and may lead to more fundamental

understanding of the multigrid solution principles, and perhaps more general strategies. However,
these methods are not nearly as well developed as their geometric counterparts, and are usually

more cumbersome and restrictive. For example, present algebraic multigrid methods are only

applicable to linear problems.

Consider the problem defined by the set of algebraic equations

or, for an N by N matrix,

Ax = b (33)

N

a,jxj = bi /or i = 1,2,...,N (34)
j=l

The multigrid solution process consists of deriving a smaller set of equations from the above set,

denoted as

Acxc = bc (35)
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or

N_

_'_ acijxcj --=bci
j=l

for i = 1,2,...,No (36)

where Nc represents the number of coarse level variables, and the matrix Ac with elements aci j

remains to be defined. The variables xci are usually taken as a subset of the fine level set of variables

z_. Restriction and prolongation operators which map fine to coarse (I H) and coarse to fine (I h)

variables must also be defined. Once these steps have been accomplished, a multigrid cycle may be
written as

x = a x°zd+ I}[(Ac)-'bc - xo,d] (37)

where G represents the fine grid smoother, and it is assumed that the coarse grid matrix Ac may

be easily inverted. The above sequence of operators represents a two-grid multigrid cycle. This is

described here for simplicity, and in practice, a multiple level cycle may be defined by recursive

application of the above two-grid procedure.

A standard algebraic multigrid construction is to take the restriction operator as the transpose

of the prolongation operator:

Ih"= r (3s)

as was done in the overset-mesh multigrid algorithm, and to use the Galerkin coarse grid operator

construction to define the coarse level matrix Ac:

Ac = (Ih) T A I h (39)

as described in section 2.3. Once these steps are taken, the complete algebraic multigrid algorithm is

determined solely by the definition of the prolongation operator and the set of coarse level variables.

Since geometric information is not available, the coarse level variable sets must be determined

from the algebraic information contained in the matrix A. To do this, we make use of the graph of

the matrix A. The graph of a sparse matrix is defined as the graph which is obtained by drawing

an edge between the two vertices which correspond to the row and column number of each non-

zero entry in the matrix. An algorithm which generates a maximal independent set of this graph

may be utilized to construct a coarse level subset of variables, just as in the agglomeration or

automated coarsening approaches for geometric multigrid. Algebraic multigrid, however, adds an

extra degree of sophistication to the process, by considering the magnitude of the non-zero matrix

entries. Coarsening is performed preferentially along edges associated with large matrix entries,

since this represents neighboring equations which are strongly coupled, and which will thus have

similar errors (i.e., the error distribution will be smooth in that direction). For problems which

result from stretched mesh discretizations, this reproduces the effect of semi-coarsening.

In order to construct a suitable prolongation operator, we require that smooth error be in the

range of interpolation. This assumes a definition of the concept of smoothness in an algebraic sense.

An algebraically smooth error may be defined as an error which is slow to converge using a simple

relaxation scheme, i.e.,

IJCelJ~ llell (40)
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This definitionmeansnothingmorethan the errormustbehandledby the coarsergrid. However,
it providesa basisfor constructinga smoothoperator.Sincesimplerelaxationschemesgenerally
refer to explicit schemes,whichcomputeupdatesbasedon the residual,equation(40) implies a
smallresidualfor smootherrors:

Ae = r _ 0 (41)

Prolongation to fine level variables which are not contained on the coarse level may be computed

by setting the residuals at those points to zero:

aijvj : 0 (42)

where vj represents the prolongated correction at vertex j. If Vcj represents the coarse grid correc-

tion, an algebraically smooth prolongation operator can therefore be defined as follows:

vi = vci for i E coarse grid

1 N

Vi -- _ aijvj for i 9 coarsegrid (43)
--aii j¢_

Thus, for fine grid points which are contained in the coarse grid, corrections are obtained by

injection of the coarse grid values, whereas for fine grid points which are not contained in the

coarse grid, corrections are obtained by application of equation (42). The summation need only be

performed over the non-zero elements aij of row i of the matrix A, which corresponds to the graph

neighbors of vertex i. In the event all such neighbors are coarse grid points, an explicit formula

for the prolongation operator is obtained from equation (43). In practice, all such neighboring

values are seldom contained in the coarse grid. Equation (43) may then be solved approximately

by applying the same process to each neighboring point which is not a coarse grid point. This

process may be applied recursively, each time enlarging the stencil for the prolongation of the value

vi. An approximate stencil may then be constructed by deleting all points of the stencil which are

not coarse grid points. In [25], for example, a construction of this type using up to two levels of

neighbors is described in detail. This results in an approximate but explicit form of the prolongation

operator, which can be constructed as a preprocessing operation and then employed throughout

the multigrid solution process.

One of the drawbacks of algebraic multigrid methods is the complexity of their construction.

The prolongation operator described above is not only used to transfer corrections from coarse to

fine grids, but also enters into the construction of the coarse grid operator through equation (39).

Thus, a prolongation operator with large or widely varying stencils may result in considerably

complex coarse grid operators. In fact, the coarse grid operator obtained through equation (39)

is usually much denser (contains relatively more non-zero elements) than the original fine grid

operator, which results in increased coarse grid complexities for the multigrid cycle. Thus, the

construction of algebraic multigrid methods necessarily involves a trade-off between accuracy of

the operators and complexity of the coarse grids.

3.6 Similarities Between Agglomeration and Automated Node Nested Methods

The unstructured multigrid approaches described above have been presented in order of decreasing

geometric and increasing automatic and algebraic character. Many of these methods involve similar

techniques, and some can even be shown to be completely equivalent under certain conditions.
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For example,it hasbeenshownhowthe agglomerationprocesscanbe-interpretedasa point-
removaltechnique.Thereis completeduality betweenthesetwo techniques:the agglomeration
procedureoperatesoncontrolvolumesof thedualmesh,whilethepoint-removaltechniqueoperates
on verticesofthe originalmesh.However,a notabledifferencebetweenthesetwo methodsis that
the endresult of the agglomerationprocedurenot only consistsof a coarsesetof control volumes,
but alsoan impliedgraphuponwhichthe coarsegrid operatoris based,i.e, the graph obtained by

drawing an edge between every pair of neighboring agglomerated control volumes. On the other

hand, the point-removal technique only determines a coarse level set of vertices, without any implied

graph. The graph of the coarse level operator is determined by retriangulating these vertices, a

step which in principle may be completely independent of the coarsening process.

The question then arises as to whether the implied graph of an agglomerated coarse grid is

representative of some particular triangulation. If this is so, then the agglomeration procedure

becomes completely equivalent to a combined point-removal and retriangulation technique for con-

structing coarse triangular meshes, with the consequence that agglomeration multigrid becomes

nothing more than an overset triangular mesh multigrid technique where the coarse meshes are

generated automatically.

By examining a coarse agglomerated grid, one can identify points on the grid where three

agglomerated cells meet, as shown in Figure 21.
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Figure 21: Illustration of dual triangu-

lation implied by agglomerated grid. Any

point within the agglomerated cells may be

employed as the triangle vertices.

Figure 22: Contributions of edges interior

to agglomerated cell cancel out for convec-

tion equation, while those along common

boundaries may be summed.

These points define triangular cells, which can be constructed by joining the centroids of the three

neighboring agglomerated cells together with three straight-line edges. The union of these edges

constitutes a dual of the agglomerated grid, which is seen to be a triangular mesh of the agglom-

erated cell centroids. In fact, the centroids were chosen here for convenience, and any point within

the agglomerated ceils may be used to define the vertices of the triangulation. Another choice

would be to draw the edges joining the centroids of the original control volume which initiated the

agglomeration of each coarse cell, i.e., the seed points of the cells. Since these seed points form a

subset of the original triangular mesh vertices, an agglomeration procedure of this type becomes

completely equivalent to a point-removal and retriangulation process, and the agglomeration multi-

grid approach becomes identical to the overset-mesh approach. This also permits the use of linear
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interpolationfor the restrictionandprolongationoperatorsasimplementedin the latter approach.
(Recallthat this wasnot possiblein theagglomerationformulation).

Oneof the difficultieswith this interpretationis that the triangular meshesderivedfrom the
agglomeration"processin this mannermaynot alwaysbevalid, i.e., cross-overs may occur which

result in negative area triangles. While such situations can often be remedied by displacing the

vertices of the triangulation within the agglomerated cells, since there is an added degree of freedom

in choosing the precise location of these points, uncorrectable triangulations inevitably occur. This

highlights the main advantage of the agglomeration process, that is, its ability to construct valid

coarse grids, regardless of the geometry. The fact that the coarse agglomerated grids conform

exactly to the boundaries of the domain on every level is another manifestation of this principle.

The robustness of the coarse level agglomeration construction is largely due to the fact that the

agglomerated control volumes are formed by directly summing fine grid control volumes. Thus,

the coarse level discrete equations may be thought of as formed by the sum of the subset of fine

level discrete equations which are contained in each coarse agglomerated cell. Many desirable

properties which may have been built into the fine level discretization, (i.e., positivity, diagonal

dominance, etc.) can therefore be assured on the coarse level equations. This algebraic character

of the agglomeration procedure is one of its greatest assets.

3.7 Similarities Between Agglomeration and Algebraic Methods: Construction

of an Agglomeration Method for the Navier-Stokes Equations

As we have hinted above, agglomeration techniques can also be interpreted as algebraic multigrid

methods. In fact, our current implementation of agglomeration multigrid follows the algebraic in-

terpretation as closely as possible [41, 48, 49]. The basic premise is that convergence acceleration

techniques should not be bound by geometry-based constraints, and the removal of the influence of

geometry from the multigrid process should lead to a more robust strategy. Consider, for example,

the application of boundary conditions on the coarse agglomerated grids. For very large cells which

overlap regions of the boundary which correspond to multiple different boundary conditions, the

application of coarse level boundary conditions is ambiguous. Rather than physically applying

boundary conditions on the coarse grid, an algebraic approach consists of inferring a possibly com-

posite coarse level boundary condition from the boundary conditions and their associated equations

on all constituent fine grid cells of the coarse agglomerated cell.

The use of an edge-based data-structure to represent discretizations in the agglomeration multi-

grid method not only permits a similar treatment of all coarse and fine-grid levels, but also provides

an algebraic interpretation of the procedure, since the set of edges of the discretization on a given

level may be viewed as the graph of the sparse matrix defined by the discrete operator. In fact,

the algebraic point of view of agglomeration multigrid has not only resulted in a more robust algo-

rithm, but has also enabled the extension of agglomeration multigrid techniques to other types of

equations, such as the Navier-Stokes equations, and turbulence transport equations [48, 49, 50].

For a discrete operator which relies on a nearest neighbor stencil on a triangular or tetrahedral

grid, the graph of its sparse matrix is equivalent to the graph of the grid. In such cases, the ag-

glomeration procedure defined above becomes equivalent to an algebraic procedure for constructing

coarse-level equations sets. In fact, the methods described in the algebraic multigrid literature may

be utilized in agglomeration multigrid methods, while the maximal independent-set techniques de-

vised for agglomeration methods may also be applied to algebraic strategies. A notable difference

between the two approaches is that, while the agglomeration procedure itself defines the stencil of

the coarse level operator, i.e., the stencil of nearest agglomerated cell neighbors, in the algebraic

multigrid case, the coarse grid stencil is defined by the Galerkin construction of the coarse grid

operator (c.f. equation (39)). In fact, algebraic multigrid does not even contain the notion of a

nearest neighbor, since the coarsening process does not generate its own graph. The stencils of
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the Galerkin coarse grid operator are in general much more dense than those of an agglomerated

nearest-neighbor graph, and are much more expensive to evaluate. This becomes particularly dif-

ficult in multi-level applications (as opposed to two-level applications), Where the process must be

invoked recurs]vely.

Under certain conditions, the stencil of the Galerkin coarse grid operator becomes equivalent

to a nearest neighbor stencil. For example, the agglomeration algorithm described previously for

an advection equation or the Euler equations employs an injection operator for the prolongation

operator, and volume weighted summation for the restriction operator. If A represents the fine

grid discrete operator, then the Galerkin coarse grid operator

Ac = I HAI_ (44)

using injection and volume-weighting for prolongation and restriction, respectively, can be viewed

as an equation summation technique, where each coarse grid discrete equation associated with an

agglomerated cell is obtained by summing all the discrete equations of the fine level within the

given agglomerated cell, and replacing the fine grid variables by the corresponding coarse grid

variables. When the discrete equations for an advection equation are expressed in edge format, the

contributions along all edges interior to the agglomerated cell cancel out, while all edge contributions

which border on two neighboring agglomerated cells may simply be summed, as shown in Figure 22.

This procedure naturally results in a nearest neighbor stencil, and in fact reproduces the same coarse

level discrete equations for an advection equation obtained by the finite-volume analysis of the

coarse agglomerated cell. For the Euler equations, complete equivalence can also be demonstrated

provided the non-linearities of the equations are handled appropriately.

Therefore, in this case, the agglomeration and GaJerkin coarse grid operator constructions are

equivalent, providing a further demonstration of the algebraic character of the agglomeration pro-

cedure. This is particularly convenient, since it provides a mechanism for extending agglomeration

procedures to equations of higher degree, such the Poisson equation, or the diffusion terms of the

Navier-Stokes equations. The discretization of such equations on a mesh of complex polygonal

control-volumes is not obvious, since this usually requires the computation of gradients as an in-

termediate step. However, using the above Galerkin construction, with the injection prolongation

and volume-weighted summation restriction operator, a simple nearest neighbor stencil form of the

coarse grid equations is obtained. In fact, if we employ the same edge-based representation in the

discretization of the diffusion terms [36, 51], a similar equation summing technique can be invoked

to construct the coarse grid equations.

Coarse Grid

Independent

Triangulated Seed Pts

Agglomerated

Agglomerated

Coarse Grid Op.

Rediscretization

Rediscretization

Galerkin

Scaled Galerkin

Restriction

Linear

Linear

Injection

Injection

Prolongation

Linear

Linear

Injection

Injection

Convergence

0.100

0.125

0.512

0.254

Table 1: Effect of coarse grid operator for agglomeration multigrid.
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Table 1 compares the convergence rate obtained by this method for the solution of Laplace's

equation on a two-grid agglomerated system, using the fine grid and first coarse-level agglomerated

grid depicted in Figure 16, with that of a two grid overset mesh multigrid approach, using a coarse

triangular grid generated independently, and a coarse triangular grid based on the seed points of

the coarse agglomerated grid. For all tabulated results, a multigrid V-cycle is employed, with 3

3acobi pre- and post-smoothing sweeps on the fine grid, and 200 sweeps on the coarse grid (in order

to fully converge the coarse grid equations of the two-grid system). In both cases, the convergence

rates are much faster for the overset-mesh multigrid approach, using a geometric discretization

for the coarse grid operator, than that achieved with the Galerkin coarse grid operator within the

agglomeration framework. This degradation of convergence may be due to the different coarse grid

operator, or the prolongation and restriction operators (which are taken as linear interpolation in

the overset grid method, and injection in the agglomeration approach). The effect of the relative

"quality" of the coarse grid can be assessed by the difference in convergence rates between the

overset grid method using an independent coarse grid, and using the triangulated agglomeration

grid. These differences are rather small thus demonstrating the suitability of the agglomerated

grid.
The main problem with the above formulation is that the accuracy of the transfer operators

is insufficient to guarantee efficient convergence rates. A necessary relation for ensuring multigrid

efficiency is given by [18, 27]:

mr +mp > ra (45)

where mr and rap are defined as the highest degree plus one of the polynomials that are interpolated
exactly by the restriction operator I H and prolongation operator I h respectively, and rn is the

order of the partial differential equation to be solved. In this case, injection is used for the transfer

operators, thus mr and mp are both equal to 1. Since the order of Laplace's equation is 2, the strict

inequality is not satisfied. It is interesting to note that in the case of the convection equation (or

the Euler equations) the strict inequality is satisfied since the order of the equations is 1, rather

than 2. This explains the success of the control-volume formulation of the coarse grid equations

for inviscid problems in the agglomeration multigrid approach.

A B C

Figure 23: Simple one-dimensional two-grid multigrid example.

The accuracy of the restriction and/or prolongation operators must therefore be increased for

diffusion-type problems. This will affect both the transfer operators themselves, and the coarse

grid operator. Rather than strictly adhering to the construction given by equation (4), which can
become considerably involved for more complex interpolation operators, we seek a simplified coarse
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grid operatorby examininga onedimensionalexample.Thediscretizationof a Poissonequation
ona onedimensionalgrid yieldsthe discreteequation:

ui+l -- 2ui + ui-1
h_ = f (46)

If a coarse grid is constructed by agglomerating neighboring pairs of cells, as shown in Figure 23,

the restriction operator based on injection corresponds to simple summation of the i and i - 1
residuals.

The prolongation operator based on injection reads

Ui-2 ---- Ui-1 ----- UA

ui = ui+l = us (47)

Ui+ 1 = Ui+ 2 m _'C

where the overbar indicates coarse grid values. The discrete coarse grid equation at B is obtained

by the Galerkin construction:

IhH Ah Ihu = IH fh (48)

which yields:

_A - 2gs + _c
2h 2 = f •(49)

This obviously results in an inconsistency with the fine grid discretization, for if we were to directly

discretize the Poisson equation on the coarse grid we obtain

gA -- 2gB + gC
4h 2 = f (50)

The left-hand sides of equations (49) and (50) differ by a factor of 2. This inconsistency is entirely

due to the use of an inadequate prolongation operator. If we use linear interpolation for the

prolongation operator, i.e.,

3 1
u i-1 = _-_A + -_u-s

1 3

u_ = _A + _-_s
3 1

(51)

but retain injection for the restriction operator, it can be verified that equation (50) is recovered

as the resulting Galerkin coarse grid operator. Note also that the inequality of equation (45) is

satisfied for this case. This one-dimensional example suggests a simple fix for the multi-dimensional

Galerkin coarse grid operator using injection [48, 50]. We replace the operator I H A I h with

r.H A
Ac - "_ (.52)

2,_-1
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wheren = 2, 3, .., k represents the coarse-grid levels. In Table 1, this modified or scaled coarse grid

operator can be seen to show a significant improvement in convergence rate over the original coarse

grid operator for the two grid system. The advantage of this construction is that the coarse grid

operator still relies on the nearest neighbor stencil, and maintains low complexity.

Armed with this result, we may now proceed to construct an agglomeration multigrid strategy

for the Reynolds-averaged Navier-Stokes equations [49]. The graph-based agglomeration procedure

described in section 3.4 is employed to construct coarse levels using a slightly modified version of

the maximal independent set algorithm. Volume weighted summation is employed for restricting

residuals and flow variables to coarser grid levels, while injection is employed for transferring coarse

level corrections back to the fine grid. The coarse level operator is obtained using the Galerkin

construction for the convective terms, while the scaled Galerkin result of equation (52) is employed

for the viscous terms. The coarse grid operator is thus given by

Ac = Acinviscid + Acviscous

Ac = I H ainviscid I h + 2n-a
(53)

where n represents the grid level. The turbulence model of Spalart and Allmaras [52] is employed

to account for turbulence effects. This model consists of a single field-equation which contains

convective, diffusive and source terms. The turbulence equation is solved decoupled from the flow

equations, but in a similar multigrid fashion. The convergence of the flow and turbulence equations

is accelerated by the use of local time-stepping and residual averaging on all mesh levels.

As an example, this procedure has been employed to compute the flow over a rectangular wing

with a partial-span flap mounted in a wind-tunnel. The mesh for this case was generated using

the advancing layers method [53], and is highly stretched in the regions near the airfoil surfaces.
The solution was obtained on two different meshes, a coarse mesh of 300,00 vertices (or 1.7 million

tetrahedra) with a normal wall spacing of 10-s at the airfoil surfaces, and a finer mesh of 2.3 million

vertices (or 13.6 million tetrahedra) with a wall spacing of 5 × 10 -6. This fine mesh represents a
uniform refinement of the coarser mesh. The coarser mesh is depicted in Figure 24, along with the

set of coarse level agglomerated grids used in the calculation, while the fine grid is shown in Figure

25. A total of five mesh levels were employed for the coarse mesh calculation, and a total of six

mesh levels were used for the fine mesh calculation. The fine grid solution is depicted qualitatively

in Figure 26, as a set of Mach contours on the wind-tunnel wall, and density contours on the airfoil
surface. The freestream Mach number is 0.2 for this case, the Reynolds number is 2 million, and

the incidence is 10 degrees. The convergence rates of the multigrid scheme for these two cases are

depicted in Figure 27, as a history of the RMS average of the density residuals throughout the

flowfield and the lift coefficient versus the number of multigrid cycles. In both cases, convergence

of four to five orders of magnitude is obtained in three to four hundred multigrid W-cycles. The

most notable feature of this comparison is the fact that the convergence rates for the coarse and

fine grids are almost identical. Considering the fact that the fine grid contains eight times the

resolution of the coarse grid, this provides a strong indication of the grid independent convergence

rate property of multigrid for very large three-dimensional problems. This type of convergence

rate is equivalent to that obtained with similar schemes on structured meshes [43, 54]. The fine

grid calculation required a total of 425 Mwords of memory, and 18 hours of total CPU time for

300 multigrid cycles on a CRAY C-90. Using all 16 processors of the machine in parallel, this

calculation was achieved in 1.25 hours of wall clock time.
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Figure 24: Unstructured grid for partial-span flap wing geometry, its dual, and four coarse

agglomerated grid levels.
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Figure 25: Fine unstructuredmeshem-
ployedfor computationof flowover partial-

span flap wing. (Number of points = 2.4

million, Number of tetrahedra = 13.6 mil-

lion).

Figure 26: Computed solution for flow over

partial-span flap wing. Mach contours are

displayed on symmetry plane, density con-

tours on wing surface.
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Figure 27: Convergence rates on coarse (300,000 points) and fine (2.4 million points) grid

for flow over partial-span flap wing.

4 Additional Multigrid Topics

4.1 Additive Correction Schemes

Many multigrid-like methods have been developed for both geometric and algebraic problems.

These have been used in a straight multigrid-like fashion, involving the creation and solution of

multiple coarse level problems [55, 56, 57], or in domain decomposition strategies, as techniques

for providing a level of global coupling between the various domains, which are usually solved

implicitly within each domain [46, 58, 59]. Multigrid is an intuitively appealing procedure, and
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manyof the proposedmulti-levelmethodshavebeendevelopedpurely basedon intuition. This
approach,however,runs the risk of resultingin an algorithm whichmay violate certain basic
multigrid principles,thusproducinga lessthanoptimal scheme.

The so-calledadditivecorrectionschemeshavebeenemployedto constructefficientsolution
proceduresfor anisotropicconvectionproblems[55].Thederiwtion oftheseschemesis particularly
simple,and can be performedentirely in an algebraicsetting. The idea is to group together
neighboringsubsetsof fine-gridpoints,andto constructcoarselevelequationsby directlysumming
thesefine levelequations.The finegrid variablesare then rewritten astheir current valueplus
a coarsegrid correction,and the resultingequationsare solved. As an example,considerthe
discretizationof a Poissonequationon the one-dimensionalfinegrid of Figure23,with a coarse
grid definedby pairwiseadditionof neighboringcells.The finegrid equationsat cellsi and i + 1

are given by

ui+l - 2ui + ui-1
= fi (54)

h 2

ui+2 - 2ui+1 + ui
-- fi+l (55)

h 2

respectively. By summing these two equations, we obtain the coarse grid equation for cell B:

Ui+2 -- Ui+l -- Ui "_- ui-1

h2 = fi + fi+l (56)

We seek corrections to the fine grid variables of the form

Ui+ 2 = U old q- CC

Ui+I -_ _ oldai+ 1 _ CB

(57)
ui = u7td+ cB

Ui-1 = U°l--d q- CA

where ca,cB, cc represent coarse grid corrections at cells A, B, and C respectively. Substituting

equations (57) into equation (56) we obtain:

CA -- 2CB + CC oln _ ola- oZd
h2 = fi - _.+l-ZU,h2 .u,_ 1

old 9tto|d ..I.uold

,+1-, (58)+ fi+l- h 2

which is easily seen to be similar to the coarse grid equation defined by the multigrid correction

scheme, since the right-hand side of equation (58) represents a restriction of fine grid residuals. This

represents a simple intuitive and algebraic approach for deriving a multigrid correction scheme.

However, the conventional multigrid correction scheme using rediscretization for the coarse grid

operator yields

CA -- 2CB + CC

4h _

where ri is defined as the residual

ri + ri+l

2
(59)

_ _ zd= L - "i+a + u°lJl
h 2

(60)
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Sincetheseresidualsaredefinedin a point-wisemanner,thevolumeweightedresidualrestriction
resultsin a simpleaveragingof the residualsri and ri+l. Thecoarsegrid equationgeneratedby
the additivecorrectionschemeis thus inconsistentwith equation(59). This is the sameproblem
encounteredwith the agglomerationmultigrid scheme,and is dueto the implied useof injection
for the prolongationoperatorin the additivecorrectionscheme.While theseschemeshavebeen
successfulfor certainclassesof problems,theycannotbeexpectedto performoptimally evenfor a
simplePoissonequation.

4.2 Algebraically Smooth Prolongation Operators

One of the failings of the ACS schemes is their implied use of simple injection as a prolongation

operator. In this section we briefly discuss a strategy for constructing algebraically smooth pro-

longation operators, and examine their effect on overall convergence. As stated in section 3.5, an

algebraically smooth error may be defined as one which can no longer be reduced effectively on the

fine grid using an explicit operator. This usually implies that the residual of the error is small in

some sense compared to the error itself, since explicit smoothers involve the use of the residual to

compute updates to the solution. Thus, the relation

Ae = r ,_ 0 (61)

provides a definition of a smooth error e, where A represents the operator on the current grid, and

r the residual. Since the operator A usually involves a local stencil, equation (61) describes an

error for which the value at the point in question and at neighboring points is distributed in such

a manner as to approximately satisfy the discrete equation locally. For example, for a Galerkin

discretization of a Laplacian, the above equation implies that the error has a linear distribution in

the vicinity of the point in question, without specifying the slope of this linear distribution. Any

highly oscillatory quantities in this region would lead to a large residual. In this case, the error

is also geometrically smooth. In the general case, however, the use of equation (61) represents an

algebraic extension of the concept of smoothness.

In the context of an algebraic multigrid method, or a node-nested multigrid strategy, where the

coarse-grid points comprise a subset of the fine-grid points, or an agglomeration strategy, where the

seed points of the coarse agglomerated cells represent a subset of the fine-grid vertices, a smooth

prolongation operator may be defined as

V i .-_ Vci

N1
vi -- 2._ aij vj

for i E coarse grid

for i _ coarsegrid (62)

At fine-grid points which are common to the coarse grid (or seed points in the agglomeration algo-

rithm), values are prolongated by injection, whereas at remaining fine-grid points, the prolongated

values are obtained by setting the fine grid residual to zero. Here the coefficients aij represent the

non-zero elements of the operator matrix A. This prolongation construction has been described in

section 3.5. As previously mentioned, if all neighboring vertices of i are coarse-grid vertices, i.e.,

all the vj values, then equation (62) yields an explicit formula for smooth prolongation at point
i. However, since this is seldom the case, additional approximations are required. By applying

equation (62) recursively to the neighboring points of i which are not coarse-grid points, and trun-

cating the resulting large stencil at some level, such that it involves only coarse-grid points, an

approximate explicit formula for the prolongated correction at point i is obtained, as described in

section 3.5. An alternate approach [48] is to consider the exact prolongation operator defined by
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setting all residuals equal to zero at points such as i, in equation (62), which represent all fine-grid

points not contained in the coarse grid, and to solve these equations approximately. This can be

achieved by iterative means (i.e., multiple Jacobi iterations). These iterations are similar to those

of the base fine grid solver, since the same operator is involved. However, the appropriate boundary

condition in this case is:

vi = vci for i E coarse grid (63)

where vc{ represents the corrections at the coarse-grid points which are injected to the equivalent

fine-grid points. The fact that the same iterative solver as the base fine grid solver can be employed

makes this implicit prolongation operator simple to construct. The application of equation (63) as

a boundary condition ensures rapid convergence of any simple iterative scheme, since in general

each fine-grid point which is not a coarse-grid point will be surrounded by coarse-grid points,

which are only one or two neighbor distances away. In particular, for the construction described

in sections 3.3 and 3.4, where the coarse-grid points constitute a maximal independent set of the

fine-grid points, each fine-grid point is either a coarse-grid point, or a neighbor of a coarse-grid

point. For Laplace's equation, this implicit prolongation operator preserves a linear distribution

exactly, and closely approximates the prolongation obtained by triangulating the coarse-grid points

and using piecewise linear interpolation, as described previously for the overset-mesh multigrid

approach. (Since different triangulations of the coarse-grid points lead to different piecewise linear

interpolation operators, the two approaches will not be identical in general).

This approach is demonstrated for Laplace's equation using the same two grid system of section

3.7, i.e. the fine and first coarse-level agglomerated grid of Figure 16, in section 3.7. The agglomer-

ation multigrid approach is employed in this case. Recalling the dual nature of the agglomeration

procedure, the seed points of the coarse agglomerated grid are taken as the common coarse and

fine-grid points. Three pre- and post-smoothing Jacobi cycles are executed on the fine grid, and

the coarse grid is solved "exactly" (using 200 Jacobi iterations).

Coarse Grid

Triangulated Seed Pts

Agglomerated

Agglomerated

Agglomerated

Agglomerated

Agglomerated

Agglomerated

Coarse Grid Op. Restriction Prolongation

Rediscretization

Scaled Galerkin

Scaled Galerkin

Scaled Galerkin

Scaled Galerkin

Scaled Galerkin

Scaled Galerkin

Linear

Injection

Linear

Injection

Injection

Injection

Injection

Linear

Injection

Linear

Linear

Implicit (50 cycles)

Implicit (5 cycles)

Implicit (2 cycles)

Convergence Rate

0.125

0.254

0.159

0.171

0.177

0.178

0.195

Table 2: Effect inter-grid transfer operators for agglomeration multigrid.

In Table 2, the convergence rate of the overset-grid method using the triangulated seed points

as a coarse grid and the standard agglomeration algorithm are compared. The former algorithm
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uses linear interpolation for both restriction and prolongation with a geometmc d]scretization of

the coarse grid _equations, while the latter employs injection for both inter-grid transfer operators

(volume weight.ed averaging for the residual restriction is considered aS an injection operation),

and the Gaierkin coarse-grid operator rescaled for consistency as given, by equation (52). The

slower convergence of the agglomeration method is accelerated when the same linear interpolation

operators used in the overset-mesh method are explicitly used in the agglomeration method. In

fact, even if linear interpolation is employed only in the prolongation operator, most of the benefit

is achieved, as can be seen from the fourth entry in the table. In the remaining three entries in the

table, the use of the implicit prolongation operator is clearly seen to produce nearly identical results

to the same scheme using the linear interpolation prolongation operator. Furthermore, the overall

multigrid convergence rate degrades only slightly when decreasing the number of iterations used

to solve the implicit prolongation operator from 50 to 2, supporting the claim that these (implicit

prolongation) equations converge rapidly.

The implicit prolongation operator construction can be particularly advantageous for complex

non-linear problems. For example, in the event that a maximum principle or a positivity condition

is built into the single-grid relaxation scheme, injection or even linear interpolation prolongations

cannot guarantee the preservation of such properties throughout the multigrid process, particularly

for non-llnear equations. However, such properties are preserved in a natural manner by the implicit

prolongation operator. This is easily seen since the seed points inherit the property from the coarse

grid solution, while the other fine-grid points receive corrections generated using fine grid iterations.

It is also interesting to note that for hyperbolic problems, many modifications to the simple linear

interpolation prolongation operator have been suggested, in order to account for the hyperbolic

nature of the problem [21, 37]. The present implicit formulation should presumably take such

effects into account automatically.
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Figure 28: Fine unstructured mesh for

computation of turbulent flow over RAE

2822 airfoil. (Number of vertices = 18840).

Figure 29: Multigrid Convergence rates

obtained with injection and implicit pro-

longation operators for turbulent flow over
RAE 2822 airfoil.

In Figure 29, the convergence rates of the overset-mesh multigrid approach and the agglomera-

tion multigrid approach using the implicit prolongation operator are compared for the computation

of viscous turbulent flow over an RAE 2822 airfoil on the grid of Figure 28. For this case, the
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freestreamMachnumberis 0.73,the Reynoldsnumberis 6.5 million, and the incidenceis 2.31
degrees.Turbulenceeffectsareaccountedfor by the single-equationmodelof Spalart-AUmaras
[52],which is alsosolvedusingthe multigrid procedure.As previously,the implicit prolongation
operatoris computedby injectingcorrectionsto the fine-gridpoints whichcorrespondto coarse
agglomerated-gridseed-points,and performingmulti-stagetime-steppingon the remainingfine-
grid points,whileholdingthe seed-pointvaluesconstant.The agglomerationalgorithm usingan
injectionprolongationoperatoris noticeablyslowerthan the rate obtainedwith the implicit pro-
longationoperator,whichevenoutperformsthe overset-meshmethodusing linear interpolation.
In this case,wherethe equationsarenon-linear,the implicit prolongationoperatorpresumably
providessmootherfinegrid correctionsthana linear-interpolation-basedprolongationoperator.

Whenmanyiterationsarerequiredto solvetheimplicit prolongationequations,the procedure
isobviouslynot practical,sincetheseiterationsareveryexpensive,i.e., they correspond to fine grid

iterations. Unfortunately, even though most of the convergence acceleration benefit in Figure 29

can be obtained with only 2 sub-iterations for the implicit prolongation equations, the procedure

is still not worth the gain in convergence speed it affords for this case. Thus, the usefulness of

the implicit prolongation operator depends on the ability to inexpensively approximate or solve

the equations associated with this operator. This represents a topic of current research. The

above examples, however, serve to demonstrate the potential of an algebraically-based smooth

prolongation operator.

4.3 Better Coarse Grid Operators

The construction of the scaled Galerkin coarse-grid operator for diffusion problems defined in

equation (52) is somewhat heuristic in nature, and is apparently not as effective as the operator

obtained through rediscretization, even when identical inter-grid transfer operators are employed,

as can be inferred from Table 2. The possibility of constructing more efficient coarse grid operators

must therefore be considered. One possibility would be to investigate the use of a Galerkin coarse

grid operator I H A I h where I h is the implicit prolongation operator described above. However,

due to the implicit form of I h, this construction is not straight-forward. For linear problems,

an explicit form of the prolongation operator could be constructed in a preprocessing phase by

(approximately) inverting the matrix which corresponds to the system of equations (62).

In order to investigate the effect of more accurate prolongation operators in the Galerkin coarse

grid operator construction, the solution of Laplace's equation on the two-grid system composed of

the finest and first level agglomerated grid of Figure 16 is chosen as a test problem. The convergence

of the rediscretized and scaled coarse grid operator constructed using injection, and the coarse grid

operator constructed using piecewise linear interpolation are compared in Table 3.

The piecewise linear interpolation operator itself is that obtained by triangulating the coarse grid

seed points, and is precisely the operator used for prolongation by the overset-mesh multigrid pro-

cedure operating on an equivalent coarse grid of triangulated seed points. While this construction

for the prolongation operator may not be possible in the general case, it is readily available in this

case (explicitly constructed in the overset-mesh code), and affords a direct comparison with the

overset-mesh multigrid method, where the coarse grid operator is constructed by rediscretization.

Clearly, the Galerkin coarse grid operator based on linear interpolation is much more effective

than even the geometric coarse grid operator used in the overset-mesh approach. This demonstrates

that Galerkin coarse grid operators can be even more effective than rediscretization techniques.

However, even though this scheme contains the same number of coarse-grid points (or coarse level

variables), the matrix of the coarse grid operator is no longer based on the implied agglomeration

graph, and is much denser. This is the result of the operator no longer relying exclusively on

nearest neighbor stencils. Coarse grid evaluations are over three times more expensive than in

the other cases. This method is therefore not practical, particularly for multi-level applications.
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Coarse Grid

Independent

Triangulated Seed Pts

Agglomerated

Agglomerated

Coarse Grid Op.

Rediscretization

Rediscretization

Scaled Galerkin

Full Galerkin (Using
Linear Int. for I H and I h)

Restriction

Linear

Linear

Linear

Linear

Prolongation

Linear

Linear

Linear

Linear

Convergence

0.100

0.125

0.159

0.060

Table 3: Effect of coarse grid operator in agglomeration multigrid.

There are various possibilities for alleviating this difficulty, although some degree of compromise is

usually required. One approach is to choose the coarse-grid points in the agglomeration or point-

removal process such that the resulting stencil size of the Galerkin coarse grid operator is minimized.

Simultaneously, the explicit stencils of the restriction and prolongation operators may be truncated,

preserving only the strongest coefficients in the stencil. The combination of these two effects has

been shown to produce coarse grid stencils of near constant complexity when applied recursively

on sequences of coarse meshes [25]. Another approach is to attempt to approximate the coarse

grid stencil, or to decompose it into the sum of several stencils, and to delete or approximate one

or various of these individual stencils [60]. Finally, the additional cost of evaluating more complex

coarse grid operators may be offset partially by reducing the complexity of the coarse grids (i.e., the

number of coarse-grid points), although this approach runs the risk of under-representing particular

error frequencies. Clearly, additional research is required before more sophisticated coarse grid

operators can be utilized effectively.

4.4 Optimal Coarsening Strategies for Anisotropic Problems

While the use of unstructured meshes was initially viewed as a complicating factor for the im-

plementation of multigrid methods, the added flexibility of unstructured meshes turns out to be

a great advantage for devising more efficient multigrid strategies. For structured meshes, the

usual coarsening strategy consists of deleting every second point in each coordinate direction. For

strongly anisotropic problems, involving highly-stretched meshes, local smoothers are only effective

at smoothing the error in the direction of strongest coupling (small mesh spacing), leaving the high-

frequency error components in the direction of high stretching relatively unsmoothed. A common

technique to remedy this situation is to resort to semi-coarsened meshes, where the next coarser

mesh is constructed by removing every second point in one coordinate direction only, i.e., the di-

rection of strong coupling. The difficulty of this approach is that different regions of a structured

mesh may exhibit stretchings in different coordinate directions. Thus, a uniform semi-coarsening

in a single direction is not sufficient, and generally, two semi-coarsened meshes are required, one

for each coordinate direction in two dimensions. For recursive coarsening, this results in a diamond

shaped pattern of coarse meshes, as shown in Figure 30. In three dimensions, the situation becomes

prohibitively complicated and expensive.
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Figure 30: Sequence of coarse meshes required for two-dimensional semi-coarsening of an
8 × 8 fine structured mesh.

Unstructured multigrid methods, on the other hand, offer the possibility of generating optimally

coarsened meshes, where each coarse mesh is tailored to represent precisely the error frequencies

which could not be smoothed efficiently on the previous finer mesh. This can be accomplished either

algebraically, by agglomeration, or by point removal techniques using the overset-mesh method.

In fact, the coarsening strategy and the multigrid approach can be treated independently from

one another. Such optimal coarsening strategies offer the possibility of resolving stiffness due to

anisotropy and disparate length scales in an efficient manner. Although these techniques are only

beginning to be appreciated for unstructured mesh multigrid methods, they have been exploited

in certain implementations of the Additive Correction Scheme [55, 57], and in algebraic multigrid

methods [25].

One of the central ideas in optimal coarsening strategies is to coarsen in the direction of strong

coupling, i.e., to remove or agglomerate fine-grid points which are strongly coupled to a current

coarse-grid point. In the geometric context, strong coupling occurs for closely spaced points,

whereas in the algebraic context strong coupling refers to a non-zero entry in the sparse matrix which

has a large magnitude, i.e., a_j >> 1 in equation (34). Since these matrix entries correspond to edges

in the graph of the matrix, the weight of the edge determines the amount of coupling between the

two end-points associated with the edge. Therefore, in order to achieve more optimal coarsenings,

the simple graph-based techniques discussed in sections 3.3 and 3.4, such as those concerned with

maximal independent sets, must be replaced with weighted-graph techniques, where weights are

associated with each edge of the graph, which are then taken into consideration by the algorithm

in deciding how to coarsen.

The operator stencil coefficients usually represent a good choice for defining the graph weights.

This assumes that the operator may be expressed in an edge-based format with a single coefficient

for each edge. This may not always be possible. For example, non-symmetric operators result in the

association of two weights per edge, one for each direction of the edge, while the edge coefficients

generated by non-linear operators are non-constant and may vary at each time-step. While these

cases may be handled via certain simplifying assumptions, the case of a system of equations, such

as the Euler or Navier Stokes equations is even more difficult, since the edge-weight becomes a
matrix.

For these reasons, we will concern ourselves uniquely with the discrete Laplacian in the remain-

der of this section. For this operator, a unique stencil coefficient may be associated with each edge

of the graph. By defining the edge weights in this manner, the coarsening algorithm produces the
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samebehaviorfor a uniformLaplacianof the form

ux_ + uy_ = 0 (64)

discretized on a mesh with a stretching ratio of e, as for the anisotropic Laplacian of the form

eux_ + uyy = 0 (65)

discretized on a uniform mesh.

The coarsening algorithm should be able to handle arbitrarily anisotropic meshes, but should

also be able to reproduce structured-mesh semi-coarsening patterns for uniformly anisotropic prob-

lems on structured meshes. A simple-minded technique for graph-weighted coarsening would be

to modify step 4 in the algorithm described in section 3.4, by only agglomerating or removing the

neighboring point which has the strongest connection to the current seed point or coarse-grid point.

In the event this point has already been removed by some other neighboring coarse-grid point, the

next strongest connecting point may be chosen. The difficulty with this approach is that in regions

where the anisotropic character is weak, the algorithm does not revert to the multi-directional

coarsening strategy of the original algorithm. A more sophisticated approach is to precompute the

average connection strength at each vertex, and then to coarsen the neighbor j of a coarse grid

vertex i only if

1 Nneigh

[aijl > /3 _ _ laik] (66)

Nneigh k_i

where Nneigh represents the number of neighbors of i, or number of non-zero entries in the ith row

of matrix A. /3 is a parameter which determines the degree of anisotropic coarsening. For/3 = 0

unweighted coarsening is recovered, while when /3 = 1 coarsening occurs only along connections

stronger than the average. In [25] a value of/3 = 0.5 is suggested, which reproduces directional

coarsening in regions of strong anisotropies, and full or unweighted coarsening elsewhere.

Mesh

Cartesian

Tchebychev

Tchebychev

Tchebychev

Method of Coarsening

Structured, Full-Coarsening

Structured, Full-Coarsening

Structured, Semi-Coarsening

Unstructured, Directional

MG Rate

0.15

0.52

0.50

0.14

Table 4: Convergence rate of directional coarsening multigrid on Tchebychev mesh of various

stretchings.

In Table 4 and Figure 31, the solution of a Laplacian on a Tchebychev mesh is illustrated, using

a similar coarsening strategy. The triangular Tchebychev mesh is initially structured, but contains
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conflictingstretchingdirectionsfor simplestructuredsemi-coarseningmethods.As shownin the
table,whenstructuredfull-coarseningor semi-coarseningin onedirectionis employed,a dramatic
reductionin multigrid efficiencyresults. On the other hand,whenthe directionalunstructured
coarseningstrategyis employed,usingthemeshesdepictedin Figure31, the optimalconvergence
rate achievedonanequallyspacedcartesianmeshis recovered.In all cases,amultigrid W-cycleis
employed,usingtwoJacobiiterationson the refinementaswellascoarseningphasesof the cycle.

In this case,the coarseningstrategyconsistsof removingthe neighboringvertex with the
strongestavailableconnectionasthefront isadvanced,andretriangulatingthecoarse-gridpoint-set
usinga min-maxtriangulation[61].

Figure 31: TriangulatedTchebychevmeshand threecoarselevel meshesobtainedby
directionalcoarsening.

Thethree-dimensionalagglomeratedgridsdisplayedin Figure24,of section3.7,wereactually
generatedusingthe coarseningcriterionof equation(66),with thevalue/3= 0.0001. In this case,

since the Navier-Stokes equations represent a system of equations, the edge coefficient was taken as

the inverse of the edge length, which represents a geometric definition. The low value of/3 produces

directional coarsening only in the highly stretched regions of the mesh, near the airfoil surface,

in the initial phases of the coarsening process. Figure 32 depicts the coarse agglomerated meshes

which result when a value of/3 = 0.1 is employed. As expected, semi-coarsening is much more

prevalent. For example, the span-wise resolution of the mesh is essentially constant throughout all

levels. However, the quality of the coarser meshes appears to degrade. The problem stems from the

complexity of the coarse grids. In highly anisotropic regions, a 2:1 coarsening is generally produced

by the weighted-graph techniques, while in the isotropic regions, an 8:1 coarsening results. When

the process is applied recursively, the isotropic regions of the mesh are coarsened much faster than

the non-isotropic regions, thus resulting in large disparities in neighboring cell sizes, as can be

seen in the coarse grids of Figure 32. This, in turn, has a negative impact on the effectiveness of
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the coarsegrid operator. A secondaryeffectis to increasethe complexityof the coarsegrids (as
comparedto an unweightedgraphalgorithm), thus increasingthe costof a multigrid cycle,and
obviatingthe possibilityof usingW-cycles.

/

Figure 32: Coarse agglomerated grids obtained using directional coarsening strategy.

These are some of the reasons why directional coarsening techniques have not been exploited

more fully to date. Similar issues arise in the context of coarsening strategies for adaptive meshing

problems, where highly disparate length scales are encountered. They are dealt with in more detail

in the following section.
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5 Multigrid Techniques for Adaptive Meshing Problems

In addition to their flexibility for discretizing complex geometries, another great advantage of

unstructured meshes is the ease with which adaptive meshing techniques may be incorporated.

Although most work on adaptive meshing methods has concentrated on tile logistics of refining
the mesh and the formulation of suitable refinement criteria, efficient solution techniques for the

resulting discrete equations are also required in order to enable both fast and accurate solutions.

Adaptive meshing, in pa.rticular, provides a natural setting for the use of multigrid solvers. The

various refined meshes generated from the adaptive process can be used to form the set of coarse

and fine meshes of the multigrid sequence. The multigrid algorithm can then be used to accelerate

the convergence to steady-state of the discrete equations on the finest adaptive mesh. In fact, the

synergy between the two techniques is greater than may be initially apparent, and has roots in the

ideas of multi-resolution (see Figure 33).

adapted level

!

Coarse global le e

Figure 33: Illustration of the ideal umlti-resolution principle of adaptive meshing com-
bined with multigrid where each mesh level of the multigrid sequence represents a unique

resolution scale.

The role of the adaptation process is to identify regions of the domain where the resolution of

smaller scales is required and to generate these required new mesh levels, while the role of the

multigrid solver is to eliminate the w_.rious high- and low-frequency errors of the solution on the

grid level which best represents them. This has led to the development of methods such as the FAC

(Full Adaptive Composite) method [62], and to the notion of the de-algebraization of multigrid, as

described by Brandt [26], where the multigrid procedure is no longer viewed simply as a fast solver

for discrete equation sets, but rather as part of a complete strategy for approximating the solution

to the continuous partial differential equation. Spatial convergence is achieved by the adaptation

process, while temporal or numerical convergence is achieved bv the multigrid procedure.
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Figure 34: Final adapted mesh employed

for computation of inviscid flow over four-

element airfoil. (Mach=0.2, Incidence = 0

degrees, Number of points = 22,792).

Figure 35: Computed Mach contours of

flow over four-element airfoil on adapted

mesh. (Mach=0.2, Incidence = 0 degrees).
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Figure 36: Multigrid and adaptive mesh convergence history for flow over four-element

airfoil.

As an example, consider the solution process depicted in Figures 34 through 36. All of the

techniques employed in this solution strategy have been described in the preceding sections. The

overset-mesh multigrid approach is used to solve the steady-state Euler equations about an idealized

four-element airfoil geometry on the grid of Figure 34. A total of seven meshes are employed in

the multigrid sequence, of which the four coarsest meshes were generated using a global Delaunay

triangulation procedure, and the remaining three meshes were generated adaptively, throughout

the solution process, using local point-insertion followed by Delaunay reconnection. The initial

49



fine mesh contains a total of 6,466 points, while the final adapted mesh depicted in Figure 34

contains 22,792 vertices. The full multigrid strategy described in section 2.5 (c.f. Figure 4) is

employed. The process begins by multigrid cycling on the four coarsest meshes of the sequence.

Once a satisfactory solution on the initial fine mesh is obtained, a new adaptively generated mesh

is constructed, the patterns for interpolation between this new grid and the previous grid are
computed, the solution is interpolated to the new grid, and the multigrid process is resumed on the

new sequence of meshes which contains the new adaptively generated grid as the finest mesh. Figure

36 depicts the convergence rate for this case, where t00 mu]tigrid W-cycles are performed at each

level of adaptivity. The slopes of the various multigrid convergence histories are nearly identical

on the four different mesh levels, demonstrating the mesh independent convergence property of the

multigrid algorithm. Convergence on the final mesh is only slightly slower than that on the initial

levels, resulting in an average reduction rate of 0.925. The convergence history of the computed

lift coefficient is also plotted. The effect of spatial grid convergence can be seen by the diminishing

differences between the final lift values on consecutively finer meshes. This figure provides an

illustration of the concept of using adaptive-multigrid as a method for solving the continuous set

of partial differential equations, with the lift coefficient converging to the infinite resolution value,

and the multigrid procedure driving the numerical solution on each level. The solution is depicted

in Figure 35, as a set of computed Mach contours. The freestream Mach number is 0.2, and the

incidence is 0 degrees for this case. This entire run, including all mesh adaptivity, was achieved in

approximately 2 hours on an SGI Indigo R4000 workstation.

Although the previous example demonstrates the effectiveness of multigrid as an efficient so-

lution strategy for adaptive meshing problems, certain characteristics of adaptive problems can

degrade the overall efficiency of the above multigrid approach. These manifest themselves, not as

degradations of the observed convergence rates, but rather as unwanted increases in complexity

(number of operations) of the multigrid cycle. For example, in the non-adaptive two dimensional

case, the complexity of a V-cycle is bounded by 4/3 work units, and that of a W-cycle by 2 work

units, where a work unit is defined as the equivalent work of one fine grid iteration (see Figures 2

and 3 for the definition of these cycles). The above bounds are computed assuming each coarser

mesh level contains 1/4 the number of points of the previous level. In the case of adaptively gen-

erated meshes, where such relations between the complexities of the various mesh levels no longer

hold, the V-cycle complexity becomes equal to the sum of the complexities of all meshes in the

sequence, while the W-cycle complexity can become so high as to make it impractical.

Even the V-cycle complexity is much higher than it need be. For adaptively refined meshes,

refinement only occurs in localized regions of the mesh, and there are large regions of the domain

where the mesh resolution is essentially unaltered between mesh levels. Repeatedly time-stepping

in these regions of the mesh on various levels represents a waste of computational effort. In this

section, two strategies which overcome this increase in complexity for V-cycles are described. A

third approach, which results in optimum complexity, thus enabling the use of V or W cycles, is

finally discussed.

5.1 The Zonal Fine Grid Scheme

The basic idea behind this scheme [63, 64] is to omit time-stepping in regions of the mesh which have

not been refined with regards to the previous level. A crude implementation consists of making use

of the same multigrid strategy as described previously, but blanking out the appropriate vertices on

each mesh level. In actual fact, the fine mesh consists only of the regions which have been refined,

with possibly some extra buffer layers. The method can be implemented by storing only these

regions at each level in order to save memory (although this has not been done in the following

example).
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Figure 37: Adaptedmeshemployedto computeinviscidflowovertandemairfoil configu-
ration.

Figure 38: Third and fourth aclaptive levels in tlle zonal fine-grid scheme for computation

of flow over tandem _irfoil contiguration.
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Figure 39: Convergence rates of various

multigrid schemes in terms of cycles for flow

over tandem airfoil configuration.

Figure 40: Convergence rates of various

multigrid schemes in terms of work units for

flow over tandem airfoil configuration.

As an example, consider the adaptive mesh used to compute the inviscid flow over a tandem

airfoil configuration, shown in Figure 37. This mesh is the result of 6 levels of adaptivity. For

the zonal fine grid scheme, the 3rd and 4th adaptive levels are depicted in Figure 38. Figure 39

compares the convergence rates of the zonal-fine grid scheme with that of the global multigrid

scheme described previously for this case. There are in fact 8 mesh levels in both multigrid cases,

2 initial global levels, and 6 adal)tively generated levels. (The global levels are identical for both

schemes). The freestream Mach number is 0.7, and the incidence is 3 degrees. Both multigrid

schemes converge at nearly identical rates, in terms of residual reduction per cycle. This result

verifies the fact that multigrid time-stepl)ing in regions where no change in resolution occurs is

unnecessary. The advantage of the zonal Ihle grid scheme is the result of the reduction in complexity

of the multigrid cycle, as shown in Figure 40, where the convergence rates are compared in terms
of work units. For this case, the zonal line grid scheme is seen to be roughly twice as efficient as

the global multigrid apl)roach.
This so-called zonal fine grid scheme is the unstructured-mesh equivalent of the fast-adaptive-

composite scheme (FAC) [62], and as such embodies the principles of multi-resolution as depicted

in Figure 33. Each mesh level is responsible for resolving a particular range of scales, and highly

disparate length scales are not found on any common mesh, as would be the case ill a global mesh

with localized regions of adaptive rel'mement.
One of the drawbacks of this method is that tile final solution lies on a composite mesh which

is spread over various multigrid levels. Aside front practical difficulties involved in postprocessing

the solution, this complicates other issues, such as the requirement of constructing a conservative

discretization ill the final solution, as well as the use of different schemes on fine and coarse mesh

levels.
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5.2 Tile Zonal Coarse Grid Scheme

The idea of the zonal coarse grid scheme is to overcome the difficulties encountered in the zonal

fine grid schenm (lue to the composite nature of the filial solution, by maintaining a global lille grid

upon which the-final solution is based. In order to maintain favorable complexity, time-stepping

is omitted on the coarser meshes in regions of the domain where no mesh-refinement takes place

between two consecutive levels. Tiffs strategy is illustrated ill Figure 41,
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Figure 41: Illustration of the relationship between the zonal line-grid scheme, the zonal

coarse-grid scheme, and the global multigrid scheme using linear one-dimensional meshes.

using one-dimensional linear meshes, aud compared to the zonal fine-grid and global multigrid

strategies. The overall complexity of the zonal line-grid and coarse-grid schemes are necessarily

identical. As can be inferred from the figure, the zonal fine grid and coarse grid schemes are

equivalent, except that in the former case the non refitted mesh regions are represented on the

coarse level meshes, wherea.s in the latter, these are assigned to the finest possible mesh level.

Ilence, the zonal coarse grid scheme simply corresponds to a reordering of the local unrefined and

refined mesh regions.

The convergence rate of the zonal coarse grid scheme is compared with that of the zonal fine

grid scheme and the global multigrid scheme for the transonic tandem-airfoil case on the mesh of

Figure 37. As expected, all three methods yield similar convergence rates on a per cycle basis,

while the zonal line attd coarse grid schentes achieve a factor two gain in efficiency over the global

multigrid scheme in this case, due to the reduction in complexity, as shown in Figure 40. Thus,

the zonal coarse grid scheme is equivalent to the zonal fine grid scheme in terms of eft]ciency, but

enables the linal solution to be computed on a global title grid. The disadvantage of this approach

is that each time a new adaptively relined mesh is generated, tile zollal coarse meshes ]trust be

reassigned to the appropriate levels.

5.3 Aggressive Coarsening Strategies

While the zonal fine and coarse grid schemes achieve substantial reduction in the comple_ty of a

multigrid cycle for adaptively generated meshes, the use of a W-cycle with such schemes is still

impractical, due to the rela.tive complcxities of tim various mesh levels. Since the W-cycle performs

frequent visits to the coarse level meshes within a single cycle, the mesh complexity must be reduced
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byat leasta factorof four whengoingto the nextcoarserlevel,ill orderto guaranteea boundon
tile overallW-c)cle complexity,asthe numberof meshlevelsincreases.Another characteristic of

the zonal multigrid schetues described above is that they rely on the adaptive refinenmnt history ill

order to identify tile coarse and fille mesh levels. Such methods cannot be used effectively in cases

where this information is not available, or in the case of a mesh of arbitrary construction, which

may contain large variatiolts in cell sizes.

The point removal, agglomeration, or a.lgebraic coarsening strategies discussed in the previous

section can be employed to overcome these difficulties. These represent automated coarsening

strategies, which are used to coarsen tile given title grid, without consideration of the adaptive

construction history of the grid. The use of such techniques for adaptively generated meshes

represellts a plfilosophy in which ntultigrid is decoupled form the adaptive process, and employed

simply as a fast solver for a discrete filte-grid t)roblem, much in the same manner as an implicit or

direct solver would be employed.

Aggressive coarsening relates to the attempt in an automated coarsening process to optimize

tile complexity of the generated coarse lnesh levels. For a multigrid smoother which is designed to

damp high-frequency errors (as is usually the case), the optimal reduction in coarse grid complexity

between two successive levels is 4:1 ill two dimensions, and 8:1 in three dimensions. For isotropic

problems, the uuweighted graph techniques described in the previous section, (i.e., which rely on

maximal independent sets) generally achieve near optimal coarse grid complexities, thus enabling

the use of V or W-cycles. llowever, although the complexity of the multigrid cycle may be optimal,

the overall solution efficiency can only be competitive provided tile multigrid convergence rate does

not degrade substaatially.

Figure 42: Resulting coarse mesh using two passes of aggressive coarsening and equivalent

mesh level used in global multigrid sequence.
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Figure42providesa comparisonbetweenthecoarsemeshlevelobtained by two passes of aggressive

coarsening on the fine mesh of Figure 37, and the equivalent mesh from the global multigrid sequence

(6th level out of 8). Because each cell of the original grid is forced to "grow" at the same rate, the

large outer boundary cells are seen to grow much more rapidly throughout the coarsening process

than the small refined cells in the shock region of the fine mesh. This results in large discontinuities

in cell size which become even more pronounced on the coarser levels. This, in turn, may degrade

the observed convergence rate of a multigrid scheme based on these mesh levels. This is the same

problem encountered with directional coarsening strategies for anisotropic problems (c.f. Figure 32

of section 4.4). These methods are evidently in complete violation of the multi-resolution principle

associated with (adaptive) multigrid methods, where each mesh level is responsible for a given

range of scales. Not only does each mesh level contain a wide range of scales in these approaches,

but the bandwidth of this range increases on the coarser mesh levels.

Nevertheless, for many adaptive problems, aggressive coarsening strategies are highly desirable,

both due to their fully automatic nature, and their low complexity. Such methods could obviously

be improved by trading off complexity for more regularity in the coarse mesh levels, and thus better

multigrid efficiency. However, this task generally requires global information about the current fine

mesh construction (i.e., in the adaptive mesh case, the history of refinement). This has important

implications for the future design of optimal automated coarsening techniques, both for adaptive

problems, and for anisotropic problems, since at present, most of these methods rely exclusively on

local information, such as that given by equation (66) for constructing coarser levels.

6 Conclusion

As was pointed out eleven years ago, in a similar VKI lecture series [26], multigrid methods are

very powerful techniques which in principle can be utilized to solve almost any type of numerical

problem in a near optimal fashion. At that time, unstructured mesh techniques for computational

fluid dynamics were in their infancy, and multigrid methods had not yet been considered for such

problems. Today, unstructured multigrid methods are among the most efficient techniques for

solving large unstructured mesh problems, and have seen widespread application. While incurring

additional complications, the application of multigrid methods to unstructured meshes opens up

new possibilities for developing more efficient algorithms. One of the themes of the above presen-
tation has been to stress the abstraction or algebraization of the process, while pointing out the

similarities with more traditional approaches. This emphasis stems from the belief that convergence

acceleration techniques should not be bound by geometry-based constraints, and the removal of

the influence of the geometry from the multigrid process should lead to a more robust strategy. Of

course, completely algebraic multigrid methods for complex non-linear problems are not available,

and much research is still required in this area.

Other treatises on multigrid methods have stressed the de-algebraization of multigrid, invoking

multi-resolution principles, and advocating the use of multigrid methods as part of a comprehensive

grid-based strategy for approximating solutions to the continuous partial differential equations.

These two views of multigrid methods need not necessarily be in conflict with one another. The

determination of the relevant length scales of a discrete problem and their assignment to appropriate

levels, as well as the integration of multigrid principles with adaptive meshing techniques can be

pursued either as a grid-based approach, or in a more abstract or algebraic setting. The extraction

of the relevant information from the problem is the main issue.

Although current multigrid techniques are relatively efficient, there are many unresolved issues

which require further investigation. These include the construction of more efficient coarse grid

operators, the use of more accurate inter-grid transfer operators, and the development of optimal

coarsening strategies for anisotropic as well as adaptive meshing problems. Finally, at a more fun-

damental level, additional insight is required to resolve the discrepancies between existing multigrid
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efficienciesfor elliptic andhyperbolicproblems[65].
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