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PREFACE

This report describes in detail innovative analytical research aimed at dem-

onstrating the remarkable potential for structural optimization and aeroelastic

tailoring present in swept tip composite helicopter rotor blades. It is shown

that by a judicious combination of composite ply orientation in the primary

blade structure and the swept tip; remarkable reductions in the vibration levels

in forward flight, at the blade hub, can be achieved.

The research described in this report was carried out in the Mechanical,

Aerospace and Nuclear Engineering Department at UCLA, and it was funded

by NASA Grant NAG 1-833 with Dr. H. Adelman, from NASA Langley, as

the grant monitor. The authors hereby express their appreciation to the grant

monitor for his useful comments and suggestions.

The principal investigator for this sponsored research activity was Professor

Peretz P. Friedmann. This constitutes essentially the first author's Ph.D. dis-

sertation; however, certain changes were made to the dissertation, so as to im-

prove it, before turning it into this report.

Finally, the authors gratefully acknowledge the help and advice received

during this research, from Professor L.A. Schmit, Jr. and Dr. C. Venkatesan.
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SUMMARY

This report describes the development of an aeroelastic analysis capability

for composite helicopter rotor blades with straight and swept tips, and its ap-
plication to the simulation of helicopter vibration reduction through structural

optimization. A new aeroelastic model is developed in this study which is

suitable for composite rotor blades with swept tips in hover and in forward

flight. The hingeless blade is modeled by beam type finite elements. A single
finitc element is used to model the swept tip. Arbitrary cross-sectional shape,

generally anisotropic material behavior, transverse shears and out-of-plane
warping are included in the blade model. The nonlinear equations of motion,

derived using Hamilton's principle, are based on a moderate deflection theory.

Composite blade cross-sectional properties are calculated by a separate linear,
two-dimensional cross section analysis. The aerodynamic loads are obtained

from quasi-steady, incompressible aerodynamics, based on an implicit formu-
lation. The trim and steady state blade aeroelastic response are solved in a

fully coupled manner. In forward flight, where the blade equations of motion

are periodic, the coupled trim-aeroelastic response solution is obtained from
the harmonic balance method. Subsequently, the periodic system is linearized
about the steady state response, and its stability is determined from Floquet

theory.
Numerical results illustrating the influence of composite ply orientation, tip

sweep and anhedral on trim, vibratory hub loads, blade response and stability,

are presented, it is found that composite ply orientation has a significant in-
fluence on blade stability. The flap-torsion coupling associated with tip sweep
can induce aeroelastic instability due to frequency coalescence. This instability

can be removed by appropriate ply orientation in the composite construction.

The structural optimization study is conducted by combining the aeroelastic
analysis developed in this study with an optimization package (DOT) to mini-

mize thc vibratory hub loads in forward flight; subject to frequency and
aeroelastic stability constraints. The design variables, during optimization,

consist of the composite ply orientations, of the primary blade structure, and

tip swecp and anhedral. A parametric study showing the effects of tip sweep,
anhcdral and composite ply orientation on blade aeroelastic behavior is used

as a valuable precursor in selecting the initial design for the optimization
studics. However, the most appropriate combination of the design variables,

for vibration reduction, can only be selected by the optimizer. Optimization
results show that remarkable reductions in vibration levels, at the hub, can be

achieved by a judicious combination of design variables; and that tip sweep is

the most dominant design variable for the cases considered.
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Chapter I

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

Structural optimization of rotor blades for vibration reduction in forward

flight has been recognized by industry, research organizations and academia

as an important area of endeavor because vibrations generated by the rotor

and their reduction represent a principal area of concern in the helicopter de-

sign process. During the last decade design criteria for vibration levels at

typical locations in the fuselage, such as the pilot seat, have become increas-

ingly more stringent. The problem is further complicated by the highly inter-

disciplinary nature of helicopter rotor blade design, where numerous

disciplines interact with each other. The use of structural optimization for vi-

bration reduction in forward flight is particularly effective because it is aimed

at reducing the vibration levels at the source, i.e., the main rotor, before it

propagates into the fuselage. Therefore it is not surprising that a considerable

amount of research in this area has been performed during the last

decade[28].

The majority of the structural optimization studies[28] have been restricted

to straight isotropic blades. Modern helicopter rotor blades have been built

of composite materials because such blades have better fatigue life and damage

tolerance than comparable metal blades. Furthermore, current manufacturing

processes for composite blades facilitate the incorporation of refined planforms



and airfoil geometriesin the blade designprocess. Blade manufacturing costs

are alsolower becausethere are fewer machining operations. Composite rotor

blades also offer the potential for aeroelastic tailoring using structural opti-

mization, which can produce remarkable payoffs in the multidisciplinary de-

sign of rotorcraft.

Rotor bladeswith swept tips, shown schematically in Fig. 1.1, experience

bending-torsionand bending-axial coupling effectsdue to sweepand anhedral.

Swept tips influence blade dynamics becausethey are located at the regions

of high dynamic pressureand relatively large elastic displacements. Thus, tip

sweepand tip anhedral provide an alternative for the aeroelastictailoring of

rotor blades. Swept tips are also effective for reducing aerodynamicnoiseand

blade vibrations.

The general objectivesof this research are to develop a new aeroelastic

analysis capability for composite helicopter rotor bladeswith swept tips and

to conduct a structural optimization study combining this new analysiscapa-

bility with a structural optimization package. In the next section,a review of

the state of the art is given in the areas pertinent to theseobjectives. The

specific objectivesof this dissertation are then described in the last section of

the chapter.
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1.2 LITERATURE REVIEW

!.2.1 Structural Modeling of lsotropic Rotor Blades

During the last twenty five years, it has been established that aeroelastic

stability of helicopter rotor blades is an inherently nonlinear phenomenon due

to moderate blade deflections[23,24,25,26,32,70,71-]. The overwhelming ma-

jority of studies dealing with the structural modeling of helicopter rotor blades

use a beam type model. Nonlinear beam kinematics, incorporating small

strains and finite (moderate or large) rotations, are being used to account for

the coupling effects between axial, bending, and torsional deformations asso-

ciated with the centrifugal forces. In the derivation of the strain-displacement

relationships, a small strain assumption stating that strains are small as com-

pared to unity is usually made. This is due to the requirement that helicopter

rotor blades must be designed to operate at strain levels well below the elastic

limit of the blade material due to fatigue life considerations.

A substantial number of the rotor blade models available have been re-

stricted to isotropic material properties. Several typical isotropic blade models

are discussed below.

The first analytical model for the flap-lag-torsion of pretwisted nonuniform

rotor blades was developed by H_)ubolt and Brooks[-51]. This model is based

on a linear theory and nonlinear displacement terms in the derivation were

neglected. As a result, the bending-torsion coupling effects due to the ge-



ometrical nonlinearities, which are important for the rotor blade analysis, were

absent in this model.

In order to incorporate the geometrical nonlinearities due to the assumption

of small strains and finite rotations, one should distinguish between the de-

formed and the undeformed configurations of the blade, and derive the trans-

formation between the triad of unit vectors associated with the undeformed

configuration of the blade and the triad of unit vectors associated with the

deformed configuration of the blade. In the moderate deflection beam theories

developed by Hodges and Dowell[40], and Rosen and Friedmann[76], the

transformations between the deformed and the undeformed triad of unit vec-

tors were derived which, together with the Euler-Bernoulli assumption that

plane sections perpendicular to the undeformed elastic axis remain plane and

perpendicular to the elastic axis after deformation, were used in the derivation

of the nonlinear strain-displacement relationships. These beam theories were

validated by comparing them to static tests performed in the moderate de-

flection regime[21,77]. Subsequently these beam theories[40,76] which pro-

vided the structural operators, were combined with the appropriate inertial

and aerodynamic operators and used in the aeroelastic stability analyses of

isolated rotor blades[41,81]. A moderate deflection beam theory, similar to

those developed in Refs. 40 and 76, was also derived by Kaza and

Kvaternik[54].

During the derivations of a moderate deflection beam theory, a large num-

ber of nonlinear terms are generated. Many of them are relatively small due

to the assumption of small strains and moderate rotations. Therefore, ordering



schemes can be useful for identifying and neglecting higher order nonlinear

terms in a consistent manner. Most ordering schemes[40,41,76,81] are based

on assigning orders of magnitude to the non-dimensional physical parameters

governing the aeroelastic problem in terms of the blade bending slopes, which

are assumed to be of order e. A second order approximation implies that terms

of order e2 are neglected compared to terms of order 1; and using such an ap-

proximation allows one to derive, conveniently, dynamic equations of equilib-

rium for the blade. A few latter studies[15,16,78,79] also used a third order

approximation where terms of order e a were neglected compared to terms of

order i. It is important to note that such ordering schemes are based on ex-

perience with actual blade configurations, and therefore a certain degree of

flexibility is used in their implementation.

Hodges[43] developed a nonlinear beam kinematics in which the assump-

tion of moderate rotation was removed. The only assumptions introduced on

the magnitudes of the kinematical parameters were that the extensional strain

was small (and negligible) compared to unity, and that the orientation angles

were less than 90 °. For rotations larger than 90 °, Rodrigues parameters were

used instead of orientation angles. This theory was used in the development

of the nonlinear equations of motion of a straight pretwisted rotating isotropic

beam, which was subsequently employed as the theoretical basis for the beam

element used in the computer program GRASP[44-1. This beam element

served as a valuable tool for examining the effects of higher order nonlinear

terms in the equations of motion.

5



1.2.2 Structural Modeling of Composite Rotor Blades

Modern helicopter rotor blades are frequently built of composite materials;

therefore during the past few years, a substantial number of analytical studies

have been aimed at the development of models which are suitable for the

structural and aeroelastic analysis of composite rotor blades. The important

attributes of such a structural model require the capability to represent trans-

verse shear deformation, cross-sectional warping and elastic coupling, in addi-

tion to an adequate representation of geometric nonlinearities. A review of the

existing structural models suitable for modeling composite rotor blades were

presented by Friedmann[26], Hodges[45] and Friedmann and Hodges[32].

As mentioned earlier, rotor blades are typically modeled as beams. In a beam

theory, the deformations of the cross-section, both in and out of the plane, are

assumed to be either small or neglected. Therefore, an approach commonly

used in the structural models for composite rotor blade analysis is to determine

the cross section warping functions, shear center location, and cross sectional

properties based on a linear theory. The linear two-dimensional analysis for

the cross-section is decoupled from the nonlinear one-dimensional global anal-

ysis for the beam and it needs to be done once for each cross section of a

nonuniform beam. The discussion of composite rotor blade structural model-

ing can, therefore, be divided into two categories: (l) Modeling approaches

which lead to the determination of the stiffness properties of arbitrary blade

cross sections. Anisotropic materials and the composite nature of the blade

are taken into account in this category. (2) Structural models which use an

one-dimensional beam kinematics suitable for composite rotor blade analysis.



A typical structural modelof this category should include geometricnonline-

arities, pretwist, transverse shear deformation and cross section warping.

Many of the existing compositerotor blade models in category (r) were dis-

cussedin detail by Hodges[45].

Mansfield and Sobey[63] made the first attemp to the study of this subject

by developing the stiffness properties of a fiber composite tube subjected to

coupled bending, torsion and extension. Transverseshearand warping of the

crossscetion were not included in the model. This model wastoo primitive for

composite rotor blade aeroelasticanalysis. Rehfield[75] used a similar ap-

proach but included out-of-plane warping and transverseshear deformation.

This was a static theory for a single cell, thin-walled, closed cross-section

composite, with arbitrary layup, undergoing small displacements. This rela-

tively simple theory was subsequently correlated by Nixonl'69] with exper-

imental data. Hodges,Nixon and Rehfield[47] also conducteda comparison

study of this model[75] with a NASTRAN finite elementanalysisfor a beam

having a single closedcell.

W6rndle[101] developeda linear, two-dimensional finite elementmodel to

calculate the cross sectional warping functions of a compositebeam under

transverseand torsional shear. With thesewarping functions, the shearcenter

locations and the stiffness properties of the crosssection could be calculated.

In this theory arbitrary crosssectional shapescould bemodeledbut the mate-

rial properties were restricted to'monoclinic.

A more general model for calculating the shear center and the stiffness

properties of an arbitrarily shaped compositecrosssection was developedby



Kosmatka[56]. He useda two-dimensional finite elementmodel to obtain the

St. Venent solution of the cross-section warping functions of a tip loaded

composite cantilever beam with an arbitrary cross section. The beam was as-

sumed to be prismatic (axially uniform) and nonhomogcneous. The blade

consistcd of generally anisotropic materials. Subsequently, this cross sectional

analysis was combined with a moderate deflection beam theory suitable for the

structural dynamic analysis of advanced propeller blades[56,57].

Giavotto, et a1.[37] also formulated a two-dimensional finite element anal-

ysis for determining the cross sectional warping functions, shear center location

and stiffness properties. A special aspect of this formulation was that the re-

sulting equations had both extremity solutions and central solutions. The

central solutions correspond to the warping displacements due to applied loads

without considering end effects, while the extremity solutions correspond to the

warping displacements due to end effects. Subsequently, this work was ex-

tcnded by Borri and Merlinil-10] to include the so-called geometric section

stiffness associated with large displacement formulations.

Bauchau[3] dcveioped a beam theory for anisotropic materials based on the

assumption that the cross section of the beam does not deform in its own

plane. The out-of-plane cross section warping was expressed in terms of the

so-called eigenwarpings. This theory is valid for thin-walled, closed, multi-

cellcd beams with transversely isotropic material properties. Subsequently it

was extended by Bauchau, Coffenberry and Rehfield[5] to allow for general

orthotropic material properties.
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The studies on composite blade structural modeling, described above, were

based on a separate two-dimensional analysis to determine the cross-sectional

warping functions and the stiffness properties, and as mentioned earlier fi)r

non-uniform beams, such a two-dimensional analysis has to be carried out

once for each cross section. An alternate approach, developed by Lee and

Kim[58] and Stemple and Lee[87], uses a finite element fl)rmulation which

can represent thin-walled beams with arbitrary cross sections, general spanwise

taper and planform distributions and allows arbitrary cross section warping.

This was accomplished by distributing warping nodes over the cross section

situated at the node of regular beam type finite element. Thus the treatment

of the cross section warping is coupled with the treatment of the beam bending,

torsion and extension. This formulation considers only the out-of-plane

warping and linear problems. Subsequently it was partially extended by

Stemple and Lee[88] and used in the preliminary study of large slatic de-

flections of beams as well as the free vibration analysis of rotating composite

beams. This approach is much more expensive than those whose cross sec-

tional analysis is decoupled from the nonlinear beam analysis, and therefore

it was never used in the aeroelastic analysis of rotor blades.

The structural models for composite blade discussed so far emphasize the

modeling approach associated with category (I), where the emphasis is on de-

termining the shear center, warping and cross-sectional properties of the com-

posite cross section. For category (2) structural modeling, where the emphasis

is the one-dimensional beam kinematics suitable for the analysis of composite

rotor blades, two types of theories are available depending on the level of ge-
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ometric nonlinearity being rctaincd in the one-dimensional beam kinematics.

The first type is based on a moderate deflection theory while the second typc

is capable of modeling large deflections. Moderate deflection theories usually

use an ordering scheme to limit the magnitude of blade displacements and ro-

tations, thus enable the strain-displacement relations and the transformation

between the deformed and undeformed coordinates bc exprcssed in terms of

blade displacement quantities (u, v, w, Oh, and their derivatives with respect to

the axial coordinate, x) explicitly. While large deflection theories do not utilize

an ordering scheme to limit the magnitude of blade displacements and ro-

tations. For such theories the only assumption used to neglect higher order

terms is that the strains are small.

For helicopter rotor blade aeroelastic analysis, moderate deflection theories

are usually adequate provided that a consistent ordering scheme is used. Blade

models based on large deflection theories are mathematically more elegant and

more consistent than those using an ordering scheme; however, the incorpo-

ration of such models into general aeroelastic analyses involving forward flight

could be complicated. The computational requirements associated with mod-

erate deflection theories may also be more modest than those associated with

large deflection theories.

The first aeroelastic model for a composite rotor blade in hover was pre-

sented in a comprehensive study by Hong and Chopral-48]. In this model, the

blade was treated as a single-cell, laminated box beam composed of an arbi-

trary lay-up of composite plies. The strain-displacement relations for moderate

deflections were taken from Hodges and Dowell[40-1, which do not include the

10



effect of transversesheardeformations. Each lamina of the laminate was as-

sumed to have orthotropic material properties. The equations of motion were

obtained using Hamilton's principle. A finite element model _;as used to

discretize the equations of motion. Numerical results for the coupled flap-

lag-torsional behavior of hingeless rotor blades showed that the coupling ef-

fects due to composite construction have a strong influence on blade stability

boundaries in hover. Subsequently this analysis was extended to the modeling

of composite bearingless rotor blades in hover[-49]. The structural model pre-

sented in Ref. 48 was also used by Panda and Chopra[72] to study the

aeroelastic stability and response of composite hingeless rotor blades in for-

ward flight. In a more recent study, Smith and Chopra[84] modified the

structural model presented in Ref. 48 to include the effect of transverse shear

deformation, together with a more refined cross section analysis[-85], to inves-

tigate the aeroelastic response, stability and loads of composite rotor blades in

forward flight. The models used in Refs. 48, 72 and 84 were restricted to

single-cell, rectangular box beams.

A comprehensive analysis for the structural dynamic modeling of advanced

composite propeller blades, which, with some modifications, could be also

suitable for the general modeling of curved, pretwisted composite rotor blades,

was developed by Kosmatka['56,57]. In this model the blade cross sectional

geometry was general. The cross'sectional stiffness properties and shear center

location were obtained from a linear two-dimensional finite element

model[56], which has been discussed briefly earlier in this section.

11



Bauchau and Hong[4,6,7] developeda seriesof large deflection composite

beam models which were intended for rotor blade structural dynamic and

acroclastic analysis. Some shortcomings in the first two models[4,6] were

noted by Hong in his dissertation[-50]. The final version of their theory[7]

was suitable for modeling naturally curved and twisted beams undergoing

large displacements and rotations, while undergoing only small strains. The

kinematics associated with this theory were based on an extension of the com-

mon approach, using the definition of Green strains, to incorporate effects

such as small initial curvature, transverse shear deformations and out-of-plane

warpings. The basic assumptions in the kinematics were the restriction that

the cross-section is rigid in its own plane combined with a revised small strain

assumption. In this revised small strain assumption, both axial and shear

strains were neglected when compared to unity, however no assumption was

made on the relative magnitude between the axial and shear strains. There-

fore, the second order shear strain coupling terms in the axial strain expression

were retained under this revised small strain assumption. A frequently used

small strain assumption, which includes an additional assumption that the ax-

ial and shearing strains are of the same order of magnitude, was often used

successfully in beam models with isotropic or slightly anisotropic materials.

However, Bauchau and Hong[7] showed that it might be inadequate for

beams having large amounts of anisotropy, by comparing analytical and ex-

perimental results obtained for a thin-walled kevlar beam. This model was

used for free vibration studies[50], as well as studies on beams undergoing
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large static deflections. However,an aeroelasticanalysisof rotor bladesbased

on this model is not available to date.

Minguet and Dugundji[66,67] also developeda large deflection composite

blade model for static[66] and free vibration[67] analyses. Large deflections

were accounted for by using the Euler angles to describe the transformation

between a global and local coordinate system after deformation. However,

transversesheardeformation and crosssection warping were not incorporated

in this model. Thus this model is moresuitable for the study of flat composite

strips than actual rotor blades.

Hodges[46] presenteda general beamtheory basedon a nonlinear intrinsic

formulation for the dynamicsof initially curved and twisted beamsin a moving

frame. This beam model is valid for both isotropic and compositebeams. The

nonlinear beam kinematicswas basedon a theory developedby Danielsonand

Hodges[17,18]. The final set of equations of motion were derived using a

mixed variational principle, which provided the basis for finite element for-

mulation. Subsequently Fulton and Hodges[22] developeda finite element

basedstability analysis for a hingelesscomposite isolated rotor in hover.

1.2.3 Structural Modeling of Swept-tip Blades

Only a limited number of analytical studies have addressed the aeroelastic

modeling of rotor blades with swept tips. An analytical study was conducted

by Tarzanin and Vlaminck[90] to investigate the effect of tip sweep on the

hub loads of an articulated rotor system. In this model, tip sweep was simu-
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latcd approximately by manipulating the relative positions of the shear center,

aerodynamiccenter and masscenterof the cross sectionsof a straight blade.

The mathematical model consistedof coupled flap-torsion and uncoupled lag

equations of motion. The numericalresultsobtained led them to conclude that

tip sweepinfluencesboth bladevibrations and stability.

Celi and Friedmann[12] developeda comprehensiveand consistent model

which was capable of simulating the aeroelasticbehavior of a hingelessrotor

blade with a swept tip. The analysis was based on the equations of motion

presented in Ref. [81]. The swept tip was modeled by developing the struc-

tural, inertia and aerodynamic operators for a special beam finite element re-

presenting the tip, while the straight portion of the blade was modeled using a

number of Galerkin type finite elements[27,89]. This was the first detailed

and systematic study of the effect of tip sweep on blade stability in both hover

and forward flight. The most important conclusions obtained in Ref. 12 are

briefly described next. Tip sweep has a powerful influence on the dynamic

behavior of hingeless rotor blades. However, its effect depends on a number

of blade design parameters, such as precone and the combination of blade

fundamental frequencies. The aeroelastic instabilities induced by tip sweep are

associated with frequency coalescence. Such instabilities are strong, and can-

not be eliminated by the addition of small amounts of structural damping.

When frequency coalescence does not occur, tip sweep is usually stabilizing.

Despite its comprehensive nature, the model used in Ref. 12 had a number of

limitations because it approximated the swept tip portion of the blade as

axially rigid element, and it also employed a linear transformation at the
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junction where the swept-tip element wascombined with the straight portion

of the blade. It was latter shown that such a transformation could be inaccu-

rate for large sweepangles[73]. Furthermore, it should be noted that the

studies presentedin Refs.90and 12wererestricted in the sensethat they could

only representtip sweep,but not anhedral (seeFig. 2.3).

Bcnquet and Chopra I-8] developed an aeroelastic analysis to calculate the

response and loads of an advanced tip hingeless blade in forward flight using

finite element method. This model included both tip sweep and anhedral,

however it was still based on a linear transformation for combining the swept

tip with the straight portion of the blade. Subsequently, Kim and

Chopra1-55] extended the formulation given in Ref. 8 to include nonlinear

transformation in the assembly between the swept tip and the straight portion

of the blade, using the transformation and constraint relations developed by

Panda[73]. Bir and Chopra[9] developed an aeroelastic formulation for ad-

vanced geometry blades with variable sweep, anhedral, pretwist and planform.

The blade was modeled as a series of arbitrarily oriented elastic segments with

each segment divided into finite elements. Fuselage dynamic interaction with

the blades was included in the formulation.

All of the studies on swept tip blades mentioned above were restricted to

isotropic blades.
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1.2.4 Structural Optimization for Vibration Reduction

A fairly recent survey describing research on helicopter vibration reduction

using structural optimization, with aeroelastic and multidisciplinary con-

straints, was presented by l=riedmann['28]. It was shown[28] that the inte-

grated multidisciplinary optimization of rotorcraft offers the potential for

substantial improvements, particularly in vibration levels, which can be

achieved by careful preliminary design and analysis without requiring addi-

tional hardware such as rotor vibration absorbers or isolation systems.

To avoid duplicating the review presented in Ref. 28, only a few studies will

be mentioned in this section. The majority of the structural optimization

studies on helicopter rotor blades[-28] have been restricted to straight isotropic

blades. Friedmann and Shanthakumaran[29] applied mathematical pro-

gramming methods and approximation concepts[80] to vibration reduction of

helicopter rotor blades in forward flight. The objective function consisted of

the oscillatory vertical hub shears or the hub rolling moments at an advance

ratio/_ = 0.3. The behavior constraints included frequency placements of the

blade and aeroelastic stability constraints in hover. Cross sectional dimensions

and nonstructural tuning masses, located in the outboard portion of the blade,

were used as design variables. Numerical results for typical soft-in-plane

hingeless rotor configurations indicated that a 15%-40% reduction in vibration

levels, as well as a 20% weight reduction were obtained.

Lim and Chopra[61,62] carried out a comprehensive study of vibration re-

duction in helicopter rotor blades with aeroelastic constraints. An important

contribution made in Refs. 61 and 62 consisted of using a direct analytical
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approach for the calculation of the derivatives of the hub loads[59] and blade

stability[60], with respect to the design variables. These sensitixitv derivatives

were obtained at a fraction of the computational cost associated with the more

conventional finite difference method, such as that used in Ref. 29. However

this approach is applicable only when explicit analvtical expressions are avail-

able, as a function of the design variables, in the calculation of the sensitivity

derivatives.

Davis and Wcller[19] developed a modal-based rotor blade optimization

analysis which was applied to various rotor dynamics problems, such as blade

natural frequency placement, minimization of hub shears and minimization of

modal vibration indices. This modal-based analysis was an automated analy-

sis capable of optimizing blade modal characteristics through tailoring of

structural properties. They concluded that the modal-based optimization

analysis can produce blade design with significantly lower vibration levels.

Frequency placement alone was shown to bc inadequate to achieve minimum

vibration Icvcl. However minimization of modal vibration indices and modal

hub shears lead to substantiallv lower vibratory hub loads, with the modal vi-

bration indices minimization being the most effective criteria for rotor vi-

bration reduction. Subsequently, these results were verified by fairly extensive

wind-tunnel tests[99,20]. In these tests the baseline rotor vibration levels were

compared with those measured for the optimum rotor, and reasonably good

correlation between theory and experiments was obtained. It should be also

mentioned that aeroelastic stability constraints were not considered in Ref. 19.
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Young and Tarzaninl-102] conducted a combined analytical-experimental

study on the application of structural optimization to rotor design. In this

study two diffcrent rotors: a reference rotor and a low vibration rotor; having

identical planform, twist and airfoil, were tested in the wind tunnel. The ref-

erence rotor was designed using a conventional approach; while the low vi-

bration rotor was designed using an analytical structural optimization

procedure, in which the objective function consisted of the fixed system hub

loads. The wind tunnel test results showed substantial reductions in the 4/rev

vertical hub shear and overturning moment for the low vibration rotor at both

low and high advance ratios. Thus, Ref. 102 provides a validation of the

structural optimization procedure for the design of low vibration rotors in for-

ward flight.

Adelman and Mantayl-l'l edited a comprehensive report on the current

state of integrated multidisciplinary optimization of rotorcraft, which included

an intelligent plan for future development towards the complete integration of

various disciplines. It is evident from this document that helicopter vibration

reduction is one of the areas where an integrated multidisciplinary design ap-

proach offers excellent potential for performance gains.

The improved modeling capability available for composite rotor blade

aeroelastic response and stability analysis produced a few structural optimiza-

tion studies on straight composite rotor bladesl35,36]. In Ref. 35, the design

variables were the ply angles of the laminated walls of the box beam, and the

objective was the minimization of the 4/rev hub loads; both hub shears and

moments. Reference 36 was an extension of the study performed in Ref. 35
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by allowing the ply anglesto vary from element to element in the spanwise

direction, and performing a multi-objective optimization to minimize the 4/rev

hub loads and the blade root moment simultaneously.

Only a limited number of structural optimization studies were conducted

on swept-tip blades; with aeroelastic constraints[14,34]. While References 14

and 34 are both restricted to isotropic blades, they indicated that tip sweep can

be used effectively as an important design variable for vibration reduction.

1.3 OBJECTIVES OF THE RESEARCH

The present study has a number of important objectives which are listed

below:

1. Development of an analysis capable of modeling the aeroelastic behav-

ior of composite helicopter rotor blades with swept tips in hover and

forward flight. The important features of this analysis include: (a)

computational efficiency so that the analysis is suitable for the repetitive

calculations required for structural optimization; (b) fully coupled

trim/aeroelastic response analysis capability, since this feature was

found to be critical for the accurate modeling of the dynamic behavior

of rotor blades with swept tips; and (c) ability to represent arbitrary

multi-cell blade cross-sections.

2. Conduct detailed studies on the aeroelastic behavior of composite rotor

blades with straight and swept tips to determine the combined effect of
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sweep,anhedral and compositeply orientation on blade response and

acroelastic stability in hover and in forward flight.

3. Conduct studies illustrating the effects of sweep, anhedral and ply ori-

entation on the hub shears and moments of composite rotor blades in

forward flight.

4. Combine the new acroclastic analysis capability for swept tip composite

blades with a structural optimization package, such as DOT[106].

5. Conduct a few basic structural optimization studies on two-cell, com-

posite blade configurations to illustrate the potential benefits of using

ply orientation, tip sweep and tip anhedral as design variables for re-

ducing vibration levels in forward flight.
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Chapter il

MODEL DESCRIPTION AND COORDINATE SYSTEMS

In this chapter, the assumptions used in the development of the aeroelastic

analysis of a composite helicopter rotor blade with a swept tip are summarized.

The ordering scheme used in the formulation of the moderate deflection theory

is described next. Finally, the various coordinate systems and related coordi-

nate transformations, used in the derivation of the equations of motion of the

blade, are defined.

2.1 BASIC ASSUM PTIONS

1. The hingeless blade is cantilevered at the hub, with a root offset e_ from

the axis of rotation (see Fig. 2.2).

2. The blade has a precone angle tip (see Fig. 2.2) and it has a built-in

pretwist distribution r 0 about the elastic axis (line of shear centers) of

the blade.

3. The blade has no sweep, droop or torque offset.

4. The blade consists of a straight portion and a swept tip whose orien-

tation relative to the straight portion is described by a sweep angle (A_)

and an anhedral angle (A_) (see Fig. 2.3).

5. The blade is modeled by beam type finite elements along the elastic axis

of the blade.
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6. A single finite element is used to model the swept tip.

7. The blade cross section can have arbitrary shape with distinct shear

center, aerodynamic center, tension center and center of mass.

8. The stiffness and mass properties of the blade, and its chord and pre-

twist, are allowed to vary along the span of the blade.

9. The blade feathering axis coincides with the line of shear centers of the

straight portion of the blade, which is approximated by a straight line.

Note that the blade stiffness distribution for a typical helicopter, such

as the MBB BO-1051861, usually consists of a stiff, nonuniform inboard

portion (approximately 25*/0 of the blade length) in which large vari-

ations in stiffness can occur, and a flexible outboard portion (approxi-

mately 75°/. of the blade length) where the blade properties are

relatively uniform. The elastic deformations of the blade occur prima-

rily in the outboard portion; thus the line of shear centers associated

with this blade segment is to a large extent representative of the behav-

ior of the elastic axis of the whole blade.

10. The blade is built of generally orthotropic materials, and it is

anisotropic.

I I. The blade has completely coupled flap, lead-lag, torsional and axial dy-

namics.

12. The effects of transverse shear deformations and out-of-plane warping

are included.

13. The blade undergoes moderate deflections, which imply small strains

and moderate rotations.
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14. Two-dimensional quasi-steady aerodynamics, based on Greenberg's

thcory, is used to obtain the distributed aerodynamic loads; this simple

unsteadytheory is justifiable becausethe principal objectivesemphasize

the structural modeling of the blade and its optimization for vibration

reduction.

15.The induced inflow is assumedto be uniform and steady.

16.Stall and compressibility effectsare neglected.

17. Reverseflow effects are included by setting the lift and moment equal

to zeroand by changingthe sign of the drag force inside the reverseflow

region (seeFig. 5.3).

18.The rotor shaft is assumedto be rigid and the speedof rotation (ff_)of

the rotor is constant.

19.The helicopter is in trimmed, steadyand straight flight.

The assumptionslisted aboveare used in various stagesof the formulation

of the aeroelasticmodel. Additional assumptionsneeded for the structural

modelingof the blade, suchasthe kinematical assumptionsand the assumtions

used in the developmentof the constitutive relations, are discussedin Chapter

3.
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2.2 ORDERING SCHEME

An ordering scheme is defined and used to identify and delete higher order

nonlinear terms, generated during the derivation of the equations of motion for

a beam element undergoing moderate deflections, in a consistent manner. This

ordering scheme is based on the assumption that the slopes of the deformed

elastic blade are moderate, and of order e (where _ is assumed to have a mag-

nitude 0.10 _< _ _< 0.20 ). Orders of magnitude are then assigned to the various

non-dimensional physical parameters governing the aeroelastic problem in

terms of _. In the derivation of the governing equations, it is assumed that

terms of order _2 are neglected with respect to terms of order 1, i.e.,

O(l)+o(_2)__ o(1)

The orders of magnitude for various non-dimensional parameters used in this

study are listed below:

x R he 1, !___._ _b, _= 1 a sinO( 1)- ¢, COS ¢,
l' 1 ' l ' l' c3x' c3_b n 0t'

As, A_, sinAi, cos A,, sinAi, cos A,

O(_,/2) • Op, fl

W,, t W_ e_
O(_)" '7 _ v w v,,w 4_,_1," tip,

!' 1' !' 1' ,x, 1 ' 1 ' 1'

0 x, 0_, 0_

U W mf_212

O(_2)" 7-' u x, _:xx, Y_, Yxr,, -12, EA
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In general, it is assumedthat rotation terms such as v.×,w,×and q5 are of

order _, while strain terms such as u,x, _ and _:x¢ are of order d. The warping

amplitude u is assumed to have the same order of magnitude as _._. This

scheme is consistent with a moderate deflection theory (small strains and

moderate rotations). Furthermore, it is assumed that the coefficients of the

reduced material stiffness matrices, Q,i (i, j = I, 5, 6), are of thc same order

of magnitude. It is important to note that, ordering schemes are not unique

and are based on common sense and experience with actual blade configura-

tions. Therefore, the application of the ordering scheme requires both care and

a certain degree of flexibility.

2.3 COORDINATE SYSTEMS

Several coordinatc systems are required to fully describc the geometry and

deformation of the blade. Each coordinate system is symbolically represented

by a triad of orthonormal unit vectors. The first three systems, namely, the

^ _ ^
nonrotating, hub-fixed system (i_,l_,k_) , the rotating, hub-fixed system

A A. ^

(it, it, kr) , and the preconed, pitched,

tively, are used to position and orient

rigid-body motions, as shown in Figs.

^ ,ey, ez) and (e x, _, _) respectively,

A A

A A A

blade-fixed system (ib, Jb, kb), respcc-

the blade relative to the hub through

2.1 and 2.2. The next two systems,

are used to position and orient each

A

beam finite element relative to the (ib, Jb, kb) system in the undeformed config-

Aj, ¢x¢

uration of the blade, as shown in Figs. 2.3 and 2.4. A final system, (fz',, co, e¢)

, is used to represent the orientation of the local blade geometry after defor-
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A A A

mation. An additional system, the preconed, blade-fixed system (ip, jp, kp) , is

used as explained in Subsection 2.3.7.

2.3.1 Nonrotating, Hub-fluted Coordinate System

A A A

The (inr, Jar, knr) system, shown in Fig. 2.1, is an inertial reference frame and

A

has its origin at the hub center. The vector i,r points toward the helicopter tail;

A A

in, points to starboard; and kn, coincides with the rotation vector of the rotor.

A A

in, and j_, are in the plane of rotation. Hub shears and moments are defined

in this coordinate system.

2.3.2 Rotating, Hub-luted Coordinate System

^ A A

The (i,, Jr, k,) system, shown in Fig. 2.1, also has its origin at the hub center

A A

but rotates with a constant angular velocity tqk r . The vector ir coincides with

A A A

the azimuth position of the blade, while k r is coincident with the vector knr ; ir

A

and j, are also in the plane of rotation of the rotor.

2.3.3 Preconed, Pitched, Blade-fixed Coordinate System

A A A

The (ib, Jb, kb) system, shown in Fig. 2.2, rotates with the blade and has its

A A

origin at the blade root, offset from the hub center by e_i r . The vector ib co-

incides with the pitch axis, which is also the undeformed elastic axis of the

A A A

straight portion of the blade. The (ib, Jb, kb) system is oriented by rotating the

A A A A

(i,,jr,kr)system about - jraxis by the preconc angle _p, and subsequently in-
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A

troducing a second rotation about the rotated ir axis by the geometric pitch

A A

angle 0p. In the finite clement model of the blade, the ('ib, lb, kb) system is the

global coordinate systcm.

2.3.4 Undeformed Element Coordinate System

The (cx, _y, Cz) system, shown in Fig. 2.3, has its origin at the inboard node

of the finite element. The vector _x, is aligned with the beam element elastic

axis; while the vectors _y and _z arc defined in the cross section of the beam.

For the straight portion of the blade, the (ex, ey, ez) system has the same orien-

A A A A A A

tation as the (ib, Jb, kb) system. For the swept-tip element, the (e x, ey, ez) system

A A A A

is oricnted by rotating the (ib, Jb, kb) system about - k b by the sweep angle A s

A A ,'_. A

, and then about - Jb by the anhedral angle A a . The (ex, ey, ez) system is also

the local coordinate system for the blade finite element model. The displace-

mcnt components and the applied loads of the beam finite element are defined

in this coordinate system.

2.3.5 Undeformed Curvilinear Coordinate System

In the (Cx, e_, e¢) system, the vectors _ and _¢ are defined parallel to the

modulus weighted principal axes of the cross section; and the pretwist angle

fl(x) is defined as the change in the orientation of _, _ with respect to _y, _ ,

respectively, at any location aldng the beam element, as shown in Fig. 2.4.

Effects of blade pretwist are properly accounted for by deriving the beam ele-

ment strain-displacement relations in the (_, _, _¢) system, which rotates with
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the beam pretwist. The strain components, the material properties, and the

crosssectionwarping function are all derived in this coordinate system.

2.3.6 DeJb_wted Curl,ilinear Coordinate System

A t A t A I

The (c x, %, e¢) system, which will be discussed in more detail in chapter 3,

represents the orientation of the local blade geometry after deformation. The

A I Ap A t A A A

orientation of the (e x, %, e¢) system is obtained by rotating the (e x, %, e¢) system

through three Euler angles in the order of 0_, 0n and 0_ about _:_, rotated i n and

rotated _:_, respectively. This sequence was chosen following the work of pre-

,,,
vious authors[40,76] but other sequences are also possible. The vector ex is

chosen to be tangent to the local deformed elastic axis.

2.3.7 Preconed, Blade-fixed Coordinate System

A A A

The (ip, jp, kp) system is identical to the preconed, pitched, blade-fixed sys-

A A A A A A

tern (ib, Jb, kb) when the pitch angle 0p is equal to zero. The (ip, jp, kp) system

A A A A

is oriented by rotating the (ib, Jb, ku) system about - ib by the pitch angle Op,

A A A

thereby canceling the pitch rotation inherent in the definition of the (i b, Jb, kb)

system. Expressing the blade response and blade root loads in this coordinate

system is convenient when comparing the results, for these quantities, with

similar results available in the literature.
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2.4 COORDINATE TRANSFORMATIONS

The coordinate transformations between the various coordinate systems

described in the previous section, which are needed for the fl_rmulation of the

equations of motion, are defined in this section.

2.4. I Rotating to Nonrotating Transformation

The transformation between the rotating, hub-fixed coordinate system and

the nonrotating, hub-fixed coordinate system is defined as:

A A

(2.1)

and the transformation matrix [ Tf. ] is given by

[ o][Tm ] = - sin cos _,
0 0 1

(2.2)

where, _, is the blade azimuth, _ = f_t.
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2.4.2 Blade-fixed to Hub-fixed Transformation

The transfi)rmation between the preconed, pitched, blade-fixed coordinate

system and the rotating, hub-fixed coordinate system is defined as:

A A

kb

(2.3)

and the transformation matrix [ Tbr ] is given by

I o o?[os,o,,1[ Tbr ] = 0 cos 0p sin 0p 0 I 0 (2.4)

0 -sin0p cOS0p -sin#p 0 cOSpp

where, _p is the blade precone angle, and 0p is the blade pitch angle due to

pitch control setting, expressed by:

0p = 00 + 01c cos0 + 0is sin0 (2.5)

in which 0 o is the collective pitch, 0_c and 0_s are the cyclic cosine pitch and

cyclic sine pitch, respectively.

2.4.3 Element to Blade Transformation

The transformation between the undeformed element coordinate system

and the preconed, pitched, blade-fixed coordinate system is defined as:

A A

f'l f't_y = I" T eb "] Ĵb
A A

ez k b

(2.6)
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For the straight portion of the blade

I 00][Tcb] = 0 1 0
0 0 !

(2.7a)

For the swept-tip element

[co,As,hAs0][cosAa0,'nAa][ Teb ] = sin A s cos A s 0 0 I 0
0 0 ! - sin A a 0 cos A a

I cosA s cosA a -sinA s cos A s sinA aq
= sin A s cos A a cos A s sin A s sin A a 1- sin A a 0 cos A a

(2.7b)

where, A s is the blade tip sweep angle, positive for backward sweep, and A, is

thc blade tip anhedral angle, positive upward.

2.4.4 Undeformed Curvilinear to Undeformed Element Transformation

The transformation between the undeformed curvilinear coordinate system

and the undeformed element coordinate system is defined as:

A A

, en = [ Tce ] ey
A A

e_ e z

(2.8)

and the transformation matrix [ T,_ ] is given by

[Tce ] =
1 0 0 ]
0 cos # sin fl

0 -sinfl cos ,8
(2.9)
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where, fl is the blade local pretwist angle which varies along the blade elastic

axis. Differentiating Eq. (2.8) with respect to x gives

A

{-ti °t^ TOe(
eq, x = ^

^ _ Toe q
e_ ,x

(2.10)

where

_o = P,x (2.11)

2.4.5 Deformed to Undeformed Curvilinear Transformation

The transformation between the deformed curvilinear coordinate system

and the undeformed curvilinear coordinate system is defined as:

Ap A

e_ = [ Tdc ] e_ (2.12)

and the tra'nsformation matrix [ T_ ] is given by

[T_] =

[1 cos00x sin0 1Fc°0x 007 _OPII[ !]

s 0 -s cos0_ sin0_

1 - sin 0_ cos 0_
O0 -sinO, cosOxJLSino, I o cosO,lJ o o

where, 0_, 0., and 0x

respectively.

(2.13)

A A

are Euler angles about _, rotated %, and rotated ex,

32



2.4.6 Deformed Curvilinear to Undeformed Element Transformation

The transformation between the deformed curvilinear coordinate system

and the undeformcd clement coordinate system is defined as:

At A

, e_ = [ Tde ] ey
Ap A

e_ ez

(2.14)

where the transformation matrix [ Tde ] is given by

[Tde] =[Tdc][Tce2 (2.15)

This transformation is discussed in greater detail in Chapter 4 and Appendix

m.

2.4.7 Preconed, Blade-fixed to Preconed, Pitched, Blade-fixed Transformation

The transformation between the preconed, blade-fixed coordinate system

and the preconed, pitched, blade-fixed coordinate system, described in Sub-

section 2.3.7, is defined as:

A A

jAp [ TP b ] ^= Jb

k b

(2.16)

where the transformation matrix [ Tpb ] is given by

I 0 0 1
[Tpb] = 0 cOS0p -sin0p

0 sin 0p cos 0p

(2.17)
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Chapter !I I

STRUCTURAL MODELING OF THE COMPOSITE ROTOR BLADE

The derivation of the structural operator for the composite rotor blade

model is presented in this chapter. Important features for a composite beam,

such as transverse shear deformations and out-of-plane warping, arc included.

The nonlinear kinematics of deformation is based on the mechanics of curved

rods (Ref. 97 and Ref. 100, Chap. 8), and the theory of elasticity in curvilinear

coordinates (Ref. 98, Chap. 4). The strain components are first derived in a

curvilinear coordinate system so that the effects of pretwist are properly ac-

counted for. These strain components are then transformed to a local

cartesian coordinate system. The stress-strain relations are assumed to be de-

fined in this local cartesian coordinate system.

The kinematical assumptions used in the derivation of the structural oper-

ator are listed below:

1. The deformations of the cross section in its own plane are neglected.

2. The strain components are small compared to unity such that both axial

and shear strain components are neglected with respect to unity. How-

ever, the relative magnitude between the axial and shear strains is not

assumed due to material anisotropy, e.g., squares of shear strains can-

not be neglected with respect to axial strains under this assumption[7].

3. Higher order warping terms are neglected.
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The derivation of thestrain componentsbasedon theseassumptionsis valid

fi_r small strains and large deflections. However,quantities such as displace-

ment components( u, v, w) and elastictwist angle (_b)do not appearexplicitly

in the resulting expressionsof the strain components. Subsequently,explicit

expressionsfor the strain-displacementrelationship are obtained by consider-

ing the deformation procedureduring the finite rotation from the undeformed

to the deformed configuration and using an ordering schemeto systematically

identify and neglecthigher order nonlinear terms which are generatedduring

the derivation[40,76]. Thus, the final strain-displacement relations are valid

for small strains and moderatedeflections.

3.1 KINEMATICS OF DEFORMATION

The position vector of a point P on the undeformed beam with respect to

the hub center is:

A A A A

_x, 17,_) = e lir + h ei b + xe x + _Ten + r_ (3.1)

where e I is the blade root offset from the hub center, and he is the offset of the

in-board node of the beam finite element from the blade root. The physical

interpretation of this position vector is facilitated by considering the geometry

described by the combinationof Figs. 2.2-2.4. Equation (3.1) can be used to

represent the undeformed position vector both for a point on the straight por-

tion as well as a point on the swept tip portion. For a point on the swept tip
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clement, heequals the length of the straight portion of the blade.

sponding undcformed based vectors at point P are

The corre-

A A A

gx = r,x = Cx- _"T0e)1 + r/T0e _ (3.2a)

A

g,1 = r, rt = e)t (3.2b)

A

g( = r_ = e_ (3.2c)

A A A

where the derivatives of the orthonormal triad ( ex, e,), e_ ) are related to the

initial twist, ro, of the undeformed beam by:

A A

%,x = 0 0 r0 er/

^ 0 - TO 0 _e_,x

(3.3)

which can be obtained from Eq. (2.10). Note that if point P is not on the

elastic axis, and the initial twist TO is nonzero, then the base vector gx is neither

A A

a unit vector nor orthogonal to the cross-sectional plane of % and e_, as is

evident from Eq. (3.2a).

Since the in-plane deformations of the beam cross-section are neglected, the

position vector of the point P in the deformed configuration can be written as:

A B

R(x,r/,() = Ro(x) + r/Erl + _Etj + 0c(x)W(r/,_)e x (3.4)

whcre

R0(x ) = R(x, 0, 0) (3.5)
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is thecorrespondingpositionvectorof a point on the deformedelastic axis; and

Ei(x)= R,i(x,0, 0), i = x, r/, £ (3.6)

are the base vectors of a point on the deformed elastic axis. In Eq. (3.4), the

first three terms represent translations and rotations of the cross-section, while

the last term is the out-of-plane warping of the cross-section; c_(x) is the un-

known amplitude of warping; q'(q, r) is the out-of-plane warping function of

the cross-section, with

• (0, 0) = _, tt (0, 0) = _l-', _. (0, 0) = 0 (3.7)

due to the definitions of R 0 and E,, Eqs. (3.5) and (3.6), respectively.

The orthonormal triad of the deformed curvilinear coordinate system,

A I A I Af

( eX, e¢, e_ ), can be viewed as a rigidly translated and rotated version of the

orthonormal triad of the undeformed curvilinear coordinate system,

A A A P_t

( ex, %, e¢ ). Without loss of generality, the unit vector e X is assumed to be in

the direction of E X, i.e., tangent to the deformed elastic axis of the beam; while

I', t A t,

the orientations of % and er are nearly that of E_ and E_ but differ on ac-

count of the strains[100]. The deformed base vectors of the elastic axis are

/_'t Ap A I

expressed in terms of ex,% and e_ by the following definition [Ref. I00,

p.356] :

-- A t

E x = (1 + _xx) ex (3.8a)

A t Ap A t

E_t = 2 _xn ex + (I + _rtn)eq + _n_ e_ (3.8b)

At A# _ A t

E_ = 2_x_e x + _(e n + (! + _,_()e( (3.8c)
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With the assumption that in-plane deformations of the beam cross-section

are neglected, Le.,

_n_ = _£_ = _£ = 0 (3.9)

the base vectors of the deformed elastic axis become:

_ A t
E x = (1 + gr,x)ex (3.10a)

A t At At As

E,7 = 2_x_ ex + e_ = yxnex + % (3.lOb)

A t At -- A s At

E¢ = 2gge x + e¢ = y_e x + e¢ (3. l 0c)

where it will be shown latter that _xx, Y_ and yg are the axial and the

transverse shear strains, respectively, at the elastic axis. Equations (3.10) im-

ply that cross sections which are normal to the elastic axis before deformation

( e.g., _-_ plane ) will no longer be normal to the elastic axis after deformation

( e.g., E_-E_ plane is not normal to E x ) due to the presence of transverse shear

strains. The deformed base vectors at point P are:

A t A t

G x = R x = E x + 17E_, x + djE¢, x + ct,x_e x + 0t_,x

As

= [(I + _,=)+ _(2g_, x - K,_)+ ((2g_, x - x¢)+ e,x't'] ex

+ [2_%_ + _(2%g_ r) + e_K,t] ^'

+ [_(2K¢_ + T) + 2(K_ + _1'_:_] _

(3.1 la)

A t

G,_ = R,_ = En + _tW,,le x

A t A t

= (2gxn + _tW n) e x + e.

(3.1 lb)
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A I

G_ = R,_ = E_ + cz_'_e×

= (2_x_ + c_, _)e x +

(3.1 lc)

A ! Ap A t

where the derivatives of the orthonormal triad (ex, %, e¢ ) are related to the

curvatures, K_ , K_, and twist, r, of the deformed beam by:

A_. At

A, O Kff K r-- A t

- K( 0Ap

(3.12)

3.2 STRAIN COMPONENTS

The set of coordinates (x, r/, _') arc, in general, non-orthogonal curvilinear

coordinates since the base vector gx, expressed in Eq. (3.2a) is neither a unit

vector nor orthogonal to the base vectors g_ and g¢ for an arbitrary point on

the beam with nonzero initial twist z 0 . In the derivation that follows, the no-

tation (x_, x 2, x3) will be used in place of (x, t/, _') whenever convenient.

3.2.1 Strain Components in Curvilinear Coordinates

The components of the strain tensor in the curvilinear coordinates are de-

fined by (Ref. 97 and Ref. 98, p. 113):

!
fij = "_-( Gi" Gj ) - (gi- gj ), i,j = x,r/,_ (3.13)

Combining Eqs. (3.2) and (3.11) with Eq. (3.13)gives:
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I (_i2+ {2)(2_ _2)+T

f_ = f_x = _,_ + _-[_',_-{(r- %)]

f_ = rex = _ + _-[_',¢: + n(_- %)]

f_-----0

(3.14a)

(3.14b)

(3.14c)

(3.14d)

f¢¢ _ 0 (3.14e)

fu¢ = f{n _ 0 (3.140

In the derivation of Eqs. (3.14), both axial and shear strain components were

neglected with respect to unity, but no assumption was made regarding the

relative magnitude of axial and shear strains[7]. Higher order terms contain-

ing warping were also neglected in the derivation presented in this section.

3.2.2 Strain Components in Local Cartesian Coordinates

Define a system of local cartesian coordinates (Yl, Y2, Y3) at point P with its

unit vectors parallel to the orthonormal triad (_x, _,_,_¢) of the cross section,

respectively. The stress-strain relations of the beam are assumed to be given

in the local cartesian coordinate system. To find the transformation between

the curvilinear coordinates (xl, x2,x3) and the local cartesian coordinates

(Y_, Y2, Y3), consider
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^ _r _r Oxi
ej --

Oyj Oxi Oyj
(3.15)

^ Oxi
gk" ei = ( gk" gi )

cyj
(3.16)

Thcrefore, the transformation relation, , can be expressed in matrix form

as:

Oxi ] ]-l ^= [ gk" gi [ gk" ej ]
OY i

[ l  oll_'r 0 l+(2T 2 --r/t_rO 2 0! -_'rO= 1

-'-o -,7¢¢o_ 1+,Ag . o o 1

I 1 0 0 1= _oo,o-- q_O

(3.17)

where

1 + (,12+ _2)_o2 _ _o '7_o1[ gk" gi ] = - _z 0 1 0 (3.18)

r/ZO 0 1

The strain tensor defined in the local cartesian coordinates, e,j, is obtained

from (Ref. 97 and Ref. 98, p. 118):
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( tIR #R _zii = O.vi Oy i

3 3

='zx( '"
2 Ox k

k=l I=1

3 30x k Ox 1

= Z Z Oy i Oyj
k=l I=1

OR r)r Or _ 0Xk °Xl

.... ) (3.19)Ox 1 Ox k Ox I -Oy i Oy i

fkl

Substituting Eq. (3.17) into Eq. (3.19), the transformation between the strain

components in the local cartesian coordinate system, e,j , and the strain com-

ponents in the curvilinear coordinate system, f,j , can be written as:

e_x = f_x + 2_r0f_ - 2r/r0fx_ (3.20a)

e_l = %x = fxn (3.20b)

ex_ = e,Tx = fx_ (3.20c)

erln _ 0 (3.20d)

e¢¢ m 0 (3.20e)

Combining Eqs. (3.14) with Eqs. (3.20), the strain components in the local

cartesian coordinates become:

Exx = _xx - r/K,1 - C.x( + _,x • + _ro((_,n- r/_,_)

I
+ T (n2 + _2)(T-- Z0)2 + rl(Yx_,x-- rOY<)

+ _(?<,x + r0?_)

(3.21a)
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)'_I = _x,-?+ a_P,_- ((r- ZO) (3.21b)

}'x_ = 7x_ + a'P, ¢ + _?(r - To) (3.21c)

whcrc

The strain components in Eqs. (3.21a-c) are valid for small strains and

large deflections since the kinematical assumptions used in the derivation of

Eqs. (3.21) are only on strains and warping, and not on displacements and

rotations. These strain components are expressed in terms of seven unknown

functions of the axial coordinate x : _xx, Y,,n, _x_, K_, K_, z and _. The first

three are the axial and transverse shear strains, respectively, at the elastic axis,

since

exx (x, 0, 0) = exx (3.24a)

rx,1(x, 0, 0) = 7_ (3.24b)

)._: (x, O,O) = _: ; (3.24c)

and the next three are the curvatures and twist, respectively, of the deformed

beam; the last one, _, is the amprltude of warping.

Equations (3.21) can be compared directly with the strain components de-

rived by Hodges[43] and Bauchau and Hong[7]. The beam theories derived
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bv Hodges[43-1and by Bauchau and Hong[7] are valid for small strains and

largc deflections, however the former is primarily for isotropic beams since

transverseshearsarenot included, while the latter is a compositebeamtheory.

When the warping amplitude, a, is replaced by (r - %), Eqs. (3.21) agree with

Eqs. (5) of Hodges[43] except that Eqs. (3.21) have additional terms due to

transverse shear. If bending related warpings ( W 2, W 3 in Ref. 7, Eqs. (29-31)

) are excluded, then Eqs. (3.21) agree with Eqs. (29-31) of Bauchau and

Hongl-7] except the shear strain terms in the axial strain expression. This is

duc to a slight difference in the orientation of the orthonormal triad (_, %,"'e_)^'

^,
in the dcformed configuration. In this development, e x is in the direction of

A I A t

E x, i.e., tangent to the deformed elastic axis, while e_ and e¢ are not in the di-

rections of E_ and E; , respectively, because of the transverse shear strains.

^t ^1

On thc other hand, Bauchau and Hong chose to align e_ and e_ with E0 and

E;, respectively, due to the assumption that the cross section does not deform

^,
in its own plane, while ex is not in the direction of E,, due to transverse shear

strains. When transverse shear strains of the elastic axis are set to zero, then

both Eq. (3.21a) and Bauchau and Hong's Eq. (29) reduce to Eq. (5) of

Hodges.

1
Note that the term -_-(r/2 + _2)(T -- %)2, which represents a nonlinear shear

strain coupling term in the axial strain expression, is retained in this develop-

ment due to an assumption associated with material anisotropy. However, this

term has also been shown to be important for the analysis of pretwisted

isotropic beams subjected to axial loads[ 51,40,42].
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3.2.3 Explicit Strain-Displacement Relations

For aeroelastic applications, it is desirable to express the strain components

in terms of the displacement components (u, v, w) of the elastic axis and the

elastic twist angle (¢) so that the structural model can be conveniently com-

bined with the inertial and aerodynamic models. To accomplish this, four of

the seven unknowns in Eqs. (3.21) have to be eliminated by relating them to

u, v, w, and ¢.

Thc displacemcnt vcctor of a point on the elastic axis is dcfined as:

u = R 0- r0 (3.25)

where

ro(x)= r(x,o, o) (3.26)

Writing the displacement vector, u , in the undeformed element coordinate

system as:

A A A

u = u ex + V ey + we z (3.27)

Combining Eq. (3.27) with Eq. (3.25) gives:

A A A

R 0 = r0 + u ex + v ey + we z (3.28)

Differentiating Eq. (3.28) with respect to x gives:

A A A

E x = (1 + U,x) ex + V,xey + W,xe z (3.29)

The magnitude of Ex is, from Eq. (3.10a) and (3.29):
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i Exl2 = (i + U,x)2 + (V,x) 2 + (W,x) 2 = (1 + Exx) 2 (3.30)

The term _x is neglected with respect to the term 2_xx due to the small strain

assumption. Also, the term (u.x)2 is neglected compared to the term 2U,x by

applying the ordering scheme since u._ is of order e2. Thcrcfi_rc, Eq. (3.30) is

reduced to

i (W,x)2 (3.31)_xx = U,x + (V,x) 2 + -_-

The deformed curvatures and twist can be related to the Eulcr angles

(O_, 0,, 0¢) by differentiating Eq. (2.12) with respect to x, and combining the

resulting expression with Eqs. (3.3) and (3.12):

A I

A t

C_,x

A

= ([Tdc],x + [Toc][K0]) _

At

= ([Tdc],x + [Tdc][K0])[Tdc]T _ (3.32)
Ae

e(

/%, !

At

= [K ] e,I
At

e(

where

[00 ]0
[K°]- 0 -to 0

(3.33)
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I Krt Kr 1° o0 (3.34)

It follows that,

[K] = ([Tdc] x + [Tdc][K0])[Tdc] T (3.35)

Writing the deformed base vector of the elastic axis in the undeformed

curvilinear coordinate system, using Eqs. (3.29), (2.8) and (2.9), yields:

A A

E x = (1 + U,x) e x + (V,x cos ,8 + W,x sin p) e,1 + (W,x cos p - V,x sin ,8) _ (3.36)

Recall that the transformation between the triad (i'x,"' "'%, e_) of the deformed

curvilinear coordinate system and the triad (ix, i,,i¢) of the undeformed

curvilinear coordinate system is a rigid-body rotation, defined by:

A o A

I*te_ = [ Tdc ] e_

",e_

(2.12)

where the transformation matrix, [ Tdc ] , is given by:

[Tdc ] =

cos 0 x sin Ox 1 0 - sin 0_ cos 0_;

-sin0 x cos0 x Lsin0_ 0 cos 0,1 0 0

(2.13)

and the finite rotation is described by three Euler angles (0 x, 0,, 0_). The se-

quence of rotation is assumed to be 0_, 0 n and 0x about i_, rotated i n and ro-

tated i,,, respectively. It should be noted that other sequences of rotation are
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also possible,and the form of the final set of equations is dependent on the

choice of the sequence of rotations. Without loss of generality, assume that the

,,,
unit vector e× is carried to the direction of E X, i.e., tangent to the deformed

elastic axis of the beam. Based on these assumptions and Eq. (3.36), the de-

formation proccdurc can be described as follows (see Fig. 3.1). Consider an

A I Ap A I

clcmcnt dx, on the undeformed elastic axis of the beam. The triad (e x, e,7, e¢)

A A

is attached to the element and initially aligned with the triad (_x, en, e_) of the

undeformcd curvilincar coordinate system. First, the element is carried by a

rigid-body translation, which does not appear in Fig. 3.1, and then stretched

bv an amount u,xdx. Next, the element is rotated by 0¢ about _ while the tip

of the element moves a distance (vx cos fl + w_ sin fl)dx in the _ direction.

Then, the element is rotated by 0, about the rotated _ while the tip of the el-

ement moves a distance (wx cos/_ - v._ sin/_)dx in the _ direction. Finally, the

clement is rotated by 0_ about the rotated _x, which is also its own axis. It is

assumcd that transverse shear deformations and out-of-plane warping occur

after the deformation sequence described above.

The following trigonometric relations can be obtained from Fig. 3.1 :

sin 0r/

V,xsin/_ - W,xcos//

COS Or/ =

(I + U,x) 2 + (V,x cos b' + W,x sin p)2 + (W,x cos p - V,x sin p)2

/(1 + Ux)2 + (Vx cos/_ + W,xsin #)2

/(1 + U,x)2 + (V,xcos p + w,xsin/_)2 + (Wx cos p - Vxsin//)2
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V,xcosp + W,xsin// (3.37)
sin O( = _/(! + U,x) 2 + (V,x cos fl + W,x sin 1/)2

cos 0¢ =
I + U,x

/(I + u )2,x + (V,x cos//+ W,x sin//)2

The expressions given in Eqs.(3.37) can be simplified to second ordcr by using

the ordering scheme described in Chapter 2:

sin 0 n = v,x sin//- W,x cos//, cos 0 n = I (3.38a)

sin 0¢ = v,x cos p + W x sin p, cos 0¢ -_ I (3.38b)

Since the Euler angles Ox, 0, and 0_ are of order e for moderate rotation, and

the typical magnitude of the parameter e is 0.I < e < 0.2, therefore combining

Eqs. (3.38) with the small angle assumption gives:

sin 0 x - 0 x = _, cos 0 x --- I (3.39a)

sin On '-. On __ v,x sin p - w x cos fl, cos 0r/__ I (3.39b)

sin 0¢ = 01; - V,x cos ,8 + W,x sin fl, cos 0tj _ 1 (3.39c)

where the torsional twist angle 0 x is replaced by q_, in order to be consistent

with the usual notation in the literature.

Equations (3.39) can be used in the derivation of the relationships between

the curvature quantities (K,, x_, T) of the deformed beam and the displacement

variables (u, v, w, _b) . Combining Eqs. (2.13), (3.33), (3.34) and (3.39) with
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Eq. (3.35) and applying the ordering scheme,the explicit expressionsfor the

deformed curvatures and twist aregiven by:

_c,1= V,xxcos (,8+ _b)+ W,xx sin (p + _b) (3.40a)

K_ = - V,xxsin (fl + _b) + W,xxcos (fl + _) (3.40b)

r = z 0 + q_,x + q_0 (3.40c)

where

_b0 = (- V,xSinp+ W,xCOSfl)(V,xxCOSfl + W,xxSinfl) (3.41)

The small angle assumption for _:

cos (# + _b) -_ cos/l - tk sin # (3.42a)

sin (fl+_b)-_ sinfl + _bcosp (3.42b)

has also been used in the derivation of Eqs. (3.40).

The non-zero strain components in Eqs. (3.21) can now be expressed in

terms of u,v,w and _b by substituting Eqs. (3.31) and (3.40a-c) into Eqs.

(3.21a-c) and applying the ordering scheme. The resulting expressions are:

! (V,x)2 + !Sxx = U,x + -_- -_-(W,x) 2 - V,xx [ 1/cos(fl + _b)- _ sin(,8 + _b) ]

1 2
[ 17sin(,8 + tk) + ( cos(,8 + _b) ] + -z-(r/ + (2)(t_,x)2W,xx

(3.43a)

+ a,xq' + _'ro((q',,1 - r/'e, _)

+ '7(?x_.x- _0_x_)+ ¢ (Y,Z,x+ To_)

rx_ = Yx_+ a'e.,- ((¢.x+ _0) (3.43b)
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_:x_= Yx_+ gq', _ + r/(_b,x + _bo) (3.43c)

The underlined term in Eq. (3.43a) could have been neglected when using a

strict intcrprctation of thc ordering scheme. However, as mentioned in the

previous subsection, this term represents a nonlinear shear strain coupling term

in the axial strain expression, and is retained based on the kinematical as-

sumption that the relative magnitude between the axial and shear strains is not

assumed due to material anisotropy. Furthermore, this nonlinear tension-

torsion coupling tcrm has been shown to be important for the analysis of pre-

twisted isotropic beam under axial loading[40,42]. In the derivation of the

structural operator, presented in the next chapter, terms associated with this

undcrlined term will be retained or neglected in the same way as the terms

which are onc order lower than these terms; when the ordering scheme is ap-

plied.

Thc seven unknown functions of the axial coordinate, x, in the strain-

displacement relationships, Eqs. (3.43a-c), become: u, v, w, 05, a, _ , and _x¢-

It is important to note that, Eqs. (3.43) are now valid for small strains and

moderate deflections because the ordering scheme has been used.

3.3 CONSTITUTIVE RELATIONS

The constitutive relations are defined based on the following assumptions:

I. The material properties of the beam are linearly elastic and generally

orthotropic, i.e., orthotropic material whose material principal axes are

not aligned with the coordinate axes.
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2. The stress-strainrelations for the beamare defined in the local cartesian

coordinate system,which has been defined in the development of the

strain-displacementrelationships.

3. The stress components in the cross-section are equal to zero, i.e.,

ann = o;; = a,r = 0. This assumption is commonly used in classical

isotropic beam theory[94], as well as composite beam theories for thin-

walled box beams[5,7]; it is also used here because helicopter rotor

blades are typically thin-walled box beams.

For a generally orthotropic material, the stiffness and compliance matrices

can be fully populated containing up to 21 different coefficients, and therefore

the material behaves in an anisotropic manner. These coefficients are func-

tions of the nine orthotropic material constants and three Euler angles, which

are used to relate the material principal axes with the coordinate axes of the

beam. Expressions for these coefficients in terms of the orthotropic material

properties and the Eulcr angles are given in Refs. 53 and 95.

The anisotropic stress-strain relations for a linearly elastic body are written

as:

O'v/_1

rs_

CII

C12

C13

C14

C15

C!6

C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C23 C33 C34 C35 C36

C24 C34 C44 C45 C46

C25 C35 C45 C55 C56

C26 C36 C46 C56 C66

Y,g

Yx_

Yxn

(3.44)

where C,i (i, j = I, 2, 3, 4, 5, 6) are the stiffness coefficients. It is important to

note that the stress components, trij, and the strain components, eij, reduce to

52



the engineering stress and strain measures due to the small strain assumption

used in the derivations (Ref. 2, p.381).

Equation (3.44) can be written in partitioned form as:

E Cbbl Cbs l{%'1{as} = [Csb] [Css] t;s}
(3.45)

where

l Oxx t
{ab} = a_

EXX }
; { eb } = Yx_ (3.46a, b)

Yrol

{as} = a_( ; {E s} = _ (3.46c, d)

a_g y_

[ Cbb ] = Ecc5c61 ic22c23c241C15 C55 C56 ; [Css ] = C23 C33 C34 (3.46e, f)

C16 C56 C66 C24 C34 C44

CCbs  Csb l[C2C3C41= = C25 C35 C45 (3.46g)

C26 C36 C46

Using the assumption that stresses in the cross-section are equal to zero

(a,o =a¢¢ = aq_ = O), Eq. (3.45) becomes:

t IECbb ECbsJ]{  b 1{0} = [Csb] [Css] {_:s}
(3.47)

The column matrix { es } can be obtained from the lower portion of Eq. (3.47)

in terms of [ C_b ], [ Css] , and { eb }, thus
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{_s} = - [Css]-I [Cs b]{_b} (3.48)

Substituting Eq. (3.48) into the upper half of Eq. (3.47), yields the constitutive

relations for the beam:

{a b} = [Q] {e b} (3.49)

where

[Q] =
QI! QI5 QI6 1
QI5 Q55 Q56

QI6 Q56 Q66 (3.50)

= [Cb b] _ [Cb s] [Cs s]-I [Cs b]

Combining Eqs. (3.46a-b) and (3.50) with Eq. (3.49), the expanded form of the

constitutive relations is written as:

l'l [Q1°5Ql61fax_ = QI5 Q55 Q56 _'x_

ax"/ QI6 Q56 Q66 )'x_

(3.51)
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Chapter IV

FORMULATION OF TltE FINITE ELEMENT EQUATIONS OF
MOTION

The nonlinear equations of motion and the corresponding finite element

matrices are derived for each beam element using Hamilton's principle. These

equations can be used for both the straight and the swept tip portion of the

rotor blade in the finite element discretization. Both the geometric and mass

properties of the beam (i.e. blade) such as: pretwist, mass, stiffness, mass cen-

ter and tension (area) center offsets from the elastic axis; are allowed to vary

in the spanwise direction. The external loads are represented by a set of gen-

eralized distributed forces and moments, which are defined in the undeformed

A A

element coordinate system (ex, ey, ez). These generalized forces and moments

will be replaced by the corresponding aerodynamic forces and moments in the

aeroelastic analysis.

Hamilton's principle can be stated as

ftl (6U - 6T - 6We) dt= 0 (4. !)

where U is the strain energy; T is the kinetic energy; W e is the work of external

loads which includes the effects 6f the nonconservative loads. Equation (4.1)

is an integral equation which states that the total dynamic potential,

(U - T - We), is an extremum over the time interval: t I < t _< t 2 .
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4.1 STRAIN ENERGY CONTRIBUTIONS

The total strain cncrgy, U , is calculated using the strain components and

the constitutive relations dcfined in the local cartesian coordinate system, Eqs.

(3.43) and (3.51), respcctivcly. Its complete form is written asr97,98] •

l fffvCriieiidV (4.2)U= T

whcrc

dV = .,,g/-ffdxd_/d_

with

(4.3)

g = det [gi-gj] = 1 (4.4)

The determinant of the undeformed metric tensor,

calculated from Eq. (3.18).

Using the constitutive relations, Eq. (3.49), the strain energy of a beam ele-

ment becomes:

[ gi'gj] , in Eq. (4.4) is

l floff IT
U = Tj 0 JJA { eb { trb } dqd(dx

'f)YL= T { eb [ Q ] { eb } dqdCdx

or, in expanded form:

(4.5)

f,eff °' }U = T J0 JJA Yx,"t QI6 Q56 r_

(4.6)
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and its variation is given by:

6U = 6{ e b [ Qb ] { _:b } d_/d(dx

6}'x_ QI6 Q56 Q66 )'_

(4.7)

The variations of the strain components can be obtained from Eqs. (3.43) :

6exx = 6U,x + V,x6V,x + W,x6W,x + (r/2+ _2)¢,x6¢, x

- (1/cos/3 - ( sin fi) (6V,x x + _b6W,x x + W,xx6¢)

- (r/sin B + ( cos fl) (6w,x x - ¢6vx x - V,xx64_ )

+ 6 _,x • + z 0 ((_, n - rt'q", _) fie

+ ,1(6 x,r,x - rO6 xO + ( (6 x,Z,x+ TO6Yx )

(4.8a)

67.,_! == 67x_ + W rt6oc - ( (6qb,x + 6¢ O) (4.8b)

6),_ = 6_ + tP,_6a + 17(8¢, x + 6¢0 ) (4.8c)

where

6¢ 0 = ( - diV,x sin fl + 6W,x cos fl) (V,x x cos fl + W,xx sin fl) +

( - V x sin fl + W,x cos fl) (6V,x x cos fl + 6W,x x sin fl)

(4.9)

It is assumed that the variations of the strain components are of the same

order as the corresponding strain components. The reduced material stiffness

matrix, [ Q ] , is defined in a general form so that all of the coefficients can

be of the same order. This is important for the analysis of fiber reinforced
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compositematerials, becausevarying the ply angle of the laminate will change

the relative order of magnitude of the material stiffness properties.

Substituting Eqs. (4.8) into Eq. (4.7) and integrating over the cross-section,

the variation of the strain energy for a beam element, 6U , is expressed in

terms of the stress and moment resultants as:

_U=
_' {Vx + + + (g, + T_cp _,_ + g_o(_U,x V,xt_V,x W,x_W,x) iX )

+ [ (My sin fl + Mz cos fl) + _b(M_ cos fl - Mz sin fl) ] _V,x x

+ [ ( - My cos fl + Mz sin ,8) + _b (M_. sin fl + Mz cos fl) ] 6W,x x

+ [ V xx (M_, cos fl - Mz sin ,8) + W xx (M_, sin ,8 + Mz cos ,8) ] cS_b

+ Px_,x + (_0Px + Rx)_ + M;_xC,x - M;_x_,x

+ (V¢ + ro_;)_,Z + (V,_+ _o_,)_ } dx

where the stress resultants are defined as:

(4.10)
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V x _-- f!_.(Qll _:xx+ Ql5Yx{ + Q167._)dr/d( "

= EA [u,× + -_-(V,x ) +

- V xx [ (EAr/a cos/_ - EA(" a sin B) -

(EA_/a sin p + EA( a cos p) ]

- w,x x [ (EArl a sin p + EA( a cos p) +

(EA_a cos/; - EA{a sin/_) ]

+ EABo(_,x+ 4)O) + EAD0U,x + (r0EAD0 ' + EAB5)_

+ EAr/a _,x + EA_'a _,x + (GoA + _0EA_'a) _xu

+ (GcA - %EA_/a) _x¢

(4.1 la)

/-¢

V, -- JJA (Q,6'_ + Q56 _'x_ +
Q66 yx,,/) dr/d_"

! (V,x)2+ + l= G_/A [U,x + -_- -_-Gr/J (_b,x) 2

- V,xx [ (GqAr/b cos/_ - GqA_ b sin/Y) -

_b(GrIAr/b sin ,8 + GnA_b cos B) ]

- W xx [ (GnAt/b sin/Y + GnA_ b cos ,8) +

_b(GnAr/b cos/Y -- Gj/A_b sin/Y) ]

+ EABI2(q_,x+ _b0) + EADT0_,x + (r0EAD 7' + EABI3)_

+ GqAr/b Yxn,x + GnA(b YK,x + (GrmA + "r0G_/ACb) Yxn

41

+ (G,1fA - r0GnAr/b) _xg

(4.11b)
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t'/"

V_------ JJ (Q15exx+Q55_x_+O56],'ra/)dr/d_
A

1 (V,x)2+ ! 2GcJ= G,;A [U,x + --_ --_-(W,x) 2] + (_b,x) 2

- V,xx [ (GcArlc cos fl - GcA( c sin fl) -

(GeAr/c sin fl + G(A_ c cos fl) ]

- W,x x [ (GcArlc sin fl + G(A_ c cos fl) +

_b(GeAr/c cos/_ - G(A( c sin ,6) ]

+ EABIo(_,x+_b0) + EAD60t,x + (z0EAD 6'+EABII)_t

+ G¢A_/c Yxn,x + G,_A(c Yx_,x + (Gn_rA + z0G¢A_c) Yx_I

+ (G¢_A - roGcAr/c) YK

(4.1 lc)

and the moment resultants are defined as:

M, _ .ffA_(Qllexx+Ql5Yx_+Qi6Yro/)dr/d(

1 2 1 (W,x)2] + __._EAC2(_b,x)2= EA¢a [U'x + T (v'x) + "_"

-- [ (EI_I¢ cos fl - EI_ sin fl)- _ (Else sin fl + EIn_ cos//)] v,x x

- [ (EI_¢ sin fl + Eln_ cos fl) + & (EI_¢ cos//- EIn_ sin fl) ] w,x x

+ EAB2(_,x+ &o) + EAD2_,x + (zoEAD2' + EAB7)_

+ Eln¢ Yxn,x + EI_ Yx_,x + (GnA_b + _oEl_r/)yxn

+ (G(A(c - z0El_) YK

(4. i 2a)
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I'P

Mz = J#A -- r/(Qllexx +QI5Yx¢ + QI6 y_) d,ld_

I 1 + -_= - Egr/a [U'x + T (v'x)2 + T (w'x}2] - __EAC1 (_b'x)"

+ [ (EI_z cos fl - EI,K sin fl) - cb (EI_x sin fl + EI,K cos fl) ] V,xx

+ [ (EIu: sin fl + Eln_ cos fl) + 4_ (EIu: cos fl - EI,1 ¢ sin fi) ] W,x x

- EABI(q_,x+ _0 ) - EADI_x- (r0EADI' + EAB6)ct

- EI_x Y_,x - Eln_: _,x - (GnAr/b + r0EIn{)Yx n

- (GcAr/c - r0El_) _;rg

(4.12b)

f;,M_, -- _ (QII exx + QIS yx_ + QI6 ?x_) dr/d_

I., .2 2] +EA_a [U,x + _" D,xJ + EAB2

(Eln£ cos fl - Elnn sin fl) V,xx - (EIrK sin fl + Elnn cos fl) w,.,cx
(4.12c)

+ EAD2_,x + (roEAD2'+ EAB7)ct + Eln¢Yx_,x + El_tnYx¢,x

+ (GuAm" b + roEi_g)_; _ + (G(Asrc- z0Eln()_x_

-Mz = ffA --rl (QII txx + QI5 7x_ + QI6 Yxn)dr/d(

I ,, ,2= - EAr/a [U,x + T _'x) + (W,x) 2-] - EAB 1 _b,x

+ (EI_ cos fl - EI_ sin fl) V,xx + (EI_ sin fl + EI_ cos fl) W,x x
(4.12d)

- EAD Ict,x - (r0EAD I'+ EAB 6)_ - El{(Yxn,x - ElrKYx_,x

- (GnAr/b + toEing) Yx,7 - (O_Ar/c - roEl{{) Yrd
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f,/-

- (QII _xx + QI5 _,'×_+ Qi6 _'x_) dr/d(

I (Vx) 2 + I 1EAD4(_ x)2= EA O 0 [U,x + 7 "' 9_-(W,x )2] +

- V,xx [(EAD I cos//- EAD2sin/_)-

(EAD 1 sin ]_ + EAD 2 cos fl) ]

- W,xx [ (EAD I sin p + EAD 2 cos f) +

qb (EAD 1 cos/_ - EAD 2 sin/_) ]

+ EAB3q_,x + EAD3o_,x + (z0EAD5+ EABs)a

+ EADI fmt,x + EAD2y._,x + (EADT+ _oEAD2)Yxn

+ (EAD 6- _oEADI)y._

(4.12e)

rf"

JJA (¢_g,,t- _,¢)(Qll exx+ QI5 tx¢ + QI6 _xn) d_/d¢

I 2 I 2EAD 4, (_b x)2= EAD 0' [U,x +-_--(V,x) + -_-(W,x) 2] +

- V,xx [(EAD 1' cos/_ - EAD 2' sin ifl) -

(EAD 1' sin/_ + EAD 2' cos lfl) ]

- w_ [(EAD l' sin/_ + EAD 2' cosfl)+

q_ (EAD 1' cos/? - EAD 2' sin/_) ]

+ EAB 3' _b,x + EADs_,x + (ToEAD 3' + EAB8' )

+ EADI' _rx,-/,x + EAD2' ?x_,x + (EADT' + r0EAD2')_

+ (EAD 6' - r0EADI)_x _

(4.120
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Tx =- ffA (r/2+ _'2)(QIIexx + QI5 "Y'_+ QI6 _'_)dr/d(

1 (V,x)2+ 1 +EAC 3= EAC 0 [U,x + -_- T(W,x)2] + (Oh,x)2

- v [(EAC cosfl- EAC 2sinfl)-,XX i

qb (EAC I sin fl + EAC 2 cos fl) ]

- W xx [(EAC 1 sin fl + EAC 2cosfl)+

qb (EAC 1 cos fl - EAC 2 sin fl) ]

+ EAB4Obx + EAD40cx + (roEAD4'+ EAB9)oc

+ EACI _x_,x + EAC2 _,x + (GqJ + r0EAC2) Txr/

+ (G_J - r0EACI) _;_

(4.1 2g)

[ W,/_ (QI5 exx + QssT_ + Qs6 Y_) +

W, ,1 (Q 16 exx 4- QS6 7M + Q66 "P_) ] dr/d(

1 2 1 IEAB9 (qb,x)2EABs [U,x+ (V,x) + (W,x)2] +

- V,xx [ (EAB 6 cos fl - EAB 7 sin fl) -

_b (EAB 6 sin fl + EAB 7 cos fl) ]

- W,xx [ (EAB 6 sin # + EAB 7 cos fl) +

(EAB 6 cos fl - EAB 7 sin fl) ]

+ EABI4(_,x+ _0) + EABs°c,x + (z0EABs' + EAB15)ct

+ EAB6_, x + EAB7_xg,x + (EABI3+ z0EAB7)_x_

+ (EABII - z0EAB6)_x_

(4.12h)
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Sx

(QI6 exx + Q567x_ ÷ Q66 T'x_) ] d_d_

I I 1EAB4(_ b= EAB 0 [U,x + _-(V,x) 2 + 7(W,x)2] +

- V,xx [(EABI cosfl- EAB2sinfl)-

_b (EAB l sin fl + EAB2cosfl) ]

- W,xx [(EAB i sin fl + EAB2cosfl)+

_b (EAB 1 cos # - EAB 2 sin #) ]

,x) 2

+ GJ(_b,x+ _bo) + EAB3Ct,x + (roEAB3 ' + EABI4)_

+ EABi Yxn,x + EAB2Yx_,x + (EABI2+ r0EAB2)Yxn

+ (EABIo- r0EABI)_K

(4.12i)

Sx = j'fA [ r/(QI5 exx + Q55 y_ + Q56 yx_) -

t_ (QI6 exx + Q56Y_ + Q66 Yx_) ] dr/d(

I "v )2 ! "w )2]
= EAB0 [Ux + -2-t ,x + _'-t ,x + GJ _b,x (4.12j)

- (EABlCOS fl-EAB2sinfl)v - (EABlsin fl+EAB2cosfl)w,x x,XX

+ EAB3Otx + ('r0EAB3'+ EABI4)_t + EABIYx_,x + EAB2YK,x

+ (EABI2 + zoEAB2)Yxn + (EABIo- zoEAB1)Y_

In the above expressions, the moment resultants M_, M'z and g_, have the same

definitions as M r, Mz and gx, respectively. However the final expressions of

My, M z and Sx, include both terms of order e3 and e4, while the final ex-

pressions of M_, M_ and S_, include only terms of order e3 only. This is because

64



that My, M z and S×,are coupled with terms of order e, while M;,, M_ and S;,

are coupled with terms of a2. Note that the integrals Px, P'x and T_ haxe a unit

of second moment of force, instead of moment; they are grouped with the

moment resultants for convenience. The cross-sectional integrals associated

with the strain energy variation in Eqs. (4.11) and (4.12) are defined as fol-

lowing:

/_Iodulus we(ghted area, first and second moments of inertia, and torsional inte-

grals:

EA=ffaQlldqd_ (4.13a)

EAqa = f_,QIIr/dr/d,_ (4.13b)

EA_.a = fla QII _ dr/d_ (4.13c)

= If A ¢2dr/d( (4.13d)EI,;_ Q l!

EI¢¢ = ffAQllr/2dr/d_
(4.13e)

EI,K = IIA Qll rt_ dr/d{ (4.130

EAC 0 = fl A QI' (r/2 + {2)dqd_
(4.13g)
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EAC, = il AQllr/(r/2 + _'2)dr/d(
(4.13h)

EAC2 = il\ QI, _(r/2 + _2)dr/d(
(4.13i)

(4.13j)

G'IA = fI_ Ql6 dr/d_"x
(4.13k)

GCA = IIAQ_5 dqd_r
(4.131)

G_,_A = tI,\Q66dT/d_
(4.13m)

G¢¢A= f_Q55dnd(
(4.13n)

Gr/_A = il; Q56 dr/d_X
(4.130)

G_/Ar/b = IIA Q 16 r/dr/d(
(4.13p)

G_tA(b = IIAQl6_-dr/d(
(4.13q)

GCArtc = fIA Q_sU drld(
(4.13r)
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(4.13s)

G,rl=ff, xQl6(rl2+(2)drld( (4.13t)

GCJ = fIAQi5(r/Z+(2)drtd( (4.13u)

GJ = ff,_ (Q55. 2 + Q66( 2 _ 2Q56r/()dr/d _ (4.13v)

hlodulus weighted area, first and second moment warping integrals:

EAD° = ff, xQI ! _ dr/d( (4.14a)

EADI = ffA QII rIW d_/d( (4. i4b)

EAD2= ffAQ_(_'dnd( (4.14c)

EAD3 = fIAQll_2dr/d( (4.14d)

EAD4 = ffA Qll(r/2 + (2) v dr/d( (4.14e)

EADs=ffAQ_]'e(('e,,t-rtV,¢)dnd( (4.140



(4.14g)

EAD7 = II Ql6Wd_/d_

(4.14h)

EAD 0, = II A QII (_P,,,- ,I_F,/_)d_/d/_

(4.14i)

EADI' -- IIAQll _/ ((W,n - rl_,¢ )drld(

(4.14i)

EAD 2' = II AQII ¢((-_P,,l- r/°d,¢)d'ld¢

(4.14k)

EAD3' = I_ Qll(_W,n-_/W,0 2dr/d(
\

(4.14])

EAD4' = IIAQI|(t/24-_2)(_W,n-r/_,0 dr/d(

(4.14m)

EAD 6' = II A QI5(¢W,n - r/V,0dr/d¢

(4. ! 4n)

EAD7, -_ II AQI6((_P,. - _/_P,g)dr/d(

Anisotropic material stiffness coupfing integrals:

EAB 0 = IIA(QIsr/-QI6 _)dr/d_

(4.14o)

(4.t5a)
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EAB.= f fA<Q,_,7- Q.60, d,d_ (4.15b)

EAB2 = j'fx(Qlsr/ -QI6_)_ dr/d( (4.15c)

EAB3 = f_A (QI5r/ - Ql6 () W dr/d( (4.15d)

EAB4 = f_s, (QI5r/ - QI60(r/2 + (2)dr/d( (4.15e)

EAB5 = f_ (Ql5_F,£+Ql6_F,r/)dr/d_ ' (4.150

EAB6 = ffA (QI5 _P._ + QI6 V._)r/d_/d( (4.15g)

EAB7 = ffA (Q15 _P._ + QI6 _P.,)( dr/de (4.15h)

EAB8 = f_(QlsV,_ + QI6_P,.)V dr/de (4.15i)

EAB9 = ffA (QI5 V,_ + QI6 V,.)(r/2 + _.2)dr/d( (4.15j)

EABI0 = ffA (Q55r/- Q56 () dr/d_" (4.15k)

EABII= f. fA(Q55q',(+Q56_,n)d_ld( (4._50
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(4.15m)

EABI3 = J'_x(Q56V(+ Q66V,,)d_/d(
(4.15n)

EABI4 = f!X [ (Q55 r/- Q56 ()V(_ + (Q561/- Q66 _') V,y/] dr/d(
(4.150)

EABI5 = J'_X [ Q55(_F'(_)2 + Q66eF'_)2 + 2 Q56_P'_ V,¢ ] dr/d(
(4.15p)

EAB3' = "_J'A(Ql5r/- QI6()((V'_ - r/V _)dT/d(
(4.15q)

EAB8' = .[_X (QI5 V,_ + Q16 V,.)((W,_ - _/V,£) dr/d(
(4.15r)

The modulus weighted area, EA, represents the axial stiffness of the beam.

EAr/_ and EA(_ are the modulus weighted offsets of the tension (area) center

from the shear center along _ and _, respectively. The modulus weighted

moments of inertia about the shear center, EI_, EI_ and El_r, represent the

bending stiffnesses of the beam. EAC0, EACh, EAC 2 and EAC 3 are higher or-

der section constants for modeling the axial-torsion coupling effects. The con-

stant GJ represents the direct torsional stiffness. It is important to note that

if the blade is isotropic and the warping amplitude at is replaced by _b,x, then

the section constants GJ and EABi4 can be combined to become the torsional

rigidity of the beam. The grouping of the modulus weighted section constants,
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defined in Eqs. (4.13), (4.14) and (4.15) is based on convenience and should

not be considered to be definitive.

The section constants defined in Eqs. (4.13)-(4.15) are calculated by a sep-

arate linear, two-dimensional analysis which is decoupled from the nonlinear,

one-dimensional global analysis for the beam. In this study, a composite cross

section analysis model, consisting of a suitably modified version of the analysis

developed by Kosmatka[56], is used to calculate the shear center location and

the modulus weighted section constants of an arbitrarily shaped composite

cross section. This model is based on the Saint Venant solution of a tip loaded

composite cantilever beam with a general prismatic cross section. It uses the

principle of minimum potential energy and 2-D finite element analysis to cal-

culate the cross-sectional warping functions and stress distribution. The shear

center location is determined using moment equilibrium and the shear stress

distribution. The modifications made in the computer code, implementing the

cross section analysis model presented in Ref. 56, consist of the replacement

of the modulus weighted section constants present in the code, associated with

the one-dimensional global analysis described in Ref. 56, by the modulus

weighted section constants defined in this study. Several other two-

dimensional composite cross section analysis models are also available in the

literature[101,37,75,5], among these Ref. 37, which is also capable of modeling

cross sections with arbitrary shape and anisotropic and nonhomogeneous ma-

terials, is probably the most general.

Integrating the strain energy variation, Eq. (4.10), by parts gives:
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c_U = [ Yu6U

+ Y_ 6_ +

+ Yv6V + Yw6W + Y4_ _

Y't6?x_ + Y¢67x_]dx + b(U)

where

u

Y_ = _{Vx},x

Yv = { My sin fl + Mz cos fl + _b(M_, cos/3 - Mz sin p) +

--I

S x cos fl ( - V,x sin fl + W,x cos fl) },xx

- { VxV,x - Sx sin p (V,x x cos fl + W,xx sin #) },x

Yw = { - My cos p + Mz sin//+ _b(M_, sin ,8 + Mz cos p) +

Sx sin p ( - v sin ,8 + W,x cos/?) },xx
,X

- { VxW,x + Sx cos _/(V,x x cos//+ W,x x sin ,8) },x

Y4, = V,xx ( M_ cos/i' - -Mz sin B ) + W,xx ( M_, sin _ + Mz cos p )

- { Sx + Tx4_,x},x

Ycz - { Px },x + Px + Rx

Y, = (M;. },x + V, + _O-_y

y¢ = - { M'},xy + V¢ + z 0M z

and thc associated boundary terms:

(4.16)

(4.17a)

(4.17b)

(4.17c)

(4.17d)

(4. i 7e)

(4.170

(4.17g)
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lieb(U) = {V x}6u + {M).sinfl+MzcoSfl+_b(M_cosfi-/_-l_sinfl)+
0

]loSxc°sfl(-V,xSinfl+WxCOSfl)}3Vx 0

+ [ -- { My sin fl + M z cos fl + 05 (My, cos fl - M z sin fl) +

Sx cos fl ( - V x sin fl + W,x cos fl) },x + Vxv,x -

Sx sin p (Vx x cos fl + w,x x sin fl) ] dv
0

-- -- --t --

+ { - My cos fl + M z sin fl + _b (My sin fl + Mz cos fl) +

g_ sin fl ( - Vxsin fl + Wx

+ [-{-Mycosfl+_,.

g_,sin fl ( - Vx sin fl + Wx

Sx cos fl (V,x x cos fl + w,x x sin fl) "16w ]1_
0

le Ie Ie

+ { gx + $.,,4,.x} _4, ]o o

+ {M_',}3_ 0

COS fl) } 6W,x ]le
0

--F --_,

sin B + _b (My sin fl + Mz cos fl) +

cos fl) },x + VxW,x+

(4.18)

The boundary terms contained in Eq. (4.18) are latter combined with the

boundary terms associated with the variations of kinetic cncrgy and work of

external loads to obtain the boundary conditions associated with the equations

of motion.
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4.2 KINETIC ENERGY CONTRIBUTIONS

The total kinctic energy of a beam clcment is defined as:

T = 7 pV-VdV = TjojjApV'Vdr/d(dx
(4.19)

where V is the velocity vector of an arbitrary point on the beam with respect

to the inertial reference frame.

The position vector, R, of a point on the deformed beam is written, by

combining Eqs. (3.28), (3.26), and (3.1) with Eq. (3.4), as:

R

A A A A

eli r + hei b + (x+u)_ x + Vey + we z

A t

+ tlErl + (E_ + u_Pe x

R B + R C

(4.20)

where

A

R B = e I ir (4.21)

is the position vector of the blade root with respect to the hub center, and

A A

R C = h ei b + (x+U)_x + Vey

A F

+ _E_ + #Pe x

A

+ we z + I,/E_
(4.22)

is the position vector of an arbitrary point on the deformed beam with respect

to the blade root.

The velocity vector, V, is calculated by differentiating the deformed posi-

tion vector, R, with respect to time:

74



v{OR}nr = VB + VC (4.23)

where V. and V c are the time derivatives of R n and R o respectively. The

I"lnotation _ nr denotes time derivative with respect to the nonrotating,

hub-fixed coordinate system (G, J.r, knr), which is an inertial reference frame.

In this derivation, the velocity components are expressed in terms of the

underormed element coordinate system (_:_, _y, _). It follows that, the velocity

vector of the blade root, V_ is:

A A

V B = tqk r × R B = _e l jr

A A A

= Vbx ex + Vby ey + Vbz ez

(4.24)

where

f Vbx }
Vby

Vbz
= _el[Teb][-Tbr]{01 10 { o}= f_el [ Te b ] cos 0p

- sin 0p

(4.25)

For the straight portion of the blade

{Vbx}{ 0}Vby = f_el cos 0p

Vb z -- sin 0p

(4.26)

For the swept-tip element

Vbx }
Vby

Vbz
- sin A s cos 0p - cos A s sin A a sin 0p "}

= f'_e I cos A s cos 0p - sin A s sin A a sin 0p

- cos A a sin 0p

(4.27)
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The velocity vector, V c , which is the velocity of an arbitrary point on the de-

formcd bcam relative to the velocity of the blade root, is:

V C = R C + _ x R C (4.28)

whcrc _ is the angular velocity of the undeformed element coordinate system

C x,

^ opA A A A= f_kr + ib = f_xex + f2yey + f2 ze z (4.29)

which is the sum of the constant angular velocity of the rotor and the angular

vclocity of the blade due to the harmonic components of the blade pitch set-

tings. The notation () denotes the time derivative with respect to the

(_:x, ?:r, _:_) system when ( ) is a vector, and it is the usual time derivative when

( ) is a scalar. Rccall that the pitch angle 0p is:

0p = 00 + 01c cos ¢, + 01s sin _ (2.5)

Thcrcfore,

0p = f2(- 01c sin_b + 01s cos if) (4.30)

Op = -f_2(Olc cos_b + 01 s sin_k) (4.31)

In forward flight, the blade pitch angle 0p is a function of the blade azimuth

anglc _, therefore it contributes to the angular velocity of the blade. For the

casc of hover, 0p and 0p vanish since the cyclic cosine 0_¢ and the cyclic sine
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01s are equal to zero.

is obtained by:

The angular velocity components in the (_:x, _:y, cz) system

{°'}f_y

_z
E'cbl(E'b I01O

I°,,,l= [ Teb ] f] sin 0p

f_ cos 0p

(4.32)

For the straight portion of the blade

f°,}f°,p,0ptf_v = D sin Op

f_z D COS Op

(4.33)

For the swept-tip element

foxt t-Qy = (.Oflp +/_p) sin A s cos A a + _ sin 0p cos A s + f_ cos 0p sin A s sin

f_z - (.O./3'p + 0p) sin A a + D. cos 0p cos A a

(4.34)

The position vector R c can be written in terms of the (_x, _r, _z) system by

substituting Eqs. (3.10b,c) into Eq. (4.22):

A A A

R C = Rcxe x + Rcyey + Rcze z (4.35)

where
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I :tR c, = hy+V + [Td c]T r/

Rcz h z + w (

(4.36)

In Eq. (4.36), hx, hy and h_ are the components of he, which is the offset of the

in-board node of the beam finite clement from the blade root, in the (_',,, _y, _zz)

system:

(hxIhy = ['lcb] 0
hz

(4.37)

For the straight portion of the blade

(4.38)

For the swept-tip element

f cos A s cos A a t
= h e sin A s cos A a

- sin A a

(4.39)

The matrix [ Tdc ] , which is the transformation between the deformed

A I A I A t

curvilincar coordinate system (e,,, %, e¢) and the undeformed element coordi-

nate system (ex, ey, ez), is given by

[Tde] = [Tdc][Tce] (2.15)

Combining Eqs. (2.9), (2.13) and (3.39) with Eq. (2.15) and applying the or-

dering scheme, the transformation matrix [ The ] becomes:
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[ Tdc ] =

l %'
,X W,X

- v cos(//+ 4)) cos(//+ 4)) sin(# + 4)),X

- W,x sin(fl + 4')

V,x sin(fl + 4)) - sin(fl + 4)) cos(fl + 4))
-W,xCOS(fl+4)) +r c'cosfl +w c'sinfl

(4.40)

where

r c' = (V,xSin fl - W,xCOSfl)(V,xCOSfl + W,xSin fl) (4.41)

A comparison of the transformation matrix [ Tde ] with similar transformation

matrices by other authors is presented in Appendix A.

Differentiating Eq. (4.36) with respect to time gives:

Rclz w' 0°

+ [ i'dc IT n

(4.42)

where the matrix [ "Fd_] is:

0

9 x cos(fl + 4))- v¢ x sin(fl +_)
+ _ {_',x sin(fl + 4)) - N',x cos(p + Oh)}

V.x sin(p + 4)) - xi:,x cos(/_ + 4))
+ + _;¢,x cos(p + 4))+ W,x sin(p + 4))}

- _ sin(p + 4))
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with

(4.43)

tc' = (_",xsin/_ - fV,x cos/_) (V,x cos/l + W,x sin/_) +

(v,× sin p - W,x cos/_) (_',x cos p + fV,x sin p)

Therefore, the time derivative of R c is:

(4.44)

R c Rex ^ • ^ ^= ex + Rcyey + Rcze z

= [ (r/sin p + _ cos p) ( - fV,x + _V,x + _b_,',x) - (r/cos/_ - _ sin/l)

(_',x+ _W,x+ 6_V,x)+ _ + _,e + _x. + _x_ ]_x

+ E ,;"- _ (17sin/1 + _ cos/_) - _ cos3/_ (_,xW x + V,xfV,x) ] _y

+ [_'+_(r/cos/_ _sin/_)] ^-- e z

(4.45)

where thc expressions of R_, Roy and R¢_ have been obtained by combining

Eqs. (4.40), (4.41), (4.43) and (4.44) with (4.42) and applying the ordering

scheme.

The term _ x R c is obtained by combining Eqs. (4.29), (4.35), (4.36) and

(4.40):
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O9 × _ A -- ey +R C = (fyRcz f_zRcy) ex + (fzRcx f2xRcz)^

(f_xRcy - l'2yRcx) _z

= {(r/sin fl + ( cos fl)(fy + f_z$)-

(r/cos # - ( sin #)(fz - f_y$) +

_y (h z + w) - _)z (hy + v) + ( cos3ffzV,xW,x } _x

+ { (r/sin fl +/_ cos fl) [ - f_x + f_z (_V,x - W,x) ] -

(r/cos fl - ( sin fl) [ t2x_b + f2 z (Vx + ¢W,x) "1+

A

fz (hx + x + u + aW + r/yx,,/ + (YK) - _x (hz + w) } ey

+ { (_/cos p - ( sin p) [ fx + fly (V,x + ¢W,x) ] -

(r/sin fl + ( cos fl) [ fx¢ + fy (¢V,x - W,x) ] -

fly(h x+x+u+atW+r/_x_+_)+_x(hy+v)-

A

eos3pnxv xWx } ez

(4.46)

Terms up to order e3 have been retained in Eqs. (4.45) and (4.46) since some

terms of order e a can not be neglected in the derivation of the kinetic energy

variation, 6T, when the dot product of the velocity vector, V, and its vari-

ation, diV, is carried out.

The total velocity vector, V, is obtained by substituting Eqs. (4.45) and

(4.46) into Eq. (4.28) and combining Eqs. (4.24) and (4.28) with Eq. (4.23):
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V { (r/sin fl + ( cos fl)( - fV,x + _Vx + _",x + f2y + f_z_) -

(r/cosp - _ sin P)(_',x + _W,x + tk_V,x + f_z - f2y_) +

+ _' + n_,_ + (_ + f_y(hz + w) -

t2z (hy + v) + _ cos3/_f_zV,xW,x+ Vbx} _x

+ { (r/sin/_ + _ cos/_) [ - f_x + f_z ($V,x - W,x)- _ ] -

(r/cos/_ - _ sin p) [ f_x$ + f_z (V,x + $w,x) ] +

_z(hx + x + u + _,_ + r/_ + _y_)- _x(hz + w) +

_, _ _ cos3# (_',xW x + V,x_'V,x) + Vby }_y

+ { (r/cos p - _ sin/_) [ f_x + f_y (v,x + 4'W,x) + _' ] -

(r/sin/_ + _ cos p) [ f_x_b + f_y (_bv,x - W,x) ] -

_y (h x + x + u + cx_F + r/yx_ + _Y'x_) + f/x (hy + v) +

fV -- _ COS3_flxV,xW,x + Vbz } _z

The variation of the velocity vector, _V, is:

(4.47)
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6V= { (1/sin [J + ( cos fl)[ - 6x_,,,x + 46V,x + _bb£,,x + V,x6 _ +

(f_z + V,x) 64, ] - (tl cos fl - ( sin fl) [ 69x + _6W,x +

_6_,,._ + W,x6_ - (f_y- _',x)64, ] +

60 + 6_W + r/fyx,/+ (6_x _ + _y6W - f_z6V +

( c°s3#f_,. (V,x6W,x+ W,x6V,x)} _x

+ { (r/sin fl + _ cos fl) I- f_z (q)6V,x + V,xfqb - 6W,x) - fin ] -

(r/cos fl - ¢ sin #) [ (f_x + f_zW,x) 64, +

f_,. (6V,x + q_6w,0 ] + f2_ (6u + W6a + rt6fx, + _fi_x_)-

f_x6W + 6v - ( cos3fl (9,x6W,x + V,x6fV,x +

_,',x6V,x + W,x6g',x) } _y

+ { (_l cos/_ - ( sin #) [ f_y (6V,x + ¢6w,x + W,x6q, ) + 6_ ] -

(r/sin fl + _ cos fl) [ (f_x + f_yV,x) 64, - f2y (6W,x - qb6V,x ) ] -

¢ cos3ff_x (V,x6W,x+ W,x6V,x)} _

(4.48)

The variation of the kinetic energy, 6iT, for a beam element is, from Eq.

(4.19):

 efL6T = p V. 6V dr/d(dx (4.49)

Substituting Eqs. (4.47) and (4.4'8) into Eq. (4.49) and integrating fit by parts

with respect to time between two arbitrarily specified configurations at times

t_ and t 2 give:
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6T=

where

_rr

Jo JJApEZ.au + zva,' + Z avx + ZwaW+

+ Zq_ 6_b + Z:_ c50¢+ Z_/¢5_x _ + Z_ _-] dr/d_'dx

Zw &V,x
(4.50)

Z U = (rl sin//+ ff cos 1_)[ - f_xf_z - fly + '_',x - 2Qz_ + (_xf2y

(f_y + f_z2) W,x] + (1/cos p - _ sin p)[ - aQx_"2y+ _z + _",x-

2f_y& - {f2x.Q z + fly_ - (f_ + f2z2) V,x] .

- iJ - W_i - r/_ - ¢_x_ + 2flzV - 2f2y@

+ (f22 + f_2)(h x + x + u + Wa + r/Yx_ + ¢yK)

-- (nx'Qy -- _z)(hy + v) - (nx_ z + _y)(h z + w)

+ _zVby -- _'_yVbz - _'bx

- n,)_ -

(4.51a)

Z V (r/sin 1/+ { cos ,8)[ - f_y-Qz + fix + _ + 2f2zW,x

2
(f2_ + f2z2) 4_] + (r/cos ,6' - _"sin/?) [_x 2 + f_z +

2f2z_;',x + 2f_x6 + (nx..Qy + _':2z)V,x - (n#z - Dx)q_ ]

- ;. - 2n_ (u + ,ee, + n_._ + _x¢) + 2nxV¢

- (fax.Qy + hz)(h x + x + u + _ + r/yx_ + _y_)

+ (f_ + f_2)(by + v)- (ray.Q, - nx)(h z + w)

+ xQxVbz- flzVbx- Vby

+ (nxny + fl_)Wx -

(4.51b)
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t

Zv (17sin fl + _ cos fl) E(n_ + _2)(h x + x)- (C_xny -*_z)hy-

(Dx[) z + _).)h z + _zVby - _yVbz - _Zbx]

+ (rt cos fl - ( sin ,6') { ii + q'_/+ r/_x,7 + (_x_ - 2-Qz# +

2ny_, - (n_ + n_)(h_ + x + u + _'_ + ,7_ + ¢_x_)+

(f_x_2y - _z)(hy + v) + (l)x_ z + _y)(h z + w)-

_')zVby + _'2yVbz + Vbx}

+ (f_xf_y - _z) (r/2 cos2p + _r2 sin2p - 2rl_ sin fl cos fl)

+ (f2x.Q z + _y) [ (r/2 _ _.2) sin p cos/i' + r/_"( cos2p - sin2p) ]

+ ( cos3fl E (n.x_y + nz ) (h x + x) - (.Qx2 + D.z2) hy + (n).Q z - nx)h z

+ "QzVbx - _*)'xVbz + Vby "] W,x

(4.51c)

Z W 2 _ 2.Ox _(r/sin fl + _ cos fl) Ef22x+ f_y 2f2y_V,x + +

(_x_z - _y)W,x + (f_y'Qz + _x_] - (rl cos # - _"sin fl)

[f2y_z + _x + _ + 2f_y_;',x - (f_x-Qz - _y)V,x - (tax2 + f_y2) _]

- _, + 2ny(u + ,v_ + _ + _:)- 2n_,

-- (f2x.Q z - _y)(h x + x + u + V0t + r/yxe + _'_)

+ (f_x2 + ta_)(hz+ w)- (f_y-Qz+ hx)(hy + v)

+ _yVbx --f2xVby -- Vbz

(4.51d)
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t

Zw (17sin 1_+ _ cos _) { ii + W_ + r/_x_ t + _'_ - 2f2z_;' + 2ftyfV -

(_ + _z) (hx + x + u + Wcx + r/yr,n + _K) +

(_x_y -- _z) (hy + v) -I- (_x_z -t- _y)(h z -b w)- _zVby + nyVbz + _'bx}

- (rl cos p - ¢ sin 1_) l-(fl 2 + _z2) (hx + x)-

(f_xf_y - _z)hy- (f_xf2z + _y)h z + f_zVby - f_yVbz - Vbx] 4_ (4.51e)

+ (f_x_y - _z) [ (r/2 - _2) sin ]l cos/_ + r/_ ( cos2/_ -- sin2/I) ]

+ (_xf2z + Oy) (r/2 sin2/_ + _2 cos20 + 2r/_ sin/_ cos/_)

+ _ cos3] _ E (_xf_y + flz) (hx + x)- (n 2 + 0 2) hy + tf_-Q z - hx)h z

4- f_zVbx -- f2xVbz + _/by ] V,x
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Z_ = (r/sin ,/3+ ff cos fl) { k>+ 2.Qz (LI+ W& + r/_xn + _x4) --

2f2x_V + (flxf2, . + flz) (hx + x + u + 'Ca + ,y_ + _y<) -

t_22+ _){hy + v)+ tf_n, - _2x)thz+ w)+ n,Vbx - nxVbz + Vby

+ [(_2 + f_2) (hx + x)- (f2x_y - nz)hy - (f2x_ z + _y)h z +

_zVby -- f_yVbz - _'bx] V,x } -- (n cos fl - _ sin fl)

{_, - 2f_y(u + _ea+ ,7}x,_+ _xg) + 2f_x_'+

(f_xf2,.- _y) (lax+ x + u + _a + m,_ + _,_g)+

:(4.510
(_>n_ + (2x)(hy+ v)- (f_x2+ f22)fn_+ w)- nyVbx + f_xVby+ Vb_

+ [(_'_ q- _22) (hx + x)- (_'_x_'_y - _:2z)hy - (_"_x_'_z + _a_y)h z +

f2zVby -- _yVbz -- _/bx] W,x } -- (q2 + _2)(_ + _x)

+ (f_2 _ f_z) [(r/2 - _2) sin fl cos fl + r/( ( cos2fl - sin2fl)]

- _-Qz [(r/2- ¢.2)( cos2fl _ sin2fl)_ 4q( sin fl cos fl] -

{(f_2 _ f_) [(1/2 _ (2)( cos2fl _ sin2fl) _ 4r/( sin/? cos fl] -

4f_yf_z[(r/2 _ (2) sin fl cos fl + r/C"( cos2fl - sin2_)]} 4'
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Z_ _'{(r/sinfl+ ( cos fl)[- nxf'/z- ny + (;¢,x-2nz4, + (-Qx-Qy

- (f2_+ _2)w x] + (,/cosfl- ( sin fl)[ - _xt)y + _z + V,x

- 2f2y_ - (f_x_qz + _')y)q, - (f2_ + f12) V,x]

- i_- _i - n_;._- _< + 2flz;, - 2_y_V

+(f_ +flz)(hx+X+U+_Ot+r/?x, 7+_¢)

-- (nxf_y- Oz)(hy + v) - ([2x[l z + Oy)(h z + w)

+ _'2zVby -- f_yVbz -- _rbx }

- nz)_

(4.51g)

Z_ 1 ,1{(q sin p + _ cos p)[ - flxf_ z - hy +/i,',x- 2f_z4, + (f_x_y

- (f_ + f_z) _ ,x] + (r/cos fl - ( sin fl) [ - f_xfly + l'_z + V,x

- 2ny4 - (flxnz + fly)'/' - (hi + flz:) V,x]

- ii - Wii - r/_xn - _.K + 2f2z9 - 2.Qy,.'v

+ (n_ + nz:)(hx + x + u + V_ + rtTx.+ ¢_,Z)

-- (f_x_y -- _z)(hy + v) - (f_x.Qz + _y)(h z + w)

+ f_zVby - _yVbz - Vbx }

(4.51h)
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z¢ = 4"{(17sin fl + _ cos b')[ - f_z - _,, + 'a',x - 2f_z_ + (_xf_y

") ,- (fl_ + _)_)_ ,x] + (_ cos fi - _"sin ,6')[ - f_,_f_y+ fl, + _,x

+ (_ + _1;)(h x + x + u + q'_ + rlYxn + _'_<)

- (taxC,y - fa,.)(h.v + v) - (C,x_a,.+ (ay)(hz + w)

+ f2zVby - f2yVbz -- Vbx }

(4.51i)

In Eqs. (4.51), the expressions of (Vbx, Vby, Vbz)and (_x,f_r f_)are obtained

by differentiating Eqs. (4.25) and (4.32), respectively, with rcspcct to time:

Vby(
Vbz)

(4.52)

6T=

where

{°'}_y

Op

[Teb]t D0pC°S0p 1

k- f_bp sin Op)

Integrating Eq. (4.50) over the cross section gives:

fo_ [ 7._ au + g_ av + Z,_ + 7w aw + ZgaV,x 6W,x

+ Z4_ 6q_ + Z_ 6_ + Z n 6yxn + Z_ 6};xg ] dx

(4.53)

(4.54)

89



Zu = (mr/msin/_ + m,[ m cos _) [ - f_x_'lz - _')y + _i,',x - 2_')z_

+ (f/x_2y- _'_z_ - (_2_ + _2_) W,x] + (mr/m cos fl - m_ m sin fl)

[ -- ['2x£r2y+ ['2z + i"_,x-- 2__)._) -- (_"2x_'-_z + [':'2y)q_-- (£_"t_+ _)2)V,x]

- m[ii - 2f/zi' + 2flyfV - (f_y + _]z)(hx + x + u) + (4.55a)

(f_x_"_y -- _'_z) (by + v) + (_'2x_"_z + _'_y) (h z + w) - _')zVby + _yVbz + Vbx]

2-
_ mDo[_i _ (_2 + ft2)oc]_ mr/miCro t _ (f't_ + Oz) yxn]

- m_m[_ K -( °2 + f'/z) _x_]

2 v = (m_/m sin p + mt[ m cos 3) [ - ny.O z + n x + _ + 2nzfV,x +

(nxl2y + -Oz)W,x- (f_x2 + f_) 4_] + (mr/m cos ,B - m( m sin ,8)

[f/_t + 9/2 + 2f/zg,x + 2_'2x_ + (f2.vQy + _z)V,x - (f/_-Oz - flx)_ b]

- m[g' + 2f/z/J - 2f2xfV + (_xt'ly + _z)(hx + x + u) - (4.55b)

(0 2 + f_2)(hy + v)+ ([_y'Qz - _x) (hz + w)- nxVbz + nzVbx + Vby ]

- mDo [2f_za + (f_f2y + _z)_] - mrtm [2f_z_ + (f_xf_y + _]

- m_'m [2f/z_M + (fix-Qy + _'/z_x_]
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--I

Z v
-)

(mr/m sin [] + m( m cos fl) [(f_2 + f2z)(h x + x) -

(D.xg)y - _)z)hy - (f_x.Oz + _y)h z + .OzVby - f)yVbz -- _lbx ]

+ (mrlm cos fl - m( m sin fl) { ii - 2f2z_, + 2f2yW - (f_2 + _2)

(h x + x + u) + (_xQy - _z)(hy + v)+ (_xf_z + _y)(h z + w)

- O-zVby + O-yVbz + _/bx }

+ (roD| cos fl - mD 2 sin fl) [/i - (f_ + f_2) 0t]

+ (Im¢¢ cos fl - Im,K sin/_) [_x,1-(_ + f_2) Pxn]

+ (Im,7_ cos fl - Im,i,1 sin fl) [_x_ -(f_ + f_2) _g]

+ (f_xf2y- _z) (Im¢¢ cos2fl + Im,r / sin2fl - 21m,_ sin fl cos fl)

+ (_2xf_ z + _')y) [ (1m¢¢ - Im,7,7) sin p cos fl + Im_¢ ( cos2p - sin2/_) ]

+ m_m cos3fl [ (f_xf2y + Oz)(hx + x)- (f2 2 + Dz2) lay + (Dy'Qz - _x)hz

+ _zVbx -- _xVbz + _'by ] W,x

(4.55c)

Z w = (mr/m sin fl + m_ m cos fl) [f_2 + n_ - 2.OyVC,x + 2f2x_ +

(_xf_z - Oy)W,x + (f_y-Qz + Ox_ ] - (mr/m cos fl - m( m sin fl)

+ + + myL. - - fiy)V,x- (tax+

- m [,_, - 2f_yO + 2_x_, + (f2x.Q z - _y)(hx + x + u)- (4.55d)

(n 2 4- n_)(h z + w)+ (n_.O z + Dx) (hy + v)- nyVbx + DxVby + _'bz]

+ mD0[2f_y_ - (f_xf_z - Oy)_] + mr/m[2f_y_ _ - (f_xf_z - _y)?_]

+ m_rmE2.Qy_x( - (_x_z - O.y_x_]
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Z w = (mr/m sin ,B + m_ m cos B){ iJ - 2_z9 + 2f_yf¢ - (f_ + _)

(h x + x + u)+ (.Qxny - .Qz) (hy + v)+ (flx_z + _y)(h z + w)

-- _')zVby + _)yVbz + _/bx }

-- (mqm COS/_ -- m_ m sin/_) [(ny 2 + nz2)(hx + x)-

(_)x_y - (_z)hy - (_x_z + __y)h z + _zVby - 9_yVbz -- Vbx ]

+ (rod I sin/_ + roD2 cos/_) [_t - (n_ + nz2) 0c]

+ (Im_._ sin/_ + lmq,_ cos _) [_;_ -(n_ + nz2)

+ (lm,/_ sin/? + Im,m cos/_) [_ - (ny2 + n2) _x_]

+ (flxfly - 0z)[(lm(_ - imrm ) sin p cos fl + Imn_ ( cos2//- sin2,0)]

+ (flxf_z + _y)(Im_ sin2p + Im,m cos2fl + 21mq/; sin/_ cos//)

+ m;m COS3fl[(_"_X_"_y+ _Z) (hx + x)-- (f_2 + n2)hy

+ _').zVbx -- .QxVbz + _rby]V,x

(4.55e)

+ (f_-Oz- nx)hz
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Z¢, (mJTm sin//+ m_ m cos 1/) { _' + 2f2zu - 2flxfV + (f_xfty + _z)

(h x + x + u)- (fl 2 + fl2)(hy + v) + (ft>.O z - _x) (hz + w) +

_"_zVbx -- _xVbz + _Zby +

E(f_ + flz2) (h x + X) - (_xf_y -- fz)hy - (f_xf_z + fly)hz +

ftzVby - f_yVbz -- _Zbx] V,x } -- (mr/m cos p - mc_m sin fl)

{ _i.,- 2flyer + 2nx;.' + (flx.O z - fly) (h x + x + u) +

(f_y'Oz + fx)(hy + v)- (_2 + _2)(hz + w)- _yVbx + _"2xVby + _rbz

+ E(fl 2 + ftz2) (hx + x)- (f_x..Oy - fz)hy - (f_x-Oz + ny)hz +

_zVby -- DyVbz -- _/bx] W,x } -- (lm_n + Im¢¢)(_ + fx)

+ (fl_ - flz2) [(lm¢¢ - Imn_) sin//cos//+ lm,¢ ( cos2{/- sin2p)] (4.550

- flail z [(lm,:¢ - lm,,) ( cos2/? - sin2p)- 4Im,7_ sin/_ cos p]

+ (roD 1sin//+ mD 2 cos p) [2Dz_ + (Dx.Oy + _z_]

+ (roD 1cos p -mD 2 sin/_) [2..O:_ -(f_x.Oz- _y)_]

+ (lm_ sin/1 + Im,K cos/_) [2f_z_xn + (ftx.Qy + _z_r.n]

+ (im££ cos/_ - im_ sin 1_) [2fly_m - (flx_ z - _y)Txn]

+ (lm_ sin ]_+ lmn_ cos/_) [2_z_ _ + (_x-Qy + fz)Tx_]

+ (Imr__ cos # - lm,_,_ sin/?) [2f_y_q - (glx-O z - _y_x_]

- {(f_z2 - ft_)[(Im_ - Imnn)( cos2/? - sin2/_)_ 4imn _ sin ]_cos//] -

4f_y.flz[(Im_ - Im_) sin ]_cos ]_ + Imn¢( cos2,_ - sin2/_)]}_
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(roD 1 sin p + mD 2 cos/J) [ - f_xf_z - _y + _/¢,x - 2f_z¢

+ (f_xf_y - _zD - (f_2 + f_2) w x] + (mDl cos p - roD2 sin p)

[ - nxny + n_ + _",x- 2ny_ - (nxn,. + ny)4,- (n_ + _) V,x]

- mDoEii - 2.Gz_, + 2_y'_i, '- (D.._ + D.2) (hx + x + u) + (4.55g)

(n,,ny- n_.)(hy+ v)+ (nxn_+ ny)(hz+ v,,)- nzVby+ n:,,vb_+ V'bxl

2-
- mD3t&-(n_ + n_).] - mD,[_x_-(f_ + f_z)Yx_]

- mD2[_x_ - (f2 2 + f22)7x_]

= (im_x sin/i' + lm,K cos B) [ - f_xf_z - dy + _:/".x- ZOz6

+ (f_x-Qy - _z)¢ - (f_ + f_z2) W.x] + (lm{t; cos .8 - lm,_ sin .8)

[ - f2x--Qy + _z + _'.x - 2ny_ - (nx.Q z + _y)¢ - (f_2 + f_2) V,x]

- mr/m[ii - 2f_z_'+ 2f2yfV- (f_2+ f_z2)(hx + x + u) + (4.55h)

(f_x.Qy- dz)(hy + v) + (f_x.Qz+ ny)(h z + w) - f2zVl:,y+ f2yVl,z + i'bx]

- + +
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Z_ = (lm,l ¢ sin/7 + lm,l,l cos//) [ - _x_z - .Qy + _,,,× - 2.Qz_

+ (_x_]y - (_z)_ - (_ + _2)W,x] + (lmu(- cos/_ - Im_/u sin p.)

[ - _2_y + _,. + _.,x- 2_y_ - (nx_,.+ _y)_- (_ + n_) V,x]

-- mCmEii - 2[]z(' + 2[]y'_k,' -- ([]2 + f_;) (h x + x + u) +

(O-x[)y -- _:)z) (by + v) + (g'_xg'_z + _y) (h z + w) - _'_zVby

_ mD2[ _ _ (_2 + _2)_] _ im,K[_x_ 1_

- lm,._E_._- (_ + _)_]

(4.55i)

+ f_yVbz + 9b x]

The scction integrals associated with the kinetic energy variation in Eqs.

(4.55) are defined in the following manner:

m =fiAP dtld¢ (4.56a)

mrlm = ff pqdqd_x (4.56b)

m_m= _fAP_dttd_ (4.56c)

lm'm = i[ p_2 dr/d_x (4.56d)

Im¢¢ = .fJ'A Pq2 dr/d( (4.56e)

Im,K= ira P_/_"dr/d( (4.560
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(4.56j)

In Eqs. (4.56). m is the mass per unit length of the beam; mr/m and m_" m are the

mass weighted offsets of the mass center from the shear center along _ and

_:, respectively; lm,,, lm;¢ and im,; are the mass moments of inertia per unit

length of the beam about the shear center; mD0, mD_, mD 2 and mD 3 are the

mass weighted warping integrals.

Integrating the kinetic energy variation, Eq. (4.54), by parts gives:

ile6T = { Zu _u + [Z v - (Zv),x] cSv + [Z w - (Zw),x ] diw
)

+ Z_ 6q_ + Z a _5_ + Z_ _Yx_ + Z¢ diYx¢ } dx + b(T)

(4.57)

wherc the associated boundary terms are:

b(T) = Zv6,,'lO + Zw_W (4.58)

The boundary terms contained in Eq. (4.58) are latter combined with the

boundary terms associated with the variations of strain energy and work of
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external loads to obtain the boundary conditions associated with the equations

of motion.

4.3 EXTERNAL WORK CONTRIBUTIONS

The effects of the generalized (nonconservative) distributed forces and mo-

ments are included based on the principle of virtual work. In the aeroelastic

analysis of rotor blades, these generalized forces and moments will be replaced

by the corresponding aerodynamic forces and moments based on the aero-

dynamic model being used.

Virtual work is the work done by the distributed forces and moments acting

through the corresponding virtual displacements and virtual rotations, respec-

tively, about the deformed equilibrium position. The mathematical form of the

virtual work done on a beam element is given by:

c = ( wo)v + ( we)o

= (P.diu) dx + (Q'b®)dx

where P and Q are the distributed force and moment vectors, respectively,

along the elastic axis; 3u and _5_) are the virtual displacement and virtual ro-

tation vectors, respectively, of a point on the deformed elastic axis. The dis-

tributed forces and moments are defined in the undeformed element coordinate

system (ex, êr, ez) as:

A A A

P = Pxex + pyey + Pzez (4.60)

(4.59)
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A A A

Q = qxex + qyey + qzez (4.61)

For convenience, the virtual displacement 6u is also defined in the (ex, ey, ez)

system:

A A A

6u = _u e x + 6Vey + _we z (4.62)

The virtual rotation, 60 , is defined in the deformed curvilinear coordinate

Af A F A l

system (ex, %, e;) because the compatibility condition associated with it, pre-

sented latter in this section, is also derived in this system. Thus, the virtual

rotation is given by

A t A t
6_) = n x' e x + n,/e n + n_'_ (4.63)

The virtual work done on a beam element due to the distributed forces is

given by:

(6Wc) P = (P- 6u) dx = (Px 6u + py 6v + Pz 6w) dx (4.64)

A F A I A I

Expressing the distributed moment vector in terms of the (e_, %, e_) system as:

At n At At

Q = qx'ex + q_ e_ + q_'e_ (4.65)

then the virtual work done on a beam element due to the distributed moments

is given by:

(6We) Q = (qx'nx' + qn'n,/+ q_'n¢')dx (4.66)
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The transformation betweenthe componentsof the distributed moment vector,

Q , is:

{qx' qr/' = [ Tdc ] qy

q_' qz

After the virtual displacement, _Su, and the virtual rotation, _5_) , the triad

AI AI /"t

(c x, c0, c_) of the deformed curvilinear coordinate system is rotated to a new

triad (e x, c_, e¢), given by:

(4.67)

A_ A o _ A n Ap Ap p A t

e x = e x + 6® x e x = e x + n i'e_ - n_t eI (4.68a)

^. ^, - ^, ^, _ ^,e,7 = e,1 + 60 x erl = e,1 + n x' - n t' e x (4.68b)

_ _ ÷ _ × _ ^, ^,_ ,^,: = e i + n,t'e x nx er t (4.68c)

The virtual rotation about the deformed elastic axis, nx', is identified as:

n x' = 6_ (4.69)

in order to determine n_' and n_' , consider an element, dx, of the deformed

elastic axis as it goes through a virtual displacement, 6u ( Fig. 4.1 ). Before the

virtual displacement, the element is at position AB . After the virtual dis-

placement, the element moves to position A'B' given by:

At

A'B' = (R 0+dxe x+6u+6u,xdx)- (R 0+6u)

^1

= dx(ex + 6U,x )

(4.70)
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where

_U,x 6U,x̂ ^ . A= ex + 6V,xey + OW,xe z

^l

= [ _Su,x 6V,x 6W,x ] [Tde ]T ^,e,t

^e

e(

(4.71)

A nTlle vector A'B' is in the c x direction, therefore, the virtual rotation compo-

neiats n,' and n/ are obtained by substituting Eqs. (4.40) and (4.71) into Eq.

(4.70) and comparing with Eq. (4.68a):

n,;' = - [V,x sin(p + 4_) - W,x cos(fl + 4')3 6U,x + [ sin(p + 4') -

r c' cos fl] 6V,x - [ cos(fl + q_) + r c' sin B] 6W,x

(4.72a)

n_' = - [V,x cos(fl + 4) + W,x sin(fl + _b)] 6U,x

+ [ cos(fl + 4)-] 6Vx + [ sin(fl + th)] diW,x

(4.72b)

Combining Eqs. (4.67), (4.69), (4.72) and (4.40) with Eq. (4.66), the virtual

work done on a beam element due to the distributed moments, (6We) q , be-

comes:

_0 ltc
(6We)Q = [(qyW,x - qzV,x) 6U,x + (qz - qxW,x) 6V,x +

(qxV,x - qy) 6W,x + (qx + qyV,x + qzW,x) 6t_] dx

(4.73)

In the derivation of Eq. (4.73), the terms associated with re' are order & higher

than the other terms in the same group, and therefore are neglected according

to the ordering scheme.
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The total virtual work done on a beam element,fW c , is obtained by com-

bining the virtual work due to distributed forces, Eq. (4.64), and the virtual

work due to distributed moments, Eq. (4.73),and integrating by parts:

6We = { [Px - (qyW×- qzV,x),x]_u + [py - (qz - qxW,x).×]_v

(4.74)
+ [Pz - (qxV,x- qy),×]fw + (qx + qyV,x÷ qzW,x) _ } dx

+ b (We)

where the associatedboundary terms are:

- . + (qz- qxW,x)6Vb(We) = (qyW,x qzV,x) fU[

leI

+ (qxV,x- qy) fw] 0'

(4.75)

The boundary terms contained in Eq. (4.75) are latter combined with the

boundary terms associated with the variations of strain energy and kinetic en-

ergy to obtain the boundary conditions associated with the equations of mo-

tion. It is evident, from Eqs. (4.74) and (4.75), that the pretwist does not

appear explicitly in the virtual work expressions.

4.4 SUMMARY OF THE PARTIAL DIFFERENTIAL EQUATIONS OF
MOTION

The partial differential equations of motion and the associated boundary

conditions for an clement of the beam (blade) arc obtained by substituting

substituting the variation of the strain energy, 6U ( Eq. (4.16)), the variation

of the kinetic energy, fiT ( Eq. (4.57)), and the virtual work of the external
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loads, diWe( Eq. (4.74)), into Hamilton's principle, Eq. (4.1). Since the vari-

ations of the generalizedcoordinates6u, _Sv, 6w, 6_b, 6_, 6_, 6Yx_ , are ar-

bitrary over the length of the beam element, the partial differential equations

of motion are obtained by requiring that the coefficient of each variation of a

generalized coordinate be equal to zero. At the boundary (x = 0, Ic), it is re-

quired that either a generalized coordinate be specified (kinematic boundary

condition) or the coefficient of its variation be equal to zero (natural boundary

condition). Note, that if the boundary node of an element is not at the

boundary of the blade (either root or tip); then the kinematic boundary con-

dition at this node, which is shared by this element and its neighbor, becomes

the inter-element compatibility condition.

The seven partial differential equations of motion are:

t_u equation

{ -- V x + qyWx -qzV,x },x- 7"u- Px = 0 (4.76a)

6v equation

{ My sin ,8 + Mz cos ,8 + _b(M_, cos p - Mz sin ,8) +

S x cos ,8 ( - V,x sin # + W,x cos 17) },xx -

{ VxV,x - Sx sin ,8 (V,xx cos ,8 + W,xx sin ,8) - Z v + qxW,x

- Z v - py = 0

- qz },x

(4.76b)
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3w equation

{ -- -My cos fl + Mz sin fl + q_ (My sin fl + -Mz cos fl) +

Sx sin ]3 ( - V x sin fl + W,x cos fl) },xx -

-- --f . ,{ VxW,x + S x cos fl (V,x x cos fl + W,x x sin fl) - Z w - qxX,x + qy },x

- Zw - Pz = 0

(4.76c)

649 equation

-- -- --t --p

v,.,cx (M_ cos fl - M z sin fl) + W,xx (My sin fl + M z cos fl)

- {Sx +Tx4),x},x - Z4_ - qx- qyV,x- qzW,x = 0

(4.76d)

6_ equation

--{PxI,x+ P_+ Rx- Z: = 0 (4.76e)

6_x n equation

-- m

{ M_},x + v,_ + _'o_,- Z,_= 0 (4.760

6_ equation

- { My },x + V_ + _0_;. - Z_ = 0 (4.76g)

and the associatcd boundary conditions are:
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- Ilo{V x-qvw,x+qzvx}au = 0
• " 0

(4.77a)

{ -My sin fl + Mz cos fl + 4' (M_ cos fl - Mz sin fl) +

-- I leS xcosfl(-v,xsinfl+w,xcosfl)}6vx -- 0
• 0

(4.77b)

{ [N-_y sin fl + -Mz cos/3 + 4) (My cos fl - Mz sin fl) +

--t

S x cos/_' ( - V,x sin fl + W,x cos fl)],x -

Vxv,x + Sxsin fl (v_cos fl + W xxsin fl)+ Z v- qxWx+ qz } 6v
o

=0

(4.77c)

{ - -My cos/7 + Mz sin fl + @ (My sin fl + Mz cos fl) +

, I le

Sxsinfl(-V,xSinfl+W,xC°Sfl)}&_,Xlo = 0

(4.77d)

{ [ - My cos/7 + Mz sin fl + q_ (M_, sin fl + Mz cos fl) +

Sx sin fl ( - V,x sin fl + W,x cos fl)],x -

VxW,x - Sx cos fl (V,xx cos fl + W,xx sin fl) + Zw + qxV,x- qy } 6w[_

(4.77e)

=0

{Sx + Tx4_x } a4,11° = 0
• 0

(4.770

- Ilo{ Px}6_ = 0
0

(4.77g)

- II ,,' = 0{ Mz } ayxj I (4.77h)

- Ilo' = 0
{ My } ayx_ 0

(4.77i)
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where, the stressand moment resultants have been defined in Eqs. (4.11) and

(4.12); the inertial forces and moments arc defined in Eqs. (4.55). All the al-

gebraic derivations associated with the structural and inertial operators which

are lengthy, have been verified using the symbolic manipulation program

MACSYMA[108].

4.5 FINITE ELEMENT DISCRETIZATION OF THE EQUATIONS OF
MOTION

The nonlinear partial differential equations of motion, and related bound-

ary conditions, which have been derived in the previous section, depend on

both space and time. The spatial discretization of these equations is obtained

by using the finite element method[105]. It is important to mention that, it is

possible to obtain the element properties, required for the finite clement

method, without the prior explicit derivation of the equations of motion.

However, for the fairly complicated problem treated here, and the treatment

of the axial degree of freedom which will be discussed latter, it is convenient

to have the complete formulation of the problem in partial differential

equation form.

The element properties, for a beam type finite element, can be obtained by

representing the blade as a combination of beam type finite elements, and us-

ing Hamilton's principle on the local level to generate the element matrices and

load vector. In carrying out this discretization process, the straight portion of

the blade is divided into several elements, while the swept tip portion is mod-

eled as a single element.
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The discretized form of Hamilton's principle is written as:

I1

 wei,dt--0
i=l

(4.78)

In Eq. (4.78), n is the number of finite elements in the model, 6U, is the vari-

ation of strain energy in the i-th element, 6T_ is the variation of kinetic energy

in the i-th element, and 6Wei is the virtual work of external loads in the i-th

element.

Assume that the seven unknown generalized coordinates of the beam finite

clcment are expressed in the following form

i

V

W

{_,,}T
0
0

= 0
0
0
0

0 0 0 0 0 0

{_w} T 0 0 0 0 0

0 {@ }T 0 T 0 0 0
0 _ {_u} 0 T 0 0

0 0 0 {_a} 0 T 0
o o o o {DR} o T
0 0 0 0 o {_)_}

{v}
{w}
{_,}
{u}
{o_}

#'t ,=_ "t

/J MJ

_1 re

(4.79)

where {@,,},{@w},{@,_},{@u},{@_,},{@,_},{@¢} are space dependent interpolation

functions ; {V},{W},{g,},{U},{ot},{Fo},{F¢} are time dependent nodal param-

eters of the generalized degrees of freedom v, w, Oh,u, a, y_, y,,¢ , respectively,

for the beam element.

The variations of the generalized coordinates for the beam element are:
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r v]W

_3u

0 }' X_l

b_x¢ I

{_vt T
0
0

= 0

0

0

0

0 0 0 0 0 0

{_w} T 0 0 0 0 0
o {,I, }T o o o o
0 _ /_u/T 0 0 0

0 0 0 {_}T 0 T 0

o o o o {o_} o To o o o {_¢}

{_v}
{_w}
{_6}
{_u}

/6F;_

(4.80)

In this study, Hermitc interpolation polynomials are used to discretize the

spacc depcndence. Cubic polymials are used for the transverse deflections v

and w, with thc displacements and slopes at the end nodes as the nodal pa-

rameters. Quadratic polynomials are used for the torsional rotation 4, , the

axial deflection u, the warping amplitude u, and the transverse shears at the

elastic axis _, y_ ; for these quantities the nodal parameters are the values of

the displacement function at the two end nodes and at the internal node of the

element. The mathematical expressions for the interpolation polynomials are:

{%} = {_'w}=

1 - 3_2+ 2_ 3

le (_ _ 2_2+ _3)

3_ 2 - 2_ 3

le ( _ _2 + ¢3)

= {_c} (4.81 a)

{%} = {,_.} = {,_.} = {%} = {,_} =

l - 3¢ + 2_ 2

4_ - 4¢ 2

-¢ +2¢ 2

= {_q} (4.81 b)

whcre: ¢ = x/1 e , x is the spanwise (axial) coordinate of the beam element, and

1_ is the length of the beam elerfient. Each beam element consists of two end

nodes and one internal node at its mid-point, resulting in a total of 23 nodal

dcgrees of freedom, as shown in Fig. 4.2. The quadratic polynomial has the
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capability of modeling a linear variation of strains along the clement length,

thus being compatible with the cubic polynomial for transverse deflections.

These polynomials also satisfy all inter-element compatibility requirements as-

sociated with the variational principle in this formulation.

Note that when the problem is restricted to bending and shear in the verti-

cal plane, Eqs. (3.43a-c) reduce to the strain-displacement relations of

Timoshenko beam where a constraint relation, such as

W,x = 0w + 7x_ (4.82)

exists, and 0,, is the rotation due to bending. In this special case the boundary

terms for 6wx and 6_x_ in the 6U expression will have the same coefficient with

opposite sign, and thus can be combined into a boundary term containing only

60,v. This also agrees with Timoshenko beam theory and implies that w x and

_x; arc not required to have inter-element continuity[91]. For a beam with

built-in twist, undergoing moderate deflections in two mutually perpendicular

planes, combined with torsion and transverse shears, the boundary terms for

6w_ and _ have different coefficients which contain coupling terms such as

v.x. _b and/i', and Eq. (4.82) is no longer valid. The corresponding variational

principle thus requires inter-element continuity on both w,x and _x_ , and for

the same reason also on v_ and _. In the literature of'l'imoshenko beam fi-

nite elements, there is a group of higher order elements[68,92,93] which also

cnforced inter-elcment continuity on w_ and Yx_ either directly or indirectly

through Eq. (82); and they produced excellent agreement with exact solutions.

For more complex structures such as swept-tip blades, the actual behavior of
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_ and _x_,at the junction of the swept tip and the straight portion of the blade

is complicated. Therefore, the enforcement of inter-element continuity on _

and _x¢ at the junction node should be treated as an assumption.

4.5. I Element Matrices Associated with the Strain Energy Variation

The beam clement matrices associated with the strain energy variation are

derived by substituting the expressions for the generalized coordinates, Eq.

(4.79), and their variations, Eq. (4.80), into the strain energy variation, Eq.

(4.10). Using the interpolation functions given by Eqs. (4.81), and carrying

out the integration over the length of the beam element; the resulting variation

of the strain energy has the form:

6U = 6q T( [-KL] + [KNL(q)] )q (4.83)

where

q = [ {v}T.{w}T.{c_}T.tu}T.{u}T.{I-',}T.{I"¢}TjT (4.84)

and [K L] and [K NL] are the linear stiffness matrix (symmetric) and nonlinear

stiffness matrix, respectively. Detailed expressions for these stiffness matrices

are presented in Appendix B.I .
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4.5.2 Element Alatrices Associated with the Kinetic Energy Variation

The beam element matrices associated with the kinetic energy variation are

obtained by substituting Eqs. (4.79) and (4.80) into the kinetic energy vari-

ation, Eq. (4.54). Using the interpolation functions given by Eqs. (4.81), and

carrying out the integration over the length of the beam element; the resulting

variation of the kinetic energy has the form:

6T = -6qT([M]il+ I'MC]q+ [KCF]q+ {F CF}) (4.85)

where

[M] is the mass matrix (symmetric), I-M c] is a Coriolis damping matrix

(anti-symmetric), I-K cj:] is a centrifugal stiffening matrix (symmetric when

is constant), and {F cF} is a centrifugal force vector. Detailed expressions for

[M] , [M c] , [KCF'I and {F cF} are presented in Appendix B.2.

4.5.3 Element Matrices Associated with the Virtual Work of External Loads

The beam element matrices associated with the external virtual work are

derived by substituting Eqs. (4.79) and (4.80) into the virtual work of external

loads, Eq. (4.74). Using the interpolation functions given by Eqs. (4.81), and

carrying out the integration over the length of the beam element; the resulting

virtual work of external loads has the form:

6W e = -6q T([KI]q+{F I}) (4.86)
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whcre [K _] is a stiffness type matrix associated with applied distributed

torques acting on the blade (beam), and {F I} is an applied force vector. De-

tailed expressions for [K I] and {F I} are presented in Appendix B.3 .

4.5.4 Summary of the Beam Finite Element Equations of l_lotion

The finite element equations of motion for a single beam element are ob-

tained by substituting the strain energy variation, Eq. (4.83), the kinetic energy

variation, Eq. (4.85), and the virtual work of external loads, Eq. (4.86), into

the discretized form of Hamilton's principle, Eq. (4.78). Since the variation

of the generalized coordinates (6v, 6w, 34_, 6u, 6_, 6_,_, 6_x_) are arbitrary over

the time interval, therefore 6q is also arbitrary; and this results in the finite

element equations of motion for the i-th beam element, written as:

[Mi] il + [Ci]/I + [Ki] q + Fi = 0 (4.87)

where:

[Mi] = [M]i (4.88)

[Ci] = [MC]i (4.89)

[Ki] = [KL]i + [KCF]i + [KI]i + [KNL(q)] i

F i = {FCF}i + {FI}i

(4.90)

(4.91)
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The reason for defining the element mass, damping and stiffness matrices

[M,],[-C,],[Ki] and the load vector Fi, is to define the notation which is sub-

sequently usedin the assemblyprocessdescribedin Chapter 6.

4.5.5 Local-to-global Coordinate Transformation

The local-to-global coordinate transformation for the swept-tip element can

qL = I-A] qG (4.92)

be written in the form

where the subscript t denotes quantities associated with the tip element; the

superscripts L and G denote the local and global coordinate system, respec-

tively; q is the vector of elcment nodal degrees of freedom, defined in Eq.

(4.84). The transformation matrix, [A1, is derived with the constraint that the

angular relationship between the swept-tip and the straight portion of the

blade at the junction is preserved after deformation[73]. For the translational

degrees of freedom, the transformation is linear, as indicated by:

tulL iulo= [Teb] t
twit twit

where the transformation matrix [T_b]t is given by Eq. (2.7b):

(4.93)
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cosAssinAscOSAa0sinA1[ Teb ]t = sin A s cos A s 0 ! 0
0 0 -sinA a 0 cosA a

cos A s cosA a -sinA s cos A s sinA a7

= sin A s cos A a cos A s sin A s sin A a /

- sin A a 0 cos A a _j

(4.94)

The transformation for the warping and transverse shear degrees of freedom

is also linear:

(ot)tL = cos A s cos A a (o0tG (4.95)

ffxn) L = cos A a (_x.v) G (4.96)

cos A a (y_) sin A s sin A a (yx,,/)G (4.97)

However, the transformation corresponding to the rotational degrees of free-

dora of the junction node, derived below, is nonlinear due to moderate

rotation[73].

Ap Af Ap A A A

The transformation between the (e x, e_, e¢) system and the (e x, ey, ez) system

is:

For the straight portion of the blade (_lobal system)

A o A

, e_ = [ Tde ]G ey
A w A

e_ G ez G

(4.98)

For the _ tAP_element (local system)
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A r A

e_ = [ Tdc ]L Cy
A t A
er L L

(4.99)

The transformation between the local and global coordinate systems before

deformation is:

A A

ey = [ Tcb ]t ey
A A

ez L ez G

(4.100)

The constraint that the angular relationship between the swept tip and the

straight portion of the blade at the junction is preserved after deformation can

be written as:

Ap A#

I'}I')Ap = el']e,7 [ Tcb ]t ^'

_ L _ G

(4.101)

Combining Eqs. (4.98) and (4.100) with Eq. (4.101) and comparing with Eq.

[ Tde ]L = [ Teb -It [Tde -IG [ Teb ]T (4.102)

(4.99) gives:

If the general second order expression of [Tde-I , Eq. (4.40), is used, an ex-

plicit form of the constraint relations for the rotational degrees of freedom

cannot be obtained because of the mathematical complexity. When the effect

of pretwist at the junction is not included, the matrix [Tde'l becomes
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I I V'x W'x 1
[ Tdc ] = - (V,x + _bW,x) I _b (4.103)

-Wx+ 4_v,x -(4_+V,xW,x) 1

where the small angle assumption, Eq. (3.39), is used for qS. Substituting Eq.

(4.103) into Eq. (4.102) and equating elements (1,2), (I,3) and (2,3) of both

sides, yields the following constraint relations:

I 4X. t
-- Wk

V !"
,X

= ([Teb]t+[TK]) --wG, x

v G
,X

(4.104)

where the elements of the matrix [T _] are presented in Appendix C.I. For the

velocity and acceleration of the rotational degrees of freedom, the constraint

relations are obtained by differentiating Eq. (4.104) with respect to time:

' -ffk = ([Teb]t+[TC]) _.G

•L -G
V,X V,X

(4.105)

-_,x = ([Teb]t+[ ]) - + [ ] -

_L _.G _,G
,X ,X ,X

(4.106)

where

[T M ] = [i -c ] (4.107)

The elements of the matrices [T c] and [T m] are also presented in Appendix

C.I. It is evident from Appendix C.I that the transformation matrices

115



[TK], [Tc] and [T v] are nonlinear in thegeneralizedcoordinatesor their de-

rivatives. If the prctwist angle at the junction, flj, is nonzero but it can be

approximated as of order _, instead of E;/2 , then the matrix [Tdc], Eq. (4.40)

can be written as:

[Tdc ] =
I ! V,x W,x

-- V,x-- (fl + _)W,x I p +
-W,x + (/_+ _)V,x - (/_+ _ + V,xW,x) 1

wherc the small angle assumption is used for both fl and q_.

(4.108)

This form of Eq.

(4.108) is essential in order to be able to derive transformation of the type

given in Eqs. (4.104)-(4.106). Furthermore, it is also important to note that

assuming the pretwist angle at the blade tip junction to be of order e is very

reasonable. In practical blade configurations most of the pretwist is in the in-

board section, and the outermost 10% portion of the blade has only small

amount of pretwist. Using an approach similar to the case when flj = 0 (see

above), a set of constraint relations can be obtained which has the same form

as that given in Eqs. (4.104), (4.105), (4.106) and in Appendix C.I, except that

the variable _b is replaced by _, where

6-#+¢

The local-to-global coordinate transformation, for the vector of nodal de-

grces of freedom, Eq. (4.92), can be rewritten as:

qL = ([A L]+ [A K])qt G

where [A t] and [A K] are the linear and nonlinear parts of the transformation

matrix [A], respectively. The nodal vectors for velocity and acceleration are:

(4.109)

(4.110)
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q['= ([AL] + [AC])q G (4.111)

q_. = ([A L]+[A C])i_G + [A M]qG (4.112)

Equations (4.110)-(4.112) are employed in the assembly process, which is de-

scribed in Chapter 6. In Eqs. (4.110)-(4.112), the matriccs [AK], [A c] and

[A .xl] are nonlinear in the nodal value of the generalized coordinates or their

derivatives at the tip juntion. The elements of the matrices [A L] , [A K] ,

[A c] and [A M] are presented in Appendix C.2.
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ChapterV

INCORPORATION OF AERODYNAMICS IN THE EQUATIONS OF
MOTION

In the equations of motion given in Chapter 4, the nonconservative distrib-

uted forces and moments associated with the external work contributions were

written in general symbolic form. These generalized forces and moments are

replaced by the aerodynamic forces and moments described in this chapter to

complete the aeroelastic analysis. The expressions used in the derivation of the

aerodynamic loads in this chapter are not combined algebraically. Instead,

they are coded separately in the computer program implementing this study,

and assembled numerically during the solution process[13-1. Since the explicit

algebraic form of the aerodynamic loads as a function of the blade displace-

ment variables is not required in this implicit aerodynamic formulation, there-

fore the ordering scheme is not used in this chapter.

5.1 AERODYNAMIC LIFT AND PITCHING MOMENT

The expressions used for the aerodynamic lift and pitching moment acting

on the blade are based on Greenberg's extension of Theodorsen's theory [38]

for a two-dimensional airfoil undergoing sinusoidal motion in pulsating

incompressible flow. A quasi-steady approximation of the unsteady theory is

used where Theodorsen's lift deficiency function C(k) is taken to be unity. This

approximation is quite reasonable because it was shown in an earlier
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paper[33] that a completely unsteady time domain representation of

Grecnberg's theory has a fairly small effect on the coupled flap-lag-torsional

blade response, stability and loads. Thus the neglect of this particular un-

steady aerodynamic effect is not expected to have a significant influence on the

validity of the numerical results generated in this study. With the quasi-steady

assumption, the aerodynamic lift L and pitching moment M per unit span are

given by:

2 d • -_-b)01L = -_--aPAb[--_--(h + V0)- (xA +

aPAbV[i_ + V0 + (b - XA)0]

(5.1)

I _ I d +bY0M = TapAb-{(XA--Tb)_T(h + vo)-

I b 2 +b) 2] 0}_- + (XA-

+ aPAbXAV[l_ + V0 + (b - XA)0]

(5.2)

where a is the two-dimensional airfoil lift curve slope; b is the semi-chord; PA

is the density of air; fi is the plunging velocity; V is the free-stream velocity

component of the two-dimensional airfoil; 0 is the pitch angle with respect to

free-stream; x A is the blade airfoil cross-sectional aerodynamic center offset

from the elastic axis, positive for aerodynamic center before elastic axis. The

aerodynamic lift L is defined positive up and the pitching moment M is de-

fined positive nose up.

The resultant airfoil velocity relative to the air is:

UR = _,/V2 + fi2 (5.3)
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The components of UR in

A! _? A#

(e x, %, e;) are, from Fig. 5.1"

the deformed curvilinear coordinate system

P

U n = V cos 0 - 11sin 0 (5.4a)

U¢' - V sin 0 - la cos 0 (5.4b)

Inverse relations corresponding to Eqs. (5.4) can be also written as:

l

V = Un cos0-U¢'sin0 (5.5)

la = - Un sin 0- U_' cos 0 (5.6)

Due to the small oscillation assumption, which is an inherent assumption in

Grccnbcrg's theory [38], the expressions for (fi + V0) and V in Eqs. (5.1) and

(5.2) can bc approximated, from Eqs. (5.4b) and (5.5), respectively, as:

1_+ V0 _- - U_' (5.7)

I

V -_ U,1 - U_'0 (5.8)

Substituting Eqs. (5.7) and (5.8) into Eqs. (5.1) and (5.2), the aerodynamic lift

and pitching moment per unit span arc written in terms of U_' and U_' as:

1 " " ' -+b)O] +L = 9-_--aPAb'[ - U,_ - (x A

aPAb (U,l' - U('0) [ - U¢' + (b - XA) 0]

(5.9)

120



M __ 2aPAb2{(XA-- b) U('+ l--b2 (Uu'-U_'0)0+

I b 2 -/b)2] 0-g- + (XA }

+ aPAbXA(U,/- U('0) [ - U(' + (b- XA)0 ]

The profile drag per unit span is:

D = CdoPAbU_t = Cd0PAb(Uv/2+ U_.'2)

(5.10)

(5.11)

5.2 BLADE VELOCITY RELATIVE TO AIR

The velocity vector of a point on the elastic axis of the blade relative to the

air is:

,^, ,^, _,_U = VEA -- V A = U x ex + Uv/ % + U(' (5._2)

where VLA is the velocity vector of a point on the elastic axis of thc blade and

V A is the velocity vector of air due to forward flight and inflow.

The velocity vector of a point on the elastic axis of the blade, VI.:A, can be

obtained from Eq. (4.47) as:

EA A EA A F,A A
VEA = (V))/=(= 0 = V x ex + Vy ey + V z e z (5.13)

where

<I v_-A ktvF; fi+Dy(h z+w)-f_z(hy+ v)+ Vbx ]
_'+[)z(h×+x+ u)-_x(hz+ W)+ Vby_>

W+_"Ix(hy+V)-i')y(h x+x+u)+ VbzJ

(5.14)
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The velocity vector of air due to forward flight anti inflow, V a, is:

A A A

V A = _2R(pcoS0ir-pSin_jr-2k r)

A^ A^ A^
= V x e x + Vy ey + V z e z

(5.i5)

where

p cos

_V/).x_ = _)RETcb] [Tbr] -psin

lv ) -a

f pflp
_R[Tcb] - pflp

p COS @ -- tip),

COS _b sin Op -/.t sin 4, cos Op -

cos _, cos Op + p sin ¢, sin Op -
2 sin 0p}
_. COS 0p

(5.16)

In Eqs. (5.14) and (5.16), the explicit expressions for (_x, _y, flz), (h_, hy, hz) ,

(Vbx, Vby, Voz ) and [T_b] can be found in Eqs. (4.33), (4.38), (4.26) and (2.7a),

respectively, for the straight portion of the blade, and in Eqs. (4.34), (4.39),

(4.27) and (2.7b), respectively, for the swept-tip element.

The velocity component U,' and U;' can be obtained by combining Eqs.

(5.12), (5.13) and (5.15) as:

Ux'

U_/_,

U_')

fV EA

E dol }
tvz Vz

(5.17)

where the transformation matrix, [Ta_] , between the deformed curvilinear

A ! Ap Ap

coordinate system (e,, %, e_) and the undeformed element coordinate system
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(_x.Cy,'_"_) , has bccn defined in Eq. (2.15) and the second order expression for

[Td_ ] is givcn by Eq. (4.40).

Thc accclcration component U¢' can be obtained by differentiating Eq.

(5.17) with respect to time:

"A
o¢') I.-v_l:_a Vz j

{'VxEA _

+ {Vy vx }a (5.18)Vy
EAtVz - Vz_

whcrc

v_AO

f iJ + _yW -- _z _"+ _y (h z + w) - _z (hy + v) + _/bx "_

= ,}_,+c,,u -C_x,V'+ az(hx + _ + u)- ax(hz + w)+ %y_, (5.19)
Lx_,' + _x _' -- f2yU + _x(hy + v) - _y(h x + x + u) + '_/bz J

(rA_, = QR[Teb ]

- f_# sin

{f_l_ (fit, sin ff sin 0p - cos ff cos 0o) - 0t_

(btflp cos _, cos 0p - _ sin ff sin 0p + _. cos 0p)}

{f_# (tip sin ff cos 0p + cos _, sin 0o) + 0o

(#tip cos _, sin 0p + _ sin ff cos 0p + R sin 0p)}

(5.20)

The matrix [Td_ ] is given in Eq. (4.43); while the expressions of (_/b_, Vby, Vbz)

and (_, _y, f_) are given in Eqs. (4.52) and (4.53), respectively. Equations

(5.19) and (5.20) are obtained by differentiating Eqs. (5.14) and (5.16), re-

spectively, with respect to time.
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5.3 BLADE PITCH ANGLE WITH RESPECT TO FREE STREAM

The blade pitch angle with respect to the free stream is:

0 = 0 G + 4' (5.21)

wherc 0c3 is the total geomctric pitch angle. The time derivatives of 0 are:

O = /_G + _ (5.22)

0 = 0 G + _ (5.23)

For the straight portion of the blade

0G = 0p(¢,) + fl(x) (5.24)

0 G = 0p (5.25)

0 G = 0p (5.26)

For the swept-tip element

0 G = [Op(_b) + flj] cos A s cos A a + _T(X) (5.27)

0 G = 0p cos A s cos A a (5.28)

0 G = 0p cos A s cos A a (5.29)

where/_j is the blade pretwist angle at the junction between the straight por-

tion of the blade and the swept tip, and PT (X) is the pretwist angle of the swept

tip with respect to the junction.
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5.4 AERODYNAMIC FORCES AND MOMENTS IN THE

UNDEFORMED ELEMENT COORDINATE SYSTEM

The components of the aerodynamic forces and moments per unit span in

At '_1

the deformed curvilinear coordinate system (_z'×,%, e¢) are relatcd to the aero-

dynamic lift and pitching moment per unit span by (see Fig. 5.2):

P_t' = L sin czA - D cos _A (5.30)

p_' = LcOS_A + Dsincz A (5.31)

qx' = M (5.32)

where the blade local angle of attack, _A, and its sine and cosine can be written

in terms of Uo' and U¢' (see Fig. 5.1) as:

O_A= _tan-'(U_', ']

\u. j
(5.33)

U¢' - U¢'
sin _A -- -- (5.34)

UR N/Ur/,2 + U¢ '2

U_/' Ur/
= - (5.35)

COS (xA UR \//Ur/2 + U(_'2

The aerodynamic forces and moments per unit span in thc undeformcd ele-

ment coordinate system (ex, ey, _z_) are obtained from Eqs. (5.30), (5.31) and

(5.32); and can be written as:
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{px}Py

Pz

(5.36)

(5.37)

5.5 TREATMENT OF REVERSE FLOW

Reverse flow is a phenomenon due to forward flight[52] and it is charac-

terized by the existence of a reverse flow region on the retreating blade (

180°< _k < 360°), where the relative air velocity sensed by the blade cross-

section is from the trailing edge to the leading edge. At the boundary of the

reverse flow region, the tangential velocity of the blade with respect to air is

equal to zero. It should be noted that an exact solution of the boundary of the

reverse flow region requires knowledge of the blade motion, which is not

known a-priori. A commonly used approximate solution for the boundary of

the reverse flow region is obtainedl-52] by neglecting the blade deformations;

i.e.:

f_r +/_f_R sin ff = 0

or

r = -/_R sin _b (5.38)

which represents a circle of diameter /JR, and centered at r =/aR/2 on the

= 270 ° azimuth station of the retreating side of the rotor disk, as shown in
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Fig. 5.3. Sincethc diameterof the reverseflow region is directly proportional

to the advanceratio, g, the sizeof the reverseflow region increaseswith the

forward speed.

In this study, it is assumcdthat the aerodynamiclift and moment per unit

span arc equal to zcro, while the sign of the profile drag per unit span is re-

vcrscd inside the reversellow region. The reverseflow region can have an in-

flucncc on rotor aerodynamic loads at high advance ratios and it should be

takcn into account in the calculation of the aerodynamic loads.
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Chapter VI

METHOD OF SOLUTION

The finitc clement discrctization of the blade equations of motion has been

described in Chapter 4. This chapter describes the treatment of the blade axial

degree of freedom. This is an important step required for the appropriate

representation of the centrifugal force and Coriolis damping effects, before the

blade equations of motion can be solved. Subsequently, the various solution

procedures needed for determining the aeroelastic stability in hover, as well as

the response and stability in forward flight are described.

6.1 TREATMENT OF THE AXIAL DEGREE OF FREEDOM

A careful treatment of the blade axial degree of freedom is required so as

to properly account for the centrifugal force and Coriolis damping effects. In

the past, two basic approaches have emerged for the treatment of this problem:

(1) the elimination approach and (2) the substitution approach. The elimi-

nation approach aims at eliminating the axial degree of freedom from the blade

equations of motion. Historically, this has been clone through mathematical

manipulations[41,83,12] described below. The blade axial equation of motion,

derived previously, is given by:

{ - Vx + qyW,x - qzV,x},x - Zu - Px = 0 (4.76a)
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where the axial stressrcsultant Vx is written, from Eq. (4.11a), a,;

Vx -= fix (Qli_:x× + QIJ;_ + Q167x_)d'ld( .

1 2 I
= EA[U,x+_(V,x) +_-(W,x)']+ f

(6.1)

where f represents the additional terms which do not depend on the axial de-

gree of freedom, u. The axial component of the distributed inertia force, Z.,

is given in Eq. (4.55a). In Eq. (4.76a), the distributed external force and mo-

ment terms Px, qy and qz arc often neglected. Using three equations, Eqs.

(4.76a), (6.1) and (4.55a), the elimination procedure is carried out in two

stages. In the first _, a new expression for the axial strain at the elastic

axis in terms of the axial inertia force is obtained after some mathematical

manipulation. Rewrite Eq. (6.1) as

f ! Vx fU'x + (V'x)2 + _ (W'x)2 = EA EA (6.2)

where the term on the left hand side of Eq. (6.2) is, from Eq. (3.31), thc axial

strain at the elastic axis, _xx- The axial stress resultant V X is also the total axial

force on the blade due to inertial and external loads at the spanwise station x

of the blade element, and can be calculated by integrating Eq. (4.76a), while

neglecting the distributed external force and moment terms

J°xle

Vx= ZudX + Vx (6.3)
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where Vx is the total inertial force in the axial direction due to thc portion of

the blade outboard of the element. Combining Eqs. (6.2) and (6.3), the new

expression for the axial strain at the elastic axis is given by

_xx = U,x+ l(v2 ,x)2+ -_-1(W,x)2 = F (6.4)

where

_X ]c "_
F = _( Z udx + V x- f) (6.5)

EA

Using Eqs. (6.4) and (6.5), all the terms involving _xx in flap, lag and torsion

equations are replaced by the function F, which is equivalent to the proper

representation of the centrifugal force effects in these equations.

In the second stag_e_, terms involving u and its time derivatives are elimi-

nated from the flap, lag and torsion equations. Integrating Eq. (6.4) with re-

I0 _ IO_ 1 (v 2 W2x) dx (6.6)u = Fdx - "_- ,x +

spcct to x yields

This expression for u, Eq. (6.6), and its time derivatives are then used to re-

place the corresponding terms in the flap, lag and torsion equations. The

Coriolis damping effect is retained in this process of eliminating u and its time

derivatives. It is worthwhile mentioning that in the past, additional simplifi-

cation was often introduced in the second stage by imposing the axial

inextensionality condition; which is equivalent to the requirement _xx = 0, in

Eq. (6.4), and it also implies that F = 0, in Eq. (6.6). In the two-stage elimi-
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nation process described above, the axial degree of freedom is completely

eliminated from the system of equations. Subsequently these modified system

of equations, with reduced degrees of freedom, can be used in the aeroelastic

analysis. Such an elimination procedure becomes algebraically tedious in the

case of composite blade model or when higher order terms are retained in the

blade model[ 15].

The substitution approach , which is used in this study, has also been em-

ployed by Chopra and his associates since the mid 80's (e.g., Ref. 48). It re-

presents a somewhat more general alternative to elimination. In this approach,

Eqs. (6.4) and (6.5) are used to substitute for the axial strain at the elastic axis

so as to properly account for the centrifugal force effects. However, both the

axial degree of freedom u and the axial equation of motion are retained in the

aeroelastic calculations. In the nonlinear equilibrium position calculation, the

nonlinear terms encountered in the substitution procedure are treated as

known quantities and are substituted using the approximate solution from the

previous iteration. For linearized stability analysis, these nonlinear terms are

substituted using the converged equilibrium values. It is important to note

that when using the substitution procedure in an aeroelastic analysis, the

modal coordinate transformation should include an axial mode in order to

properly account for the Coriolis damping effect. Without this axial mode, the

flap and lag damping obtained from the linearized stability analysis can be

inaccurate at high pitch angles, as will be shown latter in this study. A more

concise description of the approaches for the treatment of the axial degree of

freedom, presented in this section, has been included in Ref. 104.
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6.2 FREE VIBRATION ANALYSIS

The first step in the solution procedure is the calculation of the natural fre-

quencies and mode shapes of the blade. The coupled equations of motion re-

presenting the free vibrations of the rotating composite blade are a set of

nonlinear ordinary differential equations obtained from the finite element

discrctization described in Chapter 4. These nonlinear equations of motion are

converted into a set of linear equations by replacing the nonlinear terms asso-

ciated with the axial strain at the elastic axis by a linear term representing the

inertial force in the axial direction, and neglecting all other nonlinear terms

associated with the substitution procedure described in the previous section.

The computation of the natural frequencies and mode shapes of the blade is

based on the linear, undamped equations of motion of the blade in vacuum.

The equations of motion for the typical element used to model the straight

portion of the blade are:

[ MF]ili + EKF]qi = 0, i= l,...,n- I (6.7)

and for the swept tip element, the equations of motion are given by

[AL]T[MF][AL]il G + [AL]T[-KF][AL]tlt G = 0 (6.8)

where the linear transformation matrix [A L] is used in the local-to-global co-

ordinate transformation.

The n - 1 equations, Eq. (6.7), and Eq. (6.8) are then assembled using the

standard finite element assembly procedure. The assembled finite element

equations of motion for the free vibrations of the blade are written as
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[M F]ii + [K F]q = 0 (6.9)

In Eqs. (6.7)-(6.9),thesuperscript F denotesmatricesusedin the freevibration

analysis. The boundary conditions at the root are imposed by deleting the

appropriate rows and columns of the systemmassand stiffness matrices that

correspond to the constrained degreesof freedom at the blade root.

For the baselineconfiguration of the blade, the free vibration modes are

calculated with zeropitch angle. In an aeroelasticanalysiswhere a modal co-

ordinate transformation is used to reduce the number of degreesof freedom,

the free vibration modesof the bladeare calculated for a root pitch angle that

correspondsto the collectivepitch setting of the blade. The coupled modes of

thc blade are identified using a procedure[l IJ which is described next. The

eigenvector representing the mode shape of a particular mode is normalized

by dividing it by the largest tip displacement among its seven component

modes. The identification of the mode is based on the component mode with

the largest participation in the tip displacement, i.e., having a normalized tip

displacement of one.

6.3 MODAL COORDINATE TRANSFORMATION AND ASSEMBLY
PROCEDURE

A preliminary step in the solution of the aeroelastic response and stability

in hover and in foravard flight consists of a modal coordinate transformation

performed on the blade equations so as to reduce the number of degrees of

freedom of the problem, and to assemble the various element matrices into
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. • .4global system mass, damping anti stiffness matrices and generate the system

For the i-th element, the modal coordinate transformation has theload vector.

form:

qi = [Qi] Y (6.10)

where y is the vector of generalizcd modal coordinates, which become the new

unknowns of the problem. If Nm modes are used to perform the modal coor-

dinate transformation, then y is a vector of size N m . The transformation ma-

trix [Q,] for the i-th element has a size of 23 by Nm; the columns of [Q,]

contain the portions of the normal mode eigenvectors corresponding to the

modal degrees of freedom for the i-th element.

The assembled stiffness matrix of the blade is obtained by summing the

stiffness matrices of the individual elements after the modal coordinate trans-

formation has been performed on each of these elements:

n-I

[K] = Z[Qi]T[Ki][Qi] + [Qt]J'[AL]T[Kt]([AL] + [AK])[Qt] (6.11)
i=l

Similarly, the assembled damping and mass matrices are written, respectively,

as:

[C] =

[M] =

n-I

Z [Qi]T[ci][Qi] +

i=l

[Qt]T[AL]T{[ct]([A L] + [AC]) + [Mt][AM]}[Qt]

n-1

Z [Qi]T[Mi][Qi] +
i=l

[Qt]T[AL]T[-Mt]([A L] + [AC])[Qt]

(6.12)

(6.13)
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and the assembled load vector is given by:

n-I

F = _ [Qi] T F i + [Qt]T[AI'] "r F t
i=l

(6.14)

in Eqs. (6.11), (6.12) and (6.13), the local-to-global transformations for the

swept tip clement, Eqs. (4.110), (4.111) and (4.112) have been applied before

implementing the modal transformation.

The assembled blade equations of motion in the modal space are a set of

nonlinear, coupled, ordinary differential equations written as:

[M(y)]_, + [-C(y, ),)])' + [K(y, )', _')]y + F(y, )', _') = 0 (6.15)

For the case of forward flight, these equations also have periodic coefficients.

In Eq. (6.15) the nonlinearity of the mass and damping matrices comes from

the local-to-global transformation associated with the swept tip element. The

dependence of the stiffness matrix on ), and )', on the other hand, is due to the

substitution procedure in the treatment of the axial degree of freedom.

6.4 HOVER ANALYSIS

For the case of hover, the nonlinear equations of motion, Eq. (6.15), have

constant coefficients. The blade static equilibrium position, Y0, is obtained

from Eq. (6.15) by setting )' = _' = 0 and solving the resulting nonlinear alge-

braic equations:

[K(y 0, 0, 0)]y 0 + F(y 0, 0, 0) = 0 (6.16)
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using a Newton-Raphsoniteration procedure.

In this study, the blade responseanalysisis coupled with the calculation of

the trim variables such that the overall equilibrium of the helicopter is main-

tained:

CT = CW (6.17)

The trim variables in hover consistof the collective pitch angle 00 and the in-

flow ratio 2. A brief description of the coupled trim-aeroelastic response sol-

ution process is given below. At the beginning of the analysis, an initial

estimate of the equilibrium position Yo and the trim variables is assumed. The

approximate solution of Eq. (6.16), Yo, is obtained while keeping the estimated

trim variables constant. The error in the collective pitch angle is calculated

fr o m

CW- CT
A00 = (6.18)

OC T

000

where Cx is the thrust coefficient corresponding to the approximate equilib-

rium solution Y0- Details of the calculation of the thrust coefficient will be

described latter in this chapter. The derivative of C x with respect to 0 o is ap-

proximated by

OCT act

000 6
(6.19)

which is based on the approximate relation
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a_- 00.75 ),

CT- 2 ( 3 2 ) (6.20)

obtained from the blade element theory[52], where

00.75 = Oo + (/_ + 4')o.75 (6.21)

is the total pitch angle at the 3,'4 span of the blade. The absolute value of

A00 is compared with its convergence criterion; where a valuc of 0.0001 radian

is used as the convergence criterion in this study. If convergence is not

achieved, then a new estimate of the collective pitch is calculated from:

(O0)new = (O0)old -f- A00 (6.22)

Corresponding to the new pitch angle, a new estimate of the inflow ratio is also

obtained from

~ 2400.75
(2)new _ aa 1 + 1 (6.23)

16 aa

where

00.75 = (O0)ncw + (fl + ;)0.75 (6.24)

is the total pitch angle at the 3/4 span of the blade based on the current ap-

proximation of equilibrium position, Y0 • Equation (6.23) is based on the ex-

tended blade element theory[52]. With (00),ew, (A),ew and Y0 as the new

estimate of 00 , ,_ and Y0, respectively, for the next solution pass, the process

described above is repeated until this fairly simple coupled trim-aeroelastic re-

sponse problem converges, to produce final converged values for 00, 2 and Y0.
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The blade equationsof motion in the modal space,Eq. (6.15), can bc writ-

ten as:

f(y, 3',_') = 0 (6.25)

For the hover case, Eq. (6.25) can be linearized about the nonlinear static

equilibrium position Y0, to yield:

where

f = [M(Y0)]A_ + [C(Y0)'IAy + [K(Y0)]Ay + H.O.T. = 0 (6.26)

[_-]= [ a__yf.] (6.27)

yo, O,O

yo, 0,0

yo, 0,0

(6.29)

are the mass, damping and stiffness matrices, respectively, of the linearized

system. In the linearization process, the generalized modal coordinate vector

y has been written as

Y = YO + Ay (6.30)

where Ay is a time dependent small perturbation vector of y; and the fact that

f(Y0, 0, 0) = 0 has been used. Neglecting the higher order terms, the linearized

system, Eq. (6.26), can be expressed in the first order state variable form by

2: = [A] z (6.31)
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wherethe statevector z is defined as

Ay} (6.32)z= Ay

and the system matrix [A] has the form

I [0] Eli ][A] = _ [_]-I[_] _ [_]-l[_]
(6.33)

The lincarized stability of the system is determined by the eigcnvalues of [A].

These eigenvalues are in complex conjugate pairs

2i = _'i + i_oj, j= 1,..., N m (6.34)

The blade is stable if _+ < 0 for all j.

6.5 FORWARD FLIGHT ANALYSIS

In forward flight the nonlinear equations of motion of the isolated blade are

periodic and can be written symbolically as

fb(Yb, )'b, _'b, Yt; _) = 0 (6.35)

where Yb is the vector of generalized blade degrees of freedom. The vector Yt

in Eq. (6.35) contains the parameters governing the trim state of the helicopter,

including the collective pitch angle 00, the cyclic cosine pitch input 01¢ , the

cyclic sine pitch input 01s , the inflow ratio 2, and the rotor angle of attack

_R; thus the vector Yt is given by

Yt = [00, 01c, 0Is, _', aR] T (6.36)
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These five trim variables appear explicitly in the blade equations of motion.

Obviously the blade equations cannot be solved without knowledge of the trim

state represented by Eq. (6.36), because the aeroelastic problem in forward

flight is inherently coupled to the flight mechanics of the helicopter as repres-

ented by trim. The trim vector y, is obtained from the solution of a set of

nonlinear trim equations

fi(Yb, _'b, _'b, Yt; _) = 0 (6.37)

which are based on the overall force and moment equilibrium of the helicopter

in steady, level forward flight. The procedure used to determine the trim state

of the hclicopter is referred to as the "trim analysis".

6.5. I Trim .4nalysis

The trim analysis employed in this study is called "propulsive trim"[24],

which enforces longitudinal and vertical force equilibrium, as well as pitch and

roll moment equilibrium of the helicopter in steady, level flight. A helicopter

(Fig. 6.1) in free flight has a total of six degrees of freedom, including three

translational and three rotational. Therefore three force and three moment

equilibrium equations have to be satisfied in order to maintain the overall

equilibrium of the helicopter. For simplified propulsive trim employed here,

the yawing moment equilibrium and the lateral force equilibrium are not en-

forced; thus the tail rotor pitch setting and the main rotor shaft angle in the

lateral plane are not included in the vector of trim variables given in Eq. (6.36).
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This implies that one assumesthat the yawing moment equilibrium and the

lateral force equilibrium aresatisfied.

The four equilibrium equations,togetherwith an inflow equation, constitute

a total of five trim equationswhich must be solvedfor the five trim variables

defined in Eq. (6.36). Thesetrim equations are collectively representedin a

vector form by Eq. (6.37). The equilibrium equations are formulated in the
A A A

nonrotating, hub-fixed system (i.r, J,r, k,r) with the hub center OH as the mo-

ment center for moment equilibrium equations, as shown schematically in Fig.

6.2.

The five trim equations are:

1. The inflow equation. This equation governs the relation between the

inflow ratio 2, advance ratio/_, rotor angle of attack _R and thrust co-

efficient Ca-, based on the momentum theoryl-52]:

CT
ft(l) = 3. - /,tan(_R)-- = 0 (6.38)

2422 + u 2

The thrust coefficient is defined as:

.

T R
CT = (6.39)

PA (n R 2) (f_R) 2

where T R is the total thrust generated by the rotor.

The pitching moment equation. This equation is obtained by enforcing

pitching moment equilibrium about the hub center. Summing the

pitching moments due to hub loads, helicopter weight and fuselage drag

gives (see Fig. 6.2):
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Mpt + W ( - XFC cos_tR + ZFC sin OtR)
(6.40)

+ Df(XFA sin 0tR -- ZFA cos atR) = 0

where Mpt is the pitching moment due to hub loads; W is the weight of

the helicopter; Dr is the parasite drag of the fuselage. The weight W

acts at the center of gravity of the helicopter, offset from the hub center

A ^

O_l by the distances Xvc and Zvc in the - inr and - k.r directions, re-

spectively, as shown in Fig. 6.2. The parasite drag Df acting on the

fuselage is given by[52]:

l
Df-- -_- PAV2 fCdf (6.41)

where V F is the forward flight spced with respcct to the air; and fCdf is

the parasite drag area. Thc typical value of the parasitc drag area is

approximately fCdf-- 0.01nR 2 • The velocity vector V F of the helicopter

with respect to the air can be written as:

A A

V F = V F cos txR inr - V F sin 0_R knr (6.42)

It is assumed that the drag force D r acts parallel to V F, at the center of

drag, which is offset from the hub center O n by the distances XFA and

A A

ZVA in the i,r and -knr directions, respectively, as shown in Fig. 6.2.

Nondimensionalizing Eq. (6.40) by the factor pA0tR2)(DR)2R yields:

ft(2) = Mpt + C w ( - XFC cos _R + ZFC sin CtR)
(6.43)

+ CDf(XFA sin _R -- ZFA cos _R) = 0

where
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Mpt
Mpt = (6.44)

PA(nR2)(_R) 2 R

W
C w = (6.45)

PA (nR2) (f2R) 2

Df
CDf = (6.46)

PA (n R 2) (f_R) 2

XFC -- XFC Zi'C
R ' ZFC = R (6.47)

XFA = XFA ZFA
R ' ZFA = R (6.48)

Substituting Eq. (6.41) into Eq. (6.46), the nondimensional parasite

drag coefficient Col can be written as:

!
7 PAV2: fCdf

CDf = = "_'-('
PA (nR2) (ff_R) 2

(6.49)

where fCdd(nR 2) __ 0.01.

3. The rolling moment equation. Since the tail rotor and the main rotor

tilt angle in the lateral plane are not modeled, the rolling moment

equation is. obtained by simply setting the rolling moment due to hub

loads equal to zero:

ft(3) = Mrl = Mrl = 0 (6.50)

where
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Mrl =- Mrl

PA0 zR2)(flR) 2 R

(6.51)

. The vertical force equation. This equation is obtained by enforcing the

A

force equilibrium in the k.r direction (see Fig. 6.2):

T R - WcOSaR -- Dfsin_R = 0 (6.52)

Nondimensionalizing Eq. (6.52) by the factor pA(nR2X_R) 2 yields:

ft(4) = C- !. - Cwcos0_ R - CDfsin_ R = 0 (6.53)

, The longitudinal force equation. This equation is obtained by enforcing

A

thc force equilibrium in the i.r direction (see Fig. 6.2):

H R - W sin _R + Dfcos otR = 0 (6.54)

where H R is the total longitudinal hub force. Nondimensionalizing Eq.

(6.54) by PA(nR2X_R) 2 yields:

ft(5) = CI_I - Cwsinu R + CDfCOSa R = 0 (6.55)

where

HR
C H = (6.56)

PA (ztR2) (f2R)2
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6.5.2 Distributed Loads on the blade

The distributed loads on the blade are due to inertial and aerodynamic

sources described below.

6.5.2.1 Inertial Loads

The inertial loads on the blade are derived using the variation of the kinetic

energy expression shown in Eq. (4.54):

_0 _C .....
5T = [ Z ufu + ZvfV + Z._.fV,x + ZwSW + Z wfw,x

+ Z_ 54) + Z_, _$a + Z,/di_ + Z¢ 57x_ ] dx

(4.54)

The expression inside the brackets in Eq. (4.54) is the virtual work done by the

distributed inertial loads on the blade. The quantities 6u, 6v and diw are vir-

tual displacements in the ix, ey and ez directions, respectively, therefore Zu, Zv

-- A A A

and Zw represent inertial forces per unit span in the ex, ey and e z directions,

respectively. Similarly, Z_ and Z,_ are inertial moments per unit span in the

_zz and - _y directions, respectively, since 6v_ and 5wx are the corresponding

Ap Ap

virtual rotations. The virtual rotations 5_b, 6_,_ and 5_x¢ are in the ex, - e¢ and

A t

% directions, respectively; thus ZO, Z,_ and Z¢ are inertial moments per unit

A¢ A I A !

span in the ex, - e¢ and en directions, respectively. Note that the orientations

of 6_ and 6_¢ are obtained from Eqs. (3.10b-c) which define the base vectors

E_ and E¢ of the deformed elastic axis. The inertial loads due to warping are

assumed to be small and are neglected in the calculation of blade root and hub
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loads. Similar assumption regarding the inertial warping loads has been used

by other researchers (e.g., Ref. 22).

The distributed inertial force vector at a point on the blade is written as:

fl fxl ^ ^= ex + fyley + fzl ^ez (6.57)

where the components of ft in the (ex, ey, c_) system are obtained from

ryW = Zv
rz )

(6.58)

The distributed inertial moment vector at a point on the blade is written as:

A A A

m I = mxle x + my ley+ mzle z (6.59)

where the components of m_ in the (_x, _y, _,) system are obtained from

fmxi] _o
,_ myI _, = + [Tde]

(mzl) Zv - Z_

(6.60)

6.5.2.2 Aerodynamic Loads

The distributed aerodynamic force and moment vectors at a point on the

blade are written as:

A A A

fA = Pxex + pyey + pzez (6.61)

and
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A A A

mA = qxex + qyey + qzez (6.62)

, respectively, where the components of fA and Ill A in the (i x, _y, ez) system are

obtained from Eqs. (5.36) and (5.37), respectively.

6.5.3 Rotor Hub Loads

The rotor hub loads are obtained by integrating the distributed loads along

the span of the isolated blade in the rotating frame, then transforming these

loads to the hub-fixed nonrotating reference frame, and summing the contrib-

ution from the individual blades.

The distributed forces and moments are due to the inertial and aerodynamic

loads on each blade. The combined distributed force and moment vectors, fL

and m L, respectively, at a point on the blade are given by

I A LA LA
fL = fl + fA = fx_ex + fyey + fz ez (6.63)

and

L^ LA LA
m L = m i + m A = m x ex + my ey + m z ez (6.64)

where the components of fi and m_ in the (ex, ey, ez) system are obtained from

fyL_ = '_fyI + Py

fLJ tfzl + Pz

(6.65)

and
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{"mlx''} fmxl + qx},I I._ = _my I + qy_mm!',. ( mzl+ qz

(6.66)

, respectively. These local force and moment distributions, after suitable inte-

gration, produce blade root forcc and moment at the axis of rotation which is

A A A

expressed in the rotating, hub-fixed system (i r, Jr, kr) •

Since a finite clement formulation is employed in this study, the integration

of the distributed loads simply implies a summation of the element contrib-

utions over the blade. To carry out these summations the local loads have to

be transformed to the rotating, hub-fixed system in which the total rotating

hub loads are obtained. The contribution to the blade root force, due to local

force distribution, is obtained by

fR fir R ^ R/5. R= = fx ir + f_,.lr + fz _ (6.67)

wherc

rx") ffx

fR fL

(6.68)

and the transformation matrix [-Ter ] is defined as:

[Ter] = [Teb ] [Tbr] (6.69)

where [T_b ] and [Tbr ] are given by Eqs. (2.7) and (2.4), respectively.
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The blade root moment, in the rotating system, consists of contributions

from both the local moment distribution and the local force distribution. Tile

contribution due to the local distributed moment is

H!R i m L R I A R 1A. R 1 /_
- -- m x ir + my Jr + mz kr (6.70)

where

fm_ |} f mL]--ET ,I"
tm ' trap

(6.71)

and the contribution due to the local distributed force is given by

m R2 = R 0 x fL

R2 A. R2 A. mR2= m x Ir + my Jr -I- _'r

(6.72)

where the vector R 0 is the position vector of a point on the deformed clastic

axis, given by combining Eqs. (3.5) and (4.20)

A A

R 0 eli r + h ei b + (x+ u) ^ ^ ^= ex + v ey + w ez

R A R ^
= Rx0i r + Ry0J r + R R

(6.73)

with

Rx o)
Rz oj

x + u}+ [Ter] T v
W

(6.74)
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A A A

Therefore the components of m m in the (ir, Jr, kr) system can be obtained by

combining Eqs. (6.73), (6.63) and (6.67) with Eq. (6.72):

mR 2j

f - ey
RRx0rz

tRR0fy R -- Ry 0

(6.75)

The total contribution to the blade root moment due to the moment and force

distribution at a point on the blade, m R , is given in by:

m R = m RI + m R2

R A. R A. R_ r= m x ir + my ir + m z

(6.76)

whcrc

mR') (mxgl+ mxR2"}

;_ _ R,R R2_

my = my + my
R2

m mz -1 + m z

(6.77)

The total blade root force and moment at the axis of rotation are obtained

by integrating the contributions to the blade root force and moment, fR and

m R , respectively, due to local distributed loads, over the span of the blade.

For the k-th blade, the total blade root force and moment vectors have the

form:

R A Rk A. FRkta. ) AFRk(_kk) = Fxk(ffk)ir + Fy (_bk)lr + z _'k kr (6.78)

Rk A R A A

MRk(_,k) = M x (_bk)i t + My k(_bk)Jr + MzRk(_bk) kr (6.79)
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wherc

2n(k-1)

¢'k = _' + B (6.80)

is the azimuth angle of the k-th blade for a B-bladed rotor.

Transforming the root force F Rk and the root moment M Rk to the nonro-

A A A

tating, hub-fixed system (i.r, j,r,k,_) and summing the contribution due to each

blade, yields the total hub force and hub moment vectors

II A. I! A, ^
FII(_,) = Fx(O)lnr + Fy(_')Jnr + F_l(O)km . (6.81)

and

II A. H A H
Mlt(_b) = Mx(_b)lrt r + My(_b)j m. + Mz(_b)k, nr (6.82)

, respectively, where

13
Rk

FH(_) = Z [ FRk(_bk)C°Sq'k -- Fy (ffk)sin_k ] (6.83a)

k=l

B
Rk

F_ _I(_b) = 2 EVxRk(_bk)sin_bk + Fy (_bk)COS_,k] (6.83b)

k=l

B

= Fz (¢k)

k=l

(6.83c)

B
Rk

M_I(O) = Z [ MRk(Ok)C°S_k -- My (@k)sin 0k] (6.84a)

k=l
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13
Rk • Rk

[M x (t_k)Sln_b k + My (l_k)COSl,bk]

k=!

(6.84b)

B

k=l

(6.84c)

In Eqs. (6.83) and (6.84), the transformation between the rotating, hub-fixed

A A A A A A

system (it, Jr, kr) and the nonrotating, hub-fixed system (i,r, lnr, k,r) has been

dcfincd in Eqs. (2.1) and (2.2).

In the trim analysis, described the previous subsection, the total thrust

gcncrated by the rotor, T R , and the longitudinal hub force, H R , are given by:

T R = Flzl(t_) (6.85)

and

HR = Vlxt(_') (6.86)

respectively; while the pitching moment Mpt and the rolling moment Mrl due

to hub loads arc given by:

Mpt = MyH(_b) (6.87)

and

Mrl = MH(_k) (6.88)

respectively.
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6.5.4 Coupled Trim and Aeroelastic Response Solution Using Harmonic
Balance

The trim equations depends upon the blade degrees of freedom through the

rotor forces and moments, which are functions of the blade response. There-

fore the helicopter trim and blade acroclastic response problems are inherently

coupled, and cannot be solved independently. One possible approach uses an

iterative procedure in which an approximation of the blade response is used to

solve for an approximate trim solution, which is then substituted back into the

blade equations to obtain an improved approximation of the blade response.

This procedure is continued until the trim and response solutions converge.

If the number of unknowns in the blade equations is small, then this iterative

procedure for solving the coupled trim-aeroelastic response problem is con-

vcnient, such as in the case of hover. However this procedure can be compu-

rationally inefficient for the case of forward flight since the number of

unknowns involved in the blade equations for forward flight i5 usually at least

one order of magnitude larger than that for the case of hover.

In this study, the coupled helicopter trim and blade aeroelastic response

problem in forward flight is solved by an alternate procedure in which the trim

and response solutions are obtained simultaneously using the harmonic bal-

ance technique.

The equations of motion of an isolated blade in steady, level forward flight,

Eq. (6.35), are periodic. The response of the blade is also periodic with a

fundamental frequency of 1/rev (i.e. Yb(¢)= Yb(¢ + 2n) ), and thus it can be
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approximated by a truncated Fourier series expansion containing Nt_ har-

monies

Nil

Yb TM Yb0 + L[Ybnc cos(n_) + Ybns sin(n_)] (6.89)

n=l

where Ybo represents the constant part, or the average value of Yb over one

rotor revolution; Ybnc and Ybns represent the cosine and sine amplitudes, re-

spectively, of the n/rev harmonics. Collectively Ybo, Ybnc and Ybns represent a

total of (I + 2NI0 vectors, each containing N m coefficients where N m is the

number of modes used in the modal coordinate transformation, or the size of

the vector of generalized coordinates of the blade. The number of harmonics

N_¿ retained in the Fourier series expansion of the blade degrees of freedom

determines the accuracy of the response solution. For a B-bladed rotor the

vibratory hub loads, which are calculated based on the response solution, are

predominantly B/rev, thus at least B harmonics must be retained. In this

study, the number of harmonics retained is obtained by

N H =B + I (6.90)

The blade equations and the trim equations, represented by Eqs. (6.35) and

(6.37), respectively, can also be approximated by truncated Fourier series ex-

pansions containing N H harmonics

NH

fb _ fb0 + _..][fbncC°S(n_) + fbns sin(n_')] (6.91)
n= l
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.N'II

ft -_ frO+ Z [ftnc c°s(nO) + ftns sin(nCJ)]

n=l

(6.92)

An approximate solution to the blade equations can be obtained by setting the

constant part, anti the first Nit harmonics, in Eq. (6.91) to zero:

fbO- 2n fb(Yb,_'b,)'b, Yt;@)d@ = 0 (6.93)

and for I <n<Nl_

fbnc ! f2n
= "ff'JO fb(Yb,$'b,_'b, Yt;_p)cos(n_,)d_, = 0

(6.94)

fbns ! f2n
= _J0 fb(Yb, _'b, )'b, Yt; _b) sin(n_) d_ = 0

(6.95)

The trim state requires enforcing the equilibrium condition only on the average

value of the forces and moments acting on the helicopter over one revolution,

thus only the constant portion of Eq. (6.92) needs to be set to zero:

rz_1
l ft(Yb,_'b,)'b, Yt;_')d_b = 0 (6.96)fto- 2n
JO

The harmonic balance approach to the coupled trim-aeroelastic response

solution requires the simultaneous solution of the nonlinear algebraic system

represented by Eqs. (6.93)-(6.95) and (6.96) for the vector of trim parameters

Yt and the coefficient vectors denoted by Yb0, Ybnc , and Ybns (I _ n _< NH).

There are [5 + Nm(l + 2N_)] algebraic equations in terms of 5 trim variables

and Nm(l + 2NH) blade expansion coefficients. In this study, Gaussian
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quadrature with 30 integration points is usedto evaluate the integrals in Eqs.

(6.93)-(6.95) and (6.96); and the nonlinear algebraic equations solver

DNEQNF of the IMSL[107] subroutine library is used to obtain the coupled

trim and aeroelasticresponsesolution.

6.5.5 Vibratory Hub shears and Moments

For a B-bladed rotor in steady, level flight, the vibratory hub loads are

predominantly B rev in the nonrotating, hub-fixed system (Ref. 52, p. 696).

The amplitude of the B/rev hub shears and moments are obtained from a

harmonic analysis of the hub loads. The cosine and sine components of the

B rev hub shear are

BP = 11 "2_ FII(_) cos(BO)dO
(Fll)c .i°

_ ,FBP ) A. .rBP. '7. t_BP _ A-- t xllclnr + _ryll)cJnr + _ztl/cknr

(6.97a)

(FnP) = ! f2=
I! s -'d-jo FII(_b) sin(BO)d_b

,,-BP, A ,,--BP, A. BP A
= trxlOs _nr + tryn*sJnr + (FzH)s knr

(6.97b)

, respectively. Similarly, the cosine and sine components of the B/rev hub

moment are

(MBP) = I f2=Mll(_b) cos(B_t)dl]/

BP, A BP A. BP A
= (Mxn; c lnr + (MyH)cJnr + (Mzn)c knr

(6.98a)
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(M r')s __ If
"n-J0 Mll(_b) sin(B_)d_b

,,,BP, .A ,,,BP, A. BP ^
= _lVlxll)slnr -t- [Myll)sln r + (Mzll)sknr

(6.98b)

, respectively. The amplitudes of the B/'rev hub shear and moment compo-

nents are calculated by

FxBIPI
/t BP2 i_BP_2

= N/_,FxlI)c + _xH/s (6.99a)

FBP 4( BP 2 tt:rBP_2 (6.99b)yH = FyH)_. + t*yHIs

BP \/(FzH)c + _'zH;s (6.99C)Fz H = BP'2 t=BP_2

and

BP 4( BP 2 t_mBP_2Mxl I = Mxll) e + _lV_xHls (6.100a)

BP 4( BP 2 ILIBPx2Myll = Myil)c + _,,tyHi s (6.100b)

BP / BP 2 t r,aBPx2
Mzll = N/ (Mztl)c + _**zHIs (6. ! 00c)

, respectively. The B/rev hub shears and moments obtained from Eqs. (6.99)

and (6.100) are a measure of the vibration levels of a helicopter in forward

flight; and they will be used in the study for vibration reduction using struc-

tural optimization, described in the next chapter.
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6.5.6 Stabilio, in Forward Flight

The nonlinear periodic system, Eq. (6.35), is first iinearized about the steady

state, time-dependent equilibrium position. Subsequently, the stability of the

resulting linear periodic system is determined from Floquet theoryl_30]. The

procedure used for linearizing the equations is similar to the hover case, except

that the equilibrium position is now time-dependent. Linearizing Eq. (6.35)

about the nonlinear equilibrium position Yb, at given azimuth position _,,

yields:

fb = [M(Yb)]A_'b + [C(Yb)]A_'b + [K-(Yb)]AYb + H.O.T. = 0 (6.101)

where

I-M] = cqfb (6.102)
0_,b

-
If] = (6.103)

0_'b

- ' fb
[K] = (6.104)

0Yb

are the mass, damping and stiffness matrices, respectively, of the linearized

system.

Expressing the linearized system, Eq. (6.101), in the first order state vari-

able form

= [A(_,)] z (6.105)

where the state vector z is defined as
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_'AYb'_ (6.106)
Z = _AYb j

and the system matrix [A] has the form

I [o] Eli 1EA-I = _ E .I_IEK3 _ E j_lE 3
(6.107)

For the case of hover, matrix [A] is constant and the stability of the system

is determined by the cigenvalues of [A]. However in forward flight, the sys-

tem matrix [A] is periodic with a period of one rotor revolution (i.e.

[A(ff)] = [A(_ + 2rt)] ). Therefore the stability of the periodic system is de-

termined from the eigenvalues of the state transition matrix at the end of one

period, using Floquct theory[30-1. The characteristic multipliers, which are the

eigcnvalucs of the state transition matrix for the periodic system at the end of

one period, [O(2rt, 0)] , are given by

Aj = Zj _+ i_ i, j= 1,..., N m (6.108)

The characteristic exponents

2j = (j _+ i ogj, j= 1,..., N m (6.109)

of the pcriodic system are related to the characteristic multipliers byl-30]:

(j = _ ln(Z 2 + D.2) (6.110a)

(6.110b)
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where _ = 2n is the nondimensionalperiodof rotor. From Eqs. (6.110a,b),it

is evident that the real part of the characteristicexponent isassociatedwith the

damping present in a particular mode. However, the imaginary part, which

representsthe frequency, is determinedonly within an integer multiple of the

common period _. The linearizedsystemis stable if the real part of the char-

actcristic exponents_'i< 0 for all j.

The state transition matrix at the end of one period, [-¢P(2n, 0)] , is calcu-

lated by integrating the linearized system from 0 to 2rt using DE/STEP, a

general purpose Adams-Bashforth ODE soh'er[82]. In this study, all 2N m

columns of the state transition matrix are calculated in a single pass using the

method described in Ref. 13.
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Chapter VIi

STRUCTURAL OPTIMIZATION FOR VIBRATION REDUCTION

This chapter describes the optimum structural design of composite helicop-

ter rotor blades, with swept tips, for vibration reduction in forward flight,

subject to frequency and aeroelastic stability constraints. The aeroelastic

analysis, needed for optimization, consists of the finite clcment analysis de-

scribed in the previous chapters of this study. Approximation concepts[80]

are used in the optimization process to reduce the computational requirements.

The optimization study is applied to composite blades with two-cell, hingclcss

configuration. Ply orientations in the horizontal and vertical walls of the blade

cross section and tip sweep and anhedral angles are selected as design vari-

ables.

7.1 STATEMENT OF THE OPTIMIZATION PROBLEM

The optimum design problem, solved using mathematical

methods, can be stated in the following mathematical form[31].

vector of design variables D such that

gq(D) _<0,

D L < D i _< D U,

q = 1,2,...,Q

i= 1,2,..., ND

programming

Find the

(7.1)

(7.2)

and
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J(D)---, min (7.3)

where gq(D) is the q-th constraint function; D i is the i-th design variable; and

J(D) is the objective function. The superscripts L and U denote lower and

upper bounds, respectively.

7.1.1 Design Variables

Previous studies[28,29,14] on rotor blade optimization for vibration re-

duction in forward flight have emphasized the effect of design variables re-

presenting the dimensions of the main spar of the blade, together with the

influence of non-structural tuning masses. Changing the structural dimensions

of the main spar, would require recalculation of the numerous constants com-

puted by the two-dimensional section analysis used for the composite cross-

section, and this would not provide a clear picture on the influence of the new

elements associated with the current aeroelastic analysis, such as blade sweep

and ply orientation angles of the composite blade. Therefore it was decided to

restrict the design variables used in this study to four. These are the ply ori-

entation in the horizontal and vertical walls of the composite cross section, Ah

and Av, together with the sweep and anhedral angles, A s and A v which char-

acterize the swept tip. Thus the vector of design variables is given by

D = [Ah, Av, As, Aa] T (7.4)

In this study, composite blades having a two-cell configuration, shown sche-

matically in Fig. 7.1, are used as the basis of structural optimization. The ply
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angleA h is positive when the fibers in the horizontal walls are oriented toward

the leading edge of the blade; while a positive Av implies that the fibers in r,he

vertical walls are oriented toward the top wall of the blade. Detailed layout

of the two-cell composite cross sections will be described in the chapters deal-

ing with the results ontained in this study.

7.1.2 Constraints

Two types of behavior constraints are used.

1. Frequency placement constraints. The fundamental frequencies in flap,

lag and torsion are required to be between preassigned upper and lower

bounds. A typical frequency placement constraint is expressed math-

ematicaily in the form

g(D)= co _1<0, (7.5)
co U

g(D) = ! - _ < 0, (7.6)
_L

Equations (7.5) and (7.6) are written for each of the three fundamental

frequencies of the blade in flap, lag and torsion, respectively, providing

a total of six behavior constraints. The higher frequencies are also

constrained to avoid B/rev resonances in a B-bladed composite hingeless

rotor system.
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. Aeroelastic stability constraints. The blade is required to be

aeroelastically stable and retain adequate aeroelastic stability margins

in hover. These constraints are expressed mathematically as

g(D) = (k + ek -< 0, k -- 1, ..., N m (7.7)

is the number of modes used in the modal coordinate trans-where Nr,

formation during the solution of the equations of motion; _k is the real

part of the eigenvalue in hover for the k-th mode; ek represents the

minimum acceptable damping level in hover for the k-th mode. Al-

though no constraints are placed on the stability in forward flight, an

acroclastic stability analysis in forward flight is always performed at the

end of the optimization process in order to ensure that the rotor blade

configuration corresponding to the final optimum design is

aeroelasticaily stable.

soft-in-plane blade

Furthermore, it should be noted that for many

configurations the most critical condition for

acroclastic stability, is the hover condition. Thus, using this constraint,

instead of an acroelastic stability constraint in forward flight, is quite

reasonable.

Side constraints, shown mathematically in Eq, (7.2), are also placed on the

design variables in the form of upper and lower bounds to prevent the vari-

ables from reaching impractical values during the optimization process.
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7.1.3 Objective Function

The objective function to be minimized is a mathematical expression re-

presenting the weighted sum of the B/rcv oscillatory hub shear resultant and

the B/rev oscillatory hub moment resultant, in the hub-fixed nonrotating

frame; for a B-bladed rotor system, at an advance ratio of# = 0.30. It should

be noted that the choice of this particular advance ratio as a representative

value has been justified in previous studies[28]. This expression can be written

symbolically as

/( BP 2 t=BP_2 t=BP_2J! (D) = KF Fxll) +_-yli! +XtzHJ

• N/( BP 2 BP 2 tF,xBP_2+ KM Mxlt) + (MyH) + _"zllP

(7.8)

where K F and K M are weighting factors. The hub shears and moments are

nondimensionalized by mo.Q212 and mo.Q2P, respectively.

A second objective function is defined as the weighted sum of the B/rev

oscillatory hub shear and hub moment components in the hub-fixed nonrotat-

ing frame

J2(D) = KFxFx BP + KFyFyBHP + KFzFzBHP

BP BP BP
+ KMxMxt i + KMyMyH + KMzMzH

where KFx , KFy , KFz , KMx , KMy and KMz are weighting factors.

factors used in this study were selected to be either 0 or I.

(7.9)

All weighting

165



7.2 FORMULATION OF APPROXIMATE PROBLEM

The calculation of the B/rev vibratory hub loads in forward flight is a fairly

complicated and computationally expensive task, because it requires the sol-

ution of a complete aeroelastic response problem. Therefore, it is important

to use optimization procedures which require the smallest possible number of

aeroelastic response analyses and the associated hub loads computations. To

meet this requirement, approximation concepts[80-1 are used to reduce the

number of analysis required in the optimization process. Thus, the computer

program which performs the aeroelastic response and stability analysis is not

linked directly to the optimizer. Instead, the optimization is conducted on an

approximate problem which possesses the characteristics of the actual problem

in a neighborhood of the current design. This approximate problem is contin-

uously updated as the optimization progresses.

In this study, a linear approximation for the objective function and a con-

servative approximation for the behavior constraints are used in the generation

for the objectiveof the approximate problem. The linear approximation

function is based on the Taylor series expansion

_(D) = J(D0) + _--_( a-_i ) (Di-D0i)
i= ! Do

(7.10)

The conservative approximation[39], used for the behavior constraints, is a

hybrid form of the linear and reciprocal approximation which is more con-

servative than either; it is expressed mathematically as
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g(D) = g(Do)+ Oi ._i Do
i=l

(7.11)

where

G i = f 1
D0i] Di

Do
>0

<0

(7.12)

The approximate problem described above is solved using a general purpose

optimization package DOT[106], which is based on the modified method of

feasible directions. A detailed description of the optimization process is pro-

vided next.

7.3 DETAILED DESCRIPTION OF THE OPTIMIZATION PROCESS

The organization of the optimization process used in this study is depicted

in Fig. 7.2, and it consists of the steps provided below.

!. Select an initial trial design D 0.

2. Perform the two-dimensional cross sectional analysis to calculate the

section constants based on the current design.

3. Calculate the natural frequencies and mode shapes.

4. Perform the aeroelastic armlysis in hover.

5. Perform the aeroelastic analysis in forward flight, including calculation

of hub loads.
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6. Calculate the objective function, behavior constraints and the sensitivity

derivatives of the objective function and constraints with respect to the

design variables; where the sensitivity derivatives are calculated using

the finite difference approach.

7. The exact problem represented by Eqs. (7.1-3) is replaced by an ap-

proximate problem where the objective function J(D) is expressed by its

linear approximation about the current design, Eq. (7.10), and the con-

straints are expressed by a conservative approximation about the cur-

rent design, Eq. (7.11).

8. Solve the approximate optimization problem, using the DOT optimizer,

to obtain a new, improved design.

9. The optimization process is repeated with the improved design as the

new starting point until the sequence of vectors D converges to a sol-

ution D' where all constraints are satisfied and J(D') is at least a local

minimum.

It should be noted that in the formulation of the sensitivity derivatives, an

analytical approach using chain rule differentiation[59-62] is computationally

more efficient if it is applicable to the aeroelastic model being used. The im-

plicit formulation[13] for the aerodynamic modeling, used in this study, has

distinct advantages over the explicit approach. However, the implicit formu-

lation does not lend itself to generating explicit analytical expressions for the

sensitivity derivatives which have been found to be useful in structural

optimization [59-62].
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A semi-analytical approach[96] which employs a combination of analytical

and finite difference approaches, compatible with the aeroelastic model used

in this study, was recently developed with the intent of gaining some of the

computational efficiency provided by the analytical approach. As shown in

Ref. 96, frequency sensitivity with respect to ply orientation correlates well

with the finite difference approach, when the ply angles are sufficiently far

away from zero ply angles. However, the stability sensitivity analysis in hover

was only partially successful because all second derivative terms in the formu-

lation had to be neglected, so as to achieve computational efficiencies in excess

of the finite difference approach. Furthermore, this approach also exhibits

limited reliability when the design variables include tip sweep and anhedral

angles. Therefore, it was decided to abandon the semi-analytical approach for

the formulation of the sensitivity derivatives[96] and instead the sensitivity

derivatives were calculated using the finite dffference approach with carefully

selected increment size for the design variables.

169



Chapter VIII

MODEL VERIFICATION

It is essential to validate the computer program implementing the analytical

model and solution procedures developed in this study before using it for var-

ious analytical studies. Although the analytical model developed in this study

is intended for composite blade analysis, validating the modcl for isotropic

blades was an essential prerequisite. This is because the isotropic blade results

obtained in previous studies can be used directly to validate the one-

dimensional global analysis of the blade. For the case of composite blade, the

blade sectional properties are generated by a separate two-dimensional cross

sectional analysis and thus the comparison for these results is affected simul-

taneously by both the one-dimensional global analysis, as well as the two-

dimensional cross sectional analysis, and it does provide direct comparisons for

the one-dimensional global analysis.

In the present study, comparison of the trim and blade response results can

be used to test both the validity of the equations of motion as well as the sol-

ution procedure for the coupled trim-aeroelastic response analysis. The blade

stability results are more sensitive to small differences in the equations of mo-

tion than the trim and response results. Therefore comparison of the blade

stability results can also be used as a reliable test of the accuracy of the

equations of motion. Finally, it should be emphasized that the vibratory hub

loads can be very sensitive to small differences in the equations of motion, thus
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comparison of the vibratory hub loads should be made after the stability

comparisons have been carried out.

8.1 VALIDATION FOR THE CASE OF HOVER

Two different blade configuratioqs are used for the validation of the hover

analysis computer program. The first is an isotropic stiff-in-plane blade con-

figuration; and the results are compared with those presented in Ref. 41. The

importance of the treatment of the axial degree of freedom is also illustrated

in this validation. The second is a single-cell stiff-in-plane composite blade

configuration; where the results are compared with those presented in Refs. 22

and 48.

8.1.1 isotropic Blade

The isotropic stiff-in-plane blade configuration has fundamental rotating

frequencies of 1.15/rev, 1.5/rev and 5.0/rev in flap, lag and torsion, respec-

tively. The data for the baseline configuration of the blade is taken from

Hodges and Ormiston[41] and is given in Table 8.1. Results from the present

analysis are compared with those obtained in Ref. 41.

The isotropic blade model used in Ref. 41 is based on the equations of mo-

tion derived in Ref. 40 and specialized to the case of uniform, untwisted,

hingeless rotor blades without _chordwise offsets between the elastic, mass,

tension and aerodynamic center axes. Quasi-steady aerodynamics based on

Greenberg's theory were used to calculate the blade aerodynamic loads. The
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elimination approach , described in Chapter 6, was used in the treatment of

the axial degree of freedom. The equations of motion were solved by

Galerkin's method using six coupled, rotating modes.

TABLE 8.1

Baseline configuration for isotropic rotor blade in hover

Fundamental, uncoupled rotating natural frequencies:

(OLI = 1.5

_u:t = 1.15
_rl = 5.0

y = 5.0 c/R = n/40

a = 0.1 tip = 0.0
kml/R = 0.0 a = 2n

kmJR = 0.025 Cdo = 0.01
(kA/krn) 2 = 1.5 B = 4

Ofl_ets of center of mass, tension center and aerodynamic center
from elastic axis are zero.

The rcsults of the aeroelastic analysis are presented in Figs. 8.1 through 8.3,

which werc generated using seven coupled rotating modes, including three flap,

two lag, one torsion and one axial. In the figures, the solid lines correspond

to results from the present study, which uses the substitution approach in the

treatment of the axial degree of freedom; while the symbols correspond to the

rcsults found in Hodges and Ormiston[41]. Figure 8.1 shows the equilibrium

tip deflection of the blade as a function of blade collective pitch angle. It is

evident that the results of the present analysis show an excellent correlation in

the lag and torsion modes and very good correlation in the flap mode with

those obtained in Ref. 41. The results of the stability analysis are shown in
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Figs. 8.2 and 8.3. Figure 8.2 presents the variation of modal frequency as a

function of collective pitch of the blade; while the variation in modal damping

as a function of collective pitch angle is shown in Fig. 8.3. The results corre-

sponding to the present study provide an excellent correlation in modal fre-

quency and very good correlation in modal damping with the results of Ref.

41.

The effect of retaining or deleting the axial mode in the present study, which

uses the substitution approach, on the results obtained from the aeroelastic

analysis has been also examined. The aeroelastic stability analysis was per-

formed for two cases; one with seven modes (having 3 flap, 2 lag, I torsion and

1 axial modes) and the other with six modes (having 3 flap, 2 lag and I torsion

modes). The results are shown in Figs. 8.4 through 8.6. The solid lines rep-

resent results obtained when the axial mode is retained and the dotted lines

correspond to the results without the axial mode. Figure 8.4 shows the vari-

ation of equilibrium tip deflection of the blade with collective pitch setting. It

is evident, from these results that the equilibrium position of the blade in hover

is not influenced by the presence or absence of the axial mode. Figure 8.5

shows the variation of modal frequencies with pitch angle, obtained in the

stability analysis. The results indicate that the deletion of axial mode has a

negligible effect on the modal frequencies when compared to the results ob-

tained with the axial mode. At high pitch angles, the analysis without axial

mode slightly over-estimates the frequency in the flap mode. The variation of

modal damping with pitch angle is shown in Fig. 8.6. At low pitch angles

(00 < 0.1 rad), the inclusion or deletion of axial mode does not influence the
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modal damping. However,at high collectivepitch angles,the analysiswithout

axial modeover-estimatesthe lag damping and under-estimz_tcsthe damping

in flap mode when comparcdto the damping levelspredicted by thc analysis

which includesthe axial mode. The difference in the damping levelspredicted

increasessignificantly with pitch angle. The damping in torsional mode isonly

slightly affected by the presenceor absenceof the axial mode, at high pitch

angles.

8.1.2 Single-cell Composite Blade

The stability results for a stiff-in-plane, single-cell, composite hingcless

blade configuration are compared with results obtained for a similar case from

two different analyses described in Refs. 22 and 48. The blade structure is

assumed to consist of a laminated rectangular box beam with uniform

spanwisc properties, as depicted in Fig. 8.7. The cross-section of the beam has

a width of 7" and a height of 2", with a uniform thickness of 0.35". The

baseline configuration is assumed to have zero ply angles, i.e., all laminates of

the beam consists of laminae with fibers parallel to the blade length. The basic

parameters describing this configuration are given in Table 8.2 where the ma-

terial constants correspond to a graphite,,'epoxy type composite material.

The blade cross-sectional dimensions and rotor configuration shown in Ta-

ble 8.2 are based on Hong and Chopra[48]. The rotor radius (R), the rotor

speed (f_), and the principal mass radii of gyration of the cross section

(kml , kin2 ) were not given in Ref. 48, but were selected for this study such that
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TABLE 8.2

Baselineconfiguration for single-cellcompositerotor blade

Fundamental, coupledrotating natural frequencies:
cot. I = 1.533

co_..I = I. ! 87

e_Tt = 5.186

y = 5.0 c/R = 0.08

o=0, pe o 0°a = 5.7 05

Cd0 = 0.01 B = 4

kmx/R = 0.0 R = 255.45"

kin2/R = 0.0 i 609 f/= 360 rpm

Offsets of center of mass, tension center and aerodynamic center
from elastic axis are zero.

Material constants:

Et. = 30. x 106 psi

E T=3.x 10e psi
GLT = 1.2 X 106 psi

VLX= 0.3

the nondimensional rotating natural frequencies match those given in Ref. 48

as closely as possible. The fundamental rotating natural frequencies obtained

for this set of parameters are: coFt = 1.187/rev , COL,= 1.533/rev , and

CO-rt= 5.186/rev ; which should be compared to COFI= 1.15/rev, COLt= 1.5/rev

, and COT,= 5.0/rev from Ref. 48. Similar calculations were also carried out

by Fulton and Hodges[22], who obtained a blade configuration with

co_1 = I. 17/rev, tOLl = 1.45/rev, _and COTI= 5.06/rev.

The composite blade model used in Ref. 48 was based on a moderate de-

flection theory, where the strain-displacement relations were taken from
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Hodgesand Dowell[40], and therefore the effect of transverse shear defor-

mations was not included. Quasi-steady aerodynamics was used to calculate

the aerodynamic loads. The solution of the equations of motion was based on

a finite element approach.

The analysis presented in Ref. 22 used the nonlinear intrinsic formulation

of Ref. 46, where the nonlinear beam kinematics was based on the large de-

flection theory developed in Refs. 17 and 18. Aerodynamic loads were calcu-

lated from quasi-steady aerodynamics. The solution of the equations of

motion was obtained from the finite element approach.

The stability results obtained from the aeroelastic model developed in this

study were compared with Ref. 22 and 48 for a symmetric ply configuration

where the ply lay-ups on opposite walls were identical. The horizontal walls

have zero ply angles (A h - 0). For vertical walls the laminae in the outer half

thickness have zero ply angles while the laminae in the inner half thickness are

all oriented at the same ply angle Av. A positive Av implies that fibers are

oriented toward the top wall of the blade. This configuration was referred to

as Case I in Ref. 48.

The stability results, depicted in Fig. 8.8, are presented in terms of the real

part of the hover eigcnvalues, as a function of the rotor thrust level CTla ; for

Av = 0 °, 30 ° and -30 °. The lines in Fig. 8.8 are the results from the present

analysis. The results from Ref. 22 are depicted by the bullet symbols for val-

ues of CT/a = 0.25, 0.5 and 0.1 ; while the results from Ref. 48 are represented

by the solid triangle symbols, for values of C-r/a = 0.1. It is evident from Fig.

8.8 that the correlation with Ref. 22 is very good, but the correlation with Ref.
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48 is poor exceptfor the caseAv = 0°. The discrepancy of the stability results

from Ref. 48 with those from the present analysis and from Ref. 22 may be

attributed to the fact that the blade model used in Ref. 48 does not contain the

effect of transverse shear deformations, which is known to be important for

composite blades.

It should be emphasized that the correlation presented in Ref. 22 was not

as good as the comparison displayed in Fig. 8.8, especially for C-r/_r = 0.05.

In Ref. 22, the correlation of Fulton and Hodges[22] with Yuan, et al.[103],

which was based on the blade model of this study, was characterized as "fairly

good", for C.rla = 0.05 and 0.1. However, an input error in the results pre-

sented in Ref. 103 for the single-cell composite blade case had been found soon

after those results were published. The results in Ref. 103 were based on an

incorrect value of longitudinal Poisson's ratio equal to v m- = 0.03 which was

an order of magnitude smaller than the correct value of VLT = 0.3, listed in

Table 8.2. This error had been corrected in all subsequent studies involving

this single-cell blade configuration.

8.2 VALIDATION FOR THE CASE OF FORWARD FLIGHT

To validate the forward flight analysis and the computer program which

inplements the analytical model and solution procedure, a correlation study

with a completely different model, developed in Ref. 64 (a slightly modified

version of Ref. 64 is available as a recent low number NASA CR report, Ref.
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65), was conducted. Careful comparisonsfor trim, blade aeroelasticresponse

and stability, and vibratory hub shearsand moments,were carried out.

The model described in Ref. 64 was developed for isotropic rotor blades

undergoing moderatedeflections, and the primary objectiveof the study was

vibration reduction in hingelessrotors using an actively controlled trailing edge

flap locatedon the blade. A fully flexible blade cantileveredat the root, with

fully coupled flap-lag-torsional dynamics, was selected to represent the

hingeless blade. The structural operator was taken from Ref. 76 where

equations of equilibrium for an isotropic blade,with coupledflap-lag-torsional

dynamics, undergoing moderate deflections were presented in detail. The

inertial loads were derived in a straightforward manner using D'Alembert's

principle. Quasi-steadyaerodynamicsbasedon Greenberg'stheory was used

to approximate the aerodynamic loads in forward flight. Treatment of the

axial degreeof freedom was basedon the elimination approach , with an ad-

ditional simplifying assumption that the blade is inextensible. The inertial and

aerodynamic loads were formulated explicitly using the symbolic manipulation

program MACSYMA[108]. The equations of motion were solved using a

global Galerkin approach based on six uncoupled free vibration modcs of a

rotating cantilevered blade, including three flap, two lead-lag, and one torsion.

These rotating mode shapes and frequencies were generated from the first nine

exact nonrotating modes of a uniform cantilevered beam.

It is important to note that although the two aeroelastic models use similar

aerodynamic theories and assumptions, however, the aerodynamic loads were
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formulated explicitly in Ref. 64; while an implicit formulation was used to

calculate the aerodynamic loads used in this study.

The validation studies were carried out for an isotropic hingeless rotor

blade, with uniform spanwise properties. Two blade configurations were con-

sidered; the first configuration was a soft-in-plane rotor blade with the prop-

erties given in Table 8.3, and the second configuration was a stiff-in-plane

rotor blade with the properties shown in Table 8.4. The two baseline config-

urations are identical except for the lead-lag bending stiffnesses.

TABLE 8.3

Baseline configuration for soft-in-plane isotropic rotor blade in forward flight

Eln_/m_2R 4 = 0.0106
Elrr/mf_2R 4 = 0.0301
GJ']'mf_2R 4 = 0.001473

(kA/km) 2 = 0.5259

kml/R = 0.0
kin2 / R = 0.02

_, = 5.5
a = 0.07

c/R = 0.055

a = 2n

Cd0 = 0.01
Cw = 0.005

XFcIR = 0.0

ZFclR = 0.50
XFA]R = 0.0

ZFA/R = 0.25

fCddrt R 2 = 0.01

Offsets of center of mass, tension center and aerodynamic center
from elastic axis are zero.

The nodimensional, uncoupled, rotating natural frequencies calculated by

the two fifferent formulations are summarized in Table 8.5 for both soft-in-

plane and stiff-in-plane configurations. The two formulations yield the same

flap and lead-lag frequencies in both cases, but slightly different torsional fre-
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TABLE 8.4

Baselineconfiguration for stiff-in-plane isotropic rotor blade in forward flight

EloJmf22R4 = 0.0106

El;:/mf22R 4 = 0.1474
GJ/'mQ2R _ = 0.001473

(kA/km) 2 = 2.0415

kml/R = 0.0

kin2/R = 0.02
1,'= .).3
a = 0.07

c/R = 0.055

/_p = 0.0
B-=4

a=2n

Cd0 = 0.01

Cw = 0.005

XFc/R = 0.0
ZFc/R = 0.50

XI:A/R = 0.0
ZFA/R = 0.25

fC,_r/n R 2 = 0.01

Offsets of center of mass, tension center and aerodynamic center
from elastic axis are zero.

qucncics. The small discrepancies in torsional frequencies can be attributed to

the difference in the treatment of the axial degree of freedom, which is retained

in this formulation but eliminated in the formulation presented in Ref. 64. The

presence of a finite axial stiffness in this formulation introduces a torsional

stiffening effect proportional to k_ = (EI_, r + EI¢0/EA . However when the

blade is assumed to be inextensible, which is done in the formulation presented

in Rcf. 64, the axial stiffnss EA is treated as infinite and thus k A = 0.

A comparison of trim, blade response, stability, and 4/rev hub loads in for-

ward flight was conducted for the two formulations. The results were obtained

using three flap, two lead-lag, and one torsion modes for both approaches, but

with an additional axial mode used in the present formulation. The results
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TABLE 8.5

Frequency comparisonfor isotropic rotor bladeconfigurations usedin forward
flight analysis

Soft-in-plane blade:

This study Ref. 64

tol,t = !.!25 1.125

to H = 0.732 0.732

to T, = 3.263 3. ! 76

Stiff-in-plane blade:

This study Ref. 64

tol:l = I.! 25 I. 125
tot.I = 1.417 1.417

(or, = 3.50 ! 3.176

were calculated for a weight coefficient of Cw = 0.005 and for advance ratios

up to/_ = 0.4. Results from this comparison study are presented next.

8.2.1 Trim Results

Figures 8.9 and 8.10 show a comparison of trim results obtained using the

two formulations for the soft-in-plane blade configuration. The blade collec-

tive and cyclic pitch angles at various advance ratios are presented in Fig. 8.9,

and the rotor inflow and angle of attack are shown in Fig. 8.10. The solid lines

represent results obtained from the model presented in this study and the bul-

let symbols depict the results obtained in Ref. 64. The correlation between the

two sets of results is excellent and there are only slight deviations at high ad-
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vance ratios, (i.e., 1_=0.4) in the collective pitch, cyclic sine and rotor angle of

attack.

Similar comparisons of trim results are presented in Figs. 8.11 and 8.12 for

the stiff-in-plane blade configuration. Once again the agreement is excellent,

with only very minor deviations at high advance ratios. However, these dif-

ferences are even smaller than those present in the soft-in-plane blade results.

Excellent agreement between the trim results is to be expected, since the

trim solution is relatively insensitive to the higher order terms, which determine

the accuracy of a particular formulation. The minor differences observed in

the trim results at high advance ratios can probably be attributed to the dif-

ference in aerodynamic formulations; the model in Ref. 64 employs an explicit

approach based on an ordering scheme, while the model in this study employs

an implicit approach. Some of the higher order terms neglected in Ref. 64, but

retained in this study, may influence the results at higher advance ratios.

Overall, the correlation between the trim results is excellent, and the minor

differences present at high advance ratios are expected to have only a small

influence on the blade response, stability, and vibratory loads.

8.2.2 Blade Response

Blade acroelastic response obtained from the two formulations is compared

by considering the tip deflections around the azimuth. The flap, lag and

torsional tip deflections of the blade at an advance ratio of p = 0.3 are com-

pared in Fig. 8.13 for the soft-in-plane blade configuration. The correlation is
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excellent for the flap and lag modes. There is a mild discrepancy in the

torsional tip deflection which can be attributed to the differences in: (1) the

treatment of the axial degree of freedom, which influenced the toi'sional fre-

quency slightly; and (2) the formulation of the aerodynamic loads, which is

explicit in Ref. 64 but implicit in this study.

The comparison of the tip deflections at/a = 0.3 for the stiff-in-plane blade

configuration is presented in Fig. 8.14. Excellent agreement is again evident

for the flap and lag modes, while minor descrepancy in the torsional tip de-

flection still exists for the same reasons that were stated above for the soft-in-

plane blade configuration. The larger offset present in a portion of the

torsional tip deflection near _b = 120 ° is probably due to the fact that the dif-

ference in torsional frequency between the two formulations is larger for the

stiff-in-plane case.

8.2.3 Blade Stability

A comparison of blade aeroelastic stability for the soft-in plane configura-

tion, using the two formulations, is presented in Figures 8.15 through 8.17.

The real part of the characteristic exponent, which is a measure of blade

damping or stability in forward flight, is shown as a function of advance ratio.

The symbols L, F and T denote lag, flap and torsional modes, respectively.

The first and second lag modes'are shown in Fig. 8.15, which exhibits good

correlation between the two approaches for the first lag mode. The discrep-

ancy is quite small and it varies between 40 - 7%. The damping in the first
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lag mode decreasesinitially bctwccn /_ =0 and 0.1, then remains relatively

unchanged between p =0.I and 0.2 and it finally increases for It > 0.2. The

agreement between thc results associated with the second lag mode is not as

good as that associated with the first lag mode. The primary reason for these

differences is attributed to the fact that the second lag mode has inherently low

clamping, and for soft-in-plane blade configurations it is sensitive to small dif-

ferences in the blade models, such as the treatment of the axial degree of free-

dom. The results for the second lag mode, shown in Fig. 8.15, still display

similar trends since the damping increases with advance ratio. The mild in-

stability present in the second lag mode in the lower advance ratio range can

be removed bv a small amount of structural damping. The damping associ-

ated with the first flap and first torsion modes is depicted in Fig. 8.16, while

damping in the second and third flap modes is displayed in Fig. 8.17. The

correlation between the two sets of results is excellent for all the four modes

considcrcd in Figs. 8.16 and 8.17. The damping levels in these four modes are

insensitive to variations in advance ratio/_; the characteristic exponent associ-

ated with the first flap mode exhibit a typical "split" between /z = 0.3 and

= 0.4, as shown in Fig. 8.16.

Similar comparisons of the aeroelastic stability results for the stiff-in-plane

configuration are presented in Figs. 8.18 through 8.20. The correlation be-

tween the two sets of results is very good for both lag modes throughout the

range of advance ratio (up to/_ =0.4), and for the first and third flap modes

except that mild deviations are present at high advance ratios near/_ =0.4 for

these two modes. The comparison of the damping in the first torsion and sec-
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ond flap modes is fairly good; with descrepanciesunder 10% for most part of

the range of advance ratios, as evident from Fig. 8.20. The damping levelof

the first lag modc is considerablyhigher for the stiff-in-plane blade than for

thc soft-in-plane bladc, asevident from Figs. 8.15and 8.18.

8.2.4 Vibratory Hub Loads

The 4;'rev hub loads calculated using the two formulations are compared in

Figs. 8.21 through 8.23 for the soft-in-plane blade configuration. The longi-

tudinal shear and rolling moment are plotted in Fig. 8.21, the lateral shear and

pitching moment are shown in Fig. 8.22, and the vertical shear and yawing

moment are depicted in Fig. 8.23. The comparisons are quite good over the

entire range of advance ratios considered, though the results of the two for-

mulations diverge slightly at the higher advance ratios. The comparison be-

tween the 4:rev hub moments is best with a difference of less than 5% at

# = 0.4. The greatest discrepancy between the two sets of results obtained for

the hub loads is evident in the 4/rev lateral hub shears, which differ by 20°'o

at/_ = 0.4.

The 4/rev hub loads for the stiff-in-plane blade configuration are compared

in Figs. 8.24 through 8.26. The comparisons are not as good as those obtained

for the soft-in-plane case. All but the vertical shear component compare very

well up to _u= 0.3, and then begin to diverge at the higher advance ratios. At

the highest advance ratio considered, /_ = 0.4, the two sets of hub moments

differ by about 20%-50%, which is much larger than observed in the soft-in-
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plane case. However, the disagreement in the inplane shears at high advance

ratio is only slightly worse, differing by 30% at/_ = 0.4. Thc best agreement

at high advance ratio for the stiff-in-plane configuration is observed in the

vcrtical hub shears calculated by the two formulations, which arc almost

identical at/a = 0.4.

The disagreement in the vibratory hub loads can bc attributed to the dif-

ferences between the two formulations already cited, i.e., the difference in the

modeling of the axial degree of freedom, and the difference in the aerodynamic

formulations. The results seem to indicate that the vibratory hub loads are

most sensitive to the small differences in the formulations. Therefore good

correlation in vibratory hub loads is more difficult to achieve than similar

correlations for trim values, blade tip response, or aeroelastic stability.
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Chapter IX

FREE VIBRATION AND AEROELASTIC BEHAVIOR IN HOVER

In this chapter, the free vibration and the hover stability characteristics of

composite hingeless rotor blades with straight and swept tips are investigated.

Numerical results illustrating the effects of tip sweep, anhedral and composite

ply orientation on blade natural frequencies and aeroelastic stability in hover

are presented.

9.1 FREE VIBRATION ANALYSIS

The results in this section are divided into two parts : (l) results illustrating

the influence of ply orientation on the natural frequencies for both single-cell

and two-cell composite rotor blades; and (2) influence of tip sweep and tip

anhedral on the natural frequencies of a two-cell composite blade.

9. i. I Influence of Ply Orientation

The influence of composite ply orientation on the natural frequencies is

studicd for two rotor blade configurations; these are: (1) a stiff-in-plane blade

having a single-cell composite construction, and (2) a soft-in-plane blade with

two-cell construction. In the prdsentation of the results, the identification of

the modes is based on the baseline configuration of the blade which has zero

ply angles. The natural frequencies are then traced as the ply orientation is
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varied from a zero ply angle. Since the modes are coupled at non-zero ply

orientations, the designationof the modesas flap, lag or torsion is for identifi-

cation purposesonly. In the figures, the notation L, F and T is usedto rep-

resent lag, flap and torsional modes, respectively. The blade is modeled with

five elements for both configurations.

9.1.1.1 Single-cell Composite Blade

The behavior of a hingeless, single-cell, stiff-in-plane composite blade con-

figuration is considered first. The blade structure is assumed to be represented

by a laminated rectangular box beam with uniform spanwise properties, de-

picted in Figure 8.7. The cross-section of the beam has a width of 7 _ and a

height of 2", with a uniform thickness of 0.35". The baseline configuration is

assumed to have zero ply angles, i.e., all laminates of the beam consist of

laminae with fibers parallel to the I_lade length, and its basic parameters are

given in Table 8.2. Natural frequencies are computed for two cases, with

symmetric configurations, where the ply lay-ups on opposite walls are identi-

cal. In the first case, the horizontal walls have zero ply angles. For vertical

walls the laminae in the outer half thickness have zero ply angles while the

laminae in the inner half thickness are all oriented at the same ply angle A,.

A positive Av implies that fibers are oriented toward the top wall of the blade.

In the second case, the vertical walls have zero ply angles. For horizontal walls

the laminae in the outer half thickness have zero ply angles while the laminae

in the inner half thickness are all oriented at the same ply angle Ah. A positive

A h implies that fibers are oriented toward the leading edge of the blade.
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Note that varying the ply anglesAv and Ah influences the direct stiffness

terms, as well as a number of coupling terms associatedwith the modulus

weighted sectionalconstants. When Av is varied, someof the coupling terms

influenced are associatedwith the sectional constants EAB_, EAB0 and G_A

which represent the effects of lag-torsion, torsion-shear, axial-torsion and

axial-shear couplings. The variation of A h influences coupling terms associated

with sectional constants such as EAB 2 and G_A which represent the effects of

flap-torsion, torsion-shear and axial-shear couplings.

Figure 9.1 shows the natural frequencies of the first six modes as a function

of Av for variations in A v from 0 ° to 90 °. The results indicate that the lowest

three frequencies (first flap, first lag and second flap) are not very sensitive to

the variations in the ply orientation. The torsional frequency increases initially

and reaches a maximum value of 5.5/rev around 30 ° ply angle and then de-

creases .with further increase in the angle of ply orientation. The second lag and

the third flap frequencies decrease initially and reach asymptotic values be-

yond 45 ° ply orientation. A similar trend is evident for variation of natural

frequencies with ply-orientation in horizontal wall, as shown in Fig. 9.2. in

this case, the variation in frequencies is more pronounced than that observed

in Fig. 9.1. The torsional frequency reaches a maximum value of 6.5/rev at

30 ° ply angle in horizontal wall.

9.1.1.2 Two-cell Composite Blade.

Results illustrating the behavior of a soft-in-plane, hingeless composite

blade having a two-cell type cross section are presented next. The two-cell
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cross-sectionwas selectedsuch that the fundamental natural frequenciesfor

the baselineconfiguration are similar to those associatedwith a typical heli-

copter blade. Figure 7.1 showsthe two-dimensional finite elementmodel em-

ployed for the composite cross-sectionanalysis from which the sectional

properties of the cross-sectionwere obtained. The leading edge has a semi-

circular shape with a radius of 1.2" ; and the straight portion has a total length

of 6". The internal wall is located 2.8" behind the leading edge; and all wall

thicknesses are 0.1 _. The baseline configuration parameters for this blade are

shown in Table 9.1 where the material constants correspond to glass/epoxy

type composite material. For convenience, it is assumed that the blade has

uniform spanwise properties, however, the analysis developed can represent

blades with arbitrary mass and stiffness variation.

Natural frequencies are calculated for two cases. In the first case, the

laminae in the middle vertical wall and the inner half of the rear vertical wall

are oriented at ply angle Av while the remaining walls have zero ply angles.

In the second case, the laminae in the inner half of the horizontal walls are

oriented at ply angle A h while the remaining walls have zero ply angles.

The variation of natural frequencies of the two-cell composite blade as a

function of Av and Ah are depicted in Figures 9.3 and 9.4, respectively. It is

evident from these figures that the lowest three natural frequencies are not in-

fluenced by variations in ply orientation; the first torsional frequency increases

initially and then decreases with increase in the angle of ply orientation. In

general, for the two-cell configuration, the natural frequencies remain virtually

unchanged during the variation of the ply-orientaion in either the vertical wall
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TABLE 9.1

Baseline configuration for the two-cell composite rotor bla.de

Fundamental, coupled rotating natural frequencies:
COe_= 0.765

ml.I = 1.096

_rl = 3.356

y = 5.0 c/R = 0.06

a = 0.076a=5.7 _w=O()0005

Cdo = 0.01 B = 4
km_/R = 0.004 R = 250"

km2/R = 0.02439 I'_ = 360 rpm

Tip length = 10% of the blade length.

Material constants:

E L = 6.2 x 106 psi

ET = !.6 x 106 psi
G m = 0.8 x 106 psi

v m, = 0.25

or the horizontal wall. But on a relative scale, the variation of ply orientation

in the horizontal wall influences the natural frequencies more than that in the

vertical wall.

9.1.2 Effects of Tip Sweep and Anhedral

The influence of tip sweep and tip anhedral on the natural frequencies of

the two-cell composite blade is shown in Figs. 9.5 and 9.6, respectively. The

swept tip, representing 10% of the blade length, is modeled with one element,

while the straight portion is modeled using four elements having equal length.
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It can be seen from Fig. 9.5 that tip sweep does not significantly infuence the

natural frequencies of the rotor blade. Only the first torsional frequency shows

an incrcasc with increasing sweep angle. Tip sweep can either increase (this

study and Ref. 8) or decrease (Ref. 12) the natural frequency of the rotor blade

in torsion. The physical reason for such behavior is due to the fact that tip

sweep increases both the torsional stiffness (tennis racquet effect) and the

torsional inertia. Depending on the relative increments in the stiffness and in

the inertia effects, torsional frequency can increase or decrease with variation

in sweep angle of the rotor blade.

Figure 9.6 presents the effects of tip anhedral on the rotating natural fre-

quencies of the two-cell composite rotor blade. The influence of anhedral on

the natural frequencies is negligible.

9.2 AEROELASTIC STABILITY IN HOVER

The results in this section are divided into three parts: (!) results illustrating

thc influence of tip sweep and anhedral for isotropic blades; (2) results for

singlc-ccll composite blades emphasizing the influence of ply orientation on

aeroelastic stability; and (3) results for two-cell composite blades, emphasizing

the influence of ply orientation as well as the combined effect of sweep and ply

orientation on aeroelastic stability.
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9.2.1 Effects of Swept Tip

The effects of tip sweep and tip anhedral are presented for a soft-in-plane,

isotropic hingeless blade configuration. The blade is modeled using a total of

five finite elements. The swept tip, representing 10% of the blade length, is

modeled with one element, while the straight portion is modeled using four el-

ements having equal length. Seven coupled rotating modes, including three

flap, two lag, one torsion and one axial mode, are used. The baseline config-

uration for the straight blade is given in Table 9.2.

TABLE 9.2

Baseline configuration for the isotropic rotor blade

Coupled rotating natural frequencies:

to F = !.!25, 3.406, 7.622
eh. = 0.731, 4.465

OJT_ = 4.875

(kdk.)2 = 0.5259
k,,/R = 0.0

k.dR = 0.02
y = 5.5
a = 0.07

c/R = 0.055

a=2n

Ca0 = 0.01
Cw = 0.005

l,_=oo

Tip length -- 10% of the blade length.

Offsets of center of mass, tension center and aerodynamic center
from elastic axis are zero.

The tip sweep angle, A,, is varied between 0 ° and 40 ° in increments of 10 °

each; similarly, the tip anhedral angle, Aa, is varied between -20 ° and 20 ° in

increments of 10" each. The thrust coefficient of the rotor, Cr, is maintained
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at a constant value of 0.005 which is equal to the weight coefficient,Cw, by

using a coupled trim-aeroelastic responseanalysis.

Figures 9.7 through 9.10 illustrate the effect of tip sweepon the aeroelastic

stability of the blade. Figures9.7 and 9.8 show the imaginary and real parts,

respectively,of the complex eigenvaluesfor hover as a function of As, for the

baselineconfiguration. The notation L, F and T is usedto denotelag, flap and

torsion modes, respectively. The imaginary part of the eigenvaluerepresents

the frequency while the real part of the eigenvaluerepresentsdamping of the

mode. Tip sweepintroduces flap-torsion coupling in the blade. However, for

this baselineconfiguration, the frequenciesof the flap and torsion modesare

well separated, therefore varying the tip sweepangledoes not have a signif-

icant influence on the blade stability. Figure 9.7 shows that the frequencies

of the first five modesare insensitiveto As while the frequencyof the third flap

mode increasesslightly with As . The damping in the first flap, first lag and

first torsion modesdecreaseslightly with As, but no instability is induced by

tip sweep,asshown in Fig. 9.8. Figures9.9 and 9.10show the imaginary and

real parts, respectively,of the eigenvaluesas a function of A,, for a config-

uration with a torsional frequency of ¢OT_= 3.263/rev which is close to the

second flap frequency of o_F2 = 3.4061rev . Figure 9.9 shows that frequency

coalescence has occurred between the first torsion and second flap modes over

a large portion of the tip sweep range being investigated (approximately be-

tween 5 ° and 30°). The effect of this frequency coalescence on the stability is

evident in Figure 9.10 where one of the modes is stabilized while the other

mode is destabilized. The second flap mode becomes unstable for As between
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9 ° and 34 °. The second lag mode also exhibits a slight instability. This insta-

bility is not associated with frequency coalescence and can be removed by a

small amount of structural damping.

Figures 9.11 through 9.14 illustrate the effect of tip anhedral on the

aeroelastic stability of the blade. Figures 9.11 and 9.12 show the imaginary

and real parts, respectively, of the eigenvalues for hover as a function of the

anhedral angle, A_, for the baseline configuration. Tip anhedral introduces

lag-torsion coupling in the blade. The frequencies of the first torsion and sec-

ond lag modes for the baseline configuration are _T_ = 4.875/rev and

O_e2 = 4.465/rev , respectively, which are reasonably separated from each

other. These two modes exhibit a mild frequency coalescence near A_ = 0 in

Fig. 9.1 !. This frequency coalescence has some destabilizing effect on the first

torsion mode when A_ > 0 ° or A_ <-9 ° and some stabilizing effect on the

second' lag mode when A, > 0 ° , which is evident in Fig. 9.12. Figures 9.13 and

9.14 show the imaginary and real parts, respectively, of the eigenvalues as a

function of A_ , for a configuration with a torsional frequency of

_Or_ = 4.340/rev which is close to o_ta ( = 4.465/rev). The effect of lag-torsion

coupling due to tip anhedral is more pronounced for this blade configuration

since Fig. 9.13 exhibits some apparent frequency coalescence over a wider

range, while Fig. 9.14 exhibits a more significant stabilizing effect on the sec-

ond lag mode and destabilizing effect on the first torsion mode for A a :/: 0 ° .

The first torsion mode remains stable within the range of anhedral angles

considered.
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9.2.2 Single-cell Composite Blade

The aeroelastic behavior of a hingeless, single-cell, stiff-in-plane, composite

blade configuration is considered next. This configuration has also been de-

scribcd in detail in the last section. Eigenvalues of the stability problem are

computed for two cases, having symmetric configurations, where the ply lay-

ups on opposite walls are identical. In the first case, the horizontal walls have

zero ply angles. For vertical walls the laminae in the outer half thickness have

zero ply angles while the laminae in the inner half thickness are all oriented

at ply angle Av • in thc second case, the vertical walls have zero ply angles.

For horizontal walls the laminae in the outer half thickness have zero ply an-

gles while the laminae in the inner half thickness are all oriented at ply angle

A h •

Figures 9.15 through 9.17 show the root locus plots of the complex

cigenvalucs as a function of Av for first lag, first flap and first torsion modes,

respectively, at thrust levels C-r = 0.005 (solid lines) and Cr = 0.0025 (dotted

lines). The ply angle Av, which is the parameter given on the plots, is varied

from 0 ° to 90 ° in both positive and negative directions. Note that the ply an-

glcs Av for 90 ° and -90 ° have the same configuration with fibers oriented ver-

tically, perpendicular to the blade axis, for the inner half of the vertical walls.

Figure 9.15 shows that a positive ply angle Av destabilizes the first lag mode,

while a negative Av stabilizes the first lag mode. Since the first lag mode is not

heavily damped, the destabilizing effect on this mode due to positive A_ can

be significant for certain ply angles. The combined effect of having a positive

ply angle Av between 10 ° and 28 °, with a low thrust level Cx = 0.0025 causes
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instability in the first lag mode, as illustrated in Fig. 9.15. Figure 9.16 shows

that a positive Av , up to approximately 45 °, stabilizes the first flap mode

slightly. A positive Av greater than 45 ° or a negative Av, can destabilize the

first flap mode slightly. Variation of Av has little influence on the stability of

the first torsional mode, as can be seen from Figure 9.17. Since the flap and

torsion modes are heavily damped, the effect of A_ on the stability of these two

modes is less significant.

Figures 9.18 through 9.20 show the root locus plots of the eigenvalues as a

function of A h for the first lag, first flap and first torsion modes, respectively,

at a constant thrust coefficient C a- = 0.005. Figure 9.18 shows that a negative

A h, up to approximately-60 °, destabilizes the first lag mode, while a negative

A h beyond -60 ° or a positive A h stabilizes the first lag mode. For the first flap

and first torsion modes, the variation of ply angle A h has more influence on the

frequency than on the stability, as evident from Figs. 9.19 and 9.20.

9.2.3 Two-cell Composite Blade

Results illustrating the aeroelastic behavior of a composite soft-in-plane

blade having a two-cell type cross section are presented next. The configura-

tion of the blade has been described in detail in the last section. Stability re-

sults are first calculated for a swept-tip blade with zero ply angles and for a

straight blade with ply angle variation in either the vertical walls or the hori-

zontal walls. Subsequently, the combined effects of tip sweep and ply orien-
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tation on blade stability are determined. The thrust coefficient CT is

maintained at a constant value of 0.005 for all cases.

Figures 9.21 and 9.22 illustrate the behavior of the imaginary and real

parts, respectively, of the eigenvalues associated with the various modes used

in the analysis as a function of the tip sweep angle As, for the baseline con-

figuration which has zero ply angles. For this case, the blade exhibits a fre-

quency coalescence induced by sweep between the second flap and first torsion

modes that is evident in Figure 9.21. This produces a stabilizing effect on the

second flap mode while destabilizing the first torsion mode, as depicted in

Figure 9.22. Figure 9.22 shows that the frequency coalescence for this two-cell

case induces a mild instability in the first torsion mode for sweep angles be-

tween 14" and 22*.

For the straight blade with ply angle variations, two cases are analyzed. In

the first case, the laminae in the middle vertical wall and the inner half of the

rear vertical wall are oriented at ply angle A,, while the remaining walls have

zero ply angles, in the second case, the laminae in the inner half of the hori-

zontal walls are oriented at plyangle A h while the remaining walls have zero

ply angles. Figures. 9.23 through 9.25 show the root-locus plots of the

eigenvalues as a function of the ply angle A,, for first lag, first flap and first

torsion modes, respectively. Figure 9.23 indicates that a positive Av , or a

negative Av beyond -60 °, destabilizes the first lag mode, while a negative A v

up to -60 ° stabilizes the mode. The effects of the ply angle Av variation on the

first flap and first torsion modes are less significant, as illustrated in Figs. 9.24

and 9.25.
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Figures 9.26 through 9.29 show the root locus plots of the eigenvalues as a

function of the ply angle Ah for the first lag, first flap, first torsion and second

flap modes, respectively, for the straight blade case (solid lines) and for the

swept tip case with A s = 20 ° (dotted lines). Figure 9.26 shows that a positive

A h or a negative A h beyond -50 ° destabilizes the first lag mode, while a nega-

tive A h up to -50 ° stabilizes the mode. The first flap mode stability is only

slightly influenced by the variation of A h, as illustrated in Fig. 9.27. A tip

swecp of 20 ° has a destabilizing effect on both the first lag and first flap

modes, but no instability is induced in these modes, as depicted in Figs. 9.26

and 9.27. Figure 9.28 shows that for the straight blade case, the damping in

the first torsion mode decreases for positive A h , however, the mode remains

stable. For the case of 20 ° sweep, the blade has a mild instability in the first

torsion mode at zero ply angle, which has also been shown in Fig. 9.22. The

first torsion mode is further destabilized for ply angle A h between 0 ° and 12 °,

however, it becomes stable for A h greater than 13 ° or for a negative ply angle

A h beyond -1 °, as illustrated in Fig. 9.28. Therefore, the instability caused by

tip sweep can be removed by selecting an appropriate ply orientation in com-

posite blades. Introducing a tip sweep of 20 ° destabilizes the first torsion mode

and stabilizes the second flap mode for all ply angles, when compared to the

case of a straight blade, as shown in Figs. 9.28 and 9.29, respectively.
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ChapterX

AEROELASTIC BEHAVIORIN FORWARD FLIGHT

This chapter explores the aeroelastic response, stability and loads in for-

ward flight of composite rotor blades with straight and swept tips. Numerical

results illustrating the influence of composite ply orientation, tip sweep and

anhcdral on trim, hub loads, blade response and stability are presented. The

purpose of these calculations is twofold. First, to gain a better physical

understanding on the aeroelastic stability and response of composite blades

with swept tips. Second, these results serve as a necessary precursor for the

blade optimization studies which are conducted in the following chapter.

The results presented in this chapter are for a four bladed hingeless rotor,

in which each blade is assumed to be of composite construction, with uniform

spanwise properties. Note, that uniform properties are assumed here only for

convenience, the analysis and associated computer program are capable of re-

presenting configurations with arbitrary cross sectional variations in the

spanwise direction. For completeness a concise description of the treatment

of a nonuniform blade configuration is provided next. The nonuniform por-

tion of the blade is divided into several sub-segments, such that approximately

linear variation of the spanwise properties in each sub-segment can be as-

sumcd. A two-dimensional cross sectional analysis is then performed for each

cross section corresponding to an end point of a sub-segment. At a beam ele-

ment Gaussian point which is in a sub-segment of this portion of the blade, the
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sectional properties are obtained from that of thc end cross sections of thc

sub-segmentby linear interpolation. Despite the variations inside the element,

the assembly process of the various elements assumes that the elastic axis is a

straight line for the straight portion of the blade. This is justifiable because the

nonuniform inboard scgment of the blade (approximately 25°./0 of the blade

length; see Sec. 2.1, Assumption 9) is relatively rigid; its deflections will be

relatively small, and the inertial and aerodynamic loads in this blade segment

are also low; and therefore approximations introduced for this blade portion

will have a negligible effect on the global blade behavior.

The composite blade cross-sectional structure is represented by a two-cell

laminated box beam, as shown in Figure 7.1. The leading edge has a semi-

circular shape with a radius of 1.2" while the straight portion has a total length

of 6". The internal vertical wall is located 2.8" behind the leading edge. All

the walls have a thickness of 0.1".

It should be noted that, throughout this study, the term "swept tip" is used

to denote a combination of sweep and anhedral. A parametric study of the

influence of ply orientation and swept tip on the trim, hub loads, blade re-

sponse and stability was conducted by considering four cases. The first two

cases are for a straight blade with varying ply orientations in either the hori-

zontal or vertical walls; while for the last two cases the ply angles are assumed

to be zero and 10% outboard portion of the blade experiences varying amounts

of tip sweep or anhedral. In the first case, the laminate associated with the

inner half of the horizontal walls is oriented at ply angle A h , while the re-

maining walls have zero ply angles. In the second case, the laminate in the
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internal vertical wall and the inner half of the rear vertical wall is oriented at

ply angle Av while the remaining walls have zero ply angles. The ply angle in

the leading edge semi-circle is always set at zero value. The principal reason

for this assumption is convenience. Otherwise, the two-dimensional cross sec-

tional analysis has to be used in an unwieldy manner to account for changes

in the ply orientation in the semi-circular leading edge portion of the blade

cross-section. A positive Av implies that the fibers are oriented toward the top

wall of the blade and for positive A h the fibers are oriented toward the leading

edge of the blade, in the third case, the blade has a tip sweep with sweep

angle A,, positive for backward sweep. In the fourth case, the blade has a

tip anhedral with anhedral angle A,, positive upward. The baseline config-

uration represents the case where A h, Av, As and A a are all equal to zero. The

properties of the baseline blade configuration are given in Table 10.1.

The aeroelastic response and stability calculations were performed using

three flap, two lag, one torsional and one axial modes. Five elements, four for

the straight portion and one for the swept tip, were used to model the blade.

Five harmonics (NH = 5) were used in the harmonic balance solutions so as to

accurately capture the 4/rev hub loads. The influence of composite ply orien-

tation and swept tip on trim, hub loads, blade aeroelastic response and stabil-

ity were all computed for an advance ratio/_ --- 0.3.
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TABLE 10.1

Baseline configuration for the two-cell soft-in-plane composite rotor blade

Coupled rotating natural frequencies:
cot. = 0.765, 4.666

coy = !.096, 3.110, 6.554

COT_= 3.82 !

)' = 5.0
a = 0.076

a=5.7

Cd0 = 0.0 I

kml/R = 0.004
kin2 / R = 0.021 !

Xi_c/R = 0.0

XFa/R = 0.0
fCdr/n R 2 = 0.0 !

c/R = 0.06

= 0.0
,= 0.005

B=4
R = 250"

= 360 rpm
Zrc/R = 0.50

ZFA/R = 0.25

Tip length = 10% of the blade length.

Material constants:

E L=6.2x l0 s psi
E x= 1.6x l0 s psi

GET = 0.8 X 106 psi

VLr = 0.25

10.1 BLADE RESPONSE

Figures 10.1 through 10.12 show the effects of A h , A,., A s , and A,, on

blade tip deflection in lag, flap and torsion, respectively, during one revolution.

In each figure, nondimensional tip deflections corresponding to three repre-

sentative values of the parameter being studied are shown as a function of the

blade azimuth. The selected ply angles are 0 °, 15 ° and -15 ° for both A h and

Av. For sweep the values ofA s are 0 °, l0 ° and 20°; and for anhedral angle the

values 0 °, 10 ° and -10 ° are used. For swept tip cases, where either A s or A_ is
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the parameter,the nondimensionaltip deflectionsshown in the figures are the

values at the junction betweenthe straight and the swept tip portions, which

is locatedat 90% of the bladespan,when measuredfrom the root.

it is evident from Figs. 10.1and 10.4 that variation of ply anglesA h and

Av has only a slight influence on lag deflection. The flap deflection is insensi-

tive to variation in Ah and Av, as depicted in Figs. 10.2 and 10.5. Figure 10.3

shows that a positive ply angle in the horizontal wall, Ah = 15 ° , decreases the

torsional tip deflection (makes it more negative), while a negative ply angle,

Ah = --15", increases the torsional tip deflection (makes it more positive). On

the other hand, Figure 10.6 shows that a positive ply angle in the vertical wall,

A_ = 15" , increases the torsional tip deflection, while a negative ply angle,

Av = -15 ° , decreases the torsional tip deflection.

Figures 10.7 through 10.9 show the effect of sweep on blade tip deflection

in lag, flap and torsion, respectively. It is evident that positive tip sweep, e.g.,

A s = 10", 20", increases (make it less negative) the lag deflection, but decreases

(make it more negative) the torsional deflection. The flap deflection is not in-

fluenced by As. The influence of the anhedral angle A_ on the lag deflection

varies along the blade azimuth, as shown in Fig. 10.10. A positive anhedral

angle A a = 10 ° increases (makes it less negative) the lag deflection for azimuth

angles 0 ° < _b < 90 ° and 250 ° < _b < 360* , while decreases (makes it more

negative) the lag deflection for azimuth region 90°< ff < 250 °. A negative

anhedral angle A_=-10 ° has the opposite effect on the lag deflection when

compared to the case for Aa= 10 °. Figure 10.11 shows that a positive
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anhedral angle Aa= 10° decreasesthe flap deflection around the azimuth,

while a negativeanhedral angleA, = -100 increasesthe flap deflection.

10.2 TRIM VARIABLES

Figures 10.13 through 10.20 show the trim variables as a function of one

of the parameters A h , A v , A,, or A a . Blade pitch input angles, including

collective pitch, cyclic cosine and cyclic sine, are presented in Figs. 10.13,

10.15, 10.17 and 10.19. While rotor inflow ratio and angle of attack are pre-

sented in Figs. 10.14, 10.16, 10.18 and 10.20. The ply angles A h and Av are

varied from -90 ° to +90 °. The tip sweep angle A 5 is varied between 0 ° and

40 ° while the tip anhedral angle A a is varied between -20 ° and 20 °. Figures

10.13 and 10.14 show the effect ofA h on the trim variables. It is evident that

only collective pitch angle is significantly influenced by the variation in the ply

angle Ah, with the most pronounced effect evident between -30 ° and +30 °.

The reason for the sensitivity of the collective pitch angle can be easily under-

stood by simultaneously examining the torsional response of the blade and the

collective pitch angle. As discussed in the previous section, Fig. 10.3 shows

that a positive ply angle, Ah = 15 ° , decreases the mean value of torsional re-

sponse (makes it more negative) relative to the baseline case. In order to

maintain a fixed thrust level, this decrease in the mean value of the torsional

deformation of the blade must be accompanied by a corresponding increase in

the collective pitch angle, as shown in Fig. 10.13. Similarly, for the case

Ah = --15 ° the mean value of the torsional response increases (less negative or
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more positive) relative to the baselinecase (Fig. 10.3) and the corresponding

collective pitch angle shows an reduction from the baseline case (Fig. 10.13).

Figures 10.15 and 10.16 show the effect of Av on the trim variables. Again,

only the collective pitch is influenced by the variation in Av, and the physical

explanations provided for variations due to Ah are also applicable to this case.

Figurcs 10.17 and 10.18 show the effect of tip sweep on the trim variables.

The collective pitch angle increases with sweep and the absolute value of the

cyclic pitch angles, as well as the rotor angle of attack, also show slight in-

creases with sweep. Figures 10.19 and 10.20 show the effect of tip anhedral

on the trim variables. Thc collective pitch angle, rotor angle of attack and in-

flow ratio increase with both tip anhedral and dihedral; with rotor angle of

attack, _R , being particularly sensitive to variation in A a (Fig. 10.20). The

cyclic cosine increases with tip anhedral and decreases with tip dihedral.

10.3 VIBRATORY HUB LOADS

Figures 10.21 through 10.28 show the absolute value of the 4/rev vibratory

hub shears and moments as a function of one of the the parameters A h , A v ,

A s or A a . Results illustrating the influence of ply orientation A h on the 4/rev

vibratory hub shears and moments are shown in Figs. 10.21 and 10.22, re-

spectively. The variation in longitudinal and lateral shears is about 17% to

24%, from the baseline configuration, while the vertical shear is less sensitive

to the variation in A h (about 12% from the baseline). The roll and pitch mo-

ments decrease with A h up tO 28% relative to the baseline around A h = 90 ° .
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The maximum variation in yaw moment consists of an increase of about 34%

for Ah > 60 ° • Results illustrating the influence of ply orientation Av on the

4/roy vibratory hub shears and moments are shown in Figs. 10.23 and 10.24,

respectively. The hub shears are less sensitive to Av than to A h. The roll and

pitch moments are insensitive to Av while the maximum variation in yaw mo-

ment is represented by an increase of about 21%, for Av near 90 °. Results il-

lustrating the influence of tip sweep As on the 4/rev vibratory hub shears and

moments are shown in Figs. 10.25 and 10.26, respectively. Tip sweep reduces

both hub shears and moments, with the hub shears being more sensitive to the

variation in tip sweep angle. Results depicting the influence of tip anhedral

Aa on the 4,'rev vibratory hub shears and moments are shown in Figs. 10.27

and 10.28, respectively. Most components of hub shears and moments in-

crease with both anhedral and dihedral. The only exception is the vertical

shear,, which increases with dihedral but is relatively insensitive to anhedral.

10.4 BLADE STABILITY

Figures 10.29 through 10.35 show the real part of the characteristic expo-

nents, which represent a measure of blade modal damping, or stability, as a

function of one of the parameters A h , A,,, A s , or A_. The effect of varying

the ply orientation A h on the aeroelastic stability of the lag mode is shown first

in Fig. 10.29, because lag is usually the critical mode in hingeless rotor stability

studies. It is evident from Fig. 10.29 that the stability of the lag mode is sig-

nificantly influenced by the ply angle variation. For A h between -20 ° and
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+ 20 °, the positive ply angles decrease amount of damping associated with the

lag mode, whereas the negative ply angles substantially increase the level of

damping in lag. Figure 10.30 indicates that the first flap mode stability is in-

sensitive to Ah. Results illustrating the effect of A h on the aeroelastic stability

of the first torsion and second flap modes are presented in Fig. 10.31. It is

evident that the stability of the first torsion and second flap modes is virtually

unaffected by the variation in Ah. The effect of varying the ply orientation

Av on the aeroelastic stability of the lag mode is shown in Fig. 10.32. It is ev-

ident from Fig. 10.32 that the stability of the lag mode is significantly influ-

enced by the ply angle variation. For Av between -20 ° and + 20", the positive

ply angles decrease the lag mode damping, whereas the negative ply angles in-

crease the lag mode damping substantially. The stability of the first two flap

modes and the torsion mode is insensitive to the ply angle Av, as depicted in

Fig. 10.33. Results illustrating the influence of the tip sweep angle A s on the

aeroelastic stability of the first six modes are shown in Fig. 10.34. The nota-

tion L, F and T is used to denote lag, flap and torsion modes, respectively.

The real part of the characteristic exponent associated with the first lag and

first torsion modes decreases while it increases for the second lag mode with tip

sweep, but is fairly insensitive to the variation of A,, in the flap modes, as ev-

ident from Fig. 10.34. It should be emphasized that while the curves repres-

enting the real part of the characteristic exponent associated with the first and

second lag modes, in Fig. 10.34, appear to be flat, the level of damping for

these two modes is at least an order of magnitude smaller than that of the

other modes shown in Fig. 10.34, and thus the variation of the damping level
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in thesemodesis quite significant. Results depicting the influence of the tip

anhedrai angle Aa on the aeroelasticstability of the first six modesare pre-

sented in Fig. 10.35. The real part of the characteristic exponent associated

with the first lag mode increaseswith anhedral and decreaseswith dihedral.

The levelof damping for the secondlag modeincreaseswhile that for the first

torsion mode decreaseswith both anhedrai and dihedral. The mild instability

in the secondlag mode, present in Figs. 10.34and 10.35, can be removed by

introducing a small amount of structural damping, in this particular mode.

The baselinebladeconfiguration given in Table 10.1has a rotating natural

torsional frequency of 3.821/rev, which is well separatedfrom the secondflap

frequency of 3.110/rev. By increasing the massmoment of inertia km2/Rto

0.02439, the torsional frequency becomes3.356/rev which is now close to the

secondflap frequency. Results for blade stability were also calculated for this

modified configuration. The results illustrating the influence of A h on the

aeroelasticstability of the first torsion and secondflap modesare presentedin

Fig. 10.36. The real part of the characteristic exponents indicate that the

torsional mode undergoesa significant reduction in damping levels,while the

second flap mode displays a significant increase in damping levels, around

A h= 15°. This is a frequency coalescencephenomenondue to the flap-torsion

coupling introduced by Ah. Results presented in Fig. 10.37 illustrate the in-

fluence of the tip sweep angle A s on the aeroelasticstability of the first six

modes. The frequency coalescencephenomenonbetween the first torsion and

secondflap modes is present over a wide range of sweepangleAs, primarily
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due to the flap-torsion coupling introduced by tip sweep.

mode becomesmarginally stable around As - 15 ° to 20 °.

The first torsion

10.5 COMBINED EFFECT OF SWEEP AND PLY ORIENTATION

Results showing the combined effect of tip sweep and composite con-

struction of blade were calculated for A h = 0 °, 15 ° and -15 ° at various tip

sweep angles, A s, between 0* and 40 °. The ply angle in the vertical wall, Av,

and the anhedral angle, A a, were set to zero in these calculations. The selection

of this particular combination of parameters was influenced by results for the

4/rcv hub loads and blade stability described in previous sections of this

chapter. Tip sweep reduces most vibratory hub load components, as previ-

ously illustrated in Figs. 10.25 and 10.26. A value of Ah = 15 ° produces a

modest reduction in the 4/rev hub loads at the expense of some lag damping

levels; while a Ah = -15 ° produces an increase in lag damping levels; with

slightly increased 4/rev hub loads; as can be seen from Figs. 10.21, 10.22 and

10.29.

Figures 10.38 through 10.40 show the 4/rev longitudinal, lateral and vertical

shears, respectively, as a function of As, for A h = 00 (baseline), 15" and -15 °.

The baseline cases in Figs. 10.38 through 10.40 undergo a reduction in 4/rev

hub shears with increasing tip sweep, as was indicated in Fig. 10.25. For lon-

gitudinal and vertical shears, the additional effect due to the presence of Ah

= 15 ° or -15 ° with increasing As is not favorable compared to the baseline

case, as evident from Figs. 10.38 and 10.39. For vertical shears the additional
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effect due to Ah = 15° or -15° comparedto the baselinecaseis unfavorable for

lower sweepangles,but becomesbeneficial for sweep angle As greater than

35°, as can be seenfrom Fig. 10.40. Figures 10.41through 10.43 show the

4/rev rolling, pitching and yawing moments, respectively,as a function of As,

for A n = 0°, 15° and -15°. The baselinecasesin Figs. 10.41 through 10.43

undergo a slight to moderatereduction in 4/rev hub momentswith increasing

tip sweep,up to As = 25°, as was indicated in Fig. 10.26. The additional ef-

fect due to Ah = 15° or -15°, compared to the baselinecase, is generally un-

favorable for all 4/rev hub moment components. Figure 10.44showsthe real

part of the characteristicexponentsfor the first lag mode as a function of As

for A n = 0° (baseline), 15 ° and -15 °. The first lag mode damping level de-

creases with increasing tip sweep angle for all three cases, as evident from Fig.

10.44. For the straight blade case, A n = 15 ° reduces the first lag mode

damping level by 25%, while A h = -15" increases the first lag mode damping

level by approximately 25%. When sweep is introduced, these effects diminish

with increasing tip sweep angle As. It is obvious, from the results presented in

Figs. 10.38 through 10.44, that the combined effect of swept tip and composite

construction of the blade cannot be predicted by superposition of the respec-

tive individual effects; because the problem is inherently nonlinear. The

mechanism associated with the combined effect is subtle and difficult to

quantify precisely based on the results generated so far. However the

parametric study presented in this chapter provides a valuable precursor to

structural optimization studies where the proper combination among these

parameters, for vibration reduction, is selected by an optimizer.
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Chapter X!

STRUCTURAL OPTIMIZATION RESULTS

This chapter presents a structural optimization study conducted by com-

bining the aeroelastic analysis capability developed in this study with the DOT

structural optimization packagel-106i; to design composite rotor blades with

swept tips for low vibration levels in forward flight, using composite ply

oreintation in the horizontal and vertical walls, and tip sweep and anhedral

angles as design variables.

Three hingeless blade configurations with a two-cell cross section are inves-

tigated. The first configuration is a soft-in-plane blade with its baseline con-

figuration shown in Table 10.1. Details of this blade configuration has been

described in Chapter 10. The second configuration is the same as the first

configuration except that its torsional frequency is modified from 3.821/rev to

3.356"rev and it was also described in Chapter 10. The third configuration is

a stiff-in-plane blade with a cross sectional shape similar to that of the soft-

in-plane blades (Fig. 7.1). For the stiff-in-plane blade, the leading edge semi-

circle has a radius of 0.8" while the straight portion has a total length of 6.2".

The internal vertical wall is located 3.6" behind the leading edge; and All walls

have a thickness of 0.2". The composite ply orientation is defined in the same

way as that of the soft-in-plane blade. The baseline configuration parameters

for this blade are shown in Table 11.1, where the material constants corre-

spond to graphite/epoxy type composite material.
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TABLE 11.1

Baselineconfiguration for the two-cell stiff-in-plane compositerotor blade

Coupled rotating natural frequencies:

to L = 1.454, 8.817

to F = I.! 48, 3.654, 8.471

t_Tt = 4.408

_' = 5.0
a = 0.076

a = 5.7

Ca0 = 0.0 I
kml/R = 0.0

kin2 / R = 0.0155

XFc/R = 0.0
XFA/R = 0.0

fCd0//t R 2 = 0.01

c/R = 0.06

 w°O°OO,
B=4

R = 250"

D = 360 rpm

ZFc/R = 0.50

ZFA/R = 0.25

Tip length --- 10% of the blade length.

Material constants:

E L = 28.0 x 106 psi

ET = 2.5 x 106 psi
Gtx= 1.0xi06 psi

VLT m 0.30

The aeroelastic response and stability calculations were performed using

three flap, two lag, one torsional and one axial modes. Five elements, four for

the straight portion and one for the swept tip, were used to model the blade.

Five harmonics (NH = 5) were used in the harmonic balance solutions so as to

accurately capture the 4/rev hub loads. All the computations involving for-

ward flight were carried out for an advance ratio/_ = 0.3.
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The two objective functions Jt and J2defined by Eqs. (7.8) and (7.9), re-

spectively, are usedfor each of the three blade configurations and the values

of the various weighting factors, usedin the calculations, are specifiedbelow:

KF= KM = 1.0

KFz= 1.0; KFx= KFy= KMx= KMy= KMz=0.0

In the aeroelasticstability constraints, a 0.5% structural damping is added to

the damping level associatedwith the secondlag mode, so as to eliminate the

slight instability which can occur in thesecondlag mode. This is accomplished

by an approximate approach described below, where the subscript j, used to

denote the j-th mode, is dropped for convenience. The eigenvalue obtained

from the stability calculation for the j-th mode is

2 = _'+ ito

where the real part is approximated by

= -- _d ton

with _d, tOn being the damping ratio and natural frequency, respectively, for the

j-th mode (_d = c/c¢). When using a viscous type structural damping the ad-

ditional damping, at_¢, added to the mode, can be expressed as a small per-

centage of the critical damping c¢ ; and the modified damping coefficient can

be written as

c' = c + CtdCc = (/_d + °td)Cc
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where c representsthe damping initially presentin the mode,and the modified

damping ratio is given by

_d' = c'/cc = _d+ _d

The real part of the eigenvalue becomes

_' = - _d' COn= - (_d + ad)COn

and the change in the real part of the eigenvalue which is indicative of the

stability associated with the mode is:

Since both % and co, are known quantities, a small amount of structural

damping can be conveniently added to a particular mode, by modif.ving the

real part of the eigenvalue associated with that mode.

The minimum acceptable damping level ek , defined in Eq. (7.7), is set to

0.01 for all modes, used in this study; for convenience. However one can

specify different values of ek, for the various modes, as needed.

Initial designs for the two soft-in-plane blade configurations are chosen

based upon the experience gained from the parametric studies conducted for

these blade configurations, described in Chapters 9 and I0. For the first blade

configuration, the initial desig_n was selected to have the following values of the

design variables: A h = 15 °, A s = 20 ° , Av = A_ = 0 ° ; which represents a design

with fairly low hub loads, and no significant reduction in aeroelastic stability

margins (see Figs. 10.21, 10.22, 10.25 and 10.26). Note, that while parametric

studies cannot be used to determine the optimum design, they can provide
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useful information for selectinga reasonableinitial design;so that the number

of iterations required in the optimization processis reduced. Furthermore, the

baselinedesignhaszero valuesfor the four design variables, while the initial

design is characterizedby preassigned(usually nonzero) valuesof thesedesign

variables.

The increment size (or step size) for the design variables, during the calcu-

lation of sensitivity derivatives based upon the finite difference approach, is set

to 0.1 ° for all four design variables, Ah, Av, As and Aa. This choice is a result

of a study in which a variety of increment sizes ranging from 0.001 ° to 1° for

each design variable were explored. It was found that the 0.1 ° increment size

produced the most consistent and stable behavior in the computation of the

sensitivity derivatives, among all increment sizes tested.

Figures ! !.1 and 11.2 show the vibratory hub shears and moments, respec-

tively, corresponding to the first configuration with J_ as the objective function.

The objective function J_ is the sum of the 4/rev hub shear resultant and 4/rev

hub moment resultant for the four-bladed rotors considered in this study. The

results presented in Figs. i1.1 and !1.2 were obtained from the optimization

process after eight iterations. It is evident from Fig. 11.1 that the 4/rev hub

shears are reduced by 9% to 18% compared to the initial design, and by 32%

to 37% compared to the baseline case. The 4/rev hub moments are reduced

by 0.1% to 6% compared to the initial design, and by 25% to 28% compared

to the baseline, as illustrated in Fig. !1.2. The reduction in the objective

function J_ is 9% from the initial design and 33% from the baseline case (see

Table 11.2).
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Figures 11.3and ! 1.4show the vibratory hub shearsand moments, respec-

tively, correspondingto the first configuration when J2is the objective function

in the optimization process. The objective function J_ consists of the 4/'rev

vertical hub shear for the casesconsidered in this study. The 4/rcv vertical

shear is reducedby a remarkable 53"/0 from the initial design; however, there

is no reduction in 4/rev longitudinal and lateral shears. Furthermore, the re-

duction in vertical hub shear is accompaniedby a 1% to 12°'oincreaseof 4/rev

hub momentscompared to the initial designas depictedin Figs. 11.3and 1!.4.

When comparing the final design to the baselineconfiguration, one can iden-

tify a reduction of 26% to 63% for 4/rev hub shearsand 13°'oto 20% for 4/rev

hub moments;as is evident from Figs. 11.3and 11.4.

The objective functions and the corresponding design variables in the

baseline, initial and optimum designs for the first configuration are summa-

rized in Table 11.2.

The second blade configuration has a torsional frequency of 3.356/rev,

which is close to the second flap frequency of 3.110/rev.. The frequency

coalescencephenomenoncaused by either Ah or A, can reduce the damping

level in first torsion mode significantly, as has been shown in Fig. 9.28, for the

case of hover; and in Figs. 10.36 and 10.37 for the case of forward flight. For

As = 20* and Ah between -1 ° and 13 °, the first torsion mode exhibits a mild

instability in hover, as is evident from Fig. 9.28. The initial design for the

structural

A h = 5 °, A s

torsional stability and causes the design to be in the infeasible region.

optimization of this blade configuration was chosen as

= 20* , and Av = A,,= 0 ° ; so that it violates the constraint on

Since
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TABLE I 1.2

Summary of optimization results for the first configuration

Baseline Initial Optimum

J I (E-3) 1.600 !. !84 ! .084

A h 0.0 15.0 5.55
A,. 0.0 0.0 0.99

A s 0.0 20.0 29.4

A, 0.0 0.0 0.36

J2 (E-4) 5.015 4.021 1.876

A h 0.0 i 5.0 -7.4 I

Av 0.0 0.0 3.74
A, 0.0 20.0 39.5

Aa 0.0 0.0 0.81

All angles are in degrees.

the optimization problem includes aeroelastic stability constraints which have

to be satisfied before convergence, the final optimum design for this blade

configuration, determined by the optimization process and shown in Table

11.3, is aeroelastically stable.

Figures 11.5 and 11.6 show the vibratory hub shears and moments, respec-

tively, corresponding to the second configuration, with J, as the objective

function. Compared to the initial design, the 4/rev hub shears are reduced by

only 2% to 5% while the 4/rev hub moments are even increased by 0% to 2%,

resulting in a mere 2% reduction in Jl. The reduction in the hub loads from

the baseline case is still significant: 39% to 44% for 4/rev hub shears and 27%
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studies which were available for the first two blade configurations.

the initial design was chosen to be identical to the baseline

A h = A v = A s= A a= 0 ° .

to 33% for 4/rev hub moments, as illustrated in Figs. 11.5 and 11.6. The ob-

jective function J_ is reduced by 39% from the baseline case (see Table 11.3).

Figures 1 !.7 and ! 1.8 show the vibratory hub shears and moments, respec-

tively, corresponding to the second configuration when J2 is used as the objec-

tive function. The 4/rev vertical shear is reduced by 6%, however the 4,:rev

longitudinal and lateral shears are increase by 3% and 12%, respectively. The

4/'rev hub moments are only slightly reduced by 1% to 3% compared to the

initial design. The reduction from the baseline is 34% to 40% for 4/rev hub

shears and 29% to 35% for 4/rev hub moments, as is evident from Figs. 11.7

and 11.8. Therefore, the 4/rev hub loads for the initial design of the second

configuration are already near their minimum. Thus, the primary function of

the optimizer was to steer the initial design out of the infeasible region while

maintaining the objective function as low as possible.

The objective functions and the corresponding design variables in the

baseline, initial and optimum designs for the second configuration are sum-

marized in Table 11.3.

The structural optimization studies for the third blade configuration, which

is a stiff-in-plane blade, were conducted without the benefit of the parametric

Therefore

case, i.e.,

Figures 11.9 and 11.10 show the vibratory hub shears and moments, re-

spectively, corresponding to the third configuration with Jt as the objective

function. The 4/rev hub shears are significantly reduced, by 46% to 67%;
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TABLE 11.3

Summary of optimization results for the second configuration

Baseline Initial Optimum

J_ (E-3) 1.546 0.968 0.948

A n 0.0 5.0 3.85
A, 0.0 0.0 ! .01

As 0.0 20.0 27.0

A, 0.0 0.0 -0.10

J2 (E-4) 4.822 3.047 2.873
An 0.0 5.0 O. ! i

Av 0.0 0.0 8.54

A, 0.0 20.0 25.7
A. 0.0 0.0 3.49

All angles are in degrees.

however, the reduction in 4/rev hub moments is only 0% to 5% when com-

pared to the baseline case. The objective function J_ is reduced by 31% from

the baseline case (see Table 11.4). Figures I 1.I I and ! 1.12 depict the vibratory

hub shears and moments, respectively, corresponding to the third configura-

tion with J2 as the objective function. The 4/rev vertical shear achieves an in-

credible 99.4% reduction from the baseline case, however the 4/rev

longitudinal and lateral shears are increased significantly by 1190 and 106%,

respectively. The 4/rev hub moments are also increased by 17%, 17% and

121% from the baseline case for rolling, pitching and yawing moments, re-

spectively.
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The objective functions and the corresponding design variables in the

baselineand optimum designs for the third configuration are summarized in

Table ! !.4.

TABLE i 1.4

Summary of optimization results for the third configuration

Initial Optimum

J_(E-4) 9.515 6.544

A h 0.0 -4.67

Av 0.0 -2.96
A, 0.0 15. I

A a 0.0 14.1

J2 (E-4) 4.09 ! 0.026

A h 0.0 0.75
A,, 0.0 -0.27

A s 0.0 27.4

A a 0.0 -5.52

All angles are in degrees.

From the three configurations considered in this study, one concludes that

in general the combined objective function J_, is a better choice than the second

objective function J2 ; for vibration reduction studies for helicopter rotors. One

could construct a variety of objective functions by assigning proper weighting

factors in Eqs. (7.8) and (7.9). For most cases considered in this study, a typ-

ical case of optimization cycle converges in eight to fifteen iterations. The final

optimum designs, listed in Tables 11.2-11.4, show that the sweep angle has the

most important role among the four design variables considered in the opti-

mization process. Since the combined effect of ply orientation and swept tip
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is nonlinear, using the optimizer to select the proper combination of ply orien-

tation, sweep and anhedral angles represents a cost effective approach to

avoiding excessively large sweep angles, while enhancing the aeroelastic stabil-

ity and frequency placement of the blade.
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Chapter Xii

CONCLUDING REMARKS

The aeroelasticity and structural optimization of composite helicopter rotor

blades with swept tips has been studied analytically. The aeroelastic behavior

was explored using a new analytical model developed in this study, which is

capable of predicting the aeroelastic behavior of composite rotor blades with

straight and swept tips in hover and in forward flight. This model is based on

a moderate deflection theory and is particularly suitable for structural opti-

mization studies due to its computational efficiency.

The hingeless blade was modeled by beam type finite elements. A single

finite element was used to model the swept tip. The nonlinear equations of

motion for the finite element model were derived using Hamilton's principle.

Arbitrary cross-sectional shape, generally anisotropic material behavior,

transverse shears and out-of-plane warping were included in the blade model.

The cross-sectional properties of the composite blade were calculated by a

separate linear, two-dimensional analysis using a suitably modified version of

the analysis developed by Kosmatka[56l, which is capable of calculating the

shear center location and the modulus weighted section constants of an arbi-

trarily shaped composite cross section. The aerodynamic loads were obtained

using Greenberg's theory with a quasi-steady assumption. Implementation of

the aerodynamic model into the computer code was based on an implicit for-

mulation such that more refined aerodynamic models can be incorporated in
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the analysis to replacethe simple theory usedin this study without an excessive

amount of additional effort. The trim and blade aeroelastic responsewere

solved in a fully coupled manner, which is essentialfor the accurate modeling

of the dynamic behavior of swept-tip rotor blades. In forward flight, the cou-

pled trim-aeroelastic responsesolution was obtained using the harmonic bal-

ance technique, and the linearized stability was determined from Floquet

theory.

Detailed studies were conducted on selected single-cell and two-cell com-

posite rotor blades with straight and swept tips to investigate the individual

and the combined effect of sweep, anhedral and composite ply orientation on

blade response and aeroelastic stability in hover and in forward flight, as well

as on the vibratory hub shears and moments in forward flight.

The structural optimization study was conducted by combining the

aeroelastic analysis capability developed in this study with the DOT structural

optimization package[106] to design composite rotor blades with swept tips for

low vibration levels in forward flight, using composite ply orientations in the

horizontal and vertical walls, and tip sweep and anhedral angles as design

variables. Numerical results for four-bladed hingeless rotors with either a

soft-in-plane or a stiff-in-plane configuration and a two-cell composite cross-

section were presented.

The main conclusions obtained in this study are summarized below. They

should be considered to be indicative of trends within the framework of the

assumptions upon which the aeroelastic analysis was based. Also, they are

valid primarily for the limited number of configurations studied.
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!. The axial degree of freedom in the blade equations of motion must be

treated such that the centrifugal force and Coriolis damping effects are

properly included.

2. The fundamental rotating frequencies in flap and lag are not sensitive

to the ply angle variation. The torsional frequency increases with ply

angle initially; but after reaching a maximum value (around 30 ° in this

study), it decreases with further increase in the ply angle. Tip sweep

and tip anhedral have negligible influence on the fundamental flap and

lag frequencies; while the torsional frequency may increase or decrease

with tip sweep.

3. Tip sweep can cause aeroelastic instability due to frequency coalescence

between the first torsion and second flap modes. This instability can

be removed by appropriate modification of the torsional stiffness of the

blade. When frequency coalescence occurs between the first torsion and

second lag modes, both tip anhedral and dihedral have a stabilizing ef-

fect on the second lag mode.

4. Ply angle variation in composite blades has a significant influence on the

stability of the first lag mode both in hover and in forward flight. The

combined effect of low thrust condition and certain ply orientations can

cause blade instability in the first lag mode in hover.

5. Composite ply orientation has a significant influence on blade torsional

response, while flap and lag response of the blade are fairly insensitive

to ply angle variation.
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6. Variation of compositeply orientation has a pronounced influence on

the collective pitch setting while the other trim parameters remain vir-

tually unaffected.

7. Tip anhedral has significant influence on lag response, cyclic cosine and

rotor angle of attack.

8. The damping in flap and torsion modes is insensitive to composite ply

angle variation if frequency coalescence due to flap-torsion coupling is

avoided.

The variation of the vibratory hub loads due to changes in composite

ply orientation is fairly modest and is less than 30% in most cases. Tip

sweep reduces most vibratory hub load components while tip anhedral

causes them to increase.

10. The combined effect of swept tip and composite ply orientation cannot

be accurately predicted by superposition of the respective individual ef-

fects because the problem is inherently nonlinear. However a

parametric study is useful for selecting the initial design for the opti-

mization process.

I I. Blade instability due to frequency coalescence introduced by swept tip

and composite ply orientation can be removed through structural opti-

mization with aeroelastic constraints.

12. The combined sum of the hub shear resultant and hub moment result-

ant is a better objective function than the 4/rev vertical shear alone for

the purpose of helicopter vibration reduction. Selecting 4/rev vertical

shear as the objective function can result in remarkable reduction in this

.
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4/rev hub load component, but at the expenseof higher vibration level

in the other components.

13.Tip sweephas a significant influence on vibratory hub loads and plays

an important role in the optimization for vibration reduction. Proper

combination of composite ply orientation and tip sweepand anhedral

angles,however,can beemployed to reducethe needfor excessivesweep

angles for vibration reduction, while simultaneously improving the

aeroelasticstability and frequency placementof the blade.

These conclusions indicate that aeroelastic tailoring of swept tip composite

blades, for stability enhancement and vibration reduction, is an area of re-

search which holds remarkable promise.
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Figure 7.1: Finite element model for two-cell composite cross section
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Figure 8.7: Single-cell composite rectangular box beam
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Figure 8.9: Trim variables for soft-in-plane isotropic blade in forward
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Figure 8.16: Blade damping for soft-in-plane isotropic blade in forward
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Figure 8.17: Blade damping for soft-in-plane isotropic blade in forward
flight; second and third flap modes.
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Figure 8.19: Blade damping for stiff-in-plane isotropic blade in forward
flight; first flap mode.
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Figure 8.20: Blade damping for stiff-in-plane isotropic blade in forward
flight; first torsion, second and third flap modes.
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Figure 8.22: The 4/rev hub loads for soft-in-plane isotropic blade in forward

flight; lateral shear and pitching moment.
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Figure 8.23: The 4/rev hub loads for soft-in-plane isotropic blade in forward
flight; vertical shear and yawing moment.
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Figure 8.24: The 4/rev hub loads for stiff-in-plane isotropic blade in forward

flight; logitudinal shear and rolling moment.
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Figure 8.25: The 4/rev hub loads for stiff-in-plane isotropic blade in forward
flight; lateral shear and pitching moment.
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Figure 8.26: The 4/rev hub loads for stiff-in-plane isotropic blade in forward
flight; vertical shear and yawing moment.
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Figure 10.16: Effect of vertical wall ply angle on trim variables; inflow and
rotor angle of attack (/_ = 0.30).
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TRIM VARIABLES (MU=0.3)
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Figure 10.17: Effect of tip sweep angle on trim variables; pitch setting
(/z =0.30).
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TWO-CELL COMPOSITE BLADE
TRIM VARIABLES (MU:O.3)
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Figure 10.18: Effect of tip sweep angle on trim variables; inflow and rotor

angle of attack _ =0.30).
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Figure 10.19:

Effect of' tip anhedral angle

(g = 0.30). on trim variables; pitch setting

327



TWO-CELL COMPOSITE BLADE
TRIM VARIABLES (MU=0.3)
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Figure 10.20: Effect of tip anhedral angle on trim variables; inflow and rotor

angle of attack (/_ = 0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY HUB SHEARS (MU=0.3)
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Figure 10.21" Effect of horizontal wall ply angle on 4/rev hub shears
(# =0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY HUB MOMENTS (MU=0.3)
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Figure 10.22: Effect of horizontal wall ply angle on 4/rev hub moments

(/_ = 0.30).

330



TWO-CELL COMPOSITE BLADE
VIBRATORY HUB SHEARS (MU=0.3)
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Figure 10.23: Effect of vertical wall ply angle on 4/rev hub shears
(# =0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY HUB MOMENTS (MU=O.3)
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Figure 10.24: Effect of vertical wall ply angle on 4/rev hub moments
(p=0.30).
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Figure 10.25: Effect of tip sweep angle on 4/rev hub shears (_ = 0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY HUB MOMENTS (MU=0.3)
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Figure 10.26: Effect of tip sweep angle on 4/rev hub moments (/_ =0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY HUB SHEARS (MU=0.3)
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Figure 10.27: Effect of tip anhedral angle on 4/rev hub shears (p = 0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY HUB MOMENTS (MU=0.3)
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Figure 10.28: Effect of tip anhedral angle on 4/rev hub moments (/_ = 0.30).
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Figure 10.30: Effect of horizontal wall ply angle on blade stability; first flap
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Figure 10.31: Effect of horizontal wall ply angle on blade stability; first tor-
sion and second flap modes (/_ = 0.30).
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Figure 10.32: Effect of vertical wall ply angle on blade stability; first lag

mode (/_ = 0.30).
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Figure 10.33: Effect of vertical wall ply angle on blade stability; first, second

flap and first torsion modes (/z = 0.30).
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TWO-CELL COMPOSITE BLADE
AEROELASTIC STABILITY (MU=O.3)
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Figure 10.34: Effect of tip sweep angle on blade stability for the first six
modes (:z =0.30).
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TWO-CELL COMPOSITE BLADE
AEROELASTIC STABILITY (MU=0.3)
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Figure 10.35: Effect of tip anhedral angle on blade stability for the first six
modes 0t = 0.30).
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Figure 10.36: Effect of horizontal wall ply angle on stability of first torsion
and second flap modes, modified torsional frequency
(/_ =0.30).
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TWO-CELL COMPOSITE BLADE (MODIFIED)
AEROELASTIC STABILITY (MU=0.3)
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Figure 10.37: Effect of tip sweep angle on blade stability for the first six

modes, modified torsional frequency (/_ = 0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY LONGITUDINAL SHEAR (MU=0.3)
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Figure 10.38: The 4/rev longitudinal hub shear as a function of tip sweep
angle, combined effect with ply orientation (/_ = 0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY LATERAL SHEAR (MU=O.3)
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Figure 10.39: The 4/rev lateral hub shear as a function of tip sweep angle,
combined effect with ply orientation _ = 0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY VERTICAL SHEAR (MU=0.3)
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Figure 10.40: The 4/rev vertical hub shear as a function of tip sweep angle,

combined effect with ply orientation (p = 0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY ROLLING MOMENT (MU=0.3)

0.40-

_ 0.30.

| :

_ 0.20-

'_. 0.10-

Z
0
Z

_ baseline

-- 15 deg bar. wall ply angle

0.00 . , , , , ,
0 I 0 20 30 40

SWEEPANGLE(DEC)

Figure 10.41" The 4/rev hub rolling moment as a function of tip sweep angle,

combined effect with ply orientation (# = 0.30).

349



TWO-CELL COMPOSITE BLADE
VIBRATORY PITCHING MOMENT (MU=0.3)
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Figure 10.42: The 4/rev hub pitching moment as a function of tip sweep
angle, combined effect with ply orientation _ = 0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY YAWING MOMENT (MU=0.3)
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Figure 10.43: The 4/rev hub yawing moment as a function of tip sweep an-
gle, combined effect with ply orientation (/_ =0.30).
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TWO-CELL COMPOSITE BLADE
LAG MODE STABILITY (MU=0.3)
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Figure 10.44: Real part of characteristic exponent of blade first lag mode as
a function of tip sweep angle, combined effect with ply orien-
tation (/z =0.30).

352



TWO-CELL COMPOSITE BLADE, FIRST CONFIGURATION
OBJECTIVE FUNCTION J1 (MU=0.3)
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Figure 11.I" The 4/rev hub shears corresponding to first blade configuration
(soft-in-plane) and first objective function (/_ = 0.30).
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TWO-CELL COMPOSITE BLADE, FIRST CONFIGURATION
OBJECTIVE FUNCTION J1 (MU=O.3)
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Figure 11.2: The 4/rev hub moments corresponding to first blade configura-
tion (soft-in-plane) and first objective function (# = 0.30).
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TWO-CELL COMPOSITE BLADE, FIRST CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=0.3)
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Figure 11.3: The 4/rev hub shears corresponding to first blade configuration

(soft-in-plane) and second objective function (p =0.30).
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TWO'CELL COMPOSITE BLADE, FIRST CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=O.3)
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Figure 11.4: The 4/rev hub moments corresponding to first blade configura-
tion (soft-in-plane) and second objective function (/z =0.30).
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TWO-CELL COMPOSITE BLADE, SECOND CONFIGURATION
OBJECTIVE FUNCTION J1 (MU=0.3)
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Figure 11.5: The 4/rev hub shears corresponding to second blade configura-
tion (soft-in-plane) and first objective function (p = 0.30).
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OBJECTIVE FUNCTION J1 (MU=O.3)
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Figure 11.6: The 4/rev hub moments corresponding to second blade config-
uration (soft-in-plane) and first objective function _ =0.30).
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TWO-CELL COMPOSITE BLADE, SECOND CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=O.3)
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Figure 11.7: The 4/rev hub shears corresponding to second blade configura-
tion (soft-in-plane) and second objective function (/_ = 0.30).
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TWO-CELL COMPOSITE BLADE, SECOND CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=0.3)
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Figure I 1.8: The 4/rev hub moments corresponding to second blade config-
uration (soft-in-plane) and second objective function 0z = 0.30).
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TWO-CELL COMPOSITE BLADE, THIRD CONFIGURATION
OBJECTIVE FUNCTION J1 (MU=O.3)
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Figure 11.9: The 4/rev hub shears corresponding to third blade configura-

tion (stiff-in-plane) and first objective function _ = 0.30).
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Figure 11.10: The 4/rev hub moments corresponding to third blade config-
uration (stiff-in-plane) and first objective function 0_--0.30).
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TWO-CELL COMPOSITE BLADE, THIRD CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=O.3)
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Figure 11.11 : The 4/rev hub shears corresponding to third blade configura-
tion (stiff-in-plane) and second objective function (/_ = 0.30).
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TWO-CELL COMPOSITE BLADE, THIRD CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=O.3)

,0.350-]
. !BE baseline

I r'1 final design I

ROLLING PITCHING YAWING

Figure 11.12: The 4/rev hub moments corresponding to third blade config-
uration (stiff-in-plane) and second objective function
(/z =0.30).
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Appendix A

COMPARISON OF THE TRANSFORMATION MATRICES BETWEEN

DEFORMED AND UNDEFORMED COORDINATE SYSTEMS

In this appendix, the transformation matrix, [Tj, between the deformed

curvilinear coordinate system and the undeformed element coordinate system

is compared with similar transformations by other authors.

The matrix [Tae] is defined as:

[1 0 s,:0xlFCOo0.O-.io..1[Tde ] ---- 0 COS 0 x 1
--sin0x cOS0x_JLsin0r t 0 cos0rtA

- sin cos O( cos sin fl
0 0 - sin cos fl

(A.l)

where 0 x, 0_, O_ are Euler angles, and fl is the pretwist angle. The relationships

between the Euler angles and the displacement variables are:

Ox= q_

V,x sin fl - W,x cos fl

_/( 1 + U,x) 2 + (V,x cos fl + W,x sin _)2 + (W,x cos p - V,x sin fl)2

COS 0_/ =

X/(1 + U,x) 2 + (V,x cos fl + W,xSin//)2

X/(1 + U,x) 2 + (V,x cos fl + W,x sin p)2 + (W,x co s p _ V,x sin fl)2
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Vx cosfl + W,x sin// (A.2)

sin 0( = 4(I + U,x) 2 + (V,x cos//+ W,x sin//)2

cos 0_ =

N/(I + U,x) 2 + (Vx cos fl + W,x sin fl)2

When [Tae ] is simplified to second order using the ordering scheme and the

small angle assumption for $, it becomes:

[Tde-]

l V,X W x

- V x cos(fl + _b) cos(//+ _b) sin(fl + _b)
W,x sin(fl + q_)

V,x sin(//+ _b) - sin(//+ _b) cos(//+ _b)

- W x cos(fl + qb) + Ce' cos// + To' sin//

(A.3)

where

"re' = (V,x sin//- W,x cos//) (V,x cos # + W,x sin fl) (A.4)

Eqs. (A.2), (A.3) and (A.4) are taken from Eqs. (3.37), (4.40) and (4.41), re-

spectively. These expressions are identical to the expressions used by Kos-

matka 1-56] except for a minor difference in the second order simplification of

[Tde] where Kosmatka's expression (Ref. 56, p. 78, Eq. (2.81b)) is:

[Tde] =

- V,x cos(fl + W,x sin(//+ $)

¢)1_

V,x sin(//+ $)- W,x cos(//+ ¢)
V,x W,x )

cos(//+ _) sin(//+ _)

- sin(//+ _ - re') cos(//+ _)

(A.5)
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The slight difference in elements (3,2) and (3,3) is probably due to the ordering

scheme being applied at different stages during the simplifying process.

A similar transformation between deformed and undeformed coordinate

systems obtained by Hodges and Dowell[40"l, and by Crespo DaSilva and

Hodges[ 15] is defined as:

[TI] =

0

cos 01

- sin 01
siO011Fc°00Y 0 si 0Yl[ c°S0z sin0z i]

1 O - sin 0 z cos 0 z (A.6)

cos 01] L- sin 0y 0 cos 0y_] 0 0

where

01 = #+0 x

sin 0y
W,X

N/(I + U,x) 2 + (V,x) 2 + (Wx) 2

COS 0y =

N/(I + U,x) 2 + (V,x) 2

x/(l + U,x)2 + (V,x)2 + (Wx)2
(A.7)

sin 0 z
V,x

N/(! + U,x)2 + (V,x) 2

COS 0 z =
I +U,x

N/(I + U,x)2 + (V,x) 2
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The expressionsfor sin 0y, cos 0y, sin 0z and cos 0z in Hodges and Dowell[40]

have a different appearance from Eq. (A.7), but can be rewritten in more sui-

table form resembling Eq. (A.7) by substituting

ax = [(1 +u )2
3--7" ,x + (V,x) 2 + (W,x)2] -112 (A.8)

into Eq. (A.3) of Ref. 40. Although Hodges and Dowell[-40] have a slightly

different interpretation for the third Euler angle 0 x , which differs from the

identity Shown in Eq. (A.2); for convenience in this comparison, this difference

is ignored. A second order simplification of the transformation matrix [T_]

can be obtained by assuming

sin 0y -_ W,x , sin 0 z - V,x

"" -----Icos 0y -- 1 , cos 0z

(A.9)

and substituting into Eq. (A.6). The resulting expression is:

[TI] =

l V,X W, x

- V,x cos(# + _b) cos(fl + _b)- sin(fl + _b)
W,x sin(fl + _b) V,xW,x sin(fl + _b)

V,x sin(fl + _b) - sin(//+ _b) - cos(fl + _b)
- W,xcos(fl+ V,xW,xcos(fl+

(A.10)

The transformation matrix [Tt] was derived based on the assumption that

the pretwist angle (fl) is an additive term to the third Euler angle (0x). This

assumption was used simply for mathematical convenience. On the other

hand, the transformation matrix [T_] was derived assuming that the pretwist

angle is present before deformation. Therefore, the expression for [T_] looks
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different from [Tae] in their original form, before simplifications. However,

when [Tt] and [Tde] are simplified to second order, they have identical ex-

pressions for T_,TI2, T_3, T21,T23,T31 and identical first order terms for

T22, T32, T3a ; where Tij denotes the element (i, j) of [T_] or l'Td¢] •

If the effect of pretwist on the transformation matrix is ignored, i.e., p = 0,

and the small angle assumption is used for _b, then both second order ex-

pressions for [T_] and [Tde] reduce to the second order expression by Rosen

and Friedmannl-76]:

| V, x W,x 1

-- (V,x "t- ¢Wx ) 1 J- (W,x- _V,x) - (¢ + V,xW,x) i
IT2] = (A.l_)
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Appendix B

FINITE ELEMENT MATRICES FOR THE COMPOSITE BEAM MO-

DEL

The finite element matrices for the composite beam model are obtained by

using a cubic Hermite interpolation polynomial, {O¢} , for the transverse de-

flections (v, w) and a quadratic Hermite interpolation polynomial, {Oq} , for

the torsional rotation (Oh), the axial deflection (u), the warping amplitude (_),

and the transverse shears at the elastic axis (_, Yx_) Each of the element ma-

trices can be written in the partitioned form as follows:

JAil]

[A21]

[A31]

[A] = [A41]

[As ]
[A61]

[A713

[AI2] [A13] [AI4] [AI5] [A16] [AI7]

[A22] [A23] [A24] [A25] [A26] [A27]

[A32] [A33] [A34] [A35] [A36] [A37]

[A42] [A43] [A44] [A45] [A46] [A47]

[A52] [A53] [A54] [A55] [A56] [A57]

[A62] [A63] [A64] [A65] [A66_] [A673

[A72] [A73] [A74] [A75] [A76] [A77]

B.I FINITE ELEMENT MATRICES ASSOCIATED WITH THE

STRAIN ENERGY VARIATION

The finite element matrices which are associated with the at_'ain energy

variation include the linear stiffness matrix, [KL-I, and the nonlinear stiffness

matrix, [K NL] . In order to conveniently express these finite element matrices

in terms of their sub-matrices, the following constants are defined:
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EAr/a = EAr/a cos fl - EA( a sin fl

EA(a = EAr/a sin fl + EA( a cos fl

Gr/Ar/b = Gr/Ar/b cos fl - Gr/A( b sin fl

GnA(b = GgAr/b sin fl + G_A( b cos fl

G(Ar/c = G_Ar/c cos fl - G_A/_ c sin

G(A(c = G_Ar/c sin fl + G_A( c cos fl

EAB l = EAB l cosfl- EAB2sin fl

EAB 2 = EAB l sin fl + EAB2cosfl

EAB 6 = EAB 6 cos fl - EAB 7 sin fl

EAB 7 = EAB 6 sin fl + EAB 7 cos fl

EAC l = EAC l cos fl - EAC 2 sin ,8

EAC 2 = EAC 1 sin fl + EAC 2 cos fl

EAD l = EAD I cosfl - EAD2sin fl

EAD 2 = EAD l sin fl + EAD2cos fl

EAD l' = EAD l' cos fl - EAD 2' sin p

EAD 2' = EAD l' sin fl + EAD 2' cos fl

_,I_ = EIn_ cos fl - El,m sin
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E'T_ = Eln¢.sin fl + El,m cos p

EI(( = Ei(_ cos fl - Eln( sin p

_O/ = EI/x sin fl + EIn¢ cos fl

The linear stiffness matrix, [KL-I, is defined by the following sub-matrices:

[g:Ll] = f0_(_i¢¢cosfl - E/'T¢sin/_) {Oc"} {Oc"} T dx

E_:L2J= f0_(_¢. _osp - m,,,,si. P)_a'_"}/¢'c"}v dx

= -- EAB I {q_c"}{q_q'} T dx

[KL4 ] = f_e _ EAr/a {_c,,}{_q,}Tdx

[KL5] = f0_( - EAD l {Oc"}{Oq'}T-- (EADI' + EAB6){Oc"}{_q'}T)dx

[KL6] = f0_( - EI--'_ {Oc"}{Oq'}T-- (G_Ar/b + -r0E-Tr/tj) {Oc"}{_q'}T)dx

[KL7 ] = f_c(_ EI%¢ {_c"}{Oq'}T-- (GcAr/c - z0_(_, ) {q_c"}{t_q'}T)dx

EK2L 3I ° --- (Eln(cosfl + El(_sin/_) {_c"}{Oc"} T dx = I-KL2] T
%
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_0 le
[KL2] = (_nncos_ + E-fen sin p) {Oc"}{Oc"} T dx

[KL3] = f? - EAB 2 {Oe"}{Oq'} Tdx

[.K2L4] = fOe _ EA_'a {Oc,,}{Oq,}T ."Ix

EKE51 f?= (- EAD 2 {Oc"}{Oq'}T-- (EAD2 ' + EAB 7) {Oc"}{Oq'}T)dx

EKL63= f_'( - Et--'_.{Oc"}{Oq'} T- (G_A_b q- ¢0EI----_) {Oc"}{Oq'}T)dx

[KL7 3 = foe (- EIG_ {Oc,,}{q_q,}T_ (G_A_¢- _0E--l_r/) {Oc"}{Oq'}T)dx

I_K_13= tKh3r

[Kh] = i:Kh3r

[KL3 ] = J'_e OJ {Oq'}{Oq'} T dx

[.Kh ] = .fOe EABo {Oq,}{Oq,} T dx

[K3L5] = f? (EAB3 {Oq'} {q)q'} T + (EAB 3' + EABI4) {Oq'}{Oq}T)dx

['KL6] = j'i e (EAB 1 {Oq'}{Oq'} T + (EABI2 + "r0EAB2) {Oq'}{Oq}T)dx
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[K_] f_°= (EAB2 {q_q'} {q_q'} T + (EABI0 - t0EABI) {q_q'} {Oq}T) dx

[K4LI] = [KL4] T

[K4L2] = [K L]T. 24

[Kh] = [Kk] T

[.hi fj°= EA {(i)q'} {q)q'}T dx

_0 _e[K4L5] = (EAD0 {q)q'}{(1)q'} T-I- (EAD0' -I- EABs){Oq'}{q)q}T)dx

= (EAr/a {(l)q'} {q_q'} T + (GF/A + t0EA(a) {q)q'}{Oq}T)dx

[K4LT] f0_= (EA( a {Oq'}{mq'} T + (G(A - t0EA_/a ) {q_q'}{@q}T) dx

[Kh]----[KLs] T

[K L] -- [KLS]T

[Kh]--[KLs] T

["k] = [.LIT
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{KLs]
f0 le= (EAD 3 {q_q,}{q_q,}T + (EAB 8 + EAD5) ({q)q,} {_q}T +

{q)q} {q)q,}T) + (EABI5 + 2EAB8, + EAD3,) {CDq} {q)q}T) dx

[KL6]
fo'(EAD I {Oq'}{Oq'} T + (EAD 7 + z0EAD2) {Oq'} {Oq} T +

(EAB 6 + EADI' ) {_q} {(l)q'} T + (EABI3 + EAD 7' +

r0EAB7 + .r0EAD2, ) {_q} {_q}T) dx

[K L ]57 Jo(EAD 2 {_q,}{Oq,}T + (EAD 6 _ zoEADI ) {q)q,} {q_q}T +

(EAB 7 + EAD2, ) {_q}{_q,}T + (EABI1 + EAD6, _

r0EAB6_ lr0EADI, ) {Oq} {_q}T)dx

[K hI _ [KIL6] T

[KL2] = [K L -1T26-1

tKL3 = [K IT

EKL64]= EK J r

[KLs] = [KL6] T

[KL6]
fo_ (EI_-_ {q_q,} {q_q,}T + (GnAt? b + r0Elt/_) ({q_q,} {q_q} T +

{q)q}{q)q,}T) + (Gr/t/A + 2r0Gr/A_. b + .r02Eirltl) {q_q} {_q}T)dx

375



[KL7] = f0 (EI_¢ {_q'}{Oq'} T + (G¢Ar/¢- r0El(¢){Oq,}{_q}T

(G_A( b + z0EI_, 1) {tl)q} {ti)q'} T + (G_¢A + _0G¢A(c -

ToG_/Ar/b _ z02El_/() {Oq} {Oq}T) dx

+

EKL,j = EKL7JT

[ KL72] = [KL7] T

[KL] = [KLT]T

[KL4] = [K4LT]T

IKLs3= [KL73T

[KL6] = [KLT]r

[KLT]
f_ (El,m {q)q'} {q)q' + (GcA_'c - ¢0EI_) ({_q'} {_q}T +

}T

{_q} {(I)q'} T) + (G_A - 2z0G_At/e + T02EI_) {(l)q} {_q}T) dx

The nonlinear stiffness matrix, I-K NL] , is defined by the following non-zero

sub-matrices:
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f01e((Vx) {Oc'}{Oc' } + EEAB 1 cos fl(V,x fl - W,x
T

sin

(Eln, / sin fl - E'T_,I cos fl_] {Oc"} {Oc"} T _

l--
[-_-VAr/aV,x + ( sin fl cos fl) (Sx)] {Oc"} {@c ' }T--

( sin fl cos fl)(gx){(Pc'} {Oc"}T)dx

cosp) +

E. NL]

N

_([ EX-_n #(V,x /_- W,xcos #) +sin sin

(Ei_£ cos B - ETs_ sin//)¢] {q)c"} {q)c"} T +

n cos2#)(g,_)]{m,,}{%,}TE - -_"EAr/aW x + (

(sin2fl) (Sx){_e'} {_e"}T) dx

= _ [(M-"_)cos p- (M z) sinfl] {t_c"}{t_q}T dx

r',
EK NL]

J0 ([EAB2 cos P(Vx sin/_ - W x cos p) -

(EI--_. cos fl + EI---_ sin p_] {cPc"}{cPc'} T-

[lEA_aV x +( sin2p)(Sx)] {Oc"}{oP¢'} T +

(cos2/_)(_){_'}{%"}w)dx
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• NL][K22

K NL][ 23

_e }T((Vx){@c'}{@ c' +[EAB2sinfl(V,xSin fl-wxcosfl)+

(E---Tn_cos p + EI----_/jsin fl_] {_c"}{_c"} T +

I
[ - -_-EA_aW,x + ( sin fl cos fl) (Sx)] {@c"} {@c'} T +

( sin fl cos fl)(Sx) {_c'} {@c"}T) dx

= f? [(M_,) sinfl +{Mz) cosfl] {_c"}{q)q} T dx

fO_ ([(M_) cos # - (Mz) #] {_q}{_c"} T +
sin

[(G J)( cos #)( - V x sin # + W x cos fl) + EAB24_ ]

{q,q'} {_c"} T + (/EAB0v x) {_q'} {q>c'}T) dx

• NL] = tie _,
[tq32 J0 ([(My) sin# +(Mz) cosfl] {_q}{_c"} T +

[(G J)( sin fl)( - V,x sin fl + W,x cos fl) - EABI_b ]

{q)q'} {q)c"} T + (2EAB0W,x) {q)q'}(q)c'}T) dx

[K NL] = IO e33 [IEAB4q_,x + (Tx)] {q)q'} {q)q'}T dx

[K NL]
f? ([(EAB0) ( cos #) ( - V,x sin fl + W,x cos fl) + EA(a_b ]

{q_q'} {q_c"} T + (2EAV,x) {q_q'}{q_c'}T) dx
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_0 _e= (f(EAB0) ( sin fl) ( - V,x sin fl + W,x cos fl) - EAr/_]

{_q'} {@c"} T + (_-EAw,x) {@q'}{_)c'}T) dx

= f0_(_-EAc06x){*q'}{_q'} T dx

[KNL l51 _o ((TEAD0v,x) (_q'}(_c'} T + (EAD2_b) {(I)q'} {@c"} T +

[_(EAD o' + EAB5)V,_]{_q} {%,}t +

[(EAB 14) ( COS fl) ( -- V,x sin fl + w,x cos fl) +

(EAD 2' + EABT)$] {@q}{Oc"}T)dx

L] =

fo ((TEADow x) {q)q'}{q_c'}T--(EADI¢){q_q'} {q_c"} T +

[-_-(EAD0' + EABs)w,x] {t_q}{*c'}T +

I'(EAB 14)( sin #) ( - V,x sin fl + W x cos #) -

(EAD l' + EAB6_,] {Oq}{@c"}T)dx

le l

;0 ((TEAD4_),x){Oq'} {Oq'} T + [_-(EAD 4' + EABg) _,x]

(Oq}(Oq'lT)ax
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f0 _¢
[K_I L] = ([(EAB12)( cos fl)( - V,x sin fl + W,x cos fl)+

1
GnA_b_b] {@q} {Oc"} T + (_-EAr/aV,x){_q'}{Oc'} T +

[-_G.A + t0EA(a ) V x] {@q} {Oc'} T) dx

"XL[K62 ] = ([(EABl2)(sinfl)(- V,xSinfl + W,xCOSfl)-

1
_t/At/b_b] {_q}{q)c,,}r + (. _EAr/aW x) {q_q,}{q)c,}T +

['_"(Gt/A + z0EA(a) W,x] {Oq} {q_c'} T) dx

. NL-, fo ei_63 j = (21__.Gt/jqb,x){q_q}{q)q,}Tdx

[KNL] f_= ([(EABI0) ( cos/_)( - V xSin p + w x cos//) +

GcA_¢_] {q_q}{q_c"} T + (IEA_'aV,x) {q_q'} {q_c'} T +

[-_-(G/_A - ¢0EAr/a ) V,x] {q_q} {Oc'} T) dx

-. NL-,
1_72 J

• NL][r_:13

0e ([(EAB 10) ( sin/_)( - V,x sin/? + W,x cos B) -

G_Ar/c_] {q_q} {Oc"} T + (IEA_aW,x) {q_q'}{q_¢'} T +

[-_-(G_A- ,0EAtIa)W x] {Oq}{Oc'}T)dx

ff01e(-_'-GcJ_b,x) {Oq} {_q'} T dx
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All the other sub-matrices in [KNL'I are equal to zero.

B.2 FINITE ELEMENT MATRICES ASSOCIATED WITH THE
KINETIC ENERGY VARIATION

The finite element matrices which are associated with the kinetic energy

variation include the mass matrix, [M] , the Coriolis damping matrix, [MCl ,

the centrifugal stiffening matrix, [K cr] , and the centrifugal force vector,

{F cF} . In order to express these finite element matrices in terms of their

sub-matrices, the following constants are defined:

mr/m = mr/m cos p - m_ m sin/1

m_ m = mr/m sin p + m_ m cos p

m

lm_£ = lm_£ cos p - Im_ sin p

m

Im_ = Imn£ sin p + lm_n cos p

Tm££ = Im££ cos ,8 - lm_£ sin p

Im_n = lm_ sin fl + Im_ cos p

mD 1 =mD Icos_-mD 2sinp

m D 2 = m D l sin/_ + m D 2 cos

hfl x = (f_yZ+ flzZ)hx _ (tarOy _ Oz)hy _ (f_x.Oz + _y)h z _ f_yVb z + flzVby _ Vbx

hfly (f12+ fZz)hy (nrQy + Dz)hx_ (flrQz _ Dx)hz _ fZzVbx+ fZxVbz _ Vby
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h_z = (Dx2 + f_)hz - (f_x_z - Dy)hx - (_yOz + _x)hy - _xVby + DyVbx - _:bz

The mass matrix, [M], is defined by the following non-zero sub-matrices:

[MII] = m {_c}{*c} Tdx

_0 le
[MI3] = - m_ m {CDc}{q)q} Tdx

[Ml4] = - mr/m {tDc'}{tDq}T dx

f0 le
[MI5 ] = - mD 1 {_c'}{_q}Tdx

[MI6 ] = -- Im/x {_c'}{_q}Tdx

[M 17] = f_ -- i--mv/_{q_c'}{@q} T dx

[M22] fo_= m {tDc}{Oc}T dx

[M23] f0_= mr/m {tDc}{_q}T dx

[M24] = - m_"m {_c'}{@q} T dx

[M25] = f_ -- mD2 {q)c'}{q)q}T dx
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[M26 ] = f_e _ l-raft/ {_c'}{_q} Tdx

[M27] f0 le= -- lm-'--_;_{_c'}{_q} T dx

[M31] = [MI3] T

[M32] = [M23] T

f0 le[M33] = (Ira.. + Im¢¢) {_q}{_q}Tdx

[M41] = [M14] T

[M42] = [M24] T

[M44] f01_= m {_q} {_q}T dx

[M45] = f0 It mD 0 {q_q}{q_q}Tdx

[M46] f0 le= mr/m {q_q} {q:}q}T dx

[M47] = f0 le m_'m {_q}{Oq} Tdx

[M5I] = [MI5] T

[M52] = [M25] T
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[M54] = [M45] T

[M55 ] -- roD3 {@q}{_q}Tdx

[M_] = ./ok'mDt {_q}{Oq}Tdx

[M57] = ;o'_'mD2 {Oq}{tt)q} T dx

[M61 ] = [Mid T

[M62] = [M26] T

[M64] = [M46] T

[M65] = [M56_] T

[M66] = fo I* lm_. {@q} {@q}Td x

[M67] = f0 le lm_. {_q} {Oq} T dx

[M71 ] -- [MI7] T

[M72] = [M27] T

[M74 ] - [M47] T

[M75] = [M57] T
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I'M76 ] = [-M67 IT

[M77 ] = lm,m {@q}{_q}Tdx

All the other sub-matrices in l-M] are equal to zero.

The Coriolis damping matrix, [M c] , is defined by the following non-zero

sub-matrices:

[MICI] = f_ 2-Ozm---_m({q_'}{q)c}T- {q)c}{q)c'}T)dx

[MC2] = ff - 2(f_xm {@c}{q_c} T +f_y_ {_¢'}{q_c} T

f_z m_m {q_c} {_c'} T )dx

+

[MC3] = f_ - 2.Clx_-'_m {q:)c}{q)q} T dx

EMC4] -- j'0_ m z m {o c} {q)q}T dx

[MICs] = f0_ 2._z mD ° {q)c}{q)q}T dx

= 2flz m_m {q_c} {_q} T dx

[MC7] = f0_ 2.qz m( m {q:)c}{q)q} T dx
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eu_ll= - euc_lT

= _ 2_)y m_m({@c'}{_c} T - {@c}{@¢'}T)dx

= _ 2fix mCm {*c}{@q}l'dx

[MC4] = fo_ - 2.fly m {@¢} {¢i_q}T dx

= - 2ny mDo {.c} {_q}t dx

= - 2ny m_m {*_} {.q}t dx

EMCT]= fo_ - mym_ m {O¢}{Oq} Tdx

e_c_l= - emc,jT

euhl _'= - 2 (ny m_m+ nz m(m) {*q}{*q} T dx

rugl _"= - 2 (_y mD 1 + flz mD2) {@q} {@q}T dx

[MC6] = fo* - 2(f_y Im--_ + f_z Im---_.){q_q}{q_q}T dx
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= -- 2 (_y l-mr/_ + _z lmrm) {_q} {_q}T dx

[MCI] = - [MIC4] T

[MC2]= - [MC4]T

[-MCJ] = -[MC] T

= rMC ]T[MTI] - t 15

= rMC ]T[M5C2] - t 25

[M c] = -tMCs] T

eMC,] = -[MIC_ T

EMc2].= -[Mc_ T

[MS] = - [MC] T

eMC,] = -[MCT] T

eMC2]: -tMC7] T

[MC3] = -eMc7] T

All the other sub-matrices in [M c] are equal to zero.

The centrifugal stiffening matrix, [K cF] , is defined by the following sub-

matrices:
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(n_y _ n_) _ {%,} {%}t ] dx

f0"((ny.Oz - _x)m {Oc}{o_}t- (nrOz + {O_'}{Oc}T-ny) _--_

(_x..Oy+ _z) m(m{_¢}{_¢'}T + [h-_y- (_x.Oy+ _z)X] m(mcos3fl

{%'}{%'}T) dx

['K iC3F ]
fol" ([(f_y.Qz - nx) _-'_m + (f_x2 + nz2) mCm] {q_c} {q_q}T-

[hf_----x+ (n_ + nz2)x] m_"m {.¢,} {,q}T ) dx

= E(fZrOy+ _z) m {@¢}{q_q}T + (f_2 + f2z2)m--_m{q_c,}{q)q}t] dx

= [(_y + _}mO0{_}{@q} t + (n_ + n_)_-_l{_'} {_q}t]dx

[KC6F] = fo_ E(n_y + _z)mr/m{q_c} {q_q}T + (f_y2 -t- nzX)i-@¢{q_c'}{q_q}T]dx

[KICF] = fo1' {(f_x_y + _z)m_m{q_¢}{q_q} T + (ny2 + f_z2)im,_¢iq_c'}{q_q}T]dx

[KCIF] = f0_ ((f_y-Oz+ hx) m {%}{oJT-(n_n,_ - ny)m-qgm{%}{%,}T_

(f_x.Qy- flz) m_m{q_c'}{q_c}T+ [hGy-(f_x.Oy + _z)X] m_"mcos3fl

{O_'}{%'}T) dx
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fo_ D_) {@c}{_c}T (_x-Qz-_y)m_m {@c}{_c'}T[-(_+ m -

(_z + _y) m_m{%,}{%}T ]dx

[K2C3F] f_"<- + n0 + (n_+ n_)m_m]{%1 T +[(n:% m_m {_q}

[hf2x + (n 2 + nz2)X] _ {CDc'}{_q} T ) dx

CF _[K24] = [(f2x.(2z - _y)m {_c}{$q}t + (f12+ f12)_-_m{Oc,}{CDq}T]dx

= [(f2x.Q z - _y)mDo{mc} {mq} T + (f22 + f22)mD2{m='} {mq}T]dx

[KCF] = ._0le [(f2x.Qz _ _y)m_m{@c}{CDq}T + (f_2 + f_2)_{@c,}{_q}T]d x

[K2C7F] = _'0le [(_xg_ z _ _y)m_m{CDc}{CDq}T + (f_2 + f22)_{{Dc,} {{Dq}T]dx

[KCl F]
_01e<[(f_y_z + _x)m--_m + (fZx2 + f22)m_m] (_q}{@c} T-

[hf2---_+ (f22 + f_2)x] m_ m {_q}{_c'} T ) dx

eKcF]
_e( --_x) + (f22x+ n_) {_c}T +[(_z m_m _-_m]{(Dq}

[hf_ x + (f25 + f_z2)x] _ {@q} {@c'} T ) dx
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CF
[K33 ] i _ {(_z 2 _ _) [(ira< c _ [mn_)( cos2/_ - sin2/_)- 41mn_ sin p cos #]

- 4f_y.Q z [(Im{£ - lmnn) sin/_ cos # + lm_( cos2# - sin2/_) ]}

{¢_q} {¢_q}T dx

[K CF] _- Iie [(_x_z- _y)m--_m- (_x_y -F [_z) m_'m] {_q}{_q}T dx

K cF] = Ii _
35 [(f2x'Oz- f_y)mDl - (nxny + hz) mD2] {@q}{q)q}T dx

CF Ii e _ _ (_x_y + _z)_-_¢_] {_q}{_q}T dx[K36 ] = [(f_xf_z -- f2y) !m¢¢

= [(f_x.Oz - _y) lm_¢ - (_x.Qy h- hz) l-m_/ff] {_q} {_q}T dx

[K4cF] = Io_ [(_xf_y _ f2z)m {_q}{_c} T q- (_ Jr _2)m---_m {_q}{_c'} T] dx

[K4C2F] _- .[i e [(_x.Qz q- _y)m {Oq} {Oc} T -F (_2 -I- _z2) m_m {Oq}{Oc'} T] dx

[KC3F] = _i_ E(_x'Qz + _y)__mm _ (_x_y - hz)_-_m ] {_q}{_q}T dx

[K c_:] = _i _ -(n_ + f_)m {_q}{{Dq}T dx

CF fi" (f_y2 + f2z2) mDo {_q}{_q}T dx[K45 ] ----- --
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[K4CF] = f_e _(f_ + D2)mr/m {_q}{q_q}T dx

[KC¢ ] = f_e _(f_2 + f_2) m_m {q_q}{q_q}T dx

= [(f2xg_y - flz)m Do{_q} {_c} T + (n_ + Ca_)_Di {<Vq}{_¢'}T3dx

[K CF] = _0_ [(f2xflz + f_y)mDo{_q}{_c} T + (ny 2 + f2z2)mD2{_q}{_¢'}T]dx

[KCf] f0_= [(f2x..Q z + fly)mDl- ((2x..Qy - flz) mD2 ] {q_q} {q_q}T dx

[ KCF] = [KCF]T45

[vCFl_..53J' = f0_ --(f_ + f_z2) mD3 {q_q}{q_q} Tdx

[KCF] = fd" -(f2y2 + D2)mDl {Oq}{_q}Tdx

[KCf] = fro_ -(n_ + fl2)mD2 {_q}{_q}T dx

[KCl F] fO"= [(n_y- hz_m_m{_r}{_Jt + (n_+ n_F_¢¢{_q}{_'}T] dx

= E(n_n_+ hy)m_m{_q}{_¢}T+ (n_+ n2)F_{_q} {_¢'}T]ax
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[vCF1 f0e,-63 • = [(fl_flz÷ ay) T_¢_- (nxfiy- a_)r_] {_,q}{_,q}Tdx

= T

[KcF] = [KCF]Ts6

[K_F] = IO" -- (f_ ÷ _z2) Im¢¢ {q)q}{q)q}T dx

[KCF] = I? -- (f_2 + _z2) Im.¢ {q)q}{q)q}T dx

[KCI F] = f2, [(f_x..Qy _ .0.z)m_. m{q)q} {oc}T + (f_y2 + nz2)r_-{Oq} {Oc, }T]d x

-- [(n,eqz + _y)m_'m{Oq} {q)c} T + (.Q2 + f_z2)i_ {Oq} {O¢,}T]dx

[K7cF] = fo" [(f_xf_z + _y) i_,K - (f_x-Oy - flz)]-_,m] {Oq}{Oq }T dx

[KCI] = [KC¢] T

[KC5 F] = [KCF]T57

[K7C7F] = _0" _(gly2 + nz2) im,m {q)q}{q)q}T dx

The centrifugal force vector, {F cv} , is defined by the following sub-vectors:
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{ FIcF} = J0 _ ({ - [h[)y - (flx_y + _z) x] m - (f_2x + f_z2) mr/m +

(f_y-Qz - _x) m_m}{_c} + {Eh_x + (_y2 + _z2)X -] mr/m -

(flxfly - _z) (lm£t; c°s2p + lm_n sin2p - 2Imn_ sin p cos/_) -

(flxfl z + [)y) E(Im££ - imp,t) sin/1 cos/l + Ira,g( cos2p - sin2p) ]}

{%')> dx

I0"({ - - - fly) x] m - (D 2 + D 2) _ +Ehf_,_ (f_taz

(t')y.O z + _x) m--ff"_m}{¢¢} + {Eh[) x + (t'ly2 + flz2) x] m_ m -

(ftx._y - t_ z) E(Im££ - lm_) sin p cos 1_+ Im_( cos2p - sin2/1) ] -

(flx.O z + _y)(im_ cos2_ + Im££ sin2p + 21mn£ sin ,8 cos p) }

{%'}) dx

cF _{F 3 } = { - ['h'-_z - (flx.O z - _y)x]m--'_m + Ehf_y - (f2x.Qy + _z)X]m{m +

(lm_ + Im££)_ x-

(fl 2 - fl 2) E(lm£_ - lm_) sin 1_cos 1_ + Imrl_( cos2_ - sin2/_) "l +

_y.O z E(Im£_ - Im_)( cos2_ - sin2_) - 41m_ sin ]_ cos 1_]} {_q} dx

{ FcF} = Io 1" {- [h-_x + (_ + _z_) x] m + (_y

(ta_,_ + t_)m_m}{%} dx

- h,) _ +
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{F cF} = fo _ {- Ehf_ x +(f_ + f_2)x] reDo + (t)xf_y-_z)mD1 +

(f)x_z + _y) mD2}{_q} dx

{FCF} = J0" { - [hFIx + (f*_ + f_z2) x] mr/m + (t)x.Qy - _z) i-m/:¢ +

(n,n,_ + _y)F_c.}{_q} dx

{FCF} .["= {- [h-n-x_+ (ny2+ n_)x] mere+ (n_ny- t_z)r_¢ +

(_'_x.Qz + [:2y)Ymtp/} {(llq} dx

B.3 FINITE ELEMENT MATRICES ASSOCIATED WITH THE

VIRTUAL WORK OF THE EXTERNAL LOADS

The finite element matrices which are associated with the virtual work of

the external loads include the applied moment stiffening matrix, IK _] , and the

applied force vector, {F t} .

The applied moment stiffening matrix, [Krl , has the following non-zero

sub-matrices:

= qx {_c'} {Oc'} T dx

[KII "] J'O'
= -q_ {%'}{¢,c'}Tdx

[KII] J'O"= -- qy {(1)q} {(:l)c'} T dx
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[K_2] = f0 I' - qz {_q}{_c'} Tdx

foz°= % {%,}{%,}Tdx

[K4z2]= foz°- qy {%,}{%,}Tdx

All the other sub-matrices in [KJj are equal to zero.

The non-zero sub-vectors associated with the applied force vector, {Fa}
are: ,

{FI} = ,f01"( - Py {_c} - qz {_c'})dx

{F_} -- f01e(_ Pz {_¢} + qy {_c'})dx

(F_} = fo_' _ q, (%} dx

{F41} "- fo le -Px{_q}dx

All the other sub-vectors in {F I} are equal to zero.
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Appendix C

LOCAL-TO-GLOBAL TRANSFORMATION MATRICES

C.I TRANSFORMATION FOR ROTATIONAL DEGREES OF

FREEDOM

Assume that each transformation matrix is written in the form

[T] =
Tll TÂ2 Tl3 1
T21 T22 T23

T31 T32 T33

The nonzero elements of the matrix [T K] are:

T h = cos As sin AawG - sin As sin2Aa vG

TKI = cos A s sin2Aav,G x

T2K2 = - sin A s sin Aa@ G

T_ = sin2As cos AaW,G

T K = cos Assin Aa( sin A s cos Aa@ G - cos As wG)

The nonzero elements of the matrix [T c] are:

G As sin2AavGTCI = cos A s sin AaW,x - sin

TC2 = - cos A s sin Aa_G
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TC3 = - sin A s sin2Aa¢ O

TCi = cos A s sin2AavG + sin A s sin AaW, G

TC2 = - sin A s sin Aaqb G

TC3 = cos A s sin2Aat# G

T3CI = sin2As cos AawGx + cos A s sin A s cos A a sin AaV G

TC2 = - sin2As cos Aaqb G + cos2Assin Aav, G

TC3 = cos A s sin Aa( sin A s cos AaCG _ cos AsWGx)

The nonzero elements of the matrix [T M] are:

T M = cos As sin Aa*, G - sin A s sin2Aai'_

T M = - cos A s sin Aa_O

T M = - sin A s sin2Aa_ G

.G
T M = cos A s sin2Aag,G x + sin A s sin AaWx

T M = -sinA s sinAa_O

T M = cos A s sin2Aa_G

.G
T M = sin2As cos Aa_, 'G + cos A s sin A s cos A a sin Aav,x
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.G
TM = - sin2As cos Aad G + cos2As sin AaV,x

T M = cos Assin Aa( sin A s cos Aa_ G- cos As_iC,Ox)

C.2 TRANSFORMATION FOR THE VECTOR OF NODAL DEGREES

OF FREEDOM

The transformation for the vector of nodal degrees of freedom are 23 by 23

matrices where a typical element at the i-th row and j-th column of a trans-

formation matrix [A] is denoted by A(i, j).

The nonzero elements of the linear transformation matrix [A t ]̀ are:

AL(I,I) = cos A s

AL(I, 5) = sin Assin A a

AL(I, 12) = sin AsCOSA a

AL(2, 2) = cos A a

AL(2,9) = -sinA a

AL(3, 3) = cos A s

AL(3, 7) = sin A s sin A a

AL(3, 14) = sin A s cos A a

AL(4,4) = cosA a
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AL(4,11) = -sinA a

AL(5,5) = cosA a

AL(5, 12) = - sin A a

AL(6, 2) = -- sin A s sin A a

AL(6, 6) = COS A s

AL(6, 9) = - sin A s cos A a

AL(7, 7) = cos A a

AL(7, 14) = -- sin A a

AL(8, 4) --- -- sin As sin A a

AL(8, 1 I) = -- sin A s cos A a

AL(9, 2) = cos A s sin A a

AL(9, 6) = sin A s

AL(9, 9) = cos A s cos A a

!
AL(I 0, 2) = .-_ cos Assin A a

AL(10, 4) = 2 cos Assin Aa
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AL(10, 6) -- I--sin As
2

I sin A s^L(_0,S)= 5-

AL(10, 10) = cosAsc°sAa

AL(I 1,4) = cos A s sin A a

AL(I 1,8) -" sin A s

AL(II, 11) = cosAsc°sAa

AL(I 2, I) -- - sin A s

AL(12, 5) -'- cosAssin Aa

AL(12, 12) = cosAsc°sAa

! sin A sAk_3,1)- 2

I sin A s
AL(13' 3) - 2

I
AL(I 3, 5) = -_" cosAs sin Aa

I cos A s sin A a
AL(13, 7)- "_"

AL(13, 13) --- cosAsc°sAa
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AL(14, 3) = - sin A s

AL(I 4, 7) = cos A s sin A a

AL(14, 14) = cos AsCOS Aa

AL(! 5, 15) = cos A s cos A a

AL(16, 16) = cos Ascos Aa

AL(17, 17) = cos Ascos Aa

AL(18, 18) - cos A a

AL(19, 19) - cos A a

AL(20, 20) = cos A a

AL(21, 18) "" - sin Assin Aa

AL(21,21) -- cos A s

AL(22, 19) -" -- sin A s sin A a

AL(22, 22) = cos A s

AL(23, 20) = - sin A s sin A a

AL(23, 23) = cos A s

The nonzero elements of the nonlinear transformation matrix [A K] are:
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AK(2, 2) = cosA ssinAscosAasinAa$J - cos2As sin AaWJx

A K(2, 9) = sin2A s cos AaWJ,x

AK(6, 6) = - sin A s sin Aa_ J

AK(6, 9) = - cos A s sin2Aa_x

AK(9, 9) = cos Assin Aaw'l, x - sin As sin2Aa_x

The nonzero elements of the nonlinear transformation matrix [A c] are:

Ac(2, 2) = cos A s sin A s cos A a sin Aa_b J - cos2As sin AaWJx

AC(2, 6) = sin2A s cos Aaff J - cos2As sin na_ x

AC(2, 9) = sin2As cos AawJ, x + cos A s sin A s cos A a sin Aa_ x

AC(6, 2) = - cos A s sin2Aa_ J

AC(6, 6) = - sin A s sin Aa# J

AC(6, 9) = - cos As sin2Aa_x - sin Assin AawJ x

AC(9, 2) = - sin A s sin2Aa_ J

AC(9, 6) = cos A s sin Aa_ J

AC(9, 9) = cos Assin AawJ x- sin As sin2Aa_x

The nonzero elements of the nonlinear transformation matrix [A M] are:
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AM(2, 2) = cos A s sin A s cos A a sin Aa_ J - cos2As sin AawJx

AM(2, 6) = sin2As cos Aa_ J - cos2As sin AagJx

AM(2, 9) = sin2As cos AaVCJx + cosAssin Asco s Aasi n Aaqx

AM(6, 2) = - cos A s sin2Aa@ J

AM(6, 6) = - sin A s sin Aa_ J

AM(6, 9) = - cos As sin2Aaqx- sin Assin Aaq x

AM(9, 2) = -- sin A s sin2Aa$ J

AM(9, 6) = cos A s sin Aaq_ J

AM(9, 9) = cos Assin Aaq x- sin As sinlAaqx

The superscript J in the expressions given above denotes the nodal value at the

junction of the straight portion and the swept tip.
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