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TECHNICAL PAPER

DEVELOPMENTAL PROBLEMS AND THEIR SOLUTION FOR THE

SPACE SHUTTLE MAIN ENGINE ALTERNATE LIQUID OXYGEN
HIGH-PRESSURE TURBOPUMP: ANOMALY OR FAILURE

INVESTIGATION THE KEY

I. INTRODUCTION

The space shuttle main engine (SSME) alternate turbopump developmental (ATD) program,

particularly the high-pressure oxidizer pump, has experienced problems that were program threaten-
ing. The problem solutions, in a timely manner, were key to program continuation and success. This

was accomplished using a concurrent engineering-multidiscipline team with members from

NASA/MSFC, Pratt & Whitney, Rocketdyne, and special consultants as needed. This paper serves

two purposes: (1) to demonstrate the formal failure investigation and solution approach and (2) to

provide documentation of the basic problems and their solutions.

The key to correcting deficiencies is having a sound supporting technology program and the

use of a concurrent Government-contractor engineering team coupled with the formal fault tree

approach. It is the nature of engineers to want to make intuitive jumps and to check out a proposed

solution without using a formal guided approach. As powerful as intuition is, this approach generally

results in additional problems, costly additional changes, and operational constraints. This is
because high-performance systems, such as the oxidizer turbopump, are finely tuned systems

balanced between conflicting or competing parameters such as cost, weight, performance, and relia-

bility. The authors' experience is replete with examples of synergistic effects resulting from small

changes which lead to other problems or performance loss. In order to deal with this synergism,

sensitivity analysis has to be accomplished in order to first understand the cause and second to

arrive at a problem fix. This task becomes a part of the formal failure investigation.

A fault tree analysis method is a good choice to establish the problem cause or causes and to

define a properly balanced solution. This formalized approach consists of a set of basic steps that

have known characteristics, t The steps are:

(1) Define the basic characteristics of the system

(2) Derive a cause and effect by failure modes and effects analysis (FMEA) or fault tree
(can use the fishbone)

(3) Develop a logic diagram to resolve the fault tree (rule in or out potential causes)

(4) Conduct analyses and tests to resolve the fault tree (formalized actions)

(5) Determine the cause or causes

(6) Recommend potential fixes.



The characteristicsof this processare:

(1) Formal fault treeclosurematrix

(2) Develop supportingdatafiles

(3) Date all papers(evolutionarychangehistory)

(4) No "eureka's"

(5) Formal, dated,personalizedactionitems

(6) Lessonslearnedconclusions.

Two problemsexperiencedby theATD liquid oxygen(lox) pump arediscussedin this paper:
(1) high-synchronousvibration and (2) bearingdegradationand short bearinglife. Theseproblems
areof special interest becausethey illustrate the fundamentalaspectsof balancingcomplex, inter-
active, nonlinearperformanceparameters(technicalissues)during designand development,requir-
ing a concurrentengineeringteamusingtheformalizedfault treeapproach.

The technical aspectsof theseinteractingperformanceparameters,as well as the fault tree
approach,arevery instructive as lessonslearnedfor futureprojects.Someof the interestingparame-
ters are: rotordynamics (responseand stability), flow efficiency, induced environments (thermal,
vibration, flow), bearing characteristics(cooling, lubrication, materials,etc.), and geometriccharac-
teristics.Thesecanbe summarizedunder five major headings:

( 1) Hydrodynamics:performanceandinducedenvironments

(2) Rotordynamics:balance,vibration, stability

(3) Bearings:characteristicsandlife

(4) Housing and supportstructure(stiffnessand flow geometrics)

(5) Damping seals:characteristicsandperformance.

This paperwill discussthe two developmentproblems,(1) vibration and (2) bearing life--
how they were approached, the technical issues,and the solutions implemented. Both of the
problems are closely related and are nonlinear in nature, with many strong interactions.
Understanding the associatedsensitivities and the resulting trades was essential to solving the
problemswithout introducing other problems.Taguchi designof experimentswasusedto augment
and guide diagnostic testing. The underlying principle is: high-performance machines are a
compromise,a balancingact; hence,solving one problem,as a minimum, reducesthe margins in
anotherarea--many times at the expenseof performance,cost,and reliability.
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II. GENERAL

Turbopumps (oxidizer and fuel) are used to increase pressures to the levels required in the

combustion chambers of high specific impulse (ISP) liquid rocket engines. The SSME uses a two-stage
pump system and a dual combustion cycle to achieve very higu ISP (453 s). The high-pressure lox

pump, the subject of this paper, has a three-stage turbine driven by hydrogen/oxygen combustion

products that powers two liquid oxygen pumps on a common shaft. The larger of the two pumps, a
double-suction pump with integral inducers, supplies oxygen at 4,000 lb/in 2 to the main combustion

chamber. The smaller pump supplies lox at 8,000 lb/in 2 for combustors driving the engine turbines. A
cross-section of the turbopump is shown in figure 1.

PEBB Deadband
Main Pump

Turbine End Roller
and Ball Bearing

PEBB Preload

Preprimer
Pump

Inducer
Intepropellant
Seal Package

3 Stage Turbine

Figure 1. ATD high-pressure oxidizer turbopump (HPOTP).

The rotor is supported by a roller bearing on the turbine end, and a ball bearing and damping seal

on the pump end. Axial thrust is controlled during operation by a double-acting balance piston on the

shrouds of the main pump impeller. Transient axial thrust is controlled by the two ball bearings. The ball

bearings are preloaded with a spring axially to ensure proper ball race contact. In order to guarantee
axial movement capability, the ball bearings are built with a clearance between the outer race and

bearing support structure. The purpose of the damping seal is to provide damping for rotordynamic
modes, ensuring low vibration and stability. Designing the damping seal to provide fluid stiffness results

in creating a parallel support system on the pump end. This parallel load path produces interactions and
system trades that must be tuned and balanced.

The pump operates over a speed range of 0 to 24,500 r/min. Temperatures in the turbine are

approximately 1,500 °R with an inlet pressure of 4,800 lb/in 2. A purge seal system is located between

the pumps and turbine to prevent hydrogen from mixing with oxygen during operation.



The above characteristics are obtained in a system of minimum size and weight. The pump

has high-energy density and operates at a high speed. The conflicting requirements between the

performance requirements and minimum weight lead to a finely tuned system. The result is a fine

balance between performance (ISP, flow, pressure), stability, weight, and lifetime, as well as the
unwanted rogue forces that affect its own system and the rest of the engine system.

This brings into play several specialized disciplines such as structural analysis, structural

dynamics, rotordynamics, thermal, fluid flow, bearings, seals, materials, and performance in a highly

interactive and sensitive manner. Generally, design analysis cannot fully replicate this phenomenon
because analysis is just models built around approximate assumptions and incomplete data. An

example is shown in figure 2. The output of the models is the turbomachinery characteristics that can

be understood by varying the various design parameters. In the final analysis, the only complete
characterization is the hot firing of the turbomachinery system. This means that specialized tests

(structure, flow, etc.), using special instrumentation, are run to quantify parameters for the models

and to certify the system. The results of the analysis are then correlated with the hot-fire data

(obtained using special instrumented development hardware) to baseline the models for design use.
In addition, hardware tear down and inspection provide further correlation and insight (fig. 3).

Through this process of dispersed parameter analysis supported by specialized tests to define the

parameters correlated to development hot-fire data (dispersed to understand margins) and hot-fire

hardware inspections, a balanced design is accomplished. Similar design, analysis, and correlation

cycles are followed for all of the key aspects of the turbomachine. The important fact to remember is

that the pump operates as a system, not a set of independent disciplines, in a highly interactive
manner.

Damping Seal [* Damping Seal I
• Stiffness [ _ ]

• Damping ] * Density |
• temperature j

_._ _l Bearing _ __.-,,.,_ i

[ I I_ • Vibration _ _ I

_ _ Speed _
_ Pressure _ ]

_ • Temperature _ I

_ •Deflect,on "_'

Bearing Deadband] *
"..._-7777""- 1 * Nonlinear interaction between deadband I

• 5tmness ] and damping seal performance, also other ]

/ factors such as 3P

Side Forces

• Deflecting

Other Forces

• Pump Impeller
• Pump Inducer

Seal Forces

• Damping
• Stiffness

Alford Forces

Balance Piston

• Stiffness

• Damping
• Axial Position

Figure 2. Turbomachinery rotordynamics.
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Rotordynamic Model

• Sensitivity
• Pre and Post Test

Correlation

Hot-Fire Data

• Diagnostic
• Statistical

Correlation

Post Hardware Characteristic

• Build Condition

• Wear Patterns
• Thermal Discoloration

• Dimensional Changes

Structural Analysis
and Verification

• Pressure

• Thermal

• Dynamic
- 2-D

-3-D

- Test

Environments

• Pressure

• Flow

• Vibration

Correlation Cause v Fix

Figure 3. Rotordynamic correlation.

During development, when problems occur due to this fine tuning of design parameters, a

formal procedure must be followed to ensure proper understanding of the system and the correct

solutions. This approach is the fault tree with supporting logic diagrams, analyses, and tests. The

next section discusses this approach.

III. FAULT TREE/LOGIC DIAGRAM/ACTIONS/GENERAL

VIBRATION AND BEARING TEAMING

Determining the cause and the solution to developmental problems experienced in space

programs is most efficiently accomplished using a concurrent engineering-multidiscipline team

employing fault trees with support logic diagrams and formal action items. The concurrent

engineering-multidiscipline team is necessary to ensure communications and understanding.

The fault tree approach focuses the activity by requiring the use of supporting data to formally

close all branches not contributing to the problem. These data are acquired by analyses, special

tests, and system tests. The point to remember is that all analyses and special tests are merely

models of the real thing and are based on many assumptions. The only true data are obtained from

instrumented system tests and inspection and evaluation of the hardware after these tests. In the

final analysis, the hardware has the answer. The problem is our ability to read it. One usually reads
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it basedon the theoriesone understands,which emphasizesthe needto have all plausible theories
investigatedand understood.Consultantscanhelpgreatly in this area.

The fault tree approach(fishbonediagramscan beusedin placeof the fault tree) requiresa
thorough understandingof the system.Basedon this understanding,all the potential causesand
contributing parametersare identified. Using thesecauses,a fault tree is laid out that identifies the
pathof the potential causes.Figure 4 showstheelementsof a fault tree.Figure 5 is anexampleof a
fault tree developed for a dust explosion in a sugar mill. Figure 6 is an example of a fishbone diagram

for cause and effect for categorizing mistakes. How and which of these to use depends on the prob-

lem and the team. Many times the symbols described can be eliminated resulting in a straight-line

cause tree, simplifying the layout of work.

LOGIC GATES

Ill
AND gate: failure will occur if all inputs fail

(parallel reliability)
OR gate: failure will occur if any input fails

(series reliability)

EVENT GATES

A failure which results from A basic failure which is

combined effects of other statistically dependent
failures on other events, but not

developed downward

A failure which is

statistically dependent on
other events, but is not

developed downward

A failure which is
statistically dependent
on other events and is

important enough to
justify separate FTA

Figure 4. Fault tree analysis (FTA) symbols.

This straight-line approach, in conjunction with logic flow diagrams, was used by both the

vibration and bearing teams. Figure 7 is the fault tree for the vibration team, and figure 8 is the fault

tree for the bearing life team. The teams' compositions included NASA, Pratt & Whitney,

Rocketdyne, and several consultants, in all disciplines including structures, flow, thermal, manufac-
turing, etc. In all cases, a formal action item list and fault tree closure matrix were used in

conjunction with logic networks. Design of experiments was used to guide diagnostic testing.

The teams functioned in two distinct ways. First, the team members spent several days

together at the Pratt & Whitney plant to lay out the fault tree and start the process. The teams
reconvened in face-to-face meetings at critical path decision points. Second, a biweekly

teleconference was held with all members participating to discuss action item results and to fine tune
the plan.
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This teleconferencing approach was chosen so that the engineers could be at their home sta-

tion and have access to computer programs and test facilities. This dual approach of periodic face-to-

face meetings supplemented with teleconferences was very successful; particularly with the effi-

ciency of electronic data transfer between individual computers and fax machines. This allowed com-
plete utilization of test and other facilities at MSFC and Pratt & Whitney and the variously honed

skills their respective engineers and managers provided.

The major problem that the teams had to deal with was declaring success or partial success
and thus discarding the formal process. It is mandatory that the process be completed, not accepting

any "eureka's." Engineers by nature like to use intuition and solve the problem without the burden

of the formal process. The history of aerospace problems dictates that the formal process as outlined

be used. Figure 9 shows this formal process by breaking out the fault tree by work breakdown struc-
ture (WBS) numbers with comments and actions. Figure 10 is a typical action item tracking matrix.

D SEAL ECC

LOSS _' 1.? 1.1 I_..I.1.1 _ TAP'EPC_LEAR
12.1 1.2.1.1,12.2

$. LQA.O

12 t.l.t 2.LI

FO(E.E O nESp.

LMPACI S

GEOM {OVAkILAI IOr_)
I _.1.1,1 2.L_

PnfSS

1211122

T[kIP

I 11.1.122,2

Team: Resonant Amplification
Loss of Damping

Issue: Housing Deflection
Degrades Damper Seal

Actions: - Pressure Diagnostic Testing
in LO2 & LN2

- Hardware Mods

• Increased Taper of Damper Seal

Cause

1.1

1.1.1

1,11.1

1.1.1.1.1

1,1.1.1.12

1.1.1.1.1.3

1.1.1.1.1,4

Figure 9. HPOTP synchronous vibration fault tree team.

Forced V1b

Ruid Excitation

Turbine

Hot Gas Path

Inlet

Blades & Vanes

TAD

Collector Manifold

Support

Thick & thin inlet struts are potential

sources for vortex shedding.

Refuting

04-1D ran to 111% with no sync step.

Turbine run _overy high power,

indicating no tu(oine fluid dnver.

Vortex shedding frequencies are

p robably high.

Action

Assess K]stler data in turnaround duct

(Action 1.5.1)

Calculate inlet vane vor_x shedding

fn_quenclas (Action 1.1.1.16)

Blades and vanes potantiat sources of

vortex shedding, unsteady separation.

Struts & split_r are potential sources

of vortex shedding or stall.

Same as above

;ame as above

Same as above

• Sameasabove
• TAD separation freq.

--/= 10-100 Hz

None EB collector does not include LOX

head exchanger.

High vibrations not seen on G-3 flange,

GFE vanes/hot gas manifold geometry
;ame as current flight hardware.

SAMPLE

Disposition

Not cradible

Not credible

(>1,000 Hz)

Not credible

Not credible

Not cradil_e

Figure 10. HPOTP sample fault tree.
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IV. HIGH-SYNCHRONOUS VIBRATION

Several instances of unacceptable synchronous vibrations have occurred during development

of the ATD oxidizer turbopump. Initially, there was a high vibration that built up over a short period

of time and caused premature shutdown of the turbopump. This problem was corrected by: (1) ensur-

ing that the bearing-support-housing-to-outer-race clearance remained slightly convergent; (2)

increasing the mean-bearing-outer-race-to-support-housing clearance; (3) ensuring that the

damping seal was convergent to maintain adequate stiffness and damping; and (4) reducing the

inducer hydrodynamic forcing function. These changes reduced vibrations to acceptable levels and

allowed long-duration development testing to proceed. While the synchronous level was reduced, a
distinct vibration sensitivity occurred in which multiple shifts in synchronous level persisted during

the turbopump operation. This sensitivity was of concern because of the possibility that shifts were

symptoms of a marginally acceptable vibration condition which would eventually precipitate high-

level vibrations in a turbopump. The problem was corrected by (1) tightening the turbine roller bear-

ing deadbands and retention, and (2) increasing the stiffness of the damping seal after extensive

data correlation showed these to be the most likely sources of the problem.

A. Dynamic Characteristics of Turbomachinery

The nature of turbomachinery is very complex with many interacting parameters. In general,

this set of interactions is very sensitive to small changes. This is especially true for the

rotordynamics discipline and particularly for high-performance systems such as the SSME high-

pressure pumps. Rotordynamics for these pumps is very complex and is highly nonlinear. There are

many forcing functions that are derived from the fluid forces of the liquid being pumped and the

turbine forces associated with the hot-gas power system. Forces also exist due to the structural

system such as unbalance, friction, and vibration. The turbomachinery system is composed of the

pressure vessel, rotor supports, shafts, impellers, turbine, and damping devices all of which combine
to make the rotordynamic system. Childs 2 and Rao 3 discuss these various aspects representing the

rotordynamics characteristics.

In general, all dynamic phenomena can be classified in three ways: (1) forced oscillations

where the frequency content of the natural or induced forces drive the dynamics of the system;

(2) instabilities where the forces increase with increasing amplitude of response, creating a negative

feedback (instability) further increasing the response; and (3) transient response. These three types
of responses can be illustrated with a single mass spring damper system. Also, this same simple

model can be used to help understand the oxidizer pump vibration problem by making several analo-

gies. It should be pointed out however, that the actual rotordynamic system's nonlinearities pre-

cludes a complete analogy using this simple system.

To derive this simple approach, the assumption has to be made that one can represent each of

the pump's dynamic system modes as uncoupled modes represented by individual uncoupled
second-order differential equations. These equations can be linear or nonlinear in nature. The result-

ing equations have the form

MJ_(t)+CX(t)+KX(t) = F(t) . (1)

This equation for the rotordynamic analogy is complex in that M includes everything that

makes up the effective system mass for a given mode, such as that part of the fluid mass which adds

13



to the structural mass.The dampingis the total systemdamping,both positive and negative, that
arisesfrom the structure, the flowing fluids, and flowing gases.In turbomachinery,some of the
dampingterms are negativeand canproduceinstabilities. Examplesare: turbine tip seal forcesand
shaft internal friction. TM The stiffness term has the same inherent complexities because stiffness

can arise from seals, bearings, structure, etc. The degree to which one can approximate this

combination into the single mean, damping, stiffness coefficient determines how much insight this

simple system can provide. However, an approximate representation provides the insight and guides

the understanding, and can provide a simple theoretical basis for interpreting information and data.

As stated previously, the response of this system can be placed in three categories:
(1) forced response, (2) instability, and (3) transient, each of which is prevalent in rotating

machinery. Each of these three types of responses can be linear or nonlinear in nature. Because the

fault tree ruled out the instability early, leaving only the forced and transient response categories, it

is prudent that one understands the basics of both the linear and nonlinear nature of forced response

(transient response is a special type of forced response where the force or deflection is applied or

released, then the structure rings out or decays from this energy pulse input).

1. Linear System. The assumptions that have to be made for this linear system analogy to
hold is that there are no structural clearances (all parts in contact), and that the fluid forces are

linear. In this case, the M, C, and K are a function of the operating conditions which are generally a

function of time. Further, it is best to freeze these conditions at any one point in time assuming that

the time changes are slow and do not significantly influence the frozen time point approximation. In

this case, the response varies only as a function of the forcing function amplitude, the ratio of system

frequency to the forcing function frequency, and the damping (fig. 11).

Amp.

Reduced Damping
Fl(t)

1.0

mR

Figure 11. Linear resonance response.

The choices open to reduce the amplitude of a forced linear system are to: (1) reduce forcing
function amplitude, (2) increase system damping, (3) shift system's natural frequency away from

resonance with the forcing function, and (4) shift forcing function away from the system natural fre-

quency. Obviously in a linear system, any combination of the above can be utilized to change the
response amplitude.

2. Nonlinear System. Nonlinear systems are more complex and more difficult to interpret.

Nonlinearities can be due to clearances, amplitude dependency, or time dependency. In turbo-

machinery, the main effect is clearance and amplitude dependency. The characteristic frequency curve

14



as wasshown on figure 11 changesdrastically.To illustrate the change,a stiffness hardeningand
softening systemare chosenas examples.This casecurve is only valid for one given nonlinearity
type. Nonlinearities other thansofteningor hardeningwould look different, as well asthe effect of
the forces on hardeningor softening stiffness.Examplesof amplitude-sensitivenonlinearities are
shownin theresonancecurvesin figure 12.

Sol_eningSystem Hardening System

2

E 1.o

Damping Effect

R-
WR

Figure 12. Nonlinear resonance response.

Rotating machinery can have a nonlinear bearing stiffness characteristic caused by rolling

contact bearings moving within the housing clearance. As the bearing comes into full contact with the

housing, a significant increase in stiffness will occur. Large changes in amplitude of the machine

vibrations will result if the machine is operating near the critical speed, either before or after

engagement, of the bearing with the housing support (fig. 13). In a dynamic situation, there is

Deflection

Figure 13. Bearing force versus deflection.
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a back-and-forthmotion betweentheclearancethatproducesan amplitude-varyingstigfness.This is
a function of theshaft orbit positioncreatingavery complexnonlinearsystem.The simpleanalogof a
planarnonlinearity doesnot attempt to show this effect. For example,the stiffness beforeclearance
is takenup (if two springsareparallel) is:

Kl =KT . (2)

After the clearance is taken up, the stiffness is:

K1 +K2 = Kr . (3)

This equation becomes:

MX+Cf_ +[KI+K2(X__XI)]X = A sin f2t . (4)

As a result, the stiffness is highly nonlinear, producing the typical beating-wave forms
instead of pure sine waves. Ideally, turbomachinery should operate subcritical; thus, when K2 kicks

in, the critical frequency is always above the operating range. Otherwise, if the operating point for KI

is supercritical, then when the clearance is taken up, the frequency moves toward, or through, the

operating range.

This implies that it is hard to use a simple analog to model the problem accurately, and one

must rely on empirical data evaluation and nonlinear rotordynamic simulations. In fact, this is the

only way the system is accurately represented without compromising assumptions. The test data

are complete and the simulation is an approximation. The nonlinear rotordynamic simulation does,

however, allow a good understanding of the sensitivity of the system to parameter variations and

illustrates the basic physics of the system. The major problem in rotordynamic nonlinear simulations

is the determination and quantification of the input data such as seal forces, rotor fluid forces, and
Alford forces. The dynamic characteristics of rolling element bearings and structural dynamics are

also difficult to accurately model.

3. Instabilities. The common title given to most rotordynamic instabilities is whirl. Whirl can
be caused by the hot-gas forces, fluid forces, or frictional forces in the structural system. Because

the shaft is rotating at high speeds, these modes can set up as either forward or backward whirl. The
instabilities are caused by the forces and displacement generated by the motion being out of phase

such that they add energy to the system. Whirl modes usually exist at some fraction of the

synchronous speed around 60, 90 percent, etc. Because it was easily shown by analysis and the hot-

fire data that no instabilities exist in the ATD lox pump, instabilities will not be discussed any
further in this report. Many references exist, such as references 2, 4, 5, 6, 12, and 13.

B. Rotordynamic Characteristics of ATD Lox Pump

1. Characteristics. Reviewing the ATD lox pump configuration, it is clear that it is a highly

coupled system. Rotordynamically, it is composed of a very rigid shaft supported by three elements

radially and three longitudinally. The three radial supports are: (1) damping seal, (2) ball bearing

(pump end), and (3) turbine end roller bearing (fig. 1). Because the damping seal is located adjacent
to the pump-end ball bearing, and the seal has significant stiffness, a dual load path exists. The ball

bearing stiffness comes into play when rotor forces are great enough to cause a displacement of seal

stiffness large enough to move the bearing through the deadband and engage it with the support
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housing. This createsa nonlinear spreadand displacement-sensitivesystem requiring tuning and
balancingfor successfuloperation.All bearingsareconstrainedandsupportedby the housing.

On one end of the shaft is the turbinethat producestherotary power and it is very hot. The
other end contains the preburner and main stagepumps, both at cryogenic temperatures.Seals
betweenthe different areasarenecessaryto separateoxygen and the fuel-rich hot gas, and to pro-
vide performance.All theseelementseither determinestiffnessand massdynamiccharacteristicsor
they generateforcessuchas unbalanceor fluid (dampingand stiffness) aswell as structural damp-
ing. Additionally, the pump-endball bearinghasa preloadspring that ensuresthe correct axial load
for successfulbearing operation. A separatorbetweenthe inner and outer raceskeeps the balls
apart.

Figure 14summarizesthe rotordynamiccharacteristicsto beconsideredin the turbopump.A
detailednonlinear rotordynamic simulation14hasbeenformulatedand implementedto simulate the
interactions of all thesecoupled parametersand/or subsystems.Becauseof the high-performance
requirements, the system becomesa finely tuned and balancedsystem between these various
parameters.The simulation can be linearized to producefrequencies,damping, and stability. The
nonlinear formulation normally producestime responsesas doesthe hot-fire instrumentation,which
can be analyzed and evaluated using standarddata processingtechniques.These include analog
amplitudeplots versustime, root meansquare(RMS) amplitudeplots versustime, point time spec-
tral analysis, and isoplots (frequency spectrumsversus time). It is important for analysis/test
correlationto utilize commondataevaluationtechniquesfor both.

System Modes

• Structural

-Housing
-Rotor

-Bearing

• Hydro

-Damper Seal
-Turbine

-Impellers
-Seals

• Deadbands (bearings)

• Preload (bearings)

• Structural

• Hydro

-Damping Seal
-Impellers
-Seals

-Turbine

-Balance Piston

+
System Response

• Hydrodynamics

• Structural Dynamics

i Instability
Forced Response
-Nonlinear
-Linear

-Reduced Critical as Function

of Operating Parameters

Algorithms for generalized
forces are here. Combines

right with left and middle to
determine system characteristics.

Figure 14. System response.

Forces

• Side Forces Hydro (static)

• Unbalance

• ttydrodynamic l_n¢_
-Stiffness _O_m_

-Cross-Coupled ]s¢_,
Etc.

• Acoustics

• Static Pressures

• Turbine (Alford)

° Balance Piston
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2. High-Synchronous Vibration Cause. The ATD lox pump was designed to have its critical

modes well above its critical speed, plus to have a strong damper seal to augment the rotor system

damping. The stiffness for the rotor support is a combination of both the bearings and the damper

seal. The damper and pump-end ball bearing are located adjacent to each other, providing parallel
load paths (fig. 15). This complicates the dynamic characteristics, simulation, and understanding in

that the pump criticality is essentially determined by the damper spring until rotor deflection is large

enough to transverse the bearing deadband and allow engagement of the bearing with the housing.

Because the damper seal has substantial stiffness, the pump can operate without the bearing adding

stiffness. Additionally, frictional hang-up of the bearing outer race in the housing and unfavorable

tilting of bearing outer race relative to the rotor may significantly reduce the radial stiffness of the
ball bearing. In operations, the critical mode (fig. 16) has been in the operational speed range,

creating the high synchronous vibration. A typical vibration response is shown in figure 17. The
lower critical radial stiffness resulted in a premature cutoff by the engine redline protection system.
The other undesirable vibration did not result in redline shutdown and was named "vibration

sensitivity." Vibration sensitivity was a catch-all term applied to synchronous vibration shifts of 1

to 2 g's, and spikes which could not be related to any changes in physical or operational

characteristics of the turbopump. While not of themselves harmful, the potential for their being a

precursor to unacceptable vibration made them a major concern during development.

J
Preburner

Pump

,  Pump-En < _ Ball Bearing

...l..._eadban d
f/,/ //ff/J

Nonlinear Stiffness

Pump-End Ball

Bearing

Effective _per

Stiffness _ ,"

_ Deflection, X
Deadband

Figure 15. PEBB/damper seal.

The bearing must have some small clearance relative to the housing support in order to allow

axial shaft motion resulting from operating point changes. Operating point changes cause a change in

the pressure forces acting on the rotor elements that is corrected by a balance-compensating piston

that requires rotor motion. The bearing inner race, which is part of the rotor, moves axially with the

rotor. If the bearing outer race does not track the rotor (hang-up is the term used to describe this

condition), the bearing can overload to failure or lose radial stiffness depending on the direction of the

rotor motion. The preload spring action against the bearing outer race maintains the proper axial load
for long bearing life.
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As mentioned previously, the ATD HPOTP experienced high-synchronous vibration during

development that reached levels which were considered to be unsafe and premature test termination

had to be initiated. The characteristics of this response were originally interpreted as a nonlinear
jump due to the compressed time scale. Expansion of the scale showed the response to be that of a

tuned (resonance) lightly damped system. Figure 17 shows typical vibration response of the pumps

as power (speed) is increased. After months of fine-tuning build clearances, and several redesigns,

without affecting the problem, a vibration team was formed in May 1992 to understand and solve the
problem (see earlier discussion).

Application of the fault tree and the logic diagram to the problem (figs. 18, 19, and 20)

identified three primary sources of the vibrations: (1) a criticality in the operating speed range of the
pump, (2) inadequate rotor damping, and (3) high dynamic forcing functions (section IV). The

conclusion drawn by the team (figs. 21 and 22) was that a system mode resonant condition is the

principal source of high vibration, with amplifiers arising from a hydrodynamic forcing function and

reduced damping. There were two potential ways the criticality could be in the operation range. The
first was due to the ball bearing tilting in the wrong direction, greatly reducing the bearing stiffness

and, thus, causing the critical speed to drop into the operating speed range; second bearing hang-up,

causing load stiffness.

Fault Tree

I PotentialCause(s) ]

I
I

I Support

and

Refuting
Data

Facts

No

I,,..
r

Data Base

IHDW. Config]H OperationaIResults

Analysis

atist/

A B C _

X

Y _/

z _

Yl-- | Time

Correlations I I

Logic Network

,_ Lab _
Results

iAnalyses _ '_ Tests HPOTP I

Improvements ]

Figure 18. HPOTP synchronous vibration resolution process.
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• Analyses Teams
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- Rotordynamic
* CFD

- Damping Seal
Engine System

Analyses Requirements

• Turbopump Configuration
- Project
- Design
- Test

- Structures

- Hydrodynamics

• SystemsIntegt'etiorl
- FaultTree/Logic
- Hot Fire Tesl
. RotoKlynemlcAnalyses
. Integration:Data/Analyses
. Assessment/

Recommendations

GOALS

Cause of High G's
Recommend Fixes

SSME
PROJECT

Test Plans/Requirements

I • Data Base Teams i

Hot Fire Tests
Cold Flow Tests
Structural Tests

Damping Seal
Tests

Figure 19. MSFC/Pratt & Whitney vibration team.

Brg Deadband

Rotordynamics

Figure 20. ATD rotordynamic interactions.
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As discussedearlier, the vibrationcauseandfix wasderivedby using the fault tree andlogic
diagrams (fig. 18). This figure shows the interaction betweenthe fault tree, logic network, and
databasesobtainedfrom analysis,hot firing of the pump or engine system,and a speciallaboratory
testusedto developproblemcausesandresolutionfixes. Notice how highly interactiveand iterative
this process is. Figure 19 further clarifies this process, showing the various analyses teams,
databaseteam,pump configurations,and systemsintegration.Thesetype chartsmust be tailored for
anyproblembeingstudied.

a. Criticality in Operating Range. Clearly, there have been pump criticalities in the
operating speed range. The speed and sensitivity depends on the damper seal stiffness and the

bearing deadband tilt and hang-up. These modes are system modes involving the dynamics of the

total turbopump system. Many times, these are referred to, or classified, as either a housing or rotor

mode. All this implies is that more of the motion/deflection is associated with that element; however,

the total system is participating and is important (fig. 20).

These system modes are very complex and nonlinear and are a function of the structural
characteristics, the fluid characteristics, the hot gas characteristics, and special element character-

istics such as bearings, seals, and damping seals (fig. 22). The nonlinearities arise because the fluid

characteristics are functions of speed squared hydrodynamic (e.g., cavitation), and the deadbands
and clearances between structural elements. Figure 21 shows the typical HPOTP synchronous

vibration characteristics indicating fluid cavitation dependence. Inspection of some bearings after

hot-fire operation clearly indicates that the bearing sleeve-to-housing clearance never closed and
the sleeve never engaged the housing. Hence, the stiffness from rotor support was primarily due to

the roller bearing on the turbine end and the damping seal on the pump end. If this assumption is
made and the system modes calculated in a linear model, there is a strong criticality that tracks near

the pump rotating speed (figs. 23 and 24). Notice, depending on the damping seal stiffness, how

close the pump mode (critical) is to the operating speed. Figure 23 is for pump configuration 3-1A

which had a stiffer damper seal than configuration 4-1D, which is shown on figure 24. Obviously, this

analysis assumes no ball bearing stiffness. With nonlinear stiffness (ball beating moving in and out

of its deadband), the critical frequency would increase and could become subcritical. Linear
criticalities for different pumps have different damper seal stiffness. The dashed line is pump speed,

the others are pump modes, with the heavy line illustrating the pump criticality.

There are other modes in the operating range that are not sensitive to operating conditions

and are generally low-gain modes. By plotting hot-fire data of acceleration versus pump speed

(fig. 25), it is possible to interpret the results as a resonance; however, other interpretations of the
data are possible. Typically during the runs of the early pump configurations, synchronous sidebands

are present. These are probably caused by nonlinear amplitude resolution. Figure 26 shows this

pictorially for these conditions: (1) the static load predominates, holding the rotor and bearing

against the housing; (2) the dynamic and static load are equal, showing the rotor/bearing moving in

and out of contact with the housing; and (3) the dynamic load is greater than the static load, showing

full contact around the orbit. A simulation of this effect shows the amplitude modulations and the
sidebands (fig. 27).

One hypothesis was that the damping seal operating conditions could be such that the seal

was divergent. In this case, the stiffness and damping provided by the seal was low. Figure 28
shows how the stiffness varies with the divergence and where the different pumps have operated.

Changing the seal to a convergent operating condition could shift the criticality out of the operating

range, depending on other clearances and flow conditions. Also, the convergent seal provides more

damping, resulting in a potential increase in the vibration margin.
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Figure 28. Damper seal stiffness versus convergence ratio.

Another theory that had much support had to do with the relative tilt of the ball bearing
between the housing and the rotor shaft. In this configuration, the bearing was not running flat, which

creates nonlinear stiffness characteristics for the bearing. The bearing was making contact at the

pump end due to the bearing support (housing) being divergent with power increases. Figure 29
shows how the bearing softens with radial deflection as a function of bearing tilt in this direction.

Hardware changes were made to control the damping seal characteristics and to open up the

deadband of the bearing so that the bearing tilted properly and did not hang up. These changes were

made and that significantly shifted the point at which high vibration occurred. At this point, it was

concluded that the hydrodynamic forcing function was too large, driving the response. Changes were

made (next section) that greatly reduced the forcing function and essentially eliminated the high
vibration.

b. Hydrodynamic Forces. Evaluation of the hot-fire data has shown the presence of a

significant hydrodynamic forcing function at one-time, two-times, and three-times synchronous

frequency. These data were obtained through special instrumentation using Kistler pressure
transducers. As a result, a major effort was conducted in computational fluid dynamics (CFD)

analysis and water flow testing to understand the source of these forces and to determine a fix. The

flow testing was accomplished in the MSFC water flow facility (fig. 30).

Results of the CFD and flow testing showed the source to be the inducer clearances and

shape. Figure 31 shows the flow test cavility, pump configuration, CFD results, and flow test result

used to verify the hydrodynamic force phenomenon. Figure 32 depicts some of the various changes
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made to the pump and also repeats the change in synchronous hydroforcing function for three
different inducer tip clearances. The 0.030-in radial tip clearance reduced the synchronous forcing

function by a factor of three. This explained why there was a sensitivity to the net suction specific

(NSS) (fig. 32). The problem can be further complicated by the factor that the force is nonlinear in

that the amplitude is not just a function of clearance and rotor speed, but is a function of the radial

rotordynamic amplitude and the axial location relative to the housing. This implies that the
rotordynamic amplitude needs to be contained or damped; however, it was concluded for the ATD lox

pump that the amplitude nonlinearity did not occur.

c. System Evaluation. Using this information developed by analyses, lab tests, and hot-

firing the pump, a problem resolution plan was developed. Figure 33 is a matrix of potential problem

fixes proposed for evaluation. Not all were tested; however, the indepth scope of the investigation is

indicated by the list. Because the problem was caused by a system critical in the operating range,

and the larger-than-predicted hydrodynamic forcing function, correcting sections should be
incorporated that would produce margins in the system. This was done by building a convergent

damping seal, providing a flat and stiffened housing support, increasing the bearing deadband and the
0.030-in inducer tip clearance thereby reducing the hydrodynamic forcing functions.

This design provided margins for the vibration problem. Figure 34 shows the margin demon-

strated for HPOTP unit 06-2 that exceeds any NSS expected during flight. Figure 35 shows the

same type information for the pump configurations before any fix pump configuration (left graph). The
minimum NSS operating conditions are shown as well as the points where vibration occurred. Notice

the vibration line (boundary line), which shows that these configurations are unacceptable. Pump

03-1A did not have the increased inducer tip seal clearance, but had the larger ball bearing deadband

and convergent damping seal. Notice the improvement over the 03-1 configuration. However, there

were still vibration problems for higher NSS conditions, as shown on figure 35. When all the

enhancements are included in configuration 06-1, the vibration response is acceptable. Figure 36 is a

bar graph showing the vibration history of pumps prior to the uncovering of the bearing wear problem.

Since the bearing problem occurred, several bearing changes have been tried to solve this

problem that have aggravated the vibration sensitivity. In these cases, the vibration has not been

excessively high, but has large variations (factors up to 5) at the same power level. Several

potential areas were reopened in the fault tree to deal with vibration sensitivities. In all cases, it

was hypothesized that it was a combination of a criticality in the operating range plus the

hydroforcing function increasing with changing NSS. There are two sources for the criticality in the
operating range. The first source is little or no ball bearing contact, hence the damping seal stiffness

drives the pump support stiffness. In other words, the ball bearing acts as a bumper ball in a

nonlinear manner. All ball bearings are nonlinear, but do not have the damper seal stiffness to retard

its motion through the deadband as does the ATD lox pump. Much work was done by simulation and
data evaluation to prove this theory; however, in this and for the other theories, there was some

correlating and some refuting cases. For example, figures 37 and 38 are the vibration levels and

pump speed plotted versus time. One can infer that there are two possible resonances on figure 37
that run B1-165 as the speed changes between 200 and 400 s. Figure 38 shows the vibration

sensitivity spike. As a method of illustration, figure 39 shows the end-to-end test history of one of

the pumps showing the characteristics across time of the vibration sensitivity. However, it was

never possible with extensive simulations and hot fire data analysis to establish a firm correlation
for a resonance caused by the pump end bearing, damping seal combination.

The second source for the vibration sensitivity is the turbine end roller bearing support

changing due to thermal effects which could move a second critical mode into the operating range.
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Hot-fire data have shown that there is undesirable hot-gas leakage that is affecting the roller

bearing support. Special instrumentation was installed in pump build 03-2 to assess the thermal
environment. The data showed erratic hot-gas leakage that changed the roller bearing support

temperature from the design predicted. The change in the housing temperature will alter the bearing

support fits and thus change the support stiffness. A comprehensive effort was undertaken to

provide a stable housing environment.

During this bearing solution development of the lox pump, prior to the evolution of the above

critical design review (CDR) configuration, one pump configuration, 7-2D, experienced a high-g

redline engine cutoff. This pump was being used to tune the bearing clearances, reducing the
clearance in order to ensure less nonlinear bearing deadband effects. The bearing hung up, which

caused the high-g shutoff, as discussed previously, was shown to be the cause through teardown

inspection.

Since the vibration team was dissolved (solution of the high-synchronous spikes and bearing

degradation problems), the turbine-end thermal excursions have been fixed and the CDR pump con-

figurations built and tested. These pumps have not experienced any high-g spikes, and no vibration

sensitivity.

V. BEARING WEAR

An HPOTP bearing distress problem first surfaced in September 1992 when long-duration

engine testing was started after resolution of the synchronous vibration problem. The bearing which

failed was the oxidizer-cooled pump-end ball bearing of the turbopump. With one exception (which
will be discussed later) the bearing would fail after as little as a 100 s of operation to a few thousand

seconds operation. Externally, a 2.5 ° step increase followed by a ramp increase in the coolant tem-

perature rise across the bearing was noted (figs. 40 and 41). This event was assumed to be the

bearing failure and is seen to be a discrete occurrence that does not take a long period of time to

happen. Operation after this event showed continuing wear of the bearing as evidenced in the change
in posttest rotor travel. When a turbopump teardown inspection of the bearing was done, the balls

and races were found to be worn and thermally discolored, and the Salox-M ® cage showed heavy

fore/aft ball pocket wear. Comparison of the inner race surface color with test specimens heated in an
oxygen environment indicated that the surface temperature reached 1,400 °F, a temperature well

beyond design intent. Figure 42 is a bar graph of the bearing life experience for several pumps

(numbers at top of bars) before the acceptable solution was implemented, showing that some
bearings failed early and some ran a long time without failure.

In view of the design and development experience, the onset of the wear problem was

unexpected. The static and dynamic loads carried by the beating were kept low by careful attention

to hydrodynamic and mechanical design of the turbopump. Posttest examination of the ball tracks on

the bearing races verified that the loads were meeting the design. The bearing is cooled by approxi-
mately 16 lb/s of lox flow from the preburner pump discharge. The Salox-M ® bearing cage is

designed to provide cage-to-bearing transfer film lubrication. Extensive design verification testing at

the component level of the bearing under simulated load and coolant were very successful. Several
bearings were operated to twice the 71/2 hour design life with no evidence of abnormal wear. A single

failure in the component tests was isolated to a test rig misalignment problem. A similar design

liquid hydrogen-cooled bearing used in the high pressure fuel turbopump (HPFTP) had successfully

passed component test and was showing no problems in turbopump development, even though it

runs 50-percent faster than the oxidizer pump bearing.
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Figure 42. SSME/ATD HPOTP pump end ball bearing experience before corrective solution.

Reviewing, the life of rolling contact bearings is determined by many external factors such as

dynamic and static radial loads, axial loads, bearing misalignment, instabilities in the rotor dynamics,

lubrication, cooling and bearing geometry. Most research and engineering effort has been expended

on oil-lubricated bearings. Cryogenic rocket engine turbomachinery cannot use oil lubrication due to

the cold and the incompatible nature of the liquids being pumped. There have been major problems in
developing adequate bearing life with lox and, to a lesser extent, liquid hydrogen-cooled bearings in

turbopumps. The primary failure mode has been bearing wear and distress. Bearing fatigue failure,

upon which the life predictions of well-designed oil-lubricated ball bearings are based, have not been

the usual failure mode for bearings cooled and lubricated with cryogenic propellants. The problems of

bearing design are compounded by the requirement that these pumps be lightweight and have a very
high power density. In these turbopumps, the bearing life determining mechanisms have been heat

dissipation and generation. Figure 43 shows how for a high power bearing a balance determines

whether a bearing will operate successfully or will overheat. It is possible to put all the major

parameters that influence bearing life under these two headings (fig. 44). Heat generation in the

bearing is primarily from frictional contact between component surfaces, hysteresis losses because

of cyclic stressing of the materials, and viscous fluid losses in the coolant. Heat dissipation is

through convective heat transfer to the coolant in the flooded cryogenic bearing design. It should be

pointed out that there is a strong interaction, or coupling, between heat dissipation and heat genera-

tion that is nonlinear in nature. As the heat generation exceeds the heat dissipation capacity,
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abrasive surface oxide formation starts, the thickness of the elastohydrodynamic film is reduced,

ball-to-cage interactions increase, inner race clearance (IRC) is reduced, prelubrication breaks

down, and cage-to-ball-to-race lubrication transfer diminishes. All of these factors further increase
heat generation, leading to what is often termed "thermal runaway" of the bearing.

Thus, a situation had evolved in which all bearings placed into service were failing within a

few hundred seconds of operation for no apparent reason. Development of the turbopump was being

delayed and significant cost increases were being incurred because of the inability to resolve the

bearing failure. At the end of 1992, development termination was threatened unless the problem
could be solved within 3 months. A team of Government and contractor specialists was formed with

a directive to take all reasonable steps to resolve the problem by the deadline. Because of the

limited time available to correct the problem, a concurrent approach was taken. Design and procure-

ment of potential fixes was undertaken based on best engineering estimates of their potential for

solving the problem. Fixes that were not viable based on increased understanding of the failures

were dropped and new designs were added. While this approach is not the most cost effective, it

does give the quickest engineering response time. The steps this team took, starting with a detailed
fault tree analysis, are reviewed in the following paragraphs.

The detailed fault tree developed by the investigation team is shown in figure 8. The viable

candidate failure mechanism that devolved from the fault tree analysis were:

(1) Misalignment

(2) Prelubrication

(3) Cage instability

(4) Inadequate IRC

(5) High loads--fixed and dynamic

(6) Inadequate cooling

(7) Inadequate lubrication

(8) High ball/race heat generation

(9) Bearing material and configuration

(10) Other potential causes.

All but items (6), (7), and (8) were eventually dispositioned as not being a cause or at the

most being a secondary factor in the bearing wear. The failure scenario that most closely fit analy-
ses, test results, and hardware evidence involved a combination of these three items on the list. A
discussion of each of the mechanisms and the assessment of its involvement in the wear mechanism

follows.
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(1) BearingMisalignment

Inspectionsof the first distressedpump-endball showedevidence of bearing misalign-
ment (tilting), i.e., angular displacementbetweenthe inner and outer races.The evidencewas pro-
nouncedfore andaft cagepocketwearthat will occurastheballs of themisalignedbearingspeedup
and slow down as they orbit the inner race (fig. 45). These data initiated investigations to
understandhow misalignmentmight affect bearingheatgenerationand thusbearinglife. As a result,
detailedsensitivity studiesusing variousbearingcodeswereconducted.

The resultsof thesestudiesshowedthat if the bearing misalignedmore than 4 milliradians,
the temperaturewould rise as the cage pocket clearancewas used up. This temperaturerise was
found to rise to the sublimation temperatureof Salox-M® at the cage/ball interface, which could
render the Salox-M® transfer film ineffective.This could increasethe ball-to-race friction quickly,
causingpotentially large temperaturedelta T's and bearing distress.Figures 46 and 47 show this
data. Figure 46 shows the heat in Btu's versusmilliradians. Figure 46 illustrates the cage pocket
temperature,while figure 47 shows the temperaturedelta T if the friction coefficient is linearly
changedfrom Salox-M®-on-steel to steel-on-steel.

Two facts argued againstexcessivemisalignmentof the bearing. Inspections of the race
tracksof bearingsafter turbopumpoperationdid not showindicationsof misalignment.A turbopump
bearing was also instrumented for outer race misalignment. These measurementsdid not show
excessivemisalignment.For thesereasons,this failure mechanismwasdiscredited.

(2) Prelubrication

As previously mentioned,therewasoneexceptionto the generalearly failure character-
istic shown during turbopumpoperation.Early in the investigation, one turbopump (unit 07-2) ran
successfullyfor over 5,000 s with no bearingdistressandmarginally acceptableball and racewear.
This tended to confirm that the bearingdesignwas acceptableas demonstratedin the component
test.This result causedan intensivestudy of the factors contributing to successfuloperationof this
bearing.Two factors stoodout: (1) it hadbeenrun for over 1,700s before high speedoperationwas
undertaken,and (2) it, as was also the caseof the componentdesigndemonstrationbearings,had
not receiveda prelubricationof the racesuntil the first 1,700s of operationwerecompleted.Inspec-
tion showedthe inner raceof this bearingto be very smoothandpolishedrelative to the outer race.
This is contrary to the experienceof the failed bearingwherethe innerraceshowedseveredistress.

It was also observedthat the ball track wear on the racesshowedthat some failed bearings
hadswitched from outer raceball spin control to inner raceball spin control. Theory allows this to
happenwith an increasein thefriction factorat the innerraceover that at theouter raceby a factor of
three.Thus, attemptingto isolatethe factors which maintainedthe low surfacefriction at the inner
raceof this particular bearingwasgiven a greatdealof attention.Theseefforts were not successful
anda full understandingof thecharacteristicsthat madethis bearingandturbopumpunique were not
achieved. Prelubrication of the bearing raceswas baselinedas an improvement that could only
improve bearing operation. It was also concludedthat the reversingof ball spin control was the
acceleratorof the bearingdistress,not the initiator.

(3) CageInstability

All pump-end ball bearingshave shown evidence of some contact between the inner
diameter of the cage and the inner race land. This evidence could possibly be explained by an
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unstable cage which in effect "hula hoops" during rotation. The influencing factors for the instability

are: (1) ball-to-cage pocket clearance, (2) cage balance, and (3) cage to land clearance. Other evi-
dence to support the instability was the fore and aft wear on the cage pockets, which indicates

excessive movement of the balls relative to the cage. The effect of the instability would manifest

itself in cage frequencies in the dynamic data and in an increased temperature rise in the bearing.

Analysis results showed that with the existing clearances and unbalance the cage should be stable.
In fact, the ball-to-pocket clearance can eventually be doubled from the baseline clearance before

instability is a problem. Examining the dynamic data for cage instability and correlating it with the

bearing coolant delta T shows that the cage frequency is pronounced only after the step event of the

delta T. During the initial slow rise of the delta T where heat generation is increasing, the cage
appears to be stable. This leads one to believe that the cage frequency is a result of the accelerated

wear process and not a cause. Because of this evidence, the cage instability scenario was dismissed
as not credible.

(4) Inadequate Internal Radial Clearance (IRC)

The proper design of a ball bearing requires that the internal radial clearance at operation

be sufficient to allow the balls to load against the races at the proper contact angle and provide suffi-

cient margin against a thermal or mechanical loss of radial clearance. Inadequate IRC allows the
ball-to-race contact angle to be less than design (ball track will be low on the inner race). This

condition promotes increased heating of the balls and inner race due to higher contact stresses, and
provides less margin against thermal runaway.

Examination of the inner races of the units which did not fail (low time units) showed that the

ball tracks were at the proper contact angle. Failed units had ball tracks which were not too low;

however, the track was very wide--some nearly touched the inner race high shoulder comer. This is

believed to be due to post-accelerate wear damage and not an indication of the as-built or pre-event

contact angle. Based on this evidence, the inadequate IRC scenario was judged as not credible.

(5) High Bearing Loads: Fixed and Dynamic

While the inspections of distressed bearings did not show overt signs of either high
radial or axial loading, the unknowns in the design and our previous experience with ball bearings in

cryogenic turbopumps did not allow us to immediately close out overload as a potential failure mech-

anism. In the turbopump design, the bearing cartridge must move axially in response to all operating

point changes to ensure acceptable axial thrust balance. The cartridge (sleeve) has tight clearances,

with the pump housing making a design that could potentially bind and introduce high axial loads into

the bearing. In addition, the uncertainty in the hydrostatic loads acting on the rotor of a high pressure
turbopump can be very large and as yet cannot be accurately predicted for a design. Dynamic loads

on the bearing, especially in a turbopump which has exhibited high vibration sensitivity, are always a
bearing load concern.

Strain gauges were mounted on the pump-end ball bearing preload spring on several devel-

opment turbopumps to give a direct reading of the axial static and dynamic loads. They showed that

the bearing axial load was as predicted and that the bearing was moving axially as required to

accommodate pump operating points changes. The axial dynamic loads measured were very low. A
subsequent turbopump with radial position measurements of the bearing sleeve deadband showed

the sleeve to be moving radially, which confirmed that the radial loads were close to design. Again
the dynamic load indications as seen by these gauges were low. Based on these data along with
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continuinginspectionsof bearings removed from test which showed no loads higher than anticipated,
it was concluded that bearing load was not a contributor to the distress problem.

(6) Inadequate Cooling

The bearing is cooled with the leakage flow from the preburner impeller back shroud
which drains into the main pump inlet. The source pressure is approximately 6,000 lb/in 2 and pump

inlet pressure is approximately 350 Ib/in 2. The coolant temperature is 230 OR which is the

temperature of lox at the preburner impeller discharge. The coolant flow (-16 Ibm/s) first passes

through the damping seal before entering the beating. The pressure in the bearing compartment is

approximately 1,800 lb/in 2. The bearing uses a flooded cooling system; the coolant is not guided or

directed in its passage through the bearing.

Bearing development tests were successfully run on a rig which simulated the turbopump

operating cycle to the maximum extent possible. The most significant differences were a coolant
flowrate of about 5 Ibm/s, a pressure of 200 lb/in 2, and a temperature of 180 °R. The turbopump condi-

tions were not duplicated because of facility limitations and, in the case of flowrate, a large increase

in the design flowrate after rig testing was completed dictated by the requirements of the vibration

problem corrective actions. The rig-bearing fixed loads were comparable to the turbopump, but the

dynamic loads are believed to be lower. The only failure in the testing occurred on a bearing which

was inadvertently built with severe misalignment. This bearing still ran 27,466 s before it showed

thermal distress. The successful rig bearings had almost no measurable wear and no evidence of
thermal distress.

Heat transfer analysis showed that as long as the heat generation remained low (frictional
heat generation consistent with experience) the bearing cooling system was adequate to remove the

heat and maintain the ball and race temperatures close to the coolant temperatures. As the bearing

distress investigations progressed, thermal analyses that degraded the heat transfer at the inner
race surfaces (a condition which would be expected with the inner race guided cage configuration

used) showed that the temperature at the inner race/ball contact point could rise as much as several

hundred degrees, depending on the assumptions made as seen in figure 48. Later computational fluid

dynamics (CFD) analysis and bearing model tests confirmed that there is little coolant circulation at

the inner race/ball contact and that the temperature will locally rise significantly. While this tempera-
ture rise is not deleterious to the bearing materials, it was found that it can cause a significant

reduction in the elastohydrodynamic (EHD) film at the inner race/ball contact. If the thickness of the

EHD film is reduced so that as ball/race surface asperity contact occurs, the friction coefficient will

rise significantly as noted in the Stribeck curve in figure 49. It is not possible to precisely locate
where the pump-end ball bearing operates on this curve (the characteristics for lox must also be

questioned because it was developed for oil lubrication), but calculation of the EHD film thickness for
the ATD bearing conditions show that the inner race/ball contact operates in the region where fric-

tion coefficient is very sensitive to fluid conditions. Small changes in fluid temperature can cause a

significant change in the EHD film thickness as seen in figure 50. An increase in friction and thus

heat generation at the ball/race contact will be an unstable condition and will cause a further increase
in friction.

(7) Inadequate Lubrication

Bearings for cryogenic rocket turbopumps have traditionally depended upon the transfer
of a polytetrafluorethylene (PTFE) film from the cage by rubbing to the bearing balls and races.

Adhesion of the PTFE to the contact surfaces has provided limited, but adequate lubrication for
these applications. The ATD bearing uses a bronze filled PTFE cage (Salox-M ®) to provide this
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lubrication function. Inspection of bearings from the rig testing showed that an adequate film of PTFE

was being transferred as evidenced in the copper shading of the ball track on the races. Inspection of
bearings from the early turbopump tests substantiated these results, and it was concluded that the
lubrication intent was being met.

After the onset of the bearing distress problem, a prelubrication process for initially the inner

race and later for both races was developed. Prelubrication was initiated to insure that an adequate
lubrication film was present at the ball/race contact from the start of turbopump operation. The races
were burnished with a Salox-M ® block on the race contact surfaces.

During the failure investigation, the adequacy of the Salox-M ® lubrication was questioned

and several efforts were initiated to further improve the prelube and to provide a low speed run-in of
the bearing. No definitive answers on the effectiveness of the prelube or on the worth of the run-in

were reached. It was concluded that the worth of the prelube was most modest. The low speed run-
in was dropped because of inconclusive test results.

As previously noted, the EHD film lubrication is significant in the successful operation of the

ATD bearing. Again, small changes in lox properties can be shown to dramatically change the friction

factor as seen in figure 49. The increased coolant temperature from the successful rig tests to

turbopump would cause a significant decrease in the EHD film thickness, and thus, a tendency for
operation in the boundary lubrication region (fig. 49). Traction tests run at MSFC showed a friction

factor of less than f = 0.1, with conditions simulating the pump-end ball bearing, except that normal
boiling point oxygen was used as a coolant. When the test was repeated with higher loads and lower
speeds, the friction factor increased to f = 0.2. This is a clear indication of a sensitive EHD film

contributing to the rig coefficient of friction.

Based upon these results, it was concluded that bearing distress could not be correlated to

any breakdown or failure of the cage transfer film. The effectiveness of the transfer film is, however,

open to question, and it is the opinion of many of the team members that it contributes little to the
bearing lubrication.

(8) High Ball/Race Heat Generation

Excessive heat generation, which by itself or in conjunction with another failure mecha-
nism, was considered as a potential cause of the thermal distress seen on the balls and races. Heat

is generated by relative motion between the ball and races at the point of contact. The heat gener-
ated is thus a function of the friction factor of the materials, the contact loads, and bearing geometry,

which will contribute in establishing the magnitude of relative motion. As noted earlier, the bearing
loads were determined to be within the design limits. The bearings were determined to be as

designed, and the load tracks on bearings that had not failed showed that the bearings were operat-

ing as designed geometrically. The friction factor at the contact is set by the surface finish and the

EHD film established. The bearing balls and race contact area were being finished to < 1 tin, a value

consistent with low rolling friction operation. The EHD film, as previously discussed, was believed
to be marginal and for this reason excessive heat generation was a viable failure mechanism.

A simplified fault tree that concentrates on the viable interrelated failure mechanisms is

shown in figure 44. There are several paths through this fault tree leading to a distressed beating.
The bearing team was unable to isolate the failures to a single mechanism. It is uncertain that there
is a unique mechanism which will fit all of the failures. A combined mechanism with the several ele-

ments making differing contributions depending on the circumstances may be quite appropriate.
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The fault treeapproachservedthis failure investigationwell. Themost difficult and time-con-
sumingpart of the investigationwasdevelopingdatato closeout severalbranches of the fault tree.

(9) Bearing Material and Configuration

The other main emphasis of the investigation was in the area of the bearing material and

bearing configuration. Bearing materials were considered to play a minor role in the failure cause; the

heavier steel balls with their friction and heat transfer characteristics could have been part of the

cause along with improper coolant. Bearing configuration characteristics that were studied and ruled

out as a primary cause were ]RC, inner race guided cage, cage pocket-to-ball clearance, and ball
diameter. As solutions to the bearing distress problem were explored, all these areas were used to

improve margins as well as solve the problem cause. The final configuration has outer race guided

cage (fig. 51), stiffened housing, silicon nitride balls, lower preload spring, larger ball-to-cage pocket

clearances, and auxiliary cooling (fig. 52).

Outer Race Piloted Cage Inner Race Piloted Cage

Figure 51. PEBB outer race piloted cage.

(10) Other Potential Causes

The team methodically pursued many other causes from balance position control

authority, axial preload, high-radial load, surface sliding, plastic deformation, manufacturing, plus the
other items discussed.
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Figure 52. SSME/ATD HPOTP bearing configuration.

(11) Conclusion

The bearing problem was caused by excessive ball/inner race friction which in turn was

caused by inadequate lubrication.

The bearing degradation scenario is:

(1) The basic cause of the problem is high heat generation and poor heat dissipation.

(2) Inadequate coolant temperature and distribution are the prime mechanisms for the heat

dissipation. Heat generation is also improved by increasing the thickness of the EHD

film (which reduces the ball/race contact coefficient of friction) and enhancing the
Salox-M ® transfer and retention.

(3) The EHD film generated by cold lox is very sensitive to:

(a) Coolant temperature (viscosity)

(b) Surface finish

(c) Beneficial oxides created by cold lox

(d) Contact pressure

(e) Velocity.

A breakdown of the EHD film and loss of the Salox-M® transfer film caused by higher temperature
lox is believed to be the trigger mechanism that initiates the rapid wear phenomenon.
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(4) The ball raceway control is a secondaryevent caused by the sudden increase in
coefficient of friction at the inner race,and contributesto the rapid rise in delta T and
bearing wear.

(5) The use of silicon nitride ball material lowers the heat generation and improves heat

transfer, enhancing bearing life. Silicon nitride balls also minimize the potential for break-
down of the EHD film and Salox-M ® transfer film and reduces the loads due to lower

mass. The ball material can also tolerate much higher temperatures than can 440C steel
balls.

(6) The success of unit 7-2 is explained by the low power run-in operation early in the test-
ing of its bearing. Operation at 65-percent RPL results in a 40 °R reduction in coolant

supply temperature, which is highly beneficial to creating the improved surface finish

before extended operation at high power with the higher heat generation.

The corrective actions to eliminate wear are: to improve the coolant supply at the inner race

ball contact, to use an outer race guided cage, and to use silicon nitride balls. In development of the

corrective measures, the silicon nitride bearing balls and the outer race guided cage were introduced

into the turbopump together. All turbopumps with these two modifications ran successfully and
showed no measurable ball, race, or cage wear when inspected. Subsequently, the inner race ball

contact cooling modification was added and again pumps with the three changes have operated with

no wear. A single turbopump was built with only the outer race guided cage and inner race ball con-

tact cooling modifications. The bearing was found to be worn and thermally distressed after 400 s of

operation. Bearing coolant temperature rise data indicate the distress started after only 40 s of

operation. Based upon this result, it must be concluded that the cooling improvements of themselves
were inadequate to correct the problem. The silicon nitride ball characteristics, high elasticity, low

centrifugal forces, reduced race contact heat generation, higher thermal conductivity, and a lower fric-

tion coefficient, when used with metal races, are crucial to successful operation in the ATD HPOTP

application. No additional work was undertaken in this program to further understand the contribu-

tion to successful bearing operation of each of the design improvements. Based on this experience

and several previous unsuccessful attempts to develop lox cooled baring, dependence on only a

transfer and/or an EHD film is too marginal and uncertain for successful bearing operation. The ben-
efits of the silicon nitride balls are required.

Bearing technology and turbomachinery understanding were certainly advanced. The team's

final fix for the bearing problem is:

(1) Silicon nitride balls with steel races

(2) Outer race-guided cage

(3) Larger ball-to-cage pocket clearances

(4) Inner race prelubrication only

(5) Colder coolant directed to inner race.

These changes were completely successful in correcting the wear problem. No bearing wear

has been observed since these incorporations.
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The team did pursueother solutionssuch as better prelubrication, and hydrostatic damper
seal bearings.Although the hydrostaticdamperseal bearinghad manymerits, it is probably a good
bearingfor thefuture.

Even if thebettercoolantwas fundamentalto thebearingdistre_ solution, dependingon it to
createEHD film is not prudent.Therefore,it is mandatorythat thebenefitssilicon nitride balls bring
bepartof thesolution in order to guaranteebearinglife.

VI. OVERALL CONCLUSION/SUMMARY

The rotordynamics of high-performance turbomachinery are a very complex, nonlinear system

composed of the pressure vessel and rotor support system, the hot-gas turbine drive system, the

cryo-liquid pump system, system damping devices, and the bearings. The hot gas and hydroforces

can be both periodic forcing functions and unstable (negative damping sources). Because of the high-
performance requirements and the weight/volume constraints, there is a very fine tuning (balancing

act) between performance requirements and rotordynamic characteristics. This means that sophisti-

cated analysis tools, component tests, and a comprehensive hot-fire margin test program should be

established. Due to the analytical complexity and the inability to properly quantify forces such as
hot-gas environments, hydro environments, structural characteristics, bearing characteristics, and

only limited analytical verification (trend/sensitivity prediction only) the margin test program is
mandatory.

The solution to the ATD LO2 turbopump problems were possible only because of the fore-

sight of NASA leadership over the years to build test facilities (air and water flow, propulsive),

analysis technology in bearings, heat transfer, rotordynamics and CFD, bearing materials develop-
ment, and bearing lubrication. This includes MSFC development as well as the Pratt & Whitney E-8
test stand.

In future systems, it is highly desirable that the dual support system (ball bearing/damping

seal) be replaced with either a hydrodynamic damping bearing or foil bearing, eliminating the main
source of nonlinearities or move the damping seal and provide system damping at another location--

possibly using a different source which allows full development of the ball bearing for stiffness

potential. The damping seal hydro bearing is unique in that it simultaneously provides both damping
and stiffness.

The only total answer to what is transpiring in a turbopump is found by testing in pump

stands or engine systems with adequate data obtained by special instrumentation and posttest
hardware inspection. In the final analysis, the hardware has the answer, our job is to read it. Work

needs to be continued to accurately provide the hot gas and hydroforces characteristics so that the

analytical models can be more heavily depended on for design verification and operations. Better
instrumentation needs to be developed to verify these forces and determine in hot fire actual rotor
responses.

Bearing technology development must continue. The silicon nitride ball bearing technology

saved the ATD program. It is certainly a lesson learned that new programs are highly dependent on
the technology programs. The same is true of special test facilities. These were critical in the

vibration and bearing degradation solutions: (1) the E-8 hot-fire pump test, (2) MSFC bearing
testers, and (3) MSFC cold-flow facilities.
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It is very important that the designand the manufacturingprocessallow very quick changes
in order to properly evaluate parametersensitivities and cause/solutionhardware characteristics.
This ability allowed the teamto accomplishits mission.

Sensitivity analysis as well as off-nominal testing are key to understandingproblems and
arriving at solutions. This coupleswith the proven approachof searchingfor deviation and their
effects. Playing the two togethershowsunderstandingof problem.

For future programs,sensitivity analysisandtesting (cold flow, dynamic,and hot fire) should
bedoneearly in theprogramto eliminatemostof the problemsdownstream.It is doubtful, however,
that this would have caught the bearing wear problem; but, it would have certainly eliminated the
vibrationproblem.

The use of a concurrent engineering team in conjunction with the use of formal fault trees is

mandatory for cause identification and problem resolution. The team members' selection is critical in

that teaming brings no magic elixir to the table, thus the team is no stronger than the skills of the

team members. This implies that organizations must vigorously develop the total person of its per-
sonnel.

All future systems should be designed with the goal of robustness. 15

Silicon nitride balls provide substantial margins to the ball beating life.

Through the results of the team's efforts, it is concluded that the ATD LO2 turbopump is

acceptable for certification from both beating life and vibration sensitivities and high-g vibration.
However, for management of the pumps operationally requires that an extensive vibration database

of both ground and flight test be maintained.
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