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SUMMARY

A new {1, 2}-order theory is proposed for the linear elasto-static analysis of laminated

composite plates. The basic assumptions are those concerning the distribution through the

laminate thickness of the displacements, transverse shear strains and the transverse normal

stress, with these quantities regarded as some weighted averages of their exact elasticity

theory representations. The displacement expansions are linear for the inplane components and

quadratic for the transverse component, whereas the transverse shear strains and transverse

normal stress are respectively quadratic and cubic through the thickness. The main distin-

guishing feature of the theory is that all strain and stress components are expressed in terms

of the assumed displacements prior to the application of a variational principle. This is

accomplished by an a priori least-square compatibility requirement for the transverse strains

and by requiring exact stress boundary conditions at the top and bottom plate surfaces.

Equations of equilibrium and associated Poisson boundary conditions are derived from the

virtual work principle. It is shown that the theory is particularly suited for finite element

discretization as it requires simple CO- and C_-continuous displacement interpolation fields.

Analytic solutions for the problem of cylindrical bending are derived and compared with the

exact elasticity solutions and those of our earlier { 1, 2}-order theory based on the assumed

displacements and transverse strains.

INTRODUCTION

Designing of aerospace and ground-vehicle structures with thick-section organic-matrix

composites is necessarily associated with the analytical modeling of the structural response

and the prediction of failure under service loads. For such applications, viable analytical

models are those that can properly account for transverse shear and transverse normal

deformations. These effects, which are negligibly small in thin laminates, can be significant

when the laminate thickness and the wavelength of loading are the same order of magnitude.

Moreover, the reduced stiffness and strength in the transverse shear and transverse normal

material directions can contribute to significant deformations and matrix dominated failure

modes such as delamination and transverse cracking.

Present address: NASA Langley Research Center, Computational Mechanics Branch,

Structural Mechanics Division, Mail Stop 240, Hampton, Virginia 23665-5225.
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The majority of finite elementmethodsfor compositelaminatesarebaseduponthe { 1,0}-
order theories(commonlyreferredto as 1st-ordertheories).Theseaccountin someaverage
sensefor transverseshearbut ignore theeffectsdue to transversenormaldeformations.The
useof three-dimensionalelements,includingall three-dimensionaleffects,aregenerally
computationallyprohibitive evenon a supercomputer,unlessemployedin someglobal-local
fashionin a relatively smalldomainof interest.Althoughpost-processingmethodshavebeen
devisedleadingin somecasesto adequatethree-dimensionalstressand strainrecoveryfrom
the { 1,0}-ordertheorycomputations,the staticanddynamicresponsepredictionsobtained
with this orderof approximationareoften inadequatefor thick laminates(e.g.,refs. (1-7)and
referencesthereof).

Numerousefforts to generatelaminatetheoriesof higher-orderthatalso includetransverse
normaldeformationsfailed to producesufficiently accurateandcomputationallysuitable
formulationsto model thick-sectioncomposites.Recently,Tessler(ref. 1)proposeda { 1,2}-
ordertheory for the elasto-staticanalysisof homogeneousorthotropicplateswhich was
demonstratedto be ideally suitedfor finite elementapproximations.Subsequentdevelopments
includedthe analyticand finite elementanalysesof elasticbeams(refs.2-4), an extensionto
thegeneral{ 1,2}-orderorthotropicshell theory (ref. 5), and anextensionto laminated
compositeplatesfor elasto-statics(ref. 6) andelasto-dynamics(ref 7). Thesetheoriesassume
linear inplanedisplacementsanda quadratictransversedisplacementacrossthethickness.
The key aspectin the approximationis the independentexpansionsfor transversestrains
which allow exactstressboundaryconditionsat thetop and bottomplatefacesto be satisfied.
Thesestrainsarealso least-squarecompatiblewith thosederiveddirectly from the displace-
mentassumptions.

In this paperwe proposea new { 1,2}-ordertheoryfor the linearelasto-staticanalysisof
laminatedcompositeplatesfollowing themethodologyestablishedin (ref. 6). The present
formulationdepartsfrom (ref. 6) in thatthe transversenormalstressis independently
expandedacrossthe laminatethicknessinsteadof the transversenormal strain.The transverse
shearstrainsaretakento beparabolicsatisfyingtraction-freeboundaryconditions.The
transversenormalstressis assumedto bea cubic function throughthe thickness,also
satisfyingthe consequenceof zerosheartractionsat the top andbottomlaminatesurfaces;
specifically, thevanishingon thosesurfacesof thetransversenormalstressgradienttaken
with respectto the thicknesscoordinate.Theselatterconditionsareexactaccordingto three-
dimensionalelasticity theorywhenthe body andinertial forcesareneglected.The resulting
equilibrium equationsareassociatedwith exclusivelyPoissonboundaryconditions.As its
predecessortheory,the presenttheoryrequiresonly Co-andC2-continuousdisplacement
interpolationfields andthus lendsitself well to thedevelopmentof simple,robust,and
computationallyefficient plateformulationssimilar to Mindlin-type elements(refs. (9-11)).

In assessingthe accuracyof the proposedtheory,we resort to the problemof cylindrical
bending of an infinite laminatedplate for which anexactelasticity solution is available(ref.
8). We comparethe resultsof thepresenttheoryfor severallaminationpatternsand span-to-
thicknessratioswith thoseof our previous{ 1,2}-orderlaminateplatetheory(ref. 6) andthe
exactsolutions.

1418



A o

Co _k)

B o

Do

Gii

c o

C-1

2h

N_j, ai

M,j
q÷

U, V

Ux, Uy, U z

W_ W i

x,y and z

Eij, Kij

0i (i=x,y)

(_ij, 'l_ij

NOMENCLATURE

membrane plate rigidities

elastic stiffness coefficients for the k th ply

membrane-bending coupling plate rigidities

bending plate rigidities

transverse shear plate rigidities

continuous functions with discontinuous derivatives at element interfaces

continuous functions that are discontinuous at element interfaces

plate thickness

inplane and transverse shear force resultants

bending moment resultants

applied transverse load at z=h

midplane displacements along x and y axes

Cartesian displacement components

components of the transverse displacement

inplane and transverse coordinates

variational operator

strain and curvature components

bending rotations about x and y axes

dimensionless thickness coordinate

stress components

{1, 2}-KINEMATIC PLATE ASSUMPTIONS

In a laminated composite plate constructed of perfectly bonded orthotropic plies whose

transverse constitutive properties do not differ appreciably, the displacement vector u = (ux,

Uy, uz) can be approximated with functions that vary continuously across the total thickness.

The lowest-order displacement expansions accounting for transverse shear and transverse

normal deformations involve linear thickness variations for the inplane components ux and uy

and a quadratic one for the transverse displacement uz (ref. 6) (i.e, {1,2}-order theory):
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u (x, y, z) - u(x, y) + h_ Oy(x, y), u (x, y, z) - v(x, y) + h_ O (x, y)

u(x,y, z) - w(x,y) + _wl(x,y ) + (_z _ 1/5)Wz(X, y )

(1)

where _=z/he [-1, 1] is the dimensionless thickness coordinate and _=0 identifies the

reference midplane position; u(x,y) and v(x,y) are the midplane displacements along the x and

y axes, and 0x(x,y) and 0y(X,y) are the rotations of the normal about the x and y axes (see fig.

1). The w 1 and w 2 variables can be interpreted as the normalized strain and curvature in the
thickness direction:

wt/h " uz.,Iz o, w2/h 2 = Lu (1.1)
" 2 z,zz

The 3-D Hooke's law for any kth orthotropic ply is expressed in the mixed form 2

with

]?
Ezz
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(2)

(2.1)

where Cij(k)are the elastic stiffness coefficients corresponding to the x-y coordinates (ref. 12).

The components of strain and stress can be expressed in terms of the plate strain and

curvature variables that are independent of the thickness coordinate:

2 The variables superscribed with the k index are ply-dependent, whereas those without the

k index are some average representations across the laminate thickness and thus are independent

of the individual ply properties.
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oT ,- [exo' eyo' ezo' 7_o] -- [U,, V.y, wt/h, u.y + v]

_Co7" " [_o, _Cyo' _,o' %0] " [0 , 0y, wJh 2, 0,._ + 0._]

o " + 0]_, r ['Y_,o, _'y,o] " [w +0, w y

(3)

The inplane strains, obtained from eq. (1) in accordance with elasticity theory, are

_xx m Exo + Z _o' _yy " _yo + Z ](yo' "Y xy I "_ x'yo + Z _xyo
(4)

The present theory departs from that in ref. 6 only in the manner in which the transverse

normal strain and stress are developed. Here, we independently expand the transverse shear

strains and the transverse normal stress. The motivation for the latter assumption stems from a

careful examination of a series of 3-D exact elasticity stress solutions (ref. 8) for a cylindrical

bending problem (see fig. 2). Figure 3 shows 3-D solutions for the transverse shear and

transverse normal stresses corresponding to the four distinct laminations: [0], [30/-30]s,

[0/90]s and [0/90]. It is quite revealing that the form of the transverse normal stress remains

relatively consistent from lamination to lamination whereas the transverse shear stress changes

dramatically. These elasticity results clearly suggest that an independent, continuously varying

expansion for the transverse normal stress should be an improvement over an analogous

expansion for the transverse normal strain as used in (ref. 6). On the other hand, it is unlikely

that one would gain any advantage by expanding the transverse shear stresses in a continuous

manner across the laminate over that concerning the transverse shear strain expansions (ref. 6)

since the solutions for these stresses (fig. 3) cannot be reproduced with a relatively low order

approximation such as a parabola.

The transverse normal stress and transverse shear strains are expanded independently across
the total laminate thickness as 3

3 2

(Yzz" _,(_._", Y,z " Y_Y,._" (i..x,y) (5)
n-O n-0

The expansion coefficients (yz.=o_.(x,y) and Zn---fi'm(x,y) are determined by requiring the stress

field to satisfy exact traction conditions at the top and bottom plate surfaces

(k).

"c,,(x,y,+h) = o z(X,y,+h) - 0 (i-x,y)
(6)

along with the transverse strains to be least-square compatible with those obtained directly

from elasticity theory using our approximations for the displacements (1):

3 The present approach and that in ref. 6 are equivalent for homogeneous plates (ref. 1).
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:_- (k)

minimize f _l 8zz - u ,z]2 dz

minimize f__h[Ti, - ( u i + ui_ ) ]Zdz (i = x, y)

(7)

where the minimizations are performed with respect to the oz, and Ti,, variables. The resulting

transverse normal stress and transverse shear strains can be expressed as

ff- _o(8o, Ko)+C,(eo, Ko)(_-_3/3), y,. = _(I-_2)T/o (i-x,y) (8)

Application of the virtual work principle results in the 10th-order plate equations of

equilibrium and associated Poisson boundary conditions. The principle also serves as a

variational framework for finite element approximations. The resulting two-dimensional
variational statement has the form

L[NrS8o +MrS_o +QrSTo]dxdy - 8W (u,v,w, Ox, Oy, wl, w2) - 0

where 814', denotes the virtual work of external forces; N={N_j}, M={M_j} and Q={Qi} are

vectors of the plate stress resultants which are related to the plate strains (eqs. (3)) via the
constitutive relations

i)[o o0ilf 

(9)

(10)

where A=[Aij], B=[B_j], D=[Dij ] and G=[G,j] are the plate constitutive matrices.

REMARKS ON FEM APPROXIMATIONS

The variational principle (9) provides a convenient framework for developing efficient plate

bending elements for the analysis of thin and thick composite laminates. In eq. (9), the

kinematic variables u, v, w, 0_ and 0y possesses spatial derivatives that do not exceed order

one, thus requiring only C°-continuous finite element trial functions; w_ and w z do not have

spatial gradients thus needing only C-1 approximations.

The simplest laminate plate element, which is also the most desirable from the standpoint

of adaptive mesh refinement, is a three-node anisoparametric triangle (ref. 6). The element

employs linear (3-node) parametric functions for u, v, 0_ and 0y, an anisoparametric quadratic

field for w and uniform fields for wl and w 2. The latter variables only contribute two degrees-

of-freedom per element; in static problems, they can be conveniently condensed out at the

element level using static condensation.
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RESULTS AND DISCUSSION

The present theory will be qualitatively assessed with respect to its application to the

problem of cylindrical bending of an infinite carbon/epoxy laminate subjected to a sinusoidal

transverse pressure q÷ = qo sin(rex/L). The exact elasticity solution for this problem was first

determined by Pagano (ref. 8). We shall consider an orthotropic [0] laminate, two symmetric

laminates -- a cross-ply [0/90]s laminate and an angle-ply [30/-30]s laminate -- and an

antisymmetric cross-ply laminate, [0/90]. The ply material properties are taken as

E L - 25xlOrpsi, E r - 106psi, GLr - 0.5xlO6 psi
(11)

Gr r . 0.2xlOrpsi, VLT - vrr ,. 0.25

where L and T denote the longitudinal and transverse ply material directions, respectively.

As noted previously, this theory differs from ref. 6 only in the manner in which the

transverse normal stress and strain are approximated. Thus, it is only natural to expect that the

differences in the predictions with the two theories will mostly affect these transverse normal

variables. Indeed, the displacement predictions by both theories are virtually identical, and so

are the inplane and transverse shear stresses and strains.

Figure 4 depicts the percent error in the maximum deflection computed at the midplane of
the laminate versus the length-to-thickness ratio L/2h. The results, which pertain to the

present and ref. 6 theories, clearly show that as far as the deflection predictions are con-

cerned, the engineering accuracy (i.e., error < 5% ) is attained for laminates with the ratio

L/2h > 4. These results demonstrate the adequacy of the overall plate stiffness representation.

Figures 5 through 8 compare the stress and strain thickness distributions for thin (L/2h=40)

and thick (L/2h=4) laminates obtained with the present theory (designated as HOT-S), our

previous {1,2}-theory (HOT-E, ref. 6), and the exact solutions obtained in this effort using the

3-D elasticity approach (ref. 8). Figure 5 shows the transverse normal stress distributions

across the laminate thickness. Note that while both HOT-E and HOT-S are nearly equally

accurate in the [30/-30]s lamination predictions -- with HOT-E exhibiting a slight discontinu-

ity at the interface between 30 deg. and -30 deg. plies -- the HOT-S prediction for the cross-

ply [0/90] laminate is much superior. The transverse normal strain distributions are depicted

in fig. 6, where the present theory exhibits proper discontinuous character at the ply interfac-

es. Except on the bottom surface, both HOT-E and HOT-S produce appreciable errors in the

[0/90] thick laminate.

The transverse shear stress (Xxz) distributions are compared in fig. 7. The HOT-S and HOT-

E stresses are computed by integrating appropriate inplane stress gradients in the 3-D

equations of equilibrium (ref. 6). Throughout, these predictions compare well with the exact

elasticity solutions. Figure 8 depicts thickness distributions of the normal stress (oxx). These

show that for the [30/-301s thick laminate the stresses in the outer plies are underestimated.
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This is naturallythe result of linearassumptionsfor the inplanedisplacements(I). Interesting-
ly, the o_xresultsfor the [0/90] thick laminateareexcellent.

CONCLUDING SUMMARY

In this paperwe havediscusseda new {1, 2}-order theory for theelasto-staticanalysisof
laminatedcompositeplatesin which the assumedvariablesare thecomponentsof the
displacementvector,the transverseshearstrainsandthe transversenormal stress.The
transversestressessatisfyexactstressboundaryconditionsat the top andbottomplate
surfaces.The virtual work principleproducesa setof equilibriumequationsandassociated
Poissonboundaryconditions.As was the previoustheory,this theoryis particularly suitedfor
finite elementapproximationwith simpleCO-and CLcontinuousdisplacementinterpolation
fields.The analytic solutions- obtainedfor a widerangeof laminationsand thicknesses-
showedthat thetheory is applicableto thin and thick laminatedcompositesandhassome
advantagesoverour previous{ 1, 2}-order theory.
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Figure 1. Notation for {1,2}-order plate theory.
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Figure 2. Cylindrical bending of infinite laminated plate.
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