AN IMPROVED PLATE THEORY OF ORDER (1,2}

FOR THICK COMPOSITE LAMINATES A %
A. Tessler' EVAE
Mechanics and Structures Branch /
U.S. Army Materials Technology Laboratory ﬁ P /
Watertown, Massachusetts (
SUMMARY

A new {1, 2}-order theory is proposed for the linear elasto-static analysis of laminated
composite plates. The basic assumptions are those concerning the distribution through the
laminate thickness of the displacements, transverse shear strains and the transverse normal
stress, with these quantities regarded as some weighted averages of their exact elasticity
theory representations. The displacement expansions are linear for the inplane components and
quadratic for the transverse component, whereas the transverse shear strains and transverse
normal stress are respectively quadratic and cubic through the thickness. The main distin-
guishing feature of the theory is that all strain and stress components are expressed in terms
of the assumed displacements prior to the application of a variational principle. This is
accomplished by an a priori least-square compatibility requirement for the transverse strains
and by requiring exact stress boundary conditions at the top and bottom plate surfaces.
Equations of equilibrium and associated Poisson boundary conditions are derived from the
virtual work principle. It is shown that the theory is particularly suited for finite element
discretization as it requires simple C°- and C'-continuous displacement interpolation fields.
Analytic solutions for the problem of cylindrical bending are derived and compared with the
exact elasticity solutions and those of our earlier {1, 2}-order theory based on the assumed
displacements and transverse strains.

INTRODUCTION

Designing of aerospace and ground-vehicle structures with thick-section organic-matrix
composites is necessarily associated with the analytical modeling of the structural response
and the prediction of failure under service loads. For such applications, viable analytical
models are those that can properly account for transverse shear and transverse normal
deformations. These effects, which are negligibly small in thin laminates, can be significant
when the laminate thickness and the wavelength of loading are the same order of magnitude.
Moreover, the reduced stiffness and strength in the transverse shear and transverse normal
material directions can contribute to significant deformations and matrix dominated failure
modes such as delamination and transverse cracking.
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The majority of finite element methods for composite laminates are based upon the {1,0)-
order theories (commonly referred to as 1st-order theories). These account in some average
sense for transverse shear but ignore the effects due to transverse normal deformations. The
use of three-dimensional elements, including all three-dimensional effects, are generally
computationally prohibitive even on a supercomputer, unless employed in some global-local
fashion in a relatively small domain of interest. Although post-processing methods have been
devised leading in some cases to adequate three-dimensional stress and strain recovery from
the {1,0}-order theory computations, the static and dynamic response predictions obtained
with this order of approximation are often inadequate for thick laminates (e.g., refs. (1-7) and
references thereof).

Numerous efforts to generate laminate theories of higher-order that also include transverse
normal deformations failed to produce sufficiently accurate and computationally suitable
formulations to model thick-section composites. Recently, Tessler (ref. 1) proposed a {1,2}-
order theory for the elasto-static analysis of homogeneous orthotropic plates which was
demonstrated to be ideally suited for finite element approximations. Subsequent developments
included the analytic and finite element analyses of elastic beams (refs. 2-4), an extension to
the general {1,2}-order orthotropic shell theory (ref. 5), and an extension to laminated
composite plates for elasto-statics (ref. 6) and elasto-dynamics (ref 7). These theories assume
linear inplane displacements and a quadratic transverse displacement across the thickness.
The key aspect in the approximation is the independent expansions for transverse strains
which allow exact stress boundary conditions at the top and bottom plate faces to be satisfied.
These strains are also least-square compatible with those derived directly from the displace-
ment assumptions.

In this paper we propose a new {1,2}-order theory for the linear elasto-static analysis of
laminated composite plates following the methodology established in (ref. 6). The present
formulation departs from (ref. 6) in that the transverse normal stress is independently
expanded across the laminate thickness instead of the transverse normal strain. The transverse
shear strains are taken to be parabolic satisfying traction-free boundary conditions. The
transverse normal stress is assumed to be a cubic function through the thickness, also
satisfying the consequence of zero shear tractions at the top and bottom laminate surfaces;
specifically, the vanishing on those surfaces of the transverse normal stress gradient taken
with respect to the thickness coordinate. These latter conditions are exact according to three-
dimensional elasticity theory when the body and inertial forces are neglected. The resulting
equilibrium equations are associated with exclusively Poisson boundary conditions. As its
predecessor theory, the present theory requires only C°- and C'-continuous displacement
interpolation fields and thus lends itself well to the development of simple, robust, and
computationally efficient plate formulations similar to Mindlin-type elements (refs. (9-11)).

In assessing the accuracy of the proposed theory, we resort to the problem of cylindrical
bending of an infinite laminated plate for which an exact elasticity solution is available (ref.
8). We compare the results of the present theory for several lamination patterns and span-to-
thickness ratios with those of our previous {1,2}-order laminate plate theory (ref. 6) and the
exact solutions.
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NOMENCLATURE

A; membrane plate rigidities

o elastic stiffness coefficients for the k™ ply

B, membrane-bending coupling plate rigidities

D, bending plate rigidities

G; transverse shear plate rigidities

C continuous functions with discontinuous derivatives at element interfaces
o continuous functions that are discontinuous at element interfaces
2h plate thickness

N;, O, inplane and transverse shear force resultants

M, bending moment resultants

q* applied transverse load at z=h

u, v midplane displacements along x and y axes

U, U, U, Cartesian displacement components

w, w; components of the transverse displacement

X,y and z inplane and transverse coordinates

) variational operator

€ Ky strain and curvature components

0, (i=x,y) bending rotations about x and y axes

3 dimensionless thickness coordinate

Oy T stress components

{1, 2}-KINEMATIC PLATE ASSUMPTIONS

In a laminated composite plate constructed of perfectly bonded orthotropic plies whose
transverse constitutive properties do not differ appreciably, the displacement vector u = (u,,
u,, u,) can be approximated with functions that vary continuously across the total thickness.
The lowest-order displacement expansions accounting for transverse shear and transverse
normal deformations involve linear thickness variations for the inplane components u, and u,
and a quadratic one for the transverse displacement u, (ref. 6) (i.e, {1,2}-order theory):
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u(x,y,z) = u(x,y) + h§0 (x,y), ux,y,2) = v(x,y) + h£8 (x,) M

u,(x,)’, z) = W(X,)’) + iW,(x,}’) + (gZ - 1/5)w2(x,y)

where =z/he [-1, 1] is the dimensionless thickness coordinate and £=0 identifies the
reference midplane position; u(x,y) and v(x,y) are the midplane displacements along the x and
y axes, and 0,(x,y) and 8,(x,y) are the rotations of the normal about the x and y axes (see fig.
1). The w; and w, variables can be interpreted as the normalized strain and curvature in the
thickness direction:

w/h = u |

1 z2,22=0"

wyh® = _u (1.1)

z,22

The 3-D Hooke’s law for any kth orthotropic ply is expressed in the mixed form?

(k)
C.. (:’” éll élﬁ R13 0 0 o €
yy ClZ C22 C26 R23 0 O yy
Fop - éw ézs éss Ry 0 0 ot @
€. R, -R, -R; S, 0 0] (%
Ty 0 0 0 0 C,. C, Vs
sz 0 O 0 () C45 C55 sz
with
Ak
¢, = ¢ -cieicy 2.1)

RY = CFICE, 8% = 1CE (= 1,2,6)
where C,-j("’ are the elastic stiffness coefficients corresponding to the x-y coordinates (ref. 12).

The components of strain and stress can be expressed in terms of the plate strain and
curvature variables that are independent of the thickness coordinate:

? The variables superscribed with the k index are ply-dependent, whereas those without the
k index are some average representations across the laminate thickness and thus are independent
of the individual ply properties.
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g, = (€, € Epr Vol = (u,, v,, wlh, u +v]

kT =k ,K ,K,k ]=[0_,6_,w/h? 0 _+0 ] 3
0 x0’ yo® 20’ Txyo yx? Txy? > Yxx ¥y

Yo = W Yoo = W, +0, w +6]

The inplane strains, obtained from eq. (1) in accordance with elasticity theory, are

- - - 4
£ € +zK , € €+ ZK Yy = Yoot 2K, (4)

xx x0 x0° yy

The present theory departs from that in ref. 6 only in the manner in which the transverse
normal strain and stress are developed. Here, we independently expand the transverse shear
strains and the transverse normal stress. The motivation for the latter assumption stems from a
careful examination of a series of 3-D exact elasticity stress solutions (ref. 8) for a cylindrical
bending problem (see fig. 2). Figure 3 shows 3-D solutions for the transverse shear and
transverse normal stresses corresponding to the four distinct laminations: [0], {30/-30]s,
[0/90]s and [0/90]. It is quite revealing that the form of the transverse normal stress remains
relatively consistent from lamination to lamination whereas the transverse shear stress changes
dramatically. These elasticity results clearly suggest that an independent, continuously varying
expansion for the transverse normal stress should be an improvement over an analogous
expansion for the transverse normal strain as used in (ref. 6). On the other hand, it is unlikely
that one would gain any advantage by expanding the transverse shear stresses in a continuous
manner across the laminate over that concerning the transverse shear strain expansions (ref. 6)
since the solutions for these stresses (fig. 3) cannot be reproduced with a relatively low order
approximation such as a parabola.

The transverse normal stress and transverse shear strains are expanded independently across
the total laminate thickness as’

6,=30,8" v, =Y v.8" (i=x,y) (5)

n=0 n=(}

The expansion coefficients 6,,=0C,,(x,y) and ¥,,=V,.(x,y) are determined by requiring the stress
field to satisfy exact traction conditions at the top and bottom plate surfaces

190, y,2h) = 6 (x,y,xh) =0 (i=xy) (6)

22,2

along with the transverse strains to be least-square compatible with those obtained directly
from elasticity theory using our approximations for the displacements (1):

3 The present approach and that in ref. 6 are equivalent for homogeneous plates (ref. 1).
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I k
minimize f (e - u 1*dz
-h ’

(7
minimize ﬂl[‘ya -(u,; +u, )Pdz (i = x,y)

where the minimizations are performed with respect to the G,, and v,, variables. The resulting
transverse normal stress and transverse shear strains can be expressed as

0-zz = ozo(ea’ K0)“-0'zl(€o’ Ko)(é —§3/3)’ Yiz = ;(1 _{52)7;'0 (i-x’y) (8)

Application of the virtual work principle results in the 10"-order plate equations of
equilibrium and associated Poisson boundary conditions. The principle also serves as a
variational framework for finite element approximations. The resulting two-dimensional
variational statement has the form

[[INT8e, + MT8x, + QT8Y, dxdy - BW, (1, ,w,0,,0 ,w,w,) = 0 (9)

where 8W, denotes the virtual work of external forces; N={N;}, M={M,} and Q={Q,} are
vectors of the plate stress resultants which are related to the plate strains (eqgs. (3)) via the
constitutive relations

N| |A B 0|5,
=|B" D 0|,
Q 0 0G

(10)

where A=[A;], B=[B;], D=[D;] and G=[G,] are the plate constitutive matrices.
REMARKS ON FEM APPROXIMATIONS

The variational principle (9) provides a convenient framework for developing efficient plate
bending elements for the analysis of thin and thick composite laminates. In eq. (9), the
kinematic variables u, v, w, 6, and 0, possesses spatial derivatives that do not exceed order
one, thus requiring only C’-continuous finite element trial functions; w, and w, do not have
spatial gradients thus needing only C' approximations.

The simplest laminate plate element, which is also the most desirable from the standpoint
of adaptive mesh refinement, is a three-node anisoparametric triangle (ref. 6). The element
employs linear (3-node) parametric functions for u, v, 8, and 0, an anisoparametric quadratic
field for w and uniform fields for w, and w,. The latter variables only contribute two degrees-
of-freedom per element; in static problems, they can be conveniently condensed out at the
element level using static condensation.
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RESULTS AND DISCUSSION

The present theory will be qualitatively assessed with respect to its application to the
problem of cylindrical bending of an infinite carbon/epoxy laminate subjected to a sinusoidal
transverse pressure q° = q, sin(nx/L). The exact elasticity solution for this problem was first
determined by Pagano (ref. 8). We shall consider an orthotropic [0] laminate, two symmetric
laminates — a cross-ply [0/90], laminate and an angle-ply [30/-30]; laminate — and an
antisymmetric cross-ply laminate, [0/90]. The ply material properties are taken as

E, = 25x10°psi, E, = 10°psi, G = 0.5x108 psi

' (11
G = 0.2x10%psi, v, = Vv = 025

where L and T denote the longitudinal and transverse ply material directions, respectively.

As noted previously, this theory differs from ref. 6 only in the manner in which the
transverse normal stress and strain are approximated. Thus, it is only natural to expect that the
differences in the predictions with the two theories will mostly affect these transverse normal
variables. Indeed, the displacement predictions by both theories are virtually identical, and so
are the inplane and transverse shear stresses and strains.

Figure 4 depicts the percent error in the maximum deflection computed at the midplane of
the laminate versus the length-to-thickness ratio L/2h. The results, which pertain to the
present and ref. 6 theories, clearly show that as far as the deflection predictions are con-
cerned, the engineering accuracy (i.e., error < 5% ) is attained for laminates with the ratio
L/2h > 4. These results demonstrate the adequacy of the overall plate stiffness representation.

Figures 5 through 8 compare the stress and strain thickness distributions for thin (L/2h=40)
and thick (L/2h=4) laminates obtained with the present theory (designated as HOT-S), our
previous {1,2)-theory (HOT-E, ref. 6), and the exact solutions obtained in this effort using the
3-D elasticity approach (ref. 8). Figure 5 shows the transverse normal stress distributions
across the laminate thickness. Note that while both HOT-E and HOT-S are nearly equally
accurate in the [30/-30], lamination predictions — with HOT-E exhibiting a slight discontinu-
ity at the interface between 30 deg. and -30 deg. plies — the HOT-S prediction for the cross-
ply [0/90] laminate is much superior. The transverse normal strain distributions are depicted
in fig. 6, where the present theory exhibits proper discontinuous character at the ply interfac-
es. Except on the bottom surface, both HOT-E and HOT-S produce appreciable errors in the
[0/90] thick laminate.

The transverse shear stress (t,,) distributions are compared in fig. 7. The HOT-S and HOT-
E stresses are computed by integrating appropriate inplane stress gradients in the 3-D
equations of equilibrium (ref. 6). Throughout, these predictions compare well with the exact
elasticity solutions. Figure 8 depicts thickness distributions of the normal stress (0,,). These
show that for the [30/-30]s thick laminate the stresses in the outer plies are underestimated.
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This is naturally the result of linear assumptions for the inplane displacements (1). Interesting-
ly, the o,, results for the [0/90] thick laminate are excellent.

CONCLUDING SUMMARY

In this paper we have discussed a new (1, 2}-order theory for the elasto-static analysis of
laminated composite plates in which the assumed variables are the components of the
displacement vector, the transverse shear strains and the transverse normal stress. The
transverse stresses satisfy exact stress boundary conditions at the top and bottom plate
surfaces. The virtual work principle produces a set of equilibrium equations and associated
Poisson boundary conditions. As was the previous theory, this theory is particularly suited for
finite element approximation with simple C’- and C'-continuous displacement interpolation
fields. The analytic solutions - obtained for a wide range of laminations and thicknesses -
showed that the theory is applicable to thin and thick laminated composites and has some
advantages over our previous {1, 2}-order theory.
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Figure 1. Notation for {1,2}-order plate theory.

q, sin (tx/L)

2h
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Ny

Figure 2. Cylindrical bending of infinite laminated plate.
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Figure 3. Exact distributions of 1,,(0, z) and 0,(1/2, 2) across thickness in Gr/Ep laminates, L/2h=10.
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Figure 4. Percent error in maximum midplane deflection vs. L/2h ratio for various Gr/Ep laminates.
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Figure 5. Distributions of c,(L/2, z) across thickness in Gr/Ep laminates; L/2h = 40, 4
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[30/-30]s Gr/Ep
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Figure 6. Distributions of €,(1/2, z) across thickness in Gr/Ep laminates; L/2h = 40, 4.
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Figure 7. Distributions of 1,,(0, z) across thickness in Gr/Ep laminates; L/2h = 40, 4.
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Figure 8. Distributions of ¢,(L/2, z) across thickness in Gr/Ep laminates; L/2h = 40, 4.
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