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ABSTRACT

To study the influence on overall deformations of the time-dependent constitutive properties
of fiber-reinforced polymeric matrix composite materials being considered for use in orbiting
precision segmented reflectors, simple sandwich beam models are developed. The beam
models include layers representing the face sheets, the core, and the adhesive bonding of
the face sheets to the core. A three-layer model lumps the adhesive layers with the face
sheets or core, while a five-layer model considers the adhesive layers explicitly. The defor-
mation response of the three-layer and five-layer sandwich beam models to a midspan point
load is studied. This elementary loading leads to a simple analysis, and it is easy to create
this loading in the laboratory. Using the correspondence principle of viscoelasticity, the
models representing the elastic behavior of the two beams are transformed into time-
dependent models. Representative cases of time-dependent material behavior for the face-
sheet material, the core material, and the adhesive are used to evaluate the influence of
these constituents being time-dependent on the deformations of the beam. As an example
of the results presented, if it assumed that, as a worst case, the polymer-dominated shear
properties of the core behave as a Maxwell fluid such that under constant shear stress the
shear strain increases by a factor of 10 in 20 years, then it is shown that the beam deflection
increases by a factor of 1.4 during that time. In addition to quantitative conclusions, several
assumptions are discussed which simplify the analyses for use with more complicated ma-
terial models. Finally, it is shown that the simpler three-layer model suffices in many situ-
ations.

INTRODUCTION

As part of the development phase of the use of composite materials for long-duration space
applications, it would be useful to have a simple analytical tool which models the important
features of sandwich construction and allows for the evaluation of the influence of the time-
dependent behavior of the various constituents in the construction; namely the face sheets,
the core, and the adhesive. In addition, it would be beneficial to have a simple laboratory
specimen which could be used to gather empirical data regarding time-dependent material
behavior and screen candidate materials. Both of these requirements can be satisfied to a
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large degree by considering sandwich beams, and by studying their time-dependent behav-
ior as a function of the time-dependent behavior of the constituents. Beams are one-
dimensional in nature, leading to somewhat simpler analyses than plate or shell specimens
and laboratory loading of beams is generally direct and free of unwanted secondary effects
Three- or four-point loadings are examples of simple yet effective loadings. This paper dis-
cusses the time-dependent response of both three- and five-layer symmetric sandwictk
beams. The five-layer model includes the face sheets and the core, and the adhesive bond-
ing these constituents together. The three-layer model lumps the adhesive layers into either
the face sheets or the core. The response of these two models to a three-point loading is
considered. Numerical predictions regarding the deflections over a 20 year time span are
made in the context of the various constituents of the sandwich construction exhibiting
time-dependent behavior. Since 20 year data are not available, the behavior of the constit-
uents is hypothesized. For more complete details of the work discussed, the reader should
consult ref. 1.

DEVELOPMENT OF THE THREE-LAYER MODEL

Nomenclature and Problem Definition

In fig. 1 the three-layer model is described, as is the loading. The beams considered are of
length L. The three-point bending load consists of a simply supported beam with a point load
P at midspan. Because of symmetry about the midspan, this loading is studied here as &
cantilever beam with a tip load P/2, the center of the simply-supported beam being clamped
in the analogous cantilever problem. The extensional moduli in the x direction of the face
sheet and core are denoted as E, and E;, respectively. The shear moduli in the x — z plane
are denoted as G, and G,. The thickness of the face sheets is t, and that of the core 2h. The
overall thickness is 2H.

Equations Governing Elastic Response

For this problem it is assumed that the stress components o, 7., 7,4, andr, are zero
Hence the elastic stress-strain relation is given by

(’X=E£X TXZ=G1’)X7 N (1:

in the above, for a particular layer, E is the extensional modulus in the x direction and G the
shear modulus in the x — z plane.

The assumed displacement field for the three-layer beam is also illustrated in fig. 1. In par-
ticular, the sandwich cross section is assumed to displace uniformly as-a-whole in the x di-
rection an amount u°(x) and downward as-a-whole an amount w°(x). In addition, the cross
sections of the face sheet layers are assumed to rotate independently of the cross section
of the core; the angles of rotation, ¥y and ¢, respectively, being defined in the figure. With
these kinematics, the displacement field is written as

u’(x) + he(x) — (z + h)(x) (~H<z<—h)
u(x,z) = u(x) — zp(x) (—h<z<+h) \
u’(x) — hp(x) — (z— hWi(x) (+h<z < +H) 2,

w(x,z) = w°(x),all z .

Hereafter, for convenience, the superscript o will be dropped and hence the strains required
for use in the stress-strain relation are given by
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du d¢ dys dw .
dx +h dx (z+h) dx s '{*—d‘;(‘— (—H <z < —h)
=—] du dd) ] = - ,,_...d_\.N_ i < <
&y '—d—x— —Z 'a‘ VYxz (/) | gx ( h<z< +h) (3)
du d¢ dy Ty rEY (+h<z<+H) .
ax Max @5y dx

To be determined are u(x), $(x), ¥(x), and w(x). For the viscoelastic problem the functions
are time-dependent and should be written as u(x.t). ...

The total potential energy used for determining the elastic response simplifies here to

L oH
22 ? (e2 2 _Pw(Lt
n—zjo ji(Estrnyz)dxdx 2w<2>, (4)

2

where the limits on the integral reflect the fact that the analog cantilever problem is being
considered, the tip being loaded with known load P/2. Substituting the moduli and strains
into eq. 4 and integrating with respect to z leads to

+ cB< dax ) + %(c7 + cg‘)(—((jj—\)"(’—)2 (5)

The constants ¢; are as follows:

¢ = hz(E1t1 -+—:13—E2h>

2
1 3
Ce = ?Em
C7 = 2G1t1

From eq. 5, by taking the first variation and integrating by parts, the governing equations can
be shown to be
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d
2 2 (7)
d d
c (f + 2¢q ‘g 1 c7(d—w W) =20
dx dx dx
c dy  d*w 4 e d¢  d’w \ 0
The boundary conditions associated with the variational statement are
= =L
at x=0 at x 5
= du _
u=0 2c, dx
d¢ dy
(]5—0 2013— + C3 dx =0 (8)
d¢ dy
|//—O Ca? -+ 2c6_d—)(_ =
_ dw _ P

On the right side, the 1st and 4th terms can be identified with inplane and shear force re-
sultants, respectively, while the 2nd and 3rd terms are moment resulitants.

The equation for u(x) is decoupled from the other three equations. Here attention will be
focused on the displacement w(x) and thus the first equation will not be considered further.
The solutions for the other three displacement variables are taken to be of the form

P(x) = fe™
Y(x) = se’ (9)
w(x) = we™

Substituting these forms into the last three of eq. 7 results in the following polynomial that
must be satisfied by A:

/16(4c1c6 - cg)(c7 + cg) — A*2cscq)(cy 4+ c3 + cg) = 0 . (10)

The roots to this equation, and application of the boundary conditions, lead to

2

w(x) = w3x3 + Wox® + wyx +w, + wgsinh(ix) | wg cosh(Ax)

2 6(2c, + c;) )

H(x) = 3wax” + 2wox + [w, + —“Fé——wﬂ b wgAg cosh(Ax) + wgAg sinh(Ax)
2 6(c,y + 2cq) '

Y(x) = 3wax" + 2wox + [wy + —— e wyl | wsBg cosh(Ax) 4 wgBg sinh(4x)

(11)

where
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2

R R2
2(Ry + Ry) 9 7

"= SR R
p (12)
"3 = 2R, + Ry
s — —P(c;Ry = CoRy)’ :
2¢,C9A(c; + C9)(Ry + Ry)
Wg = — Wg,
with
) \/ 2c,64(Cq + €3 F Cg)
(dcCq — €3)(Cy + Co) (13)

R2 — C3 + 2C6 .

Interest here will focus on the response at the tip of the cantilever, this being representative
of what the beam is doing. in that regard, using x=L/2, eqs. 11 and 12,

2 2
W = W(_L_) = PLa + PL Ri 4 &
tp 2 48(Ry + Ry) 4R, + R2)2 Co C7

P(c,R, — CgR,)? : AL
- (c7Ry — cgRy) 2(1~ez).
2¢,c9A(C7 + Co)(Ry + Ry)

(14)

it has been found that for a very wide range of values of elastic properties, the last term
contributes very little. It is thus dropped as it considerably simplifies the algebra.

Time-Dependent Behavior of the Three-Layer Beam

In the present study, for obtaining an understanding of the overall effects of the time-
dependence of the various constituents, and at the same time considering a worst-case sce-
nario, the constituents are modelled as Maxwell fluids. With a Maxwell fluid, for a constant
level of applied stress the material strains indefinitely. For a Maxwell fluid the constitutive
equation takes the form

o+ Py = Qyi (15)

where it is understood that ¢ can represent a normal or a shear stress and ¢ can represent
an extensional or a shear strain. Taking the Laplace transform of both sides results in

P(s)a(s) = Q(s)(s) . (16)

where 3(s) and (s) are the Laplace transforms of the stress and strain functions of time, re-
spectively. In the above
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P(s) = 1 + pys
Q(s) = as . (17)

It should be noted that the subscript 1 on p, and q, in egs. 15, 17, etc. have nothing to do with
the face sheets. The nomenclature p, and q, are standard for viscoelastic materials. See ref.

2, for example.

If a particular constituent is considered to be time-dependent, then the application of the
correspondence principle for the sandwich beam problem at hand calls for replacing, in the
formulation for the static elastic response, the elastic modulus of the constituent with the ra-

tio Q(s)/P(s), i.e.,
E or G—Q(s)/P(s) . (18)

The static load P is then assumed to be applied at time zero in a stepwise fashion so the load
must be replaced with its Laplace transform, i.e.,

P—P/s (19)

The resulting expression is then the Laplace transform of the time-dependent response of the
beam. Taking the inverse transform yields the response of the beam as a function of time.

To estimate the long-term effect of time-dependent behavior in the sandwich beams here, it
will be assumed that if a constituent exhibits time-dependent behavior, the strain of the con-
stituent will increase by a certain factor in 20 years if subjected to a constant stress. Two
levels of time dependency will be studied, one considered worst-case time dependency and
the other considered minimal time dependency. The displacement response of the tip for the
20 year period for these two levels of time dependency will then be computed.

As an example, consider the following: With the face sheet material properties being con-
trolled to a large extent by fiber properties, a large degree of time-dependent behavior is
unexpected. Hence, it will be assumed that the face sheet material, in the extreme case,
exhibits a 10% increase in extensional strain when subjected to a constant stress for 20
years. As a result, for the face sheet material

q, =200E, and p,;=200 years . (200

Using eq. 17, the substitutions indicated by eqs. 18 and 19 can now take place in eq. 14 (with
the last term dropped). Performing the inverse transformation results in an expression for
the time-dependent tip deflection, namely,

3 /A B
PL a4 —- =t
Wip(t) = Wiip + _§6_<—B—G_><1 ~ec)
2.2 2
PL 1 2 B%H? 1 ( B°Fq; B,
1 {p?- =2 (1 — e G ) |
16B% | ©9 G? 7 G (21

22 2
_PL 1 (o— BH )2 L A BFar )| -2,
16BG | s G c G2

where



A = t,(n® + ht; + %tf)
_ L.
B = Eh( h’)
C = t,(2h° + hty)
D = Exh(5-1) (22)

F =ty + =)

G = Aq; + Bp;,
H = Cq; + Dp;q

and w,, represents the elastic response as given in eq. 14. Consider a sandwich beam with
quarts epoxy face sheets in an 8 layer quasi-isotropic lay-up and a honeycomb core. Table
1 illustrates nominal constituent elastic properties. Note that table 1 includes information for
the five-layer model to be discussed shortly. For the three-layer model, since the adhesive
layer is so thin, the elastic properties of the core are not adjusted to account for lumping the
adhesive into the core. Only the thickness of the core is adjusted.

Table 1. Nominal Material Properties and Geometries for Beam Model

Face Sheets Honeycomb Core Adhesive
E, = 2.5E6 psi E; = 1.0E3 psi E, = 0.5E6 psi
G, = 0.96E6 psi G; = 29E3 psi G, = 0.179E6 psi
t, = 0.040 in. h = 0.255in., t, = 0,
3-layer model 3-layer model
h = 0.250 in,, t, = 0.005in,,
5-layer model 5-layer model

From eq. 21 it can be seen that the time dependency is exponential in form but, as shown in
fig. 2, over the 20 year period it appears linear. For the quartz-epoxy/honeycomb sandwich,
the percent increase in tip deflection, relative to the static elastic defiection at t=0, is illus-
trated in fig. 2 for both the worst-case, or maximum, time dependency and the minimal
time-dependency of the face-sheet material. Minimal time dependency is defined to be the
case when the face-sheet material exhibits only a 1% increase in extensional strain when
subjected to a constant tensile stress for 20 years. For the worst case it is seen that the
cantilever tip deflection increases by about 8% in 20 years. For the case of minimal time
dependency, the tip deflection increases just under 1% in 20 years. These numerical values
reflect an almost one-to-one relationship between face-sheet material extensional properties
and tip deflection.
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As another example, if the core exhibits the behavior of a Maxwell fluid, the appropriate
substitutions of eqs. 17, 18, and 19 into eq. 14 leads to an expression for the time-dependent
tip deflection as

2
PL Ri |t

wy (t) = wy, + ( ) — . (23)
b P 4R, +Ry? 2 &

As can be seen, the tip deflection is linear with time.

Assuming for the case of maximum time dependency that the core strain increases by a
factor of 10 in 20 years, and for the case of minimum time dependency that the core strain
increases only by a factor of 2 in 20 years, eq. 23 leads to the resuits shown in fig. 3. It is
seen that these cases lead to considerable tip deflection over a 20 year period.

DEVELOPMENT OF THE FIVE-LAYER MODEL

Nomenclature and Problem Definition

To explicitly include the adhesive layer, a five-layer model is necessary. The nomenclature:
and kinematics of the five-layer model are shown in fig. 4. The properties of the face sheets
are subscripted with a 1, the properties of the adhesive subscripted with a 2, and the prop-
erties of the core subscripted with a 3. Total sandwich thickness is again 2H.

Equations Governing Elastic Response

The sandwich cross section is again assumed to displace uniformly as-a-whole in the x di-
rection an amount u°(x) and downward an amount w°(x). The cross sections of the face shee:
layers are assumed to rotate independently of the cross sections of the adhesive layers, anc
the core has its own cross-section rotation. The displacement field is thus given by

u°(x) + ha(x) + tLA(X) — (Z + h + L)p(x) ~ H<z< —H +

u®(x) + ha(x) — (z + h)f(x) ~H+t<z<—h
u(x,z) = ul(x) — za(x) — h<z<h (24
u®(x) — ha(x) — (z — h)f(x) h<z<H —t,

u°(x) — ha(x) — t,B(x) — (z — h -~ t)y(x) H—t,<z<H

w(x,z) = wo(x) .

There are five kinematic quantities to be determined with the five-layer model. Dropping the
superscript o, the strains are given by
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g:+hgz+t2 35—(z+h+tg)%3:— —H<z< — H +
%:—+h%—(z+h)—:% ~H +t;<z< — h
6, = _g_l):__z%;_ — h<z<h
%;__hg_i_(z_h):—i}- h<z<H —t,
3z-hgi—t2 gﬁ—(z—h—tg)—:—z— H —t,<z<H
—y+%w— —H<z< - H+
X
—/)’+%’Z— —H+ty<z< —h
Vg = ~a+%‘—)"(’— — h<z<h (25)
—[3+—‘;—‘:~ h<z<H —t,
—y+%‘;ﬂ(’— H--t,<z<H ,

Substituting these strains into the total potential energy. eq. 4, leads to the following differ-
ential equations for the kinematic variables:

) ol ) ol
IR IR R
) el g)

where the constants c;, are given by
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¢, = h2Ety + Bty + —Esh)

c3 = hty(E4ty)
2 1
cs = tity(Eqty)
2, 1
Cg = t1(‘:'3‘E1t1)
C7 == 2G1t1
The relevant boundary conditions are
_ o _ L.
atx = 0: atx = 5
u=20 2c0<—g—5—) =0
dp dy
_ da_ ) - ) =
o =20 zc‘(dx)+c2<dx>*c3(dx> 0
[f—O CQ(E')-FZC“(E(—)*P Cskdx =0
df d
d
w =20 (C7+C8+C9)(d—‘:‘) C7y — Cgff — cgo = 5

As before, the equation governing u°(x) decouples from the other four and it can be disre-
garded at this time. Solution of the equations for o(x), fi(x), y(x), and w(x) follows the
procedure for the three-layer beam. The algebra, however, is considerably more involved.
As with the three-layer beam, approximations are used to simplify the algebra, particularly
for application of the correspondence principle. Through these approximations, the ex-
pression for the tip deflection of the five-layer beam takes the form

L pL3
e ( 2 ) 48(R, + R, + Ry)
PL R; R R\~ (29)
+ ==+

where
R1 S 2C1 + Cz -+ C3
R, = ¢, + 2¢4 + ¢4 (30)
R3=C3+C5+2C6.

This equation is the analog of eq. 14 for the three-layer beam.
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Time-Dependent Response of the Five-Layer Beam

Numerical studies with the five-layer beam indicate that littie new information, relative to
what can be learned with the three-layer model, is obtained by using the five-layer model to
study the influence of time-dependent face sheet and core properties. However, since the
five-layer model includes the additional feature of the adhesive layer, it is of value to discuss
the influence of time-dependent adhesive properties. Assuming the adhesive shear proper-
ties behave as a Maxwell fluid, using the expression for the tip deflection, eq. 29, performing
the steps given by eqgs. 18 and 19, and taking the inverse transformation, the tip deflection
as a function of time for a viscoelastic adhesive layer is

2 R
PL R3 t
we (t) = Wy + (—) (31)
tip tip 4(R1+-R2+-R3f ( 2t, ) q4

This expression also depends on time in a linear manner. Using the material properties as
given in table 1, the time-histories of the percent increase in tip deflection for the cases of the
adhesive shear strain doubling and increasing ten-fold in 20 years are shown in fig. 5. For
the worst-case condition, the tip deflection changes by less than 0.5% in 20 years.

CONCLUSIONS

Presented has been the development of models to be used in evaluating the influence of
time-dependent face sheet, core, and adhesive constitutive properties on the overall defor-
mations of sandwich beams. The study has its origins in the need to understand the time-
dependent deformations of orbiting precision segmented reflectors. Beams may be
considered an oversimplification of the structural characteristics of segmented reflectors.
However, the basic characteristics of sandwich construction are retained in the beam mod-
els, and beams could serve as a screening tools as effectively, and certainly as economically,
as plate or shell-like models. Here efforts have been made to involve the important material
properties explicitly so parametric studies can easily be made. Some approximations were
necessary, but these have been justified and in no way do they compromise the resuits ob-
tained.

Several recommendations are in order. First, extending the analysis to include thermal ef-
fects, such as would occur in the presence of a slight through-the-thickness temperature
gradient, would be worthwhile. Such a gradient would cause unwanted curvature in a beam,
and over time, the curvature may change. Second, it would be useful to extend the analysis
to include the two-dimensional aspects of the reflector, namely its plate-like geometry. If the
change of focal length with time, for example, of a reflector is to be determined, such an
analysis is necessary.
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