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ABSTRACT /1f

A design tool is presented for predicting the effect of material heterogeneity on the performance of
curved composite beams for use in aircraft fuselage structures. Material heterogeneity can be induced
during processes such as sheet forming and stretch forming of thermoplasti'.c corn .posites. This _ .
heterogeneity can be introduced in the form of fiber realignment and spreading during the manuractunng

process causing a gradient in material properties in both the radial and tangential directions. The analysis
procedure uses a separate two-dimensional elasticity solution for the stresses in the flanges and web
sections of the beam. The separate solutions are coupled by requiring that forces and displacements match
at the section boundaries. Analysis is performed for curved beams loaded in pure bending and uniform
pressure. The beams can be of any general cross-section such as a hat, T-, I-, or J-beam. Preliminary
results show that the geometry of the beam dictates the effect of heterogeneity on performance.
Heterogeneity plays a much larger role in beams with a small average radius to depth ratio, R/t, where R is
the average radius of the beam and t is the difference between the inside and outside radius. Results of the
analysis are in the form of stresses and displacements, and they are compared to both mechanics of
materials and numerical solutions obtained using finite element analysis.

INTRODUCTION

The use of composite materials in commercial aircraft has been focused on secondary structures
such as control surfaeos and trailing edge panels. Breakthroughs in manufacturing techniques, materials,
and structural concepts are needed so that more primary structures can be produced from composites
resulting in structural weight savings, part count reduction, and cost reduction. This research investigates

the possibilities of combining a new material s_,stem of long discontinuous fibers in a thermoplastic matrix
with fabrication techniques such as sheet forming and stretch forming to produce curved beams for use as
primary structures in commccial aircraft.

Manufacturing processes such as sheet forming and stretch forming can be used to produce several
types of composite parts [1, 2]. The use of a long discontinuous fiber material system allows for material
stretching over complex curvature parts while maintaining a high percentage of the continuous fiber
material properties [3]. Combination of these forming methods and material system allows the production
of complex structures such as curved beams as shown in Figure 1. The microstrucmre of a curved beam is
sensitive to the production method and gradients in material properties are expected in both sheet formed
[4] and stretch formed [2] beams. Schematic examples of two types of heterogeneity are shown in Figure
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2; analysis of these types of beams canbe useful in determining the effect of such property gradients on the
overallperfonmnce of a givenbeam.

Two scpar_ analy_s were _ The first uses a _ fonn stress, potential approach
invcstigm theeffect ofradiall__m_bemxs " __pum bending. The stressstm xs
found for beams which can havo So_nd _ geomeui_includ/_ I, J, T, and rectangular cross-
seclic_. Material properties can be _ indepetxk_ly.for each Se_m. of..t_ beam, Lc., flan_ _
web can have different properties. Each sect/on oftbe beam is treated as an individmfl cm'ved rectangular
beam loaded in pure bending and wi.._ .a_ distribuled load on th_ city..ed surfaces. S_iflon is
used m combine d_ _ of the individual sec_ into the total beam sotudoo. Details of the analysis
are provided and results are shown for comparison with known solutions.

Thesecondanalysis_hniquews.a Ra.y_gh-Ritz_ m solvethe_ poten.tial
e.nc_. eq.u_i.'onin a c/rcul_ xinglosdedwire_. _ ._I. e.x_sl pressure.This ,,an sppmxmu_
soluuon which uses an assumed series fmumlation of the displacemeaU field. The sdvanmp of rids n_
is that it allows for any type of ma_'lal he_'oj_meity and can be used to solve other relevant problems such
as tensile loaded beams or beams with Fometric stress concentrations such as cutouts.

Analysis resultz are ccmpmpd_ to soludons found by using mechanics of materials and.finil_ element
analysis. The mechanics of ma_ _ m_ useful for..ct_lming results for beams w_th
homogeneous mam-ial proper__ _and lhe finite element analy m _ _ to wive the problem when. the

curvedbeam,  bending.
canbe w th being .op so

that a similar tool can be used to analyze curved beams with different loading c¢_ulifions or geometric
configurations.

ANALYSIS PROCEDURES

I-Ieterogeneity Analysis

The s_ of s_'r,u and strain is _ for a curved be,am loaded in pure bending which has any
of the following cross-sec_ms; I-beam, T-beam, I-beam, etc. The solmion is found by separating the
beam into three sections; each with an applied bending moment and distributed load. A stress potential
approach is used to solve the two-dimensicmlprobIem in each section. The constitutive relations take the
form

si = o4j r'n oj ; i,j = 1,2 (I)

where e is the tw_ strain vector in polar coordina_s, o is the corresponding mess vector, r is

the radial position, and cqj are the base values of the elements of the compliance matrix;

aufan/Bll , a12=_21=-v12an_12 , a22ffian/_22, (2)

and a is the _ radius of the beam. The degree of radial heterogeneity, n, allows for a property gradient
in the radial _ of the beam. A positive 'n' defines a beam which _s stiffer with increasing redius, a
nega,ive _' defines abeam which is mc_e compliant with increming radius and homo geneom nmm-ial
properties are specified by _ n = O. Base values for the material properties ate defined along lhe inside
radius of the beam. This constitutive relation, together with equilibrium and compatibility can be combined
to form the equation

=0 (3)
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where _ is the stress potential. Wecan solve for _ by applying _ conditions to the two-
dimensional curved beam as shown in Figure 3; the tractions along_straight edges are represented by a
bending moment, M, and the curved surfaces are traction free. The n_sulting stresses are [5]:

ct- cn+l cn+l. c sM ps-;
Orf-_gg + Cs.ct

pt-I + pn I ,

M__M__r:_,::n+,
aeffi-blhg L c s -_'7 S pS-I + cn+l " cs 1cS.ct tO t'l + (n+l) On ,

where,

g_(Ct'cn+l)(l'cS+l) , (cn+l'cS)(l"ct+l) t (n+l)cs - ci s+"-[+'" cs- ct + (l" c.+l) , (5)

(:) ½( )= n + 3/n 2 + 4 Yn , Yn = a22 ' (6)

and h is the beam thickness, c is the ratio of the inside radius to the outside radius (c ffi a/b), and p is the

ratio of radial position to outside radius _ ffir/b). Noticc that the solution is axisynm_tric and Ore ffi 0
cvcrywhere.

Another loading condition _ produces an axisynm_tric state of stress in a curved beam is the
classic Lamc's problcm, which is a circular cylinder with an internal and cxtcmal pressure. The stresses in
such a cylinder are [5]:

ps-I. pt.1 c t ps-I. cs pt-I
Or--Pc cS.c t +Q cS.c t

s ps-I - t pt-I
oe =- P c cS. ct + Q

s ct ps-1. t cs pt-I

cs = ct

(7)

where P is the internal pressure, Q is the external pressure, and all the other variables are the same as in the

pure bending cM.e. When looking at a section of the cylinder, as shown in Figure 4, the straight edges arc
not traction free, the tractions _ be _'presented by an end moment and an end load analogous to hoop
stress found in a thin walled cylinder. The end load, L, is determined by integrating the tangential stress
across the depth of the beam and the end moment, ML, is found by integrating the tangential stress times
the radius across the depth of the beam.

The displacements for both of these loading conditions are found using a two step procedure. The

firmerstep finds the radial and tangential strains by substitutin.g equations (4.). and (7) into equation (I). Then
expressions for the displacements can be found by applying the strain displacement relations [5].

Superposidon of Two-Dimensional Solutions

Now that the solution for the stresses has been established in each individual section under the

general loading shown in Figure 5, superposition is used to find the solution of the entire beam. The

, ... W
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cm_.I-beam, for example, loaded with a bending moment, M, is separated into three sections with the
following bending moments and distributed loads: M1, M2, M3,1>2, P3, QI, and Q2, as shown in Figure
5. Applying superposition; the sum of the moments on the ends must be equal to M:

M1 + M2 + M3 + ML1 + ML2 + ML3 = M (8)

where MI, M2, and M3 are applied bending moments and ML1, ML2, .and ML3 are the bending moments
due to the applied distributed loads QI, P2 and Q2, and P3, respectively.

Six more equations are necessary to solve this problem. The sections must be in equilibrium where
they meet. therefore the radial loads must be equal resulting in the following relations:

P2 h2 = Q1 hl and P3 h3 = Q2 h2 (9)

where hi, h2, and h3 are the thickness of each section and the P's and Q's are the applied pressures. The
final equations are found by requiring the continuity of the displacements at the section boundaries. The
radial and tangential displacements of section I must be equal to the corresponding displacements of section
2 at the section boundary where r = b. Similar conditions hold at the other section boundary where r = c.

ur(1)=Ur(2), atr=b Ur(2)=UrO), atr=c

= Uo(2) at r = b ue(2) = UoO), at r = c. (10)uoO)

Equation (8) which is the superposition equation, equations (9) which are the two equilibrium equations,
and equations (I0) which are the four continuity equations are solved simultaneously for the seven
unknowns; MI, M2, M3, P2, P3, Ql, and Q2. The stresses, strains and displacements can be found in
each section based on these loading conditions.

Rayleigh-Ritz Structural Analysis

This method is used to solve the problem of a circular ring loaded by internal and external pressure.
It makes use of an assumed displacement field which can also be used to solve several other problems [6].
This method allows for the calculation of stresses in components without the need for elaborate pre- and
post-processing; which is especially convenient for parts with complex heterogeneous material properties
and geometry.

The principle of minimum potential energy states that of all displacement fields which satisfy the

prescribed constraint conditions, the correct state is that which makes the total potential energy, H, of the

structure a minimum [7]. The potential energy of the smscua_ is the sum of the elastic strain energy, U,
and the potential of the extema! forces, V. The minimum potential energy is found by setting its first

variation equal to zero, 8 rl -- 8 u + 8 v = o; which can be expanded to

where,

8{E}T{Iq} dA- _8{u}T{t} dS --'0. (11)
A S

{g} = strain vector
{N} = stressresultant vector
{u } = displacement vector
{ t} = applied surface traction vector

and A is the area of the circular ring and S is the curve which defines its boundary. We assume the
following form of the displacement field,
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N M k r2Ck-M)+lcos(2je) , ue= sin(2je),ur= (12)

lr

where Ur and ue are the displacement components and q_ are unknown parameters.
This displacement field

satisfies symmetry conditions and, for the case of an isotropic circular rin_ loaded by internal and external

pressure, it converges to. the exact solution with very few terms of the series; jffi0 and k=2. Substituting
this equation into the principle of minimum potential energy, equation (11 ), leads to a system of M(2N+ 1)

1_

linear equations which are solved simultaneously for the unknown parameters, q;. A detailed description

of the solution procedure is presented by Russell [6].

RESULTS

The superposition model, which is used to fred stresses and displacements in a curved beam loaded
in pure bending, has been verified by companng results with mechanics of materials and finite element
analysis solutions. Several example problems of isotropic beams having I-, T-, or rectangular cross-

sections have been examined and the difference between thc.supt-'rposition and mechanics of materials
solutions is less than I% for all cas_. Two-dimensional finite element analysis is used to compare results
for a curved heterogeneous anisotropic J-beam. The heterogeneity is introduced into the finite element
analysis by varying the material properties in each element of the model. Table I compares the

superposition results with those found using finite element .a_.sis for a beam with the following
dimensions: inside radius is 37.4 inches, the outside radius zs 39.9 inches, the lower flange is 0.49 inches

wide, the upper flange is 0.89 inches wide and the web and flanges are 0.06 inches thick. The flanges are
incorporated into the finite element model by setting the thickness of the inside and outside row of elements
accordingly. Three different constitutive relations are examined; the degree of radial heterogeneity, n, is set
equal to -2, 0, and +2, where an 'n' value of-2 corresponds to a beam which is approximately 20% stiffer
on the inside radius, an 'n' value of +2 is roughly equivalent to a beam which is 20% stiffer on the outside
radius, and an 'n' value of zero means the beam is homogeneous. The finite element analysis results are

within 3.4% of the superposition results as shown in Table I.

The validity of the model has been demonstrated and the effect of radial heterogeneity on beam
performance can nowbe determined. The maximum tangential stress and maximum displacement versus
heterogeneity are found for a curved J-beam loaded in pure _g. These maximum values are plotted
for several different beam geometries in Figure 6. The degree of heterogeneity is varied from -2 to +2
corresponding to approximately a 20% decrease or 20% increase in stiffness, respectively. The effect of
material heterogeneity is highly dependent on the beam geometry which is characterized by the average
radius to depth ratio, R/t; where R = (ri + ro)/2 and t = ro -_. Heterogeneity has a considerable effect on
the maximum tangential stress in beams with a small curvature, R/t = 1, while it has virtually no effect on
the stresses in beams with a large curvature. The maximum displacement is effected by heterogeneity for
all beam geometries considered, but, the effect is again seen more drastically in beams with small
curvature.

This analysis procedure can be used as a simple tool for preliminary design of curved beams.
Given the basic beam dimensions, i.e., inner and outer radii; a range of values for all other dimensions can

•be selected. Flange widths and thicknesses can be varied independently as well as the material properties
and degree of heterogeneity in each section. The results of a &_.mple preliminary design are presented in
Table 2. Two types of beams are analyzed; a J-beam with aa-R/t ratio of 14.5 and a channel beam with an
R/t ratio of 6.7. The table shows the change in maximum and minimum tangential stress as well as the
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deflection for a range of several variables. These variables m the degree of radial hel_.aeity
which ss varied from -2 to +2 for isolropic and unidirectional beams, the inner flange thickness, hl, which
is varied from 0.09 to 0.89 inches, and the web thickness, h2, which is varied from 0.04 to 0.I inches.

Table 1: Comparison of S_sition .m_ Finite Element Analysis Results
for a Heterogeneous, Anisotroptc J-Beam Loaded in Pure Bending

Solution Degree of

Procedure Heterogeneity

(n)

FEA -2

Superposition -2

% Diffen_m_ --
| III

0

Supm_pmition 0
i l|llill i

%_ .--

_A 2
l,, ,,ll i ill !l II

Su_ 2

% Di_erence ---

Maximum

Displacement.

7.08 E-5

7.21 E-5
i

1.8 %
II II I

6.53 E-5

6.76 E-5
I IIII

3.4 %

6.23E-5

6.34 E-5

1.7 %

Maximum

Streu

5.14
i

5.17

_6 %
IIIII

5.01
i

5.04

I I

4,89

4.91

0.4 %

Minimum

Stress

-3.50

-3.54

1.1%
IIIII

-3.57

-3.63
II

1.7 %

-3.67

-3.71

1.1%

Table 2: Design Study Results

The Rayleigh-Ritz technique is used to solve the problem of a curved beam loaded by internal .ando.o_ O_OlO
._ .x_'ence._ wxmm 0.I %. This solutmn technique xs also verified by solving the

o_ an .mtmt..tep.htte wUh a.cen .trolly loca.ted hole loaded only by an internal pressure where the
tmt_ atrecuons are atong ttte canestan axes. This problem is modeled by letting ri = 1 inch, re

= 30 inches, Pi = 1 psi, and Po = 0 psi. The stress concentrations found at e = o* and 90 ° are within 1% of
those found by Lekhnit_i [5]. A carbon reinforced thermoplastic composite ring with an inner radius of 6
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inches and an outer radius of 8 inches is analyzed for __nt fiber arrangements; one with
tangentially oriented fibers and the_ wth fil_m _ in _x_Limction. The stress distribution is
axisymmetric in the ring with tangentially oriented fibers M shown in Figure 7a while the ring with straight

fibers in the x-direction has a slight stress concentration at _ly 6 = 45 ° as shown in Figure 7b.

These results are evidence that the tangential heterogeneity due to non-axisymtmtric fiber distribution can
affect the stresses m a curved beam loaded by internal and external pressure.

DISCUSSION

A dosed form elasticity solution can be used to solve for the messes and displacements in a
heterogeneous anisotropic curved beam loaded m pure bending. The elasticity analysis, based on the

superposition of several _mensional solutionS, _ remits w .hich are in very good agreement
with those found from mechamcs of materials and finite _t analysts. The heterogeneity is introduced

into the model by defining the material propm_s as an _ .fm_on of the radius, while the actual
hete_.geneity due to tibet" realignment during forming can be detmmined using enhanced ultrasonic C-
scanning techniques.

The effect of radial heterogeneity on curved beams loaded in pure bending depends on the geometry

of the beam. The maximum stress and deflection in beams with a small avera.__ radius to depth ratio is
significantly affected by heterogeneous material _. A beam whose stiffness decreases by 20%
from the inside to outside radius 0.e., n = -2), shows a 28_ increase in the maximum tangential stress and
a 75% increase in the maximum deflection when _ to a homogenemm beam ifR/t = 2, but only a
1% and 4% increase, respectively, if R/t = 10. It is unlikely that radial heterogeneity affects the
performance of most beams used in transport aircraft fuselage applications since they have an R/t > 10; but
this heWn3geneity could play a pan in the perfcmnmme of beams used in other applications.

The supetpmition elasticity analysis hu been imm'lmtated into a computer program which can be
used for design studies of _ beams. Several of the beam patazmtm's can he varied to determine their

overall effect on me .xitn..".um tensile and compressive swemt_ all well as _ deflections. The variable
pt2zan_...te.rsare the .tl_mess and .d_th of .tl_e.flan_e and web alomg with..the." .matm_..l.xoperu'es.and degree
ot radial heterogeneity. This _a quw.x ano easy _way to peamm uauat eemn sizing catcumtions.

he  can
terogenexty, ot u resultspzmepressunz ring

problem, h ot2_. m _ axis _ am__ _U #FJJymmetdc state off St)_. s when
pressm'izvd..Rings with tangential, ._e_fe/_y, _,_._-_ have an axisymmetr_, state of stress
when pressurized. Su_. ss conccn tim of both the material properties and
the heterogeneity.. This type of am_m m to stud.},, the effect of heterogeneity on
curved beams subject to several diffc_-_ loading bending, internal and external pressure,
and end loading. G.eometric hetemgenei'ty, such U is also under investigation. Future
work includes applying an appropriate failure ts of these analyses and comparisons
with expm'imental data. . *:_:.........
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Figure 1: Thermoplastic Composite Curved Beam
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