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ABSTRACT

Impact damage resistance of laminated composite transport aircraft fuselage structure was studied

experimentally. A statistically based designed experiment was used to examine numerous material,

laminate, structural, and extrinsic (e.g., impactor type) variables. The relative importance and a

quantitative measure of the effect of each variable and variable interactions on responses including

impactor dynamic response, visibility, and internal damage state were determined. The study utilized

32 three-stiffener panels, each with a unique combination of material type, material form, and

structural geometry. Two manufacturing techniques, tow placement and tape lamination, were used to

build panels representative of potential fuselage crown, keel, and lower side-panel designs. Various

combinations of impactor variables representing various foreign-object-impact threats to the aircraft

were examined. Impacts performed at different structural locations within each panel (e.g., skin

midbay, stiffener attaching flange, etc.) were considered separate parallel experiments. The

relationship between input variables, measured damage states, and structural response to this damage

are presented including recommendations for materials and impact test methods for fuselage structure.

INTRODUCTION

Carbon fiber composites have the potential of reducing both the weight and cost of primary aircraft

structure. The high specific stiffness and strength along with corrosion and fatigue resistance have
been cited by many researchers as benefits of composite materials. One major weakness of laminated

composites is their reduced strength when subject to foreign object impact. This susceptibility to

impact damage has been studied by many investigators. Impact induced matrix damage has been

found to reduce the compressive strength [1, 2], while fiber damage reduces both the compressive and

tension strengths [3, 4].

Impact studies conducted by NASA and other researchers in the past [e.g., 1, 2, 5-7] concentrated on

wing type structure. Impact testing was performed on both coupons and subcomponents using

simulated impact threats, usually with a hemispherical tip. Internal Boeing studies involving various

shop tools dropped onto test articles were correlated to these assumed impact threats. The coupons

and subcomponents were then tested in axial compression (to simulate upper wing surface loads) to

determine the effect of the damage.

This work was funded by Contract NAS1-18889, under direction of J.G. Davis and W.T. Freeman of

NASA Langley Research Center.
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Thedamagestatesandresidualstrengthsobservedin theseearly testswerefoundto bea strong
function of impactenergyandrelatively independentof theimpactorshape.Matrix damage(i.e.,
delaminationsandtransversecracks)wasfoundto betheprimaryfailure mechanismfor the "brittle"
epoxylaminatesunderstudyat thattime. Thearealextentof thematrix damagewasa strongfunction
of the impactenergy.Local fiber failuresweresuppressedby theformation of largedelaminations
which reducedlocalcontactforcesby locally softeningthelaminate. Matrix damagedominated
compression-after-impact(CAI) strength[6], while fiber failure, which would be strongly influenced

by impactor geometry, was not found to be a strong contributor to the observed compression strength

degradation. These findings along with ease of analytical modeling lead to the use of spherically

shaped impactors with diameters between 12.7 mm and 25.4 mm for the majority of studies on impact

on fibrous composites to date.

Coupon level tests such as the 6.35 mm thick NASA ST-1 [8] and the 4.6 mm thick Boeing 4"x6" CAI

[6] were developed based on results and observations from these early impact studies. The design of

these specimens and tests emphasized the effects of matrix damage. Much of recent composite

material development efforts have concentrated on improving CAI while keeping some minimum

hot/wet compression strength. Approaches for improving CAI have included toughened (high

elongation) thermoset matrices [9], addition of discrete interlayers (e.g., adhesive or elastomeric

particle) [10, 11], through-thickness stitching [12, 13], and braided fiber architectures [14].

Improvements in CAI by the first and second methods stated above have been accomplished by

reducing the areal extent of matrix damage [15]. This reduction of delamination planar area would

tend to increase local contact forces during an impact event. Braided composites may absorb some

energy through matrix cracking, but delamination is suppressed by the fiber architecture [14]. Both

may have a stronger tendency toward fiber failures under the impactor and have post-impact strengths

influenced by impactor geometry.

An experimental study to investigate impact damage that may occur in laminated composite aircraft

fuselage structure was performed. Material, laminate, structural, and numerous impact variables were

considered. A design of experiments (DOE) technique was used to study the large number of

variables. The relative importance and a quantitative measure of the effect of variables and variable

interactions with respect to specific responses were determined. The current study utilized 32 three-

stiffener panels, each with a distinct combination of material type, material form, and structural

geometry to study the impact damage resistance of fuselage structure. Laminate and structural

variable levels were representative of potential fuselage crown, keel, and lower side-panel designs.

TEST MATRIX DEVELOPMENT

Variable Identification

Intrinsic Variables. Aircraft fuselage can be designed with many different combinations of material,

layup, and structural geometry depending on specific requirements. An aircraft fuselage may be

considered as four separate quadrants, each having different design drivers. The crown (top) is

dominated by tension loads, the keel (bottom) is predominantly designed by compression, and the side

panels have combined shear and axial loads. The entire fuselage cylinder is subjected to hoop tension

from internal pressure. An aircraft designer must choose specific values (levels) from each potential

variable (e.g., fiber/matrix type, stiffener geometry, skin thickness/layup, etc.) to design the structure
in each quadrant. The variables associated with the structure are termed intrinsic variables. Table 1

lists all intrinsic variables studied along with their respective levels.
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Variable

FiberType
Matrix Type
FiberVolume
MaterialForm(StiffenerLayup)
SkinLayup
StiffenerType
StiffenerSpacing
LaminateThickness

Low Level

AS4
938
48%
Tow (Soft)
Soft
Blade
17.8cm (7 in)
2.26mm(0.0888in)

High Level

IM7
977-2
56.5%
Tape(Hard)
Hard
Hat
30.5cm (12 in)
4.51mm (0.1776in)

Layups

Hard Skin (Thin)
Soft Skin (Thin)
HardSkin (Thick)
SoftSkin (Thick)
HardStiffener(Thin)
SoftStiffener(Thin)
HardStiffener(Thick)
SoftStiffener(Thick)

(45/90/-45/0/90/0) s
(45/90/-45/45/0/-45) s
(45/90/-45/0/45/90/-45/0/90/0/90/0) s
(45/90/-45/45/0/-45/-45/0/45/-45/90/45) s
(22.5/90/-22.5/0) s
(30/90/-30/0) s
(22.5/90/-22.5/0)2s
(30/90/-30/0)2s

Table 1: Intrinsic Variables

Material variables may include fiber, matrix, and their combined architecture. Graphite or carbon fiber

properties may be quantified in terms of axial stiffness, tensile strength, and cross-sectional size/shape.
The matrix is generally classified by its stiffness, strengths, and in-situ composite toughness (i.e., inter-

and intra-laminar toughness). The performance of the composite is influenced by the fiber/matrix

architecture. This is characterized by the overall fiber volume, fiber/resin distribution, interlayer

structure, amount of fiber waviness, void content, and fiber-matrix interface. Many of these material

attributes are not controllable when two or more of are studied simultaneously. Variables considered
for study were fiber type, matrix type, and overall fiber volume.

Various schemes for manufacturing laminates exist, including hand layup, automatic tape layup

(ATL), filament winding, advanced tow placement (ATP), and resin transfer molding (RTM). Cost

effective fabrication of large fuselage quadrants requires lamination flexibility including the ability to
tailor thickness and follow surfaces with complex contours. Hand layup and ATP were chosen for this

study because both meet these lamination flexibility requirements. In addition, hand layup offers a

well understood material form and part performance, while ATP offers reduced manufacturing and raw

material costs. Laminate layup and thickness were also included as variables in these experiments.

Structural configuration has a strong influence on the cost, weight, and assembly of the fuselage [16].

Structural performance; including local skin buckling, overall panel stability, impact damage

resistance, and damage tolerance, is governed by the skin thickness and stiffness; stiffener geometry,

layup, and spacing; and the applied loads. Blade and closed hat stiffeners were studied because they

provide a distinct range in structural response for stiffened-skin panel construction.

Extrinsic Variables. The potential for foreign-object impact on aircraft primary structure starts the
day the first element is cured and continues until the aircraft is retired from service. Threats include
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droppedhandandpowertools,tool boxes,hail, runwaydebris,engine-burstfragments,ground
handlingequipment[17]. Generally, impacts may occur at any location on both the inner and outer

surfaces of the structure, although certain types of impacts will be constrained to specific regions of

the aircraft (e.g., hail will generally strike the crown, other horizontal surfaces, leading edges, and nose

of the aircraft). The environment during an impact event is governed by those the aircraft may see

while in service. Variables associated with an impact event including when, how, and where, are

classified as extrinsic variables.

Impact threats may be categorized by the mass, shape, size, stiffness, velocity, and incidence angle of

the impactor. The current experiment considered all of these impactor variables, except incidence

angle and velocity. Impacting at oblique angles was found to be experimentally difficult with the

equipment available. Impact energy was substituted for impact velocity because unrealistically high

impact energies result when velocity and mass are combined in a partially crossed experiment.

Temperature at impact was chosen to examine the effect of environment on impact damage. All
extrinsic variables and the associated levels are listed in Table 2.

Variable Low Level High Level

Impactor Stiffness

Impactor Mass

Impact Energy

Impactor Shape

Impactor Diameter

Temperature at Impact

2.8 GPa (0.4 Msi)

0.28 kg (0.62 Ibm)
23 J (200 in-lb)
Hat

6.35 mm (0.25 in)

21°C (70°F)

210 GPa (30 Msi)

6.31 kg (13.9 Ibm)
136 J (1200 in-lb)

Spherical
25.4 mm (1.00 in)

830C (1800F)

Table 2: Extrinsic Variables

Design of Experiments. The final experiment examined fourteen variables to determine their

relationship to fuselage impact damage resistance. The examination of this large number of variables

within one comprehensive study required the use of a statistical technique known as Design of

Experiments (DOE) [18, 19]. A DOE provides a systematic way to design an efficient experiment,

collect data, and analyze the results. The DOE used for this study, a 32 run, split-plot fractional

factorial design, provided information on the main variables and indicated whether variable
interactions existed.

The use of this DOE put limitations on the number of variable levels and the types of variables which
could be studied. The number of variable levels was restricted to two, and had to be chosen so that

unrealistic combinations were avoided, yet were representative of potential fuselage designs.

Decisions on conflicting variables were made based on practical considerations and our knowledge

and intuition of impact damage resistance. Table 3 contains a list of the variables studied with their

respective levels as they fit into the DOE.

The design of experiments technique required quantifiable response measurements for all 32 runs to

evaluate the effect of variables and interactions. Responses measured and studied via the DOE

included: indentation depth, planar damage area, and fiber damage average length and through-

thickness distribution. Preliminary results of flexural wave propagation measurements are presented,

but not analyzed in the context of the DOE.
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EXPERIMENTAL TECHNIQUE

Specimen Preparation

The intrinsic variables in the test matrix were implemented in 32 three-stiffener panels, one for each of

the 32 runs of the DOE test matrix and each having a distinct combination of variable levels. Careful

placement of variables into the DOE test matrix resulted in identical panel configurations except for
laminate thickness for every two runs (e.g., 1 & 2, 3 & 4). Sixteen 2.79 meter long panels with a 1.27

meter long thick constant gage section, a 0.25 meter long thickness transition zone, and a 1.27 meter

long thin constant gage section were designed. Formal drawings of these 16 panels were created,

describing all material and fabrication requirements. An abbreviation of the drawing number followed

by an "A" for the thick section and a "B" for the thin section was used to identify each panel as shown
in Table 3.

Materials. Eight distinct combinations of fiber type, matrix type, fiber volume, and material form

were specified by the implementation of these variables into the DOE matrix. All eight materials, four

pre-impregnated tow and four pre-impregnated tape, were manufactured by ICI Fiberite. The tow was

made using solvent impregnation, while tape was created using hot-melt impregnation. Minimum

property requirements for acceptance tests were established from known fiber and matrix properties
using micromechanics [20]. The material constitutive properties along with calculated lamina

properties are given in Table 4.

Tape Hand Layup. Panels fabricated using prepreg tape hand layup were manufactured at Boeing's

composite fabrication facility in Auburn, Washington. Individual plies were laminated into flat skin

panels and stiffener charges using a ply layup template (PLT) created from the formal drawings. Skin
and stiffener layups were vacuum compacted following application of every ply. Skin panels were

stored under vacuum, while the stiffeners were being prepared.

The fiat stiffener charges were formed into appropriate stiffener cross-sections following layup.

Closed-hat stiffeners were formed to their final shape using one forming operation over elastomeric

mandrels (Figure 1). Blade stiffeners required four major fabrication steps: first, angles were formed

over polished-steel-angle mandrels; second, the angles were assembled into a blade section; third, a
radius filler was formed from the pre-impregnated graphite; and fourth, the radius filler was placed

into the blade between the two angles (Figure 2). The stiffeners were assembled to the skin panel per

PLT markings and the assembled panel was bagged and cured per Boeing specifications.

The panel periphery and blade stiffener tops were trimmed to their final dimensions following cure.

The 2.79 meter long panels were machined into the three sections described above. All panels were

non-destructively inspected using 10 MHz pulse-echo ultrasonics for the skins and 5 MHz through-

transmission ultrasonics for the stiffeners. The trimmed panel ends were polished and the cross-

section inspected via optical microscopy to validate the ultrasound results.
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Tow Placement. Panels manufactured using advanced tow placement were fabricated by Hercules

Incorporated's Composite Products Group. A seven-axis numerically-controlled robot was used to

fabricate flat skin and stiffener charges from pre-impregnated tow. This machine collimated and

spread twelve individual tows into 25 mm wide bands of the appropriate thickness. Pressure applied

by the cylindrical-rolling applicator of the tow-placement head helped to compact the laminate.

Additionally, the laminate was vacuum compacted following application of every fourth ply. Stiffener
forming, panel assembly, bagging, and cure procedures used by Hercules were identical to those

performed by Boeing.

Impact Testing

Impact testing was divided into two portions; high mass (6.31 kg) impacts and low mass (0.28 kg)

impacts. The equipment used to perform these two types of impacts were of differing design.

Nominally, ten impacts were performed on each panel, eight of which were based on the extrinsic

variables listed in Table 2. Two additional impacts, one on the skin midbay and one over the stiffener

centerline, were performed using a 63.5 mm (2.5 in) diameter lead ball dropped at 56.5 Joules (500 in-

lb) to simulate 63.5 mm diameter hail at terminal velocity.

Boundary Conditions. The boundary conditions applied to all panels were designed to simulate the

circumferential frames found in aircraft fuselage. Supports were placed with a span of 0.51 meter

between their inner edges to simulate the fuselage 0.56 meter (22 in) centerline to centerline frame

spacing. Three sets of 44.5 mm by 89.9 mm (2" X 4") fir boards were notched to provide clearance for

the three stiffeners. The boards were shaved slightly at the stiffener attaching flange locations so that

both the skin and attaching flanges were supported during impact. Unnotched boards were placed over
the skin side and bolted to the opposing notched board to restrict panel z-axis motion.

Impacts were performed 76.2 mm (3 in)from a support. This distance allowed clearance for the

impactor and was probably close to the worst case location. Additionally, it allowed maximum post-

impact test of these panels by minimizing the area of panel affected by impact damage. The free end

of the panel was restrained with a third pair of supports.

The panel with simulated frames was held in place by steel fixtures which were solidly mounted to

cement floors. Figure 3 shows the general fixture configuration of the high mass support fixture. The

low mass panel support fixture held panels vertically and is shown in Figure 4. Impact alignment was

achieved by aligning crosshairs marked at the desired impact location on the panel with a pointed

alignment tup mounted in the impactor. The panel was clamped in place when alignment was within
+1.27 mm.

Impact Tups. The implementation of impactor variables into the DOE defined eight different impact

tups. Materials used to fabricate these tups were steel for hard impactors and graphite/epoxy cut

transverse to the plane of lamination for soft impactors. All low and high mass impactor tups were

designed with sufficient length to allow panel perforation under maximum deflection.

Steel impacting tups for the high mass impactor were manufactured out of A2 steel and machined to

dimensional tolerance of_+0.051 mm and a mass of 226.8 _+9.1 grams. The low mass impactor steel

tups were machined from 4140 steel with a dimensional tolerance of_+0.051 mm and a mass of 35.2

+0.2 grams. All steel tups were hardened to 55-60 Rockwell C.
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Figure 3: High Mass (Dynatup) Impact Apparatus 

Figure 4: Low Mass (University of British Columbia) Impact 
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Graphite tups were rough cut, using a waterjet cutter, from a 31.75 mm thick block of tool grade 
graphite-epoxy (Toolrite MXG-7650 style 2577). The 25.4 mm tups were machined to a tolerance of 
M.76 mm in diameter. Tolerances for these graphite tups were less strict due to difficulty in lathe 
cutting a hemisphere without chipping or scarring the graphite/epoxy. The 6.35 mm tups were ground 
rather than lathe cut because of their tendency to break under lateral load. Grinding yielded tolerances 
of k0.051 mm. 

Low Mass Impacts. Low mass impacts were performed at the University of British Columbia, using 
a horizontally oriented nitrogen gas gun. The projectile consisted of the steel or graphite tip, an 
aluminum shaft, a PCB 208M88 5 kip load cell, and a torlon shell as shown in Figure 5. The load cell 
was connected through a trailing wire to a Tektronix 2230, 100 MHz, 8 bit digital storage oscilloscope 
capable of storing 4096 points of data. Impact and rebound velocities were computed using three pairs 
of optical gates placed just before the point of impact. Data acquisition was triggered by the last 
optical gate with an experimentally calibrated electronic time delay circuit to assure data collection 
started just prior to contact. Impact velocity was calibrated as a function of fhng  pressure. 

The impact tups were created with sufficient length to allow full penetration during impact including 
an allowance for panel deflection. The larger diameter backup structure was prevented from striking 
the panel by placing an elastomeric-ring bumper in the end of the air-gun barrel. Each panel was then 
carefully placed a specified distance from the end of the barrel. Secondary impacts were prevented by 
activating a pressure release valve which vented barrel after the gun was fired. This prevented back 
pressure from forcing the rebounding tup into the panel. 

Figure 5: Low-mass Impact Projectile 
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High Mass Impacts. High mass impacts were performed on the Dynatup 8250 drop weight impactor

schematically shown in Figure 3. Data acquisition was accomplished using a Macintosh IIcx

computer equipped with a National Instruments model A2000 high speed data acquisition board

operating at 500 k/-Iz and Integrated Technologies, Inc. proprietary software. A Dynatup 10 kip load

cell was conditioned using a Measurements Group 2210A signal conditioner. The range of the load

cell could be changed from 44.5 MN to 22.25 MN (10 kips to 5 kips) to improve resolution using the

appropriate gain settings. Impact and rebound velocities were computed using a precision machined

flag which passed through an optical gate placed just before the point of impact.

Impact velocities for low energy impacts of 11.3 J (100 in-lb) to 56.5 J (500 in-lb) on the Dynatup

8250 impactor were generated by setting the impactor at an initial height, (h) and using gravitational

acceleration (g) to achieve the desired energy, (E). The value of (h) was back calculated using the

potential energy equation:

E = mgh

where m is the mass of the impactor. High energy impacts (< 56.5 J), which could not be achieved by

gravity drops, were generated by a calibrated pneumatic system which compressed springs against the

impactor. The springs imparted an initial velocity to the impacting mass when released.

High durometer elastomeric rebound bumpers were placed at a specified height to stop the impactor

following perforation of a panel. The constant diameter portion of the tup was long enough to allow

full penetration into the panel, again, including an allowance for panel deflection. Secondary impacts

were prevented by a ratchet device which was triggered on the first pass of the impactor. This device

stopped the impactor on its second pass through following rebound.

Hail Simulation. An experiment to study damage created by 63.5 mm (2.5 in) hail was performed in

parallel with the full experiment. Hail of this size at terminal velocity has 500 in-lb of energy. A 63.5

mm lead ball was dropped from 3.43 meters to achieve an equivalent energy. Impacting the desired

location was accomplished by aligning the base of a 76.2 mm diameter PVC tube with the impact site.

The lead ball was dropped inside the tube to impact the panel. A rubber lined aluminum plate was

placed between the tube and panel immediately after impact to catch the lead ball and prevent a second

impact. Lead ball impacts were not instrumented and were performed at ambient temperature.

Damage Characterization

The fundamental understanding between the variables studied and resulting impact damage is
accomplished by comparing measured responses. Many responses may be associated with a given

impact event, including measures of the dynamic event, damage area, fiber breakage, and strength-

after-impact. These responses may be broken into two major categories: discrete measurements which

quantify details of the damage (e.g., delamination area) and non-discrete measurements which relate

directly to structural response (e.g., compression-after-impact strength).

Discrete measurements considered in this study were the through-thickness location and extent of

matrix damage, through-thickness location and extent of fiber breakage, dynamic response during

impact, and surface indentation. A non-discrete measure of the damage investigated was local flexural

stiffness of the damage region. The experimental technique associated with obtaining each of these
responses is discussed below.

Surface Indentation. The indentation depth of all impact damage sites was measured with a dial

indicator centrally mounted in a support base designed to set away from influence of the damage on

flat panels. The accuracy of these readings was +0.025 mm.
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Matrix Damage. Internal matrix damage consisted of interconnecting arrays of delaminations and
transverse cracks. Ultrasonic inspections of the damage at each impact site were performed to

determine the planar dimensions of matrix damage created. Additionally, the through-thickness

location of matrix damage for the soft layup-thick laminate variable combination was mapped out in

detail using a combination of non-destructive detailed 3-dimensionally imaged ultrasonic inspection

and destructive cross-sectioning techniques. Detailed mapping of the through-thickness location of

matrix damage for the three other stacking sequences (i.e., hard-thick, hard-thin, and soft thin) will be

presented in the future.

Pulse-echo ultrasonics was used to locate internal delaminations by examining the amplitude and time-

of-flight of a high frequency (10 MHz) short duration pulse sent into the laminate perpendicular to the
surface and then received back at that surface by the same transducer. Initial investigations consisted

of a coarse planar inspection of each panel to map planar location of damage created during impacting.
The time-of-flight data from the overall panel scans were presented as planar (C-scan) damage maps,

with various colors representing different depths of delamination.

Damage sites observed in the overall panel C-scans were further investigated by performing more

detailed ultrasound mappings by collecting data every 0.25 mm or 0.50 mm (depending on damage

size) with a narrowly focused transducer. The damage found in these detailed scans provided
information on the first levels of delamination in the laminate. Damage occurring below the first

delamination encountered by a pulse at a particular point was shielded from detection because the

pulse is not transmitted past that point. Planar damage area was among the data collected in these

scans and was analyzed as a response below.

Two damage sites were visualized with Voxel View 2, a computer graphics program which allows

three-dimensional viewing of volume data sets. Three-dimensional viewing helped conceptualize the

extent and depth of delaminations. Data from individual through-thickness slices were plotted

individually as shown in Figure 6 for panels 29-8A (soft layup-thick laminate-full experiment) and 28-

2A (hard layup-thick laminate-hail simulation).

Destructive cross-section examination of an impact site from panel 29-8A was performed to determine

the through-thickness location of matrix damage hidden from ultrasound inspection. The cross-section

study began by waterjet cutting the impact site from the panel using the shape shown in Figure 7. The

hemispherical protuberance was cut from the coupon and the edges around the circumference carefully
ground down to reveal the sublaminates created by the matrix damage. Matrix damage was

highlighted through the use of flourescent-dye penetrant to aid in visual interpretation. This technique

was termed cylindrical-sectioning by the authors. The sublaminate structure revealed by the

cylindrical-section is shown in Figure 8. The rectangular portion was again cut 7.62 mm from the

impact centerline and both these flat sections polished to further aid in interpretation of the damage
state.

The accumulated matrix damage findings for panel 29-8A were summarized in schematic form as

shown in Figure 9. The damage found in the vicinity of a given ply was sketched onto paper with each

ply in the stack sequence represented by a sheet of paper. Transverse cracks through the ply being
observed were drawn as dashed lines, the "shadow" of transverse cracks through the ply above were

plotted as solid lines, and delamination between the ply being observed and the one above were

represented by a shaded region. Characterization of additional impact sites in this manner will be

performed in future work.

2 Vital Images, Inc., 505 N. 3rd, Suite 205, Fairfield, IA, 52556.
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Figure 6: Through-Thickness C-scan Images for Panels 28-2A and 
29-SA. 
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Figure 7: Cross-section and Cylindrical-section Coupon Geometry.

Mapping out the delamination planes and interconnecting transverse cracks for typical panels will

provide information applicable to all panels of a given stacking sequence. The through-thickness

location of matrix damage within a given stacking sequence was found in earlier studies to be chiefly a

function of the stacking sequence [21]. These matrix damage maps will aid in developing an

understanding of the through-thickness distribution of matrix damage as related to the intrinsic and
extrinsic variables.

Fiber Failure. Fiber failures in the skin midbay impacts were measured by thermally deplying a

damage site from each of the 32 panels and measuring the length of broken fibers in each ply. A

numerically controlled waterjet-cutter machined 101.6 mm by 101.6 mm (4 in x 4 in) square plates

with one corner cut diagonally to preserve orientation. Prior to burn-off, specimens were examined for

visual damage, exact impact site location within the square, and any surface irregularities.

The deply technique consisted of placing the specimens on sheet steel shelves in a Sybron model
FB 1415M muffle furnace set at a temperature of 394°C to 402°C. The specimens were removed from

heat after 3 hours and cooled at room temperature. Each specimen was immediately labeled and deply

attempted when sufficiently cooled. If significant resin was still present, the specimen was placed

back in the oven in 45 minute intervals until the resin was sufficiently burned-off.

Upon successfully deplying the first ply, each successive layer, with the impacted surface as layer one,

was placed face up on a paper template imprinted with the specimen outline including orientation

mark, specimen number, resin type, fiber type, stacking sequence, and date of deply. Specimens were

held in place with cellophane tape placed around the periphery, taking care not to cover the impact
zone.
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Figure 8: Cylindrical-Section Results for Panel 29-SA. 
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Figure 9: Ply by Ply Matrix Damage Maps for Panel 29-8A.
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Thelengthandorientationof cracks(failedfibers) in eachply weretracedontoatransparencyusing
indelibleblackink. All transparencieshadpreviouslybeenmarkedwith specimenoutlinesto maintain
alignmentbetweenthetransparencyboundary,specimenboundary,andtracedon fiber break
locations.The linesof fiberbreakagefor eachply of panelnumber28-4A areshownin Figure 10.

Thedatacontainedon the transparencies for each impact site were digitized to ease data processing.

Each transparency was placed on an Apple A9M0337 scanner in a specified orientation and location

and scanned into a bitmap file. The bitmap data for all plies in a specimen were transformed into a
three-dimensional scientific data set and stored in Hierarchical Data Format (HDF) with a Spyglass 3

utility. A utility was written to calculate the length of fiber breakage perpendicular to the fiber
orientation (i.e., the length of fiber removed from the load path) in each ply. Figure 11 summarizes the

fiber breakage lengths for all plies of panel number 28-4A. The slope of a best fit straight line was

used to describe through-thickness distribution, although not all distributions were linear.
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Figure 11: Summarized Fiber Failures for Panel 28-4A.

Non-discrete Measurements. A non-discrete inspection method using characteristics of flexural

(Lamb) wave propagation to quantify impact damage in laminated composites was investigated. A

fixture to accurately locate a sending transducer and a receiving transducer on the test panels, as shown

in Figure 12, was designed and built by ZETEC of Issaquah, WA. The velocity of flexural-waves

(phase velocity) propagating from the sending transducer to the receiving transducer were measured

experimentally using a prototype of ZETEC's new S-9 sondicator. The measurements of phase

3 Spyglass, Inc., 701 Devonshire Dr., Champaign, IL, 61820.
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velocity were made both in undamaged and damaged mid-bay regions of the panels in directions both 
parallel and perpendicular to the stiffeners using several excitation frequencies. 

Figure 12: Apparatus for Measuring Flexural Wave Propagation 
through Impact Damage 

RESULTS AND DISCUSSION 
The full experiment and the hail simulation experiment were separate parallel studies on the same 
panels. These experiments were both based on the design of experiments statistical technique. The 
full experiment studied 14 variables (8 intrinsic and 6 extrinsic) while the hail simulation experiment 
studied the 8 intrinsic variables with respect to one impactor, a lead ball with 56.5 Joules of kinetic 
energy. 

A comprehensive statistical evaluation of the experimental results which considered the complexities 
of these designed experiments has not yet been completed. The data analysis performed below studied 
the DOE results using engineering evaluation coupled with a coarse statistical analysis. The process 
by which the data was evaluated is described in the indentation depth discussions. 
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Dataevaluationinitially focused on studying each experiment individually to determine important

effects. The results from the full and hail simulation experiments were found to complement one

another and the combined study of both sets of results aided in overall data interpretation. Presentation

of results and discussions of the findings will be done for each measured response using data from both

experiments for justification.

Indentation depth/Visibility. Visibility of impact damage is directly related to post-impact strength

requirements as illustrated in Figure 13 for commercial aircraft. The different load levels defined in

this illustration are based on the amount of visible damage. Ultimate load is applicable for damage

defined as nonvisible per the defined inspection technique. The Boeing Commercial Airplane Group

interpretation of FAA requirements led to the definition of a 0.25 mm (0.01 in) indentation as the

threshold of visibility (i.e., barely visible impact damage) based on visual inspection from 5 feet. The

United States Air Force quantified the threshold for damage visibility at a 2.5 mm (0.10 inch) dent

[21], based on their inspection requirements. Lower load requirements exist for structures having

damage that is easily visible. The absolute levels of these loads and requirements defining them are

application dependent.

Ultimate

Z
m

<
rr
I-
t_O

Z

t._

t_ Damage May
Never Be

Discovered

Fail-safe

Maximum load per
fleet lifetime)

Damage k
When

I

Ultimate and failsafe load requirements are

application dependent !

Fail-safe

(Maximum load per
airplane lifetime)

List Be Repaired
)iscovered

Continued Safe Fli, iht

I

=[= Damage Occurs

I In Flight Wilh

I Knowledge of Crew

I
I

Non-Visible Barely Easily One Structural One Structural Mult de
Damage Visible Visible Element Unit Failed Slructurai

Damage Damage Failed Units Failed

DAMAGE SIZE

Figure 13: Structural Load Requirements as a Function of Damage Size.

Impact damage created in this study spanned the range from completely nonvisible by visual

inspection to quite easily visible. Figures 14 and 15 show examples of "visible" damage (as defined by

the authors inspection technique) created by simulated hail impacts. The surface indications range
from a slight amount of back surface breakout (and a 0.08 mm front surface indentation) to a front

surface crater larger than 2.5 mm (0.10 in) in depth.

1056



Figure 14: Barely Visible Damage. 

Figure 15: Clearly Visible Damage. 
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The indentation depth data from the hail simulation and full experiment impacts were initially

evaluated using "scree plots," as defined in [18]. Scree plots displayed statistical data about each run

in a histogram format to identify potentially important variables and variable interactions. The average

response for each substantial variable or variable interaction was calculated to determine its effect (on
indentation). Those with large effects compared to the majority of measured effects were considered

important.

Figure 16 illustrates effect calculation for the "Laminate thickness" variable using hail simulation data.
The measured indentation depth is represented on the y-axis and the run numbers, as defined in Table

3, are along the x-axis. Each vertical bar represents the indentation depth for the listed run number.

These data were grouped into two halves, runs with thin laminate panels and runs with thick laminate

panels. The average level of each half was calculated, and the difference between the two halves

divided by 2 to estimate the effect.

Two-factor interactions were evaluated in a similar manner, as illustrated in Figure 17 for the "Fiber

type-Fiber volume" interaction. The data were first grouped according to "Fiber type." Within each

"Fiber type" group the data were sub-grouped according to "Fiber volume," and the average level for
each quarter of the runs, as defined by these divisions, was calculated. The sum of the average level

for the AS4, 56% fiber volume (FV) group and the IM7, 48% FV subgroup was subtracted from the

sum of the average level for the AS4, 48% FV subgroup and the IM7, 56% FV. The resulting value

was divided by 4 to obtain an estimate of the effect of this interaction.

Half the data in the AS4, 48% FV subgroup were observed to be higher than the rest. These runs were
studied to determine if one variable could account for the differences, and "Laminate thickness" was

found to correlate with the observed variations. Bars representing data from runs with thin laminate

panels were crosshatch shaded, while runs from thick laminate panels were solid shaded. It is apparent

in Figure 17 that the high values in this subgroup are all thin laminate panels, suggesting that a three-

way interaction between "Laminate thickness"-"Fiber type"-"Fiber volume" may exist.

Two factor interactions such as the one illustrated in Figure 17 are often confounded with other two

factor interactions. The patterns and levels of confounding were defined by the method of statistical

experimental design and number of variables studied [18, 19]. The design of this experiment resulted
in the "Fiber type-Fiber volume" interaction being confounded with the "Matrix type-Material form"

interaction shown in Figure 18 and the "Skin layup-Stiffener type" interaction (not shown).

Statistically, the estimated effect for this set of three potential interactions is the sum of the estimated

effects for these interactions, and is not separable. Engineering judgement and/or further

experimentation must be used to sort out the true significant interactions.

Deduction of some confounded interactions was accomplished by the examination of results from both

experiments. An example of this process is illustrated with the aid of Table 5. Listed are the

confounded interactions that made up the second most important effect for indentation depth in both

experiments. The first three potential interactions listed are identical for the two experiments;

therefore, one can hypothesize that it is unlikely that interactions 4 through 6 of the full experiment are

significant, since they do not occur in the hail simulation experiment. The "Skin layup-Stiffener type"

interaction is improbable because "Stiffener type" relates to the stiffness of the panel during impact,
and should not interact with "Skin layup." The most likely candidates for the actual interaction are

"Fiber type-Fiber volume" or "Matrix type-Material form".
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Table 5: Interaction Deduction for the Indentation Depth Response

A summary of the most important variables (main effects) and variable interactions (interaction

effects) as related to indentation depth from both the hail simulation and the full experiment is listed in

Table 6. These effects are ranked according to their importance based on the full experiment.

Interactions were listed below the main effects for clarity, and not to suggest a lesser importance of the
effect. Ranking of important variables identified in the hail simulation experiments are shown in
parentheses.
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Rank Variable Low Level High Level Result

1
3
4
11(1)

Impactenergy
Impactordiameter
Impactorshape
Laminatethickness

23Joules
6.35mm
Flat
2.26mm

136Joules
25.4mm
Spherical
4.51mm

Increased
Decreased
Increased
Decreased

ImportantInteractions

2 (2) Fiber type-FibervolumeorMatrix type-Materialform

Note:Rankingof hail simulationresultsshownin parentheses.

Table 6: Important Effects for the Indentation Depth Response.

Impact energy was found to be the most important variable influencing indentation depth for the full

experiment, as might be expected. The second most important effect was the set of confounded

interactions discussed previously. Variables associated with impactor geometry were found to have a

pronounced effect on the observed indentations, while laminate thickness was most important when all

other impactor variables were ignored.

The strong influence of impactor geometry on indentation comes as no surprise. The relative

importance of these variables on the results suggests that attempting to relate surface indentation to the

internal damage state or residual strength to be a formidable task. The load requirements, as illustrated

in Figure 13, are a strong function of the "visibility;" therefore, studies on impact must consider the

wide range of potential threats at all realistically possible impact energies to determine worst case

scenarios for each load requirement.

Matrix Damage. Measurements of planar damage area as determined from ultrasonic inspection were

studied using the designed experiment. The results summarized in Table 7 were found to have the

most important effects, with the ranking based on importance determined in the full experiment.

Ranking of important effects from the hail simulation experiment are labeled with parentheses. Three-
dimensional characterization of the sublaminate structure which relates directly to the compression

after impact strength [2, 22] was attempted but has not yet been completed for all runs. The study of

the data using the designed experiment required a completed data set.

Impact energy was found to be the most important variable effecting planar damage area, as expected.

Following this was the set of six confounded interactions. Impactor diameter was found to have a

stronger effect than the matrix type, with large diameter impactors creating larger damage areas.

Higher interlaminar toughness of the matrix tended to restrict the damage size, but an examination of

the "Matrix type-Laminate thickness" interaction for both the hail simulation and full experiments,

shown in Figures 19 and 20, respectively, indicates that effect of toughness was most notable for thick
laminates.
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Rank Variable Low Level High Level Result

1 Impact energy 23 Joules 136 Joules Increased

3 Impactor diameter 6.35 mm 25.4 mm Increased

4 (2) Matrix type 938 977-2 Decreased

Important Interactions

6(1)
2

5 (3)

Matrix type-Laminate thickness

Impact energy-Impactor diameter or Impactor mass-Temperature at impact or

Fiber volume-Impactor stiffness or ....t:;be"*.,v.... ..........e.., ........ ,,v.. ....""_, or

..._A°..._v,.,.-_ "'_-.7v,_ _,e''r°--- -_...." -"- '-.,v'_.... or ..........xA,,._.._°l,.,,_,. 4,,,.-._,._._,et'"..... !ayup
Fiber volume-Laminate thickness

Note: Ranking of hail simulation results shown in parentheses.

Table 7: Important Effects for the Planar Damage Area Response.
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The set of six interactions, ranked 2 in Table 7, only appeared in the full experiment. "Fiber type-

Stiffener spacing," "Matrix type-Stiffener type," and "Material form-Skin Layup" are interactions

which do not involve impactor variables and are therefore unlikely. "Impact energy-Impactor

diameter" is thought to be the likely interaction of the remaining three, because "Impactor diameter"

was found to have a strong effect. Figure 21 illustrates this interaction. The average damage area for

the low impact energy appears insensitive to impactor diameter, but damage area increases

significantly with impactor diameter for higher levels of impact energy. The occurrence of fiber

failures and subsequent perforation may explain these observations, illustrating the failure mechanism

interplay between fiber and matrix damage during impact.

Planar damage areas in the hail simulation experiment were strongly influenced by a "Fiber volume-

Laminate thickness" interaction. The thin laminates with high fiber volumes were found to have

smaller damage areas than thin laminates with a low fiber volume. Damage areas in the thick laminate

panels were not significantly influenced by fiber volume for this experiment, although the full

experiment and past internal Boeing studies have found that decreased fiber volume decreased damage

area for thicker laminates. This trend may have been obscured in the hall simulation by the range of
variables studied.

Fiber Failure. Impact induced fiber failures were quantified both by their average length and

through-thickness distribution for the full experiment impacts. The data on broken fibers may further

be quantified in terms of their effect on the local load paths and strength as discussed in [3, 4, and 23],

but has not yet been attempted. Table 8 lists the important observations for the fiber failure average

length response.
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Figure 21: Impactor diameter-Impact energy Interaction for Full

Experiment Planar Damage Area.

Rank Variable Low Level High Level Result

1

3

4

5

Impact energy
Laminate thickness

Impactor diameter

Impactor shape

23 Joules

2.26 mm

6.35 mm

Flat

136 Joules

4.51 mm

25.4 mm

Spherical

Increased

Decreased

Increased

Increased

Important Interactions

2 Impactor diameter-Impact energy or Impactor mass-Temperature at impact or

Fiber volume-Impactor stiffness or Fiber type-Stiffener spacing or

Matrix type-Stiffener type or Material form-Skin layup

Table 8: Important Effects for the Fiber Failure Average Length

Response.

Impact energy was again found to be the strongest variable, with higher energies leading to more fiber
failure. Second was a set of confounded two-factor interactions. Interaction deduction was not aided

by results from the hail simulation experiment because fiber failure data was not collected. Increasing
the laminate thickness tended to decrease the amount of fiber failure while an increase was found for

the larger impactor diameters. Spherical impactors generally created more fiber failure than the flat

impactors because of higher contact pressures.
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The"Impactordiameter-Impactenergy"interactionis illustratedin Figure 22. Although thesix
interactionsarestatisticallyconfounded,commonsenseevaluationled theauthorsto believethis to be
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Figure 22: Impact diameter-Impact energy Interaction for Full

Experiment Fiber Failure Average Length.

Results for through-thickness distribution of fiber failures are listed in Table 9. Although these results

have not yet been studied in detail, it is of interest that the material form may influence the damage

state. Thinner laminates tended to have a more uniform fiber breakage distribution, while higher
impact energies decreased the uniformity. A two-way interaction is again among the important effects.

Non-discrete Measurements. The reduction in compression strength of laminated composites has

been attributed to the buckling of sublaminates created by impact induced matrix damage followed by
local load redistribution [2]. Sublaminate buckling is directly related to the flexural stiffnesses of

these sublaminates. Flexural wave propagation in a plate is also a function of the bending and shear
stiffnesses. It was theorized that the presence of impact damage would result in reduced flexural wave

speeds, allowing both detection of the damage and assessment of the associated stiffness reduction.

Dispersion curves, which relate phase velocity to frequency, were generated for the undamaged
laminates using the theoretical formulation found in [24]. This formulation was based on laminated

plate theory and included the effects of shear deformation and rotary inertia. Experimental

measurements of phase velocity as a function of frequency for undamaged regions of the panels were
compared to the theory for mutual verification. Measurements and comparisons were made both 0 °

and 90 ° to the stiffeners because the phase velocity in a composite laminate is dependent on the
direction of propagation due to material anisotropy.
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Themeasuredphasevelocitiesin theundamagedregionsagreedwell with theoreticalpredictions.
Phasevelocitiesin damagedregionswerelessthanthosein theundamagedregionsastheorized.
Figure23showsthecomparisonbetweentheoryandexperimentfor theundamagedlaminatealong
with datafrom thedamagedregion. Damagesiteswith extremeamountsof damageproveddifficult
to measureexperimentallywith thecurrenttechniques.This difficulty wasprobablycausedby
excessiveattenuationof thesignalandby wavesreflectedfrom thedamageboundary.

Rank Variable Low Level High Level Result

1 Laminatethickness 2.26mm 4.51mm Decreased
2 Materialform Tow Tape Decreased
3 Impactenergy 23Joules 136Joules Increased

ImportantInteractions

4 Fiber type-Impactormassor Matrix type-Laminatethicknessor
Material form-Impactenergyor Layup-Impactordiameteror

Impactorstiffness-Impactorshapeor Stiffenerspacing-Temperature

Table 9: Important Effects for the Fiber Failure Through-Thickness

Distribution Response.
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CONCLUSIONS

Thisexperimentresultedin a relativerankingof theimportantvariablesandvariableinteractions
studied. Variablesfoundto havelittle effectarenotnecessarilyunimportant,but wereovershadowed
by the effects of others. Future studies on impact should consider the important variables and

interactions. These results are meant to guide future studies, and are not the final judgement. The

important findings are summarized below.

Impact energy and impactor geometry were the chief extrinsic variables affecting both internal damage

and surface visibility. Important variables associated with impactor geometry were the diameter and

shape. Larger diameter impactors were found to create more damage (impact energy not being held

constant) and less surface indication, while impact energy had direct correspondence to the damage

state and external indications. The strong couplings between these extrinsic impact variables and

damage characteristics suggest the need for a more comprehensive material and design screening

approach.

Intrinsic material variables were generally less important than extrinsic variables when considering the

range of variables and variable levels studied in the full experiment. Matrix toughness appeared to

have little effect on impact damage in minimum gauge structure (i.e., 0.09 in thick), which is
characteristic of 70% of fuselage shell, but did reduce the damage in thicker fuselage skin gauges

characteristic of compression loaded keel structures. Fiber type, by itself, was found to have little

effect on impact damage.

Interactions between variables were found to have a stronger influence on the damage state than most

variables by themselves. These two- and possibly three- factor interactions must be better understood

and accounted for in future impact studies. An understanding of important interactions between
laminate and material variables may lead to breakthroughs in damage resistant composite design.

Laminate thickness was the critical design variable when considering the indentation created by
simulated hail impacts. Economic considerations on hail induced damage have led to minimum

fuselage gauge requirements to avoid frequent repairs. Increased laminate thickness reduced

indentation/visibility of damage created by hail impact, while higher fiber volumes reduced internal

damage for the thin gauge laminates. Efficient hail damage resistant structure should result from

further study and understanding of these effects.

Ultrasonic Lamb wave propagation has potential as a quantitative method of characterizing impact

damage in fuselage structure. Experimental results were within 5% of theory for undamaged laminate

measurements and demonstrated the expected trends for measurements of the damage.
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