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Preface

Internal fluid flows are subject not only to self-sustained oscillations of the

purely hydrodynamic type but also to the coupling of the instability with the

acoustic mode of the surrounding cavity. This situation is common to turbo-

machinery, since flow instabilities are confined within a flow path where the

acoustic wavelength is typically smaller than the dimensions of the cavity and flow

speeds are low enough to allow resonances. When acoustic coupling occurs, the

fluctuations can become so severe in amplitude that it may induce structural

failure of engine components. The potential for catastrophic failure makes

identifying flow-induced noise and vibration sources a priority.

In view of the complexity of these types of flows, this report was written

with the purpose of presenting many of the methods used to compute frequencies

for self-sustained oscillations. The report also presents the engineering formulae

needed to calculate the acoustic resonant modes for ducts and cavities. Although

the report is not a replacement for more complex numerical or experimental

modeling techniques, it is intended to be used on general types of flow

configurations that are known to produce self-sustained oscillations. This report

provides a complete collection of these models under one cover.

This report is divided into two parts. Part I (Chapters 2 through 6) presents

many of the methods used to calculate acoustic resonances for internal flow paths

inside turbomachinery for the conditions when the acoustic wavelength is much

larger than the cavity dimensions (discrete resonator) and in which the wavelength

is comparable to or smaller than the main flow path dimensions (distributed

resonator). Part II (Chapters 7 through 11) shows how to compute the modes of

instability for fluid oscillators that are self-sustained. These types of oscillations are

termed instability-induced excitation (IIE) and include jets, wakes, and mixing

layers. By combining Parts I and II, modes of flow instability and acoustic

resonances can be calculated to determine the potential for coalescence between

discrete or distributed resonators and ir,.ctability-induced oscillators.

In addition to the report, FORTRAN 77 computer programs were developed

to perform the calculations described in tile report which go beyond what is

reasonably expected from a hand-held calculator. To obtain copies of the programs,

contact Tom Nesman at (205) 544-1546 or E-mail Tom.Nesman@msfc.nasa.gov.
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CHAPTER 1

IDENTIFICATION AND CLASSIFICATION OF

FLOW-INDUCED SOURCES INSIDE TURBOMACHINERY

Although the concept of flow-induced vibration may be well known, it is

often difficult to identify an excitation source inside turbomachinery when the need

arises. The difficulty in excitation source identification is due to the flow

complexities and the bewildering number of geometric features that are found inside

turbomachinery. To complicate matters further, engineers are often faced with

having to identify possible sources of excitation with limited information on the

details of the flow's thermo- and hydro-dynamic environment.

This report has been prepared to alleviate some of the difficulties with

identifying potential sources of excitation inside turbomachinery. The report

presents in consistent notation and format, the formulae, charts, and tables that are

needed to determine the frequencies for self-sustained oscillations. The report is

organized according to the basic acoustic and flow configurations common to

turbomachinery. With each configuration, solutions to predict the preferred

frequency of oscillation are provided using the latest analytical and empirical

techniques found in the literature.

Section 1.1 introduces the basic source excitation mechanisms. Section 1.2

identifies the parts of the turbomachine which have a potential for excitation, and

Section 1.3 classifies the excitation sources and presents the structure and

organization for the rest of the report.

1.1 Basic Source Excitation Mechanisms

The first step in the process of identifying sources of excitation is to establish

a classification scheme so that the distinction between each of the model categories is

clearly stated. This shall be done using the source and classification scheme

originally devised by Naudascher and Rockwell. The scheme begins by

distinguishing three basic categories of mechanism.
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* Extraneously Induced Excitation [EIE} - Generated by pulsations in the

flow or pressure that is not part of the vibrating system. The source of

excitation is independent of body movement or any instability that may

arise from vortex shedding. An example EIE might be a pump surge

that produces a strong pressure spike that in turn induces a force on

downstream engine components.

• Instability-Induced Excitation {lIE} - Caused by an instability in the flow.

Often times the instability is brought on by the very same structure that

is endangered by the vibrations. These instabilities are simply a result of

an inflection point in the mean velocity profile. Many flow configura-
r

tions give rise to this type of flow. Some examples are jets, wakes, and

mixing layers. The feature common to all of these is the existence of a

shear layer.

• Movement-lnduced Excitation [MIE] - An exciting force that is brought

about through the vibration of a body. When there is body movement

there is a phase relationship between the body displacement and the

fluid force produced from the body displacement. At certain values of

phase the flow will induce forces that will enhance the body movement,

causing the body to undergo self-sustained oscillation. Common

examples of MIE are couple mode flutter and galloping.

Any one of these three basic excitation mechanisms can be further

subdivided. For example, the liEs have three basic subdivisions; these are: fluid-

dynamic, fluid-resonator, and body-resonator. Fluid-dynamic is the category of

oscillators that is dependent on the dynamics of the flow alone and is not coupled

to any other forcing mechanism. Fluid-resonator and body-resonator are two

other categories of oscillators where the fluid flow is modulated by either the

dynamics of the resonator or the movement of a body. In the case of the fluid-

resonator, a clearly identifiable acoustic mode or modes must be excited by the

action of a shear layer.

In practice there are many situations where these basic mechanisms may

appear in any combination inside turbomachinery. Such coalescence of excitation

mechanism is prone to highly amplified fluctuations and can lead to structural

failure. Being able to identify the basic mechanisms is one of the main tasks when

analyzing a vibration problem.

m
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1.2 Source Identification

In this section, a search is made of all the possible excitation sources having

geometric configurations that lend themselves to handbook treatment. Such a

survey of source geometries defines the types, shapes, and range of flow condi-

tions for which analytical models are suitable, and precludes modeling all types of

excitation models and resonators that are not likely to occur inside turbo-

machinery. To accomplish this task, a list of vibration sources is first developed.

Next, the sources are organized into a logical framework so as to define the

appropriate models and establish the range of flow and acoustic conditions that

might be expected.

Consider as an example the High-Pressure Fuel Turbo-Pump (HPFTP). This

pump is one of four pumps on the Space Shuttle Main Engine (SSME). The space

shuttle orbiter vehicle propulsion system has a total of three main engines. An

engineering drawing of the HPFTP is shown in Figure 1-1. Included in the figure

are the thermodynamic properties at selected locations along the flow path. The

engines are presently throttled over a thrust range of 60 to 109 percent of the

design thrust. The values reported here are for conditions at the full power level

of 109 percent.

Liquid hydrogen from the low-pressure fuel pump enters the HPFTP at a

pressure of 240 psia. After passing through the first impeller stage the hydrogen

changes its phase to vapor and remains vapor through the remainder of the pump.

At the pump exit, the hydrogen gas is used to cool the main combustion chamber

nozzle, drive the turbine in the Low-Pressure Fuel Turbo-Pump (LPFTP), and is

mixed with oxygen in the preburners of the High-Pressure Fuel and Oxygen

Turbo-Pumps. The HPFTP preburner (not shown in the figure) produces hot

gases that drive the turbine, that in turn drives the pump.

Using Figure I-1 a search is made of all possible excitation sources. In

Table 1-I are listed some of the major cavities that are capable of maintaining a

standing acoustic wave. Listed in the table are the major engine components and

beside each component is the expected Mach number and frequency range. The

frequencies reported here are for the quarter wavelength mode. Note that in

most instances the Mach number is less than 0.2.
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Table I- I

Cavities Capable of Acoustic Standing Waves

Basic Volumes Engine
Components

Circular Torus

I

_' ! _'Englne
R ] Centerline

Irregular Torus
_r>L _r-L

--_- Ar

engine centerline _-

Drilling

L
ii I

)

Duct

Pump Inlet and
Exit Chambers

Turbine Inlet and
Exit Chambers

* Impeller Balance
Cavity

• Lubrication and/or
Cooling Cavity

• Combustion
Chamber

• Lubrication Ports

• Bearing Slinger
Drillings

* Impeller

• Diffuser

• Combustion
Chamber

Frequency Range
Mach Number lOne-Quarter Wave)

0.02 to 0.22 c: 322 to 587 Hz

0.03 to 0.22

<0.08

<0.21

0.12

<0.25

0.12

C: 280 to 839 Hz

C: 330 to 764 Hz
R: 2500 to 11,000 Hz

C: 296 to 1286 Hz
R: 2500 to 20,000 Hz

C: 790 Hz
A: 2770 Hz

A: 2700 to 6900 Hz

A: 47,780 Hz

<0.35

<0.I

<0.6

A: 1500 to 2600 Hz

A: 1700 to 3200 Hz

A: 2700 to 5000 Hz

C - Centrifugal Mode: R - Radial Mode; A - Axial Mode
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Figure 1-2 further illustrates the range of resonance frequencies for

selected engine components. The vertical scale is a logarithmic frequency scale.

The components highlighted beside the scale indicate the first wavelength

resonance mode. The figure is divided into two=Parts: on the left side of the

figure are engine components flaat experience quarter wavelength modes in the

radial and axial directions; on the right side are the engine components that

experience circumferential standing waves. Longer wavelengths with frequencies

below 2000 Hz are the product of circumferential acoustic waves, while shorter

acoustic wavelengths are traceable to radial and axial resonance modes.

Continuing the search for excitation sources, Table 1-2 is another example

of how sources may be classified. Sho;_n in Table 1-2 are the results of a survey

for cavities having dimensions smaller than the acoustic wavelengths. Four types

of cavities are identified. The first two cavities, denoted as the cavities without

branch pipes, are relatively simple configurations that can be modeled using a

handbook. For example, the frrst cavity resembles the classical Rossiter cavity and

might be analyzed using one of a number of models for flows over rectangular

Cavities. The second cavity is a Hermholtz resonator. Engineering data and

formulae are readily available for these types of resonators.

The cavities appearing in the third and fourth rows are sufficiently more

complicated; the existence of the branch pipe makes it nearly impossible to

identify general handbook methodologies in the literature. In this situation, and

many more like it, handbook methodologies are unavailable and the only

appropriate measure is to use a computer modeling or a testing approach.

1.3 Source Classification

If one were to continue the search for sources through other parts of the

SSME, it would be quickly discovered that the engine spans a wide range of flow

conditions (liquid, vapor, and two-phase) and there are more possible flow situa-

tions than there are models. This statement is true in general for turbomachinery

and is not limited to a particular engine such as the SSME which was chosen for

this example exercise. Generally speaking, the following conclusions can be made

about turbomachinery: the Reynolds numbers are typically greater than I0,000,

the Mach number less than 0.2, and most frequencies of any significance are

|
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Figure I-2. Range of Resonance Frequencies Found Inside Turbomachinery.
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Table 1-2

Selected Cavities Inside Turbomachinery

Basic Cavity

Simple Axisymmetric
Cavity

U

L

D

i
i !

Non-Axisymmetric
Helmholtz Resonator

__L
Lo

T ,k

L_
ir

Simple Axisymmetric
Cavity With

Exit Flowing Fluid

U -----_
L

D U c
1

Simple Axisymmet rlc
Cavity With

Entrained Flowing
Fluid

U ------_
L

D U c

Variation of

Basic Cavity

Bellows

Sliding Expansion Joint

Turbine Blade Tip Seal

Combustion Chamber
Resonator

7--

Lubrication and
Cooling Port

It

Lubrication and

Cooling Port

Significant
Parameters

U = Free-stream

velocity

L = Cavity length

D = Cavity depth

M = Mach number

L o = Neck length

L c = Cavity depth

.% = Orifice cross-
sectional area

A_ = Cavity cross-
sectional area

U = Free-stream

velocity

U c = Cavity velocity

L = Cavity length

D = Cavity depth

M = Mach number

U = Free-stream

velocity

U c = Cavity velocity

L = Cavity length

D = Cavity depth

M = Mach number

Approximate
Range of

Dimensions

L/D _<1

M<0.15

L o < 0.2 inch

Lc < 0.5 inch

.%/A_< o.I

L/D < 1

M<0.2

U c/U < 1.5

L/D < 0.5

M<0.4

U/U c < 0. I

iL
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below 5000 Hz. Furthermore, most sources of vibration concern in turbo-

machinery will be traceable to liEs of the fluid-dynamic and fluid-resonator type.

Based on this premise, all the models appearing in the handbook assume the basic

mechanism as an Instability-lnduced Excitation.

Also, given that the flows are internal, it is highly possible that an lIE may

become coupled with an acoustic wave. To deal with this issue, the first part of

the handbook (Chapters 2 through 6) presents a number of methods used to

calculate acoustic resonances inside internal flow paths.

The second portion of the handbook (Chapters 7 through l l) reviews

models that pertain to lIE. Included in the handbook are frequency prediction

formulae for jets, wakes, and mixing layers. Also discussed at great length are

aspects dealing with leading edge interactions. The models are organized

according to the basic categories of shear layer flows and those having leading

edge interactions.

Shown in Tables I-3 and I-4 are the acoustic and flow models considered

in this handbook. The models appearing in these chapters were selected based

upon results of the previous survey. In Table 1-3, the table is divided into two

parts: discrete resonators- having a cavity small in terms of the acoustic

wavelength, and distributed resonators- having cavity length measuring several

acoustic wavelengths and a transverse dimension typically small in terms of the

acoustic wavelength. In Table I-4, the top row shows the basic flow configura-

tions; below each configuration is shown the basic model acting with an acoustic

resonator. These two tables are keyed to chapters in the handbook.

I-9



Table 1-3

Acoustic ResonatorModels

O

I-
g)

0

DISCRETE RESONATOR

Acoustic Characteristic
Wavelength >> Length Scale

CHAPTER 2

Ideal

A Helmholtz
7 _.._1 Resonator

k >> AJ/2_

k >> Vcl/3

CHAPTER 2

"K
Skew

DISTRIBUTED RESONATOR

Acoustic Characteristic

Wavelength -< Length Scale
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CHAPTER 2

CAVITY RESONATORS

by Miguel C. Junger
Cambridge Acoustical Associates

The basic forms of cavity resonators are (a) resonators with cavities small

in terms of acoustic wavelengths; (b) elongated cavities, e.g., pipes, which display

a length measuring several acoustic wavelengths and transverse dimensions

typically small in terms of acoustic wavelengths; and (c) fluid-filled spaces whose

three dimensions measure several wavelengths. The mechanical analog of (a} is

the simple mass-spring oscillator. The mechanical analog of (b) is a waveguide,

viz, a column measuring several compressional wavelengths. The mechanical

analog of (c) is a multi-modal, three-dimensional structure.

Systems of type (c), which are typically dealt with by means of statistical

techniques, v/z, room acoustics, are not relevant to turbomachine acoustics.

In covering type (a) and (b) systems, we shall rely as much as possible on the

familiar field of structural vibration.

Sections 2.1 and 2.2 introduces the basic mathematical models. Sec-

tion 2.3 considers the situation when the resonator is filled with a liquid and the

boundaries of the resonator are no longer rigid. Section 2.4 describes the

resonator characteristics when a damping material is inserted into the orifice.

Section 2.5 considers the Helmholtz resonator as a side branch. Sections 2.6

and 2.7 describe the effects of a high-incident pressure and turbulent flows inci-

dent on the mouth of the resonator.

2. I The Helmholtz Resonator Reactance and Natural Frequency

2.1.1 The Mechanical-Acoustical Analog

A Helmholtz resonator's cavity is the equivalent of the spring of a simple

oscillator. Figure 2-1 presents a sketch of a Helmholtz-type cavity and its spring-

mass equivalent. The resonator's spring constant, K, is determined by the

compliance of the fluid-filled cavity and of its boundaries.
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The equivalent of the oscillator mass, m, is the fluid mass in the resonator

neck plus the entrained fluid mass. The latter can be envisioned as the reactive

radiating loading on two virtual pistons forming the boundaries between the neck

and, respectively, the cavity and exterior space. Even if the neck length Lo (see

Figure 2-1) is small, the sloshing of fluid through the orifice as the cavity is

alternatively compressed and decompressed entrains a mass of fluid correspond-

ing to a volume Ao AL of fluid, where A_ is the orifice cross-sectional area and

AL is the sum of the lengths of the entrained fluid outside the cavity, ALo, and the

entrained fluid within the cavity, ALl.

The analog of the dashpot resistance in the mechanical system, R, is the

sum of two components: the acoustic resistance R, associated with sound

radiation by the above-mentioned outward-facing virtual piston and the viscous

resistance 1% embodying frictional losses. In airborne noise control applications,

the latter resistance is deliberately enhanced, e.g., by inserting a fiberglass plug in

the neck.

In this connection it is noted that Helmholtz resonators, which are now

used to absorb noise, particularly narrowband noise such as associated with

transformers, had been used traditionally in churches and theaters to render the

space more reverberant. The name of the 19th century physicist Helmholtz was

attached to the resonator not because he invented it but because he was the first

to analyze it. It is this reverberation-enhancing performance of the Helmholtz

resonator which is a potential problem in turbomachinery.

2.1.2 The Natural Frequency of the Helmholtz Resonator

The adiabatic bulk modulus (B) of a fluid - whether gas or liquid - relates

the volume strain (AV/V) of the adiabatically compressed fluid to the applied

pressure. The applied pressure can be expressed as

p = -B AV/V. {2-i}

For a gas, B is a function of the ambient pressure P_,

B = yP_, (2-2)
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where y is the ratio of the specific heats at, respectively, constant pressure and

constant volume. The ratio y, which is 1.40 for air under normal atmospheric

conditions, is a function of pressure and, to a lesser extent, of temperature._ For

100 atm and -79°C Yalr =

commonly expressed as

2.20. The bulk modulus for a liquid and a gas is

where p is density and c

sensitive to pressure and temperature.

Applying Equation (2-2) to the resonator,

B = pc 2 , (2-3)

sound speed. The bulk modulus of a liquid is far less

where Ao

the cavity,

defining the boundary between the orifice and exterior space.

the piston is

F = A_p.

av _ Ao 8
V I_¢A_ ' (2-4)

and &. arel respectively, the cross'sectional areas of the orifice and of

Lc is the cavity depth, and 8 is the displacement of the virtual piston

The force acting on

(2-5)

Combining Equations (2-1), (2-4), and (2-5), one formulates the effective stiffness

K - F
8

B Ao
L_Ac

= B Ao2/Ve, (2-6)

where Vc = Lc A_ is the cavity volume.

As already mentioned, the mass is the mass in the orifice neck (with

length Lo ) augmented by the en{rained mass of the _rtual p{stons forming the

interface between the neck and, respectively, the exterior space (length ALo ) and

the cavity (length ALi ). For openings small in terms of the cavity's cross-sectional

area as well as of the wavelength squared, the entrained mass is that of a baffled

piston with lengths 2

-7

:7: _
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ALo = AL_= 0.850 (Ao/n)I/2 ;

= 0.48 Aft 2

Ao << A_, X2

(2-7)

This asymptotic small-orifice result is insensitive to cross-section geometry. As

the orifice area increases, AL_ decreases, as seen from a graph in Figure 2-2

computed by Ingard. 3 An approximate expression for these curves is

.I/2 [I 1.25 (Ao/A¢) I/2] (2-8)AL_ = 0.48 A o -

If the orifice opens outward through an extended boundary, the expression

for ALo in Equation (2-7) holds irrespective of A_/A_ provided Ao << X2 • Assuming

this to be the case, the effective resonator mass is

m = p Ao L.ft, (2-9)

where Left is the effective neck length shown in Figure 2-1 and is

I_ = Lo + ALo + AL_

= Lo + 0.48A z/2 [2-1.25 (Ao/A_)I/2].
0

(2- 10)

The density p of a gas is given by

where Po is the

10 .3 g/cm 3 for air},

temperature in degrees Kelvin. 4

pressure and temperature. 5

po P_

fr/273}

density at 0°C (273°K) and atmospheric pressure

Poo is the pressure of the gas in atmospheres, and

{2-I 1)

u

(1.23 x

T is the

The density of liquid is relatively insensitive to

Substituting the above results for stiffness and mass, the familiar expression

for the natural frequency of a simple oscillator is

1 /KI '/2

- I [BAo I '/2
2n _] . (2-12a)
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Since B = p c 2 , the term (B/p) I/2 can be replaced with c so that

c {Ao 1'/2
fn - . (2-12b)

Recalling that gasses have a density and bulk modulus which depend

strongly on pressure and temperature, one would expect the same to hold for the

sound velocity and consequently for fn • Referring to Equations (2-2) and (2-11),

one notes that the pressure cancels out, the sound velocity and hence fn are only

dependent on temperature

c(T) = Co [T/273] I/2 , (2-13)

where Co is the sound speed at 273°K (3.31 x 104 cm/s for air), and

degrees Kelvin. Consequently,

T is in

fn(T) = c° (A°T/27311/2
2_ _ VeLar ] " (2-14a)

Example Calculation

To illustrate the above result, consider an air-filled resonator with Lo/ALo

<< 1 and Ao/A¢ << 1 . In view of the latter inequality, Equation (2-I 0) applies, and

Left = 0.96 A I/2 A I/2= (2- 14b)
0 0

The natural frequency now becomes

f. - 3.31 x 104 {AIo/2T/2731'/2 "
2n _ Vc ] (2-15)

As an example, at a temperature of T = 293°K, an orifice cross-sectional area Ao =

10 cm 2 , and a cavity volume Vc = 1000 cm 3 , the natural frequency computed with

Equation (2-15) is 307 Hz.
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2.2 Range of Validity of the Helmholtz Resonator Theory

The range of validity of the mathematical model of the cavity as a spring will

be explored as it is applied to waveguides. A waveguide of length Lc terminated

by a rigid boundary displays a standing wave pressure field of the form

p{x) = Pcos [k (x-Lc}] , {2-16}

where k = co/c = wavenumber and co = 2nf is the angular frequency. The corre-

sponding displacement 5c at the open end of the cavity (x = 0) is given by Euler's

equation specialized to harmonic motions whereby }_e= -0) 2 _c , or

_ i ap
_) (1)2 _X

x=O

_ Pk sin(kl_¢)

- P sin (k I.¢).
p c2 k (2- 1 7a)

Preserving a constant volume velocity, the corresponding particle displace-

ment in the resonator neck is

Ao (2- 17b)

The pressure is also continuous at x = 0.

the neck-cavity interface is

K_AoP

A_

Ac

Consequently, the effective stiffness at

P

_c

p c 2 k cot (k I_).
(2- 1 8)

Noting that

cot (x)= 1(1- x-_23")" (2- 19)

2-8



2
The low-frequency limit of the stiffness, for which k 2 E c/3 << 1 , is

A_ L¢ (2-20)

This inequality can now be used to formulate the restriction that resonator

dimensions must satisfy to make the elementary theory applicable. The wave-

number at the Helmholtz resonance is obtained from Equation (2-12b):

_ 4n2f 2

ca

_ Ao

VcL_

_ Ao

A_ L_ L_' (2-21)

The inequality in Equation {2-20) now becomes

Ao I.¢ << 1,
3 A_ I_n (2-22)

which is the restriction that resonator dimensions must satisfy to make the

elementary theory applicable.

Example Calculation

Using the numerical

becomes

The inequality implies

and

3Vc

selected in Section 2.1.2, the

l O-3L_ << 1.

restriction

I_ << 31 cm

Ac = V__ >> 32cm 2.
I_ (2-23)

A wave acoustic theory of the Helmholtz resonator which does not place

limitations on cavity dimensions, and which yields somewhat more accurate

expressions for the natural frequencies, was formulated by Bigg. 6 In view of the

uncertainties brought on by dependence of the sound velocity on temperature as

well as the presence of impurities, the more refined theory need not be

introduced here.
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2.3 The Liquld-Filled Cavity Resonator

For gas-filled cavities, the compressibility of the fluid in the cavity short-

circuits the compliance of the boundary, except for unusually high static

pressures. Boundaries were therefore considered rigid in the preceding sections.

Because of the large bulk modulus of liquids, the boundary compliance cannot be

ignored in this section.

The effective bulk modulus of a body of liquid in an elastic boundary is

obtained by combining the compliances of the two media. The bulk modulus of

the liquid is of course p c 2 , as it is for gases but, as already mentioned, it is

comparatively insensitive to pressure and temperature. To illustrate the calcula-

tion of the effective bulk modulus, consider a cylindrical shell of diameter 2rs,

length L_ , and wall thickness h. The desired insight can be gained from an

elementary mathematical model of the cylindrical boundary whereby the radial

expansion is assumed uniform, the axial expansion of the cavity being ignored.

The hoop stress is computed from simple static equilibrium considerations

= prs/h. (2-24)

The hoop strain is

= K - prs
E E h ' (2-25)

where E is the Young's modulus. From simple geometric considerations, the

hoop strain can also be related to the uniform radial displacement w where

The volume strain is

w = _rs

_ P_
.

Eh

AV _ 2_rsLcw

V 7t _Lc

- 2w
r s

(2-26)

(2-27)

-z
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Substituting Equation (2-26),

A_V_.V- 2prs
V Eh (2-28)

Consequently, the bulk modulus of the shell, Bs .computed from Equation (2-1)

(with a sign reversal because the pressure acts outward on the boundary, while the

definition in Equation (2-1) assumes an inward-acting pressure), is

Bs - Eh
2 rs" (2-29)

A slightly different expression would have been obtained had the axial strain

been taken into account. The reader can, as an exercise, compute the effective

bulk modulus contribution of various shells by referring to familiar handbooks. 7

The effective volume change which determines the cavity stiffness at the neck-

cavity interface is obtained by adding the compression of the liquid and the

expansion of the boundary

V Eh ]" (2- 30)

This can be generalized to arbitrary boundary geometries

&V_ =-p (B- t + E'),
v (2-31)

where BL is the bulk modulus of the liquid.

is therefore

The effective bulk modulus

Bs " (2-32)

Referring to electric circuit theory, the two bulk moduli are seen to add in

parallel. Clearly, ff the shell is quite flexible, the compressibility of the liquid is

short-circuited.
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Example Calculation

As a realistic example, consider a cylindrical steel shell (E = 2.1 x

10_2 B bar) containing water (BE = 2.2 x 10 l° I_ bar) , the thickness-to-radius ratio

being h/r_ = 1/50. The ratio of the two bulk moduli is

BL _ 2p c2 rs
B,_ E h

= 1.04.

The effective bulk modulus, Equation (2-32), therefore becomes

B_ = 2.2x 10 l°
(i + 1.04)

(2 -33)

= 1.1 x 10 l° 8 bar. (2-34)

This can now be substituted in Equation {2-12}. Retaining resonator dimensions

assumed earlier, the natural frequency of the liquid-filled resonator is

" I/2 \112

- 1 [BAo rs]

= 958 Hz. (2-35)

Even though the natural frequency is considerably higher than for the air-

filled cavity, the inequality underlying the Helmholtz mathematical model is

readily satisfied because the sound velocity is correspondingly larger. In other

words, the cavity dimension rather than the acoustic fluid determines whether

the Helmholtz model is valid. This is apparent from the inequality in Equa-

tion (2-22) which does not contain any of the acoustic fluid parameters. The

above calculation does contain other approximations, the kinetic energy not only

of the shell wall but also of the radial motion of the liquid in the cavity having been

ignored. This is, however, small compared to the kinetic energy of the liquid

sloshing through tt]e o_ce for the small ratio Ao/A_ assumed here.

It is interesting to note that this result could have been obtained directly

from Equation (2-12) had the Korteweg-Lamb correction been applied to the

sound velocity in an elastic pipe. 8 The Korteweg-Lamb correction will be dis-

cussed further in Section 4.1.

z

==
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2.4 Helmholtz Resonator Damping

So far only the reactive portion of the resonator impedance has been

analyzed. When resonators are used for the purpose of sound absorption, screens

or fiberglass are inserted in the orifice to enhance sound dissipation, the maxi-

mum absorption cross-section being achieved when the acoustic and frictional

resistance are matched. As long as Ao << 12 , the acoustic resistance depends

primarily on the orifice area A_ and only mildly on its shape. Therefore, results

strictly applicable to circular orifices whose acoustic resistance is 2

are only considered.

resonance (f = f.) becomes

Ra = 2_p f2A_/c, (2-36)

Referring to Equation (2-12), the acoustic resistance at

27t V_

A5/2
= PC--o ,

2_Vc (2-37)

where use has been made of Equation (2-14b).

The corresponding acoustic quality factor, which is a

sharpness of the resonance of the Helmholtz resonator, is

(K m) i/2
Qa -

R_

Combining Equations (2-6). (2-9), and (2-37),

{Vc L3e_/'/2
Qa -- 211: _] .

For the numerical example selected earlier, for which Le. = _2

factor becomes

measure of the

(2-38)

(2-39a)

, the quality

Qa = 27t (Vc/A3/2) 112

= 2n(103/103/2) '/2 = 35. (2-39b)

It is noteworthy that the fluid parameters drop out, and that the quality factor is

therefore independent of pressure and temperature. This, of course, does not

follow for the resistance, Equation (2-37), which is proportional to pc , since

2-13



pc_- ocoP( ) (2-40)

where Po Co = 42.8 p bar/cm/sec for air, P is in atmospheres, and T is in

degrees Kelvin.

Additional damping is provided by fluid viscosity and to a much lesser

extent by heat conduction. For air in the absence of a screen, the viscous

resistance is typically small compared to the acoustic resistance. In our notation,

the viscous resistance is

R_ = 2 RsAo{ _--- + 2)_rs ' (2-41)

(Reference 3, Equation (11), where 0 e , the viscous end correction, is taken equal

to 4 Rs/pc, rather than the theoretical result 2 Rs/pc, to account for experi-

mental results also reported in Reference 3). The viscous surface resistance in

terms of the viscosity l_ is

R s -- (_ _I p I) 1/2 . (2-42)

Normalizing to the acoustic resistance, the resistance ratio at resonance is

_ {vc Le_1Ro ÷ i,,
Ra rs _pc ] _I

(8p11/2 Vca/4 I_ =0 (2-43a)
--_-2r_ _-_-! Aou/8 ,

where use has been made of Equations (2-12b) and (2-14b). The relevant

parameters for air and water are tabulated in Table 2-1, as are the results of the

resistance calculations for the resonator parameters used in earlier examples.

The resultant Q accounting both for acoustical and viscous losses is

RI ) ]-i
Q = Qa [ I + _-j (2-43b)

and also tabulated in Table 2-I. Even though the application of Equations (2-41)

and (2-42) to water is a crude approximation, it adequately shows that, in the

absence of an energy-absorbing device such as a screen, the resistance is mostly

associated with the radiation resistance for the Helmholtz resonator

parameters selected.
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Table 2-1

Examples of Resistance Calculations for
the Air and the Water-Filled Resonator

Symbol

P

P

_/P

C

%

P_
P_

Qa

Q

Parameter

Units

pbar s

g/cm 3

cm2/s

cm/s

Hz

dimensionless

[see Eq. (2-43)a]

dimensionless

[see Eq. (2-39b)]

dimensionless

[see Eq. (2-43b)]

Air
(T = 293°K)

1.81 x 10 .4

1.21 x 10 -3

0.15

3.43 x 104

307

0.27

Water

0.01

1.0

0.01

1.48 x 105

958

0.034

35 35

28 34
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2.5 The Helmholtz Resonator as a Side Branch

Although sound propagation in pipes will be studied in detail in Sections 3,

4, and 5, this section considers an elementary low-frequency situation of an

incident plane sound wave propagating in a pipe. The purpose of this example is

to demonstrate an application of the Helmholtz model and its electrical circuit

analog to determine transmission loss as a function of frequency. Neglecting pipe

wall compliance, the pressure propagates at the speed of sound in the fluid in the

form of

Pt (x) = Pj exp (ikx). (2-44)

Since the pipe cross-sectional area, Ap, generally differs from Ao, it is desirable

to introduce volume velocity. The volume velocity of the incident wave is

_ Ap Pl
pc (2-45)

The acoustic impedance in units of pressure per volume velocity is

Z_=P c
Ap (2-46a)

That of the Helmholtz resonator is

2rt fA 2 Q _n "

(2-46b)

The reflected pressure can now be computed. The impedance at the pipe

resonator junction is represented by a shunt circuit in Figure 2-3, where the

Helmholtz resonator is short-circuiting energy flow into the downstream portion

of the pipe. Using the subscripts R and T to identify the reflected and trans-

mitted pressure, respectively,

pR(X) = PR exp (-ikx) ,

Q_ = _ PRAp ,
pc (2-47a)

pT(X) = PT exp (ikx) ,

QT -- PT Ap
pc (2-47b)

2-16
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x=O

Figure 2-3. The Analog Circuit of a Pipe Provided With a Side Branch
in the Form of a Helmholtz Resonator.

[Zp = pipe impedance, Equation (2-46a).

Z H = resonator impedance, Equation (2-46b).]
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Continuity of pressure and of volume velocity at x = 0 requires that

PR + Pi = PT, {2-48a)

= PH, (2-48b)

Qi + QR = Qr+QH, (2-48c)

QH - PH

ZH ' (2-48d)

where the subscript H identifies the Helmholtz resonator. Substituting Equa-

tions (2-45), (2-47a), (2-47b), and (2-48d) for the volume velocities, and using

Equations (2-46a) and (2-48b), Equation (2-48c) becomes

(2-49)

Consequently, the impedance just upstream of the resonator is (Figure 2-3)

z-- (z;l. z.')-'. (2-501

The simultaneous equations, Equations (2-48a) and (2-49), can now be solved for

the reflected and transmitted pressure ratios:

PT-(1 + ZP )-1
Pl 2 ZH '

PR - {2ZH +l)-IP, t--_- "

{2-51)

At the Helmhoitz resonance, the resonator impedance, Equation (2-46b),

reduces, with the application of Equations (2-12a) and (2-35), to

f=foR_ (2-52)

At resonance, the resonator short-circuits the transmission of acoustic energy,

i.e., [PR/P, [ approaches unity and [PT/PI [ -- 0. The resonator effectively simu-

lates a pressu_-e release termination. The transmission loss is

TL PT
= -20 log m p_-

= 20 loglo 1 + 2ApRa/
, f=fn.

(2-53)

p

-±
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Examp!e Calculation

For the resonator parameters used earlier, and selecting a pipe whose

cross-sectional area A_ = 10 A o,

2ApRa

p cA2o
I +Rq , =... -_ --o 1 f f.

KVc _ Ra!

= O. 127 for the air-Idled resonator, and

= O. 101 for the water-filled resonator.

Q

(2-54)

Substituting these results in Equation {2-53), one computes a transmission loss of

19.0 dB for the air-filled resonator and of 20.7 dB for the water-filled resonator at

their respective resonances. Sufficiently far from resonance, ZH is large com-

pared to Zp and the resonator does not short-circuit the downstream pipe

impedance. Substituting ZH, Equation (2-46b) in lieu of R_/A2o in Equation (2-53),

the transmission loss at low frequencies becomes

TL:101°g'°['+(°cA ° fl21ApK,J
= 10 log,o [1 + [ nfV/2] f2 << f2_cAp)J

= 0 as f_0 (2-55)

and, at high frequencies, the transmission loss becomes

TL
= I0 logxo I + _4nfApM

= 101og10 I + 4nfApLe_]J

f2 >> f2

= 0 as f/fn_°° (2-56)

These trends are plotted schematically in Figure 2-4.
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Figure 9.-4. Schematic Plot of the Transmission Loss Provided by a
Side Branch in the Form of a Helmholtz Resonator.

2.6 High Incident Pressure Amplitude on a Helmholtz Resonator

The basic discussion of Helmholtz resonators above assumes that the

resonator is excited in a quiescent icoustic medium. The more likely situation in

turbomachinery is one in which a cavity resonator is excited by a grazing flow

across the orifice. The presence of the flow alters both the reactance (i.e., effec-

tive end correction) as well as the resistance of the resonator, thus shifting the

resonance frequency and its quality factor, unfortunately, the ability to predict

these shifts has only been determined for a few geometries and flow ranges. The

following is a brief summary of pertinent literature and results in this area.

A problem related to grazing flow past a Helmholtz resonator- namely, the

non-linear dependence of the resistance of an orifice on large incident pressure

amplitude- is treated by Ingard. 9.1° Here the non-linearity is due to flow sepa-

ration and the formation of a jet on the downstream side of the orifice. This flow

switches from side to side through an excitation period as sketched in Figure 2-5.

Measurements made in the orifice show a distortion in the velocity curves with

increasing sound pressure level and a gradual change in phase between the

pressure and velocity. When the incident pressure amplitude exceeds a transition

point, where pressure and velocity in the orifice begin to become distorted, the

non-linear resistance of the orifice is approximately p u 2 , where u is the

acoustic velocity in the orifice.
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Pressure and Velocity "'"7
in the orifice becomes /

distorted with large /
incident pressure /

amplitude _

k\\\\\\\\\\',_ k t. _ _\\\\\ _\\\\ \\\\NJ

Figure 2-5. Schematic of Non-Linear Flow Separation and

Jet Formation Through a Period of Excitation.
(The source of this excitation is a large incident

pressure amplitude.)
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Ingard _o provides a computational procedure to determine the transmission

loss for a high-amplitude incident pressure field. The procedure requires

knowledge of the angle of incidence and pressure amplitude of the wave front.

Both parameters are difficult if not impossible to determine inside turbo-

machinery. An approximation made is to apply the end correction in Equa-

tion (2-10) only once. This will reflect the lack of added mass on the jet side of

the orifice. Equation (2-10) then becomes

Left = Lo + ALo

l/2

= Lo + 0.48A o •

(2-57)

The effect of steady (i.e., "DC bias") flow through the orifice is discussed in

Reference 9 where it is concluded that the dependence of orifice resistance on

flow Speed is similar to the non-linear dependence on unsteady orifice flow speed.

The effect of a grazing turbulent flow on a resonator duct lining is briefly discussed

in Reference 10. Turbulent pressure fluctuations are viewed as causing a slowly

fluctuating bias flow in the orifice similar to the steady flow discussed above with

corresponding resistance and reactance effects.

An analytical model of a circular cylindrical Helmholtz resonator in the wall

of a duct carrying low subsonic flow is given by Howe in Reference 11. The duct

and the cavity communicate through a slit orifice. Howe's explanation for the

increased resistance of a resonator with a "DC bias" flow is that the vorticity

generated by an incident acoustic pressure fluctuation is swept downstream by the

flow carrying a portion of fhe _acoustic _energy with it. :Explicit expressions are

derived for the impedance of the cavity as seen by an incident plane wave in the

flow duct. Consistent with the results of Ingard, Howe finds that the cavity

resonance shifts to higher frequency (i.e., smaller end correction) as the flow

Mach number increases. The magnitude of the shift, however, depends on the

dimensions of the cavity, duct, and orifice slit.

Two other references are an experimental study of Helmholtz resonator

excitation by an external flow over a glider fuselage in flight 12 and a semi-empirical

study of the effects of grazing flow over an array of resonators, x3 Both studies

confirm the reduction in end correction with flow Mach number.

m
z

z

z
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2.7 Excitation of Resonato_ by Turbulence

Sound radiation by turbulence-excited Helmholtz resonators will be dis-

cussed. Subsection 2.7.1 provides a description of the turbulent boundary layer;

Subsection 2.7.2 describes the response of a Helmholtz resonator to a turbulent

boundary layer; and Subsection 2.7.3 deals with the acoustic response of cavities of

constant cross-section, ile., those devoid of the Helmholtz resonator neck.

2.7.1 Description of the Turbulent Boundary_ Layer

A concise description of the boundary turbulence in terms of cross-spectral

density and correlation length is adequate, particularly because the much debated,

controversial low-wavenumber portion of the spectrum associated with direct

sound radiation from the boundary layer proper, is not specifically relevant to

sound radiation by Helmholtz resonators and cavities. A more detailed discussion

including a review of various models of the low-frequency spectrum is found in

Reference 14. A recent comparison of various mathematical models is available in

Reference 15.

The randomly fluctuating surface pressures exerted on the boundary by the

turbulent boundary layer are expressed in terms of the mean-square value ( p2 } of

the pressure and of the correlation function R as

(p(x,y,t) p(x+_, y+T1, t+_)) = (p2} R(_,TI,_). (2-58)

Here x and y are, respectively, the coordinate in the direction parallel and

normal to .the flow velocity, _ and 11 are their respective increments. In a fully

developed turbulent boundary layer, the correlation function does not depend on

the location (x, y) but only on the separation (_, TI) between two points. The

mean square pressure is in the nature of a Bernoulli pressure, being proportional

to p U 2 , where p is density and U is flow velocity.

The

tion (2-58)

cross-spectral density is the Fourier transform

p(_,Tl;(0) = !_}- f__R(_,TI,_) exp(i(o_)d_

= _ ((o1T(_, T1;(ol.

in time of Equa-

(2 -59)
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The spectrum density

_(o_) = (._--_}-f_R(0,0, x)exp(ic0x)dz

can be approximated in terms of the boundary layer thickness 15 as

5x I0 -_ p2 U 3

1 + ((_/4_ U)3

(2-60)

(2-61)

In Reference 13a, for fully developed turbulence in a pipe or duct,

conduit's transverse dimension. The second factor in Equation (2-59)

normalized cross-spectral density

T(_, TI; to) - (I_) R(_, rl, _)

215 equals the

is the

(2-62)

which can be approximated as the product of the _- and vl-dependent

spectral densities

cross-

T(_, 11; ¢o) = T(_, 0; col T(0, TI; co) . (2-63)

The two factors in Equation (2-63) are formulated in terms of the corresponding

Strouhal numbers

S t - Uc

and (2-64)

Uc

where Uc is the convection velocity. The ratio Uc/U varies with eddy wave-

number and Reynolds number. A representative value for this ratio is 0.6 (Refer-

ence 14, page 744). The two factors in Equation (2-63) can now be expressed as

T ( _, 0; (o) = exp (-0.11 ] S t I ) cos S t

T(0, Tl; co) = exp (-0.60 [S.[).

(2-65a)

The latter factor indicates rapid monotonic decay in the direction normal to the

flow direction. The former decays slowly in an oscillatory manner, in the

direction of the flow.

i
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One can define a correlation length in terms of the limits of S_ associated
with a change in sign of the cross-spectral density:

n < S_ < --_.
2 2 (2-65b)

This Strouhal number range can be expressed in a physically more meaningful

manner by introducing an unconventional parameter not found in the literature,

e.g., the convection wavelength

_.c - Uc.
f {2-65c)

The inequality in Equation (2-65b} now becomes

< <
4 4 (2-65d)

A meaningful correlation length, _, can therefore be defined as equivalent to _-c/2 .

2.7.2 H¢Imholtz Resonator Response to the Turbulent Boundary Layer

The natural frequency of the resonator, Equation _2-12), is altered by mean

flow which modifies the entrained mass as well as the radiation resistance, as

summarized in Section 2.6 and in References 9, 10, 11, 15, and 16. The experi-

mental study which specifically addresses the response of Helmholtz resonators _

concludes that in most cases the outside end correction is wiped out by mean

flow, shifting the natural frequency upward, a conclusion consistent with that of

the other experimental studies. Reference 12 does, however, conclude that in

some cases the outside end correction remains unchanged or is even increased by

mean flow. Obviously, additional studies are required to reconcile apparently con-

flicting experimental results. The resistive component of the acoustic impedance

of the resonator neck increases with flow velocity.

The experimental study in Reference 12 indicates a strong response when

2d°fn --- 1
Uc (2-66a)

or

do = _/2 {2-66b)
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where do is the Helmholtz resonator neck diameter and fn is either the Helm-

holtz resonance frequency, Equation (2-12), or the fundamental standing wave or

organ pipe resonance. For the latter, the effective cavity neck length, Leff,

measures one acoustic half-wavelength, so the natural frequency would be

or

fn --- c
2 L_- (2-67a)

L_ _=__,/2. {2-67b)

Once again, the convection wavelength defined in Equation (2-65c) can be

introduced to express the condition for strong coupling, Equation (2-66), in a

physically insightful manner ff

do = _/2. (2-68)

The result in Equation (2-66) is based on a limited number of experiments

encompassing three values of do/5 (between 1/4 and I/2), and a single ratio

5/L -- 6 where L is the resonator neck length (0.32 cm). The boundary layer

thickness _ is 2 cm. The free-stream velocity U is 30 m/s and air is the

acoustic fluid. The results are summarized in dimensionless form in Figure 2-6.

The pressure enhancement at resonance is of the order of 30 dB. The peak in

Figure 2-6 occurs for

odo /u. _. 40,

where the friction velocity u, is defined and related to

figure. Expressing u. in terms of the convection velocity Uc

t0do /U¢ = (2dof/Uc)Tr

-

a 40/15.

This is consistent with Equation (2-66) since (40/15n) is of a first order

of magnitude.

It is useful to interpret these experimental results in terms of the standard

mathematical model of the turbulent boundary layer presented in Subsection 2.7.1.

(2-69a)

Uc in the caption of that

(2-69b)
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Relating the resonator neck diameter do to 4, the resonance condition in Equa-

tion (2-66) is equivalent to a Strouhal number spanning the range of -n/2 to n/2,

i.e., to a neck diameter do across which the cross-spectral density remains

positive. This is consistent with the results formulated in Equations (2-65b,c,d).

Strong coupling between the turbulent boundary layer and the resonator

occurs when th.e resonator neck measures one convection half-wavelength,

Equation (2-65d). When the corresponding frequency coincides with either the

Helmholtz resonance frequency, Equation (2-12), or the organ pipe fundamental

natural frequency, Equation (2-67), the resonance peaks of the pressure spectrum

displayed in Figure 2-6 takes place. Clearly, referring to Equation (2-66), the

Helmholtz resonance being characterized by the smaller of the two resonance

natural frequencies is excited at a lower convection velocity than the organ pipe

resonance.

2.7.3 Turbulence Excitation of Cavities of Uniform Cros_-Sectiqn

The response of cavities of uniform cross-section displays two types of

resonance. The primary one is the depth resonance. Insightful results were

obtained for a cavity in the form of a rectangular parallelepiped one of whose six

faces was left open to air flow in a wind tunnel. 17 With the goal of approximating

two-dimensional flow conditions, the dimension perpendicular to the direction

was large compared to the gap width b parallel to flow. As anticipated, an organ

pipe depth resonance is observed when the depth d of the cavity is much larger

than its width b:

d=l

-k 4
<<1

fn -__ C__C._
4d

(2-70)

For this situation, the end correction is negligible. For aspect ratios b/d which

are not negligible, resonances are observed at a lower frequency (see Figure 2-7)

f" = 4d " (2-711

Multiple resonances are observed for some values of b/d. These groups of peaks

correspond to roughly constant Strouhal numbers. The cause of these multiple

i

!
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resonances is not explained by existing theory, which associates depth mode

resonances with maxima of the expression

P - { (R sin kd) 2 + (X sin kd - cos kd) 2 }-i/2
pf " (2-72)

In Equation (2-72), p and pf are, respectively, the RMS pressure amplitude at

the cavity base and mouth, and k is the wavenumber 2_/;_. R and X are compli-

cated functions tabulated in Reference 17. As anticipated from the impedance

components of the acoustically compact piston radiator for k 2 b 2 << 1, R varies

approximately as (kb) 2 while X grows linearly with kb. R and X are therefore in

the nature of the resistive and reactive components of the impedance ratio.

Consequently, for small kb , where the cosine is much larger than the R and X

terms, the pressure ratio displays a maximum for the first root of cos kd, which

corresponds to Equation (2-70). The theoretical basis of depth mode resonances,

which is seen to be in satisfactory agreement with measurements, can be found in

a paper by Plumblee et aI. is

Equation (2-72) does not involve either the flow velocity or the convection

velocity. Consequently, one would anticipate resonances at any flow velocity.

This, however, is not the case. The reason is that the velocity must be such that

St = rob
U

the Strouhal number

is compatible with the shear layer feedback mechanism.

number proposed by Rossiter 19 is

, re=l, 2S_ = 2n (m- I/4) (Uc/U)
I+M (Ue _J)

= (3_/2)Uc/U, m= I _ M<< I

= (7_/2) Uc/U, m=2 J

(2-73)

The empirical Strouhal

(2-74a)

(2-74b, 2-74c)

B

u

where M is the Mach number. Equating Equations'(2-74b) and (2-74c) to

Equation (2-73), one obtains two convection velocities:

Uc - 4fb m= 1 13 '
M<< 1

Uc - 4fb m=2
7 '
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Rossiter showed that under resonant conditions, the shear layer develops into a

series of eddies having the same rotational direction, effectively like one-half of a

Karman vortex street. Strouhal numbers compatible with experimentally

observed resonances are plotted in Figure 2-8. These resonances require that the

frequency of which Equation (2-72) displays a maximum satisfy Equation (2-74).

These twin requirements explain why depth resonance, Equation (2-72), is

possible only at discrete velocities. For b/d < 1 and M < 0.18, the principal

cavity pressure resonances observed occur in the fundamental depth mode with
m = 1 and 2. For small Mach numbers, and small values of b/d, these require-

ments are satisfied by convection velocities obtained by substituting the funda-

mental depth resonance frequency, Equations (2-70), in Equations (2-75):

Uc =Cb3d, m=l I

Uc = cb m=2
7d'

M, b/d << I, f= c/4d (2-76)

fb
U
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Figure 2-8. Plot of Strouhal Number Versus Cavity Depth for
Resonant Conditions. (Reproduced from East.iT)
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CHAPTER 3

ACOUSTIC FILTERS AND NETWORKS

by Robert Noreen
Wyle Laboratories

Turbomachinery pipe systems containing propagating acoustic waves are

not simply constant area straight pipes with uniform pressure and temperature.

Rather, the pipes contain changes in cross-sectional area, pressure, and

temperature, and often have openings in a wall that lead to a cavity. Generally

these pipe changes create a change in the acoustic impedance of the pipe and

thus create a reflected acoustic wave. Interference between the incident and the

reflected waves then causes a decrease in the energy transmitted along the pipe,

i.e., the impedance change causes a pipe transmission loss.

Since the change in acoustic impedance for most changes in pipe

conditions is a function of frequency, the transmission loss corresponding to this

impedance change is also a function of frequency. Thus an impedance change is

an acoustic filter, passing acoustic energy at some frequencies while blocking this

energy at other frequencies. Pipe systems often contain many changes in area or

conditions, resulting in multiple impedance changes with differing frequency

relationships, and thus may be considered as a type of filter network.

The pipe elements described in the previous chapter are either acoustic

filters themselves, when considered as single pipe elements, or can be easily

combined with other elements to make a filter. A cavity on one side of a pipe can

form a Helmholtz resonator, and then would be an acoustic filter as shown

previously in Figure 2-3. A change in pipe cross-sectional area creates reflections

and, if separated some distance from another pipe impedance change, will create

a pipe transmission loss that is a function of both frequency and the distance

between the pipe changes - another example of an acoustic filter.

Combinations of these relatively simple elements can produce a complex

pipe system with many impedance changes having widely varying transmis-

sion loss versus frequency characteristics. Many of the pipe systems within

turbomachinery can be modeled as combinations of these individual simple

elements. This chapter will show how to calculate the acoustic performance of a

pipe system consisting of combinations of simple elements by using a transfer
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matrix technique. Section 3.1 defines pipe acoustic impedance and transmission

loss. Section 3.2 presents calculation methods and examples for simple networks

containing only a few elements. Section 3.3 presents the transfer matrix method

for analyzing acoustic pipe systems containing any number of elements, i.e., a

network, and gives example calculations. Section 3.4 gives a brief description of

how the transfer matrix method is used to model pipe systems with mean flow

and energy losses with an example that includes mean flow.

3.1 Pipe Acoustic Impedance and Transmission Loss

3.1.1 _Pipe Acoustic Impedance

The specific or characteristic (both terms are used) acoustic impedance of

the gas or medium supporting the propagation of an acoustic wave is a charac-

teristic of the medium and has a single def'mition

z_ = p/u (3-1)

where z_ = specific acoustic impedance,

p = acoustic pressure, and

u = acoustic particle velocity.

For acoustic pressure variations small enough to be considered isentropic, the

specific impedance for plane wave propagation in a stationary medium is

where

Z_p = pc

z_ -- specific acoustic impedance of a plane wave,

p = ambient density, and

c = speed of sound.

{3-2)

The acoustic impedance of a pipe can have several definitions - all of which

can be useful- and the most convenient definition to use will depend upon the

specifics of the particular problem. The most common definition is probably that

used earlier in Equation (2-46a) and by Kinsler and Frey, l which is based upon the

acoustic volume velocity_ in the pipe, A_ u

Zv - P _ zu
Ap u Ap

(3-3}

__--
r_
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where

q

Zv = acoustic impedance of pipe, based on volume velocity, and

Ap = cross-sectional area of pipe.

For a plane wave in a stationary medium, this acoustic impedance becomes

Z_p - pc
Ap (3-4)

Since both the density and speed of sound are functions of temperature, for

actual calculations on problems in which the pipe temperature can vary it is

generally more convenient to define a pipe impedance based on the acoustic mass

velocity in the pipe, p Av u as

Zm- P - z" =Z.
p&u p& (3-5)

For a plane wave in a stationary medium, this becomes

Zmp = _pc _ c = 4.
p Ap Ap (3-6}

This is the definition of pipe impedance that will be used in this chapter, and

follows Munjal. 2 To simplify notation in later sections, Zm will be denoted by Z

and Zmp will be denoted by 4. These impedance definitions are summarized in

Table 3-1.

Table 3-1

Definitions of Acoustic Impedance Used in Text

Parameter General Plane Wave

P
Specific acoustic impedance Zu =

U Zp = pC

Acoustic impedance based on Zv = Pl = zu p c
acoustic volume flow, Ap u Ap u T_p Zvp = -_

Acoustic impedance based on

acoustic mass flow, p Av u

P

u

z u

p_-- --- Z

pc
Zmp =
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The expressions for impedance given above assumed a single wave
propagating in the positive direction. Most pipe problems will involve two waves-

an incident wave propagating in the positive direction and a reflected wave

propagating in the negative direction. Using the basic wave equations for a pipe
containing incident and reflected waves it can be shown that

Incident Wave: pi(x,t)/u = pc ,

Reflected Wave: pR{x,t)/u = -pc,

(3-7)

where the subscript 'T' designates the incident wave amplitude and the

subscript "R" designates the reflected wave amplitude. Using these relationships,

the impedance of a pipe containing both waves is

Z = _ P,+PR
Pl -P----'_" {3-8)

3.1.2 Pipe Transmission Loss

The acoustic performance of a pipe is generally measured by the amount of

acoustic power reflected or transmitted by the pipe, usually in terms of the

amount of power initially incident on the pipe. The transmission coefficient is

simply the ratio of transmitted to incident power

where

at = Wt/W, (3-9}

at = transmission coefficient,

Wi = incident acoustic power, and

Wt = transmitted acoustic power.

The transmission loss, TL, of a pipe or pipe element is

TL = I_ - Lt

where I_ = incident acoustic power level, and

Lt -- transmitted acoustic power level.

The power level is

(3- 10)

L = I0 log10 (W/W_f} , (3- I i}

where Wref, the reference power level, is generally 1 picowatt. The transmission

loss of a pipe is thus
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or

TL = I0 loglo (Wi/Wt) (3-12)

TL = -i0 loglo ((_t) • (3- 13)

This definition of transmission loss provides positive values for the usual

situation of transmitted power being less than incident power.

The acoustic power of a propagating wave in a pipe is related to the acoustic

pressure and particle velocity by

where the subscript "rms"

acoustic variable.

W- prm_ u._ Ap
2 (3- 14)

designates the root-mean-square value of the

Combining this with the impedance from Equations (3-5) and (3-6) and

assuming a plane wave,

W - (P _mS)2
29_ (3-15)

For a pipe having known inlet and outlet areas, a fluid with known temperatures

and densities, the transmission loss is

,o og,0{!tlI II I
and the transmission coefficient is

where

(3- 16)

(p rms}i {3- 17)

Pros " rms magnitude of the acoustic pressure,

( )j = indicates the incident wave, and

( )t = indicates the transmitted wave.

Thus, given the pipe areas and temperatures, a determination of the rms

magnitudes of the incident and transmitted acoustic pressures will provide both

the transmission coefficient and the transmission loss of the pipe.
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3.2 Calculation Methods for Simple Networks

In Sections 3.2.1 and 3.2.2, the transmission loss of two simple pipe

configurations is derived using the "classical" method of filter network evaluation

which, simply stated, is to write down the equations which describe the con-

figuration or network and solve them for TL. Section 3.2.3 then provides a brief

generalization and discussion of the approach. The methods shown in this section

can be found in nearly any St_nd_d text on acoustics, witl_ this section generally

following Reference 1, except for the use of acoustic mass velocity instead of

acoustic volume velocity.

3.2.1 Single-Element Confumration

The acoustic impedance, Z, of an element is a complex number, which can

be written in the form

where

Z = R + iX, (3-18)

R is the real part and X is the imaginary part.

For a section of pipe containing a single side branch as shown in Figure 3-i,

Pl = Ale i|_)t-kx) +Bl e i(t°t+kxl , (3-19)

P2 = A_ e i I_xl, (3-20)

p_ = A 3 elg°t-kx)+B3 e I(¢°t+kx) , (3-21)

where co = 2_f, t is time, and k is wave number.

The "As" are complex constants setting the magnitude and phase of the incident

waves and the "Bs" are complex constants for the reflected waves. If the cross-

section dimensions of the pipe and the branch opening are assumed to be small

compared to the wavelengths of the frequencies of interest, then

p3 = p2 = pl.

E

If it is also assumed that the branch is at the origin of the coordinate system

and that there is an anechoic termination downstream, meaning the pipe is either

infinitely long or otherwise terminates without creating any reflections, then

x = 0, B] = 0, and
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A3 eiC°t+ B3 e|°_t= A2 ei_t = Ale it°t

A3 + B3 = A2 = A_ (3-22)

The impedances for the pipe sections are

(3-23)

z2=P2
V2 '

{3-24)

Zi = Pl _ Al - -[I,
Vl Vl

{3-25)

where the v's are the mass velocities of the corresponding pipe elements.

The incident mass flow is conserved, so

v3 = v2 + vl (3:26)

or, since the pressures at I, 2, and 3 are equal, it follows that

__l = _L + _2_
Z3 Z2 ZI (3-27)

so that

1__ _-_3 Z2 _ {3-28}

Assuming there are no temperature changes within the pipe and that the

upstream and downstream pipe areas are equal, _3 = _l - _ , then Equation (3-28)

can be rewritten as

+ Z2 _ (3-29)

This can be rearranged to solve for the reflected pressure in terms of the incident

pressure,

B3 = -A3 2Z_+ _ (3-30}

Using Equation {3-22) to eliminate B3, one obtains

A3 _ Z2 + (_/2}

Al Z2 {3-31}
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Using Z2 = R + iX, the transmission loss is

TL = 10 log_o(A_-)2 =
l'mS

lologlo{ER+' /2'12+x2/
R2+X2 (3-32]

Example Calculation

As an example, a Helmholtz resonator can be selected for the branch

element. Assuming no acoustic energy is lost in the neck of the resonator, the

real and imaginary parts of the branch impedance za are

R=0,

X - c0Leff c2
Ao ¢0Vc (3-33)

where, as in Figure 2-I,

L_ = effective length of resonator neck = Lo + ALo + Aid;

use Equation (2-7) for ALo and Aid ;

Ao = cross-sectional area of resonator neck; and

Ve = Volume of resonator cavity.

Figure 3-2 shows the transmission loss calculated by Equation (3-32) for the

following gas and resonator characteristics:

c = 1,670 ft/sec,

Ap = 3.41 10 .4 ft 2 (1/4-inch diameter),

Ao = 3.41 10 .4 ft 2 (1/4-inch diameter),

Vc = 2.89 10 -3 ft 3 (5 in3), and

I_ = 0.026 ft (0.1 inch physical length + 2 (0.85) (Ao/zt)I/2).

As shown in Figure 3-2, the transmission loss rises to a large peak at 565 Hz, the

resonant frequency of this resonator, then decreases uniformly with increasing

frequency.
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3.2.2 Three-Element Configuration

Figure 3-3 shows a pipe configuration containing three elements: a Helm-

holtz resonator, a section of straight pipe of length L, and then a sudden

contraction to a pipe with an anechoic termination. The pressures and velocities

in each of the five locations are

P5 = A_ + Bs, (3-34}

v5 = -_(As-B5), (3-35)

P4 = A4, (3-36)

V4 -- A4
Z4 ' (3-37)

P3 = A3 + B3,

"v3 = _/_I (Aa-B3),
%

(3-38)

(3-39}

P2 = A3 e-'L + B3 e_'L ,

v2 = 1 (A3 e L_L- B3 e ikL) ,

%

[3-40)

(3-41}

p, = AI, (3-42)

VI -- AI

_ (3-43)

Again assuming that the pipe cross-section dlrrmnsl_ns are small compared to a

wavelength,

and using continuity of mass flow,

P5 = P4, (3-44)

P4 = P3, (3-45)

P2 = Pl. (3-46}

v5 = v4 + va, (3-47)

v2 = vl. (3-48)
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Figure 3-3. Three-Element Configuration.

Equations (3-34) through (3-48) are a set of 15 equations containing 16

unknowns if the impedances, the _ and Z terms, are known. If either the incident

pressure, As, is known or if only the ratio of As/A, is desired, the number of

unknowns is reduced to 15 and the system can be solved. Assuming a frequently

occurring configuration where the pipe area and temperature are constant from

location 5 to 2, then

_5 = _3 = 42 - _ (3-49)

and the form of the solution is simplified.

Beginning at the downstream end of the pipe, Equations (3-38} through

(3-43), (3-46), and (3-48) can be used to obtain A3 and B3 in terms of Ai,

A3 = AIe_'L[_I+_I
(3-50)

(3-51)
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Equations (3-34), (3-38), (3-44), and {3-45) give

B_ = (A3 + B3) - A5 (3-52)

and as in the previous section, Equations (3-34) through (3-39), (3-44), (3-45),

and (3-47) can be combined

I - I + __1
Z5 Z4 Z3 ' (3-53)

_, (3-54)

Now Equation (3-52) can be substituted into Equation (3-54) to obtain As in terms

ofA 3 and B3, then Equations (3-50) and (3-51) substituted for A3 and B3, and finally

the resulting expression solved for As/A_. Again using R and X for the real and

imaginary parts of this ratio,

where

As/At = R + iX {3-55)

and I J = indicates the magnitude of a complex number.

The transmission loss in terms of R and X is

TL = 10 loglo (R 2 + X2)I (3-56)

Figure 3-4 shows values of transmission loss for the sample three-element

pipe configuration based on the same Helmholtz resonator geometry used for

Figure 3-2 combined with a 6-inch-long straight section of 1/4-inch-diameter

pipe then reducing to I/8-inch diameter with an anechoic termination. The

transmission loss peak from the resonator is obvious at 565 Hz in Figure 3-4 and,

comparing to Figure 3-2, the cyclic variation of transmission loss caused by the

straight pipe section with an impedance change at each end has been combined

with the resonator transmission loss. The peak and minimum values of the cyclic

attenuation repeat at a frequency interval of about 1670 Hz, the frequency where

the length of the straight section corresponds to a half wavelength.
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3.2.3 Discussion

As shown in the previous sections, the method presented for determining

the performance of simple pipe configurations, networks, is based upon setting up

the system of equations that defines the acoustic pressure and velocity relation-

ships within the pipe then solving for the desired performance characteristic.

The examples presented only solved for the pipe transmission loss, but the trans-

mission coefficient is merely the inverse of the same ratio presented as a fraction

instead of a level, and the reflection coefficient can be determined by using the

same techniques but solving for a different pressure ratio.

Four basic concepts are used in determining the system of equations. First,

the pipe impedance, 4, relates pressures and velocities in constant area pipe

sections. Second, the assumption of plane wave propagation and wavelengths

large compared to pipe cross-section dimensions provides simplified relation-

ships between acoustic pressures in regions connecting elements. Third, mass

flow continuity provides relationships between velocities at various points in the

pipe. Finally, independently determined expressions for the acoustic impedance

provide pressure and velocity relationships for more complex elements.

Since acoustic impedance functions exist for many common pipe elements

and many seemingly complex pipe systems are simply combinations of a few basic

impedance changes with varying geometries, this method can be applied to

complex pipe configurations. As with the three-element example in Section 3.2.2,

one simply starts at one end of the pipe and writes the equations relating the

acoustic pressures and velocities for each section using pipe or element

impedances as required. Continuity and plane wave propagation are then used to

relate velocities and pressures between sections.

This approach is clearly analogous to that used for determining the

performance of an AC electrical circuit. Detailed analysis of the analogies shows

that they are so accurate that much of the terminology and methods for acoustic

analysis are derived from electrical circuit analysis. Acoustic pressures are anal-

ogous to electrical voltages and the acoustic mass, or volume velocity is analogous

to electrical current. Impedance is the ratio of pressure to velocity in acoustical

analysis and the ratio of voltage to current in electrical analysis. Table 3-2 shows

the quantities and units for the various parameters of this electroacoustic analogy.

Further discussion can be found in nearly any standard acoustics textbook.
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Table 3-2

Major Variables for Electro-Acoustic Analogy

Variable

Pressure

Mass
Velocity

Duct

Impedance

ACOUSTICAL ELECTRICAL

Units

English

Ib/ft 2

slug/sec

(ft. sec) -I

SI

Pascal

kg/sec

(m" sec) -I

Variable

Potential

Current

Impedance

Units
SI

Volt

Amp

Ohm

Just as in electrical filter network analysis, even though this classical

method will work on an arbitrary pipe configuration or network, significant

difficulties arise when trying to apply the method to a network with more than a

very small number of elements. The basic approach and methods are straight-

forward, but actual calculations very rapidly become quite laborious as the number

of elements increases. The example with only three elements involved a system of

15 equations and unknowns.

Standard computer routines could be used to obtain the solutions of large

systems of equations, but a system of equations corresponds to only a single pipe

configuration. If a simple change is made to the configuration by just adding or

deleting an element, or perhaps rearranging elements, a new set of equations

must be established. This classical method is useful in providing an understanding

of pipe system analysis and performance, but is clearly not efficient for

performance calculations involving actual multi-element configurations. The

transfer matrix method presented in the next sections provides a means of easily

calculating the characteristics of pipes containing any number of elements in

any sequence.
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3.3 Transfer Matrix Analysis

The transfer matrix method of network analysis was originally developed

for electrical networks and its application to acoustical networks derives from the

analogy between electrical and acoustical analyses. This method is also called the

transmission matrix or four-pole parameter method and strictly applies to a net-

work of any number of impedance changes but with a single source and a single

termination. The transfer matrix method can be useful in the analysis of networks

with multiple terminations if the network can be divided into single source/

termination portions with the other branches represented by impedances that are

either known or can be evaluated. The presentation and terminology used in this

subsection generally follows Munjal. 2

3.3.1 The Transfer Matrix Method

Figure 3-5 shows a schematic representation of a portion of a pipe

containing an impedance change represented by Tn. The upstream acoustic

pressure is Pn, the upstream acoustic mass velocity is vn ; Pn-I and Vn-_ are the

downstream acoustic pressure and mass velocity, respectively. Since we have

assumed small acoustic variables, they are linearly related and we can define a

matrix [Tn] such that

Pn I(Tn)11 (Tn)121 Pn-I
[Vnl= [(Tn)2! (Tn)_J [Vn-11" (3-57)

The transfer matrix ['In] relates the upstream and downstream state

variables p and v in terms of the state vectors [Pn, v.] and [Pn-] , Vn-1] • From the

definition of [Tn] its individual terms are

(Tn)II- Pn I (Tn)12- Pn I

pn-I Vrv-I = 0 _ Vr_l pn-! = 0 ,

(Tn)21 _ v. [
Pn-I Vn-I =0 ,

I
(Tn)22_ v. I

Vn-! pn-I =0.

(3-58)
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Figure 3-5. Schematic Representation of a Single-Element Pipe
Impedance Change, T n .
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If the pipe contains another linear element, Tn. I, one can write

IVn,J'Tn,' l'Tn,' J[Vn  l
or

Vn Lv.-2 J

This can be generalized to yield

[Sn] = [Tn] [Tn-,]... [T2] [Tll [S0l

IS.] = I%] ISo],

where [Ttl = [Tnl [Tn-l] • • • IT2] [TI]

IVan°]
is the "total" transfer matrix,

(3-59)

(3-60)

(3-61)

(3-62)

(3-63)

is the generalized state vector for the upstream or source end of the pipe, and

is the generalized state vector for the downstream or termination end of the pipe.

(3-65)

The transmission loss for this pipe can be calculated from

TL = 10 loglo _n '

_o _o

of a complex number.

This transfer matrix approach allows calculating the acoustic performance

of a pipe with multiple elements by forming a transfer matrix for each individual

element and then successively multiplying by a cumulative total matrix. This

process avoids the need to set up and solve a large system of simultaneous

equations.
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The definition of the transfer matrix terms shows that they are related to

the impedance of the pipe element and two limiting cases for lumped impedances

will provide examples. For a purely "in-line" impedance, Zt, which alters acoustic

pressure but not velocity,

[Tl] = 0 1 (3-66)

or for a purely "shunt" impedance, Zs, which alters acoustic velocity but

not pressure,

I I[T,] = 1/Z_ " (3-67)

Using these and the definitions of the element terms, one can develop

generalized transfer matrices for individual elements such as a straight pipe,

Helmholtz resonator, or many others. 2

The equations for the matrix elements will be functions of frequency and

include flow and geometry terms. A relatively simple computer model can then

be constructed with separate subprograms that evaluate the transfer matrix terms

of each element type, multiplies an accumulating total transfer matrix by the

element matrix, successively proceeds to the next element repeating the

evaluation of matrix terms and multiplication, and finally calculates the overall

transmission loss. Since the transfer matrix terms are functions of frequency, all

portions of the computer model would loop through a frequency range to provide

transmission loss as a function of frequency.

3.3.2 Transfer Matrices for _Typical Elements

This section presents transfer matrices for three pipe elements that are

found in turbomachinery: a straight pipe section, a side-branch Helmholtz

resonator, and a simple "wide mouth" side-branch cavity. Matrices for many other

elements can be found in Reference 2, but the three elements given here repre-

sent many of the turbomachinery pipe impedance changes.
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3.3.2.I Straight-Pipe Section

The transfer matrix terms for a section of straight pipe of length

pipe impedance _ are

L and

T11 = cos(kL), T12 =i_ sin(kL),

i
T21 = --sin (kL), T22 = cos(kL) .

(3-68)

Note that because the state variable v is a mass flow, the straight-pipe

matrix contains the pipe cross-sectional area within the impedance _. This area

would not appear in transfer matrix terms for a straight pipe which are based on a

state variable of simply u, or p c u. This also means that separate transfer

matrices for sudden expansions or contractions of the pipe are not required when

acoustic mass flow is used as a state variable; the mass flow does not change even

if the pipe area does. Sudden area changes are reflected in the changes in pipe

impedance _ used in the elements on either side of the area change. A sudden

contraction with sections of straight pipe both upstream and downstream would

be modeled as just two separate lengths of pipe with different areas and this area

difference would be included in the individual _'s of the two pipes.

3.3.2.2 Helmholtz Resonator

The Helmholtz resonator is a "side-branch" pipe element providing a

"shunt" impedance, so its transfer matrix would have the general form of

[,° 11/Z 1 '

where Z is the impedance of the Helmholtz resonator. Again using Z = R + iX and

assuming no energy is lost in the neck of the resonator,

R -- 0,

X = c0Le_ _ C 2
Ao to Vc
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where the Helmholtz parameters have the same definitions as given in Equa-

tion (3-33). The individual matrix terms are then

T11 = I, TI2 -- 0,

-i
T21 --'_, T22 ffi 1.

(3-69)

3.3.2.3 Simple Cavity

The simple cavity described by this matrix is shown schematically in

Figure 3-6 and is a cavity with constant cross-sectional area, A_, along its depth

and a depth, Lc, that is long compared to wavelengths of interest. This type of

cavity_is another side-branch (shunt) element, but without a neck and having a

large depth; it is not a Helmholtz resonator. Again, the general side-branch form

will be

[,1/7__

but now Zc will be that for a length of straight pipe terminated at one end with

a rigid cap. The impedance, based upon acoustic mass velocity derived from

Reference 2, is

Zc = -i _c cot {k Lc) • {3-70)

Substituting this expression into the general form:

Tll = I, TI2 = 0,

i

T2! = _--_ tan (k Lc), T22 = I .

{3-71)

3.3.3 Example Calculations Using Transfer Matrices

This section shows the solution of the same example problems solved in

Sections 3.2.1 and 3.2.2 using the transfer matrix method rather than the

classical method.
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3.3.3.1 Single-Element Configuration

In analyzing a pipe with only a single element, there is only one transfer

matrix to set up. Since the example selected in Section 3.2.1 is a Helmholtz

resonator, the single matrix is given by Equation (3-69). Using Equation (3-65)

one can obtain the expression for the transmission loss of this single resonator

element

or

TL
= 1010gl0{ (1)I2J- I(1) + (_)+(_)+ (1) l] 2}

which is equal to Equation (3-32) when R = 0, so the transmission loss deter-

mined by the transfer matrix method with the same element dimensions given in

Section 3.2.1 is exactly that shown in Figure 3-2.

Demonstrating the advantages of the transfer matrix method requires con-

sidering a pipe system with multiple elements as is done in Section 3.3.3.2.

3.3.3.2 Three-Element Configuration

The three-element pipe configuration Soivea in Section 3.2.2 consisted of a

Helmholtz resonator, a straight-pipe section, and a sudden contraction to an

anechoic termination. This example will use the same physical parameters. The

general transfer matrix method is to form the first matrix, form the second

matrix, multiply them to a current total, form the third matrix, multiply the total

and the third, then evaluate the transmission loss. This example presents a

special case, ending with an anechoically terminated sudden contraction.

The first matrix, [T 3 ], is again the Helmholtz resonator matrix

(T3) 11 = I , (T3) 12 = 0,

i
(T3)21 = - _, (T3)22 = I ,

(3-73)

where X is given by Equation (3-33).
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The second matrix, [T2 ], is that for a straight section with a length, L, of 6 inches

{T2)ll = cos (k L) , {T2}12 = i _2 sin(k L) ,

i
(T2}21 - sin (k L) , (T2)22 = cos (k L) .

(3-74)

Their product, IT3 ] IT2 ] , is

(T32}11 = cos(k L),

(T32]12 = i _ 2 sin(k L) ,

-i
(T32)21 = _- cos (k L)

{T32)22 = _" sin {k L)

i
+ -- sin(kL),

+ cos (k L) .

(3-75)

The third element is an anechoically terminated sudden contraction, which

could be modeled as an added straight pipe with the new diameter and arbitrary

length using Equation (3-68). Calculating the transmission loss of a section of

straight pipe,

 o ,012  os2  ,l_o(TL) sp = 10 (3-76)2

which is why the selection of length would be arbitrary if the sudden contraction

were modeled this way. Since the models presented here do not consider any

viscous losses or losses through the pipe walls, there are no power losses in a

straight pipe section, only phase changes.

The other way to "model" the sudden contraction element is to simply

consider the new smaller diameter as defining the last pipe impedance in the

expression for transmission loss, which then becomes

where _ 3 is the impedance for the initial 1/4-inch-diameter pipe section, _i the

impedance of the 1/8-inch-diameter section, and the matrix terms are those from
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the product of the two other elements given in Equation (3-75). If the substitution

of these equations into Equation (3-77) is made and the resulting expression

simplified, it reduces to the results given by Equation (3-56). Thus the transmis-

sion loss predicted by the transfer matrix method is exactly the same as shown in

Figure 3-4 for the classical method.

3.4 Mean Flow and Energy Loss

The transfer matrix method can be applied to pipe systems with mean flow

and energy losses by formulating the appropriate relationships for the transfer

matrix terms and including the effects of convection. For a pipe with no losses

but mean flow in the positive direction, there are separate wavenumbers for the

incident and reflected waves

kl - co (3-78)
c+U '

kR -- (D
c - U ' (3- 79)

where U is the mean flow velocity, the subscript "i" again indicates the positive

or incident direction, and the subscript "R" indicates the negative or reflected

direction. Introducing the Mach number, M, and a convected wavenumber, 1%

where M = U
-6,

kc - co

c(I-M2) "

k, = 1% (1 - M), (3-80)

kR = 1% (1 + M) , (3-81) !

With these relationships and the basic wave equations, the resulting pipe

impedance is the same as for a pipe without flow, that is

where

(_) = _i = --¢-,
c i Ap

Ap

= pipe impedance with no flow and

_c = pipe impedance with flow and no losses.

{3-82)

{3-83)

=__
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Since the pipe contains a mean flow, the acoustic waves will be convected

with that flow, and the pipe transmission loss of interest will be for the convected

acoustic power. The relation between the convected and stationary acoustic

variables can be expressed in transfer matrix form as

[ = I [vJ"
v_ M__ I j

J
(3-84)

If the energy losses in the pipe are considered, the expressions tor wave number

are again modified. Following Reference 2, where both viscous and boundary layer

losses are considered,

ki- k-iAl
I + M ' (3-85)

kR -
k-iAl

1 -M ' (3-86)

(0
where k = -- ,and

C

A_ = combined loss factor.

kL Can be defined as

so that

kL
k-lAi

I - M2 (3-87)

k_ = kL (i - M) , (3-88)

kR = kk (I + M} . (3-89l

However, if the energy losses in the pipe are considered, the impedance of

the pipe is no longer equal to the stationary impedance. The impedance for the

positive or incident wave for a pipe containing mean flow and losses becomes

EL = --_-! (3-90)

where _ is the stationary impedance, c/Ap. The equation relating the stationary

acoustic variables at either end of a section of straight pipe becomes

If [cos kL I  pnl1P" = exp {-i M kL L) 1 sin (kL L) cos (kL L) ira_ I . (3-9 1)
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Equation (3-84) and its inverse are used to obtain the desired relationship

between the convected variables

I'n -- :'](vc),J 1 - M2

X cos {kLL)

_ sin {l_L} i _sin {kLL}]cos {kL L} (3-92)

X i :,]r, ,n1_M L(vcL, "

This general procedure can also be applied to other forms of losses such as

acoustically absorbing pipe walls. If there are no losses in the pipe, then

_L = _c = _ (3-93}

and Equation (3-92) reduces to

[(Pc).] = exp {-i M kc L) i sin (k_ L) cos _ L) '
L(v_).J (3-94)

a relatively simple expression for the convected acoustic variables, very similar to

Equation (3-68). Since the viscous or boundary layer losses in most pipe systems

with solid wails are extremely small, they can often be neglected and only the

effects of mean flow considered with the resulting simplification of relationships.

Figure 3-7 shows the results of calculations using the transfer matrix

resulting from Equation (3-94) for the straight section of the three-element

sample problem of Sections 3.2.2 and 3.3.3.2 with and without a mean flow

velocity of 250 ft/sec (M = 0.15}. For this particular example, the primary effect of

adding flow is to decrease the period of the cyclic variation at frequencies above

100 Hz, similar to the results for a lengthened straight section between the

Helmholtz resonator and the contraction.
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CHAPTER 4

SOUND PROPAGATION IN PIPES

WITH NO MEAN FLOW

by Miguel C. Junger
Cambridge Acoustical Associates

This chapter deals with the situation in which one of three dimensions of

the fluid-filled space is large or at least comparable to the acoustic wavelength.

Sections 4.1 through 4.4 consider the most important situation where the pipe

diameter measures less than one-half wavelength. In Sections 4.2 and 4.3, stand-

ing wave resonance and anti-resonance frequencies are formulated. Section 4.4

considers the special situation in turbomachinery where a T-tube junction is used

to model the engine inlet and exit chambers. Section 4.5 examines the situation

where the pipe diameter is small enough to allow viscous stresses to play a pre-

dominant role. Section 4.6 considers the short-wavelength range, where higher

order modes characterized by cut-on frequencies begin to propagate. In Sec-

tion 4.8, the sound speed and wave number for two-phase medium is derived.

4.1 The Quasi-Planar Wave

Consider an infinite plane wave propagating in the x-direction:

Incident Wave: Pl (x,t) = Pi ei(t°t - kx) ,

Reflected Wave: Pr (x,t) = Pr ei(°)t + kx)

(4-I)

Now envision a rigid pipe aligned with the x-axis, i.e., with the direction of

propagation. Clearly, the pipe being normal to the plane wave front does not

disturb its propagation. Consequently, sound will propagate inside the pipe with

the sound velocity of the infinite plane wave. It will be shown later that, even in a

rigid pipe, waves can propagate with a speed other than the speed of sound.

However, these latter modes of propagation require that the pipe diameter

exceed approximately one-half wavelength (more precisely, 0.57_.).

When the pipe contains a liquid, the pipe wall compliance cannot be

ignored compared to that of the liquid. The volume strain of the liquid column in

an elastic duct is again given by Equation (2-31); the phase velocity, c , now dips

below the velocity of the liquid, CL :
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(4-2a)

where eL= (-Bf) 1/2 .

This is specialized to circular pipes of radius rs by introducing Equation (2-33)

c - [l+2BLrs] 1/2CL ---E-'ff-- J (4-2b)

= 1 BL rs //BLrs| 2_ << 1 (4-2c)
Eh ' _ Eh l "

This is the Korteweg-Lamb correction _ which was previously mentioned in Sec-

t_ion 2.3.

For example, for water (BL = 2.25 x 101° g bar) in a glass tube (E =- 6.03 x

10 I_ g bar) , with a wall thickness-to-radius ratio of 1/10, c/eL = 0.76. Note that

the wave is no longer plane, since the displacement of liquid particles adjoining

the wall displays a substantial radial component. In fact, only the particles located

on the pipe axis undergo a strictly axial displacement. The pressure does not,

however, display a phase reversal over the pipe cross-section. This type of mode

is therefore called quasi-planar.

4.2 Standing Waves: Resonances and Anti-Resonances in Pipes With

Rigid Terminations

Now consider a pipe of fmite length L. If the pipe is terminated by a rigid

plug, the axial particle velocity must vanish at x = L. It is recalled from basic fluid

mechanics that Euler's law relates the fluid particle acceleration }_ to the

pressure gradient

8- _u _ 1 _P
_t P _x" (4-3a)
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For harmonic time dependence, the corresponding velocity and displacement are

U

5

Consequently,

boundary condition

1 OP

pck Ox '

1 OP

pc 2k 2 Ox " (4-3b}

for the rigid termination (5 = 0), the pressure must satisfy the

_P - 0, x = L. {4-4}
_x

The pressure in the fluid column can be formulated as the superposition of

an incident wave traveling in the positive x-direction, e.g., Equation (4-1), and a

reflected pressure traveling in the negative x-direction

p (x) = Pi e-_x + Pn eUcx, (4-5)

where the exp (-ic0t) has been suppressed to simplify the notation.

The pressure gradient at the termination is

_P - ik [-Pi e_cL + PR eUcL] ,
x (4-6)

For a rigid termination, the derivative satisfying Equation (4-4) requires that

PR = Pie TM , (4-7)

The resultant pressure, Equation (4-5), now becomes

p(x) = PI [e -_'_ + eta- 2ucu ]

= Pie ucL [e¢_L-"°° + et_x-u¢Ll ]

= 2 Pie -IkL cos k (L - x) . (4-8)
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m

This is a standing wave. The specific acoustic impedance at the drive point,

x=0, is

U x=0

= ipck P I
_p/_x x=O

= ipccot (kL)

_-- IpC2 k 2 L 2 << 1 . (4-9)
coL

Consequently, like the resonator cavity, the liquid column in the closed

cavity acts as a spring when the pipe length is small in terms of wavelengths.

This impedance vanishes when kL = 5/2, 35/2 ..... or

L = k_ (2n+ 1) , n = 0, 1,2,.... (4-10)
4

This is readily envisioned for the fundamental resonance (Figure 4-la). At x = 0,

the pressure is zero and the velocity, in terms of the Reynolds number

Re[u(o)] - 2Pi [sink(x-L)[x=0
pc

_ 2Pi sinkL
pc

(4-1 1)

peaks when L=X/4.

tion (4-10) are

Natural resonant frequencies corresponding to Equa-

"rfn -- (2n+l) c
4L (4-12a)

These results apply to both gas- and liquid-ldled pipes provided one uses Equa-

tion (4-2) for the sound speed (c) of the latter.

The pipe also displays anti-resonances whereby the drive point impedance

is infinite. Referring to Equation (4-9) this occurs when (Figure 4-lb)

kL = n_,

fan _-- n__c_c n = 1, 2 .... (4-12b)
2L '
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x ---4- L x---_ L

(a) Resonance,RigidTermination[Equation(4-12a),n = 0].

t
P

x---_ L

(b) Anti-Resonance, Rigid Termination [Equation (4-12b), n = 1].

t
P

x _ Left

{c}

u

Resonance, Pressure-Release Termination [Equation (4-17a), n = I].

f

x--_ Ldr

t
u

J

x _ Leff

(d) Anti-Resonance, Pressure-Release Termination [Equation (4-17b}, n = l].

Figure 4-1. Pressure, p, and Axial Fluid Particle Velocity, u, for Fundamental
Resonance (a, c) and anti-resonance (b, d}, at end L having rigid (a, b}
or pressure-release (c, d) termination.
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4.3 Standing Waves in Open-Ended Pipes

Consider a "pressure release" termination, i.e., a boundary condition which

requires that the pressure at x = L vanish. For a liquid-filled pipe, this is readily

approximated by an open-ended stand pipe. For either a gas- or liquid-filled pipe,

this boundary condition is also approximated by a pipe opening into a space filled

with the same acoustic fluid provided Ap << _2. The interface between the fluid

column and the adjoining extended column is simulated by a virtual piston. The

piston impedance embodies a resistive component R. representing sound radia-

tion, Equation (2-36), and a reactive component associated with the entrained

mass -/cop Ap ALo, where ALo is the same end correction as for the Helmholtz

resonator, Equation (2-7) (ALo = 0.48 A _/2-- p ). Consequently, for A p << _.2 , the

impedance ratio at the open end of a pipe is

k 2 Ap
z_ = -ikAI_ + , x=L

pc Ap 2n

-- 2n -i 0.48 ------P--P+ /_
_. . (4- 131

The resistance ratio can be neglected in the long wavelength limit. The

entrained mass is not negligible, but can be accounted for by substituting an

equivalent length Ldf, a procedure already familiar from the analysis of the

Helmholtz resonator

Leu = L + ALo

_ 1/2
= L + 0.48Ap w (4- 14)

In what follows, Ldf = L is used when dealing with a water-filled, open-ended

stand pipe, while Lef¢ is given by Equation (4-14) when dealing with a pipe

opening into a space filled with the same acoustic fluid. The "pressure-release"

boundary condition, p (L_) = 0, is satisfied by Equation (4-5) when

PR = -P_ e(21k Le_)
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The standing wave field therefore becomes

p(x} = Pl [e(-tkx)- e(lkx- 21kL_frJ]

= p_e(-lkL_O[e(ikL.fr- ikxl _ e(tkx - lk L_}]

= 2i P, e {'ikLeft}sin {k L_n - kx). (4-15)

The drive point impedance is computed as in Equation (4-9). However, the

present calculation is approximate in that the radiation resistance in Equa-

tion (4-13) is ignored compared to the reactance. This approximation is valid if

A W2k__ p << 1 , an assumption inherent in Equation (4-13)

Im(zJ = -pc tan {k L_n)

= -pcoL_, k2L_ << 1. (4-16)

Consequently, as anticipated, the column of water displays the impedance of a

solid slug of fluid when its length is short in terms of wavelength.

The open pipe displays a resonance when

kLe_ = n_, n=1,2 ....

i.e., at frequencies

fn = rlc n=l, 2 ...., (4- 17a)2L_

This situation is illustrated in Figure 4-1c. The open pipe displays an anti-

resonance when (Figure 4-Id)

kLe_ = (2n+ l}n n= I, 2,
, • • •

2

f_ _ (2n + I) c
4L_r (4-17b)

Consequently, the natural frequencies of the open-ended pipe corresponds to the

anti-resonance frequencies of the closed pipe, and vice versa.
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4,4 T-Tul_ Junction

Consider the acoustic resonance frequency for a 'T-tube" junction (Figure 4-2).

This problem has immediate practical application in turbomachinery because of

its resemblance to an engine's inlet and exit volute. The engine inlet and exit

chambers are each formed by wrapping the two branches of the top of a sym-

metrical T-tube around a cylinder and joining both ends together.

The general solution to the T-tube junction may be derived using the

techniques described in Chapters 2 and 3. The interested reader who wishes to

examine the details of this solution should see the paper by Merkli. 2

The general solution is rather involved; however, after a few simplifying

assumptions it reduces to

I + i (I/p _) (Zv)c tan (k I)-2i _i_ tan(kL) =

p_ {zv}c + tp_tan{kl} ' {4-18)

where _ = c/Ap, and (Z_}c is the acoustic impedance based upon acoustic volume

velocity at the c end of the pipe {see Figure 4-2}. This solution assumes that all

three pipes of the T-tube have the same cross-sectional area and that the ends

a and b are closed.

1
lo

C

b

r

r

Figure 4-2. T-Tube Junction.
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In Chapter 3 the resonance frequencies were derived for a pipe section
with a single side branch. In this derivation it was assumed that the tubes were

long in comparison to the radius, making it unnecessary to consider the effective
length due to the junction. When the tubes are short, as in the case of an engine
inlet and exit chamber, corrections must be applied to the tube lengths. Merkli 2
shows that when the pipe cross-sectional areas of all three branches of the T-tube
are the same, then

Leg = Lo + ALa + AL2 ,

{4- 19)
left = Io + All + Al2 ,

where ALl = All = r(l-3-_)

AL2 = 16 r Lo
3_ 2Lo +lo ' (4-20)

AI2 = 16r Io
3x 2Lo+lo '

where Lo and lo are the lengths of the purely cylindrical parts of the T-tube as

shown in Figure 4-2.

cases:

The general solution, Equation (4-18), can be solved for several special

i. The top of the T-tube junction is a special solution in which a standing

wave is confined to the top of the T with a pressure node at the

junction. Consequently, the length of the stem has no effect on the

resonance at the top of the junction. The effective length becomes

Le_ = Lo + r (4-21)

and the resonance frequencies are determined using Equation (4-12a)

where the L appearing in that equation is the effective length.

2. A closed end at c is a special solution for which (ZJ c = _ For this

condition, Equation (4-18) reduces to

3sin[-_(Len+len)] + sin [-_(Ldr-len)] -- O.

This transcendental equation gives the resonances of the T-tube.

(4-22)
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3. An open end at c is a special solution for which (Z_)c = 0. This is the

condition that applies in most turbomachinery applications. For this

condition, Equation (4-18) reduces to

3cos[-_(L_÷l_)]- cOS[c_(Lo_-l_)]-- O. (4-23)

In this situation, the end correction, AI_ , given in Equation (4-20), must

be modified to account for the open end at c. In Section 4.3 it was

shown that the end correction is 0.48 Ap _/2 , so that Al_ in Equa-

tion (4-20) becomes

All = r 1-3-_ + 0.48Ap . (4-24)

Finally, when solving for the acoustic resonances in a T-tube junction,

whether it be open or closed at c, resonance frequencies given by Equa-

tion (4-12a) at the top of the T are found together with the resonance frequencies

given by Equations (4-22) or (4-23).

4.5 Capillary Tubes

The situations considered so far apply when the pipe diameter measures a

fraction of a wavelength. Before turning to the short-wavelength range in Sec-

tion 4.6, we consider, in this seciton, the extreme long-wave limit where the pipe

radius is comparable to the viscous boundary layer thickness. The equations

governing this situation will be presented in a manner appealing to the intuition

of the fluid mechanics rather than being rigorously derived from basic principles.

The reader who wishes to explore the matter in greater detail is referred to

Rayleigh's 3 classical work.

Let us first consider the acoustic boundary layer thicknesses on a fiat plate.

Rayleigh 3 (page 317, Equation (5)) shows that this thickness is

d = _-_pf] , (4-25a)

where p is the viscosity. Referring to Table 2-1, one computes

d - 0.22 cm for air and
fx/2

d = _ cm for water.
fl/2

(4-25b)
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The propagation and attenuation of sound in capillary tubes can be compactly

expressed in terms of this boundary layer thickness. Sound propagates at a lower

velocity in a capillary tube than in a pipe where 2 rs >> d. The effective phase

velocity cc in the capillary tube is

Cc = e L (1- _r_) ' 2r_<< _.. (4-26)

This wave ls markedly attenuated compared to sound propagating in an extended

medium. The attenuation per

boundary layer thickness:

iXd =

diameter can be expressed in terms of the

54d dB/diam., (4-27)

where X is the acoustic wavelength in the extended medium. Referring to the

second of Equations (4-25b), and substituting c - 1.48 x 10 S cm/s, the attenuation

per diameter in a water-filled capillary tube becomes

otd = 2.0 x I0 -s in/2 dB/diam. [water-filled capillary] , (4-28)

where f is in Hz and the diameter is in cm. Consequently, for f--- 1000 Hz, a

0.4 cm tube diameter, and a 1 m tube length, the total attenuation is

2x 10 -5 x 1000 I/2 x 100/0.4 = 0.16 dB.

While this is a modest figure indeed, the attenuation in an extended body of sea

water, owing to viscosity as well as to other factors is a mere 10 -5 to 10 .4 dB/m at

this frequency. 4 If only viscosity were accounted for in computing attenuation, the

latter figure would be three orders of magnitude smaller.

In gas-Idled tubes, the effective viscosity l_eff is markedly increased by heat

conduction. For air at room temperature, the effective viscosity required to yield

the observed attenuation is

I_ = 1.93 _t.

Consequently, for air the effective boundary layer

(4-29)

thickness to be used in

Equation (4-27) is 1.93 I/2 larger than the one indicated in the first of Equa-

tions (4-25b). Substituting c = 3.43 x 104 cm/sec into Equation (4-27), the result-

ing attenuation per diameter is

ad = 4.8x 10 .4 p/2 dB/diam.

where f is in Hz and the diameter is in cm.

[air-filled capillary], (4- 30)

For the same tube dimensions as

before, one achieves an attenuation of 3.8 dB at I kHz.
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4.6 Modal Propagation in Gas-Filled Pipes

So far, we have limited the discussion to wavelengths measuring more than

two pipe diameters, i.e., to quasi-planar waves displaying no phase reversal over

the pipe cross-section and consequently no nodal diameters or circles. For the

quasi-planar mode, the pressure field could be approximated by the solution to

the one-dimensional wave equation, modified where necessary to account for

boundary elasticity. For pipe diameters commensurate with the wavelength, the

pressure field must be formulated as the solution of the three-dimensional wave

equation in cylindrical coordinates, the pressure distribution over the pipe

cross-section now becoming a function of the radial dimension r and of the

circumferential angle _. As in the case of the capillary tube, we shall not derive

the solution rigorously from basic principles but start from an intuitively reason-

able basis. The interested reader can find a self-contained and detailed develop-

ment in Reference 5.

The three-dimensional pressure field in an effectively infinitely long pipe of

radius rs is described by a summation of orthogonal waveguide-type modes whose

radial dependence is formulated in terms of Bessel functions Jn (a.m r/rs)

p(r,z,¢) = E P.mJ. (a.m r/rs) cos (n _) exp (i Trim x). (4-31)
n,Ill

The modal amplitudes Pnm can be computed in terms of the source distribution

which gives rise to the pressure field. The number of modal circles is m, that of

modal diameters n. If the pressure field does not admit a plane of symmetry,

sin (n _) terms must be added. The radial wavenumbers a.m/rs are determined

by the boundary condition at the inside pipe wail. Each mode separately must

match the pipe wall specific acoustic impedance, which will be considered here

to be locally reacting

z.=P= p ,
u

_ ipckp

_p/_r

= i p c k rs Jn (a_.)
anm J'n (aam)

r=rs

(4-32a)
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In this section, where we restrict ourselves to gas-filled pipes, the wall

impedances can be taken to be infinite. The boundary condition therefore
becomes

J'_ {_,_) = O. {4-32b)

For Equation (4-31} to be a solution of the wave equation, the axial wavenumber

(_/.m) must be related to the radial wavenumber (ct._./rs) and the acoustic wave-

number k as follows

Tnm = [k2 - (oq_/rs) 2 ]I/2 (4-33a)

Consequently the axial wavenumber is imaginary, i.e., the mode decays exponen-

The cut-on frequency, where the mode begins to propagate,tially if k rs < a.m •

therefore is

{4-33b)fnm -- C _nm
2_ rs

The modal phase velocity in the propagating range is

cnm - 2xf , f> fn_
ynm

= c[1- {anm/2]-l/2._k_rs ] {4-34)

The phase velocity decreases monotonically from infinity at the cut-on frequency

to the sound velocity at high frequencies (Figure 4-3).

Figure 4-3. Schematic Dispersion Curves for the Phase Velocity cam,

Equation {4-34}, and the Group Velocity c_., Equation {4-36b),

in a Rigid Pipe, the Cut-On Frequency Being Given in Equa-
tion (4-33b}.
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For the effectively rigid boundary representative of gas-filled pipes,

Equation (4-32b), the fundamental planar mode has, as expected, a zero cut-on

frequency, since J'o (0) -- 0. Consequently, Coo - c at all frequencies, as antici-

pated in Section 4.1. The higher modes are all non-propagating in the low-

frequency range, since they display a finite cut-on frequency. The lowest of these

corresponds to mode n = 1, m = 0, a mode displ g one nodal diameter and no

nodal circle, for which a_o = 1.8. Its cut-on frequency is therefore

flo = 1.8c (4-35)
2_ rs

For a 4-inch (10 cm)-diameter water-filled pipe, this yields f_0 = 4.2 kHz. As a

radially oriented dipole located on the pipe axis does not excite the planar mode,

such a source does not generate a propagating wave below 4.2 kHz for the

parameters selected in this example.

While the phase velocity diverges at the cut-on frequency, the modal group

velocity Cgnm, i.e., the velocity at which energy associated with a wave packet

travels, cannot exceed the sound velocity c. The group velocity is computed from

the dispersion relation 6

Cgnm = do)
d 7-m (4-36a}

Since the planar wave is non-dispersive (Yoo k), both the group and the phase

velocity equal the sound velocity c. For all other modes, the phase velocity is

dispersive and therefore differs from the group velocity. Elementary though

laborious calculations which the reader might want to check as an exercise yield

the group velocity

Cgnm = C I-- anra , k rs > a,m, f > f"_" (4-36b)

Consequently, as the frequency approaches the cut-on frequency from above, the

group velocity tends to zero. In the high-frequency limit, it tends to the sound

velocity in the extended fluid medium (Figure 4-3).

4-14



4.7 WaveMode Propagation in Fluld-Filled Non-Rigld Waveguldes

The specific impedance of unlined pipes is typically reactive, i.e.,

zu --- ixu. (4-37)

Referring to Equation (4-32a), the boundary condition can be expressed as

where

= Fn{a} (4-38a)
pckrs

F,(a) = Jn(a)
a J'n (a) " (4-38b)

This function is plotted for axisymmetric (n = 0) modes in Figure 4-4. It is

apparent that an infinite reactance, I Fo I = _ ' calls for a = 0, i.e., a zero cut-on

frequency, and, since Jo (0) = 1 , a strictly planar wave, as anticipated in the

previous section.

Recall that, in our notation, a negative reactance indicates a mass-

controlled pipe wall. The branches labelled -Fo (a) correspond to this situation.

The stiffness-controlled pipe, i.e., xu > 0, cannot be matched by Bessel functions

of real argument, but requires imaginary arguments, i.e., a = i I a [ This gives rise

to the curve labelled Fo ( i I a I ) in Figure 4-4. The corresponding phase velocity

is obtained from Equation (4-34) where -a2 = I a2 I The phase velocity is less

than the sound velocity in the extended medium as already anticipated from the

Korteweg-Lamb approximation

Coo = c 1+ -_rs!j . {4-39)

The low-frequency reactance of a cylindrical shell was already formulated in

connection with Helmholtz resonators

Xu = Eh = Eh , f2<<f2 {4-40a)

where fo is the breathing mode resonance frequency

where

steel).

fo - Cb (4-40b)
2_rs '

Cb is the compressional wave velocity in the pipe wall (= 5.4 x I05 cm/s in

The corresponding dimensionless frequency is

(k r_)o - Cb
C
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Figure 4-4.
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Plot of the Bessel Function Ratio Relating the Radial Wavenumber

a/r s to the Pipe Wall Reactance, for the Axisymmetric Modes, Fo(a) ,

Equation {4-39). The negative values of F o correspond to mass-

controlled pipe wall reactances. (Reproduced from Junger and Feit. 5)

4-16



Substituting this result in Equation (4-38a), one obtains the boundary condition in

terms of the pipe parameters

Eh

Consider the low-frequency limit

small-argument asymptotic form being

Fo(ilal) = 2la[ 2,

Fo (iJa[).

k 2 r_ << I , where Fo (i [ct[)

(4-41)

is large, its

]a[ 2 << 1 . (4-42)

Combining Equations (4-41) and (4-42),

([(z[)/krs) 2 = 2 pc 2rs/Eh, k 2_, [a[ 2<< 1. (4-43)

When this is substituted in Equation (4-39), one retrieves the Korteweg-Lamb

correction, Equation (4-2), where BL = p c2 •

At higher frequencies, the pipe wall inertia forces reduce the stiffness-

controlled reactance. However, flexural rigidity, which is proportional to

(h2/12 rs_) 04 8/0 z4 , keeps the reactance stiffness-controlled even above the ring

resonance. The boundary condition now becomes 6

_ [ _ h 2 4 r_] (4-44)
xu Eh I (k rs c12 +

pckrs pc2_r 3 , Cb , l_r2 Tom •

Setting this quantity equal to Fo (i [a[) , one solves for the frequency-dependent

value of [ a [ , and hence for the phase velocity in Equation (4-39). The results are

in fair agreement with phase velocity measurements as shown in Figure 4-5.

cJ

U
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1.0

0.8

0.6
IO

I I I I I ....I I I I

Field's Theory /---Present Theory

(E * 6.8 • I0 ncgs)

. /J ....
..... ....

-- .......... "¢k----Pre.,nt Theory
X (E * 6.03 • I0 n cgsl

[ [ IX I I I I I ]
20 30 40 50 60 70 80 90 100

Frequency in kc

11o

Figure 4-5. Dispersion Curve for the Quasi-Planar Wave in a Liquid (Naphtha)
Co|umn in a Glass Tube: h = 0.14 cm, 2 r, = 3.04 cm, p, = 2.6,

c = 1.21 x I05 cm/s, p = 0.74 g/cm 3. (Reproduced from Junger. 7)
Dashed Curves Equation (4-44) for the wall reactance, and
Equation (4-39) with a = i I a I (see Figure 4-4).
Solid line is the same, but ignores the flexural term in
Equation (4-44). (Reproduced from Field and Boyle. 8)
Crosses: experimental points from Reference 8.
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The stiffness component of a soft rubber hose does not embody the flexural

term which prevents the pipe wall from becoming mass-controlled. The hose

therefore presents a mass-like impedance above its ring resonance. Sufficiently

far above that resonance, the membrane-stiffness can also be dropped, the wall

reactance being effectively that of the mass per unit area of hose wall

Xu _-- _p_h = Fo (a) , f2 >> f2o. (4-45)
p ck rs p rs

An experimental study was performed on a soft rubber hose in air9 (Ps/P =

6.5 x 102, h/rs = 0.043). The resulting value of tx obtained from the lower -F(a)

branch in Figure 4-4, or from the asymptotic small -a relation

is

Fo{C_) = -2 , a2<< 1 (4-46)
(x 2

{ _2_ II/2 = 0.27. (4-47)
O_ --- _(p_/p) (h/r_) /

The phase velocity is obtained from Equation (4-34)

%1 _= [I -/0.27121I/2 (4-48)c J •

This dispersion curve is plotted in Figure 4-6 together with experimenta]

points. The velocity ratio was computed from the coincidence cone vertex

angle, ec, of the distribution-in-angle of the sound fieldradiated as a supersonic

linearray, by the hose coupled to a small loudspeaker

c01 - 1 (4-49)
C Sill Oc '

where 0c is measured from the hose axis. A physical interpretation of the

enhancement of the effective sound velocity is that the hose responds out of phase

with the pressure exerted by air in the hose, thereby reducing the effective com-

pliance of the air within a mass-controlled boundary.
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4.8 Sound Propagation in Two-Phase Systems

Sound propagation in a boiling liquid, or in a liquid containing gas bubbles,

shares a fundamental feature with sound propagating in a liquid contained in an

elastic pipe or duct (Section 4.1). The reciprocal of the effective bulk modulus

Ben is the resultant of the compliance of the liquid BL1, and of another

component, i.e., the elastic waveguide boundary in the former situation, and the

compliance Bs I of the bubble swarm in the present case. This mathematical

model applies as long as individual gas bubbles or vapor pockets are small in terms

of the liquid-borne sound wavelength. Furthermore, the situation where gas or

vapor has risen under the effect of buoyancy to form a continuous layer above the

liquid is not considered either. This latter situation does not, of course, arise in a

boiling liquid where the vapor bubbles collapse before they coalesce, or in a

zero-gravity environment. The next subsection reviews the thermodynamics of a

two-phase medium. Subsection 4.8.2 derives the sound velocity in various

frequency ranges. Subsection 4.8.3 deals with resonances in pipes containing a

two-phase medium.

4.8.1 Thermodynamics of a Two-Phase Media

The thermodynamic state of pure substances such as hydrogen and oxygen

is defined by two independent thermodynamic properties. The term "state" is

used to denote the phase (i.e., solid, liquid, vapor) and the pressure, tempera-

ture, etc., at which the substance remains in equilibrium. For conditions experi-

enced in turbomachinery, such as in the SSME, both substances can exist in

liquid and vapor phases through parts of the system. As described in the

following subsection (4.8.2), the sound speed in the substance, being proportional

to the square root of the bulk modulus, varies substantially between liquid and

vapor phases. Furthermore, the sound speed in two-phase mixtures that exist

during boiling or condensation is extremely sensitive to the fractional content of

vapor (i.e., the quality) in the mixture.

Thermodynamic states consisting of liquid-vapor mixtures can exist

between the triple point and the critical point. The triple point is a single state at

which the three phases exist in equilibrium. For oxygen the triple point

temperature and pressure are 97°R and 1.06 psia, while for hydrogen they are

24°R and 0.022 psia. The highest temperature and pressure that a liquid-vapor

mixture can exist in equilibrium is denoted as the critical point. The critical
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point temperature and pressure for oxygen and hydrogen, respectively, are

278°R, 735 psia, and 60°R, 188 psia.

Although all three phases can exist at pressures higher than the critical

pressure, there is no liquid phase at temperatures above the critical temperature.

Consequently, liquid-vapor mixtures can only exist between the triple and critical

point temperatures (97°-278°R for oxygen, 24°-60°R for hydrogen). Within this

range, the pressure at which such mixtures can exist is the saturation pressure

(i.e., the pressure at which boiling or condensation occurs) at the prescribed

temperature. The thermodynamic saturation properties (e.g., pressure and tem-

perature) for both substances are tabulated in chemical handbooks. I° Pressure

and temperature are not independent properties in saturated states. Rather,

either one of these properties along with the quality of the mixture (i.e., the mass

of vapor per total mixture mass) define the state.

In normal operation of the SSME, hydrogen changes phase after leaving the

high-pressure turbopump as it acquires heat in cooling the nozzle and combustion

chamber. Oxygen flows to the combustion chamber as a liquid; however, a portion

of the oxygen flow from the high-pressure turbopump is converted to vapor in the

Pogo suppression system. Except for these areas, both substances are either

liquid or vapor under normal operating conditions.

4.8.2

If a

medium is

Sound Velocity in Two-Phase Media

is the volume fraction of vapor or gas, the effective density of the

= ctpc + (1--a) pL

= (1--a) pL , Ot pc << PL

(4-50)

where the subscripts L and c refer, respectively, to the liquid and to the vapor

or gas forming the cavities or bubbles. The sound velocity is formulated as in

Equation (4-2a):

c =

where

= " s }-I12{[(1-a)BL _ + B-'lp ,

Bs _ is the compliance contributed by the bubble swarm.

(4-51)
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This compliance component is the product of the fractional volume of vapor

or gas and of the effective compliance B¢-I of individual vapor-filled cavities or gas

bubbles. Since the cavities are acoustically compact, sound pressure acts uni-

formly over their entire surface, resulting in a spherically symmetric "breathing

mode" response. The cavity volume and the volume change associated with this

response are, respectively

V=
3 '

AV = 4_a2w,

(4-52)

where a = cavity radius, and

w = radial response.

From the definition of bulk modulus,

Bc = -p / (AV/V)

= -p / (3w/a).

{4-53)

For air bubbles, Bc = 1.4P_, where P_ is the static pressure.

K per unit surface area is

K = 3Bc/a.

The spring stiffness

(4-54)

Assuming that the bubble swarm is sparse enough to avoid overlap of the nearfield

of neighboring cavities, the entrained mass per unit area is II'12

M = pea. (4-55)

The resultant entrained mass of the breathing mode of the entire cavity, 4 _ a 2 M,

therefore equals three times the mass of the displaced volume of liquid. The

natural frequency for air bubbles in water is

COo = (K/M) li2

= (3 B_ / pL)I/2 / a

= 2.0 x 10 -3 (P.datm) / (a/cm} (rad/sec},

kLa = (3 Be/BL} '/2

= 1.4x 10 -2P_/atm (dimensionless). (4-56)
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The compliance of individual cavities is enhanced by resonance effects, each

bubble responding in its breathing mode as a single-degree-of-freedom oscillator

of natural frequency too. For cavities of uniform size, i.e., of identical natural fre-

-1 of the bubble swarm takes the simple formquency tOo, the compliance B s

,Oo #

= c_ co2 << 2
_ COo

(4-57)

where the damping constant 8

tion components 13 (Figure 4-7).

large and imaginary

has viscous, thermodynamic, and acoustic radia-

-i becomes veryAs resonance is approached, B s

Bs-1 = ia/Bc8 , co =mo . (4-58)
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Figure 4-7. Theoretical Thermal, Radiation, Viscous, and Total
Damping Constants for Resonant Air Bubbles in Water.
(Reproduced from Devin. 13 ) To relate this to bubble size,
see Equation (4-56). The radiation damping constant is
k L a. The damping constant equals the reciprocal of

the resonance quality factor.
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Above the resonance region, B-i has a negative real component$

Re (B_1) _= - _---_-m=

- _ 3o_

k_a = BL (4- 59)

When this is substitUted in Equation (4-51), the real component of the compliance

is negative in the frequency range coo < co < coa, where coa is the anti-resonance

frequency at which the real components of the two compliances cancel

Re (B "11 = -B L'

co" = () - u) pL

1 ¢_am/1'=-- C L

a _1-a]

{x BL ]I/2= coo (l-a) B_ " (4-60)

The latter expression will be used in formulating wavenumbers. Since wave

motion requires an elastic restoring force, i.e., a positive bulk modulus, the

frequency range co° < co < co, constitutes a dead zone where pressure is attenuated

exponentially with distance. This will be discussed further in the subsection on

wavenumbers. At higher frequencies, co > co_ , wave motion resumes. The three

frequency ranges are clearly revealed by experimental dispersion curves 14

(Figure 4-8). Substituting the parameter values corresponding to this test,

(Bc = 1.4 x 106 I_ bar, PL = Ig/cm a , a = 0.21 cm, a = 5.3 x I0 -a) Equa-

tion (4-56) yields the breathing mode natural frequency coo/2= = 9.8 kHz and

Equation (4-60) the anti-resonance frequency 87 kHz. Equation (4-57) yields a

low-frequency reciprocal bulk modulus

BsI = B "l = ot/TP = 3.8xl0-9_tbar -I co=<<w 2 (4-61)
eft" * o

i F
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[Reproduced from Silberman 14 who used the theory developed by
Spitzer, L., Jr., NDRC Report No. 6-I-sr20-918 (1943) and
Carstensen, E.L., and Foldy, L.L., summarized in Physics of Sound
in the Sea, Wildt, R. (Ed.), "Acoustic Properties of Wakes", National
Research Council NSRDC Summary Report (Washington, D.C., 1946).]
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The low-frequency sound velocity obtained from Equation (4-57) is c = 1.6 x

104 cm/sec = 530 ft/sec. The results generated with the simple theory

developed above are seen to be in adequate agreement with measurements. The

attenuation will be evaluated in the last subsection which deals with wavenumbers.

A more realistic situation than cavities of uniform size is a bubble swarm

encompassing a random distribution of bubble radii, extending from a2 to a_ .

The bubble resonance spectrum is defined as

r (COo) -= dN/dCOo, (4-62)

where N is the number of cavities per unit volume. The spectrum r (COo) is the

number of these bubbles whose natural frequency falls within a bandwidth of

1 rad/sec. The spectrum r has units time/Length 3 . Referring to Equation (4-56),

this can be formulated in terms of the cavity radius

dN _ dN d COo
da d _0o da

or

d__NNda = r (COo)d _.
da

(4-63)

This cavity size spectrum determines the fractional volume of cavities

_a al
- 4n d__NNa 3 da.

3 da
2 (4-64)

Introducing the bubble natural frequency, Equation (4-56), to express a 3

a3 1 (3Be/3/2
3 _ pL ] '

¢0o (4-65)

and substituting Equations (4-57) and (4-65) in Equation (4-64), one obtains an

expression for the fractional volume in terms of ¢Oo

(1_/3/2 r (¢_o)d c%
ct = 22 _LL! , (4-66)
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This can be expressed concisely in terms of the general moment of the number

spectrum, defined as 15

L"(¢_) = N]-- _rr {(%} d COo. (4-67)
I

Consequently, Equation (4-66) now becomes

(4-68}

for air bubbles in water.= 3.6x 10 l°(P_/atm) 3/2 N(wo -3 >

The sound velocity in Equation {4-51} can now be expressed explicitly for

statistical bubble size distributions. Since the density depends only on the frac-

tional volume of bubbles rather than on their size distribution and frequency, it is

convenient to formulate the results in terms of the reciprocal of the effective bulk

modulus. Referring to Equation {4-57} for the effect of resonance amplification:

Be l )-I. = (pc 2

2

l-a + 4x/3Bcl u2 r(COo}d¢o o

_ 1-a + _, @<<@_
B L Bc

i2_r(¢0 o) {3Bc11/2= , ah <¢Oo < _
pLCO 2 _ PL ]

I-{:X
-- , o] >>o_.

B L (4-69)

Finally, the anti-resonance frequency for a random distribution of bubble

sizes is

(4-70)
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4.8.3 Pipe Resonances and Dead-Zone Attenuation in Two-Phase Systems

The solution developed in Section 4.1 formally holds for two-phase system,

it only being necessary to substitute the sound velocity, c, in Equation (4-51}, and

the wavenumber k -- co/c corresponding to the compliances in Equation (4-69).

An organ pipe-type resonance is only possible in the range where the compliance

is predominantly real, i.e., in the low-frequency range, co < coo and the high-

frequency range, co > c0a. Consequently, resonances are not observed in the dead

zone coo < co < o_a, where sound is attenuated exponentially. The values of the

normalized real and imaginary component of the wavenumber of a two-phase

medium are summarized in Table 4-1 for a two-phase medium endowed with

cavities of uniform size. Extension to statistical cavity size distribution is

straightforward but cumbersome. The results will not be formulated here. As

already mentioned, meaningful resonances can only occur when kr >> lq, i.e., when

kr is independent of the damping constant 5. For these situations, rigid pipe

terminations correspond to the roots of cot (kr L), Equation (4-9), and open-

ended pipe terminations to the zeroes of tan (k, Le_), Equation (4-16). In other

words, the resonance frequencies obtained for the liquid-filled pipes

(Equation (4-12a) for the rigidly terminated pipe, Equation (4-17a) for the open-

ended pipe) are multiplied by the appropriate ratio KL/kr, Table 4-I.

The attenuation in the dead zone, coo < co < coa is

A = 8.68 ki dB/unit distance. (4-71)

Referring to Table 4-1 and to Equation (4-60), this becomes

A = 8.68 (1- a) O.}a
c L

8.68 [ 3a (1 - a) ]1/2 / a.

(4-72}

For the values of the parameters in Figure 4-8, e.g., a = 5.3 x 10 .3 , a = 7 x 10 .3 ft,

this yields 160 dB/ft. This result is only in mediocre agreement with the

measured attenuation of approximately 100 dB/ft. However, the predicted

attenuation is so large that one anticipates some short-circuiting of the fluid-borne

path by the structureborne path in the tube wall.
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Table 4-1

Asymptotic Expressions for the Complex Wavenumber {k_ + i k_ )

of Sound Propagating Through a Swarm of Single-Size Gas-Filled or Vaporous Cavities

Frequency
Range

(02 << (02 ° ,

(020 << (02a ,

8<< 1

h)-----too

032 >> (i)2 a

k_ _8

k L 2tO

f. $ tOa_I/2

(1 -a}

kL 2%

kL

%
{1 - a}

tO

kL

(I- ¢_}tOo_. 8
2_

Bubble
Behavior

Cavity
compressibility
short-circuits

compressibility of
liquid, bubble size

irrelevant.

Resistance-

controlled cavity
admittance

short-circuits

compressibility
of liquid.

Mass-controlled

cavity admittance
short-circuits

compressibility
of liquid,

Mass-controlled

cavity admittance
cancels com-

pressibility of liquid.

Compressibility of
Ilquld short-circuits
highly mass-loaded
cavity pulsations.

Propagation
Characteristics

Slow, non-dispersive
negligibly attenuated

waves.

Very highly
attenuated, slow

waves.

Highly attenuated,
fast waves; dead

zone for 8 = 0.

High-pass cut-off
frequency:

attenuated, fast
waves.

Liquld-bome sound
diffracts around

effectively rigid
cavities.

tOo {I-_-[B_
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CHAPTER 5

STANDING WAVE MODES IN

PIPES AND DUCTS WITH MEAN FLOW

by John Cole m
Cambridge Acoustical Associates

The purpose of this chapter is to investigate the effect of flow on the

acoustic resonance in turbomachinery piping systems. Sound propagation in

pipes is influenced in a number of ways. Since various aspects of the flow affect

sound propagation, Section 5.1.1 begins by reviewing the effect of a sound

pressure propagating in a mean flow in the absence of the pipe. Wall effect and

the attenuation due to turbulence are then considered in Sections 5.1.2 and 5.1.3.

Section 5.2 considers the acoustic losses both in the interior and at the ends of a

finite length pipe. This section shows that the presence of the flow in the pipe

will reduce any amplification that may occur from axial resonance and the

damping effect will increase with Mach number.

where

5. I Flow Effects on Sound Propagation

5.1.I Mean Flow Effects - Convection

In linear acoustics, sound is a small disturbance or perturbation that

propagates through a fluid medium. If the fluid medium is flowing with a uniform

speed U (i.e., constant in both space and time), sound is carried or convected

along with the flow as it propagates. To a stationary observer (e.g., a wall-mounted

pressure sensor), the effect of the flow is to give a directionally dependent sound

propagation speed,

c (O) = Co (I +McosO) (5-I)

Co = the sound speed in the fluid medium in the absence of flow,

M = U/co is the flow Mach number, and

0 = angle of propagation relative to the flow direction

(i.e., O = 0 is the direction of the flow).

The propagation speed "with" the flow is Co (1 + M), that "against" the flow

is Co (1- M), and that "across" the flow is Co. Note that, in the following

discussion, we assume that Co is the sound speed of the ambient medium, which

when applied to pipes assumes that the pipe walls are rigid.
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Because of the directionally dependent sound speed, the wavelength of a

propagating sinusoidal disturbance having frequency f (measured in hertz) also

depends on direction when measured by a stationary observer, that is,

k(0) = co(l +Mcos0)/f (5-2)

We therefore express the sound pressure propagating as infinite plane waves in

the downstream (i.e., with the flow) and the upstream (i.e., against the flow)

directions respectively as:

p*(x) = p(0=0, x) = P*e i(ot + k÷x),

p-(x) = p (0 =n,x) = P- e i((°t-k-x),

(5-3)

where x increases in the flow direction,

k ÷ = _ (1 + , and
Co

k- = _- (I-M).
Co

These expressions represent waves propagating in the fundamental mode of a

rigid-walled pipe carrying a uniform flow of an inviscid fluid (i.e., a fluid that can

"slip" along the wall).

The acoustic pressure field satisfies the wave equation obtained by lineariz-

ing the equations of motion about the state of uniform flow. 1 Assuming flow in the

positive x direction, this requires changing the time derivative to

° rx)_-_ +U 8
8t (5-4a)

and gives the following momentum equation

(_ 8 )u =p 8 + u --_ - 8-_- (5-4b)

Substitution of the expressions for downstream and upstream propagating waves

(Equation (5-3)) into the momentum equation (Equation (5-4(b)) provides the

following relationships between pressure and particle velocity:

P+ - pc,
U +

-

- -pc;
U-

5-2
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that is, the magnitude of the acoustic impedance of plane waves propagating in the

moving medium is equal to the characteristic impedance of the medium. (The

negative sign results from the assumption of positive velocity in the x direction.)

The root-mean-square acoustic intensity (i.e., energy per unit area) of waves

propagating in a uniformly moving medium is given in Reference 2. The intensity

of downstream and upstream propagating waves is

I+- I P÷I2 (I +M) 2 ,

pc

I" [p-[2- (l - M) 2.

pc

(5-6)

The "convective" wave equation that governs acoustic pressures measured

by a stationary observer in a uniformly moving medium is obtained by substituting

the convective time derivative (Equation (5-4a)) into the wave equation for a

stationary acoustic medium

_P _ 1 _2p _ O.

_x _t c2 0 t 2 (5-7)
(i - M 2 ) _2_pp + _2___p_p+ _2___pp_ 2 M

_x 2 _y2 _z 2 c

Solutions for Equation (5-7) are obtained by specifying a source configura-

tion at a boundary. Analytical solutions and measurements are given in Refer-

ence 3 for a source located in the wall of a pipe. In the absence of flow, the

boundary conditions posed by such a source are well defined. For a source that

vibrates with constant amplitude over a region of the wail, the same disturbance is

applied to the fluid in the duct, that is,

(x_, rs) - _n (xs, rs) (5-8a)
_t

v_ = the radial wall velocity,

x_ = the source region of the pipe wall,

rs = the pipe radius, and

q = the source displacement.

where

The corresponding boundary condition in the presence of uniform flow requires

interpretation and empirical correlation. Direct application of Equation (5-4a) to

Equation (5-8a) gives the following result for the source velocity at the pipe wall in

the presence of uniform flow:

•_(x_, rs) = _-+U_-x n (x_, r_) (5-8b1
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Effectively this assumes that the flow over the source region is laminar and
that the normal velocity component merely displaces the streamlines. If, how-

ever, the flow in the source region is turbulent, the contributions to the spatial
portion of the derivative in Equation {5-8b) are uncorrelated and therefore tend to

cancel on average in this region. An approximate formulation of the boundary

condition is then the same as that for the duct with no flow (i.e., Equatton{5-8a)).

Application of the two boundary conditions results in different flow depen-
dences of the acoustic pressures in the downstream and upstream directions. If

we consider only the fundamental propagation mode in a pipe whose walls are
rigid outside the source region, the ratios of downstream to upstream pressure

amplitudes corresponding to Equations (5-8a) and {5-8b) are, respectively,a

(1+M) . TurbulentFlow- Equation(5-10a)

I (I-M) '
P- - ' (5-9)

P* (I + M)2 , Laminar Flow - Equation (5- I0b)
(I - M)2

It is noted that convection of the sound field by the flow causes the

downstream pressure amplitude to be lower than the upstream amplitude. This

seems to be at variance with "common observation" associated with outdoor sound

propagation; however, as discussed in the next section, refraction, which often

dominates outdoor propagation, tends to reduce pressure amplitudes "upwind".

Comparison of the predictions of Equation (5-9) with measurements is

shown on Figure 5-I. The data are consistent with the "laminar" assumption at

Mach numbers below 0.1 and show a transition to the "turbulent" result above a

Mach number of approximately 0.2.

5.1.2 Wall Effects - Refraction

When discussing flows of real fluids in pipes, the presence of viscosity

makes the assumption of uniform flow invalid, especially near the walls. In the

simplest sense, the increase of flow velocity with distance with the wall means

that the effective propagation speed of sound also varies with distance from the

wall. Close to the wall where the flow speed is small (but outside the region of the

acoustic boundary layer, discussed in Section 4.4.), the sound propagation speed is

that of the fluid in the absence of flow. Near the centerline of the pipe, the
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effective sound propagation speed is given by Equation (5-1). When sound

propagates with the flow, it therefore travels faster near the pipe center than it

does near the wall. If a plane wave of sound were to propagate in such a flow field,

it would tend to "bend" or be refracted towards the wall. Conversely, a plane wave

propagating against the flow would propagate slower near the pipe center, and it

would tend to be refracted away from the wall.

The importance of refraction in pipe flow is generally smaller at low

frequency and for lower order propagation modes. There are no general analytical

results available for estimating the effects of refraction on propagation within

pipes. Results that do exist in the literature are obtained by numerical calculation

for specific parameters. A primary effect of refraction is to alter the attenuation

rate of waves propagating with and against the flow from those predicted using

the uniform flow assumption.

5.1.3 Attenuation Due to Turbu!_ent F1Qw

In the absence of flow, attenuation of sound propagating in the fundamental

mode in a circular pipe having rigid walls is due to irreversible processes

involving viscosity and heat conduction. This so-called "classical" attenuation

which is due to linear processes is given by 4

ac = 8.7_vL, dB (5-10a)

where L = pipe length,

llv = k[dv+(y-1) d¢l/Dp,

k = to/co = the acoustic wavenumber,

dv = _-/to = the viscous boundary layer thickness,

d T = _/2C_r/to = the thermal boundary layer thickness,

C_r = the coefficient of thermal dfffusivity,

= the ratio of heat capacities (T = %/cv), and

Dp = 2 rs = the pipe diameter.
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For gases this attenuation is generally small. As an example, the classical
attenuation for air at standard temperature and pressure (v = 0.23 cm2/s,

CVr= 0.32 cm2/s) and a frequency of 1000Hz is

c_ _--0.02 L/Dp dB, (5-10b)

or approximately 1dB per 50 diameters of pipe length.

When there is mean flow in a pipe, other mechanisms are present that
result in higher attenuation of sound. These mechanisms are viewed as being
"non-linear" and result either from the interaction of large amplitude sound waves
with the mean flow vorticity (i.e., dU/dy) or by the irreversible generation of

turbulence in the pipe.

A simple phenomenological formulation for this attenuation is derived in
Reference 5 by including in the momentum equation terms associated with the
steady-state pressure drop due to the presence of turbulent pipe flow. The result
is the following pair of complex-valued wavenumbers for propagation with and
against the flow

k+ _ to + i Al
co(l + M) I+M '

(5-11)

k- - to - i A_
co(l-M) I-M '

where the loss factor Al = [3v+ 2 _gf M [I + (R_/2) (0 In _gf/0 Re)]/Dp and _gf is the

friction factor for turbulent flow at Reynolds number Re for steady pipe flow

(i.e., AP/L = _gf p _j2/2Dp where AP is the static pressure drop along length L of

pipe). (Note that the friction factor for circular pipes _gf is four times larger than

that defined in Reference 5 owing to the definition of equivalent diameter for

ducts of arbitrary cross-section.)

This formulation is shown in Reference 5 to be in reasonable agreement

with measurements. At high Reynolds numbers the friction factor becomes

independent of Re, and the attenuation due to turbulence is given by

atueo-- 8.7AjL - 17v/fM L dB
(I+M) Dp (5-12)

where the positive and negative signs refer respectively to downstream and

upstream propagation. For relatively smooth pipes the friction factor is igf _-- 0.02,

and the attenuation given by Equation (5-12) exceeds the classical attenuation for

the conditions of Equation (5-10b) when M > 0.06.
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5.2 Flow Effects on Resonances in Finite Pipe Lengths

5.2.1 Overview

The presence of flow in a pipe acts to reduce the amplification occurring at

the axial (i.e., "organ pipe") resonances that are found in the absence of flow. This

is observed in measurements of the sound pressure in a pipe shown on

Figures 5-2(a) and 5-2(b). In Figure 5-2(a), the sound source is external to the

pipe, and the results show decreasing resonance amplification with increasing

flow Mach number. The source of noise in Figure 5-2(b) is the flow through a pipe

having an unflanged sharp inlet and a flanged outlet. In this case the noise

increases as the flow Mach number increases; however, pipe resonances which

are apparent at M = 0.27 are nearly absent at M = 0.55.

Several factors contribute to the reduction of resonance amplification at

high flow Mach numbers. As discussed previously, the disparity of spatial wave-

numbers in the upstream and downstream directions means that there are fewer

opportunities for purely constructive or destructive interference of waves in the

pipe. Furthermore, additional attenuation mechanisms directly related to the flow

are present. One of these discussed previously is the interaction of the sound

wave with vorticity and turbulence within the pipe. Another dissipation

mechanism is the interaction of the sound wave with vorticity generated by the

flow entrance and exit. Although the basic physics of flow interaction with

vorticity is understood, quantitative results for specific flow geometries remain

empirical in nature. Available empirical results are therefore presented next,

followed by analytical aspects.

5.2.2 Reflection Coefficient Measurements

The effect of flow on the pressure reflection coefficients (i.e., P-/P+, or the

reciprocal) at unflanged pipe ends for propagation upstream and downstream

from Reference 6 are shown on Figures 5-3(a) and 5-3(b). The dimensionless

frequencies (i.e., k rs) for these data range from 0.12 to 0.50 for the downstream

data and 0.36 to 0.50 for the upstream data. Little dependence on flow Mach

number is found for the downstream end (Figure 5-3b), while the reflection

coefficient at the upstream end shows a reasonably strong Mach number

dependence. The magnitude of the downstream and upstream reflection

coefficients, respectively, is approximated by I and [(i - M)/(I + M)] 1.3a
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Figure 5-2. Measurements of Sound Pressure in a Pipe.

(Reproduced from Ingard and Singhal. 6)
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When flow is present, a pressure reflection coefficient of unity does not

imply total reflection without absorption. The relationship between pressure

reflection coefficient and acoustic intensity is obtained using Equation {5-6). By

substituting the above results for pressure reflection coefficients, we obtain the

following "energy" reflection coefficient at the downstream end

I- _ [P_ {l-M/2 _= {l-M/2
I+ __]2 ,1+ M! ,_1 " (5-13a)

At the upstream end the corresponding result is

I" {1 M/°'_

Acoustic energy is therefore absorbed by reflection at both ends; however, more

energy is dissipated at the downstream end. Although the measurements only

extend up to M = 0.5, extrapolation of these dependences confirm that anechoic

ends (i.e., no reflections) are obtained at sonic conditions (M = 1).

Flow restrictions at the downstream end of a pipe can be designed to

provide anechoic termination. Results are shown on Figure 5-4 for flow restric-

tions in the form of a single nozzle and a perforated plate. The energy reflection

coefficient has minima that approach zero when the exit flow Mach number (Me)

is approximately equal to the contraction ratio of the area (i.e.. ratio of flow area of

the restriction to that of the pipe, this ratio being 0.132 for the results of

Figure 5-4). As indicated, this condition applies to low dimensionless frequency

and relatively low Mach numbers.

5.2.3 Analytical Modeling

Alteration by a flow of the acoustic characteristics of flow in a pipe can be

obtained using a simple analytical example, namely a pipe of length L carrying a

uniform flow with Mach number M. A disturbance at the downstream end

generates an equivalent plane wave velocity Uo in the pipe. The wave propagating

upstream is assumed to reflect at the pipe end such that the pressure vanishes,

this being equivalent to an open pipe termination at low frequency. The acoustic

pressure field in the pipe is the sum of the waves propagating upstream and

downstream, that is,

p (x) = P_ e tk*x + p- e-ik- × (5- 14)
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where k ÷ and k- are defined in Equation (5-3). We determine the ampli-

tudes P+ and P- by requiring the particle velocity to be uo at x = 0 and the total

pressure to be zero at the other end. As discussed in Section 4.3, an end

correction is applied to the physical length of the pipe to account for the

entrained fluid outside the pipe. For circular pipes carrying flow,

correction for an unflanged pipe is given by 6,7

ALo - 0.61krs
1 - M2

Using the effective length in

following relationships for the

the end

(5-15)

the condition giving zero pressure, we obtain the

amplitudes

P+ P__L_= pCUo, (5-16)+M I -M

p+

These amplitudes are

source location (i.e., the ratio

e_÷a. + p- e-,Cu_. = 0.

used to calculate the acoustic impedance at the

of pressure in the pipe to particle velocity at x = 0),

p(x)[ = -ipc(l-M 2) sln_Le_
Zo

Uo [ x=0 cosk_L_n+iMsinkcL_r ' (5-17)

where k_ - 0) is the convected wavenumber.
Co(1 - M2)

In the absence of flow, the result given in Equation (4-14) is obtained in which the

source impedance is infinite (anti-resonance) when the pipe measures an odd

number of quarter wavelengths (i.e., the zeroes of cos kL) and zero (resonance)

when the pipe measures an integer number of half wavelengths. The effect of

uniform flow is to shift the location of the resonances and to eliminate the

possibility of pure anti-resonance in that there are no longer real-valued

frequencies that cause the denominator to vanish. Complex-valued frequency

roots of the denominator can be found, but these are effectively damped in time.

When the source is located in the wall of the pipe and reflections from

upstream and downstream ends are accounted for, 6 the function corresponding to

the denominator of Equation (5-17) is

1 - R. Rd e I"¢÷÷R-_t_r, (5- 18)
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where the pressure reflection coefficients R, and Rd are shown on Figure 5-3.

Anti-resonances in the pipe are obtained at frequencies that are the roots of

Equation (5-18). As discussed above, these roots or eigenvalues are complex-

valued frequencies

co = a_.- icol (5-19)

such that: exp (-ico t) = exp (-ico, t) exp (-cot t). The real and imaginary parts of these

roots are given graphically on Figure 5-5 for various flow Mach numbers and

turbulent flow friction factors (i.e., Equation (5-11) is used for the wavenumbers).

Purely real roots giving zero particle velocity for a l'mite pressure are only obtained

when flow is absent. When the Mach number is 0.4, a propagating signal at the

eigenvalue in the absence of attenuation due to turbulence (_tf = 0) is attenuated by

anow = 8.7 c0tLe_ _ 8.7 (0.475) -- 4 dB (5-20)
Co

in the time, Leff/C o , taken to travel the length of the pipe. The value 0.475 is

taken from Figure 5-5.

Analytical predictions of the absorption of sound through interaction with

flow vorticity have been made for several configurations (see References 7 to 10).

The physical understanding of this process is that dissipation is obtained when

sound interacts with the mean flow field to generate vorticity which is then swept

away by the flow. Tuning of this process to the flow and sound field results in the

anechoic termination (i.e., zero power reflection coefficient) shown on Figure 5-4.

Figure 5-5.
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Mach Number Dependence of the (Complex) Eigenfrequency of the
m'th Axial Acoustic Mode (m = 1, 2 .... ) of an Open-Ended Duct of
Effective Length Lee for Several Values of the Turbulent Pipe Flow

Friction Factor, v/f. (Reproduced from Ingard and Singhal. 6)
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CHAPTER 6

ACOUSTIC RESONANCES IN CASCADES

by Louis C. Sutherland
Consultant in Acoustics

Cascades are defined as an array of parallel or annular plates in the plane of

flow of a gas or any compressible fluid - generally assumed to be subsonic. These

surfaces introduce fixed boundaries which can give rise to acoustic resonances.

The cascades can be considered as an idealized representation of stators in

hydraulic pumps or bends, guide vanes in bends, intake ports, etc. In contrast to

the well-known phenomenon of vortex shedding-induced vibration of structures

placed in a fluid flow of effectively infinite extent, the introduction of boundaries

within the fluid flow introduces a new element to this interaction of fluid flow and

structures. That is, the acoustic resonances that occur within these bounded

surfaces. It is often assumed that these acoustic resonances are, themselves, the

source of the structural excitation that frequently accompanies them. In fact,

Parker and Stoneman I have shown conclusively that the vortex shedding is still

the primary source of flow-induced vibrations in the presence of cascades.

However, the latter can have a strong influence on the strength of the resulting

aero-acoustic excitation. Particularly significant for this handbook can be:

• The vibration of blades in axial-flow compressors and other turbo-

machinery, and

• Noise and vibration from in-flow support spokes and corner vanes in

piping systems.

This chapter addresses these acoustic resonances from two aspects: (1) the

computation of their resonance frequencies and mode shapes, and (2) the general
t

impact of these acoustic resonances on the related aeroacoustic environment and

resulting structural responses. Emphasis is placed on the first aspect, which is

not readily available in practical engineering terms suitable for problem solving.

For the second aspect, only a brief review is attempted here since this topic has

been thoroughly treated in the literature listed at the end of this chapter and has

been well summarized in a recent review paper, i
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6.1 Geometry of Cascades

A typical rectangular cascade system is shown in Figure 6-I. It is treated as

an infinite stack of parallel plates with a cross-flow span b and a chord

dimension C in the direction of flow separated by a pitch spacing s perpendicular

to the flow. The acoustic resonances of primary concern involve only the chord-

pitch plane and can thus be considered in terms of the acoustic resonance

frequencies of two-dimensional cavities. These resonances (as well as the three-

dimensional resonances which can occur) may also involve secondary interaction

with structural resonances of the cascade plates themselves. They are excited by

the fluctuating wakes shed by the flow at the trailing edge of the plates.

For cascade systems of the type shown in Figure 6-1, four characteristic

types of acoustic modes can be defined. They are designated, after Parker, 2 as the

a, [3, y, and 8 modes which have the general modal pattern illustrated in Figure 6-2.

The first two types of modes (c_ and 13) have a pressure anti-node (region of high

pressure) along the told-pitch plane halfway between each pair of plates and are

distinguished by either a pressure node (region of zero or minimum pressure)

along the mid-chord plane (a mode) or an anti-node along this plane (_ mode).

The other two modes shown in Figure 6-2 have in common a pressure node along

the mid-pitch plane but are distinguished by either a pressure node along the

mid-chord plane (y mode) or an anti-node along this plane (8 mode). The

significance of these acoustic resonances is that, when they are excited by vortex

shedding, the resulting acoustic pressures may cause unacceptably high vibration

responses of adjacent structure or generate very high noise levels. This occurs

when the acoustic resonances frequencies are close to the vortex shedding

frequency, which varies with flow velocity. However, as will be illustrated later,

the vortex shedding frequency itself may change significantly as the sound

pressures of the acoustic field interact with the vortex shedding process.
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6.2 Relaxation Method

This section provides a method of determining the acoustic resonance

frequency in cascades using a numerical "relaxation" method. The technique is

able to compute resonance frequency and mode shapes for complex geometries,

as in turbomachinery cascades.

The relaxation method was originally developed to solve mechanical

stability problems in structural framework systems, "the method of systematic

relaxation of constraints" (Allen3). The method provides a mathematically

forgiving process for simultaneously solving a set of N linear equations in

N unknowns. The relaxation process does not really operate on the equations

themselves but uses them only to define "residual error terms" - analogous to the

residual constraint forces applied to the framework - which are "relaxed" or

gradually reduced to zero by a simple iterative process.

For example, assume the acoustic mode shape in a system is described by a

set of N linear equations in Xj which can be expressed in the following form,

where the indices i and j both go from I to N:

j--_

i all X I + a12 X 2 + . . . ainXN = B x

"_ a21 XI + f122X2 + . .. a2N XN ---- B 2

aNIX 1 + aN2X2+ ... aNNX N = B N

(6-1l

The solution to this set of equations is reached when a specific set of values of

satisfies the above expressions. A solution to any one of the equations in the above

set is also reached when there is no longer any residual error in the equality

between the left and right sides of the equation. This is the key concept of the

relaxation process.

That is, for this process, the same "solution" to Equation (6-1) is reached

for the set of Xj for which all of the residual errors, F, expressed in the following

form, approach zero:

j--_

a1,X, + a,2 X2 + ... a,N XN-B,

a21X I -F a22 X 2 -4- . . . a2N _- B 2 (6-2)

F N = aNlX I + aN2 X2 + ... aNN XN-B N
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In other words, when the correct values of X_are substituted into Equation (6-I),
the right and left sides of Equation (6-I} become equal. Correspondingly, in
Equation (6-2), the values of the residual errors, Fi , approach zero when the

values of X_ approach (within acceptable accuracy) the correct values for the mode

shape that would have been obtained from the exact solution of Equation (6-1).

Basically, the relaxation process starts by breaking an acoustic cavity down

into finite elements and approximating the applicable Helmholtz equation for the

cavity by finite difference equations which also define a set of residual error

terms, Ft. Then values are assumed for the unknowns, Xj , in these equations.

Depending on which of the two basic versions of the relaxation method is

employed, these initial values for the desired unknown mode shapes may, in

general, be quite arbitrary, or may be very rough estimates of the actual mode

shape. However, in either case, any initial values at the cavity boundaries must

conform to applicable boundary conditions such as zero particle velocity at a rigid

wall or zero pressure at an assumed pressure node.

Next, the residual error terms, Fi, from Equation (6-2) are computed and,

from these, incremental changes 6Xj to one or more of the assumed X_ values are

computed. These increments are computed so as to reduce the magnitude of the

residual errors. The new values of Xj , Xj (new) = Xj (initial) + 5Xj , are then used to

compute new values for the residual error terms. The process is repeated or

iterated until the residual error terms, Fi, approach zero and the iterated values

for the mode shape, Xj, stabilize. This final close approximation to the mode

shape is then used to compute the desired resonance frequency.

Accuracies in mode shape of the order of 5 to 10 percent and roughly

tenfold higher accuracies in resonance frequency are possible with a relatively

small number of iterations readily carried out on a computer. The number of

iterations will decrease as the initially estimated mode shape more closely

approximates the correct value and will increase as the number, N, of variables

increases, where N is equal to the number of two- or three-dimensional cells or

elements used to describe the acoustic cavity or cascade system.

Several variations in the iterative relaxation process can be used:

• Point Relaxation - Iterative change in one element at a time (i.e., a

change in one variable, say X_) selected for change because it had the
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highest residual error at the end of the previous iteration. The change
in X_ is computed so as to reduce the residual error FI to zero for the
next iteration.

• Block Relaxation - Equal iterative changes in a block of elements (e.g., all

N variables in a set of equations for the pressure in a cavity are changed

by the same amount designed to reduce the total residual error (]_F i) to

zero at the next iteration).

* Group Relaxation - Unequal iterative changes in a block of elements

(e.g., all variables in a set of equations are changed simultaneously but by

unequ_ amounts).

° Multiplying Factors - A single multiplier applied to all of the residual

error terms, F i , at the same time when the iteration process has

reached the point where they are all non-zero but have the same relative

proportion (i.e., F 1 : F 2, F] : F 3, etc.) that they have at the beginning of the

_teration process. If the estimated values for _ are all multiplied by this

definable factor, a final solution is achieved in just one more itera-

tion step.

In addition to these four variations for relaxation iteration defined by Allen, 3 a

variation on point relaxation is useful for efficient computer implementation of the

relaxation process.

• Multiple Point Relaxation -This consists of applying an incremental

change to all points for which the previous residual error was equal to or

greater than a specified fraction (25 percent has been found to be suit-

able) of the maximum residual error. That is, a defined incremental

change (not the same for each point) is made to all points with a

residual error within 25 to 100 percent of the maximum value. The

incremental change made to each such point is the same as for a true

single point relaxation, i.e., it will reduce the residual error to zero for

that point in the next iteration, in the absence of changes to any

other points.

For efficient computerized execution of the relaxation method, only the Point,

Block, and Multiple Point relaxation techniques are appropriate. The other two

variations require more complex judgment, not suitable for a simple computerized

iteration program.
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Consider, now, some of the key aspects involved in the application of the

relaxation process to the determination of the fundamental acoustic resonance

frequency and mode shape for a simple one-dimensional acoustic system. While

these parameters can be readily defined by classical methods, for this example the
relaxation method is applied to this case for illustration of these key concepts.

Consider the sound field inside a closed rigid tube of length L. The spatial

variation in the sinusoidally varying (time-wise) pressure in the tube is found from

the solution of an ordinary, second-order, differential equation, called the

Helmholtz equation. If the axial position along the tube is expressed in a non-

dimensional form as the ratio x'= x/L of the x coordinate to the tube length L,

the Helmholtz equation can be given by 4

d 2 P (x')
+ (kL) 2 P(x') = 0, (6-3)

dx'2

where k = 2_f/c is the wave number for a sinusoidal pressure wave with a

frequency f and sound speed c.

Equation (6-3) is one form of a general class of equations which define

eigenvalues or resonance frequencies of a linear (in this case, one-dimensional)

system in terms of a set of i!_rmal modes. In this case, the acoustic pressure in

the closed tube for one of these resonance frequencies, say the n'th, will have the

general form

p. (x', t) = P.(x') cos (2_ f. t) , (6-4)

where P.(x') is the, as yet undefined, mode shape for the n'th mode at point x'

and f. is the n'th resonance frequency, related to the corresponding wave

number by k. = 2_ f./c . To determine this resonance frequency by the relaxation

method, either one of two variations may be used: (1) the "Modal Intensification"

method, or (2) the Rayleigh method. These variations, explained in more detail

in Section 6.2.5, are summarized here with emphasis on the Modal Intensifica-

tion method.

Consider, now in Section 6.2. I, the key element common to both of these

approaches, the Rayleigh quotient, which is used to compute the resonance

frequencies.
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6.2.1 Rayleigh Quotient

The Rayleigh quotient can be developed, semi-empirically, by recognizing

that a general solution to Equation (6-3) should apply at all values of x' within a

system (e.g., all along the axis of the closed tube in our example). Thus integration

of both parts of Equation (6-3) is implied. Further, assume that the magnitude of

each term in Equation (6-3) at any position should be weighted by the magnitude

of the pressure P(x') at that position. Applying these concepts, and solving the

weighted integral version of Equation (6-3) for the eigenvalue (kL) 2 , the Rayleigh

quotient is given by 3

SP(x_ (d2 p(x')/dx'2)dx '
(kL) 2 = _

, (6-5}

where it is understood that the integrations take place over all values of x' from

one end of the tube to the other (i.e., x' = 0 to 1, where x' is non-dimensional).

The application of the Rayleigh quotient involves an intuitive guess at the

expected mode shape, followed by an evaluation of Equation (6-5) to obtain an

estimate of the eigenvalue. This method will yield the eigenvalue to a high degree

of accuracy.

To apply Equation (6-5) to one of the following relaxation methods, it is

first necessary to develop a finite difference approximation (FDA) to the second

derivative of P(x') in the numerator of this equation. For the simple example

used here of the closed end tube, this FDA is started by breaking the tube into a

set of four equal segments, as illustrated in the following sketch. (Only four

segments are used here, for the sake of simplicity.)

Dropping the prime from x' for convenience, the FDA to Equation (6-3) at

the point x_ can be shown to be 3

d2P(x,} P(X_l)+ P(x_+x)-2 P(x_)

dx 2 - h 2 (6-6)

where P(x_ ) are the values for the acoustic pressure P(x) along the x axis at

positions x__], x_, and x_+] spaced at equal intervals, h, as illustrated in the sketch,

where i has the values 0 to 4. Equation (6-6) is simply the lest term of a central

difference approximation of the second derivative of P(x) with error of order h 2 .

The central difference approximation was derived from the sum of the Taylor

series expansion of P(xi - h) and P(x i + h).
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Point _ x0 x I x2 x 3 x 4

II l I IISegment _ 1 9. _ h _ 4

Applying this approximation for d 2 P(x_)/dx 2 , and replacing the continuous

integral of Equation (6-5) with a summation over the finite elements, an equiva-

lent form of Equation (6-5) suitable for numerical computation is

4

-_ P(x0 [ P(x_-l) + P(xi.l} - 2P(x_ ]
----[kLl2 =- I=0
_ B

4

h 2 _ p2(xi)
i=0

(6-7)

Note that, since the x-coordinates are actually expressed in non-dimensional

form, the variable, h, is also non-dimensional and, in this case, is simply equal

to I/4, or the inverse of the number of segments into which the tube length has

been divided.

6.2.2 Modal Intensification Method

For this method, the pressure at any point in the cavity is expressed as the

sum of the pressures in the n normal modes for the cavity. This normal mode

summation concept is then applied, with the aid of the relaxation process, to find

the shape of the first normal mode of the system and then, with the aid of the

Rayleigh quotient, to find the corresponding resonance frequency.
=

If desired, the method can be applied to find higher-order modes by

utilizing the orthogonality property of normal modes and "sweeping out" the

already determined first mode shape from the initially assumed mode shape for

the second mode and so on for higher modes. 3 Modal Intensification is the

principal method utilized for previous studies of acoustic resonances of cascades

(e.g., Parker2). It has the advantage of always Funding the lowest order mode and it

is computationally simple to use because it requires only a succession of solutions

to a set of linear algebraic equations.

6.2.3 Rayleigh Method

For this method, the Rayleigh quotient is first applied to estimate the

fundamental resonance frequency (in terms of the non-dimensional parameter

( (kl L) 2) based on an initial rough estimate of the approximate fundamental mode
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shape of the system. This first approximation to (k_ L) 2 is then used to compute

the residual errors for this initial estimate of the mode shape. From these values,

refined estimates of the mode shape are derived. The process is then repeated

until the resonance frequency and mode shape stabilize.

The Rayleigh method suffers by giving no indication which of the n modes

of a solution is obtained. The method does not deliberately arrange computation

of the modes so that the lowest order mode is always selected first. Another

difficulty occurs when two of the eigenvalues are close together or nearly equal.

Convergence to one of the modes may be practically impossible unless a

sufficiently good first guess is made. The Modal Intensification method does not

suffer from these defects, and is therefore the method of choice.

6.2.4 Implementation of the Modal Intensification Relaxation Method

This section contains a generalized application of the Modal Intensification

relaxation method to a simple one-dimensional case. Section 6.2.5.1 provides a

detailed example of the computation of the mode shape and resonance frequency

of fluid in a pipe with closed ends.

As indicated earlier, this method assumes that the pressure P(x) at any

position x can be expressed as the sum of the pressures in the normal modes,

P_(x), P2(x) ..... P,(x) , with resonance frequencies/eigenvalues represented, for

convenience, by the non-dimensional eigenvalue _i = (k, L) 2 . From this concept, it

can be shown 3 that the Helmholtz equation takes the form (again dropping the

prime from x')
d2 P'{x)

+ P(x) = 0
dx 2 {6-8)

where P'(x) - Pl(x) + P2(x} + ... + Pntx______i} (6-9a)

and the eigenvalues for the n modes have ascending values such that

(6-9b)

The variable P' now becomes the unknown sum of the modal amplitudes to

be found in terms of the presumed known total amplitude P(x) . Equation (6-8) is

solved for P'(x) by relaxation and this solution is substituted back into Equa-

tion (6-8) as a better estimate of P(x}. This process is then repeated several
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times. Given the relationships in Equation (6-9), the result is that this iteration

process stabilizes on the amplitude of the lowest mode since, in the series

P1(x)/_1 + P2(x)/132 + • • • Pn(x)/[3n, the frrst term for the fundamental mode will be

"intensified" at each step in the iteration process.

Now, using Equation (6-6) to express Equation (6-8) in terms of an FDA for

the point i = 0, the result is

P'(x-l) + P'(xl) - 2 P'(xo)
I_ + P(xo) = 0. (6-I0)

Since the actual amplitudes, P'(xl) , of the normal modes are not of importance

here, the value of h can be arbitrarily set equal to 1 at this point. Therefore the

corresponding residual error term F0, representing the equivalent of Equa-

tion (6-2) at the point i = 0, is

F0 = [P'(x._) + P'(x,) - 2P'(x0)] + P(xo). (6-11)

Similarly, the residual error term F_ , at the point i = I is

F 1 = [ P'(x O) + P'(x 2 ) - 2 P'(xl ) ] + P(Xl ). (6- 12)

It is immediately apparent from these two equations that a unit change in P'(xo)

will change the residual error terms Fo and FI by -2 and + 1, respectively.

It is desirable, at this point, to define the boundary conditions applicable for

a closed-end tube. The boundary condition for the first mode is a zero particle

velocity at the ends of the tube. This is equivalent to saying that dP(x)/dx = 0 at

each end of the tube. However, the finite difference approximation for this first

derivative at a point xl is simply

dP(x) P(xl.l) - P(Xl-l)
- = O. (6- 13)dx 2h

The boundary condition of zero particle velocity at x_ leads to

P(x l,l) = P(xH) ,

where P(x,± 1) are the pressures on each side of the i'th point at positions

separated by a total distance 2h.

Thus the boundary condition at a rigid surface located at, say, x = xo, is

simulated, for calculation purposes in the relaxation process by establishing a
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fictitious point on the other side of the boundary at x._ which has the same

pressure as at point x ÷1 • All that is necessary is to carry this point through the

relaxation process solely for purposes of conveniently computing the residual

error terms.

It is convenient to facilitate, conceptually, the computation of the residual

error terms, as in Equation (6-12), by what is called an operations table. This is

shown in Table 6-1, below, for the case of the simple closed-end tube divided into

four segments. This shows the change in the value of Fi at each i'th point for a unit

change in the pressure at this point only and for a unit change in pressure at all

the points simultaneously.

Table 6-1

Operation Table for the Analysis of
Fundamental Acoustic Mode of Closed-End Pipe

0

P'(i)

P'(O) = 1

P'(O) = 1

P'(O) = 1

P'(O) = 1

P'(O) = 1

All P'(i)**

SEGMENTS
I I I
1 2 3

Residual Errors,. F l

F l * F 0 Fl F2 F3 F4

1 -2 1

1 -2 1

1 -2 1

1 -2 1

1 -2

0 0 0 -1-1

* Fictitious point outside ends of closed tube.
** Sum of F i for P'i = 1 at all points = -2.

II
4

F s *

6-13



6.2.5 Example Calculation of a String With Fixed Ends

6.2.5.1 Modal Intensification Relaxation Method

The Helmholtz equation for vibration of a string of linear mass density p ,

length L, under tension T is given by 4

d 2 w(x')
+ (kL) 2 w(x') = 0, (6-14)

dx'2

where the wave number k = 2_f/c, the speed of wave motion in the string c =

_/-T/p , and w(x') is the displacement of the string at a non-dimensional axial

position x' = x/L from a rest position. This can be transformed into the following

form by applying the principle of construction of any vibration pattern for the

string as the sum of its normal modes. 3 For this approach, a new variable w' is

defined as the sum of these normal modes, each having an eigenvalue [3n = (kn L) 2

where [31 < [32 < [33, etc. Thus, ff w is equal to A1 wl + A2 w2 + • • • + An urn, where

Al is the modal amplitude of the i'th mode with shape wl, Equation (6-14) could be

written, dropping the prime from x', as

d 2 w'

dx---T- + w = 0, (6-15)

where w' - A_ w_ + A2 w2 + ... An wn

Now, since [31 < [32 < [33, etc., the first term of this series will be the largest

for constant modal amplitude An, so that solving Equation (6-15) for wl for a

given (estimated) value of w will provide an intensified estimate of the shape wl of

the first mode of vibration of the string. Successive iterations of this solution

for w_ as an Improved estimate for w finally produces an accurate estimate for

the fundamental mode of vibration of the string.

To solve Equation (6-15) by this version of the relaxation method, it is first

transformed by a finite difference approximation for the second derivative into the

following form for the i'th point:

W'__ l + W'i+ l - 2W' I
+ w I = 0, (6-16)h 2

where h = the length of each finite segment into which the string is divided. For

now, the value of h can be arbitrarily set to 1, since the absolute magnitude of the

modal amplitude is not of interest.
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Equation (6-16) is now solved for the unknown w' values using alternating

block and point relaxation processes. Application of these processes to the

determination of the mode shape and fundamental resonance frequency for

vibration of a fixed-end string of length L is illustrated as follows. First, the

string is broken into four finite segments as illustrated in the diagram below,

where h = 1/4:

x/L = 0.25 0.5 0.75 1.0

w' I w'2 w'3

W"0 = 0 W'4 = 0
(fixed end) (fixed end)

The displacements at the two end points are, of course, zero. Applying Equa-

tion (6-16) for each of the remaining three intermediate points (i = 1,2,3), the

expressions for the residual error at these three points, are (with h set equal

to I):

Fl = - 2w'i + w'2 +wl (6-17a)

F2 = + W'l - 2w'2 + w'3 +w2 (6-17b)

F3 = w'2 - 2w'3 +w3. (6-17c)

It is helpful, when applying the relaxation process to define the following

operations table which simply defines the change in the value of each of the

residual error terms for a unit increase in each of the unknowns w'(i) one at a

time (lines 1, 2, and 3, below) and (for application to block operations), all at the

same time (line 4, below).

Table 6-2

Operations Table for the Analysis of
Fundamental; Displacement Modes of a Vibrating String

Residual Errors, F(i)

Line _ w' i F1 F2 F3

W'l = 1

W'2 = 1

W' 3 -- I

W' 1 -- W' 2 = W' 3 = I

-2 1 0

1 -2 I

0 1 -2

-I 0 -I _'. [F i (w' i = I)] = -2
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In Table 6-2, the values -2, 1, and 0 appearing under F 1 are the coefficients

to the W primes in Equation (6-17a). The value of w I is arbitrarily assumed to be

100 initially and, for each step, the first values of w',, the modal component of w_

to be determined, are set to 0. As can be seen from Equation (6-17), the result is

that the initial values of the residual error terms, F,, are also equal to 100. The

most efficient way to start the relaxation process is to first apply a block

relaxation. This consists of applying a change, 8w',. to each w_. selected such that

the sum of the resulting residual error terms is zero. It can be shown that this

value of _w' i is given by:

- Z (F,)

5w'l = E Fi (w'l = 1) (6- 18)

where Fl are the actual error terms for specified values of w'l, and F_ (w', = 1)

are the error terms for a unit change in w'_ at each point.

From Table 6-2, 5w'_ is equal to -(100 + 100 + 100)/(-1 + 0- 1) = 150. With

this change to w'j , new values for F_ are then calculated. As shown in Table 6-3,

line ld the sum of the residual error values of F, (-50 + 100 - 50) is equal to 0.

For Step 2 of the relaxation process for this case, it is most efficient to

simply apply a point relaxation operation. This method is usually reserved until

the end of the solution in order to make small local adjustments. Point Relaxation

amounts to adding a new increment 5w', to only the value of w'_ which had the

largest residual error from the previous step. The magnitude of this change is

found from the operations table and is set equal to the value necessary to make

this (largest) residual error equal to 0. For value i = 2, which has the largest

residual error at the end of the first part of Step 1, changing w' 2 by -100/

(-2) = 50 will accomplish this. The other w',s are not changed hut the resulting

new value for the residual errors are zero at point 2, as required, and,

by coincidence, the residual error is also zero at the other two points at the end

of Step 2.
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Line
la

lb

lc

ld

2b

2c

2d

Table 6-3

Relaxation Table Showing Steps 1 and 2 for
Displacement Modes of Vibrating String

i=l i=2 i=3
Ft = w i (initial) I00 100 100

5 w' i 150 150 150

w'i 150 150 150

F'_ Eq. (6-17) -50 100 -50

8 w' i 0 50 0

w', 150 200 150

F' i Eq. (6-17) 0 0 0

Initial Estimate for w_

BLOCK RELAXATION

[8w' applied at all points]

POINT RELAXATION

[ 8w' applied only where
previous F, is max.]

The operations

Line la

Line lb

Line I c

Line Id

Line 2b

Line 2c

Line 2d

carried out in Table 6-3 are:

Initially, assume wl = 100 and w't = 0 ; hence, from Equa-

tion (6-17), F_ = wl •

5w'_ computed from Equation (6-18), applied for block relaxation

at all non-fixed points.

w't = w'_ (initial) + 8w'_ = 0 + 8w't.

New values for F_ computed from Equation (6-17).

8w'_ computed again from Equation (6-18) with new values of Fi.

wl = w'l(new} + 8w'l

New values for F_ computed from Equation (6-17).

The new estimates of the modal amplitudes w'_ are now used to revise the initial

value of w_ which starts another iteration loop carrying out these same series

of steps.

Before proceeding to the next step, it is convenient to normalize the new

values of w'i and wi to a maximum of I00 (see Table 6-4, line 3a). The entire

process is now repeated, starting with a block relaxation change 8w' t to all three

points which is, from Equation {6-18), equal to -(75 + 100 + 75)/(-2) = 125.

Again note that the initial value of w'i is assumed equal to zero for the In-st

iteration of each step, so the second estimate of w't (line 3c) is simply equal to

8w't on line 3b.
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Line
3a

3b

3c

3d

4b

4c

4d

Table 6-4

Relaxation Table Showing Steps 3 and 4 for
Displacement Modes of Vibrating String

i=I i=2 i=3
F i = w i (initial)

75 i00 75

6 w' i 125 125 125

w' I 125 125 125

F 'i -50 100 -50

5 w' l 0 50 0

w' l 125 175 125

F' t 0 0 0

Initial Estimate for w i

BLOCK RELAXATION

POINT RELAXATION

The same procedure repeated again gives the following result. Again, note

that it is purely coincidence, for this simple case, that all of the values of Fi on

i = 2 is expected to be zero by application ofline 4d are zero. Only the value for

the point relaxation at this point.

Table 6-5

Relaxation Table Showing Steps 5 and 6 for
Dis _lacement Modes of Vibrating String

Line w i (initial)
5a

5b 5 w' i

5c w'_

5d F 'l

6b 5 w' l

6c w' t

6db F 'i

i=l

71.43

121.4

121.4

-46.4

0

121.4

0

I=2 i=3

100 71.43

121.4 121.4

121.4 121.4

100.0 -46.4

50.0 0

171.4 121.4

0 0

Normalized From Line 4c

BLOCK RELAXATION

POINT RELAXATION

After three more identical iterations of the same process (see Tables 6-5

and 6-6), the resulting mode shape, expressed in a normalized form, is identical

to five significant figures to the theoretical result given in Table 6-6. Note, how-

ever, that in this case, just two iterations are all that would be required to achieve

an accuracy of about 1 percent in mode shape (i.e., compare the normalized mode
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shape, 0:71.43:100:71.43:0 at the beginning of Step 5 with the exact values

0:70.71 1:100:70.711:0) for the first (sinusoidal) mode of a vibrating string. Thus a

very accurate solution has been obtained for the fundamental mode shape w_ of

the string by this simple relaxation process.

Table 6-6

Relaxation Table Showing Steps 7 and 8 for
Displacement Modes of Vibrating String

Line w i (initial)
7a

7b 8 w' i

7c w' i

7d F 'i

8b 5 w' i

8c w' i

8d F 'l

i=l

70.7

120.7

120.7

-50.0

0

120.7

0

i=I i=1

100 70.7

120.7 120.7

120.7 120.7

100.0 -50

50.0 0

170.7 120.7

0 0

BLOCK RELAXATION

POINT RELAXATION

Table 6-7

Normalized Values From Line 8c and Exact Values

Line w'_
9a

i=I i=I

70.711 100

Exact Values From Theory,

w' i 70.711 I00

i= I

70.711

w'i= I00 sin (_x/L)

70.711[

All that remains is to defme the fundamental resonance frequency from this

relaxation process. From the Rayleigh quotient, the value of (k_ L) 2 is given by 3

- lw(x) (d 2 w(x)/dx 2) dx
(kl L) 2 =

I w2(x) dx (6- 19)

where it is understood that the integration takes place over all values of x from

one end of the string to the other.

6-19



Using the finite difference approximation for the Second derivative in the

top integral and now using the true non-dimensional value of h = 1/4 (it was

arbitrary when computing relative mode shapes)

(k] L)2 -- "Z wl (wi-I+Wi+l- 2wl)

h 2 _Ew_ {6-20)

Applying this to the normalized values for w'i at the end of Step 2, the result is

-[71.43 (100 - 2x71.43) + i00 (71.43 + 71.43 - 2x100) + 71.43 (I00 - 2x71.43)]
{kl L) 2 =

{1/4}2[(71.43} 2 + (100} 2 + (71.43}2t

= 9.374

or ki L = 3.062, within 2.5 percent of the true value, x, for the fundamental

mode of vibration of a fixed-fixed string.

In summary, with no knowledge whatsoever of the mode shape of the strin_

except for the required boundary condition of zero displacement at the ends of

the string {i.e., the initial guess was for a constant amplitude of 100} and using

only the finite difference approximation to the Helmholtz equation for the

vibration of the string, the mode shape for its fundamental frequency of vibration

is easily computed by the Modal Intensification relaxation method. A close

approximation to the resonance frequency is then computed from another finite

difference approximation to the Rayleigh quotient. Note that if the more exact

estimate of the mode shape had been used after Step 7, instead of two iterations

of the relaxation process, then the calculated resonance frequency, from Equa-

tion {6-20} would have had a value for k]L of 3.061, just slightly lower than the first

estimate.

If the string had been broken into eight, instead of four, segments, the

above process would have produced a value for k] L of 3.12, within less than

1 percent of the true value x {Allen3}. Thus, in general, improved estimates of

the resonance frequency of a system require a finer breakdown into more

elements- that is, accuracy for modal frequencies is more dependent upon a freer

segmentation for the Rayleigh quotient than on the accuracy of the mode shape

determined from the relaxation process.

This highly simplified demonstration of the application of the modal

intensification relaxation method to find the fundamental mode shape and

i
I
_=
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resonance frequency of vibration of a string can be directly applied to the case of

the acoustic resonance in an open-ended pipe. This analogy neglects the end

correction of a virtual "acoustic" mass at the ends of the open pipe which accounts

for sound radiation at the ends (Kinsler and Frey4). The string displacement w is

replaced by the acoustic pressure, P, and the speed c = _/T/p of vibration waves in

the string is replaced by the speed of sound c = _fTPo/P , where y is the ratio of

specific heats, Po is the atmospheric pressure, and p is the gas density. In all

cases, the relaxation process is carried out by successive applications of the

incremental changes, _wj, defined by Equation (6-18), to one or more points in

the system such that, in each case, the sum of the residual errors for all the points

changed is zero.

6.2.5.2 Rayleigh Relaxation Method

For this method, the finite difference approximation to the Helmholtz

equation can be written down directly without resort to any assumption about

normal mode summation. The resulting Finite Difference approximation to

Equation (6-14) at the i'th point is

[w1-1+wi_1-2wj] /h 2+(kL) 2wl = 0, (6-21)

where h equals the length of each segment of the string.

The corresponding expression for the residual error, Fi is, for the i'th point:

Fi = wi_l + wj+l - w_ [2 - (kLh) 2] w i . (6-22)

Note that, unlike the modal intensification method, the residual error terms

inherently include the eigenfrequency term (kLh) 3 .

The Rayleigh relaxation method is carried out as follows:

1. An initial estimate is made of the values of wl defining the shape of the

fundamental mode.

2. A value for the quantity (kLh) a is calculated from the Rayleigh quotient,

Equation (6-20), using these values of w,.

3. A value for the residual error, F_, at each point is calculated from Equa-

tion (6-22).
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4. An incremental change _wl is computed to initiate a block or point

relaxation step. The value of _wi is again found from Equation (6-18)

and is equal to minus one times the total or maximum value of the

residual errors terms for a block or point relaxation step, respectively,

divided by the corresponding total value of the residual error for a unit

change in wl at the point(s) affected.

5. The value(s) of _wi is then applied as a correction to the corresponding

previous values of wi to obtain a refined estimate of wl •

6. This process is repeated from Step 2 through Step 5 until the computed

eigenvalue (kL) and mode shape become stable, i.e., the change in these

quantities between iterations is within the accepted accuracy criteria.

The process is illustrated as follows for the case of the string. Unlike the

beginning of the modal intensification method where the initial mode shape was

not critical, now it may be necessary that the initial estimate of the mode shape

be at least a reasonable, first-order approximation to the actual mode shape of the

fundamental mode. That is, the initial estimate should roughly indicate the

general location of the maxima and must, of course, be consistent with the

boundary or mode conditions such as a zero displacement at a boundary or at a

known or assumed node point or line. For this case, an initial crude estimate of

the mode shape is given by 0:60:100:60:0.

In Table 6-8, two different versions of the relaxation process are applied to

illustrate the potential flexibility of the method. For the first approach,

Equation (6-22) is used throughout for calculation of the residual error terms, F_,

and the change, 5wi, to be made to extinguish these errors using the block

relaxation process. For the second variation, Equation (6-22) is only used to

compute the error terms and a simplified version of Equation (6-18) is used to

compute the change 5w_ made to each point to minimize F_ using, initially, a

block relaxation process and the point relaxation method thereafter. The simpli-

fication consists of setting {kLh) equal to zero when computing the change in F_

for a unit change in w_ (Allen3). For the sake of brevity, only the first two steps

and the last step required to achieve good accuracy are shown for each of these

two variations.
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Table 6-8

Rayleigh Relaxation Table for First Mode of Fixed-Fixed String

(a) Using exact expression for F I and 8w i for all (block relation) steps.

STEP X/L >> 1 2 3 (kLh) 2

0 F i, wj = 1, Eq.(6-22)# -0.4 0.6 -0.4

0 w1(0), Initial 60 100 60 0.6046

0 Fi, Eq.(6-22) 16.3 -19.5 16.3

1 5 w_, Eq.(6-18) 70.0 70.0 70.0

1 wt(0} + 8wt 130.0 170.0 130.0

I w i (n) * 76.5 I00.0 76.5

I F I , Eq.(6-22) -7.8 12.0 -7.8

2 5 w I, Eq.(6-18} 16.0 -16.0

2 wi(l} + 8wl 60.5 84.0

2 w i (n) * 72.0 I00.0

2 F_, Eq.(6-22) -1.8 2.6

16.0

60.5

72.0

-1.8

0.5901

0.5860

Sum IF i]

13.023

-3.678

Su_[l [Fi, wi ffi I]

-0.186

-0.230

-I.000 -0.2420

0.5857

4 8 w i, Eq.(6-18) -0.22 -0.22 -0.22

4 w_(3} + 5w i 70.6 99.8 70.6

4 w i (n) * 70.7 100.0 70.7

4 F_, Eq.(6-22) -0 0.0 -0 -0.0001 -0.2426

Signifies value ofw_ normalized to a maximum of I00. # Sum[F i]forw L= I.

(b} Using approximate expression for F_ for w_

STEP X/L >> 1 2 3

0 F_, w_ = I, Eq.(6-22)# -1.0 0.0 -l.0

0 w,{0), Initial 60 I00 60

0 F_, Eq.(6-22) 16.3 19.5 16.3

1 5 w 1. Eq.(6-18} 6.51 6.51 6.51

1 wl(0) + 5wi 66.5 106.5 66.5
1 w_ (n} * 62.4 100.0 62.4

1 Fl, Eq.{6-22) 12.4 15.4 12.4

2 a w_, Eq.(6-18)** 0.0 -7.7

2 wl(1) + 5wl 62.4 92.3

2 w' l {n} * 67.7 100.0

2 Fj, Eq.{6-22) 4.4 -5.9

-- I plus use of point & block steps.

(kLh) 2

0.0

62.4

67.7

4.4

0.6046

0.5966

0.5871

Sum [F_]

13.023

9.289

Sum Wi, wi = I]

-2##

-2##

2.839 -2##

6 5 w v Eq.(6-18) ** 0.0 -0.1 0.0

6 wi(1) + 5w_ 70.6 99.9 70.6

6 w' i (n) • 70.7 100.0 70.7

6 F i , Eq.(6-22) 0.0 -0.0 0.0

0.5857

0.02090 -2##

** Equation (6-18) applied only to point with maximum F_ from preceding step.

## Sum [FI ] for w i = I and assuming (kLh) 2 = 0.
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Note that for the Rayleigh relaxation method there is only one iteration per

step, whereas for the modal intensification method, there can be several

iterations of the mode shape for each step. (Only two, a block and a point

relaxation, were used for the simple case treated earlier.) For either variation of

the Rayleigh relaxation method, the final mode shape: 0:70.7:100:70.7:0 and the

value of (kiL) 2 = [1/(1/4) 2] (0.5857) = 9.371 is essentially the same as achieved

earlier by the modal intensification method.

In Table 6-9, the Sensitivity to the accuracy of the initial mode shape

assumed is examined. The results are summarized for each version (a) and (b)

used in the previous table, in terms of the initial mode shape, and the number of

steps required to achieve a stable and accurate value. In some case, stability is

achieved, but the result does not represent the desired mode, i.e., the relaxation

process stabilizes on an invalid value of (k_Lh) 2 for the In-st mode.

In general, however, it is found that a stable, valid result is reached by using

the first version (a) of the Rayleigh relaxation method, which employed block

relaxation at each step, only when the initial assumption of mode shape had the

correct trend in slope. This occurred, for this simple example of the first mode

of vibration of a string, when the change in assumed amplitude between either

end point (= 0) and the next nearest point was greater than the change between

adjacent points near the middle of the string.

In contrast, for the second version (b) of the Rayleigh relaxation method,

which used only point relaxation after the In-st block relaxation step, and assumed

that the change in the residual error, F_, for unit change in w_ was simply -2

[equivalent to neglecting (kLh) 2 in Equation (6-22) ], a valid, stable result was

always obtained, regardless of the assumption about the initial mode shape. Thus

this version of the Rayleigh relaxation method is similar to the Modal

Intensification relaxation method in that it was not sensitive to _tial mode shape.

It has been found that this generalization still holds for more complex systems.

In all cases, as expected, fewer iteration steps were required when the

initial estimate of mode shape was close to the final result.
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Table 6-9

Sensitivity of Rayleigh Relaxation Method to
Assumption for Initial Mode Shape of String

Relaxation
Version

From Table 1

(a}

All BLOCK
Relaxation -

Correct Value

for F l , 5w I

BLOCK + POINT
Relaxation -

Correct Value

for F i but

[F i,w i= I] = -2
or [kLh] 2 = 0

Assumed Mode Shape at
Point Between Ends

0
25
5O
55
60
70
8O
90

100

2

I00
100
100
I00
I00
100
I00
I00
I00

3

0
25
5O
55
60
70
8O
90

100

0
25
5O
6O
70
8O
90

100

I00
I00
I00
I00
I00
I00
I00
I00

0
25
5O
60
70
8O
90

100

No. of
Iteration

Steps

i

5
4
I
3
5
$

7
7
6
6
3
6
6
6

* Relaxation fails to reach valid or stable value.
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6.2.6 Extensions to a Two-D|mensional System

In Figure 6-3, an area with dimensions Lx x Ly could be divided into N x M

cells with dimensions hx and hy in the x- and y-directions, respectively. The area

shown is, in fact, the finite-element network used by Parker 2 to represent a

cascade system of an infinite stack of parallel plates with a cord dimension

C = 2Lx (in the x-direction), pitch spacing s = 21_ (in the y-direction), and cross-

span width b. By taking advantage of the symmetry of the modes in the vertical

x-y plan parallel to the flow for this system, it is only necessary to evaluate one

quadrant of the area between any two plates. This quadrant is the rectangle ABCD

noted on the figure made up of 51 cells (52 points) in the x-direction and four

cells (five points) in the y-direction. Rectangle ABCD is the same rectangle

appearing in Figure 6-2. In Figure 6-3, one set of additional points is required on

each side of this rectangle to supply fictitious points, as discussed earlier, for

defining pressure gradients along the area boundaries.

P (M,1} = P (M,3) for antinode A - B (_)

P(M,2) = 0 for node A-B(a)

L
2 3 4 5 13 7 8 9101112

m---_

P(M,54) = P(M,53) x

N = 51 52 53 54 P(I,N) =M=I
Mid- C P{3,N)

Pitch

M_

2 ----iP-

3

4

5

6 =..

7

B

hy

1 _uz-
l I

I_,te

I PI7.N) = P(5,N)
Mid-
Chord

D

P(6,N) = 0 _ I

Figure 6-3. Network of Finite Elements Used to Represent a, _ Modes of

Cascade System. (Reproduced from Parker. 2)
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Boundary conditions are specified on this diagram for two different types of

modes (see Figure 6-2 a, b). For the a modes, there is an anti-node (pressure

maximum) along the mid-cord centerline, and the corresponding boundary

condition along this line is that the pressures at points on either side in the

x-direction [designated by P(M,I) and P(M,3) ] are equal, signifying a pressure

maximum and zero particle velocity along the line (M,2). For the 13mode, the

pressure is zero along this mid-cord node line or P(M,2) = 0. For both of the

modes, there is also an anti-node along the mid-pitch line (2,N) so that the

pressures on either side, P(I,N) and P(3,N) are equal.

Two more boundary conditions are needed. One is along the line

corresponding to one plane of the cascade plate structure. In this case, along that

portion of the line coincident with the solid boundary of the plate, the condition

for a zero pressure gradient (i.e., zero particle velocity) is again invoked; that is,

P(7,N)=P(5,N) for N=2to7 where N=7 at the point just before the end of

the pla_. For the rest of this line, which falls in the open, unconfined area of the

cascade duct (starting at the edge [N = 8] of the plate itself), the pressure is

assumed to be 0 or P(6,N)=0 for N=8to54. Finally, at the right side of the

rectangle, along the line CD, a new type of boundary condition is invoked-

namely, that the pressure gradient in the x-direction be a constant along this line.

This is imposed as a necessary and sufficient constraint on the pressure field in

this area to accommodate the fact that the field is unbounded in this direction

and, for this case, it can be shown 2 that the pressure field is expected to decay

exponentially with x.

For rectilinear two-dimensional sound fields such as designated in

Figure 6-3, the Helmholtz equation corresponding to Equation (6-8) is given by

d 2 P' (x,y)
d2p'(x'Y) + + P(x,y) = 0. (6-23)

dx 2 dy 2

Using a heuristic analysis, Parker 2 predicts that the corresponding mode shape for

the general case of an axial flow system without hard boundaries at the inlet and

outlet of the cascade would be expected to have the form

P(x,y) = Po cos (kc y) exp [-kcx _/1 - (f/fc]2 j (6-24)

6-27



where

and

k_ = 2nfc/c, the wave number at the

resonance frequency fc in the duct,

"between plates" plane wave

f_ = c/2s for the a, II modes and c/s for the 7, _ modes (Figure 6-2),

s = pitch spacing of the cascade plates,

f = the frequency of the acoustic field corresponding to the vortex

shedding frequency,

f < I_.

However, this analytical definition for the mode shape in the cascade

system can be validated by solving Equation (6-23) numerically with the relaxation

process using the boundary conditions specified earlier. It is only necessary to

specify a finite difference approximation for each of the second derivatives in

Equation (6-23). Allowing for rectangular cell dimensions hx and hy, it can be

shown that this is given by the sum of two finite difference approximations - one

for each direction - in the form of Equation (6-6). The result is

d 2 P'(x,y)d 2 P'(x,y) + - FDAx + FDAy = FDA (x,y)
dx 2 dy 2

P' (xl_l, yl) + P' (xl_l, yl) - 2 P' (x4, yj)
where FDA (xi,yj) - h:

P' (x_ ,Yl-l) + p' (xj, y I÷1)- 2 P' (x_, yi)
+ 2

hy
(6-25)

{Z P' (XI+_I , Y]) + (hx/hy} 2 Z P' (xi ,Yj+l)-2 [1 + (hx/hy} 2 ] P' (x4, Yl)}

Thus the corresponding expression for the residual error for the Modal

Intensification method at the point x_, yj will be

FLj = FDA (x_, yj) + P(x_, yj) (6-26)

where it is understood that FDA (x_, yj ) applies to the unknown modal pressures,

P'(x_, yj ). This equation is directly analogous to the one-dimensional version given

by Equation (6-11).

6-28



Finally, the corresponding expression for the Rayleigh quotient is givenby

(kL)2 = _ Y.P(xj,yj)FDA {x4,yj)
h2 Z p2(_, yj) (6-27}

Note that for these last two expressions, only the ratio of the (non-dimensional)

values of hx and hy is required for Equation (6-26), i.e., hx can be set to unity in

the denominator of FDA(x,y) for Equation (6-26) since only relative values of

P(x,y) are needed at this point. However, the true absolute (non-dimensional)

value of hx and the ratio h_/hy is required for Equation (6-27).

Given these basic tools, the computaUonal steps involved for application of

the Modal Intensification relaxation process can be summarized in Section 6.2.7.

6.2.7 Computati_onal Step_ for the Modal Intensification Relaxation Method

The relaxation process using the Modal Intensification method is carried

out in the following steps for any system.

1. The boundary conditions are established, using either P'(xl, yj) = 0 when

the point x_, Yl falls on a pressure node line, or P'{x__ I, yl) = P'{x_÷1, yj)

when the point xl, yj falls on a pressure anti-node line (in the

.

°

.

x-direction) such as at a rigid surface.

An initial estimate is made of the values for

right side of Equation (6-26), at each point.

P(xl, yj) , the variable on the

Although a rough estimate

of the expected final shape helps to speed up the iteration process, this

initial guess can be quite arbitrary - a constant value of 100 is often used.

The initial values for the unknown (modal) pressures P'(x,, yj) are

assumed to be zero.

The corresponding values for the error terms, F14, are computed at

each point from expressions like Equations (6-26). For the first itera-

tion, these initial values of Fij are the same as the initial estimates

of P(xj, y_) since, from Equation (6-23), with P'(x,, yj) = 0 , then

FDA (x_, yj) -- 0 and FI.j = P(x4 ,yj).
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Using these values for Fij, a single, constant incremental change _P' is

computed using a Block relaxation step. The value for this initial

constant increment applied to all points is equal to

5p, = - _ Fi.j

Y. Fij for F(x_, yj) = 1

where the numerator

(6-28)

_£ Fi.j is the sum of the residual error terms

computed from Step 4, and the denominator [ Y_ Fi.j for P'(x_, yj) = 1 ] is

the sum of all the residual error terms when a unit change is made to

the pressure P'(x_, yj) of each point. This quantity can be obtained from

the equivalent of the operations table (Table 6-I). For example, for the

case of a closed two-dimensional cavity with rigid walls on all sides that

is divided up into M x N cells, the value of this denominator is equal to

-4 [(M + N)/2- 1] .

The new value for P'(xl, yj) is computed as the sum of the previous value

plus the incremental change 6P'. The first time this new value of

P'(x_, yj) is computed, it is the same as the increment 5P' at all points

since the initial value for P'(x,, yj) was zero from Step 3.

New values for the residual error terms, F,.j, are computed following

the procedures of Step 4.

For this step, it is most efficient to employ a Multiple Point Relaxation

procedure where an increment 5P'(x.j) is computed for each point x_, yj

which has a residual error within a range of 25 to 100 percent of the

maximum value found from Step 7.

Steps 6 to 8 are again repeated as necessary until a stable value for the

modal amplitudes P'(x,,yj) are obtained- that is, until the change from

one step to another is very small relative to the overall magnitude.

However, if the initial mode shape P(xl, yj) was assumed to be a constant

value (say, I00) at all points, then a more efficient iteration process

involves use of a Block Relaxation step after several applications of the

Multiple Point relaxation procedure.
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Figure 6-4 illustrates how the error in eigenfrequency and mode shape

decreases with-the number of iterations for the case of a rectangular two-

dimensional cavity with hard walls broken down into four equal quadrants, each

made up of 6 x 4 ceils. Figure 6-4a shows that the mode shape error decreases at

a relative rate comparable to that for the eigenfrequency but that the absolute

error for the latter is about 10 times less. For this figure, the 17 initial mode

shapes, P(xl, yj) , are estimated by a very simple algorithm indicating an amplitude

for the fundamental mode within each quadrant proportional to the quantity

[(i/N) (j/M)]I/2 . This provided the correct trend in slope for the mode shape.

Figure 6-4b shows how the error in eigenfrequency decreases with the

number of iterations when the initial modal amplitude was assumed to be a

constant but using three different strategies for the number of Multiple Point

relaxations employed before a Block relaxation was employed. (For the figure

legend, application of each Block relaxation was considered as one step.) It is

apparent that for almost any one of these techniques, the final error in eigen-

frequency is less than 2 percent after about 20 iterations whereas this accuracy

was achieved after only about 8 iterations when the more accurate estimate was

made for the initial mode shape.
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Mode Shape for Fundamental Mode of Two-Dimensional Rectangular
Acoustic "Chamber" Using Modal Intensification Method.
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6.3 Application of the Relaxation Method to Cylindrical Coordinates

For systems involving axial symmetry, such as axial flow compressors, etc.,

the Helmholtz equation to be used for analysis of acoustic resonance frequencies is

given in two-dimensional cylindrical coordinates in the radial, r, and axial, z,

directions by the following equation (the coordinates r and z are non-dimensional

values having been normalized by a characteristic radius R )

d 2 P(r,z)
d2p(r,z) + 1 dP(r,z) + + (kR) 2 P(r,z) = 0 . (6-29)

cha r dr dz 2

Since this expression describes the two-dimensional field in the cylinder in

a plane which contains the cylinder axis and any radius, this two-dimensional

model of the cylindrical sound field can be broken down (for the most general

case) into a network of rectangular finite element ceils withdimensions hr x hz •

Then the FDA for the first three terms in this equation, at the point rl, zj, are

given by the sum of approximations for the second and first derivatives in r plus

an approximation for the second derivative in z or

FDA(rl, zj) = {_ P(rt_1, zj) + (hr/hz)2 _ P(ri, zj±z) - 2 [I + (hr/hz)2] P(rl, zj)

+ (hr/2rs) [P(ri+1, zj) - P(ri.1, zj) ] } / hr 2 (6-30)

where the designation FDA(rl, zj) is used here to distinguish the FDA from the

value for a rectilinear system. Note that this expression is essentially the same as

Equation (6-25) for the rectilinear two-dimensional system except for the added

approximation for the first derivative. Also, in this case, the actual values of h¢

and hz, non-dimensionalized by R, must be used since they do not appear to the

same power in this equation.

To apply this expression to the Modal Intensification relaxation method,

Equation (6-30) is used in Equations (6-26) and (6-27) in place of the FDA(x_, yj)

term for the residual error F_.j (for the i,j'th point) and for the eigenvalue, (kR) 2 ,

respectively. The pressures P'(x_, yj) and P(x_, yj) are, of course, also changed to

P'(rl, zj) and P(rl, zj).
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6.4 Acoustic Resonances in Rectilinear and Cylindrical Cascades

With this general background on computation of acoustic resonance fre-

quencies in any system, consider, now, some of the results of the experimental

studies of the effect of these resonances on fluctuating pressures and structural

vibration in cascade systems. The following summary statements are drawn from

the conclusions stated in many of the papers listed in the references at the end of

this chapter.

1. Acoustic resonances in cascades can be excited by wake shedding at

frequencies for which the modal spacing is greater than the plate pitch

as well as at modes for which the modes have node lines in the planes of

the cascade plates. 5

2. The lowest resonance frequency is controlled by the plate chord and the

velocity of propagation along the cascade is approximately the velocity of

sound. 5

3. At higher resonance frequencies, the wavelength decreases faster than

the increase in frequency indicating that the velocity of propagation

along the cascade falls below the velocity of sound.5

, In axial-flow compressors or fans with cylindrical geometry, the same

sort of cascade resonance effects can occur in the annulus areas around

the blades due to vortex shedding from the blades. The resonance

frequencies may correspond {b an integral number of wavelengths

circumferentially around the annulus but may not relate to the number of

blades. However, they are only excited if the acoustic resonance

frequency is less than the value that would exist in the absence of any:

blades. 6 There is a well-defined minimum number of circumferential

waves, for any given geometry, which propagate at approximately the

speed of sound, but as the number of waves increases for higher-order

modes, they can occur at nearly the same frequency leading to beating

between closely adjacent modes. 7

i

z

. Resonances in axial flow compressors are more likely to occur in any

one stage when there is a high temperature rise (corresponding to

energy input) in that stage. 8
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, Rotor blades can excite waves traveling backwards or forwards relative

to the blade rotation but backward waves tend to dominate. Stationary

blades can excite waves of the same frequency but traveling in opposite

directions around the annulus. 7 A subsequent, more detailed study

indicates a complex pattern for the type, predominance, and sensitivity

to flow of different circumferential modes in an annular cascade. 6

7. For an axial flow compressor with large spacing between blades,

spinning acoustic modes can be generated by vortex shedding from

stationary blades. The direction of spinning can be forward or backward

(relative to the direction of the rotor) but for the system tested, higher

sound levels occurred over a wide flow-velocity range for higher order

forward-spinning modes (many wavelengths around the annulus). The

relationship between acoustic resonance frequency and flow velocity was

not significantly affected by rotor speed. Although significant rotor blade

vibration did not occur at the structural resonance frequencies of the

blades for the configuration tested, significant forced blade vibration did

occur at frequencies given by c0r = c0a - N _ where O_a is the acoustic

resonance frequency, N is the mode number, and _ is the angular

rotor speed. 9

8. For axial flow compressors with multi-stage blading, the highest acoustic

pressures occurred when the axial blade row spacing resulted in excita-

tion at the same frequency as the vortex shedding frequency of the

upstream blade row. Io

.

10.

Blades with thick trailing edges can excite resonances with peak

pressures of the order of two times the dynamic pressure or (0.5pV 2)

where V is the relative flow velocity. 7 However, when compared to

rounded trailing edges, blunt trailing edges exhibit a lower resonant

response and a narrower range of velocities over which such resonances

occur. 6

Another study of resonance effects on aerofoils with blunt trailing edges

indicates that predictions of unsteady aerofoil theory may help explain

why such shapes can result in higher acoustic resonance responses

(i.e., higher fluctuating pressures). This study also showed that a cavity
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11.

12.

at the base of this trailing edge shape could minimize the resonance

buildup by momentarily trapping each vortex and forcing some of the

vorticity into the opposite shear layer where it is dissipated, thus

reducing the energy input to the acoustic system. 11

In certain ranges for the flow velocity in a cascade, the vortex shedding

frequency will become synchronized with, or lock onto, the acoustic

resonance frequency. This range is a function, among other things, of

the trailing edge profile of the cascade plates or blades. A plate with a

semi-circular trailing edge was found to result in the vortex shedding

"locking on" to an acoustic resonance frequency that was either above or

below the nominal vortex shedding frequency in the absence of the

plates. For plates with a blunt trailing edge, the vortex shedding

frequency only "locked up" to a higher acoustic resonance frequency. It

was also observed that for semi-circular trailing edges, the shed vortex

was less intense but this condition corresponded to more intense

acoustic pressures at resonance. 12

Vortex shedding from cascade blades occurs at all flow speeds with a

frequency given approximately by a Strouhal Number of 0.2. However,

the shedding is well correlated across the span of the trailing edge of

the blade and hence can act as a strong source of sound or structural

vibration _ when the shedding frequency is close to an acoustic

resonance frequency. The resonance amplification factor or "Q" of such

resonances was observed to be of the order of 40 for one particular

configuration. The resonance amplification was reduced by nearly a

factor of 10 (or 19 dB) by adding small strips with a thickness about

20 percent of the blade thickness in a wavy pattern at the blade trailing

wedge. 13 It can be expected that this behavior and the resonant Q will

vary significantly with the geometry of the cascade system.
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6.5 Quantitative Results for Analysis of Acoustic Resonances in Cascades

Parker 2,N has shown that the acoustic resonance frequencies measured in

rectilinear cascades corresponding to a finite stack of parallel plates are bounded

by two curves as shown in Figure 6-5 for the first two modes for the type of

cascade system illustrated earlier in Figure 6-I. The two classes of modes are

designated by the mode numbers, (0,n) or (1,n). The first index, 0 or I,

represents the number of half-wavelengths in the acoustic field parallel to the flow

along each plate. The second index, n, represents the number of waves in the

direction normal to the flow. The curves are derived from analyses of resonances

for an infinite stack of plates with a finite spacing. The upper bound for each pair

is derived with the Modal Intensification method for the case of finite values for

the plate spacing s. The lower bound is derived analytically for this ideal case

when the stack spacing reduces to zero. 14 The experimental data points 15 fall

between the two curves.

curve in Figure 6-5 is 14

The analytical expression which defines the lower bound

= m + ]inC/,l, (_){_-(I)arctan ([(_)2-1)} (6-31)

where C = Chord length;

f = Resonance frequency = c/X;

f_ = Plane wave resonance frequency = c/2s;

s = Plate spacing;

m = 0,1 for modes corresponding to _ or a modes, respectively; and

c = Speed of sound.

As suggested in Item 11 in Section 6.4, the vortex-shedding frequency in a

cascade is strongly influenced by the acoustic resonance frequency. The complex

pattern for this behavior is shown in Figure 6-6 for several different conditions.

For example, Figure 6-6a shows how the shedding frequency follows the expected

Strouhal number relationship until this flow-induced frequency approaches the

nominally fuxed acoustic resonance frequency. Then the former "locks on" to the

latter but increases slightly as flow velocity increases over a substantial range.

Then, as flow velocity increases further, the shedding frequency may "jump" to

the next higher acoustic resonance frequency (Figure 6-6b). Note that the slight

increase in the vortex shedding frequency while it is "locked on" to the acoustic
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Figure 6-5. Frequency Ratios for the First Two Acoustic Models (a, [3) of
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figure from Parker and Stonemanl).

6-38



g fo

rL

Fluid velocity

. C/ _ Resonance

- frequency

Fluid velocity

(a) Single res_naoce

" fo,

Fluid velocity

:÷:,/
N_ o

• _.._,n_p.,_,_._ .

_j,_°-J"

Fluid velocity

(b) Two resonances with unlocked

vortex sheddinll belween

_S'o,
U.

...... _,_-* /_

j _

Fluid velocily

(c) Two resonances close tOlle_her

SPL

/o

T Order L/._--

Flukl velocity

-,rV
/ I _,0 "_'-

I ." ,_C"

Fluid veloc.y

(d) Sinlle resnmtnce with square

lelldin I edle plate

Figure 6-6. Typical Frequency/Amplitude/Velocity Relationship for Flow-
Excited Resonances. (Reproduced from Parker and Stoneman. 1)

6-39



resonance frequency may simply reflect the expected increase in the latter as the

effective speed of sound {equal to static sound speed plus flow velocity) increases

with flow velocity. The other parts of Figure 6-6 show a similar behavior for other

flow and vortex shedding conditions.

6.6 Structural Vibration Responses in Cascade Systems

Whenever significant structural vibration occurs in a cascade system, there

are two resonance frequencies for each acoustic mode. The situation is illustrated

by the computed results in Figure 6-7 for the case of a plate with zero damping.

This figure and the following discussion are drawn from the summary in Parker

and Stoneman. 1 The key parameters in the figure are: co = 2_f, the angular

frequency of the actual vibroacoustic response; cop, the mechanical resonance

frequency of the plate in a vacuum; ¢%, the acoustic resonance frequency with the

plate replaced by a rigid boundary; and the resonance frequency, ¢), of the duct

with the same axial acoustic modal distribution as in the regions upstream and

downstream of the plate but with the plate removed (i.e., the empty duct

frequency).

For the example in Figure 6-7, only one plate is involved and its cord length

is assumed to be the same as the duct width. To i11ustrate how changes in the

mechanical resonance frequency, COp, of the plate interact with the acoustic reso-

nances, the former frequency was allowed to increase (representing an assumed

increase in plate stiffness) to give a range for the ratio ¢0p/_ of 0.36 to 1.0.

Two conditions are considered to illustrate the general behavior: (i) COp< _,

and (2) COp> _. For condition (I), if the flow velocity is such that vortex shedding

excitation is just slightly below the plate natural frequency (i.e., Point 1 in the

figure), the plate vibration is very strong because the plate and acoustic velocities

are out of phase which results in a stronger, span-wise, more coherent vortex

shedding process. In fact, for any significant vibration to occur in a cascade plate,

the vortex shedding from the plate must be well correlated along its span. Thus

this is the most critical condition to be avoided in a cascade system. On the other

hand, for the same value of 0)p/G, ff the vortex shedding excitation occurs at the

acoustic resonance frequency {CO-- COal while strong acoustic pressures may occur,

they will not be accompanied by large structural vibration responses of the plate.
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For condition (2), with cop > _, structural vibration tends to be weakest if

the vortex shedding excitation frequency is close to the plate resonance frequency

but well above the acoustic modal frequency or COp> COa• (This is indicated as

Region B in the figure.) On the other hand, stronger plate vibration may occur,

along with a higher acoustic pressures if the vortex excitation frequency is close to

the acoustic resonance frequency, or COa= CO corresponding to Region D in the

figure. However, this response decreases as the ratio cop/gl approaches 1.0.

In the COpto COatransition region, where the absolute value of the difference

[ COp- CO. ] is small, both the acoustic and structural responses tend to be large.
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Figure 6-7. Frequencies of Acoustic Mode Combined With
Plate Vibration - Single Plate Between Parallel Walls.
(Reproduced from Parker and Stoneman. ])
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CHAPTER 7

STABILITY OF FREE SHEAR LAYERS

by Michael J. Lucas
Wyle Laboratories

Stability can be defined as the fluid quality of being immune to small

disturbances in a flow. The decay of a disturbance - whether it is the subject of a

mechanical, electrical, or hydrodynamic system - is the necessary condition for

stability. Implicit to any of these systems is the amplification factor, the value of

which determines the rate at which an infinitesimally small disturbance intro-

duced will amplify or decay.

The basic equations used to examine the stability of fluid flows are a

perturbed form of the Navier-Stokes equations. Since these equations take the

form of non-linear partial differential equations, linearized approximations are

made to reduce the system of equations so that progress towards understanding

flow stability can be realized. The derivation and solutions of these equations are

the subject of this chapter.

The importance of linear stability theory lies in the ability to predict the

most unstable frequency of the disturbance. This frequency dominates the transi-

tion region between laminar and turbulent flow. The disturbance amplification

rate, the respective wave number, and the Reynolds number at which the flow

first becomes unstable are also determined using this technique.

A disturbance in an unstable flow may be represented in the form of a

velocity, vorticity, or pressure fluctuation. In the initial stages, the disturbance

grows with periodicity and amplification rate that often agrees well with linear

stability theory. When the amplitude of the disturbance becomes sufficiently

large, the flow deviates from purely two-dimensional form. In this region, the

frequency content of the fluctuations may still exhibit a pronounced component at

the most unstable frequency predicted on the basis of linear stability theory.

Farther downstream, the eddies become increasingly more three-dimensional

until they become random fluctuations and the flow is fully turbulent.

This chapter describes the basic mathematical formulations for stability

theory, with emphasis on predicting wavelength between eddies and frequency of
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production. Section 7.1 derives the equations for a disturbance in a flow field.

These equations are the linearized form of the Bernoulli equation, the Orr-

Sommerfield equation, and the Rayleigh equation. Section 7.2 presents the

numerical solutions to the Rayleigh equations with emphasis on velocity profiles

common to plane parallel mixing layers, jets, and wakes.

7.1 Stability of Two Parallel Streams

7.1.1 Linearized Bernoulli Equation

Shown in Figure 7-1 are two fuid streams, one beneath the other, having

densities p] and P2, moving paraUelwith flow velocities U] and U2. The surface

common to both fluids is plane and horizontal when undisturbed. The inter-

mediate region between the streams is assumed to be infinitesimally thin.

The interest in this problem is to determine the conditions when the

boundary separating the two fluids becomes unstable. This will be accomplished

by superimposing a small oscillatory flow disturbance on the mean component of

velocity which will allow tl_e flow constituents such as velocity, pressure, and

density to be decomposed into mean and fluctuating components.

Y = Upper

-- U I Region

P]

////,//,///////////..
U 2 Region

P2
Lower

r-- Region

Figure 7- I. Two Adjacent Uniform Streams Moving in the Same Direction.
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The general form of the unsteady Bernoulli equation is

p _ _ q2
p _t 2 g y' (7- I)

where q2/2 is the kinetic energy, ¢ (x,y,t) is the velocity potential, and g is the

acceleration due to gravity. The horizontal and vertical components of the velocity

potential are given by u = _- and v = _-, respectively. This relationship holds

throughout the entire field of irrotational flow of an incompressible fluid.

Assuming parallel mean flows, the velocity potential and its components, the

pressure, and the displacement can be expressed in terms of mean and

fluctuating components as

¢ (x,y,t) = _ (x,y) + _ {x,y,t),

u (x,y,t) = kl {y) + t_ (x,y,t},

v (x,y,t) = _ (x,y,t), {7-2}

p {x,y,t) = P {y} + _ (x,y,t),

Y = .V+ Y.

The tilde, (~), denotes the fluctuating component, and the bar, (-), signifies the

mean quantity. Substituting these expressions for u, v, p into the Bernoulli

equation; neglecting, by virtue of their smallness, higher-order terms such as _2

or _¢ 2; and subtracting the mean Bernoulli equation, the linearized

Bernoulli equation

P - _t _--_ - g _ (7-3)

is obtained. Referring to Figure 7-1, the fluctuating pressures at the top and

bottom of the interface are equal, so that

I } I }_t _x _t 8x (7-4)
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A second condition applied across the parallel stream interface is shown in

Figure 7-2. Vn, is the velocity normal to the stream interface and can be
described as

0 = tan-I _ , (7-5)

Vn = vcos0 - usin0, (7-6)

_r = Vcos0 - (0+ _) sin0, (7-7)

where h is the interface vertical displacement. For small oscillations about a

steady motion, 0 is small and from Equation (7-7), V ~ ?. The relationship

between displacement and velocity at the upper and lower sides of the interface

71 = _ + UI -y'_, (7-8a]

becomes

_2 -- _ + _12 "_-'_, (7-8b)

is the fluctuating amplitude of the displacement of the shear layer.

_1 = _ and _¢2 = . The system of

where h(x,t)

and the fluctuating velocity is given by

partial differential equations (Equations (7-4) and (7-8)) can be simplified by

seeking a solution in terms of complex functions:

(x,t) -- h ea_cx-_ , (7-9a)

(x.y,t) -- ¢ (y) e_cx-_ , (7-9b)

_l (Y) = AIe _y, (7-9c)

_2 (Y] " A2 e_. (7-9d)
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Thin IntermediateLayer
SeparatingAdjacent

UniformStreams

U1 w_

U 2 P

x

Figure 7-2. Consideration of Velocities Normal to the Interface.

The amplitude and phase information are the eigenvalues for this system. Here,

_, h, and A are complex amplitudes; a is the wave number and is equal to 2n/_..

is the perturbation potential; _i and ¢2 are the perturbation potential for the

upper and lower streams, respectively.

wave is moving in the x-direction

The quantity c is the speed at which the

c = c_ + i cl (7-I0}

where c r is the wave speed of the oscillation and is directly related to the real

part of the complex angular frequency, _ = _r + i _i, through the wave number

_r = 2nf = a C r •

The quantity c i is called the disturbance amplification factor.

amplification depends on the values of cl as follows:

{7-11)

The disturbance

ci < 0 Disturbance Damped rx_.,_v,--,_.__A__-- v

c I = 0 Neutral Disturbance it/"x,_/_V/_-_/_

c I > 0 Disturbance Amplified. I-- -- ------'--J_v__j
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Substituting Equations (7-9) into Equations (7-4) and (7-8), after eliminating the
complex amplitudes h, _, and A, the complex velocity

c = pIUI+p2U2 + pl-P2 pl p2 (UI-U2 (7-12)
pl + p2 pl + 02 (pl + P2)2

is obtained. The first term on the right of the equal sign is the mean velocity of

the two currents. The second term may be either real or imaginary. When the

second term is real it represents the speed with which the wave is traveling

relative to the mean velocity. This term is imaginary if

(UI_U2) 2 > g _-_2 (7-13)
a p_ p2

The stream interface stability is therefore dependent on the fluid velocities and

the densities. If Pl = P2 , Equation (7-12) reduces to

and may be expressed as c = Cr + i ci where

cr = Ul+U_ and c l = + Ui-U2
2 2 (7-15)

7.1.20_-Sommerfeld Equation

In the previous section a linearized form of the Bernoulli equation was

solved to show the hydrodynamic instability of two uniform streams. The analysis

disregarded details of the intermediate region between the streams, where

rotational aspects must be considered. The discussion that follows treats this

intermediate region in detail by basing unsteadiness predictions on the velocity

profiles in the intermediate region.

The derivation begins with the Navier-Stokes equations for two-

dimensional incompressible flow

0u + bv _ 0 (7-16)
bx ay '

3u + ub--u + vb--u + I bp _ v 02u
b--t- 3x by P bx _ + ' (7-1 7)

3v + u_hr + vbv + 1 bp -v [_v b2v /
b-t- b--x by P by l_x2x2 + by 2 J' (7-18)

where v is the kinematic viscosity.



Consider, as before, a mean parallel flow in the x direction. A tilde is used

to denote the fluctuating components and a bar signifies the steady mean quantity.
For purposes of simplification, the mean component of u will be restricted to

vary only with y and the mean component of p to vary only with x. This may be
written as

u(x,y,t) = U (y) + _'(x,y,t),

v{x,y,t) = _{x,y,t),

p{x,y,t) = P ix) + _(x,y,t).

Introducing these equations into the Navier-Stokes equations,

equations for the disturbance become

(7- 19)

(7-20}

(7-21)

the linearized

_h_ + _ _ 0
_--_ _y , (7-22)

_u + U _ + _¢_--_-U+ 1 _P - vV2u
_--_ _--x- _y P _x ' (7-23}

+ U + = vV 7
Ot Ox p Oy (7-24)

These three equations have three unknowns: fi, _, D. Pressure can be

eliminated by subtracting Equation (7-23) from Equation (7-24), leaving two

equations for fi and _7. These two equations are reduced to an ordinary

differential equation by seeking solutions of the type

(x,y,t) = • (y) e i_-_ (7-25)

where _ is a complex stream function; ¢ is a complex amplitude function that

is assumed to depend only on y ; and, as before, a and c are the wave number

and wave speed, respectively. The stream function _I/ represents an arbitrary

two-dimensioned disturbance that is a Fourier decomposition of partial oscillations.

Calculating the fluctuating velocity components

function

_ 3_g _ 0¢(y) e i_a_ctl

_and "_ from the stream

OY (7-26a)

= - _--_ = -i ¢_ ¢b(y) e __ a- ct}
_x (7-26b)
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Introducing these components into the linearized equations of motion, a fourth-
order differential equation in terms of the amplitude, ¢(y) is derived

(U- c) (_"- a 2¢) - U--_'¢ = --J-- (¢ .... -2a 2¢''+a 4_) (7-27)
aRe

Equation (7-27) is known as the Orr-Sommerfeld equation. The left-hand side of

the equation contains the inertia terms, while the right-hand side contains the

viscous terms.

The equation has been non-dimensionalized. All length dimensions have

been divided by the boundary layer thickness, _, or the momentum thickness, 9.

The velocities have been divided by the maximum velocity Urn. The primes

denote differentiation with respect to a dimensionless coordinate y/5 or

y/0, and

u

Re - Um_ or Re -UmO
v v (7-28)

are expressions for the Reynolds number.

7.1.3 Rayleigh's Equation

Since most applications in turbomachinery, the value of the Reynolds

number is expected to be large, the right-hand side of Equation (7-27) can be

omitted because of the smallness of the coefficient 1/Re. In this case, the

disturbance amplification is dominated by inviscid effects, and only the inertia

terms on the left side of Equation (7-27) need to be considered. Equation (7-27)

reduces to

¢b" = (_ + a21_. (7-29)

This important equation governs the stability of parallel inviscid flows and was

first obtained by Rayleigh. It is a drastic simplification from the Orr-Sommerfeld

equation being a second-order ordinary differential equation as opposed to a

fourth. To solve the Rayleigh equation, the mean velocity profile _J(y) must be

specified along with the appropriate boundary conditions. Numerical methods are

normally used to determine the dependence of the eigenvalues, a and c, on the

eigenfunction O(y).
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7.1.4 General Properties of the Stability Equations

7.1.4.1 Temporal and Spatial Stability

The Orr-Sommerfield and the Rayleigh equations are both eigenvalue

problems. Their solution requires specifying the mean velocity profile and the

boundary conditions. When these conditions are fumished, the solution gives one

eigenfunction (1)(y) and one complex eigenvalue _ for each pair of values c and Re.

These equations may also be solved to given one eigenfunction (1)(y) and one

complex eigenvalue c for each pair of values a and Re.

Before proceeding with the solution, it must first be decided whether the

growth of the disturbance will be followed as a function of time (see Figure 7-3) or

space (see Figure 7-4). When c is complex and a is real, the growth of the

disturbance is time dependent; when a is complex and c is real, the growth of

the disturbance is spatially dependent. The simple relationships that hold for

temporal and spatial systems are as follows.

Cr
f_

i/Mean / -" X / \

/ \

\ !
\ /
\ /

_ Amplitude Increase

/ at a Rate of e I]_t

x - crt

Cr = _r/a

Figure 7-3. Illustration of Wave That Grows With Time.

_1 c ,-- ",\\

---_ Velocity \ //
_Profile I _- -I

I

Ill] _ c = l_lar

Amplitude Increase
° " X

at a Rate of e at

Figure 7-4. Illustration of Wave That Grows With Spatial Position.
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If c is complex and cc is real,

_(x, y, t) = (b(y) ei_Cx-ct),

_{x, y, t) = (1)(y)eCiax-laCrt - i2_ ci t}

_(x, y, t) = (1)(y) e (xcl t e i ¢_x- a cr tj,

where ( )r and ( )i denote real and imaginary parts, respectively. If

_(x,y,t) = (I)(y) e ht e Imx-i)_t),

the real part of which is

I]1 r ---- e _It [ (1)r Or} cos ((_ x -- _r t) -- (1)i [y) sin (0_X - _r t) ] .

(7-30a)

(7-30b)

(7-30c)

---ac, then

(7-30d)

(7-31)

For spatial amplification:

_(x, y, t) = (1)(y) e (i c_ x + 12 (_ x - i_t]

_(x, y, t) = (I)(y) e -_ x e I 1% x - _t)

(7-32a)

(7-32b]

the real part of which is

_]r ---- e -_ x [(i) r (y} cos (u, r x - 1St) - (I), (y) sin {a_ x - _t)] . (7-33)

In the temporal description the wave travels in the x-direction with a

speed Cr and grows with time in accordance with the amplification rate of _ > 0.

In the spatial description, the wave grows with x and it is amplified when a t < 0.

Gaster I made theoretical comparisons between temporal and spatial theory.

His findings showed that the two viewpoints are not identical. However, for weak

amplification rates, when

ci << Cr or c_i << (Xr

a transformation is possible by the group velocity

arc _(T)
UGrou p (T) - 0_ (S). (7-34)

Here the real and imaginary parts are denoted by the subscripts r and i while

the spatial and temporal parameters are symbolized using an S and T. UGro,p is

the speed at which wave packets travel and is defined as

UGroup = _ _ / Oa_ (7-35)
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This transformation is often used to make comparisons between temporal

and spatial calculations, but it is limited to small amplifications. In the case of

parallel flows, where there are large disturbances, Gaster demonstrated that

spatial stability theory more accurately represents the disturbance amplification

in a flow. Consequently, when comparing theoretical versus experimental

disturbance growth rates, favorable agreement is obtained with spatial stability

predictions.

7.1.4.2 Streamwise Amplification and Frequency Selection

Figure 7-5 illustrates the basic features of turbulent transition for a plane

mixing layer. Figure 7-5(a) shows two parallel streams of unequal velocity that are

brought together to form a thin shear layer. As shown in the figure, the shear

layer undergoes vertical undulations that are characterized initially by an

exponential amplification of the fundamental frequency component [Io along

streamwise coordinates. This rapid amplified growth is shown on Figure 7-5(5) as

a straight line on a semi-log coordinate graph. The exponential growth in the

disturbance was shown previously via stability theory to grow either in space or

time and had a corresponding slope of either Ill or a i .

As the disturbance continues to amplify in the streamwise direction, the

amplitude increases until there is a departure from the linear growth. This

departure is seen in Figure 7-5(5] as a decrease in amplitude in the streamwise

direction. The deviation from linear growth occurs when the disturbance ampli-

tude is approximately 0.2 to 0.3 of the free-stream velocity. The transition region

that follows is highly non-linear; successive vortices coalesce with one another or

divide into smaller vortical structures. The spectral content of the non-linear

region shows an energy exchange occurring between the fundamental component

and its harmonics.

For any unstable shear layer there is a non-linear growth region where the

growth of the fundamental disturbance component has saturated, and harmonics

of the fundamental evolve at a linear rate (Figure 7-5(5) ). At a distance well into

the non-linear region, the disturbance amplitude of these harmonic components

increases to a point where they dominate, thereby transferring the energy from

the fundamental to its harmonics. If the fundamental frequency is _0, then in

these types of problems there is often a subharmonic frequency [I0/2 that is

directly related to the coalescence of two vortical pairs. This half tone might

hypothetically add or subtract to integer harmonics to produce a frequency

spectrum that looks like Figure 7-5(c).
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Figure 7-5. Plane Mixing Layer.
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The frequency which will produce the most rapid amplified disturbance is

the primary disturbance frequency [to . This is determined by solving the Rayleigh

equation for a specified velocity distribution. Solutions to the Rayleigh equation

(Figure 7-5(d)) show the dependence of disturbance amplification rate versus

non-dimensional frequency. Our interest in this figure is the disturbance fre-

quency that corresponds to the largest amplification factor.

The most unstable frequency of a free shear layer is dependent upon two

parameters: the mean velocity distribution, U(y), and the momentum thick-

ness 0. The mean velocity profile experiences substantial changes from the point

at which two parallel streams meet, to the point at which the flow is fully

turbulent. It is traditional when making linear stability calculations to base the

mean velocity profile on one which is fully developed. A fully developed profile

corresponds to a point far enough downstream that linear growth has ended. The

validity of this approximation rests on the fact that the downstream unsteadiness

in a shear layer acts as a dominant upstream influence in the sensitive region at

separation where initial unsteadiness begins. Frequency selection at the point of

separation is then coupled by a pressure feedback to downstream unsteadiness.

The momentum thickness, 0, is normally estimated based on the local

shear layer thickness at some representative location downstream of the separa-

tion point. The proper choice of the momentum thickness is often unclear and

presents difficulties when making predictions of the fundamental frequency using

stability theory.

Consider, for example, a splitter plate or nozzle. At distances sufficiently

far downstream, the momentum thickness of a wake or fully developed jet

remains constant. This can be verified using simple control volume theory. In

the region immediately downstream of the nozzle edge, however, where the mean

streamlines are not straight and parallel, and/or the jet has a top-hat velocity

distribution with thin shear layers, the momentum thickness will tend to

increase, perhaps 20 to 30 percent, or more, to its equilibrium, fully established

value. On the other hand, for the case of mixing layer, there is no equivalent

conservation concept and the momentum thickness increases continuously in the

downstream direction. When applying these concepts, the momentum thickness

of a jet is typically based on the orifice half-width; while for a free shear layer the

momentum thickness is calculated at the midpoint in the linear growth region.
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7.2 Predictions for Free Shear Layers

Not until the early 1960s was it possible, through the use of digital

computers, to economically evaluate the eigenvalues and eigenfunctions from the

linearized stability equations for realistic mean velocity profiles. Michalke 2 was

one of the first to demonstrate the power of using instability analysis for pre-

dicting the disturbance growth rates in mixing layer types of flows.

Shortly thereafter, linear stability calculations were made for other parallel

flow problems. Most of these works fall into three main categories: mixing layers,

jets, and wakes. This section describes the most notable solutions and shows how

these calculations can be used in predicting the fundamental disturbance fre-

quency to a free shear layer.

Table 7-1 is a collection of solutions to the Rayleigh equation. The left

column shows the mean velocity profiles U{y} used to solve the Rayleigh equa-

tion. The right column shows the corresponding eigenvalue solutions. The solu-

tions to the first two profiles assume temporal instability, whereas the remaining

profiles use a spatial stability approach. The remainder of this chapter, Sec-

tions 7.2.1 through 7.2.4, address each of the velocity profiles shown in Table 7-1.

7.2.1 Discontinuous and Pi¢¢ewis¢ Linear Profiles

The discontinuous profile shown in Table 7-l(a) was described by Helmholtz

in 1868. 3 The two streams are parallel and are considered to be separated by a

vortex sheet of zero thickness. In the adjoining figure, an infinitesimal dis-

turbance a grows at the rate e acl t The stability criteria derived in Section 7. I. 1

and included in the table show that when the density of the fluids is the same, the

shear layer is unstable at all wavelengths.

The piecewise linear profile shown in Table 7-l(b} is closer to the smooth

profile to be expected in an actual fully developed shear flow. Rayleigh 4 calculated

the growth rate of the amplified disturbance as a function of the disturbance wave

number. This shear layer is most sensitive to disturbance amplification when

¢x = 0.4.
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Table 7-1

Solutions to the Rayleigh Equation for Six Mean Velocity Profiles

(a)

Mean Velocity Profile Solution to the Rayleigh Equation

Discontinuous (Reference 5)

Y U1, Pl
i

.___._,,
i

i

i

P2, U2

(b) Plecewlse Linear (Reference 5)

= U{y)

Y UI
_t

.............._

J

I
0.6

2_t0
C( ---_ --

),

y>0 u = U l

y<0 u = U 2

c_

y>l

I _<y < -1

_i_ y< I

0.2+

I •

i

U 2 '

, ,',,,
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Table 7-1 (Continued)

Mean Velocity Profile Linear Stability Theory

(d) Jet, Planar (Reference 10)

Fully Sheared

,2b_w_Velocity__

J

b :b w

!

b

(e) Jet, Axlsymmetrlc (Refs. 11,12)

Centerline x

] r 0Flow
!

0.5

" r/R

1.0

I._
0

R/O == 6.25 -_

R/O = 12.5-_

!

0.5 1.0

u/U_

(f) Wake (Reference 13)

U C

J- 1.x.

L J

Y :y-

r ( 2 y2 y4
U[y) = [ ] * sk ly2

;+kl_ )] sech2 (ay)

Antisymmetric--I where a = 0.88136,

0.6 | s = 0.70,

Symmetric--_ I kl = 0.1977, and

0.4 _ Y = r/bw

/ / \\

0 0.2 0.4 0.6 0.8 0. I 0

= 2 _b f/U

Axlsymmetrlc Mode
Lowest Order

U - Uoo

Uc - Uoo

Sym-
metric

Anti-
Sym-
metric

U(r) = 0.5 { 1 . tanh [ b 2 (R/r - r/R) ] }

where b 2 - 0.25 R/0.

°21 /-R,._-.

0 0.1 0.2 0.3

2nf0
U

= sech 2 (¢_Y} Y = y/_

_r = 2_fb
Uo_

x/L 0.003 0.02 0.05 0.15 0.30

Uc/U= 0.0012 0.0532 0.1290 0.308 0.440

-c% 0.700 1.000 0.411 0.202 0.130

a r 1.090 1.000 0.994 0.900 0.887

0.492 0.520 0.550 0.600 0.650

-a I 0.II0 0.095 0.078 0.049 0.034

a r 0.398 0.399 0.406 0.447 0.459

0.110 0.125 0.150 0.225 0.275
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7.2.2 Hyperbolic Tangent Profile

In the case of a hyperbolic tangent profile, the amplification factor pre-

dicted by spatial stability theory is based upon the dimensionless velocity ratio

A = (U_ -'U 2)/(U 2 + U_) across the two flows. When A = 0, the upper and lower

velocity are equal and there is no shear, the flow reduces to a wake. If A = 1,

there is shear due to the movement of the upper stream against a stationary

lower stream.

The amplification factor -a l

selected values of A in Table 7-1(c).

versus normalized frequency is plotted for

The circles indicate the point on the curve

where there is maximum amplification. It is seen here that for all values of A,

the value of [3 ranges between 0.21 _<13<_0.225 for maximum amplification. The

maximum amplification rate increases approximately linearly with A, and the

associated phase velocity is equal to the average velocity of the two streams.

Many flow geometries can be modeled using a hyperbolic tangent profile.

The three most common are backward facing steps, cavities, and jets. In real flow

situations it is difficult to estimate the shear layer momentum thickness. Ideally

the momentum thickness is measured at a distance downstream from the point of

separation which corresponds to the middle of the linear growth region. This is

often approximated for these geometries by computing the momentum thickness

at the point of separation based on the boundary layer profile. Figure 8-4 in

Chapter 8 suggests a technique to predict the spreading rate and, in turn, the

momentum thickness for a plane mixing layer. These techniques are useful when

estimating the frequency shifting that will occur when vortices pair and merge.

As an example, consider flow over a cavity for which the value for A is equal

to 1. From Table 7-1(c), the non-dimensional frequency corresponding to the

maximum amplification rate is

[3 _ 4_Of = 0.21
0 (7-36)

so that the Strouhal number is

St - f0 = 0.017
(7-37)
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This can be compared to the experimental work of DeMetz and Farabee, 6 who

determined that, for a laminar boundary layer preceding a cavity, the resonance

frequency corresponds to St = 0.022 which was valid for circular and rectangular

openings.

7.2.3 Jet PrQfiles

In the case of jets, two kinds of instabilities exist: one that is associated

with the thin shear layer lip instability and the other that is associated with the

efflux as a whole. The former is termed the shear layer mode, and the latter is

commonly referred to as the preferred mode. The emphasis in this section is on

the shear layer lip instability. Table 7-2 summarizes the different methods used to

estimate the shear layer modes. For a discussion on the preferred mode of

instability, see Section 8. I or Reference 8.

Table 7-2

Jet Matrix, A Survey Using
Methods Derived From Linear Stability Theory

Jet

Type

Planar

Axisymmetric

Flow Velocity Profile

Fully
Developed

Table 7-1(d)

Table 7-1(e)

Top-Hat
Shaped

Table 7-1(c)

Table 7-1(e)
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7.2.3. i Planar Jet Profiles

Shown in Table 7-l(d) are the results to Sato's velocity profile 9 for a plane

parallel jet profile. The solution assumes the flow is "quasi-paraller', which means

that the ratio of the axial component of velocity is much greater than its vertical

component. The non-dimensional frequency appearing in the figure is based on

the shear layer half-width, b, which often is approximated using the nozzle

half-width, bw.

The two curves drawn in the figure illustrate, for the symmetric and anti-

symmetric disturbances, the variation of the disturbance growth rate as a function

of non-dimensional frequency. Symmetric disturbances are often called varicose

instabilities and antisymmetric disturbances are called sinuous instabilities.

Anti-symmetric disturbances occur in most practical situations and have a

distinctive sinuous or sinewave-like form. The antisymmetric disturbance has a

non-dimensional frequency of 0.52 at maximum amplification.

When the jet stream near the nozzle exit is top-hat shaped with thin shear

layers, the frequency of the lip instability can be estimated using the results from

a mixing layer (see Table 7-1 c). In such a situation, the streamlines are no longer

parallel. The shape of the instability wave and the mean velocity profile will vary

with streamwise distance. The momentum thickness, 0, will increase by 20 to

30 percent, or perhaps even more, until it reaches its equilibrium, fully established

value. The momentum thickness used in these cases is determined at the point of

separation from the nozzle lip. This value can be estimated by performing a

boundary layer calculation that begins at the entrance to the nozzle. The

momentum thickness is evaluated at the point where the boundary layer separates

from the nozzle lip.

7.2.3.2 Axisymmetric Jets

Experimental measurements made in circular jets indicate that the vortices

generated near the nozzle exit are initially axisymmetric, but that the disturbance

of higher-order helical modes increases significantly farther downstream. Shown

in Table 7-1(e) are solutions to the axisymmetric mode made by Michalke for the

circular jet. This is the lowest-order mode. To the left of the figure are the

velocity profiles for selected R/0 coditions. 0 is the initial momentum thickness

and is evaluated at the nozzle exit. The ratio of R/0 is a measure of the radius of
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the nozzle relative to the boundary layer thickness and its value determines the

maximum amplification frequency. For example, when the velocity profile is a

thin shear layer, R/O is infinite. From Table 7-l(e) it is found that the Strouhal

number (f e/U) has a value of 0.017. This value is identical to the mixing layer

when A = 1.

When the velocity profile is fully developed, such as downstream from the

potential core, the jet stream can only support higher-order spinning modes.

Results to higher-order modes can be found in References 11 and 12.

The effect of compressibility in a circular jet is shown in Figure 7-6. The

stability equation is solved for two profiles: R/0 = 100 and R/O = 6.25. It is seen

here that irrespective of the jet mode, compressibility has the effect of lowering

the most unstable frequency and amplification factor with increasing Mach

number. The shifting effect just described is not nearly as severe for R/0 = 100

as it is when R/O = 6.25.

7.2.4 Wake Profdes

There are two classes of wake flows: those from thin, streamlined, trailing-

edges and those from bluff bodies. In the former case, the disturbances grow in a

fashion similar to mixing layers and jets. The growth of the instability is due to

the inflection points in the mean velocity profile that are characteristic to thin

shear layers. In the latter case, the mean velocity profde has a very deep deficit

that may even be reversed in the near wake region. There will be large-scale

separations behind the bluff body for which a classical example is the flow behind

a circular cylinder. However, farther downstream from a bluff body, the mean

velocity profile has a form similar to the thin trailing edge and one can apply the

techniques which are to be described herein.

A major share of wake flows encountered inside turbomachinery will be of

bluff body types. In turbomachinery, turbine blades tend to be relatively thick and

have been observed to produce a yon Karman vortex sheet, even at extremely high

Reynolds numbers. Fan blades from a compressor or supercharger are relatively

thin and will produce wakes that are more typical of those from streamlined

bodies. In this section, results from Mattingly and Criminale 13 are presented for

streamlined bodies. Chapter 9 describes techniques to estimate the frequency

from bluff bodies of different geometries and from tube banks.
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Figure 7-6. The Effect of Compressibility in a Circular Jet.
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The results of Mattingly and Criminale 13 are shown in Table 7-l(f). Their

wake was generated using a NACA 0003 symmetric airfoil having a cord length

denoted by L and a thickness of 2b. The velocity profile has been non-

dimensionalized with respect to the centerline velocity and is shown to collapse

at selected downstream coordinates onto itself. Knowing the dependence of the

centerline velocity on downstream coordinates, successive calculations may be

made using different mean velocity profiles to determine the variation of the

eigenfunction _tnd eigenvalues with downstream coordinates. This procedure is

necessary to account for the continuous changes of the mean velocity profile in the

formation region.

The wake may operate either as a symmetric or antisymmetric disturbance.

The two disturbance modes are treated in the solution through the boundary

conditions for the vertical component of velocity along the wake centerline.

Experimental measurements show that naturally amplified disturbances in the

wake are of the symmetric kind.

Table 7-l(f) lists the eigenvalue results at successive wake stations. It is

seen in the table that the frequency monotonically increases with downstream

coordinates for both disturbance types. The amplification factor for all wake

stations is consistently larger for the symmetrical disturbances than for the anti-

symmetric disturbance. Thus the symmetrical disturbances are the most highly

amplified according to the linearized stability analysis. Averaging over the wake

region investigated and accounting for a wave propagation phenomenon that

produces a frequency shift in the eigenvalues, the maximum spatial amplification

is one for which

As an example, the

cylinder is

_ 2nib _ 0.55 and ar - 2nO - 0.994.
U® _, (7-38}

non-dimensional frequency for a wake behind a

_ 2 n f (D/2) - 0.55,
U (7-39)

with a corresponding Strouhal number of

St- f2b - _- 0.18.
U n (7-40)

In Chapter 9 it is shown experimentally that when the distance between the

shear layers, measured at the end of the formation region, is used to calculate the

Strouhal number, the Strouhal number equals 0.18 and is independent of the

body shape.
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CHAPTER 8

JETS

by Michael J. Lucas
Wyle Laboratories

The two basic forms of a nozzle are circular and planar. Nozzles can be

either long and smoothly tapered or short in length, possibly terminated with a

knife-edge orifice. A nozzle that is well formed to avoid flow separation from

inside the nozzle may have a velocity profile at the exit that is fully sheared, while

a short nozzle with an abrupt termination may have a thin shear velocity profile

that is fully turbulent. The shape of the nozzle ultimately determines the

character of the mean velocity profile at the nozzle exit, the downstream develop-

ment of vortex structure, and the amount of flow noise generated.

In this chapter, procedures to predict the most amplified frequencies are

described for the circular and rectangular jets. In most situations, turbo-

machinery jet nozzles are not well formed and have large Reynolds numbers,

producing a velocity profile at the nozzle exit that is thin shear. For this reason,

this chapter appropriately limits the discussion to thin shear velocity profiles.

Section 8.1 describes the procedures for estimating the most amplified

frequencies in a planar and axisymmetric jet. Sections 8.2 and 8.3 contain rela-

tionships for sizing the jet potential core and for calculating the vortex merging

locations. In some cases, the jet stream inside turbomachinery will interact with

other engine components. The procedure described in Sections 8.2 and 8.3 are

used for evaluating this condition. Section 8.4 contains a sample calculation.

8.1 Shear Layer and Preferred Instability Modes

Thin shear layers originating from the nozzle lips form an instability wave

that rolls up into coherent structures that merge and are convected downstream.

The process of successive vortex merging leads to the shear layer spreading and

lowering of the vortex passage frequency. Several vortex mergings occur between

the nozzle and the end of the potential core. Farther downstream, these vortices

become large-scale structures producing perturbations that can feedback to the

trailing edge. It is these large-scale vortex structures that are characteristic of
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the column mode of instability fp. The vortices that roll up at the nozzle lip are

characteristic of the shear layer mode f..

The shear layer mode with instability frequencies designated as f. has a

length scale of 0 which denotes the thickness of the shear layer. The preferred

mode or column mode with instability frequencies fp has a length scale of D or w

which denotes the diameter of the axisymmetric nozzle or the width of the planar

nozzle, respectively.

To estimate f.

number

where fn

mode frequency, e

velocity measured

proportional to U _/2
m

for a thin shear velocity profile, use the following Strouhal

st = fn__oe= 0.017, (8-1)
Um

is the most amplified frequency and is sometimes called the shear layer

is the initial momentum thickness, and Um is the mean

at the jet exit. The initial momentum thickness 0 is

and hence

f. o¢ U3/2. (8-2)

Measurements of unsteady velocity (see Table 8-l) at the nozzle exit con-

firmed the 3/2 power dependence of shear layer mode on free-stream velocity but

indicated a stepwise variation of the frequency with the jet exit velocity. The

initial Strouhal number derived from these experiments showed some degree of

scatter. Possible causes for the scatter are probe interference, the level of

turbulence contaminating the air supply, and the jet nozzle configuration.

The preferred mode measured for a circular jet in air is shown in Table 8-2.

The dimensionless frequency for the preferred mode is found to vary between

0.25 and 0.5, depending on the experiment. More recent experiments have

shown that the preferred Strouhal number is dependent on the initial momentum

thickness at low jet velocities, as shown in Figure 8-1 for both circular and planar

jets. For high flow rates, the Strouhal number for the circular jet becomes

constant and equal to 0.44 and for the planar jet equal to 0.25. Presently, there is

no satisfactory explanation for the Strouhal number remaining constant above a

critical value. The important feature to realize is the preferred mode is present

even though the boundary layer from the nozzle lip may be turbulent at separation

and is incapable of undergoing successive vortex merging characteristics of the

thin shear iayer.
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Table 8-1

Shear Layer Mode Measured For Planar and Circular Jet in Air
(Reproduced from Gutmark and Ho 12)

Authors

Sato l

Mlchalke 2

Browand 3

Miksad 4

Pflsenmaier s

Hussaln and Zaman _

Freymuth v

Michalke 8

Davies and Baxter 9

Husain and Hussaln I°

Drubka 11

Jet Type St = fn 0 / U m

Planar 0.012-0.017

Theoretical Prediction Planar 0.0165

Planar 0.013

Planar

P]anar

Planar

Axisymmetric

Axlsymmetrlc

Axlsymmet_c

Axisymmetric

•Axisymmetric

0.017

0.0128

0.012

0.018

0.009

0.014

0.017

0.013

Table 8-2

Preferred Mode Measured for Circular Jet in Air

(Reproduced from Gutmark and Ho 12)

Authors

Bechert & Pfizenmaler 13

(era)

4.0

u:
(m/see)

204

Chen 14 5.7 67

Crowe & Champagne Is 5.0 31

Fuchs m 10.0 40

Ko & Davles 17

Moore 18

2.5 & 5.0

0.39

2.5Peterson 19

Yule 2o

6 to I00

102 to 307

3O

2 to 64

Mach
Nmnber,

M

0.6 0.48

Probe
Location,

X/Dj

Far Field

0.2 0.35 3.3

0.09 0.3 4.0

0.12 0.5 3.0

0.02 to 0.3

0.2to0.9

0.3 to 0.5

0.35 to 0.5

0.25to0.4

0.3 to 0.45

0.09

0.01 to 0.18

1.5&4.0

Far Field

4.0

4.0

Re • 104

5O

26

I0

24

3 to30

25 to 75

5

0.7 to 20
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Figure 8- I. Strouhal Number of Preferred Mode in Jets Versus

Characteristic Length Ratio.

Axisyrrm_etric Jets:

Planar Jets:

0 Kibens 21 (1981);
× Drubka 22 (1981);
z_ Ho & Hsiao 2a (1983).

(Reproduced From Ho & Huerre. 24 )
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Figure 8-2 shows the range of Strouhal numbers obtainable from an

axisymmetric jet. The shaded region, as before, represents the preferred mode.
The curve St = 0.0156 _-_ shows the expected vortex formation frequency due to

the shear layer mode. It represents the upper limit in Strouhal numbers and

corresponds to the shortest wavelength of the jet. Thus the region bounded by

the shear layer mode and the preferred mode forms an envelope of possible

Strouhal numbers for a circular jet.

f Dj
St = --

Um

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

I I it lilt I I I I I IlII i /I I I IIII i I i I I II

/
_/------- Thin Shear Layer Lip_

O.O_' Instability as Measured
At the Nozzle Exit

j I

m

w

I I ! IIIIII I , t ,lli,i l I I l lllll i i I iiiii

10 3 10 4 10 5

Urn D]
Re = --

V

Figure 8-2. Strouhal Numbers in an Axisymmetric Jet.
(Reproduced from Blake. =s)
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8.2 Potential Core Dimensions

Depicted in Figure 8-3 is a turbulent jet spreading in a medium that has a

free-stream velocity. The two fluids are assumed parallel and the boundary layer

thickness at the nozzle exit is assumed negligible in comparison to the orifice

diameter Dj . The jet is shown here to have a uniform velocity UI that expands

into an adjoining media with a free-stream velocity of U2 • Using nomenclature

consistent with Abramovich, 26 the ratio of U2 to U] is

m = U2/U1. (8-3)

When m = 0 the jet expands into a medium that is at rest.

In Figure 8-3b, Lines 01 are a boundary that defines the region of constant

longitudinal velocity Ul . This region is the potential core. Inside the core there

is no transverse component of velocity. Line 02 defines the line of constant

longitudinal velocity, U2. The mixing layer {hyperbolic tangent) velocity profile,

discussed earlier in Chapter 7, is bounded between lines 01 and 02.

The shear layer thickness, b , increases proportionally with the location of

the free-stream along the x-direction, X, beginning at the nozzle lip, i.e.,

b = _+_x(l-ml
_l+m]"

The proportionality factor

(8-4)

is an experimental constant that varies between the

limits of 0.15 and 0.3; smaller values of

in the same direction. Larger values of

opposite directions.

Equation (8-4) may be written as

are used when UI and U2 are moving

are used when U_ and U 2 move in

b = +_XA, (8-5)

where A is the dimensionless velocity ratio

Ul - U2

A - {8-6)
Ul +U2 "

The minus sign in Equations {8-4} and {8-5} is used when the free-stream

velocity is greater than the jet velocity {m > 1}. For a hyperbolic tangent profile,

the momentum thickness 0 is exactly equal to one-fourth the shear layer

thickness (b = 40}. Thus the value of 0, like b, increases linearly with x. From

Equation {8-5}, 0 can then be expressed as
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Figure 8-3. Initial Region of the Jet.
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0 = +zXA/4, (8-7)

and derivatives of the shear-layer and momentum thicknesses, respectively, are

db/dx = _ A and d0/dx = _ AI4. (8-8)

Figure 8-4 shows the spreading rate of the turbulent plane mixing layer as a

function of A. The slope of the lines are values of _. The divergence of the

straight lines increases with A and the scatter of the data is due in part to

differences in the experimental configurations. According to Abramovich, when

A = I (i.e., Uz = 0), z = 0.27 for a planar and axisymmetric jet.

Referring to Figure 8-3, the widths of the shear layers, Yi and Y2, are given by

and

YJ- = 0.416 + 0.134m
b {8-9a)

Y___2__ -0.584 + 0.134 m.
b (8-9b}

Equations (8-9) are for a planar jet but are approximately correct for an axi-

symmetric jet. It is assumed here that the momentum thickness at the exit is

very small in comparison to the nozzle width (O << Dj/2).

c.
e_

0O

U3

Figure 8-4.

0.2

0.1

I I

i w4 I_

0.5 1.0

Velocity Ratio, A

Variation of Shear Layer Spreading Rate db/dx
With Velocity Ratio A For a Turbulent Mixing Layer.
(Reproduced from Oster and Wygnnanski, 2_)
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When the free-stream velocity is greater than the jet velocity (m > i), the

external edge (line 02 in Figure 8-3b) of the shear layer may intersect the

centerline of the jet. In this situation the jet efflux will be strongly warped.

Depending on the value of m, there may no longer be a positive pressure gradient

along the jet centerline and the formation of a circulation region near the jet
centerline is likely.

The thickness of the shear layer at the end of the potential core, b, is
given by

b - l
(WorDj) 2 (0.416+0.134m) (8- i 0)

and from Equation (8-5) the length of the potential core, X_ , for a planar jet is

X1 = + (l+m)
(WorDj) 2_(i -m) (0.416 + 0.134 m) (8-I I)

Figure 8-5 shows the variation in length of the potential core as a function

of the velocity ratio m. It is seen here that the lengths of the potential cores for

planar and axlsymmetric jets are approximately the same.

X 1

I I/ l \I I i I J l Ii \ Planar Jet

15p _ ] _ ...... Circular Jet

5 --

0 [[]['1 "-|i- .....

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Velocity Ratio, m

Figure 8-5. The Potential Core Length (X_) as a Function of the

Velocity Ratio (m) . (Reproduced from Abramovich. 26)
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8.3 Vortex Merging in a Jet

The shear layer growth is attributed to the development of a single vortex

that merges with successive vortices. The vortex merging creates pressure waves

which propagate upstream that may influence the development of the shear layer.

The time required for a vortex to reach a pairing location and the time needed for

a pressure signal at the point of merging to propagate upstream is equal to an

integer multiple of the period, i.e.,

f_ (8- 12)

where Xi is the distance from the trailing edge to the i'th vortex merging

location, fi is the frequency after the i'th merging, Uc is the convective speed of

the vortex, c is the speed of sound, and n is an integer. The experimental value

for n is approximately 2. The measured streamwise convective velocity Ue of the

flow disturbance is approximately Uc= 1/2 (Ul + U2) where UI and U2 are

defined in Figure 8-3. At low subsonic speeds, 1/c term can be neglected.

Equation (8-12) then becomes

and

fi Xi/Uc = n (8-13)

fi = f./21 (8-14)

where f. designates the shear layer mode. Substituting Equation (8-14) into

Equation (8-13), the merging location of the i'th vortex

Xi = 2 i n Uc/f. (8-15)

can now be predicted. This formulation has been verified with experimental

data. 12
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8.4

of 5 cm and mean flow velocities of 3 m/sec, 5 m/sec, and 8 m/sec.

number is calculated to be as shown in Table 8-3,

Table 8-3

Sample Jet Reynolds Number

Example Calculation

As an example, consider an axisymmetric air jet that has a nozzle diameter

The Reynolds

Um (m/sec) Re

3 1.1x 104

5 1.8 x l04

8 2.8 x I04

where Re = U m Dj/v . The minimum Reynolds number of all three velocities is

greater than 104 , therefore the mean exit velocity profile will be thin shear.

Next, calculate from the Strouhal number the frequency associated with the

preferred mode of the jet column. In this situation the Strouhal number can vary

between 0.3 < StD < 0.5, and the frequency (see Table 8-4) is found to vary between

18 Hz and 80 Hz.

Table 8-4

Sample Jet Preferred Modes

Freq. (sec -l) Freq. (sec -I)
Um (m/sec) at StD = 0.3 at StD = 0.5

3 18 30

5 3O 5O

8 48 80

Finally, calculate the thin shear layer instability as measured at the nozzle

exit. Using Figure 8-2 to deduce the Strouhal numbers, the shear layer mode (see

Table 8-5) varies between 96 Hz and 416 Hz.

Table 8-5 •

Sample Jet Shear Layer Modes

Um (m/sec) StD Freq (sec I)

3 1.6 96

5 2.1 210

8 2.6 416
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Measurements made by Cohen and Wygnaski 2s of a 5 cm air jet are shown in

Figures 8-6 and 8-7. In this study, Cohen and Wygnanski are able to determine a

number of quantities in the jet including the momentum thickness and unsteady

velocity near the exit where the shear-layer mode dominates. In the remainder of

this example, the shear-layer modes are calculated using Equation (8-1) and

compared with the velocity spectra measured near the jet exit.

In Figure 8-6a the dependence of momentum thickness on the jet velocity

is shown, These measurements were made at x/D = 0.25, near the end of the

linear growth region. The solid curve drawn indicates a U -I/2 dependence.

In Figure 8-6b, the momentum thickness and the mean centerline velocity

are plotted as a function of streamwise coordinates. It is seen here that the

momentum thickness at the nozzle has an initial value of approximately 0.34 mm,

then increases linearly in the x direction. The mean velocity depicted in

Figure 8-7b has a constant value until x/D = 3.5; at this point the velocity linearly

decreases. The deviation of the centerline velocity from its initial value marks the

end of the potential core.

Using the momentum thickness from Figure 8-7a, the thin shear layer lip

instability is determined from Equation (8-I]. The frequencies become as shown

in Table 8-6.

Table 8-6

Shear-Layer Modes Calculated Using Momentum Thickness

U m (m/sec) f(sec -l)

3 95

5 208

8 411

Figure 8-7 shows spectra measured at two centerline locations from the

nozzle exit. The broken line indicates measurements made at x/D = 0 and the

solid line measurements were made at x/D = 0.25. Also drawn in the figure

(lower part) are the disturbance amplification rates as predicted by linear stability

theory for a thin shear layer. Comparison between Tables 8-5 and 8-6 with

Figure 8-7 shows favorable agreement.
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CHAPTER 9

VORTEX SHEDDING FROM BLUFF BODIES

by Michael J. Lucas
Wyle Laboratories

The interest in vortex shedding from bluff bodies, in relation to turbo-

machinery, stems from the fact that this phenomenon may result in acoustic

coupling inside turbomachinery. If the natural acoustic frequency of a standing

wave in a duct or enclosure coincides with the shedding frequency from a bluff

body, then there will be an energy transfer between the mean flow and the

acoustic wave, producing sound amplification. Acoustic coupling will also lead to

highly amplified vortex shedding that may in turn result in structural failure of the

body itself.

Three geometries common to turbomachinery lend themselves to a bluff

body flow instability analysis: instrument probes, struts, and heat exchangers.

Instrument probes might be a gas temperature thermocouple or a pitot pressure

tube that is mounted to a cylindrical rod which in tum is fastened to the engine

housing. Example struts are tuming vanes and nozzles; both of these components

are prevalent throughout an engine. Heat exchangers are used in turbomachinery

to preheat gases prior to combustion. In the SSME the liquid oxygen injector

posts are an example of such a heat exchanger.

In this chapter the dependence of non-dimensional frequency (Strouhal

number) on Reynolds number will be presented for selected geometries.

The Reynolds number range applicable to turbomachinery problems is between

10 4 and 107; thus the data will be appropriately limited to this range of

Reynolds numbers.

Section 9.1 describes the mechanisms and respective regimes for vortex

generation from solitary cylinders in a cross-flow, Section 9.2 presents compar-

able data for other bluff bodies, and Section 9.3 shows methods used to predict

the Strouhal number for tube bundles in cross-flow for various tube con_gurations.
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9.1 Vortex Formation From a Cylinder

The basic mechanism that determines the frequency of vortex shedding

behind any bluff body is the distance separating the two shear layers. As the shear

layers are brought closer together, their interaction is facilitated and the shedding

frequency increased. In the case of the cylinder there is no single point along the

surface of the cylinder that promotes boundary layer separation. The lack of a

clearly definable separation point on the surface of the cylinder makes the

azimuth for a separating boundary layer more sensitive to the Reynolds number

than other geometries in cross-flow might be, such as a square or a triangle. This

in turn impacts the distance separating the two shear layers and their shedding

frequency.

The role of Reynolds number on the flow structure interaction in the wake

of a cylinder is depicted in Figure 9-1. These figures were adapted from a review

article by Morkovin I that shows how the underlying flow field characteristics

change with Reynolds number. The regimes and terminology described herein

are consistent with the literature.

The Reynolds number range is divided into five regimes. The concerns of

this chapter are tl'le so-called subcritlcal, supercritical, and transcritical regimes.

Each of the regimes shown in Figure 9-1 is described below.

Vortex shedding is considered to be subcritical when the attached flow

near the surface of the cylinder is laminar to and past the point of separation. The

boundary layer separates from the cylinder at an angle of approximately 0 = +80 °

from the forward stagnation point.

The subcritical regime extends from the pure Karman range up to a

Reynolds number of 2 x 105. The Karman range is where unsteadiness sets in

(Re ~ 40) and where well-defined vortex shedding persists (up to Re ~ 300). In

the subcritical regime there exists an underlying organization in the vortex

shedding; vortices are shed in a clearly definable alternating pattern. The

generally accepted value for the Strouhal number in this range is 0.21. This value

is accurate to within 5 percent.

When the Reynolds number is increased beyond 2 x 105 the laminar

boundary layer separates, quickly experiences a transition to the turbulent state,

reattaches on the surface of the cylinder, then separates again farther along the
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Figure 9-1. Characteristics of the Wake From a Circular Cylinder.
(Reproduced from Morkovin. i)
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cylinder. In the supercritical regime, the flow structure on the rear half of the

cylinder is dramatically different from the subcritical regime and the pressure

redistributes causing a well-known decrease in the mean drag coefficient. The

highly coherent periodic shedding ceases. However, there still remains a wake

oscillation that has an underlying coherence, though the spectra are wideband as

opposed to periodic. Investigators _ have reported, in the supercritical regime,

Strouhal numbers that vary between 0.17 to 0.45. The Strouhal number about

which the wake will operate is dependent upon the free-stream turbulence and

the cylinder surface roughness condition.

When the Reynolds number exceeds 3 x 106 the boundary layer undergoes

turbulent transition prior to separation. This regime is known as the transcritical

regime. If the cylinder has a rough surface or if there is some degree of free-

stream turbulence, then the transition to the transcritical regime will occur at a

lower Reynolds number. Transition can be tripped by a ridge on the surface of the

cylinder. The turbulent boundary layer separates from the cylinder at an angle of

approximately 0 ---+120 ° measured from the forward stagnation point. The flow

exhibits a return to a coherent periodicity. The Strouhal number becomes

St~0.3 when Re_10 T.

In summary, flow past cylinders with Reynolds numbers in the subcritical

and transcritical regimes are likely to reinforce large amplitude acoustic or body

oscillations. Both these regimes are predictable with a high degree of confidence.

The supercritical regime (2 x 105 < Re < 3 x 106) does have some coherent

alternating vortex shedding pattern but the oscillation is mostly broadband. The

supercritical regime suffers a degree of uncertainty when predicting the modes of

oscillation; this is an artifact of the flow being transitional and thereby highly

dependent on free-stream conditions and cylinder roughness.

9.2 Vortex Formation From Other Bodies

Different bluff bodies are known to shed similarly structured wakes. In all

cases a shear layer separates from both sides of the body. The shear layer rolls up,

producing alternating vortices. The region behind the body in which this occurs

extends several body widths downstream. This region plays an important role in

the strength of the vortices and the frequency at which they are shed.
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The basic parameters that control the vortex shedding process are the

magnitude of the negative base pressure coefficient, Cb, and the distance between

the shear layers, d'. The base pressure coefficient is defmed as

Cb - Pb - P-

0.5 p, U2 (9- i)

where Pb = the base pressure, the pressure immediately downstream of the

bluff body,

the pressure in the undisturbed flow,

the free stream velocity, and

the density of the fluid.

P_

Uoo --

[3_o --

The free-stream Reynolds number and Figure 9-2 can be used to determine

Cb for various geometries. By applying Bernoulli's equation at the separation point

just outside the boundary layer, the wake velocity

Us = (I - Cb) I/2 Uoo (9-2)

is obtained. The quantity (1 - Cb) _/2 is usually replaced by K such that

Us = K U_ (9-3)

where K is called the base pressure parameter.

The distance separating the shear layers or wake width d' as depicted in

Figure 9-3 is the characteristic length that is common to all bluff bodies. It is a

universal measure of the "bluffness" of the body in that "bluffer" bodies produce

more severe distortion of the flow in the streamwise direction. Figure 9-4 shows

the wake width as a function of the base pressure parameter.

Figure 9-3. Wake Structure of a Bluff Body.
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If the free-stream velocity, U_o , remains unchanged while the body width

dimensions are increased, it seems intuitive that the distance separating the

shear layers d' will increase and so will the base pressure coefficient Cb. Since

the base pressure coefficient is simply related to the wake velocity, it follows that

a wake Strouhal number is appropriately defined as

St* - f d' (9-4)
Us

Roshko 2 has developed a relationship between St* and K that collapses

measurements from a cylinder, a normal fiat plate, and a 90-degree wedge over a

range of Reynolds numbers. These results were later supported by Bearman 3 who

transcribed the work of Roshko and other investigators onto a single plot, repro-

duced here as Figure 9-5.
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It is evident from Figure 9-5 that St* ---0.18 is a universal Strouhal number

that spans a range of base pressure coefficients. A departure from St* = 0.18 is

observed at pressure coefficients below 1.1. This universal Strouhal number may

be successfully applied over a range of base pressure coefficients, Cb. In

Figure 9-5 the Reynolds number is mostly contained within the subcritical regime.

A procedure for calculating the wake Strouhal number for a bluff body is

as follows:

1. Estimate the value of K from Figure 9-2.

K = (I - Cb} I/2

2. Use this value and Figure 9-4 to determine d ° .

3. Calculate Us from Equation (9-3).

4. Calculate the shedding frequency using Equation (9-4}.
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9.3 Prediction of Strouhal Number for Tube Banks In Cross-Flow

9.3.1 Overview

A heat exchanger is a device that is widely used in turbomachinery to

transfer thermal energy between two or more fluids. The type of heat exchanger

most commonly found in turbomachinery is the cross-flow heat exchanger. In this

exchanger design, gas or fluid is forced across a tube bundle, while another fluid is

used inside the tubes for heating or cooling purposes. The tube banks are a

_dbration concern when the cross-flow fluid velocity is high or the design contains

long tubes with small diameters. The tubes may fail either due to fatigue or colli-

sion with neighboring tubes. To identify when such failures will occur, an analysis

is made that considers four important factors affecting vibration: (1) vortex

shedding, (2) turbulent buffeting, (3) acoustic resonances, and (4) fluid-elastic

whirling referenced to the tube natural frequency.

Figure 9-6 shows a cross-section of a heat exchanger tube bundle. The

emphasis of most theories used to evaluate the potential for vibration problems is

on tube geometrics having in-line and staggered tube arrays.

Consider a tube array exposed to a gradually increasing cross-flow velocity.

The instability shedding excitation frequency, fe, increases with a constant

Strouhal number, until the natural frequency of the tube, fn , or the acoustic

resonance mode of the enclosure, fa, is reached. When fe approaches f, or fa,

the vortex shedding becomes regular and highly correlated along the spans of

tubes. This so-called "locking-in" condition can be maintained over a considerable

velocity range such that the Strouhal number is no longer considered to be

constant. With a further increase in the velocity, the shedding frequency suddenly

increases to a Strouhal number given by its original value prior to the lock-

ing condition.

The occurrence of a "locking-in" condition inside heat exchangers is a well-

known problem and has led to the formulation of a design methodology. The

accuracy of the technique will vary depending on the heat exchanger geometry

and flow conditions. For example, the flow in a heat exchanger is usually never

entirely perpendicular to the tubes nor is the flow uniform through the tube

bundle. Sections 9.3.2 and 9.3.3 will discuss the methods to determine the

frequencies for the factors which influence tube vibration.

9-9



V

o
T

k--L--4
St = T/D S_ =L/D

(a) Geometry of In-Line Tube Array.

v

o o S

G
kL----L-q

S t = T/D SI = L/D

D

T
T

J

Co) Geometry of Staggered Tube Array.

Figure 9-6. Tube Layout Basic Parameters.

9-10



9.3.2 Vortex Shedding Excitation Frequency, ire

Vortex shedding excitation in a tube bank is similar to the shedding

process of a solitary cylinder. However, identifiable vortex shedding is often

limited to the first few rows of a tube bank. These rows have an incident flow with

the least amount of contaminating turbulence. Grover and Weaver 4 have reported

the existence of organized periodic shedding up to the first 15 rows of a tube

array. The periodicity is, of course, greatly enhanced if the shedding instability

frequency coincides with an acoustic resonant mode or a fluidelastic/whirling

instability.

Experimental measurements made by Fitz-Hugh s and Chen 6 are shown in

Figure 9-7. The independent variable St characterizes the tube layout as shown

previously in Figure 9-6.

St

I I I I

Figure 9-7. Strouhal Number (St) Versus St for Tube Banks in Cross-Flow

(see Figure 9-6 for definition of St ).

Shown in Figure 9-8 is Fitz-Hugh's 5 collection of the experimental meas-

urements made by a number of investigators collapsed onto a single diagram.

Either Figure 9-7 or 9-8 may be used to estimate the Strouhal number for a

tube bank.
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9.3.3 Turbulent Buffeting Excitation, fib

Deep inside a tube bank, it may be assumed that the flow incident on a row

of tubes is non-uniform. This type of flow is known as turbulent buffeting and is

characterized by a spectrum of frequencies distributed about a dominant

frequency. Owen 7 developed the

dominant frequency f of this spectra

St = (ftb D/U) Sl St

following relationship to predict the pre-

= 3.05 (I- 1/St) 2 + 0.28 (9-5)

where the velocity U is the average flow velocity at the minimum cross-section

between the tubes, U = U_ T/(T- D); U_ is the free-stream velocity; and S1 and St

are the spacing parameters as depicted in Figure 9-6. Equation (9-5) only applies

to gases. Data or equations are not yet available for turbulent buffeting frequencies

for liquids.

The physical reasoning behind Equation (9-5) rests in the fact that buffeting

is the source of excitation. This equation has been shown by Paidoussis s to agree

with similar vortex shedding models, suggesting that the predominant peak may

be due to either vortex shedding or buffeting.

9.3.4 Flow-Acoustic Coupling in Tube Arrays

When the frequency of flow periodicity inside the duct coincides with the

acoustic modes of the duct, acoustical coupling may produce pressure amplitudes

as high as 175 dB. However, such resonances will not materialize if the acoustic

damping capacity of the system is sufficient to preclude resonances- the acoustic

damping capacity being traceable to the vortex shedding pattem and its compati-

bility to the duct acoustic modes. 9

To determine if the conditions inside the heat exchanger are favorable for

the establishment of transverse acoustical resonances, Ziada et al. I° developed a

resonance parameter that is suitable for in-line and stagger tube arrays. The

principal parameters used in the criterion are: the critical Reynolds number

based on the gap velocity, the spacing parameters, and the acoustical Reynolds

number based on an effective speed of sound, ceg • For in-line and staggered tube

arrays, respectively, the resonance parameters are

V-- (9-6)
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[  2sl(sr- ill vG_ j co-T)

where Re = Reynolds number,

U = average flow velocity at the minimum cross-section between tubes,

Ce_ = effective speed of sound which has been shown by Parker 11 to be

equal to _£ = (1 + _)-_/2,

c = speed of sound,

= solidity ratio, fraction of space occupied by solid bodies such as

tubes,

D = tube diameter,

v = kinematic viscosity, and

St, $I = spacing parameters.

Ziadia et al. use a critical Reynolds number based on the maximum gap speed,

since resonance is most likely to occur at the highest speeds.

The dependence of the resonance parameters G i and G s on S 2 and

2 L/h are shown in Figure 9-9. The parameter 2 L/h, appearing for the

staggered array, represents the ratio between the jet winding around the tubes

(2 L) and the minimum thickness h.

h = _t/2 -- (T-D)/2, t/2<g

t g , t/2 > g (9-8)

As the packing density Is decreased, 2 L/h increases, and the heat exchanger

becomes more susceptible to resonances. This behavior is clearly depicted in

Figure 9-9.

9.3.5 Tube Natural Frequency. fn

Since there are usually many uncertainties such as the vibration character-

istics of the tube baffle supports and the longitudinal tube stresses associated with

heat exchangers, a precise calculation of the tube's natural frequency is usually
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not feasible. However, an adequate model used to estimate the tube's natural

frequency assumes the tubes are continuous beams that are supported by inter-

mediate baffles. The baffles provide some degree of damping resulting in a natural

frequency

fn = _.D__ yEIg

= frequency constant (see Table 9-I),

E = modulus of elasticityof tube material,

I = sectional moment of inertia,

do4 - d_

64 '

g = gravitational constant,

L = length of the span, and

We = effectiveweight per unit tube length.

where D

(9-9)

Table 9-1

Values of Frequency Constant, D
(Reproduced from Fitz-Hugh s )

End Support
Conditions

Both Clamped

One Clamped,
One Hinged

Both Hinged

1st

22.4

15.4

9.9

2nd

61.7

50.0

39.5

Mode

3rd

120.9

104.2

88.8

4th

199.9

178.3

157.9

5th

298.6

272.O

246.7

We includes the weight of the tube material, Wt, the weight of the fluid within the

tube, Wi, and the weight of the fluid that oscillates with the tube, Wo. The

effective weight is calculated as

(9-1O)

where Wt = weight of the tube material per unit length,

d_ weight of the fluid within the tube per unit length,wt =
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Wo rid°2 weight of the fluid that oscillates with the tube per unit
=kpo _ ,

length,

dl = inside tube diameter, and

do = outside tube diameter

The value of k in Wo is determined using Figure 9-I0. Fitz-Hugh 5 used a value

of 1.0 when estimating k.

Figure 9-10.

2.0

k

1.5

1.0
1.2

I i i

A Staggered

I I I
1.3 1.4 1.5

St

1.6

Experimental Measurement of Hydrodynamic
Inertia Constant. (Reproduced from Chenoweth. 12)

It is a common occurrence in heat exchangers for the span length to vary

between the tube bundles. In the SSME combustion chamber, the injector posts

in the inner rows of the bundle are shorter than those in the outside row. The

value of fn should be calculated for each different span length, using the

appropriate end conditions.

The axial stress of a tube may alter the natural frequency. The correc-

tion is 13

f'n = fnA/1 + pL2
Ein2 (9-11)V

where f'n = stressed frequency,

fn = unstressed frequency,

L = length of spa,

P = axial load, negative ff compressed, positive ff tensile,
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P -- S * A,

S = axial stress, and

A = cross-section area of the tube, metal only.

The axial stress depends on the construction and installation of the tubes.

For heat exchangers that have a U-bend, the longest bend length should be

used for L in Equation (9-9). The natural frequency should then be adjusted for

in- and out-of-plane frequencies as follows: 13

In Plane fj = 1.985 f. (9-12a)

Out Plane fo = 0.829 f. (9-12b)

These equations assume no intermediate supports.

The natural frequency for £mned tube array heat exchangers similar to the

one sketched in Figure 9-11 is obtained by using Equation (9-9) and making the

following substitutions

I = _ d4-d4 (9-13)
64

where: de = do + 1.08 (dfo - d_) (9-14)

and dfo = tube diameter at root of fin,

d_ = tube inside diameter under finned section, and

do = tube outside diameter.

The actual weight of the tube, shown in Figure 9-1 I, should be used for the

weight of the tube material, Wt. A value of k equal to 1.0 and the overall fin

diameter should be used when calculating Wo •

dfo

?-

f

Figure 9-11. Tube Nomenclature.

i
- d o

i
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9.3.6 Fluid-Elastic Instabilities in Tube Arrays

In a tube bank there are flow mechanisms, in conjunction with the elastic

vibration of tubes, that are unrelated to the instabilities occurring in tube banks

having ridge tubes. These mechanisms, commonly referred to as fluid-elastic

instabilities, have amplitudes large enough to cause tubes crashing into one

another. The basic objective is to predict the critical flow velocity for this type

of instability.

There are many models that may be used to predict the onset velocity of

fluid-elastic instabilities and a discussion of these theories, as well as a classifi-

cation of the more recent works, is found in Chen 14 and Paidoussis. 15 In a more

recent article by Paidoussis and Price, 16 a discussion on the mechanisms and how

they may be synthesized into two broad categories may be found. In their article,

Paidoussis and Price describe this mechanism as involving negative damping and a

wake flutter mechanism. Paidoussis and Price predictions can be made of the

critical velocity for the Onset of fluid elasticity inside a tube row by synthesizing

these two basic mechanisms. The onset condition is expressed In terms of the

dimensionless parameter Uc.t/f. D in which Ucnt is the value of the flow velocity

at which the array goes unstable, f. is the natural frequency of the tube in vacuum,

and D is the tube diameter. The fluid-elasticity is then controlled by the damping

forces, and is shown to be expressed in terms of mS, where li is the in-vacuum

logarithmic decrement of damping and m is the tube mass.

9.3.7 Heat Exchanger Tube Bundle Vibration Prediction Procedure

The following procedure compares the fluid dynamic forcing frequencies to

that of the acoustic resonator modes of the enclosure and the natural frequency of

the tubes. Similar procedures have successfully predicted 80 percent le of the

existing heat exchanger flow-induced vibrations. The steps are as follows:

I. Calculate the acoustic resonances of the enclosure, as described in

Chapter 4 of this handbook. The simplest calculation that may apply is

fa -- nCeff
4 L_ (9- 15)

where fa = acoustic frequency,

n = mode number, and
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c¢_._= (I + _)-2/2.
c

c = speed of sound,

¢_ = fraction of space occupied by solid bodies, and

L_ = effective heat exchanger enclosure dimension.

2. Estimate the resonance parameter G_ or Gs. Use 1.2 times the

maximum projected flow speed as an average flow speed between the

tubes. If the resonance parameter lies in a non-resonant region (see

Figure 9-9), resonance will not occur at any of the lower speeds. Other-

wise, compute the ratios of vortex shedding and turbulent buffeting

frequencies to the acoustic frequency. If the fluid excitation frequency

falls within the following limits, then the acoustic resonance may

enhance fluid unsteadiness.

0.8 < f_c_< 1.2
fa (9- 16a)

0.8 < ft___b_b< 1.2
fa (9- 16b)

3. Compute the ratio of the fluid excitation frequency to the natural

frequency of the tube. If either of the following conditions is satisfied,

the fluid unsteadiness may cause the tubes to undergo fluid-elastic

vibration.

0.5 < _ < 1.5
f, (9-17a)

0.5 < ftb < 1.5
fn (9- 17b)
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CHAPTER 10

SWIRLING FLOWS

by Michael J. Lucas
Wyle Laboratories

There are a wide variety of configurations of flow machinery that generate

intemal swirling flows, and the instabilities of these flows are of considerable

practical importance. These flows are possible whenever there is a combination

of an axial (streamwise) and radial component of velocity. Engine components

that are known to inject a swirl into the streamwise axial component of flow are

pump inlet and exit chambers, cooling air cavities, combustion chambers, and

sharp radial turns in the plumbing. A problem inherent in the design of these

components is collecting the axial flow and redirecting it from or towards the

main rotor axis. This action can introduce a swirling vortex that at some location

downstream causes a transition or breakdown into a new flow state. The

instabilities present in a swirling flow and the vortex breakdown phenomenon are

of central importance in turbomachinery.

Section 10.1 introduces the basic aspects of vortex breakdown. Sec-

t_ions 10.2 through 10.4 contain a discussion on the behavior of swirling flows in

various practical devices. The devices described in these sections are a vortex

whistle, a vortex tube, and a ring inlet and exit chamber. The important feature

common to all of these configurations is the dependence of pure-tone noise on

flow rate.

10.1 Vortex Breakdown

Swirling flow is susceptible to a process known in the literature as vortex

breakdown. This involves the rapid transformation of the flow from a highly

organized, undisturbed state of swirl to a large-scale, highly turbulent flow region.

It is important to realize that the transition process can lead to surges or large-

scale fluctuations in the downstream tube. Also, this process of vortex breakdown

can occur irrespective of the type of inlet and outlet flow restrictions.

A number of laboratory tests I on vortex flows have found that the pre-

dominant parameter responsible for determining the onset of vortex breakdown is

the ratio of the swirl velocity V0 to the axial velocity u. Although the swirl and
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axial velocity distribution vary with radius, representative values of each of these

velocities over the cross-section of the vortex are typically chosen to characterize

the flow. In essence, when the value of the characteristic swirl velocity becomes

sufficiently large relative to the characteristic axial velocity, then the flow

undergoes vortex breakdown. Upstream of the location of vortex breakdown, the

distribution of axial streamwise velocity is a jet-like distribution, whereas

downstream of the vortex breakdown the distribution of axial velocity takes on a

wave-like form. In the region of vortex breakdown, both organized and broadband

fluctuations are in the form of a helical instability similar to that observed for the

higher order (m = I, 2 .... ) modes of a jet. Thus the possibility exists for vortex

breakdown to excite the resonant acoustic modes of a flow system and produce

vibrations on the structural components.

Although the flow downstream of vortex breakdown can exhibit unstable

and turbulent behavior, the mechanism for producing the onset of breakdown is

still a source of controversy. There are two basic views: the first is that break-

down involves a phenomenon similar to a hydraulic jump, involving the abrupt

transformation from a supercritical to a subcritical condition; the second view is

that it is driven by a phenomenon of hydrodynamic instability. In general, the

former explanation seems to have wider acceptance.

Overviews and assessments of the mechanisms leading to vortex breakdown,

both for external and internal flow configurations, are given in the reviews of

Leibovich 2 and Escudier. 1.3 This chapter reviews the different flow devices used to

study swirling flows and vortex breakdown. Where possible, prediction schemes

are provided for estimating the resonance frequencies inside these geometries.

10.2 Vortex Whistles

Using a device resembling a whistle, Vonnegut 4 produced a pure-tone noise

from a swirling flow. The whistle, as sketched in Figure 10-1a, has a tangential

inlet swirl generator whose diameter, D , is greater than the inlet diameter, dl ,

and greater than the exit tube diameter, do. Flow through the tangential inlet

generated a pure-tone noise whose frequency increased proportionally with the

flow rate.
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Measurements of frequency of Vonnegut's whistle are plotted against flow

rate in Figure 10-2. In Figure 10-3, the frequency is plotted against the quantity
[ (Pl - P2) / P2 ]1/2 , where Pl is the entering pressure and P2 is the exhaust

pressure. The relationship to estimate the frequency is given by

f = (x _ VP'-P2] '/2
.D k_J (10-1)

where c = speed of sound,

D = diameter of vortex whistle,

P1 = entering pressure, and

P2 = exhaust pressure.

The value of a is a constant less than one. This factor accounts for

frictional losses. If the fluid can be assumed inviscid, as in air at a sufficiently high

Reynolds number, a value of one should be used for _.

A comparison of data taken by Vonnegut 4 and Channuad s,G for selected

values of L/d is shown in Figure 10-4. The parameters used to characterize the

whistle are the mean exit velocity U, the mean diameter of the downstream

tube d , and the frequency of oscillation f. Vormegut's measurements were made

for an L/d ratio of 2.2 and a Reynolds number range of 6,000 to 25,000. His

results, calculated from Figure 10-2, are shown in the figure as the shaded area.

Charmuad measurements were made in air for a Reynolds number range of 2,000

to 7,000. The whistle constructed by Channuad has a downstream tube that could

be varied both in tube length L and diameter d.

The measurements made by Vonnegut show only fair agreement with those

of Channuad. The Strouhal number reported by Vonnegut for air is between

1.2 and 1.5, while the measurements made by Charmuad indicate a higher value.

The decrease in Strouhal number with increasing L/d ratio, reported by

Channuad, indicate a viscous drag reduction in the downstream tube and possibly

related to the variable a reported by Vonnegut in Equation (10-1).

Both Vonnegut and Chanaud observed that when water is injected into the

whistle, air bubbles in the water spiral around the exit tube axis at about the same

frequency as that of the sound frequency. These observations suggest that a

central mechanism responsible for the sound generation is the vortex breakdown
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in the downstream tube.

angular velocity, then the Strouhal number represents the ratio

velocity to the axial velocity

If the sound frequency is simply related to the fluid

of the swirl

St = f___d _ ¢Oro = %
Uo nUo nUo (10-2)

where ro = do/2, and

V0 = fluid angular velocity.

This simple relationship to estimate the sound frequency was shown to provide a

reasonable estimate, provided L/do is less than 2.

10.3 Vortex Tubes

Figure 10-1b shows a sketch of a vortex tube. This device is similar to the

vortex whistle in that when air is injected through the tangential tube into a

cylindrical container a pure-tone noise is emitted whose frequency is proportional

to the flow rate of the swirl. The presence of the diaphragm shown in the figure

separates the air flow into two streams. The colder air escapes through the hole

in the diaphragm, while the hotter air is exhausted through the other end of

the tube.

The discovery of the vortex tube led to numerous experimental investiga-

tions by Ranque, 7 Hflsch, s and others to evaluate the nature of an observed total

temperature separation that occurred inside the cylindrical tube. At one time it

was thought that the vortex tube might be used as an efficient cooling device. In

fact, Vonnegut 4 was led to his findings on the vortex whistle while working on the

application of the Ranque--Hflsch vortex tube effect. Vonnegut observed tempera-

ture differences as high as 50°C between the center of the vortex core and the

outer rotational fluid.

Kurosaka 9 suggested that it is acoustic streaming by the vortex whistle

which produces the Ranque--Hflsch effect. Acoustic streaming is the mean motion

in a fluid generated by sound. It is forced by the Reynolds stresses, defined as the

mean momentum flux due to the acoustic waves.10 Kurosaka explains that when

the whistle is inaudible, the steady-state tangential velocity distribution in the

radial direction is in the form of a free vortex and the steady-state temperature is
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uniform. But when the whistle is audible, the velocity profile transforms to that of

a forced vortex and the temperature distribution spontaneously separates into a

hotter stream near the outer wall and a colder stream near the axial centerline.

Kurosaka 9 developed a frequency swirl relationship from which the first

harmonic of the vortex whistle is determined

f = co = ___K_ = __1_ Y__ (10-3)
2_ 2_ _ _D ro

In this equation, F is the circulation of the forced vortex and may be estimated by

assuming that the value of the circulation around the tube periphery is equal to

that around the circumference at the exit of the swirl generator; ro is the radius

of the tube from which the hot air is expelled. Figure 10-5 shows the calculated

frequency together with the measured values. This analysis shows that the

frequency of the swirling fluid is the first harmonic of the vortex whistle. The

disagreement between the measured values and those predicted are explained by

viscous losses in the cylindrical tube.

10.4 Ring Inlet and Exit Chambers

Merkli and Escudier I I developed a simplified axial flow model to simulate

the behavior of flow instabilities inside axial compressors, annular cascades, and

turbine inlets. Figure 10-1c shows a sketch of a ring inlet chamber. Ring inlet

chambers are used to distribute the flow from an inlet duct or pipe onto the first

blade row of a compressor or turbine.

The geometry shown in Figure 10-1c is idealized; in practice the ring

cross-section may be non-circular and the axial flow complicated by blading in the

annular passage. These flow devices can be expected to induce turbulences that

may affect the nature of the unsteadiness inside the ring chamber and the

frequency of oscillation. With the exception of the presence of the center body

(see Figure 10-1c), the inlet-chamber arrangement is quite similar to the vortex

whistle (see Figure 10-1a).

Figure 10-6a shows the variation of Strouhal number with Reynolds number

for a ring inlet chamber. Above a critical Reynolds number of 1.2 xl0 5, the

frequency spectrum was observed to increase steadily with mass flow rate. As
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shown in the figure, the Strouhal number (St = f--_) has a constant value of 1.2 over

the Reynolds number range of 1.2 x 105 < Re < 2.25 x 105 . At lower values of

Reynolds number, the Strouhal number was observed to steadily decrease as

Reynolds number decreased. Merkli used Re = 2t U/v to define Reynolds

number, where t is the annulus width and U is the average velocity in

the annulus.

Merkli and Escudier observed that the ring chamber had two entirely

different flow regimes. At flow rates below a critical Reynolds number the

incoming flow splits symmetrically into two branches, which explains the

observed decrease in Strouhal number below Re = 1.2 x 105 . At flow rates above

the critical Reynolds number, the flow exhibited a swirling motion and in many

respects showed similar features to the vortex whistle.

A cut-away diagram of the ring exit chamber model used by Merkli and

Escudier is shown in Figure 10-1d. _2 These experiments were carried out for

values of t/R varying from 0.16 to 0.58 and a Reynolds number between

lx 104and6x 104.

Flow visualization of the ring exit chamber revealed the existence of a

strong vortex. The spatial structure resembled that of a helix wrapped around the

ring axis. The helix shape is a result of the coriolis forces induced in the swirl as

it bends around the ring. The two ends of the vortex core do not join; rather both

ends turn into the end of the exit tube, as shown in Figure 10-7. This fact was

confirmed by pressure measurements made at the chamber exit. The vortex is

not stable but oscillates periodically about the central axis of the ring chamber.

Figure 10-6b shows the variation of Strouhal number with Reynolds number

for the ring exit chamber. When the Reynolds number exceeds 105, the Strouhal

number (St = f--_) is equal to 0.052, is independent of the t/R ratio, and is only

weakly dependent on the Reynolds number. The frequency of oscillation is

unaffected with variations in the annulus width. The most notable change in the

flow structure is that the amplitude of the helix increases or decreases depending

upon the selection of t/R. Also, the first harmonic is very well defined and

harmonics up to the sixth order are detectable.
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Figure 10-7. Axial View of Vortex Core in Ring Exit Chamber.

Example C_lculation

As an example, consider the model of a ring exit chamber investigated by

Merkli and Escudier. 11,12.13 The diameter of the model, D, is reported to be

135 mm. The inlet and out_let pipes have a diameter, do, of 55 mm. Suppose the

ring chamber and the exit tube are represented by a T-tube with the two top

branches wrapped around a cylinder and joined together at the two ends. Using

the geometric data from the Merkli and Escudier model, the T-tube dimensions

become Io = 209 mm, Lo = 185 mm, and r = 27.5 mm (see Figure 4-2). The value of

Lo is determined assuming 2 (Lo + r) = _D.

From the previous section, it was shown that the Strouhal number for a ring

exit chamber is equal to 0.052. Assuming the speed of sound in the gas is

341 m/sec, the frequency for flow instabilities is

To calculate the

tions (4-12a) and (4-23).

calculated from Equations (4-19), (4-20), and (4-24).

results from these calculations.

f = 322 x (Mach number) (10-4)

acoustic resonance inside the T-tube, use Equa-

The effective lengths appearing in these equations are

Table 10-1 shows the
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A comparison of measured pressure spectra at different mass flow rates

appears in Figure 10-8. The pressure spectra contain pressure peaks due to the

flow instability and peaks due to the acoustic resonance characteristics of the

model. The pressure peaks due to flow instabilities increase in frequency with

flow rate and are in agreement with Equation (10-4). The calculated acoustic

resonance frequencies, drawn in the figure, were determined by Merkli and are in

good agreement with the resonance frequencies presented in Table 10-1.

Table l 0-1

Calculated Resonance Frequencies
For the Ring Exit Chamber

Top of T-Tube Stem
Equation (4-12a) Equation (4-23)

1382

2304

146

591

902

1315

1671

2033

2441

2755
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CHAPTER I I

IMPINGING SHEAR LAYERS

by Michael J, Lucas
Wyle Laboratories

The consequence of a shear layer impinging on a downstream obstacle or

edge can be the generation of a highly coherent disturbance. Impinging shear

layers are recognized as a primary cause of unsteady pressure loading and noise

radiation inside turbomachinery. Flow paths inside turbomachinery associated

with this type of noise production include: the flow exchange between nozzles

and turbines; the flow exchange between impellers and diffusers; the movement

of fuel or lubricant over engine ca_ties; and the impinging wake generated by flow

past bluff bodies as from struts and turning vanes on downstream obstacles.

In this chapter, the problem of a shear layer impinging on a downstream

surface or edge will be presented for selected geometries, Section 1 1.1 provides

an overview of the flow mechanics for basic shear layer impingement geometries.

Section 1 1.2 describes the models for estimating the most highly amplified dis-

turbance frequencies for a jet stream impinging on: an edge (classical edgetones),

a perpendicular fiat plate, and a perpendicular fiat plate with a hole in its center.

Section 1 1.3 contains acoustic and hydrodynamic models for estimating the

disturbance frequency generated from cavity oscillations.

I 1.1 Overview

A summary of the types of shear layer impingement as categorized by

Rockwell and Naudascher I is shown in Figure 1 1-1. The figure illustrates a dozen

examples, classified by shear layer type. The three categories are planar jets,

axisymmetric jets, and planar and axisymmetric mixing layers. The feature

common to all of these is the pressure-phase relationship between the dis-

turbance generated by the organized vorticity impinging on a downstream surface

or edge, and its pressure convergence upstream in the vicinity of the separation

edge. This pressure feedback selectively amplifies the shear layer, causing the

flow fluctuations to occur within a narrowband of frequencies, that produce

preferred "stages" or modes of oscillation.
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Without the edge, the flows shown in Figure I I-I may still exhibit a natural

feedback process during vortex breakdown as shown in Figure 11-2. In a non-

impinging flow, the downstream unsteadiness acts as an origin of upstream

influences. An "apparent" length scale l is used to relate the vortex formation and

pairing in a free shear layer. In a typical shear layer there might be a number of

values for I. The consequence of the apparent length scale is the ladder-like

change in the frequency (see Figure 11-2) that is observed when the velocity is

increased. The mathematical description of this frequency-controlled behavior is

/__I_ + I - n
Uc c f (I 1-1)

where l = apparent length scale,

Uc = phase speed of the disturbance,

c = speed of sound,

f = frequency, and

n = stage of oscillation.

The stage of oscillation, represented by n/f in Equation (11-I), is the period of

shear-layer oscillation or vortex shedding. The successive ladder-like jumps

shown in Figure 1 1-2 are accounted for by higher values of n.

The events that lead to the establishment of a highly amplified disturbance

from an impinging shear layer are described in the context of the edgetone

generator. The essential features of an edgetone generator are shown in

Figure 1 1-3. The feedback process is explained as: (1) the initiation, at the jet

exit, of a disturbance wave; (2) the growth and propagation of the disturbance in

the streamwise direction; (3)the impingement of the oscillating jet on an edge;

and (4) the subsequent generation near the impingement point of an acoustic

disturbance which is fed back to the sensitive region of the jet near the exit.

At low Mach numbers, nearly all flows of interest satisfy the criteria that the

impingement distance, L, divided by the acoustic wavelength, _.a, is much less

than unity (L/_.a << i). This means that the upstream source lies in the non-

propagating region. That is, the disturbances arising from the impingement edge

are instantaneously felt at all upstream locations. For nearly all conditions in

liquids, the condition L/_.a << 1 is satisfied and the propagation of the disturbance

is purely hydrodynamic.
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Figure I I-3. Features of an Edgetone Generator.

In the case of higher speed flows, for which the acoustical wavelength is

relatively short, the upstream region can lie in the propagating region of the

feedback disturbance. In this situation, the acoustic speeds become important

when evaluating the delay time between impingement and the location of the

shear-layer separation. Also, under these conditions the strength of the upstream

influence is considerably larger than the case where the acoustic wavelength is

very long.

In the case of an impinging flow, Blake 3 makes the following elementary

description which applies to most of the frequency prediction models found in the

literature. Consider the motion of a free shear layer. As described in Chapter 7,

the fluctuating component of velocity for a spatially growing disturbance can be

written as

_(x) = _¢ e_x e i_%x-_tl, 0<y-<L (11-2)

where = fluctuating component of vertical velocity;

o% = imaginary part of wave number (amplification factor); and

c9 = real part of wave number (equal to e/c).
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At the downstream edge the vertical component of velocity becomes

(L) = _¢ e_ L e i¢a r L- o_ t) (1 I-3)

Coupling is optimum when the downstream hydrodynamic disturbance wavelength

is T_/2 out of phase with the upstream edge. The phase relationship may be

written as

a_L = 2n_ - _/2 , n= 1, 2, 3 .... ( 1 1-4)

By substituting a_ = 2_f/Uc into the above expression, the preferred frequencies

_- (n-l)L _ , n = I, 2, 3 .... (11-5)

are derived. In Equation {1 1-5), n is an integer and is sometimes referred to as

the mode or stage of oscillation. This simple model ignores frequency synchroni-

zation that may arise from other acoustic resonators.

This relationship is sometimes modified to account for a phase lag that can

occur between the encounter of the vortex sheet with the edge and its pressure

response to the edge. The lag in phase is denoted by ¢ and is potentially

significant for compressible flows. The incompressible limit is _ ---0. The general

expression for this condition may be written as

arL + ¢ = 2_(n+l), n = 1,2,3 .... (11-6)

(n!C)Um Um 4 2x '

where L is the impingement length scale,

Uc is the phase speed of the disturbance.

Blake shows that this relationship written in terms of a Strouhal number is

n = 1,2,3 .... (11-7)

Um is mean speed of the flow, and

11.2 Impinging Flows From Jets

This section contains a discussion on the models that may be used to

predict the most highly amplified disturbances for a jet stream that impinges on

an edge, Section 11.2.1; a plate, Section 11.2.2; and a plate with a hole in its

center, Section 1 1.2.3.
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11.2.1 Jet-Edge Configuration

Sound levels produced by a jet-edge configuration, referred to hereafter as

"edgetone", was first recorded by Sondhaus 4 in 1854. Many investigations and

theories have been proposed to explain the cause of this sound. Powell s provided

the first rigorous theoretical explanation on the nature of edgetone sound

production. He demonstrated that the leading edge can be treated as an acoustic

dipole source which disturbs the jet and that the instability characteristics are

dependent on the Reynolds number, the Strouhal number, and the jet-to-edge

separation distance.

Oscillations inside organ pipes and wind instruments have long been

associated with the phenomenon of edgetones. This association is not entirely

correct since jet edge interactions and their resultant forces are not essential to

the production of sound. The oscillation in an organ pipe, for instance, is due to

the modulation of the jet-profile caused by a feedback from the standing wave field

inside the pipe. In contrast, the jet-edge interactions are known to play a major

role when the jet-to-resonator coupling is weak.

The non-dimensional variables important to the edgetone phenomenon are:

(1) the Reynolds number, Re =Um Dj/v , based on Um, the mean velocity in the

nozzle; (2) the Strouhal number, St = f Dj/v, that introduces the frequency f;

(3) the distance separating the jet nozzle and the leading edge divided by the

nozzle width, L/Dj ; (4) the disturbance amplitudes, such as 1_ and ,7 , which are

expressed in some suitable non-dimensional form; and (5) the velocity profile at

the jet exit.

The frequency dependence on jet effiux speed and impingement length of

an edgetone generator are shown in Figure 11-4. The frequency increases when

either the velocity of the jet is increased or the distance separating the jet exit

and the leading edge is decreased.

Jumps in frequency separate the stages in an edgetone generator.

Figure 11-4a shows that as the frequency progressively increases with increasing

Reynolds number, a critical Reynolds number is reached where the frequency

jumps up from the original operation curve, referred to as stage 1, to a new curve,

stage 2. As the Reynolds number is subsequently reduced, the downward

frequency jumps from stage 2 to stage 1 with the transition occurring at a lower
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Reynolds number than the jump-up. This results in a hysteresis region being

formed. Figure 11-4b shows a similar trend in frequency as the impingement

length is increased and decreased.

At a fixed edge distance there is a minimum Reynolds number below which

edgetones disappear. Conversely, at a flied Reynolds number there is a minimum

slit-to-edge distance at which sound production begins. These minima are

indicated on Figure 11-4.

11.2.1.1 Survey of Experimental Investigations

A survey of experimental edgetone measurements with planar and axi-

symmetric jets is shown in Table 11-1. Most of the measurements have been

made for planar jets in air with a nozzle width of I mm. The impingement edge

for most of the studies has been a wedge; in a few instances a cylinder was

substituted for the wedge. In many of the lower Reynolds number studies

(Re < 2000), the velocity profile at the nozzle exit is fully developed and parabolic

in shape. These profiles are very similar to the ones modeled by Bickley 7 and

Sato, 8 which were discussed in Chapter 7.

Figure 11-5 shows curves of neutral stability that were developed by Powell

and Unfried. 18 The region of edgetone activity lies below the neutral stability

curves. It appears from the figure that edgetones would not exist for a Reynolds

number below 50 and above 3000. In practice, the creation of _dgetones for

Reynolds below 50 and above 3000 are not always feasible. An extensive review

article by Powel119 describes the instabilities associated with higher Reynolds

number jets. Recently, Umeda et al. 9 and Krothapalli and Home 14 measured high-

speed edgetones at Mach numbers ranging between 0.2 and 0.8 both in an

axisymmetric and a planar jet.

Figure 11-6 shows measurements made by Powell 5 of Strouhal number

versus Reynolds number of a planar jet with a nozzle width of 1 mm. In this figure

the velocity is the mean velocity of the jet and the wedge has an included angle of

30 degrees. Lucas and Rockwell 16 showed that due to the rapid non-linear

distortion of the shear layer the Strouhal number will retain a primary frequency

of 13and will exhibit as many as seven components that are sums and differences

of _ and 1/3 13. Possible relationships are
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11.2.1.2 Survey of Edgetone Frequency Prediction Models

Brown 2o made experimental measurements of a 1 mm orifice width planar

jet impinging on a wedge with an included angle of 20 degrees. Brown suggested

the relationship

f = 0.466 (z (Urn - 40) (I/L - 0.07)

mean velocity in the nozzle;

distance from the slit to the edge of the wedge; and

1.0, 2.3, 3.8, and 5.4 for stages i, 2, 3, and 4, respectively.

( 1 1-9)

where Um =

L =

0t =

Equation (11-9) assumes cgs units and is limited to the range of Strouhal numbers

0.035 < fL/U < 0.15 (11-10)

Lenihan and Richardson 13 later revised this formula using a 1.9 mm width

jet impinging on a cylinder 0.47 mm in diameter. Their formula is

f = 0.466 a Um (I/L- 0.07) (1 1-11)

where a = 1.0, 2.7, 3.8, 5.4, 7.2, and 9.2 for stages I through 6, respectively, In

Equation (11-11), the values of ct remain the same as in Equation (11-9), except

that two additional values for cz (7.2 and 9.2) have been added to the series given

by Brown. Also, Lenihan and Richardson suggest the value of 2.7, instead of 2.3,

for the value of ct in the second stage.

Curle 21 developed a semi-empirical theory based on the growth of discrete

vortices on either side of a planar jet. From Brown's flow visualization 2° Curie

deduced the ratio of the impingement length, L, to wavelength is equal to
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(n + I/4), where n is an integer. Next, Curle combined the expression for the
convective velocity from Savic 22 with the experimental results of Brown to form

the relationship

f = 0.5 Um(_ ___L-
L 30D] (11-12)

which is valid only when L/Dj is >i0. Curle's observation that the wavelength is

one-quarter out of phase with the vortices shed from the nozzle lip incorporated

the overall concept of disturbance feedback.

Nyborg 23 cast the equation of motion for a line of unconnected particles

traveling in a jet-edge system. He considered the jet to be infinitesimally thin and

the shape of the jet centerline to be

y (t) = (t- r)

where 50 --

x =

g[L-x(r)] ¢[y(r)]dr

t

(t-r) =

g =

the

acceleration of the particle is dependent upon two quantities:

Nyborg assumed an elementary form for g and ¢ to be

(11-13)

the time required for a particle to travel from the nozzle to the edge,

particle horizontal distance measured from the nozzle,

y = vertical distance of the thin jet stream as measured from the jet

centerline,

time,

time particle left orifice and is at distance x,

function that describes the dependence on distance from particle

to edge,

-- instantaneous vertical displacement y of the free end, and

L = distance from the slit to the edge of the wedge.

Nyborg's theory states that the particles move in the thin jet stream from

nozzle to the edge with a prescribed velocity u(x). While the vertical

g[L-x] and ¢[y],

g[L-x]= i, 0< (L-x) <L (11-14)

B, y<0= -B, y>0

In Equation (I 1-14), g represents the vertical force acting on the jet at any instant

and is the same at all points in the regio n 0 < x < L. _ is equal to B, the shear layer

amplitude, whenever y is negative; and -B when y is positive. Substitution of these
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functions into Nyborg's integral equation gives for the shear-layer frequency the

relationship

ft. - I In (n + I)] I/2, n= I, 3, 5 .... (II-15)
25o

where the value of n is an odd integer. The determination of the value of 6o

requires knowledge of u(x) , which is generally not available.

Tabulated in Table 11-2 are the ratios of frequencies between stages. Since

the ratios between frequencies of the different stages are independent of u(x),

Nyborg's and Brown's predictions are shown in the table for comparison. The

values of n used for Nyborg's formula i, 3, 5, and 7 for the observed stages of I, 2,

3, and 4.

Table l I-2

Shear Layer Frequencies for Nyborg 2a and Brown 2° Models

Stage
Number

In

I

2

3

4

n

1

3

5

7

Nyborg

f=/fl

1.00

2,44

3,86

5.29

Brown

f_/fl

1.0

2.3

3.8

5.4

Percent

Difference

0%

5.7%

1.6%

2.1%

Powell 5 expressed Lighthill's equation for aerodynamic sound production in

a form in which the edge is represented as a distribution of dipole sources and the

acoustic pressure field surrounding the edge is directly related to the distribution

of sources. Powell's formula is suitable for estimating the strength of the pressure

First, the pressure in the field surrounding the edge at a distance x

p(x) = I iCoFo l+2_ix/_, cosOexp[i(mt-kx)] (11-16)
4_ xao 2_ix/_.

and velocity.

is given by

where the value of 0 is the angle between the plane perpendicular to the jet

stream and the point of observation. Fo is the amplitude of the fluctuating lift

force at the edge. An upper limit for this force is given by Powell to be

Fo = 5poU2mbDj (11-17)

where Dj is the thickness of the jet at the nozzle exit and b is the width of the jet.
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When the distance between the nozzle and the edge considerably exceeds

the greater dimension (b) of the rectangular orifice (L/b >> 1), the induced velocity

field at the orifice, due to the vortex action near the wedge, is given by Powell as

= I__!__{F¢e It°t)Uo 4_ _iC0poL 3 " (11-18)

It is this situation for which the action at the orifice is like that of a point force,

even though the nozzle is in the hydrodynamic near field (L/X << I).

If, on the other hand, the edge is very close to the nozzle, then the action at

the nozzle is more like that of a line dipole of force per unit length. In this case

the induced velocity becomes

Uo = _L ( F_ e'c°t )2n i¢opoL2b • (11-19}

In both situations the separation region near the nozzle is the location at

which control of the jet motion is established. The frequency at which this

motion occurs has to be taken at the eigenvalues of {n + 1/4) where n is the stage

number in Brown's terminology. According to Powell, the time required to

establish n cycles of motion between the nozzle and the edge is

T - L
Uc {11-20}

where Uc is the hydrodynamic convective wave speed of the disturbance. The

frequency then becomes

f-Uc (n+l)L _ . (11-21)

This may be cast in terms of the Strouhal number as

St = (uU--_c)(-_-)(n+l). (Ii-22)

11.2.2 _J_:Plate Configuration

This section describes for a jet-plate configuration: (I) the source of the

pressure fluctuations, (2) the conditions under which a resonant impinging jet is

capable of producing tonal noise, and (3) a prediction methodology which is

suitable for estimating the frequency of the jet tone.
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High levels of pure-tone noise can be generated when the flow of an

axisymmetric jet impinges on a fiat plate at a high subsonic speed. The nozzle-to-

plate separation distance relates to the creation of a pressure disturbance

upstream in the near field which forces, with sufficiently large amplitude, the

growth of a shear layer at the nozzle exit. Under these conditions, the jet stream

is in a resonant state because the upstream wave has become phased-locked with

the wave traveling downstream. The turbulent nature of the jet becomes highly

coherent and almost periodic. When the jet is in resonance, the jet stream will

produce excessive pressure fluctuations at the surface of the plate. It will also

produce a pressure disturbance that is capable of exciting acoustic resonances if

the jet were enclosed in a cavity, as is often the situation inside turbomachinery.

The source of pressure loading on the plate is due to an instability process

referred to as collective interaction. 24 Figure 1 I-7 illustrates the essential features

of a collective interaction. The plate, not shown in the figure, is located down-

stream from the nozzle exit. The Mach number is greater than 0.7 and the L/Dj

ratio is less than 0.75. Shear layer vortices emerge from the nozzle exit with a

wavelength of a non-impinging jet. Farther downstream from the nozzle exit the

shear layer vortices undergo rapid merging and large-scale coherent structures

are created. The merging of the vortex structures is so rapid that it is not likely

due to the vortex pairing process as observed in a free jet. The merging of

coherent structures is attributed to collective interaction which is characterized

by a sharp decrease in frequency and a rapid shear layer growth.

The evolution of the shear layer vortices from the nozzle exit is consistent

with the prediction of a free jet. The vortex shedding frequency has a Strouhal

number (St = f Dj/Urn) that ranges between 3 and 5 and is observed to increase

with the square root of the Mach number.

theoretical predictions made by Michalke 25

frequencies.

These observations agree with

for the jet's initial instability

Farther downstream from the nozzle exit, at 1.3 nozzle diameters, the jet

transitions to a low-frequency disturbance. The range of Strouhal number of the

large-scale structure is reduced to 0.3 < St < 0.4, which is almost a tenfold

decrease from the shear layer instability measured near the nozzle exit.
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The high-frequency pressure disturbance associated with the jet instability

cannot follow the same acoustic path to the far field as the large coherent

structures simply because the instability waves have lost their identity before they

have reached the plate. In fact, Nosseir and Ho 26 dentified two separate noise-

generating mechanisms, shown in Figure 11-8, that propagate to the far field via

two separate paths. One of the acoustic sources is due to vortex shedding,

pairing, and their subsequent convection. The other acoustic source is caused by

the impingement of the large-scale structures. Most of the far-field pressure

disturbance is not attributed to the former acoustic source; rather the primary

noise source is the noise generated by vortex impingement at the plate.

Figures l l-9a and 11-9b are the raw pressure signal and power spectrum

measured at 0.13 and 1.31 diameters downstream from the exit of a resonating

jet. It is seen here that the low-frequency pressure signal has a superimposed

high-frequency shedding component. The low-frequency component that domi-

nates the pressure signal illustrates the importance of the vortex impingement at

the plate and its subsequent upstream influence.

Figure 11-9c compares far-field power spectrum measurements made at

several nozzle-to-plate separation distances. These measurements were made by

Marsh 27 using a circular air jet (1.5 inches diameter) with a Mach number of 0.66.

From Figure 11-9, the following trends in the power spectrum are noted:

• The frequency of peak SPL decreases with increasing plate separation

distance;

• The shape of the spectrum changes from a pronounced peak to a very

broad peak with increasing plate separation distance; and

• The magnitude of the peak SPL decreases by 24 dB when the plate is

removed.

Not shown in Figure 11-9 is the variation of the overall sound power level

with separation distance. Marsh 27 observed that the sound power increased

rapidly as the separation distance decreased. At a nozzle-to-plate distance of two

diameters the overall sound power level was found to be 10 dB greater than that

produced when the plate is removed.

The dependence of Strouhal number on Mach number for both an

impinging jet and free jet is shown in Figure 11-10. It is seen here that near the
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nozzle exit at Mach numbers below 0.6 the Strouhal number wave ranges between

3 and 5 and the presence of the plate does not change the initial instability fre-

quency. When the Mach number is increased, the impinging jet becomes

resonant and exhibits large coherent structures with a Strouhal number between

0.3 and 0.4 as reported by Marsh 27 and Ho & Nosseir. 24 The vertical bars in

Figure 11-10 represent the frequency variations observed with different plate

locations. Finally, this figure illustrates that the upstream pressure feedback has

sufficient intensity to impact the vortex shedding and interaction process only

when the Mach number exceeds 0.6.

Figure 11-1 la shows the variation of resonance frequency versus separation

distance, and Figure 11-11b shows the same frequencies plotted according to

their stage number. In Figure 11-11a the Strouhal number decreases with

increasing nozzle-to-plate separation distance until it reaches a minimum value of

approximately 0.33. This lower limit corresponds to the most unstable mode of

free jet column buckling. With a further increase in the separation distance the

Strouhal number changes abruptly to a higher value, then decreases again until the

minimum value for Strouhal number is again achieved. Every step change in the

Strouhal number involves a corresponding change in the mode number.

The presence of jet stages is not unfamiliar; most leading-edge interactions

exhibit abrupt changes in frequency when the impinging length scale is increased.

The Ho and Nosseir 24 model for predicting the variation of frequency with Mach

number assumes that the phase difference between the downstream convective

wave and the upstream acoustic wave is zero. If it is stipulated that resonance

condition requires an integer number of waves to exist in the feedback loop, then

n = L__L__ + L
_.i (f) _.2 (0 ( 1 1-23)

where the value of n is an integer that corresponds to the number of waves in the

feedback loop. _-i and _.2 are the wavelengths for the downstream and upstream

traveling waves, respectively.

_.i - 0.62 Um

f

X2 = ____g_ I
cos Oa f

(1 1-24)

Equation (11-24) assumes the downstream traveling wave has a convective

speed of 0.62 Um and the upstream traveling wave propagates upstream at the
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speed of sound, c, in a direction making an angle of 0a to the jet axis.

Figure 11-12 shows the dependence of the wavefront angle 0a with the separation

distance. The figure indicates the direction of the wavefront propagation varies

with the position of the plate and the resultant angle is approximately 30 degrees.

Equations (11-23) and (11-24) are now rewritten in the form

where e_ = 30 ° .

.= stir,) • .cos0 ] (i 1-25)

This formulation may be used to predict the Strouhal number given the Mach

number and L/Dj ratio, Figures 11-10 and 11-11 also provide a suitable estimate of

the Strouhal number.

In Table 11-3, a comparison is made between Equation (11-25) and the

experimental results of Ho and Nossier. 24. Tabulated are the nozzle-to-plate

separation distances at which the jet transitions to a new stage. The predicted

values are within 4 percent of the measured values.

Table 1 I-3

Comparison Between Predicted and Measured Values 24

(M=0.9, 0a=25 °, Dj=2.54cm)

Frequency
Stage

n

L]Dj

From

Equation
(11-25)

1.25
2.50
3.74
4.99
6.24
7.49

Measured

2.40
3.75

4.8-5.0
6.0-6.5

7.50

Percent
Difference

4%
0.3%

3.8O/o-0.2%
3.8O/o-4.2%

0.1%

I
2
3
4
5
6

1 1.2.3 Jet-Plate-Hole Configuration

A jet impinging on a plate with a hole through its center, referred to

hereafter as a hole tone, is another example of a jet-driven mechanism that

produces discrete tones.

Much of the work on hole tones is described in a paper by Chanaud and

Powell. 2s Their measurements were made in air using an axisymmetric jet with a

mean exit velocity profile having a top-hat shape. Exploratory experiments were
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made using a nozzle that produced a parabolic velocity profile. This nozzle was

discarded when it was discovered that the jet was relatively stable, producing

tones only for a very limited Reynolds number range.

Chanaud and Powell observed that the test apparatus was extremely

sensitive to a number of experimental conditions. For example, the location of the

hole downstream from the nozzle exit was found to be critical for the jet to

produce a discrete tone. Any slight misalignment of the test rig caused the jet to

undergo changes in frequency and the production of higher harmonics.

Chanaud and Powell also discovered that the relative size of the hole as

compared to the nozzle diameter was critical for tone production. If the hole in

the plate was twice the size of the orifice diameter, the jet stream passed through

the hole. The sound pressure level was so low that it was difficult to measure and

it was presumed that the maximum velocity perturbation occurred within the

vortex ring, which was now a greater distance from the edge of the hole.

Figure 11-13 shows the approximate wave speed as a function of streamwise

coordinates from the nozzle exit. The plate used to complete these

measurements was four diameters downstream with a hole diameter equal to the

nozzle exit. The data shown here are compared to an edgetone experiment using

a planar jet with a fully developed parabolic velocity profile. As compared to the

edgetone, a higher convective wave speed ratio was obtained in the hole tone

experimental arrangement.

Shown in Figure 11-14 is the dependence of the Strouhal number versus

Reynolds number for hole tone systems. Depending on the Reynolds number, the

Strouhal number ranged between 0.5 and 0.75. The concept of frequency stages

(jumps) and hysteresis effects are once again demonstrated in these figures.

Blake 3 suggests as a frequency prediction model

St - fL - Uc (n-l/4)
Um Um 2n(1 +M) (11-26)

where the wave speed ratio (Uc/Urn ) ranges between 0.5 and 0.9, and Mc is the

convective Mach number.
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11.3 Flows Past Cavities

Flow past a rectangular or slotted cavity provides the basis not only for self-

sustained oscillations of the purely hydrodynamic type, but also the potential for

coupling of these basic instabilities with a resonant acoustic mode within the

cavity or _lastic characteristics of the cavity walls. Common to turbomachinery are

the shear layer instability modes coupled to cavity acoustic resonance modes.

This type of coupled oscillations is common because the speed of the gas flow is

sufficiently high (typically M > 0.2) to cause the associated acoustic wavelength to

be smaller than the dimensions of the cavity. Described in this section are several

classes of oscillations, ranging from those that are purely hydrodynamic and

uninfluenced by acoustics effects to those that are strongly influenced by acoustic

resonant coupling.

11.3.1 Classification of Cavity_ Oscillations

A review of cavity oscillators developed by Rockwell and Naudascher _ is

shown in Figure 1 1-15. The cavity oscillators are organized into three basic types,

as indicated in the In'st column of the figure. The second column shows the basic

cavity geometry. Sketches of cavities in the third column depict variations from

the basic model. The three types of cavity oscillations are:

Fluid-Dynamic Oscillations - Cavity oscillations that are driven solely by the

inherent instability of the shear layer.

Fluid-Resonant Oscillations - Cavity oscillations that result from coupling of

the inherent instability of the shear layer with one or more of the

acoustic resonant modes of the cavity.

Fluid-Elastic Oscillations - Cavity oscillations that result from coupling of

the inherent instability of the shear layer with elastic movement of a part

or all of the cavity bounding walls.

In practice, the classification of cavity oscillations proposed by Rockwell and

Naudascher may in fact occur simultaneously in nature. For instance, a cavity

oscillation may be controlled simultaneously by fluid-dynamic, fluid-resonant, and

fluid-elastic oscillations. Their matrix classification scheme is designed to help

facilitate detailed analysis of the predominant hydrodynamic, acoustic, and struc-

tural features of a cavity oscillation. _Sections 11.3.1.1, 1 1.3.1.2, and 1 1.3.1.3

address each type of classification shown in Figure 1 1-15, respectively.
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Type Basic Cavity Variations of Basic Cavity

Flu/d-Dynamic
Shear Layer
Instability

Fluld-Resonant
Shear Layer
Instability

and
Cavity Acoustic

Resonances

Fluld-Elastic
Shear Layer
Instability

and
Cavity Elastic
Deformation

SIMPLE CAVITY

SHALLOW CAVITY

OEEP CAVITY

CAVITY WITH
VIBRATING
CO._POt_E N I"

AXISYMME TRIC EXTERNAL
CAVlIY

AXISYMMETRIC INTERNAL
CAVITY

CAVITY- PERFORATEO
PLATE

GATE WITH EXTENOED LIP

;_////I-///

SLOTTED FLUME

WITH PORT

/ / ////I,/s/

CAVITY WITH EXTENSION

BRANCHED PIPE

VIBRATING GATE VIBRATING BELLOWS

BELLOWS

HELMHOL IZ RESCe,_,TOR

CIRCULAR CAVITY

VIBRATING FLAP

Figure 1 1-15. Classification of Cavity Oscillators.
(Reproduced from Rockwell and Naudascher.1)
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1 1.3.1.1 Fluid-Dynamic Oscillations

The purely fluid-dynamic oscillation is limited to the situation where the

cavity length (or other dominant dimension) is less than one-fourth the acoustical

wavelength of the disturbance. For this class of oscillations the acoustical

wavelengths exceed the dimensions of the cavity, preventing the existence of

standing waves and negating the effect of the cavity as a resonator.

The mechanism responsible for the self-sustained oscillations is the ampli-

i_cation of the unsteady shear layer which is strongly enhanced by the presence of

the downstream leading edge. Fluid-dynamic oscillation can be expected to have

features similar to the edgetone, suggesting a similar analytical approach. Flax 29

suggests a fluid-dynamic oscillator could be modeled with a i_xed Strouhal number

to determine the frequency of the cavity oscillation. Flax's suggestion does not

rule out the possibility of selective amplification of the shear layer causing certain

disturbances to be more amplified than others. Discontinuous frequency activity

and hysteresis regions are possible because the downstream edge of the cavity

provides the capability for a feedback mechanism that will result in preferred

modes of oscillation.

11.3.1.2 Fluid-Resonant Oscillations

Fluid-resonant cavity oscillation occurs when the shedding frequencies are

sufficiently high and the acoustic wavelengths sufficiently short so as to allow for

standing waves inside the cavity.

Cavity behavior varies with depth as characterized by the length-to-depth

ratio. If the cavity length-to-depth ratio is sufficiently large (L/D > I), then longi-

tudinal standing waves dominate and the cavity is termed sh_ow. Conversely, for

a length-to-depth ratio that is small (L/D < 1), the cavity is denoted as a deep

cavity and the acoustic waves are predominantly in the transverse direction.

Longitudinal wave resonance is possible when _.a-< 2L and for the case of

acoustic waves in the depth-wise mode, acoustic resonances will be observed

when X_< 4D.
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I 1.3.1.3 Fluid-Elastic Oscillations

Fluid-elastic cavity oscillations occur when one or more of the cavity walls

undergoes a deformation that is large enough to control the shear layer

perturbation. The frequency response of the system can therefore be represented

by a diagram in which the lines of shear layer instability are drawn along with the

lines of natural frequency for the elastic structure.

Fluid-elastic oscillations are more prone to occur in liquids where the

incompressibility tends to make structural distortions to the cavity walls.

Additional features and complications with liquids are the possibilities of

cavitation, dead water regions, and entrapped gas- all of which will impact the

compliance of the cavity volume.

11.3.2 Slarvey 0f Cavity Oscillation Models

The history of cavity oscillation models dates back to work originally done

by Helmholtz a0 in 1868. Since that time, the interest in cavity oscillations

remained largely confined to musical interest, until in the mid-1990s severe

unsteady loads inside aircraft weapon bays and wheel wells were discovered. This

problem led to an extensive number of articles on cavity oscillation models that

apply different physical treatments to estimate the modes of oscillation. A

literature review by Flax describes many of these models according to their

common treatments. Contained in this section is a survey of only those models

most applicable to turbomachinery applications.

In this section, two physical treatments are reviewed: (1) feedback transit

time models, and (2) acoustic resonance models. Feedback transit time models

sum the transit time for vortex sheets formed by fluid layers moving in the

downstream direction to the transit time for an acoustic pressure disturbance

traveling upstream from the cavity trailing edge. Similar approaches have been

used by Powell 5 and others to explain a variety of self-sustained phenomena.

Several transit time models have already been discussed in previous sections.

Acoustic resonance models have the added criterion that a clearly identifiable

acoustic mode or modes must be excited in the cavity. In accordance with the

foregoing remarks, the cavity models are organized as follows:
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I. Feedback Transit Time Models, Empirical Estimates -The leading edge

of the cavity provides a complete feedback for a downstream dis-

turbance. The sum of the transit times on both paths equals the period.

The transit time frequency is the time required for a disturbance to

travel downstream plus the time requii-ed for the digt-ui-bance to feed

back to the sensitive region of the cavity lip. The transit times are

estimated using empirical data.

. Feedback Transit Time Models, Analytical Estimates - The transit time

of the disturbance is estimated by making analytical estimates of the sum

of the phase of a downstream-traveling wave and the phase of the

upstream-traveling acoustic wave.

3. Feedback Transit Time Models and Cavity Resonance Model - The

disturbance transit time is estimated using an approach similar to

models 1 and 2, above. However, this approach requires the transit time

frequency to be coincident with the cavi_ acoustic resonances.

In an early, highly successful study, Rossiter 3_ estimated the excitatioa

frequency using a transit time model. Rossiter recognized that the creation oia

cavity tone requires the existence of a fluid-dynamic excitation having features

similar to those described in Section I i. I for I:he edgetone generator. He also

showed that the cavity geometry serves to enhance tone generation, but the cavity

need not be resonant for a tone to be generated. The formula developed by

Rossiter is well supported with experimental data. But Rossiter's formula has

received criticism because it does not predict whether a self-sustained oscillation

will !n fact occur. Speci_ng the__ turbulent_ characteristics_..... of the separated shear

layer=near th e cavi_ leadin_ edge _ i s necessary to predict instab_fii _ character-

istics_ such . quantities are _ot required in R0ssiter's model..As shown in
.................................

Figure 11-16, the fluid velocity, the turbulent characteristics near the cavity

opening, and the cavity dimensions all play a significant role in predicting the

cavity tones.

o

I 1.3.2. I Feedback Transit Time Models, Empirical Estimates _

The problem of any cavity feedback transit model is to estimate the sum of

the time required for the disturbance wave to cross the cavity opening and the
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k - hydrodynamic wavelength

U c - convective velocity
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O - momentum thickness

M - Mach number
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c - speed of sound
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Pb - RMS pressure at base of cavity

Po - RMS pressure at cavity opening

Figure I i-16. Physical Dimensions and Flow Parameters
for Cavity Oscillation Models.
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time required for the acoustical wave to travel back upstream. The sum of these

two events equals the period of the oscillation. Rossiter 31 formulated the follow-

ing model
L

tl -- disturbance wave time = l_ U----_

L
t2 - acoustic wave time =_-

L .L
T = tl + t2 =,.'---w-', +

u_t_v

to derive

where kv = Uc/U_ =

m = 1,2,3...

L

M

fL © m-a
U_ M+ I/kv (I 1-27)

the ratio of shear layer velocity to free-stream velocity,

= mode number,

-- empirical constant,

= cavity length, and

-- Mach number as measured in the free-stream.

Values of k_ and a are empirically determined; Rossiter obtained values of

0.57 and 0.25, respectively, ct is a constant that accounts for the phase differences

between (1) the upstream arrival of the acoustic wave and the subsequent vortex

shedding, and (2) the downstream interaction with the leading edge and the

subsequent acoustic radiation.

A refinement pertinent to high-speed flows is that of Heller et al. 32,33 The

Rossiter model was found to predict frequencies consistent with experimental

data provided the Mach number was below 1.5. At higher Mach numbers the

Rossiter model underpredicted the Strouhal number.

Heller attributes the breakdown in the Rossiter model to the temperature

difference inside the cavity as compared to the free-stream temperature. The

speed of sound inside the cavity, ca, may be determined by

ca = coo [1 + r (k - 1/2) M2] I/2 {1 1-28)

where coo is the free-stream static sound speed, X is the adiabatic exponent, and

r is the temperature recovery factor

Tc-T_

r - To-T_ (1 1-29)
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where Too and To are the static and stagnation temperatures of the free stream

and Tc is the average static temperature within the cavity.

The temperature recovery factor for compressible flows was found to be

close to unity when the Mach number exceeds 1.5. Rossiter assumed the speed of

sound in the cavity to be the free-stream speed of sound, thereby assuming a value

of zero for the recovery factor. Using Equation (11-29), HeUer obtained

{ M +I} m = 1 2,3 .... (11-30)fLu. = (m - a) / I 1 + (Y- 1) M2/21 I/2 kv '

11.3.2.2 Feedback Transit Time Models, Analytical Estimates

Bflanin and Covert 34 calculate the transit time for the disturbance by intro-

ducing a monopole acoustic source at the downstream edge. This source repre-

sents pressure fluctuations due to the shear layer impingement. Two general

solutions are derived. One models the shear layer displacement in the streamwise

direction. The other general solution models the acoustic pressure field due to an

acoustic monopole source at the impingement edge.

The phase relationship is derived by the summation of phase around the

entire feedback loop, i.e., summation of the phase of the acoustic feedback

pressure and the phase of the downstream vortex sheet. The phase of the

acoustic feedback pressure field can be determined by inspecting the asymptotic

formula for the potential of a cylindrical wave given by Rayleigh 3s as

d) =-{_._-_--_,:z}cr ½ cosk ct-r- I +.
I * 2 * [Skr}2

(11-31)

_2krl/_---_-_½sink_ct-r-{ 1*8kr 1.2-3*(8kr) 2
+

where k = 0_/c, and c is the speed of sound in the fluid media. The potential in

Equation (11-31) has an acoustic pressure phase given by kL - _/4. The pressure

has a phase difference of _/2 from the potential so that the acoustic pressure

phase becomes kL + n/4.

The phase difference for the downstream-moving vortex sheet is deter-

mined from the general form for a perturbed shear layer. Bilanln and Covert show

that the phase has two parts: the phase of the spatial frequency, k¢ L, and the
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phase, ¢ , due to the lag of the vortex sheet after forcing at x = 0. Added to these

two terms is n/2 to account for a maximum pressure at the downstream edge

when the shear layer displacement is at a minimum.

The resulting expression is obtained for the eigenvalue equation for

excitation frequencies

krL + _ + 3_ + ¢o____LL= 2_n (ii-32)4 c

which becomes

f L _ n - 3/8 - _/2_

U_ l/kv + M {c_Ic_ (I 1-33)

where kv = ¢0/k_U_,

a = _/2u + 3/8,

coo = speed of sound in free-stream,

c, = speed of sound inside cavity.

The form of Equation (11-33) is similar to that of Rossiter's formula.

In earlier work by Covert, 36.37 a hydrodynamic stability approach was taken

to approximate which frequency of the shear layer is most susceptible to highly

amplified growth. A set of linearized perturbation equations were written for the

cavity's internal and external flows. At the cavity opening, the equations were

bounded by the requirement of continuous pressure across the interface. The

resulting equations were reduced to a single integral whose characteristic equa-

tion provides a relationship for the wave number and frequency. The relationship

is only satisfied for certain values of frequency and is complex with the sign of the

imaginary part governing the disturbance. When the imaginary part of the

frequency is positive the disturbance grows; when it is negative the distur-

bance decays.

Figure 1 I-17 shows results of Covert's integral equation calculated for sub-

sonic and supersonic flows. In the region where the damping factor is positive,

the disturbance can be expected to grow with a frequency indicated by the

Strouhal number. For incompressible flows (Mach number less than 0.25), the

flow is unstable below a critical Strouhal number that is determined at the zero

crossing. As the Mach number is increased, the behavior changes as the stability

curves cross the zero axis twice. As shown in Figure 11-17b (M = 0.75), there are
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two unstable regions separated by a stable region. At higher Mach numbers

(M = 0.9), the stability curves return to crossing the horizontal neutral axis

only once.

Figure 11-18 shows a plot of the Strouhal number as a function of Mach

number constructed from the stability curves (shown in Figures 11-17a and b) and

the points where they cross the horizontal axis. The only unknown quantity in

Figure 1 I-18 is the freestream velocity, and its value defines when the disturbance

is neutrally stable.

11.3.2.3 Feedback Transit Time Models and Cavity Resonance Model

Block 38 models the shear layer as an infinitesimally thin sheet and the

acoustic disturbance at the cavity trailing edge as a simple acoustic point source.

In an attempt to account for the acoustic resonance modes of the cavity, Block

included the first image source at the trailing edge of the cavity to account for the

effect of the acoustic wave reflected from the bottom of the cavity.

The acoustic field and the motion of the shear layer are matched at the

leading and trailing edges to develop

fL_
U_

where T

m

Ill

= real part of wave number (use a value of 0.57), and

- mode number, integer.

(I 1-34)

Equation (11-34) correctly accounts for the dependence of the Strouhal number

on the L/D ratio as observed in experimental data. According to Block, this

formula represents the lengthwise or vortical-acoustic modes of oscillation.

The depthwise standing wave-oscillations are calculated by using a relation

developed by East: 39

U_ 1 + A (L/D) B" (I 1-35)

East derived Equation (11-35) from Rayleigh's formula for an open circular pipe:

fD
0.25 _- (-K-) 11 +A(L/D)BI (11-36)

where A_d B are empirical constants. Values of A--0.65 and B = 0.75 give a

curve that compares favorably with experimental and theoretical models.a9
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If Equations (i 1-34) and (i 1-35) are combined so that the frequency for

the shallow acoustic waves coincides with the depthwise acoustic modes, the

formula

( i/kr) L/D

M -- 4m[1 +A(L/D) B] - [(L/D) + 0.514] (i 1-37)

may be used to estimate the Mach number at which a cavity begins to oscillate in a

given mode, m. Equation (11-37) was tested by Block 38 and shown to provide

adequate agreement for a Mach number range of 0.1 to 0.5 and a cavity L/D

ratio below 2.

11.3.4 Prediction Procedure

All of the models reviewed in the preceding section have been shown

to correlate well with experimental data. Many of these models follow a

phenomenological formulation similar to Rossiter's model. Yet all of these models

are limited to a specific range of L/D and Mach number values. The success of

correlating the models with experimental data is apparently due to a flow-induced

oscillation that is strongly dependent on a few very dominating variables. These

parameters include the Mach number, the cavity length-to-depth ratio, and

the phase.

Plotted in Figure 11-19 is a comparison of the Mach numbers and L/D

ratios for which these models have been shown to work. Included in the figure

is an envelope illustrating the cavity conditions expected inside most turbo-

machinery. It is seen in Figure 11-20 that the models of Rossiter, 31 Block, 38

East, 39 and Plumblee 4° fall within the envelope drawn for turbomachinery cavities.

The Rossiter and Block models estimate hydrodynamic/acoustic modes in the

streamwise direction, while the East formulation is specifically for the depthwise

cavity mode. The Plumblee model, which is purely an acoustical model, favors

shallow and deep cavities alike.

Table 11-4 shows the Strouhal numbers calculated using the Rossiter,

Block, and East models. The shading indicates values of L/D and Mach number

that are not contained within the ranges shown in in Figure 11-19. The

difference between Rossiter and Block models is an outcome of the first image
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source that Block has included in her model; thus the L/D dependence is built

into the Block model. Values for the East model are tabulated here for

comparison.

When making predictions inside turbomachineD 7, use Block's formula for

cavities having an L/D > 1. If the cavity has an L/D < 1, then use East's formula to

determine the resonance of the depth mode and Rossiter's formula to determine

the longitudinal resonance mode. The latter mode will be the weaker of the two

modes in deep cavities.

L/D Mach

0.20
0.40

0.25 0.60
0.80
1.0

0.20
0.40

0.5 0.60
0.80
1.0

0.20
0.40

0.75 0.60
0.80
1.0

0.20
0.40

1.0 0.60
0.80
1.0

0.20
0.40

1.25 0.60
0.80
1.0

0.20
0.40

1.5 0.60
0.80
1.0

Table i 1-4

Comparison of Strouhal Numbers Calculated from the
Rossiter, Block, and East Cavity Oscillation Models

Rossiter 31 (Eqn. 11-27) Block 38 (FAIn. 11-34) East39
(Eqn.

m= 1 m=2 m=3 m= 1 m=2 11-35)

0;3841
0.348 _,
o.3i9
0.294 ]'
0.272

0.384
0.348
0.319
0.294
0.272

0.384
0.348
0.319
0.294

0.895
0.812
0_743
0.685
0.635

0.895
0.812
0.743
0.685
0.635

0.895
0.812
0.743
0.685

1.407
1.276
!.!68
1:0771
0,998

1.407
1.276
1.168
1.077
0.998

1.407
1.276
1.168
1.077

0.423
0.336
0.279
-0.238
0.208

'0.463 :,

0.337
-0.296

0.845
0.672
O;557 •
0;476
0.416

0,926
O.780

0.673 i
0,592

I" 0.264- -0:529

0.478 0.956
0.412 0.824
0.362 O.723

m=3

1.268
1.008 _

_ O,836 ._

0,624

:_1.169 .....

1.01D
0,888

1.434
1.235
1.085

0.254
0.127
0.085

0.451
0.225
0.150

0.615
0.308
0.205

0.272

0.384
0.348
0.319
0.294
0.272

0.384
0.348

0.635

0.895
0.812
0.743
0.685
0.635

0.895
0.812

0.998

1.407
1.276
1.168
1.077
O.998

1.407
1.276

O.291

0.486
0.424
0.376

0.491
0.431

0,581

0.972
0.847
0.751

0.982
0.862

0.872

1.458
1.271
1.127

1.473
1.294

0.123

0.758
0.379
0.253

0.319 0.743
0.294 0.685
0.272 0.635

0.384 0.895
0.348 0.812
0.319 0.743
0.294 0.685
0.272 0.635

1.168
1.077
0.998

1.407
1.276
i. 168
1.077
0.998

0.384 0.769 I. 153 0,295_

0,316 0:632 '":.0_948:':. 0 177]

0.494 0.989 1.483 _ :0,997 ._;
0.436 0.873 1.309 0.498 _
0.391 0.781 1.172 0.332(:i
0.354 O.70:7 "=1_(_ff1 - 0,249
0.323 0.646 0.969_ 0.199 ;_
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