
N95. 28734

AUTOMATIC BLOCKING FOR COMPLEX

THREE-DIMENSIONAL CONFIGURATIONS

John F. Dannenhoffer, lip

United Technologies Research Center

East ttartford, CT 06108

ABSTRACT

A new blocking technique for complex three-dimensional configurations is described. This new technique

is based upon the concept of an abstraction, or squared-up representation, of the configuration and the

associated grid. By allowing the user to describe blocking requirements in natural terms (such as "wrap a

grid around this leading edge" or "make all grid lines emanating from this wall orthogonal to it"), users

can quickly generate complex grids around complex configurations, while still maintaining a high level of

control where desired. An added advantage of the abstraction concept is that once a blocking is defined for

a class of configurations, it can be automatically applied to other configurations of the same class, making

the new technique particularly well suited for the parametric variations which typically occur during design

processes. Grids have been generated for a variety of real-world, two- and three-dimensional configurations.
In all cases, the time required to generate the grid, given just an electronic form of the configuration, was at

most a few days. Hence with this new technique, the generation of a block-structured grid is only slightly

more expensive than the generation of an unstructured grid for the same configuration.

BACKGROUND

One of the major impediments to the use of computational simulations for predicting the performance of

real-world configurations is the time needed to set up a suitable computational grid. It is not uncommon
for it to take well in excess of three months to generate a suitable grid for a new type of configuration.

Clearly, such a long lead time makes the use of simulations practical for only a small number of important

problems and for routine design work which involves relatively small changes from previous configurations

(wherein the grid generation work can be amortized over many thousands of computational simulations).

Computational grids for fluid flows are especially hard to generate because of tile stringent requirements

imposed by the flow physics and subsequently the flow solvers (such as surface orthogonality and cell aspect-

ratios of about 106). It has proved to be very difficult to adapt the automatic techniques used within tile

structures community to situations with such stringent requirements.

In order to understand why grid generation is such a bottleneck, it is useful to take a quick look back

at how block-structured grid generation software has evolved to its present state.

The first generation of block-structured grid generators were batch-oriented systems which extended,

in a rather straightforward way, the grid generation lechniques which had previously been developed for

*Senior Research Engineer

__._ ;:',._.,_ "" "".' '".!(V::: ._._,_ 123

two dimensions.They allowedhighly-trainedexperts to generategrids overarbitrarily-complexthree-
dimensionalconfigurationsthroughmany thousandsof linesof command-linecontrolinformation. The
mostwidelyknownof the first generationsystemswasEAGLE[l].

The secondgenerationsystems(which representthe current state-of-the-art)are workstation-based
techniqueswhich rely on high-speedgraphicsto allowusersto interactivelygeneratethe samecontrol
information. With thesesystems,the expertscangenerategridsin lesstime, and with fewererrors,than
theycouldwith thebatch-orientedsystems.But thegridsarestill manuallygeneratedpiecebypiece,over
a periodof manymonths. Examplesecond-generationsystemsincludeNGP[2],ICEM-CFD[3],GRIDGEN[4],

RAMB0-4G[5], 3DGRAPE[6], PATRAN[7], and FIDAP[8]. All of these suffer the same important disadvantage,

namely that the grid generation process is very labor intensive.

In order to determine where all the labor is consumed, it is useful to break the process into its major

steps:

Prepare the configuration -- as expected, the first step in the grid generation process is the preparation

of the configuration to be analyzed. The first part of this step requires that the grid generation system

acquire the geometry, most preferably by a direct link to the CAD system on which the configuration

was designed. Unfortunately, the configuration which the CAD system describes is seldom that which

one wishes to analyze; for example, the actual configuration generally contains many geometric details

(such as a probe) which are not germane to the analysis being performed. In addition, one often

needs to create "artificial" surfaces to bound the domain, such as in the far-field or over an engine

inlet. This preparation step usually accounts for the largest expenditure of labor. (It should be noted

that this step is exactly the same, regardless of whether a block-structured or an unstructured grid

is to be generated.)

Design blocking plan -- the user has to decide upon a suitable grid topology for the given configuration,

keeping in mind both the expected flow physics as well as any restrictions which the flow solver may

impose. The user typically meets these requirements by choosing near-body topologies which are

locally consistent with each component of the configuration, and then connecting these blocks in a

way that ensures, or at least encourages, grid line smoothness in the field. At present, this step is an

art, requiring much intuition, practice, patience, and unfortunately trial-and-error. This step does

not in itself require much labor, but any changes made here can result in large labor expenditures in

the following steps.

Implement blocking plan -- the blocking plan just designed has to be described to the computer so

that the grid can be generated. Current approaches require that a user transform the design (which

the User's Manuals typically suggest that the user "sketch") into numbered or named points, lines,

and surfaces. In addition the user must prescribe how the primitive components are to be connected

in the final grid. The user is also required to set up the number of grid lines in each direction in each

block. This step can consume a large portion of the block-structured grid-generation effort.

Generate grid -- the grid point locations for all surface and field points are defined, either algebraically

and/or through a PDE-based grid generator. This is the part of the process at which most current

multi-block grid generators excel. In many systems, this step is a push-button operation which

requires very little human time (although it may require a rather large amount of CPU time).

Assess grid quality -- the final computational grid is examined for irregularities such as excessive skew

and stretch, cells which are too small or large, etc. If the analysis of the grid reveals any deficiencies,

then the user must go back to one of the steps listed above, fix errors or make different choices, and

repeat. Although tedious, this step is usually performed rather quickly; the major impact of this

step to the overall effort is the time incurred in iterating back to one of the steps above.

124

Currently,the major bottleneckis in the designandimplementationof the blockingplan, steps2 and 3
above.For complexthree-dimensionalconfigurations,thesetwo stepscanconsumeseveralman-monthsof
effort. The objectiveof this work is to developtoolsand techniquesfor efficientlyperformingthesetwo
operationsfor arbitrary three-dimensionalconfigurations.

TECHNICAL APPROACH

This paperpresentsa newmethodfor designing,describing,andsubsequentlyrealizing,block-structured
gridsaroundcomplexthree-dimensionalconfigurations.It is assumedthat the Prepare the configura-
tion stepdescribedabovehasalreadybeencompleted.Additionally,very little will be discussedabout
the Generate grid andAssessgrid quality steps;both arediscussedin detailelsewhere[9,10].

Description vs. Prescription

The basic idea behind the automatic generation of block structures is to change the user paradigm from

one which is prescriptive to one which is descriptive.

In a prescriptive process, the user has a set of low-level tools which prescribe exactly how the problem

is to be solved. Examples of these low-level tools include drawing a line in space to serve as an edge of

some block, generating an edge which is constrained to lie along a certain input surface, and connecting

four edges into a face. While control at this level is certainly very powerful (and sometimes indispensable),
the labor associated with such an approach grows very rapidly, especially in configurations with multiple

interacting components.

Alternatively, a descriptive process describes what the grid should look like. Example descriptions

include the fact that the grid should wrap around the wing leading edge, that the store grid should lie

within the wing grid, and that the grid should be orthogonal to all solid surfaces with a user-defined off-

body spacing to the first field point. Such descriptive statements are very powerful; in fact, they generally

correspond to between ten and a hundred low-level prescriptive commands. Additionally, since descriptive

commands represent high-level concepts, they provide a framework for divide-and-conquer approaches,

wherein the grid in the vicinity of each component is described separately and the automatic blocker

worries about interfacing them to achieve an overall block-structured grid.

It should be noted that there is an exact equivalence between the prescriptive and descriptive ap-

proaches; the only real differences between the two is the economy of the expression which the descriptive

approach provides.

Abstraction

The key to describing, rather than prescribing, a block-structured grid is the direct preparation (by the

user) of an abstract "sketch", herein called an abstraction. The abstraction can be thought of as a "squared-

up" representation of the given configuration and of the computational grid which is to be produced. As

will be seen below, typical configurations are generally abstracted by brick-shaped elements which represent

the various components of a configuration.

This idea was inspired by the earlier work of Allwright and his colleagues[l 1], who showed the utility

of such an abstraction in describing arbitrarily-complex three-dimensional grid topologies. Related work

by Shaw and Weatherill[12] has also used the concept of abstraction. In both cases, the configurations of

interest were all airplane-like, consisting of components such as fuselages, wings, and nacelles.

Although there are many similarities between the present work and the works of Allwright and Shaw,

there are some major differences which make the present work more amenable to general configurations

125

suchas are found in internal flows (for example,ductsand pumps)and traditionally non-merodynamic
configurationssuchaselevatorhoistways.(Detailsof thesedifferenceswill bepublishedat a later date.)

The exact techniqueusedto specify the abstractionof both the configuration and grid and their

properties in the current technique is through the drawing of blocking objects on an abstract background

grid. These blocking objects, which come in a variety of types (cubes, wraps, attaches, holds, rulers, and

spacers), closely correspond to the concepts which one "sketches" during the design of a block-structured

grid.
In the sections which follow, each type of blocking object, and the role it plays, is described. For

illustrative purposes, the configuration which is used is a two-dimensional airfoil in a wind tunnel. It

should be noted that the tools and techniques are equally applicable to more complex configurations in

two and three dimensions, as demonstrated in the Applications sections below.

The Background Grid

The space in which the abstraction is drawn is covered by an integer Cartesian grid called the background

grid, which can be thought of as a piece of graph paper (in either two or three dimensions). The resolution of

the background grid is chosen so as to be fine enough to describe the various components of the configuration

and block structure, yet coarse enough to allow background grid operations to be performed efficiently.

All blocking objects are placed on the background grid in such a way that their corners or endpoints lie

exactly on an integer coordinate of the background grid (that is, where the lines on the graph paper cross).

While this limits the number of locations and the sizes of the blocking objects which are possible, such a

restriction is warranted since it makes it possible to efficiently determine the relative locations of various

objects (such as object "A" is to the left of object "B" or that object "C" is contained within object

"D"). Besides the ability to specify relative positions, the actual background grid coordinates at which an

object is placed is arbitrary. That is to say, the absolute distance between points on the background grid

is insignificant.

Abstraction of Configuration: Bound Cubes

The first step in describing a grid is the creation of an abstraction of the configuration around, or inside,

which a grid is required. This abstraction, or "squared-up" representation, is built up with a series of

brick-shaped objects which are call bound cubes. In the current implementation, the user "draws" bound

cubes by selecting a pair of background grid locations to specify opposite corners of the bound cube; the

rectangular region between these points is automatically filled in with the bound cube which is rendered
as a solid-colored box.

As an example, consider the configuration made up of an airfoil and its wake in a wind tunnel; a suitable

abstraction is shown in Figure la. Notice that the airfoil, wake, and outer boundary are each represented

as a rectangle (even though the actual geometry is not rectangular). Of significance in this figure is the

fact that the airfoil is completely contained within the outer boundary, that the wake is attached to the

right of the airfoil, and that the wake is also connected to the downstream (right) portion of the outer

boundary. Recall that since the size of each increment on the background grid carries no significance, the

airfoil bound could have been placed anywhere within the outer boundary, yielding a completely equivalent

representation.

At this point, a slight digression is in order to describe the basic interpretation of the abstraction. The

default block-structured grid which is generated corresponds to an H-type grid. Blocks are generated to

fill the portions of the background grid which are outside the bound cubes. Specifically, block boundaries

will be generated to yield the minimum set of blocks which are both all rectangular (in the abstract space)

and which have one-to-one face matches with all other blocks; additionally, each face of each block can at

126

mostbe associated with one configuration surface.

As in all H-type grids, the grid lines basically run horizontally and vertically throughout the domain.

So for Figure la, there are some grid lines which begin at an upstream portion of the outer boundary

(in the region labeled "a') which run horizontally and which pass below the airfoil/wake and end at a

downstream portion of the outer boundary (labeled "g"). Similarly, grid lines which begin in the region

labeled "c" pass above the airfoil and end in the region labeled "h". Finally, there are grid lines which

begin upstream (to the left of) of the airfoil (in the region labeled "b') which end at the front of the airfoil
surface.

The other family of grid lines (those which run vertically on the background grid), has similar behaviors.

Some start at the lower portion of the outer boundary (in the region labeled "d'), pass in front of the

airfoil, and end at the upper portion of the outer boundary (labeled 'T'). Others start in the regions
labeled "e" and "f" and end on the lower surface of the airfoil and wake, respectively. Still others begin

on the upper airfoil and wake surfaces and end on the upper boundary in the regions labeled "j" and "k",

respectively. The corresponding grid for this configuration is shown in Figure lb. Note that seven blocks

are created, with block boundaries emanating only from the "corners" of the airfoil.

In the above discussions, the terms "lower surface of the airfoil", "upstream portion of the outer

boundary", etc., should not be taken too literally; the terms simply serve to indicate approximate parts

of the configuration, with the exact locations determined automatically so as to make the grid as smooth

as possible. Note also that terms such as "some grid lines" were used in the above discussion; the exact

number of grid lines in each region is specified by another blocking object known as a ruler (which is

described below).

Abstraction of Grid: Field Cubes and Wraps

As stated above, once the configuration has been abstracted with bound cubes, a default It-type grid can

automatically be generated. In order to change the grid topology either locally or globally to another type,

such a C-type, other blocking objects must be added to the background grid. Field cubes and wraps are

those blocking objects.

A field cube is a rectangularly-shaped box which is placed on the background grid to force additional

block boundaries to be generated. As a general rule, all grid blocks will lie either within or outside of each

field cube. Notice that field cubes do not change the topology of the grid; they just give the user a means

of breaking the default blocks into smaller blocks.

When the background grid is first generated, a special field cube called the outer boundary is placed

around the periphery of the background grid. All other blocking objects must be placed on or within this

outer boundary -- a rule which is consistent with the notion of an outer boundary.

For example, consider again the airfoil/wake in a wind tunnel. If a field cube is added (as shown by the

unfilled rectangle in Figure 2a), then the grid which is generated is still tl-type (see Figure 2b), but now

contains 18 blocks. In concept, breaking blocks in this way should not change the grid point locations;

in practice, the locations are slightly different due to the fact that the elliptic smoother is not run until

convergence.
So far, the bound and field cubes have been sufficient to describe "streamline-like" grids, but not

"wrap-around" grids, as are frequently required. To remedy this, wraps are added to the background grid.

Wraps are specified by selecting two cubes (either bound or field), and then automatically creating

"diagonal" lines to connect their respective corners. Shown in Figure 3 are the nine different wraps which

are possible in two dimensions; in three dimensions, the number grows to twenty-seven. The first wrap

shown in the Figure, in which the inner cube is fully within the outer cube, corresponds to an O-type grid:

one family of grid lines are bent by each of the diagonal corners such that they encircle the inner cube

while the other family are basically radial. The second row of wraps in the Figure, which correspond to

127

C-typeregions,result when one edge of the inner cube is coincident with an edge of the outer cube. The

last row corresponds to corner wraps.

Figure 4 shows the effect of wrapping the airfoil bound cube within the field cube which was added in

Figure 2. This results in a C-type grid around the airfoil, but within an outer H-type grid.

If one considers the trapezoidal regions generated by a wrap to be field cubes, then the concept of

wrapping can be nested to create an almost unlimited set of block topologies for a given configuration. For

example, one may want to create a wrapped grid around a fuselage. Then in the region next to the fuselage

which contains the wing, another wrap may be desired to create a C-type grid on the wing. Then, the region

below the wing can be further wrapped around a pylon to create a local C-grid there. Although it may

seem confusing, users have reported that thinking about the block structure in this manner is much less

confusing than the alternative of manually constructing complex block structures for such configurations.

Attachment between Abstraction and Configuration: Attaches

A new development of this work over that previously reported[13, 14] is the method by which the abstraction

and configuration are attached. Presently, a very simple blocking object called an attach is used by which

the user gives the correspondence between each corner of each bound cube (and the outer boundary)

with the appropriate location on the configuration. For example, the attaches needed for the airfoil/wake

configuration (discussed previously) are shown in Figure 5a. The easiest place to actually see the attaches

are those associated with the airfoil and wake; the attaches at the corners of the outer boundary are not as

obvious because the abstraction and configuration happen to be rendered at the same location, masking

the line which connects the two. The attaches associated with the airfoil are of two types: those drawn as

a star specify that the grid generator is required to put the grid point at the exact configuration point to

which it is attached; those drawn as a circle specify that the grid generator can "slide" the grid point along

the selected configuration surface so as to make the grid as smooth as possible. The latter is a particularly

nice feature since it eliminates the need for the user to exact specify a priori all block corners which are

on the interior of a surface.

This Figure also points out another feature of the abstraction. The mapping between the configuration

and the abstraction is a many-to-one relationship. That is to say, each point on the abstraction corresponds

to one point on the configuration, whereas each point on the configuration can correspond to many points

in the abstraction. This is evident at the airfoil trailing edge, where the trailing edge point maps to both

the top and bottom of the airfoil's abstraction.

Other Blocking Objects: Rulers, Holds, and Spacers

In the above descriptions, terms such as "some grid lines" were used to describe the number of grid lines

in each region of the grid. A blocking object called a ruler is the method for exactly specifying the number

of points in each region. Shown in Figure 5b are the rulers for the tt-grid problem.

One of the useful features of the abstraction is that it is relatively easy to propagate sizes from one

region to another; grid regions (blocks) which abut are required to have the same number of grid lines.

Similarly, it is relatively easy to perform size arithmetic, that is to determine the number of grid lines in

various regions by simple arithmetic calculations. The only restriction on sizes is that they be consistent

(that is, all size arithmetic yield the same results) and that enough sizes be prescribed so that the number

of grid lines in all blocks can be calculated.

Another blocking object called a hold gives the user a way of easily specifying geometry such as sym-

metry planes and outer boundaries. A hold represents a plane in physical space in which one of the space

coordinates is held fixed; the value of the fixed coordinate is determined automatically by the attaches

which are associated with the hold. Unlike surface-surface intersections which must be explicitly generated,

128

the intersectionbetweentwoholdsor betweena holdanda surfacedoesnot haveto bedirectly generated
by the user; this makesholdsan easywayof representingsymmetryplanesfor half-bodyconfigurations.
Becauseholdsact as a surrogatefor an actual configurationsurfacewithin the grid generationprocess,
they will not bediscussedfurther here.

Thefinal blockingobject,a spacer, is the method used to describe grid properties such as wall spacings

and orthogonality. Rather than requiring that the user specify these quantities along the edges which are

(logically) perpendicular to a surface, spacers allow the user to specify the surface directly. Spacers give

the user the ability of directly describing the grid requirement the "grid lines should be normal to the wing

surface and that the wall spacing should be x." Since spacers do not directly affect the blocking, but rather

are passed along to the grid generator in the form of required edge spacings, they will not be discussed
further here.

Transformation of Abstraction to Grid

Once the grid topology is specified by placing blocking objects on the background grid, a set of transfor-

mations, which are fully described in [13], are used to generate a suitable assembly of grid blocks. The key

steps include:

• transform the field cubes and wraps into grid blocks;

• fill the remaining portion of the background grid with (logically-)rectangular grid blocks

• break grid blocks so as to establish one-to-one face matches (partial face matches are not allowed --

see [15] for a method for overcoming this limitation);

• determine the sizes (number of grid points) in each block;

• eliminate degenerate blocks (that is, blocks which contain no grid points);

• associate the abstraction with the configuration surfaces and curves;

• allocate grid nodes for each block;

• use parametric transfinite interpolation to assign initial locations to all grid nodes which are con-

strained to lie on one (or more) of the configuration surfaces;

• use transfinite interpolation in space to assign initial locations to all other grid nodes; and

• apply a multi-block elliptic grid generation schemes to smooth the block boundaries (which were

arbitrarily placed above).

TWO-DIMENSIONAL APPLICATIONS

This section begins by showing the three different grids around an airfoil/wake in a wind tunnel which

were previously described in the Abstraction of Configuration: Bound Cubes and Abstraction of

Grid: Field Cubes and Wraps sections. Figures 1, 2, and 4 show the abstractions and resulting grids

for two different H-type and one CH-type grid. In all cases, the same configuration abstraction (bound

cubes) and abstraction-to-configuration attachments (attaches) were used; the only differences were in the

grid abstractions (field cubes and wraps). In other words, once the time-consuming task of setting up

a configuration was done, the new technique allowed the user to quickly experiment with differing grid

129

topologies.Thiscollectionof gridsrequiredlessthanfiveminutesto specifyandgenerateonanengineering
workstation.

To showthe generalityof this abstractiontechnique,grids for two completelydifferentconfigurations
werealsogenerated.Figure6 showsthe abstractionandgrid for aninternal-flowpassagecontainingeight
circularpostsand Figure7 showsthe abstractionandgrid for a cross-sectionalcut througha gasturbine
combustor.Both gridsrequiredlessthan 30minutesto describeand generate.

THREE-DIMENSIONAL APPLICATIONS

The first demonstration presented here is the full three-dimensional model of a gas turbine combustor, as

shown in Figure 8. This configuration was abstracted in steps. First, an abstraction from an equivalent

two-dimensional configuration was generated and then extruded into the third dimension. Second, the

hole associated with the fuel injector was cut into the abstraction, with the grid blocks automatically

readjusting themselves. And third, the eight dilution holes (four each in the upper and lower liners), were

added with the grid blocks again responding. This multi-step process significantly reduces the number of

items which the user has to consider at any one time, and thereby helps limit the number of user errors.

The second three-dimensional configuration is for a generic elevator hoistway with a streamlined car

(Figure 9). This configuration, which is very different from the above, shows that the current set of blocking
objects is flexible enough to handle very diverse configurations. This grid was generated in less than a day.

The third configuration is a generic fighter with a side-mounted inlet (shown in Figure 10). This

configuration, which is more typical of those found in the aerospace industry, exhibits complications in

the area where the engine duct and the horizontal tail intersect. (This is the reason why the abstraction

of the horizontal tail is fatter than the wing.) In generating the configuration abstraction for this case,

the configuration was conceptually broken into a series of sub-problems, each of which were attacked

independently. The solutions to these sub-problems were stored as templates which were recalled and

combined to tackle this complex problem. The entire grid for this case, including the development of the

templates, took less than 3 days to complete, given just an electronic specification of the configuration.

Finally, a grid was generated for another fighter which was topologically similar to that shown in

Figure 10, but which had a wing with a different planform and airfoil section. This grid (not shown

because it essentially looks the same as that in Figure 10) was generated completely automatically with the

exact same blocking objects as were used above. This demonstrates another power of this technique --

parametric grids can be generated automatically for classes of configurations once the first grid has been

generated.

CONCLUSIONS

A new technique which enables a user to describe, rather than prescribe, block-structured grids in two and

three dimensions is presented. This new technique has many advantages over current techniques, namely:

the blocking for a completely new configuration can be done in about an order-of-magnitude less

time than is typically required using more traditional techniques. This makes block-structured grid

generation again competitive with unstructured grid technology for a wide variety of problem types;

since the configuration and/or grid topology can be easily modified, the user is encouraged to employ

a divide-and-conquer approach to complex configurations. That is, the current technique allows

users to build up configurations slowly, thereby reducing the complexity added at any step (and the

associated chance of making an error);

130

* sinceagrid topologycanbemodifiedrathersimply,thetrial-and-errorprocesswhichisunfortunately
part of blockingdesign,is easilyaccommodated,with the endresultbeinghigherquality grids;

templatesof abstractionscan be created for many frequently-occurring configuration components,

thereby reducing the blocking problem for multi-component configurations to the concatenation and

nesting of the appropriate templates. In fact, previous work in automatic grid generation[16] used

optimization techniques and expert system technology to automatically generate grids in two dimen-

sions; and

• the technique described herein is independent of the multi-block grid generator used, and thus is

immediately applicable as a front-end to many current systems.

ACKNOWLEDGEMENTS

This work was conducted under the United Technologies Corporate Sponsored Research Program and is

currently implemented both as a stand-alone system (called MKBL0X) and as an application module within

the National Grid Project (NGP). The author would like to thank Prof. Nigel Weatherill for the many
hours of discussions about this work. Also, the author would like to thank his many colleagues who

suffered through many demonstrations of half-baked ideas; their comments were invaluable in making this

technique applicable to real-world problems.

REFERENCES

[1] Thompson, J.F., Lijewski, L.E., and Gatlin, B., "Program EAGLE User's Manual," AFATL-TR-88-

117 (Volumes I, II, and III), September, 1988.

[2] Gaither, A., Gaither, K., Jean, B., Remotigue, M., Soni, B., Thompson, J., Whitmire, J., Dannen-

hoffer, J., Weatherill, N., "The National Grid Project: A System Overview," NASA-CP-3291, May,

1995.

[3] Akdag, V., and Wulf, A., "Integrated Geometry and Grid Generation System for Complex Configu-

rations," NASA-CP-3143, pp 161-171, April, 1992.

[4] Steinbrenner, J.P., Chawner, J.R., and Fouts C.L., "The GRIDGEN 3D Multiple Block Grid Gener-

ation System," WRDC-TR-90-3022 (Volume II), July, 1990.

[5] Widhopf, G.F., Visich, M., Than, P.T., Boyd, C.N., Huang, S-C., Oliphant, P.II., Stall, D.J., Swed-

berg, G.D., Shiba, J.K., and Coons, R.E., "Rambo-4G: An Interactive General 3-D Multi-Block Grid

Generation and Graphics Package for Complex Multi-Body CFD Applications," Aerospace Report

ATR-91(9990)-1, October, 1990.

[6] Sorenson, R.L., "The 3DGRAPE Book: Theory, Users' Manual, Examples," NASA-TM-102224, July,
1989.

[7] "PATRAN Plus User's Manual," PDA Engineering, July, 1987.

[8] "FIDAP Program" documentation, Fluid Dynamics International, Inc., January, 1990.

[9] Thompson, J.F., Warsi, Z.U.A., and Mastin, C.W., Numerical Grid Generation: Foundations and

Applications, North-ttolland, 1985.

131

[10] Parmley,K.L., Dannenhoffer,J.F., and Weatherill,N.P., "Techniquesfor the VisualEvaluationof
ComputationalGrids," AIAA-93-3353,June,1993.

[11] Allwright, S.E., "Techniquesin MultiblockDomainDecompositionand SurfaceGrid Generation,"in
Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge Press Limited, 1988.

[12] Shaw, J.A., and Weatherill, N.P., "Automatic Topology Generation for Multiblock Grids," Applied

Math. and Comp., vol 53, pp 355-388, 1992.

[13] Dannenhoffer, J.F., "A Block-Structuring Technique for General Geometries," AIAA-91-0145, Jan-

uary, 1991.

[14] Dannenhoffer, J.F., "A New Method for Creating Grid Abstractions for Complex Configurations,"

AIAA-93-0428, January, 1993.

[15] Dannenhoffer, J.F., "A Technique for Optimizing Grid Blocks," NASA-CP-3291, May, 1995.

[16] Dannenhoffer, J.F., "Computer-Aided Block-Structuring Through the Use of Optimization and Expert

System Techniques," AIAA-91-1585, June, 1991.

132

b

a

I i] j I k

g

d I e I f

a) abstraction

.. /11 Ill[[[tllllll_l[llil

l.}.x+tk_,%',_.l.++t, lttlIIll+LIli_,,l[lllllllllllfllllllIllllllllllli[llllll
'_, _Lll't'_ _ Ill. Ill II1_11 I I_] Ill/ Illlllfll II III IJ I I I I I I I l I I I I]] I

X%_ll%lllll_lt_|llllllillllllJll l l l l l l l l l l l l ! I I I I I I I 1 I I
Illllllllllllllllll I I IIIIIll I I I

IIIllltllJlllllJlJlllJJllllllllllllll
HIIIIlllllllllllIIllllllllllllllllll]li

IIIHIII[[IIIIII I 1 II I I ll I I [[I] I |
HIIItlIIIIIIIIIIIIIIIIIIIIlttlIIII I

IIHIIIIIIIII I II I II I II I I I I I II I
IIIlllllllllllll /I I1 I I I] I I] I I I I I

IlJllllll[lllllllllllllllltll I
IlJJlllflIlllltlllll II I I I I

Jllllllllllll[llllllllllllll

IllllllJlllltl[lllllllllll

IIIIJlll IJlHllttlltllnl_lttillt_ttt_ttt_tt} I I I I I I I I I I

TIIIItlIIIIJl I II IIl]ll]llll_ltl|tllttlllt_ _l_i I t I _ I I I I I

[[II f I(llllJlIllJlllllll Illl I_1_ I_}1_ It/I I I l/ / I _ / _ I _ t I _ I _ I _ I I I

llllllffllflfflllllll[lllll_l_l_tlllltl_ll_ I+l_ll_lll_lll|illll[lllllltllllllllJlllllllllllllll_.lll_lll, lllll_llll_ll_lllttl[
__#__]ll_I_¶_II|_II_II_¶I_[_

|_t____I_Ii_II_I_I_I_i_I_[_

III I IIIllllllllllllfIllllllllf[l[I[llllllll] Ill [_IL_IlIlIIII}IIIIIII_II_I_II III

b) grid

Figure 1: H-grid around airfoil in wind tunnel.

133

a) abstraction

_lttlit_Xlll_l_lt_lltitlitl_ttlitit_|llllllllllllllllJlllllltllllll;ll]]lll

It,ix...+.,+,..,.,,,,...,,,,, , , ill,
+ t_tttlltt_It_Xtlttlllill+lil+lj 11 IIllll]ll

It_tlt_l_]lll llJl JlJ[J]i
tlttlltL_LtXlHlllll I + +I +lilt

_,ttltlil$_lllll Ill IIIIllltltl| lJllltlll l l J j t l J t l J t l lt l[I l I t f I I I I [I (I I I t I I I I

lllllJJfJflllllllliJ [lI Ill +l l l l ll I I
HlJJlll_l[lllllllllllll_11 I I

Illlllll[[Itt[[llIlll
IJJlllllJlllfllf[JJlllll[llll

IIIIIllllllllllllllllllllll
DJI;IIIIIIIIIIIIJIIJtlIIIIlll
]llflllllllIl l l l l llJ f J l l l l l]

IIIIII1[11t1111t11111111

711111111t1111111111111111
IJrlllllllll I [I

llllitlX_it _ _ t I _ t t / I lit It t It
i i i i i i i / l I I 1
i i i i i i i i i l l $ IILI/Ltlll _ "1 It 't [I,II I _ I It It I _ I _ It I

IIII_IIIIV, IIXX I I I I ', I '. It t I _ It I '* : I I I [l
Illlllllllll

• II_itlitittl't_ I I_ '1 'l _ t Ill 111 _ 1 I I I _ _ l [

lll[llit l_ _I t I I I I It It _ I _

Illllll II Ill|l[litititl'_l _l | 1 'l I I I l l "i _ It It I I I I I I I I

i I11 fllliJllIllllll#ll It_t_tl II[It I I t I I I I I I I 1+ l [I It It [| [] _ I
11111111[ll#ltlllJlllll_ltiililtiitlit _ll_kll_llll

,,,,,..,, ,_t_,.,
ltllJlJ[J]lJl_llJllllllllllllltll_ll_|;|[_[JJ I_|_lllllt

_lllllllllllllllllllllllllllll_ll_l_l_l_l_lt_l_llllllll_ll
I [I I illll llllltlllJlgJllllJllllJ[[tllllllllllllllll[llll_l$lll[il4lll_llil II

IIlOtllllllllllllllllllll[ItllJltf Illltlll[I _111t]_ IJlllllllllll

IlJlllllt_llJlllfllttl_lll]lll]l[l[lllllll_lllll_l_ _ I, _ It

b) grid

Figure 2: H-grid (with field cube) around airfoil in wind tunnel.

134

Figure 3: The nine possible wraps in lwo dimensions.

135

a) abstraction

III _ _'_ I'_\\X_,_
_I I _[[llll[llllllll]]llll[llllll

[I[[I]IIIIIII[IIIIIIIIIII]HIIIIIIIIlIll[l[ilIIIIIIIIIIlJll

I11111111# II1[[

l_llllJll J [I I I [J I I I I I I I I l I I i I

_tJ+Jm 1 /

b) grid

Figure 4: CH-grid aroun(l airfoil in wind tunnel.

136

a) abstractionandconfigurationwith attaches

25

I

}Og

125

b) abstraction with rulers

Figure 5: H-grid around airfoil in wind tunnel.

137

a) abstraction

b) grid

Figure6: Block-structuredgrid aroundpassagewith eightposts.

138

N

|_| I_'_ _

a) abstraction

b) grid

Figure 7: Grid for combustor cross-section.

139

a) abstraction

b) grid

Figure8: Grid for three-dimensionalcombustor.

140

a) abstraction

b) grid

Figure9: Grid for elevatorhoistwayandstreamlinedcar.

141

a) abstraction

b) grid

Figure10: Grid for genericfighter.

142

