
MULTIBLOCK GRID GENERATION
WITH AUTOMATIC ZONING

Peter R. Eiseman

Program Development Corporation
300 Hamilton Avenue, Suite 409

White Plains, NY 10601

N95. 28735

SUMMARY

An overview will be given for multiblock grid generation with automatic zoning. We
shall explore the many advantages and benefits of this exciting technology and will also see
how to apply it to a number of interesting cases. The technology is available in the form of
a commercial code, GridPro_/az3000. This code takes surface geometry definitions and

patterns of points as its primary input and produces high quality grids as its output. Before
we embark upon our exploration, we shall fn'st give a brief background of the environment
in which this technology fits.

\

MULTIBLOCK GRID GENERATION

Multiblock grids provide the best data structure for a wide variety of analysis
programs. Because the local coordinate pattern of grid points is regular, the accounting
overhead for point to point linkages is low and is quite simple. This means that there are
more algorithms available for analysis, and moreover, that those algorithms are generally
more efficient. In addition, the local coordinate structure has been recognized to produce

generally more accurate results. These advantages from a single coordinate grid, carry over
into the more general setting where many blocks of coordinate grid are continuously glued
together to form a multiblock grid. Without a continuous glue between blocks of grid, one
has the problem of transferring data between either non-aligned or overset grids. This
involves many issues which relate to the management of data and the preservation of
accuracy. When the glue between blocks is continuous, then the data transfer problem is
vastly simplified and accuracy is greatly enhanced. The accuracy is even further enhanced
as the continuity level increases (e.g. continuous derivatives). Moreover, multiblock grids
are also well positioned to take advantage of parallel computing environments.

The multiblock template provides zones for the various coordinate grid blocks to
reside. This is a general structure and, as such, is one which can be used for arbitrarily
complex configurations. It is, in fact, a coarse unstructured dissection of space into
chunks. In distinction from what is typically called an unstructured grid, the ceils define

macro regions in space that are called zones and which generally have curved boundaries.

TRADITIONAL METHODS

In the traditional approach to multiblock grid generation, the creation of a grid is done
in a piece by piece fashion. The process starts with the geometric region boundaries,
continues by forming the zonal boundaries, proceeds by generating grids on each boundary
section, and concludes with volume grid generation. The main distinctions between the

143

varioustraditionalmethodsis theorder in which the pieces can be put together, the
numerical methods employed to treat each piece, the style of interactive graphics utilized to
help the user deal with all of the pieces, and the ability to replay and edit parts of a session
by the use of journal f'des.

In the course of applying a traditional multiblock generator, the user must not only
insert rather large amounts of data but also must make judgments about that data. Such

judgments often concern the relative spatial location of various objects. These can vary
from something as basic as placing one zonal corner in space to more detailed matters such
as determining both the shape and location of zonal edges. Unfortunately, the detailed
judgments continue with such items as trying to appropriately adjust edge or surface grids
on either side of a zone or region. Altogether, the traditional user is faced with the
geometry and grid generation for corners, edges, and surfaces before he proceeds to
volumes. In the usual progression of events, many judgmental errors are made and these
translate into repeated operations. The result is great human inefficiency and loss of time.
By the time volumes are considered, the real human work has usually been done.

THE AUTOMATIC METHOD

With the grid generation technology to be discussed here, there is a huge paradigm
shift. There is no longer the rather manual construction and assembly of multiblock grids
that is fraught with the error prone tendencies of human judgment. There is no longer the
massive amounts of detailed data required of the user. There is no longer the huge reliance
upon high end computer graphics to manage that manual activity. Instead, the amount of
input data is enormously reduced, the detailed human judgment is gone, and the
management of data is efficiently controlled with an appropriate language. Moreover, the
quality of grids is much, much higher. It is the same mathematical underpinnings that
reduce the user effort which also account for the substantial increase in quality. Basic grid
quality appears in the form of near orthogonality, smoothness, low warpage, and curvature
clustering for both concave and convex boundaries.

The discussion will focus upon the program called GridPro®/az3000 which is a
commercial product and which is the most automatic and powerful multiblock grid
generator available. Unfortunately, there are too many grid generators that are referred to
as "automatic" and, as a consequence, user's are quite naturally confused. After all, a good
number of the traditional multiblock grid generators are called automatic ones. To make
some sense out of this situation, the real question that should be asked is "when does it
become automatic? or "from what stage is it automatic?"

As the story is examined, it will be seen that GridPro®/az3000 is automatic from an
earlier stage than any other 3D multiblock generator and produces higher quality grids as

well. That stage, is defined by the presence of region boundaries, the pattern of grid
points, and a small handful of scalar parameters. Surface grid generation, zone
construction, and the intersection between surfaces are examples of the tasks that are solved

as .part of the automatic solution. Of the user inputs, the primary one is the pattern of
points which is referred to as the grid topology. The language that organizes the pattern of
points is called the "Topology Input Language" (TIL). TIL codes are extremely flexible
items and can be used to generate grids about various classes of configurations. In this
context, GridPro®/az3000 compiles and runs TIL codes. While future developments are
likely to include both interactive and automatic TIL code generation, our concentration shall
be on the TIL language, its benefits, and the grid generation capabilities. An overview of

GridPro®/az3000 is given in Eiseman, Cheng, and Hauser [1] and a detailed account is
given in the user's manual [2].

144

GridPro®/az3000

The practical industrial needs for engineering analysis are speed, accuracy, reliability,
and realistic configurations. The latter often leads to massive complexity. Such complexity
appears when configuration boundaries contain a very large number of geometric
components. A large number of grid points is also desired but is balanced against the
available computer resources. With massive complexity, comes the requirement to deal
with an arbitrarily large number of blocks. For the traditional multiblock grid generators,
this will require an enormous amount of human time, and thus, wall clock time to get the

grid.

GridPro®/az3000 satisfies the practical needs of industry. Because of the high grid

quality, various analysis programs have produced results on the fin'st try, are more accurate,
and are faster to convergence. Because of the automation, massive complexity is efficiently
handed with a large number of blocks. The count can go to a thousand, ten thousand, or
more depending upon the scope of the analysis.

THE TOPOLOGY INPUT LANGUAGE

The scope of analysis varies from small to large as various boundary components are
assembled into successively more comprehensive region configurations. In a parallel
sense, the topology input language (TIL) builds successively more complex grid point
patterns by assembling various topological components. With this natural building
process, the basic routine in TIL codes is called a "COMPONENT". These represent both
the main program and the various subprograms (e.g. like a SUBROUTINE in
FORTRAN). Like most other subprograms, variables can be imported and exported from
COMPONENT's. In TIL, these variables are labels for comers, vectors, and surfaces.
The actual comers, vectors, and surfaces can be specified within any component. While

they are common to all components, they cannot be referenced unless a correct label is
available in the calling component. The output labeling convention provides this. The call

of a component entitled "name" is given by the syntax of

INPUT n name(input and output labels);

where n is a positive integer tag which becomes part of the new label that is used inside the
component where this input appears. As the succession of components are called into
action, the labeling process continues with successive labels. Thus, a particular item may
be re labeled a number of times. The re labeling will stop once the main component is
reached and this will then provide a unique trace back to its point of origin. As these traces
can be valuable for finding topology errors, they are included in diagnostic output that is
automatically given when such errors occur.

While comers, vectors, and surfaces have been mentioned above, there was no

mention of their purpose. To consider the solution of some field analysis for some region,
the In-st item considered is its boundary. These are composed of surfaces of various sorts.
These may be defined by certain analytical or piece wise analytical formulas or by some
digitization. These may come from CAD systems or from other forms of construction. In
the case of digitization, the surface is defined by a data file. The analytic types provide
some built in types together with a location for user specification for the rest. In TIL, the
surface is "defined" by only one line. This may reference a data file, provide parameters
for a built-in analytical type, or may link to the location of a user specified analytic type.

145

With theboundariesrepresentedbytheone line surface definitions, the next items are

the comers. The collection of comers defines a topology sketch. This sketch appears in
physical space (not an idealized abstract, space). Within the physical space sketch pad, the
task is to define a coarse hexahedralwire frame. Each wire frame cell defines the topology
element for a block of grid. The entire wire frame is defined by a sequence of comers and
should extend over most of the space. Certain of the comers must also be assigned to
surfaces in order to tell the system which parts of the topology are to be on which parts of
the physical region boundary. While each comer must be put somewhere in physical
space, there is no precise requirement to give a certain location. The only demand is the
fuzzy topological one that the placement be in "general position". In practical terms, the
comers assigned to a surface should roughly follow it to reflect major variations in surface
shape.

It has been seen that the basic part of a TIL program is the pattern ot" points as
represented by a coarse wire frame of comers with links and surface assignments. Along
with the organization imposed by the use of components, there are global settings that can
be made at the top of the program as well as the ability to add further TIL operatives by an
include statement. The typical global parameters are the number of grid cells for each link
and the dimension. The default number of cells is 8 and the default dimension is 3. The

number of cells is then locally changed, as desired, within the components. Any change
there automatically propagates to any effected links. The include statement permits the user
to grow TIL code libraries to cover problem classes of interest. This happens naturally
because COMPONENTs are reusable and can be called any number of times. The result is
an efficient assembly process which can take advantage of recurrent structure. In addition,
there are an assortment of other commands and options that are helpful.

THE CORNER DEFINITION STATEMENT

The basic elements of a comer definition are its label, its position, its assignment to
surfaces, and its links to other comers. Its label is just a positive integer which appears
after the key letter "c" that starts the comer definition line. The only rule to be obeyed is
that as comers are defined the labels must increase in size. Gaps in the labeling are
permitted and are sometimes desirable. The gaps can be useful when one wishes to
subsequently edit the component by inserting some new comers between two previous
ones. For cosmetic reasons, they may even help to add human clarity to a TIL component.

After the comer label is given, the next item in the comer definition is the position in
physical space. In a direct sense, this is given by a sequence of three numbers to reflect the
ordering for x, y, and then z. The delimiter between each item on the line of definition is
just a space: there are no comma's! While such a direct definition is often convenient, it is
not as flexible as the one which comes from vector operations. The "x y z" sequence is
replaced by "@ vector operations" where the symbol "@" is the flag to tell the system to
expect the operations with vectors. In practical terms, this allows one to create comers that
are automatically positioned relative to other comers, be they within the current component
or imported. Moreover, the positioning can be even more arbitrarily accomplished by the
use of vectors that are either defined in the current component or imported from the outside.
While all comers are vectors, the vectors are more arbitrary since they are not required to
convey the specific details associated with comers.

After the comer position is given, the next item in the comer definition is the surface
assignment. If there is to be a surface assignment, then the flag "-s" is given. After a
space delimiter, the desired surface labels are given with spaces between them as
delimiters. The order in the list of surface labels is unimportant. Each label points to a

146

surfacedefinition statementwhich in turnprovides a desired surface association. A rule
that must be obeyed here is that the surface definition must already exist. There is simply
no meaning if one should designate a surface that is not there! The available surfaces for
assignments are those which are either defined in the current component or which are
defined by an import into the current component. The latter is slightly more abstract and
also more general. To provide for an import, the surface is defined in the component
argument list. However, it will not really exist unless an actual surface label is inserted in
that spot when the component is used. If the spot is given as a black in the component
application (i.e. in the INPUT statement), then the assignment to will also be a blank.
This, however, offers the opportunity to design components which can be applied in many
more situations.

After the surface assignments are given, the final item is the specification of linkages
to other comers. If there are to be a, links to other corners, then the flag "-L" is given and is
followed by a list of the comer labels with spaces for delimiters. The order in the list is
again unimportant. The only requirement is that the comers must already exist by either a
local definition within the same component or by a defined input to the same component.
As in the case with surfaces, there is the opportunity to design moie generality into the
components by using blanks when there is no comer link at the INPUT stage.

The end of line for any TIL statement is given by a ";" and the comer definition is
such a statement. To illustrate the comer definition syntax, an example is given. Consider
the statement

c 5 1.2 3 4.5 -s 1 3 -L 3 4 2;

This defines comer 5 to be located at the position (1.2, 3, 4.5), to be assigned to surfaces
1 and 3, and to be linked to comers 3, 4, and 2. Notice that there is no detail about how
the links to other comers are made. For simplicity, they can be considered as straight lines.
This lack of detail is what distills the wire frame down to the level of just a sequence of
comers. Also, one may notice that there is no detail given for the surface assignments.
The surface labels point to the surface definitions which are single lines. A block face will
be placed upon a particular surface if the corresponding four topological face comers are
assigned to that surface. Moreover, a block edge will be placed upon the interseztion of
two surfaces if the two topological comers for the edge link are assigned to the two
surfaces. This is how the user gets the intersections between surfaces.

SURFACE DEFINITION STATEMENTS

The basic parts of a surface definition statement are the label, the type, the parameters
or file name, the orientation, the cluster intensity, and transformations. Spaces are the
delimitors between the various parts and associated parameters. The surface def'mition line
starts with the key letter "s", has the delimitor of one or more spaces, and is followed by
the label. The surface labels are positive numbers given in an increasing order. Gaps in
the numbering are allowed and can be desireable for certain occasions. After the surface
number, the definition type is given and is followed by its parameters or the associated file
name, as is required of the specifed type. Beyond this are the other items. The orientation
is given by the direction of the unit normal vector to the surface. The rule is that the normal
vector must point into the region to be gridded. As there are two sides to any bounding
surface and as each such surface is given a natural normal direction, there is only the need
to reverse the orientation should the natural normal vector violate the rule. Orientation

reversal is given by the flag "-o"

147

With theproperlyorientedboundingsurfaces,thenextitemsareto clusterto that
surfaceor to transformit. Theflag for clusteringis currentlygivenby either"-c"or "+c"
to denoteminusandplusclustergroups,respectively.Theactualclusteringfor either
groupis givenasare_ num_r whichfollows theflag after a space or so. The
transformation flag is -t or -R" for a directly stated translation or linear transformation,

respectively. Both can be used in the same statement. The translation is given by a
succession of three real numbers while the linear'transformation is given by a succession of
nine real numbers. However, when Vectors are used both are combined into one item

which is expressed as "-t @()". Within () a single vector is inserted if it is only a
translation and four vectors are inserted if it is a general transformation. In the general
case, the first vector is the translation while the remaining three are the respective rows of
the 3x3 linear transformation. Becffuse vectors can be defined elsewhere, this is a variable
assignment. Aside from these options attached to the surface definition, there are a few
remaining technical options which are not frequently used.

To illustrate the surface definition syntax, a few examples are given. First consider
the statement

s 2 -plane(0 0 1 -2):

This defines surface 2 as the plane z=2 with orientation in the positive z direction. The
type is "-plane". The first three numbers represent tffe normal vector (0, 0, 1) while the last
gives the constant value of 2. The ";" gives the end of line. Because of the orientation, the
grid is assummed to be above the plane.. The plane is defined by the function

f(x,y,z) = ax+ by + cz + d

as the level surface f(x,y,z)---O. Level surfaces of f are those surfaces which are determined
by constant values of f. Since f=c is the same as (f-c)--0, it is always possible to replace
f with f-c ; and thus, there is no loss of generali.'ty in considering only the constant values of
0. With the same constants (i.e. 0), the expression alone then carries the total definition of
the surface.

As a second example, consider the statement

s 5 -ellip(0.5 2 0.25 3.2) -o -t 0 0 4;

This defines surface 5 to be of (super-) ellipsoidal type. The first 3 parameters are the
recipricals of the semi-axis lengths while the fourth is the exponent which determines the

degree of squareness. Thus, the semi-axial lengths are 2 along the x-axis, 0.5 along the y-
axis, and 4 along the z-axis. The squareness of 3.2 is greater than that of 2 _vhich would

define a pure ellipsoid. The natural orientation which points to the outside of the super-
ellipsoid is reversed with "-o" in order to consider a grid on the inside. With the basic,-
ellip" type being defined about the origin, it is lifted up by 4 units in the z direction with the
translation vector (1, 0, 4). For surface 5, the parameters are a=0.5, b=2, c=0.25, and
n=3.2 in the function

f(x,y,z) =]ax_ +]by]n + Ic_ - 1

which defines the level surface. As n varies from 2 to infinity, the surface varies from a
pure ellipsoid to a brick. It is also easy to see that a natural normal direction is in the

outward convex direction since this is also the natural direction of the gradiant of f. It is
also worth noting that the multiplicative nature of a, b, and c is quite convienient since
cyclinders can also be readily specified by setting any of these parameters to zero.

148

SURFACE GEOMETRY INPUT

The surface geometry can enter the process in a wide variety of forms and must be
distinguished from any particular form. This is especially true if the geometry is given by a
point data set. Often a misinterpretation can occur because the set appears in the format of a
surface grid. The necessary distinction is that this input grid is only used as a data set to
define geometry: there is no requirement to place points at any particular position for the
act of grid generation. The only requirement is to represent the geometry accurately enough
to permit a decent grid generation. This means that there must be an accurate enough
resolution of curvature.

In the current implementation, GridPro®/az3000 can take both implicit and explicit
surface data types. The implicit surfaces are the level surfaces. They are implicit since the
evaluation of points on such surfaces comes from the solution of an algebraic equation
f(x,y,z)=0. By contrast, points on explicitly defined surfaces are evaluated directly from
their parameters. That is, for a given (u,v), the surface point is just (x(u,v), y(u,v), z(u,v)).
In many instances, there are a number of sections for an explicit surface. The evaluation of a
point then involves a search to find the desired section after which the direct evaluation
transpires.

The built-in implicit surfaces are

(1) planes
(2) super-ellipsoids, and
(3) cylinders

In the TIL syntax, the surface definition types are denoted by "-plane ', "-ellip", and
"cyclind" respectively. Examples of the flu'st two were given in the pr, wious section. The
third type is a cyclinder in the form of a periodic surface.

As already noted, the explicit surfaces have a parametric nature since surface points
are determined by local coordinates once the local surface segment is found. The current
ones are

(1) A single coordinate grid
This has bilinear coordinate parameters for each element and is brought into
action with the type flag "-linear".

(2) Multiple coordinate grids
This has bilinear coordinate parameters for each element and is brought into
action with the type flag "-compos".

(3) Unstructured quadrilateral elements
This has both a plain format and a MSC/NASTRAN format in the forms
CQUAD and CQUADR. It is brought into action with the type flag
"-quad".

(4) Unstructured triangular elements
This has both a plain format and a MSC/NASTRAN format in the forms of
GRID, CTRIA3, and CTRIAR. It is brought into action with the type flag
"-tria".

(5) Surface of revolution around an arbitrary center curve

149

This isgivenby adatafile whichlistsa sequenceof orderedquadruplets
(x,y,z,r)wheretheeach(x,y,z)is a centerlinepoint andr is theradiusof
thecirculardisknormalto thecenterlinepoint. Thef'rrstline in thefile is the
totalnumberof quadrupletswhichis justa positiveinteger.This typeis
broughtinto actionwith theflag "-tube".

Unlike theimplicit types,theexplicitonesrequiredatafiles for thesurfaces.After thetype
indicator,eachdatafile ,isgivenbetweenquotes.Withoutextraoptions,theseappearin the
surfacedefinition statementsof TIL in theformat

s n -type "name.dat";

for surfacenumbern. Here-typeis anyof -linear,-compos,-quad,-tria, or -tubeas
describedin theabovelist. After thetypedesignationflag, theuserchooses"name"for the
correspondingdatafile "name.dat".

Thebuilt-in implicit typesareveryconvenientto applysincesurfacedefinitionsare
givenby a smallnumberof definingparameters.While additionsto the listof built-in
implicit typeswill addfurtherconvenience,therewill alwaysbecasesthatarenotcovered.
Thus,provisionhasbeengivento riserdefined'implicit types.Thewindow of opportunity
for non-built-intypeappearsin theform of aC-codethatis suppliedto theuser. Fora
fixed surface,theusersimplywrites"outtheequationfor the levelsurfacedesired.This
writing is donein only onespecificlocation. In thecasewhereperiodicityconditionsare
necessary,morelocationsmustbeusedto prescribethoseconditions.All of thisdatais
insertedinto afile called"name.h"wheretheuserchooses"name"andinsertshisdatain
theright spots.After thetypeflag (-implic) in thesurfacedefinitionline, theusergives
"name.h"andcontinueswith otheritemsto completethe line.

In a slightlymoreabstractsense,afloatingsurfacecanalsobedefined. It is abstract
sincethereis nodefinedpositionorconditionfor this surface.This typeof surfaceis used
to def'meclusteringto anyblockfaceregardlessof whereit i_. This clusteringcanbe
appliedto eithersideof thesurfaceor to bothsides.To bringthis into action,theflag
"-float" is usedin thesurfacedefinitionline; next,thereis aclustergroupflag (either"-c"
or "+c,); andthenthereiSthedesiredspacingfor thefirst grid pointoneitherside. Once
thesurfacedefinitionline exists,theclusteringtakeseffectwhenthecomersof achosen
block faceareassignedto thissurface.If clusteringis desiredfor only onesideof a
floatingsurface,thenthesidesareselectedby insertinganumber0 or 1just afterthetype
flag "-float".

Altogether,wehave3modesof surfaceprescription.Thefirst is asurfacethathasa
fixed positionin space.Thesecondis theperiodicsurfacewhich seeks.itsownpositionin
spacetooptimizegrid qualitywhileaccommodatingperiodicboundaryconditions.The
third is thefloatingsurfacewhichhasnoconditionsotherthantheclusteringspecifications
attachedto its definition.

Unlike otherschemes,thereis nodependenceuponthedetailsof surfacegeometry
definition. Thegeometryis simplyviewedfor its traceof pointsin (x,y,z)space.Thereis
noconcernfor anyspecificsurfaceparameterizationandhowit mightabutanothersetof
surfaceparameters.However,thereis a needfor thegeometryto bewell def'med.A well
def'medgeometryis onewhichgivesanaccuratespecificationof thesolidobjects.It must
befreeof constructiveirregularitiessuchasunexpectedholeswhichwouldmakehollow
objectsout of onesthatshouldbesolid. In additon,if two independentlydefinedsurfaces
areto intersect,thentheymustactuallydosoin theregionof interest.Otherwise,oneis
left with holesthatill defineasolidobject. A furtherdesireis for thegeometrydefinition

150

to becompatiblewith thechosenpatternof gridpoints. Thissituationcanoccurif adjacent
grid sheetsarechosento wrapoveraregionof sharpsurfacecurvature. In suchcases,it is
bestto havea smoothsurfaceevenif thatsmoothnessis only seenonamicoscopiclevel.
An alternativeis, of course,to selectadifferenttopology.Altogether,becauseof the
freedomfrom detailedgeometrydescription,virtually anyformof surfacedefinitioncanbe
addressedandbuilt-in. Thisprovidesahealthygrowthpath.

THE SCHEDULE FOR RUNNING THE GRID GENERATION

Once the TIL code is finished and put into a file, the next task is to run it. This is
done by creating a schedule file for the run. The schedule can vary from a straight run to
one which is dynamically changed. The option to change the course of a run allows the

user to optimize the run., For example, the run could be started with a fairly modest
number of grid points which are then increased in stages as the grid is relaxed towards its
equilibrium that progressively satisfies the underlying variational scheme. As one could
imagine, there are a number of parameters in the schedule that provide the user helpful
options. One of these provides the bounds for curvature clustering. This is in effect a
geometry adaptive process. Upon activation, the volumetric grid points distribute
themselves about the boundaries in. proportion to the boundary curvature.

FUTURE DIRECTIONS

With the component structure of TIL, there is the opportunity to make TIL
components in an object oriented sense. This can quite naturally feed into an interactive
environment where the topology set up can be done. Given the non-unique nature of grid
topology selection, some choices are clearly better than others. These can vary with the
physical problem or region geometry. This will lead to the application of expert systems to
help in the guidance. In addition, there is also the consideration for a turn key creation of
the coarse wire frame for topology definition. This would then automatically generate the
TIL code and thus the grid. The automatic generation of the coarse wire frame can
certainly be done with today's methods. Here, one simply does a coarse unstructured
tetrahedml grid generation (via advancing front, octtree, etc.) and then breaks up each
tetrahedron into 4 hexahedrons. While this approach will certainly define a topology
through a coarse wire frame, it will also yield too many severe singularities. Thus, there is
a need to do the unstructured generation with more quality. This means the automatic
generation of hexahedral grids with appropriate quality and desirable pattern for the targeted
applications. Examples of pertainent activity are paving (2D) and plastering (3D).
Altogether, these various directions for topology generation are in the realm of research and
development.

EXAMPLES

In this section, we will look at a selection of examples. These will cover a cross-
section of industries and show the type of grids that are created. This will explicitly show
the quality level. Beyond these pictures, it is natural to ask for the amount of computer
resources that are needed as well as the length of the TIL code. These items will be given.
The next question may very well be to estimate the length of human time. This is more
difficult since the user must give a region geometry, create a topology and cast it into TIL.
In fact, geometry specification and topology creation are a part of any multiblock grid
generator. In GridPro_/az3000 the ease with which various topologies can be considered
also means that the user has a more plentiful supply of choices. While each choice can be
addressed with a traditional multiblock grid generator, it is so painful to do so that it is, for

151

all practicalpurposes, not a real option. A typical case of this sort is the application of
compact enrichment. Here, coordinate surfaces are made to stay within the local region
requiring enrichment. In effect, certain surfaces are steered back to. the same subregion.
the case of geometry specification, GridPro®/az3000 can accept exceedingly general
surfaces as input. .This includes surfaces digitized in an unstructured format (e.g.
NASTRAN) as well as implicit surfaces. The use of implicit type surfaces is extremely
powerful and general. An examples of it is Riven in the companion paper by Cheng and
Eiseman [3].

In

The examples given here start with a blade row for turbomachinery. Then a grid is
generated inside a single turbomachinery blade. This illustrates the effect of clustering to
concave and convex curvature in the simple" 2D setting. Next, the same sort of curvature
clustering is witnessed in the 3D case of a automobile fuel tahk. The fuel/ank geometry
was given by an unstructured triangular mesh while the fuel surface level was given by an
implicit form for a plane. After this, compact enrichment is'viewed with a case for an
airfoil over ground. Again the simplicity of 2D makes it easy to see the concept of compact
enrichment where coordinate curves are steered back to surfaces. This case also shows a

branch cut off of the trailing edge. In continuation, compact enrichment is examined in 3D
with a grid for the ONERA M6 wing. In distiction from the prior case, this shows the
enrichment in the setting.where coordinate surfaces wrap around the entire wing. The
enriched locations are around the entire perimeter of the wing planform. Shifting our focus
back to automotive engineering, we next examine the case of an air induction system and
then a two port cylinder, This is then followed by a manifold configuration which is a case
with four tubes emerging from a large chamber. Each of the tubes emerges from the
chamber with an abrupt intersection. Once again, we return to compact enrichment and
look at only one tube abruptly intersecting the chamber. The enrichment appears as a collar
about the curve of intersection and can be easily witnessed in the figure. While the last two
cases examine abrupt intersections, there are parallel case's with filletted intersections. Fillet
creation and its use is examined in Cheng and Eiseman [3].

CONCLUSION

The power of multiblock grid generation with automatic zoning has be explored along
with the associated program: GridPro®/az3000. The diverse nature of the options and
applications have been witnessed as has the flexibility of the program. Some future
directions have also be charted for the creation of still other programs the generate input for
GridPro®/az3000. Altogether, the future for this technology is very bright.

°

.

.

REFERENCES

Eiseman, P. R., Cheng, Z., and H_iuser, Applications of Multiblock Grid Generation
With Automatic Zoning. Numerical Grid Generation in Computational Fluid
Dynamics and Related Fields, Ed. by N. P. Weatherill, P. R. Eiseman, J. H/iuser,
and J. F. Thompson, Proceedings of the 4th International Conference held at
Swansea, Wales, 6-8 April, 1994.

Program Development Corporation, GridPro®/az3000 User's Guide and Reference
Manual, Program Development Corporation,.White Plains, NY, September 1994.

Cheng, Z and Eiseman, P. R., Examples of Grid Generation with Implicitly Specified
Surfaces Using GridPro®/az3000: Filletted Multi-Tube Configurations, this
NASA Conference Proceedings, May 1995.

152

Figure 1: A row of turbomachinery blades. The choice of toplogy provides line of sight from

upstream and downstream directions. That is, coordinate curves go directly from these directions

onto the blade surface. The grid pattern appears as a polar like wrap for the blade which is smoothly

integrated into a streamwise type grid. Periodic bolmdary conditions are employed around the axis.

Those boundaries come from the user specification for the number of blades. Grid orthogonality

and smoothness are maintained regardless of solidity: the blade spacing and angle of attack can

be made arbitrarly severe without deterioration in grid quality. The TIL code is one page and the

computation time is less than one hour on a medium grade workstation.

153

Figure 2: Inside a 2D blade contour. The effect of c/ffvatuxe clustering can be readily witnessed.

The most intense clustering is at the blade trailing edge, the next most intense clustering is at

the leading edge, and is followed by lesser clustering on the top and bottom of the blade. In

contrast, the grid is thinnest at the location where the blade is nearly straight (i.e. fiat). While

most of the curvature is concave the bottom of the blade is the only convex part. To see how

GridPro/az3000 deals with a small number of grid points, the second grid shows the same

attributes as the fine one. The TIL code is one half a page and the computation time is less than

one hour on a medium grade workstation.

154

Figure 3: A half full fuel tank for an automobile. This grid is for a crash analysis application.(with

LSDYNA3D). The fuel surface is given by a plane as a built-in implicit type. The fuel tank geometry

is given by an unstructured triangular mesh (e.g MSC/NASTRAN type CTRIA3) and has both

concave and convex curvatures. Those curvatures appear at the tank corners and at the locations

of the drain and of the straps which hold it in place under the vehicle. Clustering to both concave

and convex curvature is easily seen as is the smoothness and near orthogonality. Because of the

application in the area of structural analysis, the multiblock output of GridPro/az3000 was

expressed in NASRTRAN format. The TIL code is less than a page and the run time is about one

half an hour on a medium grade workstation.

155

I

Figure 4: An airfoil close to the ground. The grid is for a study of ground effects on the perfomance

of an airfoil. The airfoil contour is given by a digitized data set. This is an example of the use

of compact enrichment. In the global picture, it is clear that there are no undesireable clusters of

points on the boundaries either above or upstream of the airfoil. While a cluster appears for the full

length of wake branch cut, it too could have been limited to some distance before the downstream

boundary if desired. However, this option was not chosen. In the vicinity of both the leading and

tailing edge, the coordinate curve density is at its highest. One can readily see that the chosen

pattern of points (grid topology) sends curves looping from the bottom of the airfoil to the top

about both leading and trailing edges. It also can be seen that similar loops appear from the top

of the airfoil and end upon the ground surface. By contrast, the bottom of the airfoil was left to be

that of a simple block. We often call such loop structures "clamps" or as in the case of the trailing

edge structure "a collar." The TIL code for this case was a little over one page. The run time is

less than one hour on a medium grade workstation.

156

/
/

,,/

/

Figure 5: The ONERA M6 wing. This is a standard test case for the study of a basic wing. The

basic grid topology is chosen to wrap around the whole wing. The pattern can easily be seen in

the symmetry plane. Within the wrap around structure, compact enrichment has been applied to

the entire perimeter of the wing planform. In the symmetry plmm, it is easy to detect the compact

enrichment at the leading and trailing edges. That enrichment appears in the form of curves that

loop over a regular block and connect the wing surface with itself. We call this structure a "clamp."

It is this compact structure which is carried from the leading edge up to and around the wing tip

and then back to stop at the symmetry plane trailing edge. Altogher, the looping coordinate

curves look like the shells of a distorted half torus or, more figuratively, like the surface of a half

an automobile tire. The geometry of the M6 wing was given in a digitized form and the TIL code

was about two pages. The grid generation was less than one half an hour.

157

Figure 6: An air induction system for an automobile. This is an example of one sort of plumbing

that is common in the automobile industry. The surface was given in by an unstructured quadri-

lateral mesh in MSC/NASTRAN format. The TIL code was 4 pages and the run time about 15
minutes.

158

i

Figure 7: A two port cylinder for an automotive engine. This is a generic case for the class of two

port automobile cylinders. In a prior application, there was a need to generate a grid in a pipe bend

that had a rod inside it that started in a parallel manner at the entrance but continued straight

up and intersected the pipe as it went through the bend. The topology for that prior case was a

single page of TIL code and was in a separate file. Noting that the prior case could be also used

for the port in the pictured application, the first line of the TIL code was an INCLUDE statement

for this file. The remaining TIL code was just a few pages. The generation of the grid was about

10 to 15 rain of computer time.

159

Figure 8: A generic manifold for an automobile engine. The geometry consists of four tubes

which abruptly intersect an elogated chamber from above. With the freedom to choose a generic

geometry, the chamber and the tubes were rapidly assembled by using implict functions of the type

"-ellip." The TIL code was 4 pages and the grid generation was about 15 min. on a modest
workstation.

160

Figure 9: An abrupt intersection between a tube and a chamber. In the context of an abrupt tube

intersection, the element of compact enrichment is shown. This is seen in the form of the "collar"

structure which wraps around the entire curve of intesection between distinct surfaces. In addition,

the associated TIL code was developed in an object oriented style. In so doing, the length of TIL

code was longer than the normal few pages. However, the "objects" are very flexible in their reuse

and adjustment. The main component in this TIL code was then reduced to about on fifth of a

page. Major configuration changes could then be done with just a few in line alterations. In tlfis

case, such change are the addition of exta tubes into the chamber. It is this style which is the seed

for a more complete object oriented library in TIL. With this type of library in place, the role of

interactive graphical assembly can be empowered.

161

Figure 10: The field about cloth fibers. The grid is generated in the region about interwoven fibers

that are bounded by planes above and below the cloth. This configuration has applications in

filtration, in molding processes, and in the apparel industry. The geometry of the fibers is given

by the type "-tube" with the actual tube geometry given by a data file of centerline coordinates

along with cross-sectional radius. While this case was executed for fibers of a constant radius, a

simple change of data file is all that is needed to do a variable radius. The grid is readily seen to

be smooth and nearly orthogonal. The TIL code is two pages long and the run time on a slow
workstation is about 15 min.

162

