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SUMMARY

Grid related issues of the Chimera overset grid method are discussed in the context of a method of solution

and analysis of unsteady three-dimensional viscous flows. The state of maturity of the various pieces of support

software required to use the approach is considered. Current limitations of the approach are identified.

INTRODUCTION

Unsteady three-dimensional viscous flow represents an important class of problems for which accurate

methods of prediction are frequently required. Such applications are almost always complicated geometrically,

may also involve relative motion between component parts, and exist in virtually all engineering disciplines.
Experimental methods of analysis, including scale-model and full-scale prototype testing, are often not possible

due to excessive cost, model limitations, human safety factors, and time-constraints associated with a commer-

cially competitive environment. Mature computational methods are not always appropriate due to inherent method

limitations. Unsteady viscous flowfields involving vortical wakes, interference effects, moving shocks, and body

motion demand the most advanced computational means available.

Currently, the only viable high-order method of prediction for these problems is the so called Chimera (ref.
1) overset grid approach. The approach involves the decomposition of problem geometry into a number of geomet-

rically simple overlapping component grids. Multiple-body applications, such as aircraft store-separation (refs. 2-

7), are treated naturally in this way. Components of a particular configuration can be altered, or changed com-

pletely, without affecting the rest of the grid system (ref. 8). Grid components associated with moving bodies move

with the bodies without stretching or distorting the grid system. The approach is applicable to both internal and

external flow applications, though most of the Chimera-related algorithm development has thus far been motivated

by external flow applications.

The computational incentives for employing an overset grid approach for unsteady three-dimensional vis-

cous flows are multiple. The flow solution process is applied to topologically simple component grids. Body-fitted

component grids are ideally suited to regions of thin shear flows such as viscous boundary-layers, wakes, etc. All

the advantages associated with structured data are realizable in the approach, including highly efficient implicit

flow solvers, memory requirements, vectorization, and fine-grained parallelism. Grid components can be arbitrarily

split to optimize the use of available memory resources. Overset structured grid components provide a natural

coarse-grained level of parallelism that can easily be exploited to facilitate simulations within distributed comput-

ing environments (refs. 9-12).

The present paper considers the current status of the Chimera-style overset grid method as it applies to

unsteady three-dimensional viscous flow. Of course, much of what can be said of Chimera in this context is also

true for steady-state (viscous and inviscid) applications. The paper includes discussion on the state of maturity of
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the various pieces of support software required to use the approach, including grid, and flow-solver related issues.

Current limitations of the approach are identified and used to suggest needs for future developmental efforts.

THE CHIMERA OVERSET GRID APPROACH

Background

In a Chimera-style overset grid approach, domain connectivity is achieved through interpolation of neces-

sary intergrid boundary information from solutions in the overlap region of neighboring grid systems. Consider, for

example, the simple two grid discretization of the airfoil shown in figure 1.

The example problem domain is decomposed into a body-fitted grid system near the airfoil surface and a

background Cartesian grid system which extends out to the far-field boundaries. The Cartesian grid completely

overlaps the airfoil grid. Clearly, the airfoil grid outer boundary conditions can be interpolated from a solution in

the off-body Cartesian grid, thereby providing the needed off-body to near-body connection for solution informa-

tion transfer. It is also clear that a similar transfer of information from the near-body solution back to the off-body

solution is required. However, the off-body Cartesian grid has no natural boundaries (physical or numerical) that

overlap the near-body grid. The Chimera style of overset gridding makes it possible to create an artificial boundary

(hole boundary) within the off-body grid system, and thereby establish the required near-body to off-body connec-
tivity.

A hole boundary for this example is created by excluding the region of the off-body Cartesian grid that is

overlapped by the airfoil. The resulting hole region is excluded from the remaining off-body solution. Conditions

for the hole boundary are interpolated from the solution in the near-body airfoil grid. In general, one-way commu-

nication connections can be established between any set of component grids through hole and outer boundaries.

Generalized algorithms for carrying out this task automatically have been developed (refs. 13-19).

Grid Related Issues

Surface decomposition and surface grid generation represent the primary impediments to the maturation of

overset grid based methods. The amount of human resources, measured in time and expertise, currently required to

generate suitable systems of overset grids for complex configurations lends validity to the notion that the approach

is only an intermediate option, and that unstructured grid approaches will ultimately represent the method of choice

for this class of problems. Even if this scenario becomes real, it is currently based on the false assumption that grid

generation for structured overset grids is a mature discipline. It also greatly devalues the numerous computational

advantages realizable through the use of structured data.

The current difficulties associated with surface decomposition and surface grid generation for overset grid

systems exist for the simple reason that there has been virtually no research directed at this area. Available struc-

tured grid generation software has been developed almost exclusively for "patched," or "blocked" systems (refs.

20-23) which require neighboring grid components to share a common surface. Although differences between

overset and blocked methods may appear slight (i.e., one requires neighboring grids to overlap and the other

doesn't), the differences are in fact profound. An overset grid approach is really an unstructured collection of over-

lapping structured grid components. As such, the approach should enjoy most of the grid generation freedoms asso-

ciated with unstructured grids, and retain, on a component-wise basis, all of the computational advantages inherent
to structured data.

Surface Geometry Decomposition. A good philosophy for a surface geometry decomposition software
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packagemightbeto usethefactthatall realobjects can be viewed as composites of point and line discontinuities,

and simple surfaces. For example, the sharp tip of a nose-cone would be a point. Likewise, sharp edges along a
fuselage, the trailing edge of a wing, etc. are lines. All object areas that are not associated with points or lines are

simple surfaces. Whether an object area corresponds to a point, line, or simple surface dictates the type of surface

grid, and hence, volume grid topology that should be used for the overset grid discretization. A point suggests the

need for a "nipple" topology for the object area in the vicinity of the point, and an axis topology for the resulting

volume grid. A line suggests the need for grid clustering near the line to maintain the integrity of the line disconti-

nuity in the overset grid component. Surface grids associated with line discontinuities lend themselves directly to

hyperbolic surface grid generation techniques. Simple surfaces are amenable to either algebraic or elliptic surface

grid generation methods. In an overset grid approach, surface grids associated with all object types (i.e., points,

lines, and simple surfaces), are amenable to volume grid generation via hyperbolic methods.

Figure 2a illustrates a panel definition of a tiltrotor surface geometry. Object point and line discontinuities

are indicated. A point discontinuity exists at the tip of the nose-mounted pitot tube. Line discontinuities exist at the

wing/fuselage intersection, wing trailing edge, nacelle exhaust exit, and along the fuselage/sponson crease. One

possible surface decomposition of this geometry definition is shown in figure 2b, where no point discontinuities

were retained (pitot-tube and mount were neglected at the discretion of the analyst), but line discontinuities were

resolved around the wing/fuselage intersection, wing trailing edge, and fuselage/sponson crease. The line disconti-

nuity at the nacelle exhaust exit was smoothed over (at the discretion of the analyst) and treated as a simple surface.

As illustrated by figure 2b, the surface grids that result from this method of surface geometry decomposition is a
quilt of overlapping surface components.

Surface Grid Generation. Given a suitable surface geometry decomposition, generation of a corresponding

set of overset surface grid components should be realizable in a highly automated way. Most of the basic algo-

rithms needed to develop such software currently exist. Algebraic and elliptic surface grid generation techniques,

appropriate for simple surfaces, have long been available (ref. 24). The idea for hyperbolic surface grid generation

was first put forward more recently (ref. 25), and has since been generalized (ref. 26).

Volume Grid Generation. Generation of volume grids associated with body surfaces can easily be gener-

ated in an overset grid approach using hyperbolic grid generation techniques. Hyperbolic volume grid generators

exist that are robust, highly efficient, and very easy to use (ref. 27,28). In an overset grid approach, generation of

off-body volume grids is a trivial task. The near-body set of grid components must simply be overset onto a conve-

nient background system of grids. While few software packages are currently available to perform the task of off-

body grid generation automatically, the task is still trivial and some software is becoming available (ref. 29).

Domain Connectivity. A considerable amount of research and development in the area of domain connec-
tivity among systems of overset grids has been carried out. Several general purpose algorithms for performing this

task automatically are currently available. Although existing domain connectivity algorithms can still be improved
in terms of efficiency and automation, this area of overset grid technology is maturing rapidly. Active areas of

domain connectivity research include Chimera-style hole-cutting (refs. 17-19), donor search methods (including

quality optimization) (refs. 14,17,19), automation (refs. 14,17-19), and parallelization (ref. 10).

The first general purpose domain connectivity algorithms that became widely available are the PEGSUS

(ref. 13) and, later, CMPGRD (ref. 14) codes. Both codes enjoy substantial use among overset grid practitioners.

Likewise, algorithm development associated with both codes is ongoing. In 1989 the first simulations of unsteady

three dimensional viscous flow applications involving moving bodies (ref. 3) were carried out using a script con-

trolled application of PEGSUS and the F3D thin-layer Navier-Stokes solver (ref. 30). The need for greater compu-

tational efficiency to carry out such applications, which require domain connectivity every time-step, spawned

development of alternative domain connectivity algorithms. The DCF3D (ref. 15) and BEGGAR (ref. 17) codes

were designed to accommodate moving body applications and are currently the only domain connectivity algo-

rithms that are fully integrated with general purpose flow-solvers and body dynamics algorithms.
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Flow SolverRelatedIssues

A majoradvantageof anoversetgridapproachfor solvingunsteadythree-dimensionalviscousflowprob-
lemsis thefactthatexistingsinglegrid(structured)flowsolversof documentedaccuracyandknownefficiencycan
easilybeadaptedfor applicationwithinoversetgrids.Forexample,theimplicitapproximatelyfactoredalgorithm
(i.e.,blockBeam-Wanning,ref.31)for thethin-layerNavier-Stokesequations

b¢O + b_b"+ a,lO + _9;k = R_-_O;g (1)

is easily modified for Chimera-style overset grids as

El + ibAt_,_ [l + ibAt_qk_x (2)
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The single and overset grid versions of the algorithm are identical except for the variable ib, which accom-

modates the possibility of having arbitrary holes in the grid. The array i b has values of either 0 (for hole points), or
1 (for conventional field points). Accordingly, points inside a hole are not updated (i.e., AQ = 0) and the intergrid

boundary points are supplied via interpolation from corresponding solutions in the overlap region of neighboring

grid systems. By using the ib array, it is not necessary to provide special branching logic to avoid hole points, and
all vector and parallel properties of the basic algorithm remain unchanged.

Solution Accuracy and Conservation. A common criticism of overset grid approaches relates to the fact

that simple interpolation is often used to establish needed domain connectivity. Of course, the use of simple inter-
polation implies that conservation is not strictly enforced. However, assuming the basic flow solver is conservative,

conservation is maintained at all points in the domain except at a few intergrid boundary points. The subject of con-

servation on overlapping systems of grids has been studied by a number of researchers, including (refs. 32-34). In

light of the significance typically placed on this subject, several points need to become generally recognized.

First, formal flow solver solution accuracy can be maintained using simple interpolation (refs. 33-35). For

example, in a grid refinement study, if the position of component grid outer boundaries remains fixed with increas-

ing resolution of the several grid components, the formal accuracy of a 2nd order flow solver will be maintained

with an interpolation scheme that is 2nd order accurate (i.e., tri-linear interpolation of the dependent flow vari-
ables).

Second, the primary issue with interpolation of intergrid boundary information is not necessarily one of

conservation, but one of grid resolution. If a flow solution is represented smoothly in both donor and recipient

grids, simple interpolation is sufficient to carry out simulations that are accurate in all respects. In practical applica-

tions, given a fixed number of grid points, it is not possible to provide grid resolution of sufficient density to guar-

antee that flow features will always be smoothly represented in the grids. If a conservative interpolation scheme is

used at intergrid boundaries, the speed and structure of flow features (i.e., shocks, vortices, etc.) may appear contin-

uous across grid interfaces. However, lacking sufficient grid resolution, the accuracy of the solution can not be

ensured in any case. Hence, grid resolution is the primary issue.

Third, the objective of adaptive grid techniques is to ensure smooth variation of flow variables throughout

the computational domain. Accordingly, an effective adaptive grid technique appropriate for systems of overset
grids should be viewed as the primary remedy for issues relating to conservation at grid interfaces.
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Finally,methodsareavailablefor maintainingconservationatgridinterfaces.Althoughcomplicated,spe-
cialinterpolationschemesthatmaintainconservationatgridinterfaceshavebeendeveloped(ref.36).Interpolation
of delta-quantities(0"+_-0"), rather-thanthedependentflow variables(_?"+_),atgrid interfaceshasalsobeen
suggestedasameansfor ensuringspace-timeconservationovertheentiredomain(ref.37).Perhapsthemostgen-
eralapproachis thatof introducinganunstructuredgrid in thevicinityof the intergridboundaries(ref. 38)and
employinganappropriatesolverontheunstructuredgridinterface.Suchahybridapproachwouldstill haveall the
advantagesof usingstructureddata.Useof anunstructuredsolverwouldonlyberequiredfor a smallfractionof
theoveralldomain.

Somewhatlesscomplicatedschemesfor ensuringconservationat gridinterfacesarepossiblefor incom-
pressibleflows.Non-conservativeinterpolationof intergridboundaryconditionscanbemadeconservativeby local
redistributionof fluxessuchthatglobalconservationisensured(refs.39,40).

Adaptive Grid Techniques. The subject of adaptive grids has a very large literature. It is clearly not the aim

to review this subject here. However, some discussion on the various types of adaption and their respective

strengths and weaknesses for application within overset systems of structured grids is provided. The broad class of

adaption methods that redistribute a fixed number of points in response to evolving flow features (refs. 41-43) are

not considered here. Although such an approach could be implemented within an overset system of grids, there are
other methods of adaption that appear to be more general.

Currently, the most popular method of adaption appears to be unstructured cell subdivision. Indeed, the

approach is very powerful and general. The approach has been exploited within Cartesian systems, as well as more

traditional unstructured grid systems (see figure 3). In either case, the data is unstructured. In the approach, the geo-

metric components of the problem and volume of the domain are discretized with a base grid system. Then, in

response to evolving flow features, grid points are added to the base grid by local cell subdivision. Points added to

the base grid can be later removed when no longer needed (refs. 44-47). The strength of the approach is that it effi-

ciently allocates grid-points where they are required to maintain solution accuracy. There are several ways in which
the approach could be implemented within systems of overset structured grids. The principal drawbacks to the

approach are the memory and computational penalties associated with the requisite unstructured data. One possible

implementation of this type of solution adaption within an overset structured approach is illustrated in figure 4. The
implementation is a hybrid Chimera structured overset grid/unstructured solution adaption algorithm (ref. 49). In

the approach, high resolution body-fitted structured grids are used near the bodies (which may move) and are over-

set onto an unstructured background grid. The bodies cut Chimera holes in the background unstructured grid. All

off-body solution adaption is carried out in the unstructured grid using the approach described in (ref. 45).

Another class of solution adaption described in the literature utilizes systems of nested fine overset struc-

tured grids. The first such approach suggested the use of nested Cartesian grids (ref. 50) to align with flow features

and maintain solution accuracy. Variations of the original approach have continued in the literature and have found

application in Cartesian based solution procedures for geometrically complex applications (ref. 51). The basic
approach is not limited to Cartesian grids, but can be applied in computational space as well for structured curvilin-

ear grid systems (ref. 52).

A pure Chimera approach to solution adaption has also been explored (refs. 34,53,54). In this approach,

structured fine grids are used to resolve flow features with coarse-to-fine and fine-to-coarse grid communication

being accomplished via traditional Chimera domain connectivity methods (see figure 5).

Various alternatives to a pure Chimera approach to adaption have also been suggested (refs. 29,54). The

approach favored by the author is described in (ref. 29) and divides the solution domain into near-body and off-

body regions. Near-body regions of the domain are discretized with high-resolution body-fitted component grids

that extend a relatively short distance from body surfaces. The method of adaptive refinement is designed to pro-

185



videresolutionof off-bodydynamicssubjecttothemotionof flowfeaturesand/orbodycomponents.Theoff-body
portionof thedomainisdefinedto encompassthenear-bodydomainandextendoutto thefar-fieldboundariesof
theproblem.Theoff-bodydomainis filledwithoverlappinguniformCartesiangridsof variablelevelsof refine-
ment.All adaptiverefinementtakesplacewithintheoff-bodycomponentgrids.Initially,regionsof theoff-body
fieldaremarkedfor refinementlevelbasedonproximityto near-bodyboundaries.However,duringthesolution
process,theoff-bodyfieldis markedfor refinementlevelbasedonproximityto near-bodyboundariesandesti-
matesof solutionerror.Subsequentto refinementlevelmarking,off-bodyregionsof likeresolutionarecoalesced
intorectilinearblocksof space,eachblockbecomingauniformCartesiangrid.Accordingly,atanytimeduringthe
simulation,theoff-bodyfield is discretizedwitha setof overlappinguniformCartesiangrid systemsof varying
levelsof refinement.Theapproachis illustratedin figure6.

Theobviousadvantagesof theoversetstructuredmethodsof refinementnotedaboverelatetothecompu-
tationalandmemoryincentivesinherentwithstructureddata.TheCartesianbasedmethodsnotedin (refs.29,51)
offeradditionaladvantagesderivablefrommultiplecharacteristicsof Cartesiansystems.Forexample,nomemory
isrequiredfor gridrelateddatafor uniformCartesiangridcomponentsexceptfor thetwopointsthatdefinethe
diagonalof a boxwhichboundsthegridcomponentandthegrid spacingconstant.Domainconnectivityamong
systemsof uniformCartesiangridsis trivial.Also,highlyefficientflowsolversfor Navier-Stokesequationsonuni-
formCartesiangridscanbeemployed.

CONCLUDING REMARKS

A reviewof evenasmallsampleof recentapplicationsof oversetmethodsforunsteadythree-dimensional
viscousflowsituationswill clearlydemonstratethepowerandgeneralityof theoverallapproach.Highlycomplex
geometricconfigurationscanbeaccuratelysimulated,includingcasesinvolvingrelativemotionbetweencompo-
nentparts.

All theadvantagesassociatedwithstructureddataarerealizablein theapproach,includinghighlyefficient
implicit flowsolvers,memoryrequirements,vectorization,andfine-grainedparallelism.Gridcomponentscanbe
arbitrarilysplittooptimizetheuseofavailablememoryresources.Decompositionof problemdomainsintoanum-
berofoverlappingcomponentscreatesacoarse-grainedlevelof parallelismthatcaneasilybeexploitedtofacilitate
simulationswithindistributedcomputingenvironments.

Thesubjectof surface geometry decomposition for overlapping systems has been heretofore ignored and

currently represents the largest impediment to the maturation of Chimera-style overset grid methods. Existing sur-

face grid generation software for blocked, or patched, grid systems do not allow full exploitation of the inherent

advantages of overlapping grid systems. Research in this area is badly needed. Other aspects of the Chimera-style

overset grid approach are maturing more rapidly. These include algorithm development and generalization for

domain connectivity, volume grid generation, surface grid generation, parallel computing, and solution adaptive
grid techniques.
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Figure 1. --An example of Chimera intergrid bound-
ary _oints

line discontinuities Figure 2. -- Surface geometry of a tiltrotor
aircraft, a) Panel definition (note indicated
point and line discontinuities), b) Quilt of
overlapping surface grid components. Com-
ponent grids retain the line discontinuities
indicated in the original panel definition of
the geometry.
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a) b)

Figure 3. -- Solution adaption via cell subdivision, a) Unstructured Cartesian cell subdivision (rcf. 44). b) Conven-

tional unstructured cell subdivision (rcf. 48).

a) b)

Figure 4. -- Hybrid structured Chimera overset/unstructured solution adaption, a) High-resolution body-fitted struc-

tured grid (viscous) for rotor blade, b) Unstructured background grid for solution adaption of off-blade vortex

dynamics (ref. 49).
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Figure 5. -- Solution adaption via overset structured fine grids. Base grid (medium resolution body-fitted airfoil grid
and background Cartesian grid) plus 5 overset fine grid components fief. 34).

_a) Store separation application (near-body viscous

grid components not shown).

b) Tiltrotor downloads application (near-body

viscous grid components not shown).

192

Figure 6. -- Solution adaption via off-body uni-

form Cartesian structured grids (high-resolu-
tion body-fitted grids are used to discretize

space near physical boundaries) (rcf. 29).


