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ABSTRACT

A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations

in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated

automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain.

Where the r_':sulting cells intersect bodies, N-sided "cut" cells are created using polygon-clipping algo-

rithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-

to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes

equations are solved on the resulting grids using a finite-volume formulation. The convective terms are

upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing

input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The
more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces.

Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are
obtained and compared to theoo', experiment and other accepted computational results for a series of low

and moderate Reynolds number flows.

I. INTRODUCTION

For complicated geometries, unstructured grids can be easier to generate than structured grids, which is
directly responsible for their increasing popularity. Traditionally unstructured grids, with volume grids

comprised of triangles in two-dimensions and tetrahedra in three-dimensions, are typically generated by
first discretizing the bounding surfaces and then filling the volume grid by, say, an advancing front method,

or, by triangulating a cloud of points. Both approaches are based upon a user specified surface discretiza-

tion which is closely coupled to the volume grid generation by requiring the specified faces on the bound-

ary surfaces to be faces of cells in the volume grid. In the approach considered here, the volume grid and

surface description are not strongly coupled in this manner. The computational boundaries are described

functionally, and are "cut" out of the automatically generated, Cartesian-cell based volume grid, yielding

N-sided cells near the boundaries. This yields a computational grid comprised mostly of square, unit aspect

ratio (Cartesian) conservation volumes with polygonal boundary cells. The ability to automatically create

the volume grid and the cut, boundary cells gives the Cartesian-cell approach its utility, but adds some

complexity to the numerics and resulting computer code. Since the cell geometry and hence the cell-to-cell

connectivity for all cells is not known apriori, a unique data structure is needed to describe the conserva-

tion volumes. Indeed, it is this complication that sets the Cartesian-cell based approach apart from most of

the traditional unstructured grid approaches that are becoming more and more prevalent today.

The Cartesian, cell-based approach has been used for solving a variety of problems, and variants of the

approach have proven to be quite useful for computing both unsteady [6,7,26,27,5,10,25] and steady
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[11,8,9,16,15,19,22]adaptively-refinedsolutionsto theEulerequationsandfor solutionsto thetransonic
full potentialequation[33].Recently,theusefulnessof theautomatedgriddingandadaptivemeshrefine-
mentcapabilitiesof thesolverhavebeendemonstratedfor adaptively-refinedsolutionsof theEulerequa-
tionsaboutlargeaircraftconfigurations[23].Theautomatedmeshgenerationcombinedwith theadaptive-
meshrefinementcapabilityofthisapproachoffersthepotentialof obtainingaccuratesolutionswithmini-
maluserintervention.Theworkshownhereinvestigatestheextensionof thiscapabilityto solvingthe
compressibleNavier-Stokesequationsinanupwinded,finite-volumeframework.

II. GRID GENERATION PROCEDURE

The grid is generated by the recursive subdivision of a single cell, and during the creation of the grid, the
hierarchical relation between newly created cells and their parents are stored in a binary tree data structure.

The cut cells, which are the background Cartesian cells cut into polygons, are created automatically using

many concepts borrowed from computer graphics applications. Since they are hierarchically related to
their Cartesian parents, they are also stored in the tree. This procedure of cell cutting is a subject unto itself

and its robustness is absolutely crucial for the utility of this approach. The cell cutting methodology used

here is based upon a polygon clipping algorithm [31], where a subject polygon (the body of interest) is

"clipped" against a convex clipping polygon, which for this case is the Cartesian cell. The subject polygon
can be formulated to include arbitrary functional descriptions of the bounding faces (i.e.-geometric

description), which is used here. This particular clipping operation yields the logical and operation
between the clipping polygon and the subject polygon. This operation will yield the correct cells when the

subject polygon describes the outer boundary of a flow domain, but needs to be modified slightly when the
subject polygon describes an inner boundary. When this is the case, the region needed is recovered from

the clipping operation using a list directed vertex insertion procedure. Details behind the grid generation

are presented in more detail in [12]. Once a suitable geometric description of the computational boundaries

is made, the grid generation is automatic, and since the procedure is recursive and tree based, it is also effi-

cient. An example of the grid generation is shown in Figure 1, where a coarse, base grid in a flow passage

representative of the cooling passage within a turbine blade is shown. The geometry corresponds to that in
[29], and is a projection onto the x-y plane of the geometry located along a curved surface about the turbine

blade mean chord line. The grid contains 2640 cells and was generated in 218 seconds on an IBM RS6000

Model 560 workstation. The geometry definition is made using a linearly represented continuous outer

boundary and 14 cooling fins.

The use of this particular grid and data structure easily allows adaptive mesh refinement, and away from

bodies yields smooth grids. The binary tree data structure provides a logical means of finding cell-to-cell

connectivity by logic based tree traversals and allows a straightforward means to perform mesh refinement

and coarsening via tree branch growth and pruning. There are many niceties afforded by this data structure

and grid setup. The grid hierarchy is amenable to multi-grid [17] and provides a natural means of domain

decomposition that appears well suited for coarse grain parallel computations.
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Figure 1 Representative
Turbine Cooling Passage Grid

III. SOLUTION OF THE EULER EQUATIONS USING A CARTESIAN,CELL-BASED

APPROACH

The Euler equations are solved using a cell-centered, finite-volume, upwinding approach. A limited, linear

reconstruction of cell-averaged data is used to provide input to a numerical flux function, yielding the flux
through cell-to-cell interfaces. The numerical fluxes are computed in an upwind fashion using an appropri-

ate approximate Riemann solver. These fluxes are then used to perform a flux balance upon the conserva-
tion volume, which is then used to advance the conserved variables in time. The procedure follows

standard practice for a finite-volume scheme. The solution procedure can be broken up into 3 stages;

reconstruction, flux construction and then evolution to steady-state. A more detailed description of the pro-

cedures is shown in [121.

The variation of the cell primitive variables in each cell is reconstructed using a linear reconstruction pro-

cedure, in the spirit of MUSCL interpolation, based on the Minimum-Energy reconstruction presented by

Barth [3]. The Minimum-Energy reconstruction minimizes the Frobenius norm of the differences between

the cell averages of the reconstructing polynomial and the cell averages of the support set. This reconstruc-

tion procedure is K-exact, in the sense that if a linear function is cell averaged upon the mesh, the recon-

structed polynomial returns the same, exact, linear function. The Minimum-Energy reconstruction

procedure provides the framework of extending the order of reconstruction, but only a linear reconstruc-
tion is considered here.

This reconstruction of cell averaged data does not preclude the introduction of new extrema: There is no

means to ensure that the reconstructed solution is bounded by the data used to perform the reconstruction.

To enforce this, the reconstruction is limited by evaluating the cell averaged data of the support cells used,

reducing the reconstructed gradient to achieve monotonicity of the data. This will in turn guarantee mono-
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tonicityof thesolutionif thenumericalflux functionis a positivitypreservingfunction(whichfor an
upwindschemeissufficientlyimpliedby positivityof thedissipationmatrix),andprovidedthataproper
choiceis madeforthetimestep.Theconceptof restrictingthelocalsolutiontobeboundedbyitsimmedi-
ateneighborsis baseduponadiscreteinterpretationof a localmaximumprinciple,andhasbeenusedto
evaluatethestencilsobtainedfor amodelequationof theviscoustermsof theNavier-Stokesequations,in
[ 12].ThelimitingprocedureimplementedhereisbasedupontheprocedureshownbyBarthandJespersen
[4]. Toensuremonotonicityof thereconstructionatcell interfaces,thesolutionisrequiredto bebounded
bythedatausedtoperformthereconstruction.A singlelimiter,• = min (_j) is found for all the primitive

variables and applied to the reconstructions.

The inviscid numerical fluxes may be computed using a variety of approximate Riemann solvers: It is a

simple matter to supply a different numerical flux function by replacing the approximate Riemann solver in
the flow solver. For the work shown here, most of the computations have been performed using the AUSM

scheme of Liou and Steffen [21]. This novel flux function combines the efficiency of flux vector splitting

with the accuracy of flux difference splitting. The derivation and use of this flux function is available in

[211.

For simplicity, the semi-discrete form of the equations are advanced in time using a multi-stage scheme. A

spatially varying time step is used, and is indeed quite necessary, since there is typically a many order vari-
ation in cell size across the mesh due to cell refinement and cutting. A generic multi-stage scheme is used

to advance the solution from the n-th to the (n+l)-th time level.

lll.a SOLUTION ADAPTIVE MESH REFINEMENT

The Cartesian, cell-based approach gains its strength primarily from two features; the ability to compute

flows about complicated geometries where the initial grid is obtained automatically, and by the inherent

ease in which adaptive mesh refinement can be performed. Adaptive mesh refinement is an attempt to

improve the quality of a solution by adding cells locally where an increased resolution is desired, and by
possibly removing cells where the current resolution is unnecessarily too high. This feature, coupled with
the automated means of mesh generation, attempts to yield grid converged solutions about geometrically

complicated domains with minimal user intervention.

Each level of adaptive mesh refinement is comprised of two stages. In the first stage, refinement criteria are
constructed for all cells on the mesh, and then in the second stage, cells are tagged for refinement or coars-

ening based on this criteria. After the mesh is enriched, a new calculation is made, converging the solution

to a steady, and hopefully more accurate solution. This process of refining the grid and converging the

solution on the new grid is repeated in an automated fashion, a set number of times, until a given level of
refinement is achieved.

The refinement criteria and grading procedure used here are based upon that presented in [14,15]. Unless

otherwise noted, no changes to the form of the refinement criteria or the selection levels are made. The pro-
cedure of refinement and coarsening of the cells is based upon a statistical description of the cell size

weighted velocity divergence and curl. The local velocity divergence is used to detect compressive phe-
nomena, while the velocity curl is used to detect shear. Each of these is weighted by the local cell size so

that smaller cells contribute less to the overall weighting, as suggested in [32].

lll.b VALIDATION OF THE EULER SOLVER

The Cartesian, cell-based approach has been demonstrated extensively for a wide variety of inviscid flows

[11,8,9,16,15,19,22,23] and has been assessed for accuracy [13]. In [13] the approach was shown to com-

pute transonic flows with a global second-order accuracy and a local accuracy between first- and second-
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order.Theadaptivelyrefinedsolutionsaboutatransonicsingle-componentairfoilandasub-critical,multi-
componentairfoilareshownhere,demonstratingtheadaptive-meshandmeshgenerationcapability.

lll.c AGARD CASE 06: TRANSONIC FLOW PAST A RAE 2822 AIRFOIL

This case corresponds to the same geometry and free-stream conditions as Test Case 06 in the collection of

inviscid flow test cases[l]. Adaptive mesh refinement is performed for four levels beyond the base grid

level. Figure 2 shows the final, adapted grid and Figure 3 shows the Mach number contours at the final

refinement level.The solution compares well with the computed results, tabulated in [1]. Figure 4 shows

the computed surface Mach number and the computed results from [1 ].

Figure 2 RAE 2822 Level 4 Adapted Figure 3 RAE 2822 Level 4 Adapted
Grid Mach Number Contours
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lll.d SUDDHOO-HALL MULTI-ELEMENT AIRFOIL

This four-element airfoil has been included in a series of test cases at the 1994, ICASE/NASA LaRC

Workshop on Adaptive Grid Methods. The geometry corresponds to that obtained by a conformal mapping

technique [30], which has also yielded surface pressure data. The airfoil geometry has been curve fit using

a cubic spline and made available on Mosaic (http://www.icase.edu/workshops/adapt) by the workshop

organizers. The free-stream conditions corresponding to this case are M** = 0.2 and ot = 0 °. The mesh is

generated automatically and adaptive-mesh refinement performed for 3 levels beyond the base grid. The

computed solution on the final grid is compared to the potential flow solution in Figure 7 while the final

grid and pressure contours are shown in Figure 5 and Figure 6.

Figure 5 Level 3 Adapted Grid Figure 6 Pressure Contours
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IV. VISCOUS FLUX FORMULATION

The essence of the cell-centered viscous flux formulation is the reconstruction of the gradients of the veloc-

ity and temperature at the cell interfaces from the cell-averaged data of the cells around it. Once this has

been completed, a numerical quadrature is performed over the cell faces, yielding the desired viscous

fluxes through the interfaces. For cell-centered schemes, there are prevalently two separate classes of the

viscous gradient reconstructions, which have been analyzed in [12]. The first and most widely used class is

based upon an application of the divergence theorem to a co-volume surrounding the face where the flux is

desired. These types of reconstructions are classified as Green-Gauss type reconstructions. Four of these

types have been analyzed in [12], and are delineated amongst themselves by the reconstruction co-volumes

and the procedures used to obtain the data at the vertices of the co-volumes. A different class of gradient

reconstructions based upon expanding a polynomial about the face midpoint and then differentiating the

polynomial to obtain the gradients has been proposed by Mitchell [24]. Linear and quadratic reconstructing

polynomials are found using a Lagrangian type of interpolation, and are also examined in detail in [12].

There, the six schemes were analyzed for quality and positivity by local Taylor-series expansions of the

stencils created for Laplace's equation on grids representative of the Cartesian approach. It was shown the
importance of the K-exactness of the interface gradient reconstructions. The analysis showed that for arbi-

trarily distorted grids, the only means to obtain a conservative, first-order accurate discretization requires

that the gradients be found from quadratically-preserving functions. Importantly, it was shown that if the

gradient reconstruction procedure is not at least linearity-preserving, stencils can be obtained that preclude

grid convergence, and will actually have an error that increases with mesh refinement. This type of trunca-

tion error is termed here as being mesh divergent. Very importantly, robustness of all of the schemes upon

the distorted meshes caused by mesh refinement was gauged using a positivity analysis. Non-positivity of a

reconstruction scheme can inhibit convergence and violates the discrete interpretation of the continuous

maximum principle entertained by elliptic solutions.

To summarize the analytical results presented in [12], of the four Green-Gauss type reconstructions ana-

lyzed, three were shown to be either mesh divergent, produced either extremely non-positive stencils or
gave solutions that on certain topologies yielded stencils that were completely or partially decoupled from

the neighboring cells. The fourth reconstruction type is commonly known as a diamond-path reconstruc-

tion using a linearity-preserving weighting. This reconstruction is named so because it uses a diamond-

shaped polygon to perform the gradient reconstruction. The four vertices of this polygon are formed by the
two cell centroids that share the face to be reconstructed about, and the two vertices that are at the face end-

points. The data at the centroids is known exactly, but the data at the vertices must be arrived at by some

interpolating procedure. In [20] a linearity-preserving weighting is derived which finds data at a vertex
using the local cells about it. Since the Green-Gauss reconstruction procedure can only preserve linear

functions, and can only do this if the data supplied to it is linearity-preserving, this weighting procedure

guarantees the reconstruction of a gradient that is linearly K-exact. A means of obtaining higher-order pre-

serving weightings was shown in [12], but for the linearity-preserving reconstruction scheme using the

divergence integral, this higher-order weighting is unnecessary. Although the analysis showed that this

reconstruction procedure was not positive on general meshes and could yield inconsistent stencils, it was

seen to represent the better of the Green-Gauss class of reconstructions.

Of the polynomial reconstruction types, a Lagrangian type of interpolation procedure is used to reconstruct

a polynomial based at the face midpoint, which is then differentiated to obtain the gradients. The recon-

struction requires the selection of either three cells (for the linear reconstruction) or six cells (for the qua-

dratic), which then necessitates the inversion of a Vandermonde-type matrix. In [24] it is suggested to base

the selection of these support cells to provide a centroid of the resulting polygon to be closest to the face

midpoint. In 112] it was shown that this criterion does not always yield the best stencil, and for the linear

reconstruction scheme, yielded some extremely poor stencils on certain grid topologies. The analysis

showed that the quadratic reconstruction was the only procedure that gave first-order accurate stencils for
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Laplace'sequationonarbitrarilydistortedmeshes.Theanalysisalsoindicatedthatthisprocedurecould
givethemostnon-positivestencils.
Sincetheanalysispresentednoclearchoiceastothebestprocedureof thetwoclassesof reconstructions,
Green-Gaussorpolynomialbased,thetwoschemeswerebothusedtocomputeaseriesof lowtomoderate
Reynoldsnumber,adaptively-refinedsolutionsusingtheCartesianapproach.Althoughneitherscheme
guaranteedpositivestencils,thediamond-pathschemecouldbeviewedasrepresentingthemorepositive,
yetlessaccurateofthetwo.In [12],adiscreteaccuracyandpositivityanalysisonthegridsshowedthatthe
inconsistencyincurredbythediamond-pathschemesis lowwhilethecomputedresultsfrombothschemes
werenearlyidentical.Globallythisinconsistencyincurredby thediamond-pathschemeis smallduein a
largepartbytheregularityof theCartesiangrids.Thequadraticpolynomialbasedschemeguaranteedcon-
sistency,whichwasalsoshowncomputationallyin thediscreteaccuracyanalysis,butyieldedthemost
non-positivestencils,whichalsomadethequadraticschemetheleastrobust.Forarbitrarilycutcells,nei-
therschemewasasrobustaswouldbedesired,butthediamond-pathschemewasshownto bethemore
positive.Animportantconclusionfromthisstudyis thatthecurrentviscousfluxfunctionsforcellcentered
schemesrelyheavilyupongridsmoothnessandorthogonalityto obtainaccuracyandpositivity.Forthe
Cartesiangrids,thesepropertiesdonotholdatrefinementboundaries,andareextremelyviolatednearcut
cells.Thishasnegativeimplicationsforthesmoothnessof aerodynamicparametersthatrelyuponderiva-
tivequantitiesatwalls,suchasskinfrictionandheattransfer,andcanhaveadetrimentaleffectuponcon
vergence.Regardlessof thesecomparativelynegativefindings,theapproachcanstill proveto beuseful,
andcangiveaccurate,automaticallygriddedandadaptively-refinedsolutionsof theNavier-Stokesequa-
tionsfor low andmoderateReynoldsnumberflows.Thefollowingcomputationsillustrateadaptively
refinedsolutionsusingtheCartesian-cellapproachwith thediamondpath,linearity-preservingviscous
fluxfunction.

IV.a LAMINAR DRIVEN CAVITY FLOW

The laminar flow inside a square, driven cavity is computed and compared to the computed results of Ghia,

et. al. [18]. In [ 18], an incompressible formulation of the Navier-Stokes equations were solved using an

implicit multi-grid method, where tabulated u- and v-velocity data is supplied along the lines through the

geometric center of the cavity. To compare with these incompressible results, the Mach number used here

is taken to be Mzi a = 0.1. Two Reynolds numbers were computed and compared to the tabulated results.

IVa.1 Re=100

A uniform base grid of 1024 cells (32 by 32) is generated, and three levels of adaptive mesh refinement

beyond the base grid are obtained. Adaptive mesh refinement improves the solution slightly, but the initial

solution is quite good. Figure 8 and Figure 9 show the computed u- and v-velocity profiles along vertical

and horizontal lines through the geometric center of the cavity for the diamond path scheme. Figure 10

shows the final adapted grid and Figure 11 shows contours of u-velocity. Particle paths, showing the pri-

mary and secondary vortices is shown in Figure 12.
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Figure 11 Refinement Level 3,
u-velocity Contours

As seen in the adapted grid, the refinement strategy has added points near the lid and has resolved the grid

near the upper corners, where there are singularities in the u-velocity. There are secondary vortices situated
in the lower comers of the cavity: These vortices are not isolated by the refinement strategy, which indi-

cates that a better strategy more suited for viscous flows might be needed. Overall, though, the solution is

predicted well.
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Figure12ParticlePaths:

IVa.2 Re---400

This case is similar to the previous, although the Reynolds number is now 400. A coarse base grid is gener-

ated, and three levels of adaptive mesh refinement are performed beyond the base level. A comparison to

the computational data of Ghia[ 18] is shown for the u- and v-velocities on lines through the geometric cen-
ter in Figure 13 to Figure 14.
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Through Geometric Center, Re=400

Figure 14 v-velocities on Horizontal Line
Through Geometric Center, Re=400

Here, the solution on the coarse, base grid is poor, although the solution is improved through the adaptive

mesh refinement. Figure 15, Figure 16 and Figure 17 show the adapted grid, u-velocity contours and par-
ticle paths in the cavity.
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Figure 15 Final Adapted Grid
Re=400 Driven Cavity

Figure 16 u-velocity
Contours, Final Adapted

The solution obtained is good on the final grids, and the mesh refinement is shown to have improved the

solution, even though the refinement strategy has not been derived with viscous flows in mind.
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Figure 17 Particle Paths, Re=400

Driven Cavity

IV.b LAMINAR FLOW OVER A BACKWARD FACING STEP

The laminar flow over a backwards facing step at two Reynolds numbers is used to validate the solver. The

computed results are compared to the experimental data of [2] at the laminar Reynolds numbers. A para-

bolic velocity profile is specified at the inflow, and the exit pressure is specified. This ensures that the

proper pressure gradient and mass flow is imposed on the flow.
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IVb.1 Re=100

Adaptive mesh refinement is made for three levels of refinement beyond the coarse, base grid. Figure 18

shows the grid and Figure 19 shows the effect of adaptive mesh refinement at a location corresponding to

2.55 step heights downstream of the step. Comparisons are made at other locations of the flow in [12]: The

results compare equally well, and are not shown here. The agreement with the experimental data is good,

and the adaptive mesh refinement improves the solution quality with each refinement.
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IVb.2 Re=389

This case is identical to the previous case, but the Reynolds number is Re=389. The computed velocity

profiles through refinement at x/S=2.55 are shown in Figure 20. As before, the adaptive mesh refinement

automatically improves the solution quality, and the final refinement level solution compares well with
experiment.
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IV.c DEVELOPING LAMINAR FLOW OVER A FLAT PLATE

The developing, laminar flow over a flat plate which is aligned with the flee-stream is computed and com-

pared to the theoretical solution. A uniform flow is imposed ahead of the plate, and the flow is allowed to

develop along the plate. Conditions are set so that the Reynolds number based on plate length is 10,000.

The Mach number is taken to be Mo_ = 0.2 which eliminates the need for any compressibility transforma-

tion to compare to theory. When a poorly refined base grid is specified, the coarser solutions are improved

successively by the adaptive mesh refinement. Figure 21 shows the close up of a base grid near the leading

edge where the initial resolution of the grid is made according to an estimated normal velocity scale varia-
tion deduced from theory. Figure 22 and Figure 23 show the effect of adaptive mesh refinement upon the

u- and v-velocity profiles while Figure 24 shows the skin friction through refinement.
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Figure 21 Close-up of Base Level Grid:
Length Scale Smoothing: Au = 0.2
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Thesmoothnessof the skin friction in Figure 24 is due to the smoothness of the grid, since the root cell of

the grid system has been located so that no cut cells are introduced along the surface of the flat plate. In

[12], the plate is rotated 30° about the base axes and the identical flow is computed, bringing to light the

effect of introducing cut cells along the plate boundary. The mean flow quantities are predicted well, but

the skin friction is shown to be very oscillatory. This appears to be unavoidable with the current state of the

art of the viscous flux functions. There is no flux function that guarantees both positivity and accuracy for

cell centered schemes. Regardless of this finding, the mean flow quantities are predicted well, and the

approach can be used to compute adaptively-refined solutions of the Navier-Stokes equations about com-

plex geometries, as is indicated in the next case.

IV.d LAMINAR FLOW THROUGH A BRANCHED DUCT WITH COOLING FINS

To demonstrate the approach for complex geometries, the flow in a stylized duct is computed. This duct

geometry corresponds to an experiment conducted at NASA LeRC designed to simulate, in a simplified

manner, the flow in the cooling passages of a turbine blade [28]. The calculations shown here in no way try

to simulate the experiment: The experimental conditions correspond to a turbulent flow, while the calcula-

tions shown here are laminar. A schematic of the geometry and flow is shown in Figure 25.

"Back SteI_ Primary

o o o
o o

Inflow o ooo Secondary
_ 0 0 0

0 0

14 Pin
Cooling Fins

Figure 25 Schematic of Branched
Duct Geometry

A fully developed profile is introduced at the inflow, and the flow is diverted into the primary passage by
the blockage introduced by the pin fins in the secondary passage. Two different Reynolds numbers based

on pin diameter and maximum velocity in the fully developed inflow profile were computed in [12]. The
lower Reynolds number results are only shown here for brevity, where the Reynolds number based on

maximum inflow velocity and pin fin diameter is Re=25. Only one level of adaptive-mesh refinement

beyond the base grid level was obtained, due to positivity problems in the rear stagnation region of one of

the pin fins. The final adapted grid and contours of total velocity are shown Figure 26 and Figure 27.
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Figure26Closeupof Final Adapted Grid, Lower Reynolds Number Case
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Figure 27 Close up of Final Grid Level Total-velocity Contours.

The basic flow features predicted here correspond to those in the experiment, although some important fea-

tures are grossly under-resolved, such as the individual pin-fin wakes. The primary passage separation and

reattachment along the splitter plate and the separation anchored at the back step portion are both properly

predicted, as well as the upstream influence of the pin blockage upon the lower wall flow. Although many

levels of refinement were not achieved, the larger scale flow features were adequately predicted and were

improved by the mesh refinement procedure.

V. CONCLUSIONS

An adaptively-refined, finite-volume solution procedure for the Euler and Navier-Stokes equations using a

Cartesian, cell-based approach has been presented, demonstrated and validated. The Cartesian, cell-based

grid generation procedure is automated, and is able to generate grids about complicated geometries without

user intervention. The grid generation strategy is based upon the re,cursive, isotropic subdivision of a Car-

221



domain, polygonal cells are "cut" out of the background Cartesian mesh using a highly modified polygon

clipping algorithm. The hierarchy of the grid generation process is stored in a binary tree, which provides a
natural means of finding cell-to-cell connectivity (via logical tree traversals) and provides a straightfor-

ward means of adaptively refining the grid (via tree branch growth and pruning). Extension of this

approach to the Navier-Stokes equations shows promise by providing a means of obtaining automated,

adaptively-refined solutions upon domains where the grid has also been automatically generated.

A finite-volume, upwind-based scheme has been selected for treatment of the convective terms in the

Euler/Navier-Stokes equations and has been implemented in the Cartesian, cell-based framework. Exten-

sion of the Cartesian approach for solving the Navier-Stokes equations has necessitated a careful investiga-
tion of candidate viscous flux formulations, which has been summarized here. The two viscous flux

formulations that were investigated represent, respectively, a divergence theorem (Green-Gauss) based

reconstruction procedure, and a quadratic polynomial based reconstruction procedure. Analysis and prac-
tice indicated that the Green-Gauss based procedure, where data at the face vertices was found in a linear-

ity-preserving manner, was adequate and was also the more robust of the two, although neither could

guarantee positivity on arbitrarily distorted meshes. This non-positivity reduced the robustness of the
solver, although useful results can still often be obtained. The Green-Gauss based scheme, commonly

referred to as the diamond-path reconstruction using a linearity-preserving weighting, has been used here

to compute adaptively-refined solutions to a variety of low and moderate Reynolds number flows. Compar-

isons were made to accepted computational results, to experimental data and to theory for a range of flows,
where the Cartesian, cell-based approach is shown to accurately predict these flows.
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