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ABSTRACT

A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing

fronts for both structured and unstructured grids. In this approach, structured grids are first generated

independently around individual components of the geometry. Fronts are initialized on these structured

grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing

typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria.

When no more viable structured cells exist, further cells are advanced in an unstructured manner to close

off tile overall domain, resulting in a grid of "hybrid" form. There are two primary a<lvantages to the hybrid

formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered

when a multiple block system is used to fully en<'apsulate a domain. Individual blocks may be generated

free of external constraints, which will significantly redu<'e tim generation time. Secondly, grid points _ear

the body (presumably with high aspect ratio) will still maintain a stru<'tured (_lon triangular or tetrahedral)

character, thereby maximizing grid quality and solution accuracy near the surface.

INTt/ODITCTION

Grid generation has turned out to be a significant aspect of tile COml)utationa] simulation of field prob-

lems. A cursory literature search would produce a variety of fimdamental grid types in mainstream use,

which is an indicator that no one method offers clearly superior features. The traditional method of grid

generation for computational fluid dynamics, structured grid generation, remains popular today because it

provides substantial solution accuracy, particularly in viscous regions of the flowfield. A generalization of the

structured method, the multiple block method, allows virtually any geometry to be modeled with a series

of abutting grid blocks. This geometrical flexibility comes at a i>rice, however, as the person-hours needed

for generation can become exhorbitantly high. This one fact was probably the major reason for the ground

swell of unstructured grid generation CFD applications in the last eight orsoyears. Unstructured grids do

indeed ameliorate the generation-time bottleneck, but there has been a conspicuous delay in application of

unstructured grids to viscous regions, where the severe length-scale disparities of the prol>lem necesitates

cells of very large aspect ratio. Even now that viscous applications are appearing in the literature, the men>

ory and computational overhead associated with an illlSll'llClllre(t grid makes it difficul! to generate grids of

sufficient resolution. In 31), for example, it, takes 5 or (i letrahe<lral cells near the t)ody to replace a single

hexahedral cell, and even then the tetrahedra will usually exhibil high aspect ratios.

Much of the grid generation research of the past few years has been aime<t at, alternate methods that

allow grids to be generated in reasonable times without compromising resolution and hence, solution accuracy.

Perhaps the most mature of these methods is the oversel, or Chimera approach, llere, structured grids are

generated independently about different conl[)onelltS of [he geometry in an overlapping manner. Overlap

regions are then determined either fi'om uset'-inl)Ut , or lately from automated means [1], and solutions are

obtained on the composite grid. The difficulty of this inethod is in the conservative interpolation of the

flow solution from one component grid to another. Complex methodologies have been developed for this

step. Another emerging grid technology is the cartesian api)roach, whereby the flow domain is automatically
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divided into quadrilateralsand parallelepipedsat locationsalignedwith the physicalcoordinates.Here,
local refinementisoften usedfor enhancedaccuracy.The currentproblemwith the cartesianmethodis the
representationof the geometrysurfaces,whichareusuallynot alignedwith the physicalaxes.The typical
remedyis to modify the cell locallyneartile surfaceto maintaina body-conformingfit.

This last fix introducesyet anotheremerginggrid technology,that of the grid of mixed structure, or

the "hybrid" grid. The most popular hybrid grid application is to comlfine regions of structured grids with

regions of unstructured grids in such a way to preserve the salient features of each method. For example,

by using structured grids near the geometry surface, and unstructured grids everywhere else, the inner

grid could be generated quickly, and the outer grid could be generated automatically, thus eliminating the

difficulty of constructing a multiple block topology that links several tflocks together to represent the entire

domain. The structured character of cells near the body would then lead to improved solution accuracy, while

representing the domain locally with fewer grid cells. Early hybrid grid examples were applied to geometries

with clearly defined near and farfield regions [2], with the non-overlapping structured grids generated first,

and the remaining regions filled in later with unstructured cells. More recent examples, applied to extremely

complex geometries, still require user-defined boundaries between regions of structured and unstructured

cells [3]. In the general case, however, the line of demarcation I)etween structured and unstructured regions

is not clearly defined, a.nd in fact, may be. impossible for the user to specify. The most intuitive solution is to

allow tile near-geometry region to be generated automatically, until a specified distance is reached or until

intersections are found. Very impressive grids have been developed recently using this approach [4], [5], but

as the generation of surface and near-surface grids is the toughest aspect in all types of grid generation, it

inay be some time before grids of this type may be generated automatically for general geometries and flow

conditions.

Another means of generating hybrid grids is t.o generate a series of structured, overlapping grids around

different components of the geometry, similar to the chimera approach. Here, however, grid cells in the

overlapping regions of the grid will be removed, and will be replaced with unstructured cells. The resulting

hybrid grid will then fully encapsulate the flow domain with no regions of overlap. Determination of regions

of overlap becomes the central issue in this approach. ()t,e effort employed well-established chimera tools for

blanking out the regions of overlap between grids [6]. The chimera tools used, however, required the grids

to be sorted into major and minor comt)onents, which forced users to be familiar with the manner it, which

the component grids overlapped. For obvious reasons, requisite user-comprehension of block overlap will

impede the generation of hybrid grids around general conligurations, and so an automatic means of overlap

detection is desirable.

The method proposed in this t)aper h_r hybrid grid generation manages grid overlap automatically through

the use of an advancing front a.lgorithnt. Specifically, fronts are fornled on surfaces of the structured blocks,

attd are then advanced 1)y covering structured cells lhat do not intersect the front, t The end result is a

collection of structured cells that cover the flow domain in all regions except for the gaps where opposing

fronts nearly converge on each other. The gaps are in turn discretized wilh unstructured cells by applying

another advancing front soh, tion, this time using Illlstl'uctllre(t (:ells.

The remainder of this paper explains the delails of the advancing front hybri(t apl_roach, and provides

both 2 and 3 dimensional applications.

_The basic idea of using advancing front techniques (m a series of structured grids is Mso presented in |/eference [7]. In that

chimera grid application, the advancing froul determined regions of the grid to be blanked out in the composile grid, and limited
the overlap (a chimera requirement) rather than el're'haled it.
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BASIC ADVANCING FRONT METHOD

Generationof hybrid grids ill this study is basedon advancingfront methodstraditionally usedfor
unstructuredgrid generation,tlybrid generationconsistsoftwosuccessiveapplicationsofageneraladvancing
front algorithm-the first advancingalonga predefinedsetof overlappingstructuredgrid data, resultingin
a non-overlappingsetof structuredcells,andthe secondadvancingalongpreviouslyunfilledregionsof the
domainusingunstructuredmethods.Despitethe inherentdifferencesin thesetwoapplications,eachemploys
the samebasicsteps:

1. Forman initial front asa closed-loopof faces.
2. Identify aface(pface)on thefront from whicha cell is to beconstructed.
3. Forma candidatecell, celll, using the pface.

4. Test the candidate cell for validity.

5. If the candidate cell is valid, add the cell to the grid, and modify' the front so that tile new cell lies

behind it. This requires removing faces that are covered by cell1, and adding tile remaining faces of

cell1 to the front.

6. If the candidate cellI is not valid, find another candidate cell and go to step 3.

7. Repeat the process until there are no nlore faces on the front, or until there are no more suitable

pface's.

The specifics of the advancing front nmthod for both structured and unstructured grid regions will be

detailed in subsequent sections.

COMMON DATA STI:_UCTIJRES AND ALGORITtIMS

There are so many fundamental similarities between the two advancing fl'ont applications that the cur-

rent method attempts to utilize common data structures and routines in generating tile structured and

unstructured grid regions.

Data Structure

There are three basic geometric entities, each with an associated data structure. The smallest discretiza-

tion of the overall problem domain is known as a cell, which represents an area in 2D and a volume in 3D.

Cells are bounded by a number of faces, which rel)resents a length in 2D an(l an area in 3D. The edges of the

faces are then represented by either a single node in 21), or a line bound by two nodes in aD. Nodes are the

basic geometric entity, and their data structure contains an (a:, y, z) coordinate triple indicating location in

physical space. A face data structure, on the other hand, contains a list of fornling nodes (2 in 2D, 3 in 3D)
as well as a pointer to the two cells formed on each side of the face. Finally, a ('ell data structure is composed

of a list of faces and nodes. The number of faces per cell depends on the dimension of tile problenl and

on whether the cell is structured or unstructured. Triangular (2I)) and tetrahedral (3D) cells are used for

unstructured cells, and quadrilateral (2D) and hexahedral(3I)) cells are used for structured cells. Figure 1

lists the number of faces required to form tile different (:ells used in the present work. Note that there are

twelve faces in tile hexahedron cell because each hexahedral side is broken into two triangular faces in order

to utilize the same face intersection routines (described below) as the tetrahedral mesh generator.

The final data structure to discuss is the fl'o,t. The overall front is a list of front entilies, each of which

contains a face and tile associated connection data that specifies tile face's neighbors at. each edge. Additional

geometric data is stored to facilitate the various searches required by the method. A bounding sphere radius

and center is stored for each cell and face on the front to assist in face intersection and proximity tests
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2D 3D

quadrilateral triangle hexahedron tetrahedron

2 nodes/face 2 nodes/face 3 nodes/face 3 nodes/face

4 faces/cell 3 faces/cell 12 faces/cell 4 faces/cell

faces are lines faces are lines faces are triangles faces are triangles

Figure 1: Cell structures for 2D and 3D.

described later. A front face also stores the normal to the face, area. of tile face, target cell size evaluated at

the face centroid, and tile angle between the face and its neighhors. A stat_" indicator is also stored at each

face on the front and reflects ]low close the face an<t one or more of its neighbors are to forming a complete

(:ell. State values will be (lescril)ed in depth laler in the structured and unstructured advancing front details.

Quadtree/Octree Data Storage

The advancing front method requires a signiticant number of global data searches. Two examples include

searching for a list of all nodes on the front that might be suitable for forming a cell, and searching for the

list of candidate faces that might intersect a candidate cell. Typically several searches of this type are needed

for every iteration of the advancing front. Clearly then, global linear searches for all of these possibilities is

prohibitively expensive. The present approach to speed these searches is to use octree (3D) and quadtree

(2D) data structures [8], so that linear searches are localized to a relatively small vicinity. Currently the

nodes on the front and a list of faces containing the node are stored in one octree/quadtree structure, and

the front faces themselves are stored in another, with the face centroi(t used as the storage location. The

bounding box for the quad/hex containing the list of faces is expanded to contain the bounding sphere for

all the faces contained in the (luad/hex. Thus when searching for the list of faces whose bounding spheres

intersect the bounding sphere of a cell, the cell bounding sphere is teste(t against the bounding box of a

quad/hex in the tree• Those boun(ling boxes that do not overlap do not need to be tested further.

Intersection q>sts

The validity of a. candidate cell, cclll, formed by advancing the fl'ont depends upon accurate testing for

intersections between cell1 and the faces on the front. The first step is to determine a set of faces on the

front that are likely to intersect the faces of cclll. The bounding spheres for the candidate cell and the faces

on the front are utilized in the search for a sel of faces that that could possibly intersect the candidate cell.

Since the cell and a face are completely contained within the hounding sphere, if the spheres do not intersect,

then neither will the cell and faces, llence rigorous intersection tests need only be applied to the list of all

faces whose bounding sl)heres interse('t the I)<)un(ling sl)here of the can<li(late cell.

The intersection test between a cell and a face begins by checking if the edges of the cell intersect the face

and conversely, checking if the edges of the face intersect the faces of the cell. Additional tests are performed

to reject the candidate cell1 if the e(Iges of the cell lie wilhin the face or if the edges of a face lie within the
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faces of the cell. Finally, celll is rejected if any nodes on the front lie within the volume of the cell.

IlYBIIID FLOW SOLVER

An extensive development effort parallel to this one is currently underway for a 2 and 3 dimensional

Euler and Navier-Stokes solver for use with the hybrid grids generated herein. The flow solver adopts a cell-

centered finite-volume formulation and an unstructured face-based grid connectivity that allows each cell to

have an arbitrary number of bounding faces and allows each face to have an arbitrary nulnber of forming

nodes on its perimeter. The system of equations is solved with an implicit point Gauss-Seidel relaxation

scheme. An upwind difference flux-vector splitting scheme is used to define the numerical flux at each cell

interface. A second-order accurate upwind-biased extrapolation of the primitive flow variables defines the

left and right states at the cell face using a cell-averaged gradient computed with a Green-Gauss integration

of the solution reconstructed at the forming nodes. This flow solver is described in detail in [12].

GENERATION OF STI/UCTURED MULTIPLE BLOCK GRIDS

A major advantage hybrid grids afford the user over multiple block structured grids is the ability to

generate block grids independently for different components of the geometry, thereby eliminating the un-

wieldy topological constraint of point-to-point matching at block boundaries. In this hybrid approach, these

component block grids are assembled together, forming regions of single grid representation, regions of grid

overlap, and regions of no grid representation. While these last two types would preclude the multiple block

approach, both are handled with this hybrid algorithm, which automatically removes overlapping regions,

and which fills gaps between grids with unstructured cells.

Still, the structured grid remains the starting point for" the hybrid t)rocess, and serves as the "skeleton"

for the final grid. In this method, structured grids are generated in multiple block clusters, with each cluster

containing a series of blocks that abut one another exactly over a portion of the blocks' surfaces. The

limiting case of single block clusters is permissible, so single blocks may be considered a subset of multiple

blocks for this scheme. Fortunately, a multiple block grid cluster is sometimes as easy to generate as an

individual block, and the quality of grid found in a multiple block cluster is worth t)reserving in the hybrid

grid. For example, in Figure 2, the two at)utting blocks (D and E) around the main airfoil require no more

work to construct (perhaps less) than would several overlapping blocks around the same airfoil. The proper

strategy, then, is to generate multiple block grids only in regions where the topology does not markedly

impact generation time.

Numerous tools are readily available for" the construction of multiple block grids. All grids in this work

were generated with Gridgen [9], [10], a widely-used general-purpose software package designed for use with

a suite of public-domain flow solvers. Gridgen automatically detects regions of block-to-block connections,

and also provides a graphic user-interface for the establishment of flow solver boundary conditions on block

surfaces. Further, it exports ASCII grid data and connection data that is directly readable by the selected

flow solver. This feature was exploited in the development of the hybrid solver, which adopted Gridgen's

generic file formats for I)oth grid point and connection data. This allows the user to set up the majority of

the hybrid grid generator inputs directly in Gri(tgen. Keep in mind, however, that any multiple block grid

generator would work as well, once the exported data were translated to the proper format.

tlYBI/II) (11_II) CI_NEII:VI'ION

The generation of the hybrid grids from the predelined set of struclured grid points follows a linear

path that begins with converting the structured grids into hybrid components, and continues with parsing

these points into non-intersecling regions, forming an initial front, advancing the front along structured cells,
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removing unused cells, massaging the front and then advancing it further using unstructured cells.

Importing Grids into Hybrid Structure

The hybrid algorithm commences with a conversion of the raw grid data generated in multiple block

form into the node-face-cell paradigm required by tile hybrid solver. Conversion to the hybrid format follows

the multi-step path described below.

For the trivial single block case, the remainder of this section is unnecessarily complex, since connections

will not exist, and the block's nodes, faces and cells could be generated automatically on the basis of their

implied connectivity. In the more general (and more interesting) multiple block case, however, surfaces from

different blocks will abut one another, with any number of block edges and corners sharing nodal values. In

these cases it will not suffice to treat blocks in(lependently, lest multiply defined nodes and faces be formed

on the block's abutting regions.

Construction of the hybrid entities begins with node formation, and continues with face and then cell

formation for all blocks in the system. No consideration is given to component overlap or intersections

during this phase. Rather, the entire structured gri<l is fit into a hybrid structure that will later serve as the

template on which the advancing front algorithm will be al>I>lie<t. This later phase will determine overlap

and will act accordingly.

Connection Arrays.- The interblock connection file associated with the multiple block grid is read into

a series of arrays as a preliminary step. These arrays specify flow boundary conditions or connections with

other blocks for each bounding surface of the block. Connections and BC's may be applied at the partial

surface level, meaning that more than one BC or connectioll nlay be applied to a particular block boundary.

Next, blocks in the system are divided into groups based on topological linkages defined in the connection

arrays. Two blocks of the same group indicate that it. is possible to get from one block to the other while

crossing only at connections specified in the arrays. Figure 2 illustrates the block group concept for a 6

block, 3 group example. Although block groups make 11o guarantee about the relative geometric positioning

of the blocks, as a matter of practice it. is assumed that blocks of the same group contain no region of

overlap. This is not unreasonable in consideration of the fact that block groups will generally correspond to

components of the geometry, and will likely be generated independently of other groups. This assumption

of no overlap within block groups will be exploited later to reduce the number of intersection tests during

front advancemellt.

Formation of nodes.- Nodes are the most difficult hybrid component to construct from a set of multiple-

block structured grid data because there exists no one-to-one correspondence between grid points and nodes.

In Figure 3, for example, grid l)oints from three individual blocks are all represented by the same hybrid

node value. In contrast, at most two structured grid surfaces will be represented by a hybrid face, and a

hybrid cell will always represent a unique region of a slructu,'ed grid.

To facilitate the placement of nodes into face and c_,ll COml)onents, a teml_orary rectangular array of Null-

initialized node pointers i_od:._ptr[i, j,/_', 7_] is formed for each block in the system, sized to the computational

dimensions of the block. The i,j,k,7_ indices corrt'sl_ond directly to lhe structured grid point with like-

indices, with _ referring to block numlwr. The _odc_plr array is filled easily for indices on the interior of the

block, since interior points will correspond to unique nodes. For these indices, a new node is allocated, and

its address is assigned to 7,ode_ptr[i, j, /,', 1_]. For indic_,s corresponding to block extremities, however, more

care is taken. If the value in 7_ode_ptr is Null. a lisl of oil grid points using the node is formed, a new node

is allocated, and its address is assigned to _odr_ptr al each grid point index in the grid point list. On the
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A-F- blocks
(_)O- blockgroups

Figure2:6 blocksforming3 blockgroups.

Block2

Figure3: Nodescommon to blocks.

other hand, if the value in node_ptr is not Null, a node is already assigned to the grid point, and the next
index is considered.

The list of block grid points sharing a node is determined via an iterative algorithm that traverses

the outer surfaces of the structured blocks, searching for minimum surface elements that use the node. A

minimum surface element is defined here as a 2 by 2 patch (2 by 1 in 2D) of adjacent grid points on the block

boundary. Define also a POF (point on face) as an artificial entity containing i,3, k, n ranges of a minimum
surface element, and indices to one of the element's corners.

Now, for each grid point i,j, k, n index on the outer surfaces of the structured blocks, a POF, labeled A,

is formed at the index. A is pushed onto a stack, and the iterative loop begins.

1. Look through the stack for tile first unused POF, called P. Mark P as used. If there are no unused

POF's, exit.

2. Using the connection arrays, determine if P abuts to another block. Call this "image" POF I. If it

exists, check I for uniqueness with all other POF's on the stack. If unique, add it to tile stack, and
mark it used.

3. There will be up to 3 other POF's on the block boundary that will be adjacent to P and will share the

same grid point index (up to 1 POF in 2D). Add each one of these "neighbor" POF's to tile stack if

they are unique, and mark them as unused.

4. Similarly, look for up to 3 other POF's on the block boundary that are adjacent to I and share the

same grid point index. Add each one of these "neighbor" POF's to the stack if they are unique, and
mark then as unused.

When this algorithm is exited, all POF's correspotlditlg to a particular hybrid node will be determined.

The final step is to scan the list of POF's one more time, removing any POF's that correspond to the same

;,j,k,n grid point index. What is left is a list of all block grid points that wil share the same nodal value.

This algorithm is illustrated in Figure 4, which tracks the 4 iteration history of determining the grid points

associated with a particular node.
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GetthefirstunusedPOFonthestack,calledP.
MarkasUSED.

Usingconnectioninfo,findtheimageofP,called1.
MarkasUSED,addtostackif unique.

Findneighbor(s)ofPsharingnodei ontheboundary.
MarkasUNUSED,addtostackif unique.

Findneighbor(s)of I usingnodei.
MarkasUNUSED,addtostackif unique.

A D E F Block2

B C

D A B C

E F

Figure 4: Algorithm for determination of common nodes.

Formation of ceils.- l[ybrid cell formation fl'om structured grid data proceeds by allocating a temporary

rectangular array of Null-initialized cell pointers cell_ptr[i,j, k, 71]for each block in tile system, sized to the cell

dimensions (grid point dimension minus one) of the block. Each array is then tilled by allocating a new cell

and assigning its address to cell_ptr. Nodes are then assigned to these cells by using the node_ptr data at the

same i,j,k, nindex in addition to its neighbors ((((,,ode_ptr[i+a,j+b,k+c,n],a = 0, 1),b = 0, 1),c = 0, 1))

Formation of faces.- Face formation also proceeds by traversing the cell_ptr arrays at all possible cell

indices i,j,k,n. The cell data structure contains pointers to all 12 (4 in 2D) of its constituent faces. At

given i,j, k, n index, heretofore unassigned faces are allocated and assigned to the cell. Faces interior to

blocks are also assigned to the cell adjacent in the cell_ptr arrays. Faces on the boundary of blocks are

checked for abutment with other blocks via the connection arrays. If such a connection exists, the newly

allocated face is assigned to the abutting cell.

Treatment of singularities.- In order to fully represent a coml)onent of a geometry with structured multi-

ple blocks, it is often convenient to introduce regions of singularities, or poles. Grid points lying along a 3D

axis of symmetry, for example, will locally collapse to a region of zero area in the circumferential direction.

Fortunately, these regions are easily identified and may be set with a Pole-type boundary condition in the

connection arrays.

During node formation above, a node is allocated for each point along the singularity axis within the

specified Pole BC regions and is assigned to nodc_ptr. This 7_odc_ptr value is then applied to all remaining

grid points in the direction of the singularity, thereby preventing the duplication of nodes. During face

formation, then, if the candidate face accesses a given node more than once, the face will have zero area,

and will be discarded and removed fi'om the cell(s). This in turn modifies the local form of the cell, which

could be reduced from 12 to as few as 4 faces in 3D, or from 4 to 3 faces in 2D.

hle,_tificalioll of Non-lnl,ersecting Subblocks

All structured grid points have now been loaded into the hyl)rid entities, nalnely the nodes, faces and cells.

In the next section, some of these faces will 1)e grouped an(1 linked to form initial fronts for the advancing

front algorithm. As will be shown, the front is advanced by' swallowing one cell at a time, employing a series

of intersection tests to ensure that the new fro_t does not intersect the previous front. This is a relatively

expensive test that is applied to the complete fi'ot/t once for each ,ton-intersecting cell, and one that is clearly
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not needed if it is known a priori that the cell in question does not violate intersection tests.

In light of this, a simple preprocessing step based on rectangular-extent or bounding-box testing [11], is

employed to identify regions of the grids quickly that do not overlap or intersect with any others. Figure 5
depicts a collection of non-intersecting cells determined purely from these tests, described below.

Figure 5: Non-intersecting subblocks.

Formation of subblocks.- The subblock entity is a data structure containing tile computational and physi-

cal extents of part of a block. Initially, one subblock is formed for each block in the system, extending over the

entire block, from 1 to (imax,jmax, kmax). Each grid point in the subl)lock is then examined to formulate

the range of x, y and z values for the subhlock (the bounding box).

Splitting subblocks.- Next, a number of independent subblocks is constructed through successive subblock

splitting. A subblock is deemed independent if its bounding box does not intersect the bounding box of any

other subblock with a differing block group number. The test for subblock intersection is trivially performed

due to the cartesian shape of the bounding boxes.

When a subblock is found to intersect another, it is split along its longest computational dimension, and

new bounding boxes are computed for each subblock. The snbblock is split as long as it does not violate a

user-prescribed (usu. 3) minimum size. If an intersection is not detected, the subblock is independent and

flagged as such. The procedure ends when there are no more dependent subblocks left to split.

Concatenating subblocks.- The previous step generally produces a large number of small independent

subblocks, and so the subblocks are concatenated in this step to reduce their number. Concatenation takes

place by checking the computational range of each edge of each subblock for an identical range elsewhere in

the list. A match indicates two filly abutting subblocks, which are combined into a larger subblock. The

procedure continues until there are no two remaining subblock edges that represent the same surface.

Remove overlapping subblocks.- Finally, all subblocks flagged as dependent are removed, resulting in a

list of block ranges on which there is known to be nooverlap or intersection. All cells within these independent

subblocks are marked for easy disposition later.

Formation of Initial Front

The collection of newly formed cells, faces and nodes represents a superset of the structured entities

that will comprise the hybrid grid. This superset will be pared down to a non-intersecting set of entities by

advancing a series of initial fronts one cell at a time, rejecting cells along the way that violate overlap and

341



proximity criteria. There are two types of initial fronts- those specified by the user and those representing

bounding surfaces of non-intersecting subblocks formed earlier. Both types of fronts must form closed

surfaces, so that it will remain simply connected as it covers cells. Such a requirement will eventually allow

some of the front to disappear, signaling the end of the algorithm.

The faces in tile system which will comprise the initial fronts are specified in a list of structured surface

regions. User-specified front regions are passed in through the connection arrays, and generally will corre-

spond either to the geometry surfaces or to the farfield extents of the overall domain. A total of six (4 in

2D) regions (corresponding to the block boundaries) are also added to the list for each remaining subblock.

Subblock boundaries are chosen as initial fronts because they represent boundaries of regions of no overlap,

and subsequent front advancement will move away from the boundaries, thereby eliminating a large number

of unnecessary intersection tests.

Initial fronts are formed in two sweeps. In the first, each surface region, which represents a computa-

tionally rectangular surface on the structured blocks, is swept. Each face in tile region will be loaded into

the front, and will be connected to the faces with adjacent i,j, k, n index, via the cell_ptr arrays. When the

region is loaded, only the region's bounding edges will not be connected to other faces.

Special care is needed for pieces of front regions that are doubly-defined. This situation occurs at common

surfaces of subblocks, and at subl)lock surfaces also user-specified as initial fronts. In all cases, a donbly-

defined front face should be removed from the front, and so if a face to be added is already on the front, it

is instead removed, and its neighbor's connections are broken.

In the second sweep, the edges of front regions and doubly-defined regions are stitched together to ensure

a series of simply-connected initial fronts. This is acconli)lishe(l by interrogating each edge of each front face.

If the neighbor to the face at the edge in question is not defined, a search is made to find all faces on the

front using the edge. If two edges are returned, their corresponding faces are linked together, and the next

edge is found. The case when more than two edges are returned indicates an improperly formed initial front,

at which time the algorithm is aborted.

Temporary arrays cell_ptr and node_ptr may be discarded after front initialization. From this point on,

all connectivity between cells, faces and nodes is transmitted from within their respective data structures.

Advancing Front Along Structured Cells

Except for the user-specitied initial fi'ont selection, all of tim steps described above proceed in an au-

tomatic fashion. When these steps have comt)leted, the advancing front algorithm is started along the

structured ceils. Front advancement follows an iterative three step procedure until tile front has disappeared

or until it may be advanced no more. In the first step, a suitable face on the front is selected for front

advancement. Secondly, the cell in front of this face (the cell to be covered) is tested for geometric violation

with other faces on the front. Finally, if it passes the test, the front is modified to include the cell, and the

front face connections are modified to maintain a proper front.

Candidate face selection.- The first step in the iterative structure(l front advancement procedure is to

select a face, called place, fi'om which the front is to advance. The importance of place selection should not

be underestimated, as differing selection criteria may produce hybrid grids of widely varying character. This

is because front advancement at a given location l)recludes advancement of an opposing front that is vying

to cover the same physical space.

Penalty function: Since the proper selection of pfac_: is intluenced by a host of conflicting geometrical
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andtopologicalfactors,it is logicalto assemblethesefactorsintoa mathematical"penalty" function,sothat
place may be selected as the face of minimal functional value. In this work the linear expression below is

used, where n refers to the number of component functions, ci is a user-set non-negative influence coefficient,

and fi is the normalized i_th component function.

There are currently two component functions used ill the overall penalty fllnction. The first, fsize,

measures the relative size of the face. Specifically,

LiZf; ----

log(S/Sm. )
log(S.,ax/Sm. )

where S is the area (length in 2I)) of the face, and S,,_i,_ and Smax are the minimum and maximum areas

among all faces on the front. Notice that f,i_ is bound by 0 and 1. This function l)roduces a smaller penalty

for faces of smaller size, but the logarithmic form reduces order of magnitude disparities in face size to a

linear scale, preventing over-t)enalization of the mi(I-siz(, faces.

The second component function, f,t_t_, measures the local "raggedness" of the front, tlere, a "state"

variable is formed at each face in the cell, set equal to the nunfl)er of front neighbors that touch the same cell

outside the front. Front faces with larger values of the st.ate variable result in a local "stair-step" construction

of the front, as depicted in Figure 6. This local phenomenon is to be avoided, if possible, because it reduces

the advantage of local structure in the hybrid grid, and it creates a inore challenging starting front for the

unstructured grid generator described later. Therefore, the goal of fst,t_ is to minimize the penalty at faces

that tend to fill in the ragged edges of the front. This suggests the following form:

T

fst_te = 1 T_,x'

where T is the state value, and Tm_- is the maximum state value found on the front.

In practice, fsize seems to be the more important function, and is typically used with coefficients of

C_iz_ = 1 and c_tat¢ = 0.25 . This combination insures that the pfiwe will be chosen on the basis of state

variable when the face sizes are nearly the same.

By no means are the two functions above sufficient for front face selection in all cases; this is in fact one

of the lesser mature aspects of the advancing front hybrid approach. Other penalty function components

for future consideration include the proximity of the front face to opposing fronts and the variance of the

forming cell size from a prescribed target volume.

Cycling: During the early stages of front advancement, it is desirable to have the front grow in a fairly

uniform manner, so that viscous layers of the structured grid may be covered by the front before overlap in

the grids becomes a factor. This is accomplished by associating a cycle variable to all front faces, roughly

equivalent to the number of layers from the initial fi'ont that the current face lies. A global cycle value is also

formed, equivalent to the layer that is currently being filled. As the fi'ont advances, only front faces with the

current value of cycle become candidate pface's, and th(' winning place is selected from the candidates using

the penalty function approach descril)ed above. After place is covered by the front, any new front faces are

given an incremented cycle value so that they will not become candidate place's until the next layer (global

cycle is incremented). When there are no more front faces with the global cycle value, the cycle value is
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Fig_ure 7: celll is rejected due to proximity to shaded
Figure 6: State values along a typical fl'ont, circles.

incremented, and the procedure is repeated. When the numt)er of user-specified cycles is met, all front faces

become candidate place's henceforth•

A typical value for cycle is 3, which guarantees 3 layers of grid points around initial fronts, barring front

violations, described next•

Violation checks with front.- Before the structured fl'ont is advanced at a given place, the faces of celll,

the cell outside the front at pfaee, are checked for two types of geometric violations, described below, with

the rest of the fl'ont. If a violation is detected, the front is not advanced at place, and pface is flagged so

that it will not be a candidate face in subsequent iterations.

Strict intersection: All faces on eelll not ah'eady on the front are checked for intersections with all faces

on the front as described earlier. If an intersection is found, celll clearly may not be covered by the front.

Proximity: Experience has indicated that it is also necessary to keel) fronts from getting "too close" to

each other. This is driven by the fact that the completed structured front will serve as the starting front for

the unstructured generator, and a finite distance between fronts is needed to provide adequate space for the
unstructured front to form reasonable cells.

Definition of the term "too close" is un(lerstandably nebulous. The approach herein is to calculate

the pseudo-centroid of the cell1 by averaging the node values, and then to form a sphere (circle in 2D) of
minimum radius that surrounds all nodes. Next, for each face on the front, the sphere (circle in 2D) of

minimum radius that contains all nodes on the face is cal'culated• The front face minimum spheres are then

scanned for intersections with the minimum eelll sphere, ignoring front faces belonging to the same block

group as the original place. Front faces of the same block group are ignored because front faces adjacent to

place would almost always be intersecting, and it is implicitly assumed that blocks of a common block group

contain no overlap.

This type of "proximity" check is schematically illustrated in Figure 7, and its effect is shown in the
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example of Figure 8.

Figure 8: Structured cells advanced with (1) and without (r) proximity tests.

Front modifica.tion and reconnection.- If tile pfacc-celll combination passes both violation checks, the

front is next modified to cover the cell. First, the cell to be covered, cdll, is flagged to indicate that it now

lies behind the front. Next, faces in cellI not ah'eady on the front are added, and faces in cell1 already on the

front are removed. Finally, the new faces are connected to one another and to the neighbors of faces removed

from the fronts. This task is straightforward for simple cases, but complicates quickly for odd combinations

of converging fronts. For that reason, it was necessary to develop the general algorithm for front reconnection

outlined in Figure 9.

edge

Get a list of all faces and Cell 1 's (cells fl,cl

outside of front) on front using the edge. f2_c2

Remove faces in Cell from list. fl,cl

Add non-front faces of Cell using the fS,cl
edge to the list.

Pair sets of faces with the same Celll.

Remaining pair (if any) is also paired.

For each pair, find corresponding edges•

Link Face_a, Edge_a to Face_b,Edge_b.

f2,c2

f3,c3

f3,c3

fl0,c3

f8-fl f3-fl0

f6,c4 f4,cl

ff/,c3 f5,c4

f6,c4 f4,cl
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Figure 9: Front reconnection algorithna.

Front faces are reconnected via a four step l)roce(lure applied to each edge of celll (c2 in Figure 9), the

cell outside of pface to be covered by the fl'ont. In 2D (Figure 9), this amounts to a reconnection at the

four nodes of the cell. In the first step a list of all faces and their corresponding cell1's is formed from all

front faces that use the edge. Next, any face/cell combinations with cells equal to the original celll (c2) are
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removedfrom tile list. Third, anyof the faceson celll that do not lie on the front are added to the list.

There will now be an even number of list entries, and these entries are grouped together oll the basis of like

cell numbers. On occasion when there remains two unmatched entries in the list with different cells, they

are matched to one another. These paired cell/face combinations now refer to the connections needed to

maintain a proper front linkage. For example, in the first column (edge nl) in Figure 9, faces f8 and fl

must be set to neighl)or each other along their common edge, nl.

In the figure above, connections at edges n3 and n,1 are broken in the upper left and upper right fronts

and are reconnected with the faces in celll. This is contrary to intuition, which would have the upper left and

upper right front connections remain intact, and the faces on celll connect to one another. Repeated front

reconnections like this would result in fronts that collapse on themselves like a deflated balloon. In contrast,

the algorithm outlined above will produce collapse-free fronts that will continually divide and reduce to

minimal surface area.. The difference is crucial when applying the unstructured advancing front algorithm

described shortly.

Unused Component Removal

Tile structured portion of tile advancing fl'ont algorithm finishes when each face on tile front either lies

on tile outer edges of the multiple block grid or may advance no further due to close proximity to other

regions of the front.

All cells, faces and nodes lying outside of tile front at this point may be discarded, since they will not

comprise part of the hybrid grid. Unused cells are determined by the absence of the flag set in cells overtaken

by the front. After unused cells are removed, all faces and nodes in the remaining cells are flagged, and then

all unfiagged faces and nodes are removed.

Diagonal Swapping on the Final Structured Front

Before the regions eucapsulated by the final structured front(s) will be filled with unstructured cells, it is

necessary to massage the front to reduce the burden on the unstructured solver. In aD, a side of a structured

cell lying on the front will always be represented by a pair of coml)lementary triangular faces, originally

formed purely on tile basis of their computational index. Since tile unstructured solver has a natural bias

to triangles of smaller maximum angle, the diagonal along each face pair on the front is compared to the

imaginary diagonal along the two non-common nodes on the two faces. If the latter diagonal is shorter than

the former, the quad region is retriangulated with diagonals swapped, so that tlle maximum angle on both

triangles is reduced, as shown in Figure 10.

Figure 10: Swapping diagonals of comtllementary faces.

It is also helpflll to swap diagonals on regions of the final front that represent inside corners of cells

outside the front. Specifically, whenever three (or mor(,) adjacent non-complementary faces on the front

have the same celll and share a common node, an inside corner situation exists, as depicted in Figure lla.

In these cases, the diagonals of the faces are swapped as necessary so that they do not touch tile inside
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corner.This createsa naturalcrevicethat will later befilled with a tetrahedronby the unstructuredsolver
(Figurellb), therebysmoothinga formerlysharpcornerof the front.

insidecorner shared by 5 faces tetrahedron added after diagonal swapping

a. inside comer of an unused cell b. diagonals are swapped

Figure 11: Swapping diagonals on inside corners.

Refinen_ent/l)erefinement of Final Structured Front

Tile use of overlapping stretched structured grids to produce hybrid grids can produce starting fronts

for the unstructured grid generator with significant varial.ions in face sizes. When adjacent faces of a highly

stretched structured grid cell are present on the front, a small face and a much larger face will be present.

In addition a fine mesh around one component in the grid system may extend into the coarse mesh region

of another component. Disparate sizes of faces in close proximity can lead to the generation of undesirable

highly stretched or skewed triangles and tetrahedra. To lessen the face size disparity, local refinement and

derefinement of the final structured front is added as a tool for further preprocessing the fronl for unstructured

front advancement.

The derefinement procedure will merge faces on the fl'ont and their corresponding cells whenever the

sizes of faces on the front are too small in comparison with a. target, size and whenever the aspect ratio of

the structured grid cell behind the front is larger than a user specified value. Once the derefinement of the

front is complete, the derefinement is propagated into the interior of the mesh my allowing a side of a cell

to have at most two neighboring cells.

The refinement procedure will split faces on the front if the sizes of faces on the front are too large in

comparison with a target size or if the size of a neighboring face. The procedure to split the cells behind the

front has not yet been in_plemented.

Advancing Front With Unstructured Cells

When the the front has advanced as far as it can along structured cells, and after the final front has been

massaged as described in the previous two sections, discretization of the domain is completed by advancing

the front again, this time until it completely vanishes.

After the first advancing front application, there remains no more usable structured grid data beyond

the front, and so in the second application the frOllI is advanced from the more traditional, unstructured

sense. Unfortunately, there are a whole new sel of concerlls to address during the unstructured application,

since the front will now advance on the basis of geometric, rather than topological reasoning.

State variable.- Recall that a state indicator is stored at each face on the front, and its value reflects how
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closethe face and one or more of its neighboring faces are to forming a complete cell. For unstructured grid

advancement, a minimal state value means that none of tile neighboring faces are suitable for forming a cell

with the face. The next state level means that a single neighboring face is suitable for forming a cell. This

occurs when the angle between the two faces is less than a user-specitied threshold, typically 13.5 degrees.

The next highest state level occurs when two faces touching the face share a node and the angle between the

build face and the two neighbors is less than the threshold. The highest state level occurs when the face and

all its neighbors form a complete cell. Different front face states for a triangle and a quadrilateral are shown

in Figure 12. States for the 3D cell forms, the tetrahedron and hexahedron, are defined in an analogous

fashion.

STATE 0 1 2 3

TRIANGLES J J

QUADRILATERALS

Figure 12: State h, vels fox' unstructured cells.

Target Face Size.- The present study uses a set of clustering points to specify a desired, or target, size

for a cell face. Each clustering point is giw, n by a spatial location, the desired size of a face, d; at that

location (xi, Yi, zi) and a clustering parameter, Ci, that controls the spatial variation away from the point.

The target size, t, at an arbitrary point in space (._', y, z) is given by

I = rain di -]- (-_'il{_
Z

where R_ = (xi - x) 2 + (yi - y)2 + (zi - z) 2 and lnini represents the minimum value for all the clustering

points.

The clustering points can be specified by the user or set, to the size and locations of the faces on a set of

boundary surfaces. The latter method ensures a smooth variation in faces away from each boundary with a

minimum of user inputs.

The target size can also be specified by interpolating fieht values from a cartesian background grid similar

to the approach of [13]. This would be the preferre<l al)proach fox" 3D cases due to the large number of faces

on the surfaces of the geometry.

Candidate face selection.- .lust as it was fox" structured front advancement, the unstructured grid gener-

ated by the advancing front method is significantly influenced by the criteria used for place selection. During

the unstructured application, the advancing face place is set equal to the first face returned from the ordered

set of criteria below:

1. the first face that is at the ma.ximum state (forming a closed cell with neighboring front faces) or the

maximum state minus one (lacking only one face to form a closed cell).

2. the face that forms the minimum angle (below the threshold angle) with a neighboring front face.

3. the smallest face on the front.
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A degreeof uniformity andsmoothnessmaybe incorporatedinto anunstructuredmeshby assigninga
cyclenumberto eachfront faceandby advancinga faceonly if it hasa lowercyclenumberthan currently
beingused.As describedearlier,whennosuitablefacesarefound, the cyclenumberis incremented.This
cyclingstrategyseemsto workbestwhenfilling largeareas/volumesthat havesmoothboundaries.Hence,
it is probably not appropriatefor usein this apl)lica,tion- namely,filling in the jaggedregionsbetween
overlappingstructuredgrids.

Candidate Cell selection.- The most critical step in unstructured front advancement is tile determination

of the validity of the candidate cell, cellI. Candidate cells will still be deemed invalid if their faces intersect

any others on the front, bul they will also be rejected if they lie too close to others on the front. Rejection

is necessary to filter out highly stretched or skewed cells from the hybrid grid.

The four step procedure below is currently used to arrive at a suitable cell emanating from place, the

building face.

1. If pface is at the maximum state, form the cell from its neighboring faces.

2. Generate a node perpendicular to pfacc using the target cell size for the face. If the node is not too

close to another face, if the node is not within the bounding sphere of a face on the front, and if the

faces formed by the node do not intersect lhe fl'onl, form the cell from pfacc and the generated node.

In 2d, try to form an even better cell using l)elaunay criteria as suggesled by Merrian_ [14]. Use the

node that is closest to the circumsphere center of the candidate cell to form a new candidate cell.

3. Use the nodes on neighboring faces that raised pface to its state to form a cell.

4. Form the cell by using nearby nodes on the front within some radius of pface.

Note that no attempt is made to maintain a Delaunay [15] grid. Though the Delaunay criteria will

produce a grid with triangles that are the most equilateral, it is overly restrictive in aD as it produces fiat

or planar cells in regions of coplanar nodes. Since the structured grids forming the initial unstructured front

will typically have numerous regions of planar nodes, the Delaunay method would connect these nodes to

form flat cells.

The nearly planar nodes and faces forming the initial unstructured fl'ont are especially troublesome when

the faces surround a point that was a corner of a structured cell. See for example Figure la. If the wrong

choice for a candidate cell is made and accepted, the cell may well contain a face that is nearly planar with

other faces on the front. A different choice for the starting face and hence the candidate cell would have

eliminated the possibility of the cell with the planar face from even being considered. The present method

begins by finding all the nodes with 6 faces surrounding the node. If two neighboring faces in the list for a

node are found to be planar, then a cell is construct;ed fronl one of the faces. The same procedure is then

applied to nodes with 5 and 4 surrounding faces.

Figure 13: Node Surrounded by 4 faces(l) and 6 faces(r)
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EXAMPLES

The present approach is first illustrated using a two-dimensional multi-element airfoil as shown in Fig-

ure 14. Figure 15 presents the overlapping structured system, which consists of an "O-type" structured

mesh around the main airfoil section and "C-Type" meshes around the leading and trailing edge flaps. The

structured mesh with tile overlapping cells removed is shown in Figure 16. Close up views of the leading and

trailing edge regions are shown in Figure 17 and clearly illustrate the difficulties ill using the front left by

removing cells from a stretched and clustered mesh. The cells in tile leading edge region of the main airfoil

grid are stretched and have a higl, aspect ratio. The front will have a. slnall face adjacent to a larger face,

corresponding to thesi<les of one of the stretched cells. In the trailing edge region the line mesh around the

last trailing edge flap has cells, and hence faces on the front, that are ill lhe coarse region of the main airfoil

grid. ('learly it is a.<tvanlageous to fill l.ho void with a. smoothly varying unstrncture<t mesh.

Two (tifferent api>roaches have been tested in (he present effort, anti are illustrated in Figures 18 and 19.

'rite first a.pl)roach uses refinement of the unslructured gri(t starting front to ensure a. smooth variation ill the

faces on the front. Figure 18 shows that some of the sides of the qua(lrilaterals adjacent to the unstructured

cells have been sl>lil inlo snlalh, r faces wilh(ml splilling lhe cell. The comi)anion flow solver was developed to

allow an arbitra.ry number of fa(:es per cell. l{e[ining l.he front n_ay add leo many cells so a second approach

of derefinemenl has bee,i losl(,([. ]Pigure 19 show the results for the case where the structured grid front and

|he cells behind the fro),! haw, boon dorefined to provide a smoother distribution of cell sizes. Figures 20

and 21 show the final complete hybrid grids for the multi-element airfoil when retinement and derefinement

strategies are used. The (ler(,linoment procedur,' Ires significantly reduced tile number of cells in comparison

to the refinement case. The 1)refi, rre(] appr(mch will obviously (letwud upon the particular flow conditions in

the region of refinement or derelilwmenl,.

The results for a throe-dimensional ('as(, art' illuslrated for a aircraft store in close proximity to a. pylon.

For simplicity the wing geometry is not considered in this example. The pylon and store geometries are

shown in Figure 22 and a port.loll of the overlapping slructured grids around the geometries is shown in

Figure 23. The portion of the front resulling from removal of the overlapping portion of lhe pylon mesh is

shown ill Figure 24. and for the removal of the overlal)ping portion of the store mesh is shown in Figure 25.

In this particular case the unstructured grid starting front will inclu<h" a portion of the store surface since tile

store and pylon are in such close t)roximity. The tetrahedral unstructured mesh filling the void between the

store and pylon meshes is not presente<t here due to the difficulty in viewing three-dimensional unstructured

grids.

C()NCI,ITSIONS

This paper has introduced a new 3-dintensional hybrid grid generation techni(lue based on advancing front

ideas a.pt)lied to both structured aim unslruclured grids. Tim advantag;es of the scheme have been shown

to be that structured grids may 1to generaled around individual grid ¢'onlponents independently, with any

overlap or gaps between grids remow, d an<l/or tilled automalically. This dramatically reduces grid generation

time, but still provides a locally slructured grid near the go¢)metry surfaces. Further, the structured character

of cells near tile body markedly re¢luces the numt)er of ('ells nee(le<t to resolve the flowfield.

Future effort is aimed at improving the efficiency of the hybrid generati<)n time and also the quality

of the grid. Efficiency issues include the improvemen( of the <luadtree/octree searching routines, and grid

quality issues include modifi<'ations to the face s(,lection criteria, refinement of tile front proximity definition

for converging Dents, and exlension of th(, s<'h(,me l<) allow not>enclosed initial fronts, such as in problems

with a l>lane of symmetry.
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Figure 14: Multi-element Airfoil Geometry

Figure t5: Set of Overlapping Structured Grids for Multi-element Airfoil Geometry

Figure 16: Structured (;rids with ()verlal> ret_oved for Multi-element Airfoil Geometry
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Figure 17: Closeup of Leading(l) and Trailing(r) Edge Flap Region for Structured Grids with Overlap
removed

Figure 18: Closeup of Lea.ding(1) and Trailing(r) Edge Flap Region of Hybrid Grid With Refinement of Front
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Figure 19: Closeup of Leading(l) a,nd Trailing(r) Edge Flap Region of Hybrid Grid With Derefinement of

Front

Figure 20: Final Hybrid Grid for Multi-Element Airfoil with Refinement of Front Between Structured and

Unstructured Grid Regions
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Figure 21: Final Hybrid Grid for

Unstructured Grid Regions
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Figure 22: Pylon and Store Geometry
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Figure 23: Pylon and Store with Portion of Grids Surrounding the Pylon and Store
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Figure 24: Store with Front from Removal of Overlapping Portion of tile Pylon Mesh
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Figure 25: Store and Pylon with Front from Removal of Overlapping Portion of the Store Mesh
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TECHNOLOGY ASSESSMENT
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