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INTRODUCTION

The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is

being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Compu-

tational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of

US industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of

time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids

to enable computational field simulations for applications in industry. [1]

A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms:

structured and unstructured. Structured grids are formed by intersecting curvilineax coordinate lines and

are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a

structured grid provides for trivial identification of neighboring points by incrementing coordinate indices.

Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and

hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured

grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and

neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera

(overset) grids are intersecting or overlapping structured grids.

The NGP system currently provides a user interface that integrates both 2D and 3D structured and

unstructured grid generation, a solid modeling topology data mangement system, an internal Computer

Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language,

and a grid/solution visualization system.

GRAPHICAL USER INTERFACE

Designing and implementing a consistent graphical user interface (GUI) is a key element in ensuring

that the grid generation process runs smoothly and effectively. For this reason, a great deal of thought has

been put into determining the requirements under which the GUI must perform, the design by which the

requirements are maintained, and the implementation through which the technology may be transferred to
the user.
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Requirements

Creating an environment for users to comfortably interact with technology is the key priority in creating

a usable grid generation system. Ensuring that the environment is suitable follows from closely adhering to

the following requirements:

• Consistency is perhaps the most critical requirement to maintain. This extends to the presentation

of the technology as well as the look and feel of the GUI.

• A logical organization of technology has been maintained to present the information in a familiar

manner to the user. This is accomplished by examining the function or process for which the GUI is

designed, and organizing the process into tasks and subtasks.

• Efficient use of screen real-estate is an absolute necessity. Because current technology allows only

a relatively small amount of two-dimensional screen space, careful consideration is given to the layout
of the GUI.

• Ease of use is the facet of the GUI that ensures user acceptability or, more often than not, if the GUI

is difficult or cumbersome to use, complete loss of information and inability to achieve user satisfaction.

Tailoring the system for user interaction is a way to always keep in mind the technology that is

being presented and the platform on which it is implemented.

Extendibility of the system allows growth with both the technology and the intended user audience.

It is a requirement from the initial design phase to allow for adaptability in every aspect of the system.

Design

Having established the design requirements for the grid system, it is imperative to adhere to these

requirements when completing the design phase. The design of the system can be thought of as consisting

of six physical components and a seventh more abstract concept. The six physical components are the menu

bar, the global actions, the global settings, the application palette, the message buffer, and the draw Screen.

A picture illustrating the layout of these physical components is shown in Figure 1.

The menu bar is designed to logically present the tasks and subtasks required to perform a high level

process and can be found across the top of the GUI.

The global actions seen in the top right corner of the GUI are those top level functions that are required

to complete the given task.

The global settings are designed to be information holders and are found in the space directly beneath

the global actions. This global information consists of information that each task or subtask is going to

require to complete the higher level process.

Expanded beneath the global settings is the application palette. Each task in the menu bar is con-

sidered an application, and when the user wishes to open an application, this is the space designated for its

expansion. Expanding or opening a task allows it to become the active application. Because of the design

of the system, only one application may be the active application at any one time. The application consists

of actions and settings. The GUI is designed to be event driven, and therefore waits to be notified of an

event that has occurred in the system. Each event in the system travels through one pipeline, and an event

monitor polls the event at the end of this pipeline to determine which type it is. If the event is an application
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event,the eventmonitor notifiesthe activeapplicationthat an eventhasjust occurred. The notification
takesplacethroughtheuseof a designated"handshake"routine. WhentheGUI is created,eachapplication
is forcedto registera routinethat will serveasits "handshake"routine. Oncethe GUI hasgiventheeventto
the "handshake"routine,it no longerhascontrol.It is thenup to theapplicationto decidehowto proceed.

A messagebuffer is providedin the lowerright cornerof the GUI to providefeedbackto the user.
It is designatedto benon-obtrusive,just giving the usera textual indicationof the actionsthat arebeing
performedandthosethat havebeencompleted.

Thedraw screenmakesup theremainingportionof theGUI. This is the spacereservedfor all graphical
input and output. The drawscreenis designedto be highly interactiveallowingthe userto interfacewith
geometriesandgridsvia themouseandkeyboard.All interactionbetweenthe userandthe GUI mustoccur
usingeitheror both theglobalandapplicationsactionsandsettings.The actionsaredesignedto respondto
a mousepresson the button, andto a keypressof the registeredmnemonicfor that action. The mnemonic
is registeredwhenthe GUI is createdand maynot bechanged.All invocationsof action mnemonicsmust
takeplacebytyping the letter with thekeyboardwhilethe mouseis insidethe drawscreen.Thesizeof the
drawscreenthat is shownis what the userseeswhenthe systemis initially invoked.A full screenfacility is
designedto allowthe userto geta largerviewof the itemsthat arebeingdisplayed.Interactionwith the
globaland localactionsis maintainedwhile in full screenmode,but anyuserinteractionwith the global
andlocalsettingsmustbecarriedout whenthe screenis displayedin its regularsize.This occursbecause
theglobalactions,globalsettings,applicationactions,applicationsettings,and the messagebufferarenot
seenwhenthe drawscreenis full size.The pageup andpagedownkeyson the keyboardareusedto toggle
betweenthe regularscreensizeandfull screensize.

As a moreabstractconcept,user interaction must alsobeaddressedduring the designphase.User
interactionincludesmouseinteractionand graphicaldisplay. Carefulconsiderationis madeto allow for
consistentbehaviorboth in the mouseand in the interactionwith the draw screen.The mouseis ,for the
exclusivepurposeof carryingout transformationsandof actingasa pointer to a pieceof informationin the
drawscreen.Any textual interactionis completedthroughthe combined use of the keyboard and settings.

The graphical display is laid out in such a manner that user interaction is the primary focus. Several levels of

display quality are provided to facilitate the need for user interaction and for the production of high quality

pictures. These levels are maintained through the combined use of the resource file, and the view increase

and decrease actions in the global actions space. The resource file is a user editable file that contains X

Windows and Motif based descriptions of several components of the system. The user may either edit the

file outside the system, or inside the system with the use of the resource editor. Several views may be set

up and are each given a unique integer id. The views may consist of properties such as color, line thickness,

display quality type, etc. These views may be displayed by typing the view number in the draw screen space

and then pressing either the view increment or view decrement action. If there is no number in the numeric

argument setting, the current view number is either incremented or decremented depending on the action
that was invoked.

Implementation

The NGP system employs the above design requirements, and is implemented in C using X Windows

and Motif as the interface builder, and mixed-mode GL on the Silicon Graphics workstation as the graphics

language. As OpenGL[2] becomes readily available, the system can be easily ported and then will become

available for use on a variety of workstations.
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SOLID MODELING TOPOLOGY DATA STRUCTURE

The fundamentalNGP datastructureis calledthe Grid TopologyModel (GTM)[3]. The GTM is based
on aBoundaryRepresentation(B-Rep)radial edgenon-manifoldsolidmodelingtopologydatastructure.[4]
B-Repdatastructuresareextensivelyusedin currentcommercialCAD systems where geometric connectiv-

ities are an important aspect of geometric manipulations. The data structure provides explicit connectivity

information between all geometric and grid entities, and abstracts the user from underlying geometric orien-

tations. This abstraction provides a set of algorithms that simplify the grid generation process by allowing

the user to ignore orientation when building multi-volume unstructured grids, multi-block structured grids,

or when changing grid control parameters such as point distributions.[3]

The fundamental form of surface that is useful for grid generation is a non-manifold surface that can

be accessed from N adjacent volumes and K adjacent surfaces. For structured grid generation, four-sided

surfaces must be used. For geometry modeling and unstructured grid generation, multi-sided surfaces with

holes (trimmed surfaces) can be used. The GTM provides the capability to read in trimmed surfaces and

provide the same topological operations as four-sided surfaces. Figures 2 and 3 show the original geometry
and the trimmed result.

The GTM is designed using a set of requirements formulated through interaction with the grid generation

and CFS practitioners in the NGP consortium. The following is a list of the basic goals met by the GTM:

A foundation for general grid generation: Includes 2D and 3D structured, unstructured, hybrid

and chimera (overset).

No grid point duplication: Grid points on shared geometries are not duplicated. Duplicating grid

points causes wasted memory and holes or gaps between domains due to numerical inaccuracies.

Explicit adjacencies between volumes and surfaces: Adjacencies between geometries and grids

are explicitly defined. This enables multi-block point-point matching, point-point mismatching, full-

face interfaces and partial-face interfaces. Access methods are available to provide adjacency, grid and

orientation information to grid generators, elliptic smoothers, and CFS solvers.

Abstraction from geometric orientations: The user does not have to keep track of block or surface

orientations when building a grid.

Propagation of grid control information: The user has the ability to propagate grid control

information (number of points and point distributions) in a computational direction within a multi-

block topology. The system also verifies that the propagated information is consistent throughout the

grid.

Geometry verification: The user is graphically prompted if the current geometry configuration is

ready to be used for grid generation. Gaps, holes or overlaps where surfaces do not meet (within a

user-specified tolerance) are indicated.

Semi-Automatic Boundary Detection (Blocking): A set of algorithms detect bounded regions

for both structured and unstructured grid generation.

Composite Edges and Faces: Composite edges and faces allow for partial-face matching in multi-

block structured grid generation.
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A hierarchyof topologyandgeometryelementsdefinesthe classesof informationcontainedin the GTM
datastructure.Eachlevelof thehierarchyrepresentsa levelof abstractionbetweengeometryandadjacency
dements(Figure4).[3]

All adjacentelementsin the GTM aredirectly accessiblevia pointers(Figures5 and 6). Searchingis
limited to traversingadoubly-linkedcircularlist with lengthequalto thenumberof adjacentelements.Grid
generationapplicationsutilizethe adjacencyelementsto storeandaccessgrid pointson sharedgeometries.
CAD utilities utilize the adjacency and geometry abstraction elements to determine degeneracies, orientations

and adjacency. [3]

GEOMETRY ENGINE

All geometry in the NGP system is represented by Non-Uniform Rational B-Splines (NURBS). [5-9].

Some of the reasons the NURBS representation is chosen for the geometrical database are as follows:

Unified Mathematical Model: NURBS allow one mathematical form to represent both analytic

and free form shapes. Thus the system can represent such shapes as conic sections, quadrics (cones,

cylinders, spheres, etc.), and surfaces of revolution as well as free form sculpted surfaces with a single

homogeneous database. The ability of NURBS to represent both analytic and free form surfaces with

a single mathematical model is of particular importance because it simplifies coding of algorithms and

reduces maintenance requirements on the geometry engine. A single data type can be used to represent

all possible geometric entities within the system, and a single suite of evaluation and manipulation
routines can be used to interact with them.

• Generality: NURBS offer the user flexibility to design a large number of shapes.

• Efficiency: NURBS evaluation algorithms are reasonably fast and numerically stable.

Geometric Interpretation: NURBS can be interpreted geometrically. This allows designers with

limited knowledge of the mathematics of curves and surfaces, but with a good knowledge of descriptive

geometry, to create desired shapes with ease.

• Local Control: The property of local control allows relatively small areas of a curve or surface to be

modified without affecting the entire spline

• Affine Invariance: NURBS are invariant under affine, perspective, and parallel transformations (e.g.

scaling, translation, rotation, shear, etc.).

Geometry File I/O Capabilities

Exchange of geometry data with third party CAD systems is accomplished in NGP via IGES files which

comply with IGES version 5.1 [10], but also includes the NASA IGES standard [11]. In addition to reading

and writing IGES files in ASCII form, files compressed with the UNIX /bin/compress utility or the gzip

utility can also be read. Other file formats which can be used for exchanging geometry information include

Gridgen database files [12] and formatted, unformatted, and binary Plot3D [13] files. Discrete curve and

surface data such as those in Plot3D files, Gridgen .dba files, and IGES entity 5001 are fitted with a linear

or cubic NURBS spline [8].

The Internal CAD System

Unlike other contemporary NURBS-based grid generation systems such as ICEM [14,15], NGP generates

surface grids directly on the NURBS patches [16]. This feature allows surface grids to retain a high degree
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of fidelity to the original geometry data; however, it also requires a high quality CAD model in order to

produce good grids. The model should not contain any unwanted gaps, overlaps, or intersections between

surfaces. The primary function of the internal CAD system is to allow the user to construct, modify and/or

repair imported geometry in preparation for mesh generation. Models imported from traditional CAD

systems generally require some degree of modification in order to make them suitable for use in the grid

generator. The modifications may be as simple as deleting unwanted details or as complex as reconstructing

large portions of the model. In either case, the CAD system provides the user with a rich set of tools to

accomplish the task. In addition, many construction tools are provided which enable complex objects to be

created from scratch.

The internal CAD system consists of nine individual applications grouped according to the functionality

they contain. The buttons, toggles, and numeric fields within each application are arranged in a way which

gives the user visual cues to functionality by grouping functions together with their input and/or option fields.

The applications are as follows: Points, Vectors, Curves 1, Curves 2, Surfaces, Blocks, Utilities, Edit,

and GM Util.

Point Operations--The point is used in construction of vectors, curves, and surfaces, to designate end

points or control information. The point can be created in any application, but other useful operations are

grouped in the Points application. These operations include averaging of points, total distance between

points, angle between three points, and the closest point on a curve or surface.

Vector Operations--The vector is also used in construction of curves and surfaces and to designate slope,

direction, or axis information. The vector can be created in any application by two points or a point and

the components. The Vectors application allows the functions to calculate the normal and tangent vectors

on a surface or the tangent vector for a curve. A vector direction can also be reversed.

Curve Operations--The CAD system provides both curve construction and modification/repair functions.

The most used functions are located in the Curves 1 application while lesser used creation functions are

located in Curves 2. These curve functions consist of: 1) conic sections (circular arcs, circles, ellipses,

parabolas, and hyperbolas). 2) spline curves (interpolation through points), 3) basic curves (lines, quadratic

curves, and cubic curves), 4) averaging curves, 5) offset curves 6) splitting curves, 7) unioning curves, and

8) intersecting curves.

Surface Operations--It is generally necessary to modify an existing CAD model to correct for defects

before it can be used for mesh generation. The functionality outlined below attempts to minimize the

time and effort required to render a given set of surfaces usable for grid generation. Unlike the curve

functions, all the surface construction functions are contained in a single Surfaces application. The following

surface operations are available: 1) blending/ruled surface (two curves), 2) Transfinite Interpolation (TFI)

surface (four curves), 3) degenerate TFI surface (three curves), 4) sweeping (one curve along another), 5)

extruding (curve along a vector direction), 6) revolving a curve, 7) carpeting (projected TFI surface over a

surface network)[17], 8) averaging, 9) extending or extrapolating, 10)intersecting surface with surface, 11)

intersecting curve with surface, 12) splitting, 13) unioning, 14) smoothing (Smooths a surface according to

curvature [51), 15) reparameterizing, and 16) surface from cross sections.

Most of the above operations are exact in that the result is computed directly from the NURBS form of

the given information. Exceptions to this are the carpet surface and surface from cross sections.

Utility Functions--The Utility functions are generic functions that can be performed on any NURBS

curve or surface. These can be grouped into three categories: 1) transformations (translations, rotations,
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scaling, and mirroring), 2) projection, and 3) extraction.

AUTOMATIC BLOCKING

One of the most labor-intensive tasks associated with generating a block-structured grid is the creation

of a framework of edges, faces, and blocks which together define what is known as the block structure. It is

not uncommon for the generation of this block structure to consume well over half of the labor associated

with any grid generation problem. Clearly, techniques for efficiently generating such block structures have

the potential to increase the utility of block-structured grids into arenas which today are treated with overset

or unstructured grids.

Basic Approach

The basic idea behind the automatic generation of block structures is to shift the user paradigm from

one which is prescriptive to one which is descriptive.

In a prescriptive process, the user has a set of low level tools which prescribe exactly how the problem is

to be solved. Examples of these low level tools include drawing a line in space to serve as an edge of some

block, generating an edge which is constrained to lie along a certain input surface, and connecting four edges
into a face. While control at this level is certainly very powerful (and sometimes indispensable), it is clear

to see that the labor associated with such an approach grows very rapidly, especially in configurations with

multiple interacting components.

Alternatively, a descriptive process describes what the grid should look like. Example descriptions i,,clude

tile fact that the grid should wrap around the wing leading edge, that the inboard portion of the wing grid

,,houl(t lie on the fuselage, and that the store grid should lie within the wing grid. With this approach, the user

could employ a divide-and-conquer approach, where the grid in the vicinity of each component is described

separately, and the automatic blocker worries about interacting them to achieve an overall block-structured

grid.

The key to being able to describe a block-structured grid is the development of a block-structuring lan-

guage of some sort. In the current work, a graphical language composed of objects called cubes, wraps,

attaches, holds, rulers, and spacers is used. (More details on the specifics of this language can be found in

another paper in these proceedings [18].)

Integration with NGP

As described above, the NGP system is composed of a large number of applications which execute

independently, but which share the data which describes the configuration and grid. A key to integrating

an automatic blocker into such a system is determining how and when the blocking procedure should be

executed and on which data the blocker should operate.

An overall view of the grid generation process suffices to answer the first question:

• define the configuration, including any repair (to fill gaps, etc.) and augmentation (such as generating

a far-field boundary) which is required to define a water-tight domain;

• develop a block structure, including specification of required number of grid points in each region, any

user-specified spacings, etc.;
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• generatethe grid on the block structure, enforcing any grid controls specified above; and

• visualize and inspect the grid and either loop back to one the steps above to repair it or output it for

use by a flow solver.

Clearly, an automated blocker should be executed after the configuration is defined but before the grid is

generated.

The answer to the second question is not as straightforward. It is useful to think about two independent

topologies within the grid generation process:

the first is the topology of the configuration, which was essentially prescribed by the interrelationships

of the surfaces and curves which define the configuration. The topological information contained here

is generally of the form "the west edge of surface A is coincident with the north edge of surface B", or

"curve C is formed by the intersections of surfaces D and E". This topological information is crucial

for determining the structure and connectivity of the inputs.

the second is the topology of the block structure, which prescribes the interrelationships of the edges,

faces, and blocks which together define the block structure of the grid.

While there are certainly some correspondences between these two topologies, one in general does no¢ want

the configuration topology to constrain the block structure topology to any great degree. So in essence,

the automatic blocker's job is start with an original (configuration) topology and to create a new (block

structure) topology.

This is accomplished with the following procedure:

1. if the current topology is not a block-structure topology (that is, one generated in step 3 below by a

previous execution of the automatic blocker),

• then, save (in a file) a copy of the current (configuration) topology

• otherwise, restore the (configuration) topology which was previously saved (in the file);

2. provide graphically-driven commands for the user to create the blocking objects (cubes, wraps, attaches,

holds, rulers, and spacers) which describe the block structure;

3. create a new (block structure) topology within NGP which corresponds to the edges, faces, and blocks

of the automatically-generated block structure; and

4. remove the original (configuration) topology from the system. Note that this step does not delete the

curves and surfaces which define the configuration, but rather the topological information on which

the block-structured grid generator will execute. (That is, we only want the block-structured grid

generator to execute on the new (block structure) topology.)

Note that the first step, which involves the saving and restoring of the original (configuration) topology,

is needed so that the automatic blocker always executes on a configuration topology.

One final note: it was stated above that control at the very detailed (low) level is sometimes indispensable

for the generation of a suitable grid. This control can still be exercised within NGP by using the low-level
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toolsonthe new(blockstructure)topologybeforethe grid is actuallygenerated;theonly potentialproblem
whichonerunsinto whendoingthis is that theselowlevel "tweaks"will be lost if the automaticblockeris
re-executed(sinceis will againstart with the "saved"configurationtopology).

STRUCTURED GRID GENERATION

Thestructuredgrid generationcapabilitiesin NGParebasedon the GTM data structure. This expedites

the generation of both 2D and 3D systems. The use of the topological entities of the system (i.e. edges, faces,

and blocks) to manage the grid information for each domain, allows the grid points to be stored once and

be used on as many adjacent entities that share these common points. These shared points are determined

by the topological creation of the faces and blocks in the domain.

Topological Definition

All NURBS surfaces are automatically identified as topological faces. Other topological faces are created

in a Right Handed System (RHS) from the wireframe description automatically, through the connectivity

provided by the GTM data structure or the bounding curves can be manually selected. A recursive Depth

First Search (DFS) is used to find all possible non-degenerate three and four curve cycles in a set of curves.

These faces do not have any geometry associated with them other than which curves compose the boundary.

The topology-based blocking algorithm also uses the connectivity information provided by the GTM data

structure to detect O-grid and H-grid blocks. A DFS algorithm is also used to find all possible three and

four surface cycles that have valid end caps or the faces can be selected manually. Once a topological block

has been detected, the surface orientations are flipped until a valid RHS is detected.

With the topological mapping of the edges, faces, and blocks, partial face matching is allowed by the

construction of composite edges and faces. Composite edges are obtained by the concatenation of a series of

edges into a single string of grid points, and composite faces are generated by the topological "linking" of

the sub faces into a single consistent set of faces.

Point Distributions

With the domain decomposition done in conjunction with the GTM, setting the number of points and

setting spacing requirements is simplified by the propagation abilities implied by the data structure. The

number of points applied to an edge of a face is automatically propagated to the opposing edge of the face.

Through the connectivity the number of points are propagated to all other edges that lie in the same com-

putational direction. Point distributions can be set on a single edge or propagated to a series of selected

edges at the appropriate endpoints. The system also allows the user to specify interior distributions on an

edge at selected points specified by the user, or by the detection of discontinuities. The topological mapping

also allows spacings to be matched at vertices of connecting faces in a 2D system or for connecting blocks in

a 3D system.

Surface Grid Generation

Three types of surfaces are present in the grid generation system, NURBS surfaces, Four Curve Surfaces

(FCS), and Composite Faces.

NURBS Surfaces--All meshes generated on NURBS surfaces are calculated in the parametric space of

the underlying geometry to ensure the accuracy of the grid generation process. [16] Transfinite Interpolation

(TFI) with arclength based interpolants is used to calculate the grid points in parametric space.
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Four Curve Surface--TFI is used to generate the free form mesh for a FCS. This mesh can be projected

onto a network of NURBS surfaces, thus creating a grid carpet.[17] Figure 7 depects a typical carpet grid

spanning over surfaces patches of a shuttle canopy.

Composite Face--A composite face surface grid is created by the logical mapping of the grid points of

the surface grids that compose the face into a single set of points.

Any modification of the edges automatically marks the adjacent faces as "dirty" and are regenerated. If

any of the sub domains of the composite face are changed, the composite face surface grid is automatically

updated to reflect the alteration.

Volume Grid Generation

Volume grid generation is done on the blocks throughout the field using the 3D TFI routine. Each block

is gridded individually, sharing common face, edge, and vertex points between blocks. Volume grids can also

be generated through the use of Hypgen.

Hyperbolic Grid Generation--The hyperbolic grid generation algorithm is used to generate a 3D volume

grid by marching away from an initial surface definition with a given initial step size and a stretching
function in the normal direction. This is accomplished by solving the 3D hyperbolic grid generation system

of equations (two orthogonality relations and one cell volume constraint).[19] Solving this system of equations

allows for nearly orthogonal grid generation with excellent clustering control, and can generally be generated

in orders of magnitude less computer time than elliptic methods. The method does not, however, allow

outer boundary location to be precisely specified, and any discontinuities of the original surface tend to be

propagated into the volume field.[20]

Hyperbolic grid generation is available in NGP through the use of the NASA Ames developed Hypgen

hyperbolic grid generator. In cooperation with NASA Ames, Hypgen has been integrated into NGP as a
subroutine to the overall structured grid generation. The system now allows for several hyperbolic g_ids to

be generated at once, or several grids in series, if different control settings are required for each block. Once

the hyperbolic grid has been generated, the information from the block is stored in the same data structure

as the rest of the system, including the five faces, eight edges, and four vertices created by the hyperbolic

grid.

Elliptic Grid Smoothing

Elliptic smoothing is available in both the 2D and 3D systems in the form of surface and volume smoothers.

FCSs are not smoothed as a single entity in the 3D system, but are smoothed in the volume smoothing.

These faces are smoothed in two ways. First, if the face is shared by two blocks, a "sandwich" volume

between the two blocks is created and that volume will be smoothed to keep the face updated with the

interior. The second form of smoothing is performed if the FCS is a boundary face. The user sets the face

to a sliding point condition, which will allow the points to float in accordance with the volume grid.

2D Elliptic Smoothing--To achieve slope continuity between regions, edges shared by two regions are

smoothed by extracting the points for the edge and a strip of points from each adjacent face. Only the

interior of the "sandwich" is smoothed, thereby adjusting the original edge to provide better continuity

between faces. Vertices completely enclosed by regions are smoothed using a similar approach to receive

continuity at the abutting of regions in the interior of the field grid.

Surface Elliptic Grid Smoothing--For 3D surface grids associated with NURBS surfaces, two smoothing
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techniquesareavailable.The first beinganalgebraicadaptivemethodto uniformly smooththe arclength
distributionof thegrid in theparametricspaceof the surface.This techniqueis usefullywhenasurfacewith
an initially estrangedparameterizationis encountered(seeFigure8).

The secondmethodof smoothingemploysthe elliptic solveron the parametricvaluesof the NURBS
Surface.Oncethe parametricgrid hasbeenadjustedby the elliptic solver,the parametricvaluesare re-
evaluatedto givethenewX,Y,Z points.Boundaryconditionsapplicablefor the NURBSsurfacesmoothing
areasfollows:Fixed,NeumannOrthogonality,or GrapeOrthogonality.

Volume Elliptic Grid Smoothing--To achieve slope continuity between blocks, faces shared by two blocks

are smoothed by extracting the points for the face and a plane of points from each adjacent block. Only

the interior of the "sandwich" is smoothed, thereby adjusting the original face to provide better continuity

between faces. Edges and Vertices completely enclosed by blocks are smoothed using a similar approach to

receive continuity at the abutting of blocks in the interior of the field grid.

UNSTRUCTURED GRID GENERATION

Unstructured grid generation follows the same steps as the structured grid generation. First the boundary

turves are specified, the surface grids are calculated, then the volume grids are calculated. The only difference

between structured and unstructured is that the domain does not have to be decomposed. The user only

has to determine a valid boundary of curves for 2D, or surfaces for 3D, prior to starting the grid generation

process. In 2D, the user can manually pick boundaries and specify them, or use an automated feature that

will detect the inner and outer boundaries of a configuration. In 3D, a set of fully connected surfaces is all
that is needed.

Support is available for single and multiple domain 2D and 3D unstructured grid generation, parametric

surface grid generation and multi-curve surface creation (where only curves are needed to build an unstruc-

tured 3D surface grid). Currently, both the Delaunay and Advancing Front methods are used for both

surface and volume generation. These methods differ only in the point insertion criteria since both use the

same boundary recovery technique as described in [21]. The points are automatically generated using the

boundary point spacings to define the interior distribution and number of points. Boundary integrity is im-

posed by triangle and tetrahedra transformations. The implementation of the unstructured approaches are

well documented in [21,22]. Figure 9 shows a Delaunay unstructured grid on region of the trimmed gasket.

Figure 10 is an Advancing Front solution on the same region. Using these methods provide extremely efficient

grid generation for very large problems. Most grids for super-computing scale solutions can be generated

interactively on mid-range engineering workstations.

2D Grid Generation

2D unstructured grid generation entails that the user specify planar curves that form an outer boundary

and any number of inner boundaries. Currently, these curves must be on the XY plane. Once the geometry is

built, the user must build loops to identify the outer and inner boundaries (a single button push). Once the

boundaries are identified, the user must indicate the number of points on each boundary, point distributions,

point sources and/or curve sources in the field.

Surface Grid Generation

To retain the accuracy of grid points on a surface, unstructured surface grids are calculated in the

parametric space of the underlying geometry. [21] The generation of an unstructured grid on a surface is
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definedby two independentvariablesU andV. This allowsthe grid to becomputedin a square2Dspace
then mappedbackinto arbitrary 3D spaceby evaluatingthe UV valuesinto XYZ values.This mapping
is dependenton the shapeof the surfaceandits underlyingparameterization.For degeneratesurfaces(a
surfacewith oneor moreedgesthat collapsesto apoint) it isnecessaryto modifytheshapeof theparametric

space.

Parametric Problems on Surface--Unfortunately, the parametric distribution on the underlying surface

may not be optimal for grid generation. Currently NGP uses a mapping technique developed at McDonnell

Douglas as part of their in-kind contribution to NGP. However, these mapping functions cannot solve all of

the problems with parametric skewing in the grid. The ultimate answer (yet to be implemented) is to iterate

between physical space and parametric space as it is done in the structured grid generation system.

Sources

Point sources and curve sources control the size and density of grid points in a specified area or volume.

Sources are available both on surfaces and in the volume. A source specified on a surface effects both the

surface and the volume grid. The sources can be specified directly from a solver to enable grid adaptation

through the paradigm. Point and curve sources are associated with vertex and edge topology elements

respectively. A user-specified number of point sources can be placed on a curve (in parametric or physical

space) in the same manner grid points are placed on an edge.

Source effects through boundaries--Currently, a source placed near a boundary has no effect on the

boundary. Many problems are caused by this including rapid change in element size and extremely skewed
elements. To offset some of the effects of the problem, boundary elements have priority over point source

elements. This ensures that the boundary grid is consistent adjacent to geometry (for at least the first

element width). However, this is only a temporary fix, the obvious answer to this problem is to let the effects
of a source "pass through" the boundary. In 2D, the source would effect both boundary grids (edge grids)

and any multi-domain regions on the other side of the boundary. In 3D, the source would effect edge grids,

surface grids, and any other multi-domain region within the sphere of influence of the source.

Multi-domain Unstructured Grids

In some problems it is necessary to define multiple regions, surfaces and/or curves within a field that

must have grid points associated with it. Tools are available to the user that allow surfaces or curves in the

interior of a grid domain to be marked as "transparent". This allows the grid generation algorithm to fix

points on the original surface or curve, while building tetrahedra or triangles on both sides.

Surface Defined by Arbitrary Curves in Space

Another feature of the 2D unstructured grid generation is the ability to build a 3D curved surface from

a set of curves in space. This is extremely useful for capping open boundaries with an arbitrary surface

definition where otherwise the original geometry would have to be cut to enable capping with four sided

surfaces. Another useful feature for this type of surface creation is building planes of symmetry where a

complicated geometry (such as an airplane) needs to only include half the geometry. Instead of making the

outer boundary out of tens (or hundreds) of small surfaces, the user can simply define a few large surfaces

for the outer boundary, and an arbitrary surface for the symmetry plane. The only restriction is that the

multi-curve surface definition can only be created if the surface is singular (non-overlapping boundaries).
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VISUALIZATION

Overthepasttwodecades,significantprogresshasbeenmadein thelevelsof physicalrealismtha_ :an be

incorporated in the numerical simulations of fluid flow. At the same time, slow but steady progress has been
_aade in increasing the range of geometrical complexity which can be accomidated. This has been achieved

through a combination of grid types, including block-structured, unstructured, and hybrid grids.

Currently the vast majority of labor hours in a typical CFD study is consumed in the grid generation

phase. This is primarily because the closed-form solutions do not exist for flow fields around complex con-

figurations and numerical techniques have to be used, thus requiring grid generation techniques to discretize

the given domain. The process of generating a grid can be thought of as a set of iterations cycling through
the following steps:

• Specify: The various "inputs" needed to generate a grid are prepared in this step. Examples of

typically required inputs are grid topology, stretching factors, and numbers of points in various regions.
By its very nature, this step is interactive.

• Generate: The actual grid points, their locations, and their interconnections are generated in this

step. Because of its compute-intensive nature and its relatively long computation time, this step is
usually performed in a batch mode.

• Evaluate: The user then needs to determine if the grid meets the requirements set by the expected

flow physics and the flow solver which will be used. As with "specify", this step is interactive in Dature.

Much effort has been expended in reducing the total time needed to generate grids. Some of the efforts

has been centered on seamlessly integrating the above steps, resulting in the production of grid generation

systems such as EAGLEView [24], GRIDGEN [12], GRAPEVINE [25], and ICEM [14,15].

Current grid evaluation techniques fall into two groups. The first involves the stand-alone computation

of "grid-quality" measures, allowing the user to assess the local goodness of the grid. The second set of

grid evaluation techniques is aimed at producing visual representations of the grid and possibly its quality

measures. Unfortunately, to date insufficient effort has been focused on techniques for the rapid and effective

interactive evaluation of grids in their various stages of generation. Such interactivity is essential for providing
information about the grids in a way which can enable the user to correct or improve the grid with the

available grid tools.

Hence, the goal of the present grid visualization system is two-fold: first, to provide a suite of techniques

for effectively assessing the quality of block-structured, unstructured, and hybrid grids; and second, to ensure

that the techniques can be used during the grid generation process as an aid in assessing the validity of the

operations performed thus far.J26]

Design Considerations

The design of the techniques presented here was driven by two considerations: what questions would the

user like the system to answer, and which visualization tools convey the answers to those questions most
succinctly.

The questions which the user is likely to ask include:
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• Hasthe grid beengeneratedin thecorrectregionin space?

• Are therepartsof the grid wherethe grid points areeither unacceptablycloseto or far from each
other?

• Are therelocal areasof the grid whichhaveproblems?If so,whereare they and morespecifically,
what arethe problems?

• What arethe causesof the problem(s)andhow canit (they) befixed?

• What is theoverallqualityof thegrid andis it valid to progressto the nextphase(i.e.,surfacegrid to
volumegrid to field solution)?

The selectionof an appropriatesetof visualizationtoolswasguidedby examiningthoseusedin other
systemsandidentifyingweaknesses.Themajor shortcomingsidentifiedincluded:

• Information overload: Many grid systemsarenot discriminatingabout what is displayed.Wire
framedisplaysofgrids,eventhosewhichemployadvancedtechniquessuchasdepth-cueingandmotion,
areextremelyhard to decipher.

• Information deficit: Thecurrent systemsdonot "point out" to the userthe problemswhichexist
in a grid. ManyCFD projectshavebeensabotagedby bad gridswhichdid not get discovereduntil
after the flowsolverengineerlaboredintensivelyovertheproblem.

• Lack of context: Thereare really threeproblemshere. First, mostcurrent techniquesdo not give
theuseraneffectiveframeof reference;oncethe useris alertedto the problem,it is hard to determine
exactlywherethe problemis and howit interactswith the configuration.Second,they do not show
theinterrelationshipsbetweenthe variousgrid quality measureswhichmaybe locallyimportant. And
third, the techniqueswhichareusedseparatethe displayfromthe discretenatureof thegrid celldata.
Iso-surfaceplotsof grid qualityonly conveythat thereis a problem,but not why thereis a problem.

• Difficult to learn: Becausemost systemsare nonintuitive,they havean extremelylonglearning
curve.

Visualization Hierarchy

Analysisof the abovequestionsshowsthemto behierarchicalin nature,thus leadingnaturally to a set
of visualizationtoolswhicharealsohierarchical.Thefollowingsectionsdescribea specifichierarchyof grid
visualizationand analysistoolsusedto not only demonstratethe qualityof a grid, but to allow the userto
specificallyisolatethe areaor areasof the grid that arecausingproblems.Makingup the hierarchicaltree
of evaluationarequalitativetoolswhichallowindividualsto determinethe basicoverallqualityof a grid by
inspection,quantitativemethodsto flag areasof numericalinterest,and grid browsingtechniquesto step
into andthroughthe grid andview the areasof interest.This visualizationhierarchyis intendedto act as
a three-stageprocessfor determiningthe quality of a grid, with eachlevelportrayinga morelocalizedand
detailedsetof information.

Qualitative Evaluation--The qualitative evaluation stage is intended to assess the overall placement of

grid points, both for block-structured and unstructured grids. Since at this initial stage in the analysis, only

grid points (and not their connections) are important, a visualization tool called a point cloud was developed.

This visual display is created by placing a small point on the screen at each grid node. An example of an

unstructured point cloud is shown in Figure 11.
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The simplicity of this display technique offers two distinct advantages. First, because of the absence of

grid lines, the screen is relatively uncluttered, especially as compared with previous visualization techniques;

this is very important for unstructured grids which heretofore have proven difficult to visualize. Second,

the interactive speed of pans, zooms, and rotates is high enough so as to make "motion" of the display an

effective means of extracting the three-dimensional nature of the grid.

Because this technique is fast, and because it has been included "on line" within the NGP system, any

deficiencies which are discovered with this tool should be fixed before continuing on with the grid generation

process.

Quantitative Evaluation--The next, more in depth, evaluation stage is quantitative evaluation. Here,

the objective is to elicit from the system quantitative measures of grid quality. Of course, there is no single

measure of quality but rather a set of mutually interacting measures such as skew and stretch. The relative

importance of each of these measures can only be assessed in the context of the flow solver which is to be
used.

The need to present complex, mutually-interacting data is not unique to grid visualization, or even to

scientific visualization as a whole. A particularly clever solution to this problem, the weathermap, has been

developed by meteorologists. On one screen, this can convey information such as the general weather patterns
as well as the location of critical weather areas.

By analogy, a grid weathermap can be used to tell the user "at a glance" what the overall quality metrics

of a grid are and in particular which areas of the grid need improvement. This is done in the present work

by the superposition, on the graphics screen, of:

node-based grid quality measures- Certain grid quality measures are node-based, that is, they

are defined to be valid at a given node. Examples include the ratio of maximum-to-minimum volumes

of elements attached to a given node or the number of edges incident at a node. Specific examples

are described below. Nodes whose quality measure fall outside some user-specified tolerance band are

displayed as a color-coded symbol (the color indicates which quality measure is out of bounds). In

addition, it has been found to be useful to connect neighboring nodes which exceed the threshold with

the appropriate grid lines.

cell-based grid quality measures - Other grid quality measure are valid for a grid cell. Examples

include the skew of a cell; again specific examples are described below. The cells whose grid quality

measures exceed the user-specified thresholds are drawn directly. Using this technique, not only are

"out of tolerance" areas of the grid highlighted, but by showing the shape of the offending cell(s), the

user is better able to determine the cause of the problem.

the configuration - This gives the user a sense of context, that is where the problems are in relation

to each other and to the critical parts of the given geometry. This too aids the user in isolating the

cause of the problem.

It is a specific strength of the design of the weathermap technique to allow users to both adjust the tolerance

of the given measures as well as add any new measures which are appropriate to a specific field solver.

Grid Browsing and Querying--Once an area has been identified as being critical, methods are needed to

view and analyze the behavior of the cell and the nodes in that region. This gives the user a method for

understanding the problem and hence its cause. Many techniques have been tried, but most are confusing.
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Current techniques generally do not give the user a direct three-dimensional view of the data, but rather

require the user to mentally assemble a three-dimensional view from a series of two-dimensional slices.

The visualization tool which was developed here to browse block-structured grids gives the user an

actual three-dimensional view of an i, j, or k-plane of grid points by constructing a three-dimensional model

of the grid cells adjacent to the selected plane. This is accomplished by superimposing opaque, lighted

representations of the bottoms and sides of the appropriate cells, thus creating an image which looks similar

to an egg carton. By viewing into the cells, the user can get a realistic view of the shape of the cell and its

size relative to the neighbor. With the addition of motion parallax (via interactive zooming, panning, and

rotating), the three-dimensional nature of the cells is even more apparent.

An additional difference between the current and traditional techniques is that the new technique au-

tomatically extends the grid plane in the current block logically into its neighboring blocks. In this way,

the user gets a direct sense of the entire grid, that is not a block-by-block snapshot. Of course, sometimes
the user wants to examine a block which has been graphically disconnected from its neighbors. In order to

accomplish this, the user has the ability of exploding the grid; this is analogous to the exploded (or assembly)

view which is often found in service manuals.

A similar visualization technique is applicable to unstructured grids. The difficulties here are the lack

of grid planes; so instead, one must substitute a plane in physical space to select the cells to display. Also,

determining which face to not show so that a user can look into the cell is not as easy as it was in structured

grids. For these reasons, the egg carton has not yet been implemented for unstructured grids.

For both block-structured and unstructured grids, the user can query the system for information through

a simple graphical pick. The information returned to the user consists of the identity and attributes (location

and quality metrics) of the picked entity, as well as the identity and attributes of all entities connected to

it. This operation can be applied recursively to form progressively larger shells. The numerical information

returned by the querying mechanism has proven to be extremely useful in debugging some of the grids which

have been generated to date.

SUMMARY

The various components of the NGP system have been presented and can be summarized as follows:

• The user interface is designed to be easily customized, extended and ported to a variety of workstation

hardware platforms. The entire interface environment can be modified by the user either interactively

through the interface, or through "resource" files. New applications can be added with minimum

effort. X-windows/Motif is used to enhance portability due to its availability on several types of

hardware platforms. The same global metaphors are used for user interaction throughout NGP to

ensure consistency between applications.

• The data structure is based on a Boundary Representation (B-Rep) radial edge non-manifold solid

modeling data structure for both surface and grid topology. All geometry and grid connectivities

are explicitly defined. The user is abstracted from the underlying geometry orientation, and a set of

algorithms is provided that simplifies grid generation, surface interrogation and geometry construction.

• The Computer Aided Design (CAD) system uses a Non-Uniform Rational B-Spline (NURBS)

geometry representation. Geometry can be imported into the NGP via the Initial Graphics Exchange

Specification (IGES), discrete XYZ's or can be created by the internal CAD system. Geomelry read

into the NGP system is converted to a NURBS representation. CAD tools are available within the
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systemthat allow the userto build or modify points, curvesand surfaces.An important featureof
theCAD systemis the ability to laya "carpet" surfaceoverseveralsurfacesto fix defectivegeometry
definitionshavinggapsandoverlapsbetweensurfaces.

The automatic blocking system providesa suiteof tools for quickly generatingthe set of edges,
faces,and blockswhich definethe frameworkfor a block structuredgrid. This block structure is
automaticallygeneratedgivenjust an abstractionof the configuration,simpleblockingcommands
(suchaswrap a grid aroundthe wing leadingedge),and other descriptiveinformation(suchasthe
numberof pointsin variousregionsandanyreguiredclusterings).Blockstructuresgeneratedwith this
techniquegenerallyrequireaboutanorderof magnitudelesslabor to generatethan is requiredby the
traditional constructivetechniquesusedin otherblockstructuredgrid generators.

The structured grid generation system enables the user to create both 2D and 3D structured grids.

Surface grids are calculated in the parametric space of the underlying NURBS. Both surface and volume

grid generation are available for 3D, and planar grid generation is available for 2D. Automated face and

block detection algorithms allow the user to concentrate on building the blocking structure around a

complex geometry without the burden of having to define face-to-face and block-to-block orientations.

Elliptic smoothing across domains is available on the surfaces and in the volume.

The unstructured grid generation system enables the user to create both 2D and 3D unstructured

grids using both Delauney and Advancing front methods. All surface grids are created in parametric

space on the NURBS. 2D grid generation uses wire frame geometry while 3D grid generation uses

surface geometry. Automated loop detection is available for 2D grid generation and surface trimming.

Surface and volume grid smoothing and optimization options are also available.

The visualization system provides diagnostic feedback on the quality of the grids and selected CFS

solutions calculated on the grids. A number of viewing options are available for both structured and

unstructured grids. Plane sweeping through multiple blocks, egg-carton and weathermap options are

available for structured grids. Point cloud and weathermap options are available for unstructured grids.
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Figure 2: Untrimmed geometry of gasket.

Figure 3: Trimmed geometry of gasket.
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Figure 7:101x41 carpet grid over network of shuttle surfaces.
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Figure8: Originalgrid andalgebraicadaptiononcanopy/fuselageconfiguration

Figure 9: Delaunay unstructured grid on gasket.
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Figure10:Advancingfront unstructuredgrid ongasket.

Figure11:Unstructuredpointcloudoil inlet configuration.
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