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SUMMARY

This paper presents some recently added capabilities to RAGGS, Rockwell Automated Grid Generation

System. Included are the trimmed surface handling and display capability and structured and unstructured

grid generation on trimmed Bezier and NURBS quilted surfaces. Samples are given to demonstrate the new

capabilities.

INTRODUCTION

As described in Ref. 1, RAGGS (Rockwell Automated Grid Generation System) provides an integrated

CFD (Computational Fluid Dynamics) environment where a user can 1) import a CAD (Computer Aided

Design) generated configuration or a geometry from other sources, 2) build a CFD grid directly on the im-

ported geometry, 3) set up flow solver input, 4) postprocess the flow solution, and 5) display the flow solution

data and geometry simultaneously. The program structure of RAGGS is depicted in Fig. 1. It consists of a

series of modules to handle various tasks in the CFD process: starting with a given geometry, usually input

as an IGES (Initial Graphics Exchange Specification) file, through construction of CFD geometry database,

domain blocking, surface grid generation, volume grid generation, flow simulation, to postprocessing of the

flow solution to obtain data useful for engineering design and analysis. A file containing the geometry data

read by RAGGS is referred to as a RASCAL (Rockwell Automated System for Computer Aided Lofting) file.

As shown in Fig. 1, each module is connected to the common database shown in the central hub. Through

the GUI (Graphical User Interface) module and/or grid file module, RAGGS enables user to quickly com-
municate with some state-of-the-art flow solvers, flow analysis software, and grid generators as listed in the

figure. The RAGGS surface grid generation is operated directly on the quilts of rational Bezier patches

and/or NURBS (Non Uniform Rational B-Spline), each of arbitrary order. This minimizes the interaction of

CAD/CFD groups and eliminates the need of re-constitution of the imported geometry, which often requires
hundreds of hours of manipulation to achieve a data format suitable for the grid generation software package.

This paper presents some recently added capabilities to RAGGS. These include trimmed surface/curve

handling and display, unstructured surface grid generation, and structured/unstructured grid generation

on trimmed Bezier and NURBS quilted surfaces. The materials presented in this paper are intended to

complement that given in Ref. 1.

GEOMETRY DATABASE

The coordinates of a surface in space can be described in terms of two parametric variables. A patch is

a mapping from a space defined by these two parametric variables to the three Cartesian coordinates in 3-D

space. The untrimmed domain of each patch is the rectangular region in parameter space, so < s < sl and

to _< t < tl, where usually so = to = 0 and sl = tl = 1. Additionally, by defining active and inactive regions,

trim curves may be used to further restrict the domain of a patch. These trim curves are nonintersecting

closed loops of Bezier curves or NURBS in the parametric space of a patch.

For a general configuration, aircraft or otherwise, there is no uniform parameterization which can describe

the entire surface. However, the surface can be described by a set of individually parameterized patches,
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possibly with trim curves. Any subset of these patches, having surface continuity, can be said to constitute

a quilt. Any configuration or any number of configurations can be completely described by a number of such

quilts. RAGGS uses such quilts of rational Bezier patches and/or NURBS, each of arbitrary order, to create

grids which lie exactly on the parameterized surface. These patches may have 3 or 4 sides and need not be

distributed in any type of uniform manner.

Rational Bezier Patch and NURBS

Bezier and NURBS curves in 3-D space are composed of a point which varies parametrically with a single

parameter. Surfaces are composed of a curve which itself varies parametrically in 3-D space according to

another parameter. Consider a such NURBS curve, of degree n, parameterized in t. The curve may be
written in terms of the B-Spline basis functions as follows:

Kn

j=O
d(t)-

 vjb (t)
j=0

- the weight coefficients

- the control points

- the B-Spline basis functions

(1)

A knot vector is defined by the nondecreasing sequence t_,_,..., to, tl,..., tK., tK,+l. The B-Spline basis

functions are defined by the following recursion,

ti+l-t b'_(t) where, b°( t)= _ 1 ti<t <ti+l (2)

ti+l -- tl-n [ 0 otherwise
t - ti-n-1 b__l(t ) +

b'_+l(t) = tl - ti-,-1

The basis functions have the property that

Kri

 by(t) =_1 (3)
j=0

For a rational Bezier curve, Kn = n, is equal to the degree of the curve, the parameter domain becomes

[0, 1], the knot vector becomes t-n, t-n+1,..., to = 0, and tl,..., tn, tn+l = 1, and the basis functions become

the Bernstein functions,

nt . t),,_kt k (4)b'_(t) k!(n- k)i (1-

If we let the weights, vj, and the control points, _j, be interpolated functions of another parameter s,

K,n

K,_

i=0

Then Eq. (1) together with Eq. (5) constitutes a surface patch parameterized in s and t as follows:

gn

f(s,t) = _=o

Evj(s)bn(t)
i=0

K,,_ E wJ i_jibm(s)

_--_ /_-"w. b'_/s _i=° i b_(t)
I L._ .li i \ ] "-K-"mm_ I

j=O[ .i_:oWjibi (s)i--0 m

wjib_(s) b_(t)
j=0

Kn Km

y_wjifjibT' (s)b_( t )
j=Oi=O

Kn Km

_-__wjib_ (s lb'_( t )
j=Oi=0

(6)
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with l_j beingthe control points and wij the weights.

with

For fixed t, Eq. (6) may be written as

K. E wjiP'jib_(t)

= t) = L j=o J =

wjib'](t) b'_(s) y_ui(t)b_'(s)
i=0 i=0

gn

ui(t) = Ewjlb_(t)

j=o

grg

= s=o
K.

j=O

Equations (7)-(8) define another set of curves parameterized in s for fixed t, i.e., for fixed t,

gm

ui( t )fti( t )b_ (s )

= ,=o
Km

__,ui(tlbT'(s)
i=0

with ui being the weights, fti(t) the control points, and b_(s) the B-spline basis functions.

(T)

(s)

(9)

In RAGGS, all the surface grid generators are formulated in the 3-D physical space, i.e., the grid points

are computed directly in terms of the three Cartesian coordinates, x, y, and z. These space points are

then placed exactly on the nearest quilted surface point by iterating for the patch number and parametric

variables. A key element in a formulation using discrete patches is the boundary data, which is a description

of how the parametric variables change as one crosses from the boundary of one patch to the boundary of

an adjacent patch.

Definition Of Active Region Of Patch

As mentioned before, a surface is descibed by a quilt of Bezier patches or NURBS, possibly with trim

curves. Each patch is parameterized in s and t. The untrimmed domain of each patch is s0 < s _< sl and

to < t _< tl, where usually so = to = 0 and sl = tl = 1. Trim curves (if any) are nonintersecting Bezier

curves or NURBS forming closed loops in the parametric space of a patch.

{ s }=(_i(a)t i=l,...,n (10)

Here, Ci(a) is the ith parameterized trim curve, a is the parameter, and n is the number of trim curves.

The entire domain of an untrimmed patch is defined to be active. Patches which have trim curves have

both active and inactive regions. By convention, the active region of a trimmed patch is the region that lies
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on theleft of each trim curve as a point advances along the curve. Here, left of a trim curve at a point Ci(fi)

is the direction of the vector formed as the cross product (in the order specified) of the surface normal and

the tangent vector to the trim curve at Ci(fi).

Patch Boundary Data

The patch boundary data is a description of how the parametric variables change as one crosses from

the boundary of one patch to the boundary of an adjacent patch. Boundary data for each patch is given in

terms of a series of parameter ranges for each side. Figure 2 shows a typical boundary connectivity between

two adjacent patches (in this case, patches p and q). For patch p, there may be data for ranges,

Sb_ < s < s_

Sb3 <_ S 5 Sb, (11)

For each parameter range, an adjacent patch number and a connectivity matrix of six numbers are given. In

Fig. 2, we assume that a point has crossed the boundary at (Sb,tb) with

tb = h, So <_Sb <__ Sl (12)

Then the boundary data for the side tb = tl and the range which includes Sb will give the new patch number

q and the corresponding parameter values of the boundary point (tb, sb) on this patch q as follows:

() i ](sb)Sb all a12 a13
= tb

tb a21 a22 a23
patch q 1

patch p

(13)

where aij are the transformation matrix coefficients.

Trim Curve Boundary Data

Consider the trim curves of Eq. (10). Analogous to the patch boundaries, boundary data for trim curves

is given for a series of parameter ranges of the curve being crossed as follows:

fib1--< fi _< fib_

fib3--< fi --<fib4 (14)

When crossing trim curve boundaries, the boundary data which includes the parameter range of the crossing

point fib will give the new patch and the corresponding trim curve on the new patch, and the parameter

value of the boundary point on the corresponding trim curve as folows:

(fib)trim curve on patch q -- al a2 fib trim curve on patch p

(15)

where al and a2 are the transformation matrix coefficients.
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GeometryCreation and IGES/RAGGS Interface

The basicmethodof geometry input is through IGES files created by any CAD system. The data in
the IGES file must be translated into surfaces in the form of NURBS and Bezier Patches. These are the

fundamental surface forms used by RAGGS. Translating the data into the RAGGS internal format may take

a number of different paths, depending on the type of data in the IGES file. A flow diagram of the process is

shown in Fig. 3. The processing of the IGES file yields four different types of information which are stored
for later use.

NURBS, entity type 128, contain the only type of surface data which may be used directly. The control

points and other data for these entities can be read directly from the IGES file. For other surface entity

types such as planes, parametric splines, surfaces of revolution, tabulated cylinders, and ruled surfaces, the

data must be converted into a NURBS or rational Bezier patch format. In all cases the parameter conversion

results in a surface which is mathematically equivalent to the original surface.

The second type of information used by RAGGS is information about curves. Curve entities may be in

the form of parametric splines, NURBS, or point data. The curve data may be used subsequently for trim

curves, surface generation, (surfaces of revolution, tabulated cylinders, ruled surfaces, etc.) or they may have

other uses. Surface generation using point data involves curve fitting. This may result in a surface which is

not exactly equivalent to the surface used to generate the points.

Trimmed surface data is the third type of information which is retained and processed for later use.

When combined with the surface and curve data, this data may be used to create the information necessary

to define the active and inactive domains on each patch. This allows the trimmed surfaces to be displayed

and to create grids which cross the trim boundaries.

Ruled surface information is the fourth type of data which is stored. This data is combined with the

curve data to create additional surfaces parameterized in the form of Bezier patches or NURBS.

A file containing the patch information and the related boundary data read by RAGGS is referred to as
a RASCAL file.

NUMERICAL TOOLS

Various numerical tools which are fundamental to our grid generations are described herein.

Projecting A Point On A (Trimmed) Surface

A point on a quilted surface may be identified by (p, s, t) with its position vector computed by R(p, s, t).

p is the patch number. For a given patch number p, s and t are the patch parametric variables and/_ is a

Bezier patch or NURBS taking the form of Eq. (6). Let ff denote a space point. Then, the square of the
distance between/_ and _'is given by

The projection of ffis defined to be the point /_ that minimizes d of Eq. (16).

A local maximum or minimum distance is found by taking partial derivatives of d with respect to s and
t as follows:

[_- R] = 0 = f(p,s,t) (17)

l_t . [_- R] = 0 = g(p,s,t) (18)
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Here, the subscripts s and t denote the derivatives with respect to s and t, respectively. Applying Newton's

iteration method, we obtain

f, As 4- ftAt -----f (19)

g, As + gtAt = -g (20)

where As and At are the changes in s and t, respectively. Eqtfations (19) and (20) are solved for (As, At)

at fixed p. (s, t) axe then updated as follows:

sQ+I -- / SQ_o+ [w(IAsl - e) + e]sign(As)+As ififIAsIIAsl>_ee (21)

tO + [w(IAtl -- e) + e] sign( At) iflAtl>e (22)tQ+: = t 0 + At if IAtl < e

Here, w is the relaxation factor, e (typically, 0.02) is the cut-off parameter and the superscript Q denotes the

Q-th iteration.

During iteration, the patch number p is treated as a parameter and updated only if (s, t) is outside the
active region of patch p. When the calculated (s, t) is outside the active region, the patch boundary data
and the trim curve boundary data (if any) are used to find the adjacent patch to update p and (s, t) for the

next iteration. In the case of patch boundary, Eq. (13) is used. In the case of trim curve, Eq. (15) is used

to compute ab on the trim curve of the adjacent patch. The physical space point computed at ab on patch

p is projected onto the trim curve on the adjacent patch using the computed ab as the initial guess. The

corresponding (s,t) on the adjacent patch is determined by Eq. (10). Then the computed (s,t) is used to

continue the iteration.

Projecting A Point On A Curve And Distance Between Curves

Consider two parametrically defined curves, _t) and ((r), each taking the form of Eq. (1). The square

of the distance between _'(t) and ((r) is given by

At any point _'(r) on the second curve we define the separation between the curves as the minimum distance

d of Eq. (23). This is found by taking partial derivative with respect to t while fixing r as follows:

6(t)" [r-'(t) - _'(r)] =0- y(t,r) (24)

Applying the Newton's iteration method, we obtain

ftAt = -f (25)

or

where At is the change in t.

At = - e't [e'- ((r)] (26)
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Alongthe curvestherearea seriesof extremawherethe curvesare locally separatedby a maximumor
minimumdistance.At thesepoints,the partial derivativeof Eq. (23)with respectto r vanishesat fixed t
as follows:

c#)] &)]=0- f(,(r),
where t(r)isdefinedby the solutionof Eq. (24)at fixedr.

Applying the Newton's iteration method, we obtain

fTAr = -f (28)

or

Av= -(_ttr - (_-)"(if- 0 (29)
(e,t.. + e,,t_ - (r.) "(_- 0 + (_,t. - (_) "(Z,t. - (.)

Here, t_ and trr may by evaluated from Eq. (24). For example, t_- is evaluated as follows:

t. = (30)

So we can choose a r, iteratively solve for t and ff from Eq. (26), and then get Ar from Eq. (29). This

process continues until Ar = 0.

Projecting A Point On A Surface Curve

Given a point in space rand a point on a parametrically defined curve,/_(s(r), t(r)), on a surface/_(s, t),

the square of the distance between/_ and F is given by

A local maximum or minimum distance is found by taking partial derivative with respect to r as follows:

/_r•[/_- rJ = 0-- f(r)

Applying Newton's iteration method, we obtain

frAr = -f

or

AT

_,._,+_,.(_- 0

where

Rrr = Rssr, + Rtt_, + [-_,,Sr + R,ttr]Sr + [-_tss, + Rttt_]tr

(32)

(33)

(34)

(35)

(36)
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Curve And SurfaceIntersections

Considera curveCCu), and a surface/_(s, t). At an intersection between C and/_ we have

CCu) - R(s,t) = 0 = f(u,s,t) (37)

constituting 3 equations in 3 unknowns, u, s, and t. Following the Newton's iteration method, we derive an

iterative process as follows:

-C,(u)Au + ._,(s,t)As + _t(s,t)At = C(u) - f_(s,t) (38)

Isolating terms with cross and dot products, we have 3 equations,

-_,(s,t). [_,(s.t) ×¢.(u)]au =

¢.(u). [_,(s,t)×_.(s,,)]as =

C,,(u). [/_oCs, t) ×/_tCs, t)] At =

Solving these equations, we have the iterative process,

×.,'l ×.,l
aU----- ) aS=

×Ice°>-

c.c,>.{ ×Ice,>-

(39)

(4o)

(41)

at = _"" [/_° X f_] (42)

since

where _ = l_s ×/_t is the surface normal at (s,t), and jr = __/_. For a quilted (trimmed) surface, patch

number p will enter the iterative process and play the same role as that in section "Projecting A Point On

A (Trimmed) Surface."

Surface And Surface Intersections

When surface intersections are not given by trim curves, an intersection must be computed. Two surfaces

generally intersect along a curve or curves in space. Initial points on any intersection curves may be found

by creating a mesh of curves, usually constant parameter curves, on one of the surfaces, and then finding the
intersection of these curves with the other surface. The mesh must be of sufficient density to find at least

one point on all curves of intersection, but not too dense and causing an inordinate number of computations.

When a point on any intersection curve is found, further intersection points are easily created along this

curve. This curve may then be described parametrically by fitting an interpolating function through the

generated points. This procedure is followed for each curve of intersection.

Consider two surfaces given by the equations

gl = P(s,t) (44)

_ = _(u,v) (45)

each taking the form of Eq. (6). At an intersection point, we have 3 equations in 4 unknowns s, t, u, and v.

p(s,t)-_(u,v)= O = f(s,t,u,v) (46)
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FollowingNewton'siteration method,wehave

fs(s,t)As + fds, t)At-(_,,(u,v)Au-Q_(u,v)Av= -f

Since the system is overspecified, we need another equation for a unique solution.

(47)

Holding one of the paramters constant reduces the problem to a curve and surface intersection. Holding

a parameter constant is also useful for finding a point on a particular intersection curve, such as the patch

boundary. We could also hold the parameter constant which maximizes the denominator of Eq. (42) for the

curve and surface intersection. Another way is to approach perpendicularly to the intersection curve along

one of the surfaces. The tangent vector to the intersection curve _, is given by,

= _p × ,_Q (45)

where np and gQ are the local normals at (s, t) and (u, v), respectively,

_p=:.×:,, _q=OuxO_ (49)

The movement vector on surface fi is given by fisAs +/_At. The trace of the movement may be written in

parameterized form as follows:

d.A. = P.Z_.+ _At (50)

with the direction of movement constrained to the normal of the intersection curve, i.e.,

_.(fi.A, + PtAt) = O (51)

Now, the problem has been reduced to the intersection of curve 6(.) and surface (_(u, v). Following section

"Curve And Surface Intersection" and from Eq. (42), we have

6.. _Q 6.. _

Here, 68 may be calculated from Eqs. (50)-(51) as follows:

(e. P,)C.A.

(e._)_ -(_._)_

Since

A. = (52)

= (e.#d(P.A,+ _iat)

= [(_-_)#s- (_.L)#,]z_, (53)

= [(,_px _q)x _] a. (54)

(e.#,)c\.no= [(apx%) xnel.aQ= (,_pxaQ).(_px,_) (55)

we cannot have a nonzero denominator unless ffp X ffQ = 0, which means the surfaces are locally parallel

and there is no intersection anyway. Substituting in the above we get the iteration process,

(_p x _Q). (_p x _Q)

,,, = x ¢
(,_px ,_,_)•(,_px _,_) (5_)

Au = (58)
(_p x _Q). (_e x _Q)

[(,_ x _) x ,_,,l-[0.x :_
Av (59)

(,_px %)-(,_ x ,_,_)
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As previouslydefined,_p and_Qare in the direction of the local normals.

_p=po×P,, _Q=_.×_, f=P(.,t)-g.(u,v) (60)

When the convergence is satisfied, the next point may be found by marching along the surfaces in the

direction of the tangent vector _ = _p × 6Q, and iterating again. Along the tangent vector,

A/_ = /_.As +/_At = ¢ (61)
_Aa

or

A_= 5.A_+5.A. e (62)
= _-_Aa

where a is the arc length. Then As and At along the intersection curve may be calculated by the vector

cross product of Eq. (61) and i6, and/3t, respectively,

. Aa (64)
_,_ = -(-6. -Q)-_-

. A_ (65)
At = (fi..nQ)-_

Similarly, Au and Av are obtained by the vector cross product of Eq. (62) and (_= and Q., respectively,

. Aa (66)
au = (_._)]_l

. Aa (67)Av = -(_.._)_

Here, Ag is computed as follows:

A_ = 5hs + _At + _Au + _hv

(68)

Surface And Plane Intersections

For the user's convenience, a space plane is specified by a set of three non-colinear points or by a reference

point and a normal to the plane. Intersection between a quilted surface and the user-specified plane is done

exactly in the same manner as that described in section "Surface And Surface Intersections" once the plane

is represented by a quilt containing a single patch.

SURFACE GRID GENERATION

Both structured and unstructured grid generators used in RAGGS are briefly described in this section.

References will be cited for readers who are interested in details of the numerical algorithms actually imple-

mented for the surface grid generations.
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Structured SurfaceGrid Generation

TFI Method.--The transfinite interpolation (TFI) of Ref. 2 is coupled with the space point projection,

Eqs. (16)-(22), to determine the interior grids of a 4-sided block. A subsection approach is employed. The

approach allows a 4-sided block grid be calculated subsection by subsection. Each subsection is defined by

its two opposite diagonal points and can easily be specified interactively by point-and-click. A subsection

grid is computed in two steps. First, the 4-sided subsection grid is calculated by TFI based on the sectional

edge grids. Second, Eqs. (19)-(20) are used to project the TFI grids onto the quilted surface. At each point,

a set of initial guesses (p, s, t) is formed by gathering all the available values at immediately adjacent grid

points. Additional sets of (p, s, t) may also be specified by user. The solution is taken to be the one that has

the minimum distance among all the calculated solutions.

When a grid is generated on a single patch, TFI may be optionally applied to the surface parametric

variables. In this case, the grid position vectors are evaluated directly from the patch considered using the

TFI interpolated values of parametric variables.

PDE Method.--The elliptic grid generation system on arbitrary curved space surface can be written, in

tensor form 3, as follows:

2 2 2

y]_ y'_ggm'_e_.,_,, + ___gg""e.e_. - gHE= O (69)
m=l n----1 n=l

Here _"is the grid position vector, _i are the curvilinear coordinates, P, are the grid control functions, gi:

is the contravariant metric tensor, and g = det(gij) with gq the covariant metric tensor. H is the twice
of the surface mean curvature and ff is the unit surface normal. Equation (69) is solved numerically using

the relaxation methods described in Ref. 4 once the differential operators are replaced by central-difference

operators. Equations (19)-(20) are used to snap the solution grid points onto the quilted surface at the end
of each iteration.

The grid control functions P_ are evaluated at the 4-sided block edges and the boundary values are inter-

polated into the field. Both Thomas/Thomas-Middlecoff's method 5'8 and Sorenson's method 7,s have been

implemented for the construction of orthogonal boundary grids. However, Sorenson's method is implemented

based on Thompson's method of Ref. 2 with the following two modifications. One, the central-difference

operator is used to approximate the second-order derivatives normal to the boundary instead of the one-sided

difference operator. Second, the grid control functions are updated immediately after the contributions from

a given orthogonal boundary section have been evaluated and the control function increments are evalu-

ated against the most current values. The first modification provides a consistent numerical method in the

sense that both the grid position vector and control functions satisfy the same governing equation as the

solution converges, and a grid initially orthogoanl will remain and be returned as the solution. The second

modification has provided a more stable iterative process.

Similarity Method.--An existing grid may be fine-tuned to have a similar or identical distribution in a

specified base variable, the arc length or one of the three Cartesian coordinates, along a specified coordinate

direction. To accomplish this, the edge distributions of the specified base variable are interpolated into the

field. Then, the grid points are re-evaluated line by line in the specified coordinate direction and projected

onto the quilted surface. This can provide a simple means of achieving a cylindrical-coordinate-like grid.

Also, it can provide panels on an aircraft configuration with constant spanwise or axial sections as required

by some panel codes.

Marching Method.--A grid may be constructed on a quilted surface from a given line grid (open or
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closed)by marching in the direction normal to the line segment with a specified step size. The marching
direction is the direction of the vector formed as the cross product (in the order specified) of the surface

normal and the tangent vector to the line segment.

Smoothing.--An existing grid may be smoothed by replacing each of the interior points by the averaged

value of its adjacent grid points. The number of passes of smoothing is specified by the user.

Unstructured Surface Grid Generation

Details of our unstructured grid generation algorithm may be found in Ref. 9. Briefly, the technique

is based dosdy on the LShner-Parikh 'sl° data structures and the 2-D advancing front triangulation scheme
described in Ref. 11. However, the implementation is made in the 3-D physical space coupled with the

space point projection, Eqs. (16)-(22). Interactively, a grid generation starts with a rectangular octree box

specified just big enough to cover the entire region to be triangulated. The advancing front is constructed

automatically as the user is pointing and clicking line segments on the screen. During triangulation, every new

nodal point is introduced to form a nearly equilateral triangle and satisfy the mesh consistency requirement
with a base selected from the front. Equations (19)-(20) are used to iteratively locate the new nodal point

on the quilted surface.

Since the unstructured grid generation is based on the same geometry database as that of the structured

grid generation, geometry manipulators and domain blocking tools developed for structured grid generation
cast be used directly. With this new capability, RAGGS provides a unique environment where both structured

and unstructured grids can be generated and manipulated on a common geometry database.

SAMPLE CASES

Sample cases are presented herein to demonstrate the capabilities of RAGGS in handling trimmed surfaces

and generating grids on an unstructred quilt of patches and/or trimmed surfaces.

Figure 4 demonstrates the capability of RAGGS to display trimmed surfaces. Shown in the figure is a

portion of an impeller. The geometry is defined by a series of trimmed surfaces. Figures 4-(a) and (b) show
the shaded displays of the untrimmed and trimmed patches, respectively. One can hardly picture what the

geometry would look like from the untrimmed surface display in Fig. 4-(a). But it is clearly shown in Fig.

4-(b). Figures 4-(c) and (d) show how the two patches corresponding to the front face and the right side of

the geometry are discretized for display purposes. In RAGGS a structured grid is used to discretize the patch

in the parametric space with the grid size adaptive to the local curvature in each direction of the parametric
variable as shown in Fig. 4-(c). For a trimmed patch, the active region is automatically triangulated in

parametric space, using the advancing front technique of Ref. 9, with the trim curves as the initial front.

Figure 4-(d) shows the triangulation of the active regions of the two patches shown in Fig. 4-(c). It may be
noted that in RAGGS the trimmed and untrimmed displays can easily be toggled on and off. Also noted is

that no additional patch definition is given to the trimmed patch and the definition of the original untrimmed

patch is used for the geometry.

Figure 5 demonstrates the capability of RAGGS for generating structured and unstructured grids on
unstructured quilts of patches. Figure 5-(a) shows a B-1B forebody with fins. Four quilts are shown here:

the upper and lower body quilts and the upper and lower fin quilts. No trim curves were provided so a
surface intersection was computed between the body and fin quilts. The irregular arrangement of patches is

clearly indicated by the wireframe display in Fig. 5-(a). The calculated structured and unstructured grids

are shown in Figs. 5-(b) and (c), respectively.
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Figure6 demonstratesthe capabilityof RAGGSfor griddingon trimmedsurfaces.Figure6-(a) showsa
planeanda bump(part of semi-sphericalsurfacerepresentedby NURBS).Thefour edgegridsarespecified
entirelyon the flat plane,and the interior gridsaregeneratedwhile consideringthe trimmed surfaces.As
shownin Fig. 6-(b), the interior grid pointshavebeenproperlypositionedon the trimmed patches.It is
notedthat the unstrimmedsurfacesare theonly surfacesusedto definethegeometry.

CONCLUSIONS

Capability of generating structured and unstructured grids directly on CAD generated geometry with/whitout

trimmed surfaces has been described and demonstrated. Both geometry integrity and patch structure are

retained from IGES file to CFD geometry database.
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(a)Shadeddisplayof untrimmedsurfaces

J

(c) Structured Polygons for untrimmed patches

(b) Shaded display of trimmed surfaces (d) Triangulation of trimmed patches

Figure 4.-Capability of displaying trimmed and untrimmed surfaces.
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(a) Bezier patch-defined B-lb forebody
showing unstructured quilt of patches

(c) Unstructured surface grid

(b) Structured surface grid

Figure 5.-Capability of structured and unstructured grid generations on unstructured quilt of patches.
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(a)Patch-definedplaneandbump

(b)A structuredgridonthetrimmedsurface

Figure6.-Capabilityof griddingon trimmedsurfaces.
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