
N95- 28769

A TECHNIQUE FOR OPTIMIZING GRID BLOCKS

John F. Dannenhoffer, III*

United Technologies Research Center

East Hartford, CT 06108

ABSTRACT

A new technique for automatically combining grid blocks of a given block-structured grid into logically-

rectangular clusters which are "optimal" is presented. This technique uses the simulated annealing op-

timization method to reorganize the blocks into an optimum configuration, that is, one which minimizes

a user-defined objective function such as the number of clusters or the differential in the sizes of all the

clusters. The clusters which result from applying the technique to two different two-dimensional configura-

tions are presented for a variety of objective function definitions. In all cases, the automatically-generated

clusters are significantly better than the original clusters. While this new technique can be applied to

block-structured grids generated from any source, it is particularly useful for operating on block-structured

grids containing many blocks, such as those produced by the emerging automatic block-structured grid

generators.

INTRODUCTION

Traditionally, the block-structured grid generation process has been called "complete" when a set of blocks

and grid points which provide adequate resolution for a given configuration has been defined. While the

location of the grid points is usually carefully controlled to provide the required spacings and grid quality,

the location of the block boundaries is chosen arbitrarily to aid in the grid generation process.

Unfortunately, the location of the block boundaries can have a strong influence on the overall perfor-

mance of the flow solver, especially when employing one of today's advanced computer architectures. For

example, for a vector computer one typically wants as few blocks as possible, while simultaneously keeping

the blocks as "long" as possible in order to maximize use of the vector pipelines. Alternatively, for a

parallel computer (or a network of workstations) one typically wants the blocks to be as load-balanced as

possible in order to minimize idle time. To compound the problem, the computer architecture which will

be employed to obtain the flow solution is not always be known at grid generation time. Therefore, it is

desirable to have a procedure which can recombine blocks (that is, create clusters) of any block-structured

grid, regardless of the software used to generate it.

In addition, a new class of block-structured grid generators is emerging which "automatically" generates

block-structured grids for a variety of configurations[l, 2]. A general property of the grids which these

procedures generate is that they produce a very large number of grid blocks, sometimes running into the

*Senior Research Engineer

tutl



tens of thousands. This new clustering procedure could be used in such cases to significantly reduce the

number of clusters (blocks) on which the flow solver would have to operate.

The objective of this work is to develop a general technique for automatically combining blocks of a

given block-structured grid into logically-rectangular "clusters" so as to minimize a user-defined objective
function.

TECHNICAL APPROACH

The Clustering Problem

Consider the block-structured grid configuration shown in Figure 1. It consists of seven grid blocks (the

seven squares labeled A through G) which are arranged so as to fill an L-shaped domain; also shown are

eight "removable" edges (which are labeled 1 through 8).

Simply stated, the objective in the clustering problem is to find the set of edges which, when removed,

yields both a "valid" configuration and which minimizes some "score". For now, assume that the "score"

is the number of clusters. A "valid" clustering is one which solely consists of (logical) rectangles; L-shaped
clusters are invalid.

One could reduce the score of the clustering in Figure 1 by removing any edge; for example, when

edge 7 is removed, the clusters shown in Figure 2 result, with the score now reduced to the better value

of 6. To further reduce the score, either edge 1, 2, 3, 4, or 6 can be removed to yield a valid clustering

and a reduced score of 5. But removal of either edge 5 or 8 yields a cluster (for example, cluster EFG in

Figure 3) which is not logically-rectangular and thus invalid. This process can be continued, yielding the

optimal score is 2 which is produced either by retaining only edge 2 or by retaining only edges 3 and 4.

Optimization Procedure

The optimization problem considered here is one which is characterized as a combinatorial minimization

problem. That is to say, the design space cannot be characterized as an N-dimensional surface defined over

N smoothly-varying design parameters. Rather it is a design space which is described by a set possible

configurations. Other problems of this combinatorial nature include VLSI circuit layout[3] and the infamous

traveling salesman problem[4].

There are two major difficulties associated with combinatorial optimization problems which do not arise

in more traditional optimization problems. First, the design space can become extremely large because

the configurations generally are describable by a sequence of events (the number of which, when taken

together, grows factorially). Second, because the design variables can only take on discrete values (such as

"on" and "off"), any procedure which exploits the concept of gradient is not relevant.

One technique which has proven very successful at solving the combinatorial optimization problem

is the simulated annealing algorithm, which was first proposed by Metropolis[5] and which is described

extensively by Aarts and Korst[6].

Stated very briefly, the simulated annealing algorithm is: starting from a known valid configuration,

randomly select a change of state; any change which results in lower objective function value or which results

in an objective function value which is not "too much worse" than that of the previous configuration is

accepted. This process is repeated with the definition of "too much worse" tightening as it proceeds, until

no proposed changes to the configuration yield any reduction in the objective function.

752



Thisproceduregetsits namefromananalogywith thethermodynamicprocessof annealing,or freezing,
of liquids into solids. In the beginningstagesof the solidificationprocess,moleculesmovefreely in an
attempt to form crystallinestructureswhich havelow internal energies(the objective function). For
annealing,the temperatureis slowlyreducedand the mobility of the moleculesis gradually restricted,
resultingin minimumenergycrystals. Alternatively, for quenching, the temperature is quickly reduced,

resulting in a crystalline structure which has significantly higher energy.

These same concepts can be applied to optimization. The initial steps of annealing (when the control

parameter is high) is similar to a random-walk procedure, which is known to be an effective strategy

for getting into the neighborhood of a global optimum. The final steps of annealing (when the control

parameter is low) is similar to a hill-climbing procedure, which is known to be effective in the vicinity of an

optimum. The annealing schedule provides an orderly mechanism of transitioning from one to the other.

It should be noted that quenching is analogous to hill-climbing alone, which is notorious for getting stuck

in local extrema (as are all greedy algorithms).

In terms of pseudo-code, the algorithm can be stated as follows:

* initialize the configuration and compute its objective function O

* set an initial value for the control parameter T

* do { (outer loop of generations)

* do { (inner loop of attempts)

* propose a random change to the configuration

* compute the change in objective function AO of the proposed change

* if (AO < 0 or random(O --* 1) < e -AO/T) then

- take the step and adjust 0

} until (stop criterion is met)

* decrease the control parameter T

} until (there were no successful proposals at the previous T)

In order to use this algorithm for optimizing block clusters, one needs to provide the following:

Configuration (a method of describing the current "state" of a configuration). For the current appli-

cation, the current configuration can be described as a table that says which edges currently exist (or

conversely, which edges have been removed);

Rearrangements (a method for proposing and carrying out changes to the configuration). Here the

procedure is to pick an edge at random, and if it exists, remove it; alternatively if it has already been

removed, then re-insert it. In this way, the effects of any previous rearrangements can be undone (which,

by the way, is generally an important property when using simulated annealing);

Objective function computation (an efficient procedure for computing the change in objective func-

tion given any proposed change to the configuration). One of the nice features of using the simulated

annealer is that, except for the initial configuration, one only has to calculate the change in objective

function AO that results from a proposed configuration change. This is indeed fortunate, because for the

clustering problem, the change in objective function can be computed in a small, fixed amount of work

(that is, independent of the problem size), whereas the work to compute the actual objective function

scales with N (the number of removable edges in the configurations); and

753



Annealing schedule (arecipefor controllingthedecreaseof the controlparameterT). This is the least

rigorous part of the simulated annealing algorithm. In general, a suitable annealing schedule can only be

found by experimenting.

Objective Function Formulation

In addition to the selection of suitable "design variables" (discussed above), the application of the simu-

lated annealing algorithm to the clustering problem requires the definition of the "objective function" and

"constraints".

First consider the objective function, (9. The most obvious choices include:

Minimize number of clusters This objective function is appropriate when one wants to minimize the

number of concurrent processors which are needed to perform some calculation. A suitable form might be

(9 = Nclu_

where Nclus is the number of clusters.

Minimize size of largest cluster When running a calculation on a parallel processor or on a group

of workstations, one typically wants to distribute the work as evenly as possible across the processors. A

suitable objective function might be
(9 = Nsize

where Nsize is the size of (number of grid points in) the largest cluster. (Note that by itself, this objective

function might arrive at the solution that each original cluster should remain unchanged.)

Hybrid Clearly a hybrid objective function could be formed which combines the above, with suitable

coefficients, as in
(9 = Aclusmin (Nclus, Ldu_) + A,i,_ min (Nsi,¢, Lsi_)

where Adu_ and £_ize are weighting coefficients and Lclu_ and Lsi,e are user-specified limits. These limits are

particularly useful for tuning the objective function in a variety of ways. For example, one could minimize
the number of clusters with the restriction that no cluster to be larger than some specified size (as might

be imposed by a memory restriction in some processor). Similarly, given the number of clusters, one could

minimize the size of the largest cluster (in essence, this amounts to load-balancing).

Notice that in the hybrid formulation of the objective function, the "weak" constraints imposed by L_i,e

and Ldu_ are actually written as part of the objective function. There is in addition a "strong" constraint

on this problem, namely the requirement that all clusters be logically rectangular. This can be accounted

for by adding another "penalty" term to the objective function, or

(9 = _clus min (Nclus, Lclus) -4-_size min (Nsize, Lsize) -4-)%rakNbrak

where Nbrak iS the number of edges which would have to be re-inserted to yield all logically-rectangular

clusters. In general, _brak > )_clus to ensure that the final clusters are all well shaped.

754



COMPUTED RESULTS

As demonstrationcases,resultswereobtainedonseveraltwo-dimensionalconfigurations;two of themare
shownhere.

Thefirst test caseis for an internal-flow passage containing eight circular posts (hence the test case is

called "posts"). The original grid for this case, which contains 5543 nodes in 89 clusters (each block was

initially assigned to its own cluster), is shown in Figure 4a.

For the first experiment on the "posts" test case, the simulated annealer was applied to minimize

the number of clusters (the user-supplied constants are given in Table I). Intermediate results, that is

the clustering at the end of each setting of the control parameter T, are shown in Figures 4b--e. Notice

that most of these intermediate results contain many badly-shaped clusters (that is, they are not logically

rectangular). The final clustering, which is shown in Figure 4f, contains 19 clusters, where the largest
cluster contains 969 nodes. Table I summarizes these intermediate and final results.

For this case, as well as all others shown here, the control parameter was initially set to T = 5.0 and

was reduced at the end of each generation (the outer loop) by a factor of Tncw/Told = 0.75; these values,

which were determined through numerical experimentation, have been found to be sufficient for all test

cases executed to date. Also, the stopping criterion at the end of the attempts (inner) loop was taken

to be the first of: 10N successful attempts or 100N total attempts, whichever comes first (where N is

the number of removable edges). Again, these values were determined by numerical experiments and were
found to work well for all cases which have been tried to date.

In order to better understand how the simulated annealer works, a convergence history for this case

was plotted in Figure 5. The abscissa represents the successful attempt number while the ordinate shows

the current value of the objective function O. The circles indicate those times when the control parameter

T is decreased. There are a number of interesting features evident in the Figure:

• the objective function O does not strictly decrease, but rather tends toward an optimum;

• there is a "noise band" corresponding to the concept of "not too much worse". As expected, the

width of the band decreases as the control parameter decreases; and

• the number of successes between control parameter reductions decreases, corresponding to the fact

that as T gets smaller, it is more difficult to find a success.

It should be noted that the simulated annealing algorithm is stochastic because of tile random number

generator used both to select a proposed change and in the acceptance check. In theory then, the results

which it produces cannot necessarily be repeated. In order to determine the sensitivity of the present

results to the random number seed, a few of the test cases have been re-executed many times. In all cases,

the "optimum" solutions were very close to each other and were very far from the initial solution.

One further point should be made about the algorithm. The work required to reach "convergence" is

bounded by N x M, where N is the number of design variables (the number of removable edges) and M

is the number of times which the control parameter T needs to be decreased. Although in the worst case

M _ oc, test cases of varying sizes seem to indicate the M is approximately constant, with a value of

about M _ 10. In fact, even though in the current implementation a limit of M = 20 has been hard-coded

(to protect against infinite looping), it has never been exercised.

For the second experiment on the "posts" test case, the number of clusters were again minimized, but

with an upper limit Lsize = 500 on the size of any one cluster. The clustering which results for this case,

which is shown in Figure 6a and is summarized in Table I, is very different from that discussed above.

A third experiment on the "posts" test case was conducted, wherein the size of the largest cluster was

to be minimized with the constraint the the number of clusters be bounded by Lclus = 25. The results of

755



this test areshownin Figure6band againin TableI. Againthe clusterswhichare formedaredifferent
from the abovetwo cases,andin generalnot intuitively obvious.

A secondtest case,correspondingto agas-turbinecombustorcross-section(andhencecall "combustor")
is alsoshownhere. The Figures7 and 8 and TableII summarizeits results.The results,whicharevery
similar to thoseobtainedfor the "posts" test case,serveto demonstratethe broadapplicabilityof the new
clusteringtechnique.As in the "posts" test case,all casesexecutedin lessthan two minutesof CPUtime.

CONCLUSIONS

A newprocedurefor optimizing"clusters"of grid blockshasbeendescribed.The procedure,whichuses
the simulatedannealingoptimizationalgorithm,hasbeenexecutedon manyconfigurations;it hasbeen
demonstratedhereon two different two-dimensionalconfigurations.In all cases,the new algorithmhas
yieldedclusteringswhich are "good" in the sensethat they haveeither significantlyreducedthe total
numberof clusters(with and without a limit on the maximumclustersize)or havebalancedthe cluster
sizes(with a givennumberof clusters).Even thoughthe simulatedannealerdoesnot guaranteethat an
actualglobalextremumhasbeenachieved,theresultsof the automaticalgorithmwereat leastasgoodas
theclusteringswhichweremanuallygenerated.All casesexecutedrequiredlessthan two CPU minutes on

an Silicon Graphics Indigo2-R4400 for problem sizes of about 100 removable edges; numerical experiments
indicates that the time should scale linearly with problem size. While this procedure is applicable to

block-structured grids generated by any software, it is particularly well-suited to those generated by the

emerging "automatic" block-structured grid generators.

ACKNOWLEDGEMENTS

This work was funded under the UTC Corporate Sponsored Research Program. The author would like to

thank David Sirag for his helpful insights and comments about the simulated annealing algorithm as well

as many of his other colleagues who reviewed this manuscript.

REFERENCES

[1] Dannenhoffer, JF, "Automatic Blocking for Complex 3-D Configurations," NASA CP-3291, May 1995.

[2] Shaw, JA, and Weatherill, NP, "Automatic Topology Generation for Multiblock Grids," Applied Math.

and Comp., vol 53, pp 355-388, 1992.

[3] Vecchi, MP, and Kirkpatrick, S, "Global wiring by simulated annealing," IEEE Trans. on Computer-

Aided Design, vol 2, pp 215-222, 1983.

[4] Aarts, EHL, Korst. JHM, and VanLaarhoven, PJM, "A quantitative analysis of the simulated anneal-

ing algorithm: a case study for the traveling salesman problem," J. of Statistical Physics, vol 50, pp

189-206, 1988.

[5] Metropolis, N, Rosenbluth, A, Teller, A, and Teller, E, J. Chem Phys., vol 21, p. 1087, 1953.

[6] Aarts, E and Korst, J, Simulated Annealing and Boltzmann Machines, Wiley _ Sons, 1989.

756



Figure
4a

4b

4c

4d

4e

4f

6a

6b

1.00 1 2.00 0.001 0 89 0 425

23 28 1666

22 26 1543

28 16 1027

31 13 850

19 0 969

1.00 1 2.00 0.100 500 23 0 455

1.00 25 2.00 0.001 0 25 0 441

Table I: Summary of results for test case "posts".

Figure
7a

7b

7c

7d

7e

7f

8a

8b

1.00 1 2.00 0.001 0 8O 0 273

30 19 633

31 17 978

21 14 1356

36 4 533

16 0 828

1.00 1 2.00 0.100 500 22 0 468

1.00 25 2.00 0.001 0 25 0 468

Table II: Summary of results for test case "combustor".

1
A B

3 4

5
D E

6 7

8
F G

2
C

Figure 1: Original configuration. Score=7.

757



A

3

D

6

F

B

4

EG

C

Figure2: (Valid) configurationwith edge7 removed.Score=6.

A

3

D

6

B

4

EFG

C

Figure3: (Invalid) configurationwith edges7 and8 removed.

758



a: original b: first generation

J

_A__ <

c: second generation d: third generation

e: fourth original f: final

____J

Figure 4: Minimization of the number of clusters for test case "posts".

759



120.

O, I I I I I I I

O. 5000. 10000. 15000. 20000.
SUCCESS

Figure 5: Convergence history for test case "posts". Only every 50th successful change is plotted. The

circles show the times when the control parameter T was decreased.

_: Lsize = 500 b: Lclus = 25

Figure 6: Final clusters for alternative optimizations for test case "posts".

76O



a: original b: first generation

c: second generation d: third generation

/-/I

_J

JJ

e: fourth original f: final

Figure 7: Minimization of the number of clusters for test case "combustor".

761



a: Lsize = 500 b: Ldus = 25

Figure 8: Final clusters for alternative optimizations for test case "combustor".

762


