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ABSTRACT

A two-dimensional model of the resin transfer molding (RTM) process was developed

which can be used to simulate the infiltration of resin into an anisotropic fibrous preform.

Frequency dependent electromagnetic sensing (FDEMS) has been developed for in situ mon-

itoring of the RTM process. Flow visualization tests were performed to obtain data which

can be used to verify the sensor measurements and the model predictions. Results of the

tests showed that FDEMS can accurately detect the position of the resin flow-front during

mold filling, and that the model predicted flow-front patterns agreed well with the measured

flow-front patterns.

* This work was made possible through the support of the National Aeronautics

and Space Administration-Langley Research Center grant no. NAG1-343 with

Virginia Tech and grant no. NAG1-237 with the College of William and Mary.
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INTRODUCTION

Resin transfer molding (RTM) is seen as a cost-effective method of fabricating primary

aircraft structures. It also enables the use of a variety of automated textile processes for

making the dry fiber preforms, several of which offer through-the-thickness reinforcement.

RTM has been used for decades in various industries for less critical structures having low

fiber volumes and readily processed resins. The challenge in adapting RTM to primary

aircraft structures hes in ensuring successful injection and cure for high fiber volumes, limited

resin processing windows and geometrically complex shapes.

A joint research program between NASA Langley Research Center, Virginia Polytechnic

Institute and State University, The College of Wilham and Mary, and Douglas Aircraft

Company is underway to develop a science-based understanding of the RTM process in order

to minimize costly trial-and-error steps during process development of a structure, and to

ensure quality during production. This involves characterizing the processing behavior of

the fibers and resins, developing mathematical models of the RTM process, and monitoring

significant process variables in real time. The ultimate goals of this program are to develop

a comprehensive three-dimensional RTM model for complex shape fiber architectures and

to incorporate the model into an intelligent process control system which uses frequency

dependent electromagnetic sensing (FDEMS) for sensing the process variables in real-time.

The first result of this collaborative research program was the development of a math-

ematical model of the resin film infusion process [1,2]. The model can be used to simulate

one-dimensional, through-the-thickness infiltration of resin into a fabric preform and cure

of the resin saturated preform. Compaction and permeabihty characteristics of the fabric

preform along with the kinetic and viscosity characteristics of the thermosetting resin axe

incorporated into the model to predict, as a function of apphed temperature and pressure

boundary conditions, the following parameters: a) initial resin mass; b) resin front position

and time required for preform infiltration; c) preform temperature distribution; d) resin

viscosity and degree of cure; and e) final part thickness and fiber volume fraction. Basic

features of the RTM computer model are shown in Fig. 1.

Verification of the one-dimensional resin film infusion model has been accomphshed for

two types of textile preforms, Hercules 3501-6 resin, and several thermal cycles. Frequency

dependent electromagnetic sensors (FDEMS) were used for in situ measurements of the

infiltration time, resin viscosity, and resin degree of cure. The physical arrangement of

the FDEMS sensors and measuring system is shown in Fig. 2. The results of the one-

dimensional model verification and utilization studies were reported at the first and second

NASA Advanced Technology Conferences [3,4].

Recent research has focused on extending the model to two-dimensional anisotropic ge-

ometries. Specific applications include in-plane injection of liquid resin into a flat preform

(Fig. 3) and resin infiltration of a complex shape preform by the resin film infusion process

(Fig. 4).
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The purpose of this paper is to discuss experimental and analytical techniques that are

being used in the development of the two-dimensional RTM flow model. Specifically, a series

of flow visualization experiments were performed to verify the flow-front and infiltration-time

predictions of the RTM process simulation model, to verify the permeability versus com-

paction measurements obtained from preform characterization experiments, and to demon-

strate the ability of FDEMS sensing to detect the position of the flow-front.

RESIN INFILTRATION MODEL

The two-dimensional resin flow model was developed to determine the position of the

resin flow-front and the pressure distribution inside the preform. In development of the flow

model the following assumptions are made: 1) the textile preform is a porous medium; 2) the

preform permeability is heterogeneous and anisotropic; and 3) the resin is incompressible,

and capillary and inertia effects are neglected (low Reynolds number flow).

For flow through porous media, the momentum equation can be replaced by Darcy's Law

which relates the flow rate to the pressure gradient. Darcy's Law for an anisotropic porous
medium can be written as

{q=} 1[s,, S=,l (11

where q, and qy are the flow rates per unit area (superficial velocities) in the x- and y-

coordinate directions, Szz, Sxy, and Syy are the components of the permeability tensor for

the textile preform, _ is the viscosity of the resin, and OF and oP-_y are the pressure gradients.

The continuity equation of two-dimensional, incompressible flow is written as

Oq: Oqy = 0 (2)o---2+ o--T

The combination of Darcy's Law and the continuity equation yields the governing equation

for resin infiltration into a textile preform:

0 - **i)P -S, vOP O - OP -S_

Oz Oz + tJ + -_y Y Ox + -_y =0 (3)

Solution of Eq. (3) gives the pressure distribution P(z, y) within the region of the textile

preform where the resin has infiltrated. Once the pressure distribution is determined, the

resin velocity at any point inside the preform can be calculated from Darcy's Law.

Solution of the governing equations requires specification of the boundary conditions. At

any instant of time, the pressure or flow rate must be specified at each resin inlet port (gate).
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If the wetting force due to the resin advancing through the dry fiber preform is neglected,

the pressure at the flow front is
P=0 (4)

The final boundary condition requires that there be no flow across the surfaces of the mold

wall which for an anisotropic material can be expressed as

= -- + S., = o (5)

where n and t represent the directions normal and tangent to the mold wall, respectively.

The flow area (area of the pores) is less than the cross-sectional area of a porous mate-

rial. The relationship between the superficial velocities (qz and q_) and the interstitial resin

velocities (vz and vy) is given as

=v,(1 -vl)=v,¢

q, = - = (6)

where v! is the fiber volume fraction and ¢ is the porosity of the fabric preform. The
interstitial resin velocity is calculated at the front and is used to determine the advancement

of the flow-front during infiltration.

Numerical Solution Procedure

Many methods of modeling free boundary movement have been explored over the past

decade [5]. The modeling of the RTM process presents several challenges. A method must be
chosen that will allow for the variation in permeability of the media into which resin is being

injected. Perhaps as important is that the method chosen must be computationally efficient.

Due to the complexity of the part geometry and manufacturing conditions, a typical model

of the RTM process can be quite large. For these reasons the finite element/control volume

technique was chosen for use in this investigation.

The finite element/control volume approach has several advantages. The use of finite

elements allows for the inclusion of variation in material properties throughout the domain

with little difficulty. Also, the control volume approach allows for the use of a fixed mesh

which eliminates the need to do computationally expensive remeshing to track the flow front

movement.

The Finite Element model used is based on a 2-D model developed by Reddy [6]. At

present, the model uses a fixed mesh of isoparametric quadrilateral elements. Each element

has constant properties. Also, for convenience, the local Cartesian coordinate system of each

element is aligned with the global coordinate system. This allows for the global stiffness

matrix to be formulated without any transformations. PATRAN is used as a pre and post
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processor for the simulation model. The boundary conditions and the material properties

are input into the processing model via PATRAN. PATRAN also is used to plot the results

after the simulation is completed.

The governing equations describing fluid flow through a porous medium are coupled to a

technique which is used to determine the flow front position within the preform. The control

volume approach consists of constructing a region around each node in a fixed finite element

mesh. These regions, called control volumes, can then be either empty, full, or partially

full depending on whether the resin flow front has reached that point in the computational

domain. The resin flow front is then tracked from one time step to the next by locating all

the positions where the nodal control volumes are partially filled. A nodal fill factor is used

to keep track of the state of each node. A fill factor of 0 represents an empty nodal control

volume (no resin); whereas, a fill factor of 1.0 means that the nodal control volume is filled.

A detailed explanation of the control volume technique and flow front advancement is given

in Ref. 7.

Preform Characterization

The preform permeability must be specifed in order to obtain a numerical solution of the

resin infiltration model. Textile preforms are deformable and anisotropic porous materials.

Hence, the permeability depends not only on direction but on the amount of deformation or

compression of the preform.

Presently, analytical models that can be used to calculate the permeabilities of advanced

architecture preforms do not exist. Thus, the compaction characteristics and the permeabil-

ities in the principal material directions must be measured for each textile preform.

Compaction characteristics of preforms are quantified by mounting a sample between

rigid plates, applying a compaction load, and measuring the resulting thickness. Data are

commonly reported by constructing plots of fiber volume fraction (vl) or porosity (¢) versus

applied pressure. The fiber volume fraction and porosity can be calculated using the following

expression

1-_b = _ (7)

j-

/,If

where _ is the preform areal weight, d is the preform thickness and Ps represents the preform

density.

Permeabihty is also a nonlinear function of preform compaction pressure. For the

two-dimensional resin infiltration model, the three components of the permeability tensor

(Sz_, S_y, Syy) must be determined. If the preform is orthotropic, permeabihty versus com-

paction pressure measurements are performed in each of the two principal material directions

to obtain Sxx and Syy. The cross term permeabihty, Sz_, can be calculated using the prin-

cipal permeabilities in a second order tensor transformation.
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Two techniques axe commonly used to measure preform permeability. The first method,

denoted the steady-state technique, measures the permeability of a fluid saturated preform

under constant flow rate conditions. In the second method, denoted the advancing front

technique, the permeability is determined by measuring the velocity of the advancing resin

front into the dry preform [8]. The steady-state technique was used in the present investi-

gation to measure the permeability. A schematic diagram of the test fixture used to measure

in-plane permeability is shown in Fig. 5. To measure the permeability of the preform the

following procedure is followed. The sample is placed inside the test chamber and com-

pressed to the specified thickness. A fluid with a known viscosity is allowed to pass through

the preform at a constant flow rate and the pressure drop across the preform is measured.

The permeability is calculated using the one-dimensional form of Darcy's Law.

EXPERIMENTAL

The three major components used in the flow visualization experiments axe shown in

Fig. 6. These include the visualization fixture, the video camera and high resolution tape

recorder, and the air pressurized resin pot.

The fixture consisted of a square aluminum frame with a 1.5 inch thick poly (methyl

methacrylate) top plate. The dimensions of the test cavity are 2ft x 2ft. A total of nine

FDEMS sensors were mounted in the aluminum bottom plate of the mold. The locations

of the sensors in the bottom plate are shown in Fig. 7. The FDEMS sensors were installed

into aluminum mounting plugs and the mounting plugs were inserted into cavities that were

machined into the bottom plate, as shown in Fig. 8. A 1/4in. diameter by 3/8in. deep

hole was drilled into the center of each cavity which allows resin at the flow-front to enter

the cavity and wet-out the sensor. The output leads from the sensors were connected to a

multiplexer as shown in Fig. 2.

Fluid was transferred from the pressure pot to the visualization fixture using 1/4in. inner

diameter plastic hoses. Pressure was monitored during the experiment using gages installed

at the exit of the resin pot and at the visualization fixture resin inlet ports. Resin injection

pressure was controlled by an air pressure regulator mounted on the resin pot.

At the beginning of each experiment, the video camera was mounted above the visualiza-

tion fixture. The flow patterns from the experiments were recorded using the high resolution

video tape recorder. The video tape was used to determine the infiltration times and to

provide a means of correlating the measured flow patterns with the predictions of the resin

infiltration model. A total of fourteen images were captured from each taped sequence and

stored in 32 bit form on a computer disk for later retrieval.

The textile preform used in the visualization experiments was a style 162, plain weave,

E-glass fabric. Eleven layers of the fabric were stacked into the fixture and compressed to the

cavity thickness of 0.15 in. The fluid used in the experiments was corn oil. A small amount
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of red dye was added to the oil. The viscosity of the oil and dye mixture was measured to

be 40 cp.

RESULTS

Preform Characterization

Compaction characteristics of the E-glass fabric are shown in Fig. 9. Note that the fiber

volume fraction is calculated from the preform thickness measurements using Eq. (7). The

fiber volume fraction of the eleven ply stack of E-glass fabric compressed to fit into the 0.15

in. thick cavity was calculated to be 43%. Based on the fabric compaction data, a pressure

of 10.3 psi is required to compress the E-glass preform to a 43% fiber volume fraction.

The permeabilities of the E-glass fabric were measured in the warp and fill directions

using the fixture shown in Fig. 5. Data from the permeabihty experiments are plotted on

Fig. 10. The solid and dashed hnes are power law regression fits to the warp and fill direction

data, respectively. Results of the measurements show that the permeabihties in the warp

and fill directions are nearly the same. Hence, a center port injection experiment should

result in circular flow-front patterns.

Single Side Port Injection

A schematic diagram of the single side port injection experiment along with pertinent

preform and fluid data are shown in Fig. 11. Resin enters the cavity through a single side

port and flows along the 1/8in. channel around the perimeter of the fabric. Resin then begins

to infiltrate through the edges of the preform, saturates the preform, and exits through the

center port.

The finite element mesh for the resin infiltration model consisted of 2707 quad elements

and a total of 2816 nodes. Since the coordinate axes coincide with principal material direc-

tions of the fabric the elements are orthotropic. The measured E-glass fabric warp and fill

direction permeabihties at 43% fiber volume fraction were input for each element.

One difficulty in modeling the side port injection experiment was that at the beginning

of the test, the resin pressure at the fixture inlet port drops below the specified injection

pressure. The pressure at inlet port remains low until the channel is completely filled with

resin. As resin begins to infiltrate the fabric, the inlet port pressure increases to the specified

injection pressure. Thus, the inlet port pressure was monitored as a function of time during

the experiment and the data input into the model as boundary conditions.
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The influence of the channel was considered in the model by adjusting the permeability of

the elements representing the channel until the model predicted inlet port and channel pres-

sures matched the measured values. This technique gave a reasonably good representation
of the resin channel in the simulation.

Comparisons between the model predicted and recorded flow-fronts are shown in Figs.

12-14. The time that the image was captured on the video tape is denoted on each figure.

The dark shaded area is the resin saturated region of preform, the whitish area is the dry

preform and the solid line represents the model predicted flow-front. The images of the model

predicted flow-fronts were taken at times corresponding to the images stored to disk from

the video tape. Each model predicted flow pattern was overlaid on top of the appropriate

video image taken from the experiments.

As can be seen from the figures the model matched the experimental results at the three

different infiltration times very well. Note that measured flow front is somewhat wavy during

infiltration. This may be due to the waviness of the plastic top plate.

A grid showing the positions of the FDEMS sensors, which are located underneath the

glass fabric, has been overlaid on Figs. 12 and 14. The grid was helpful in comparing

the FDEMS sensor response to the flow-front position. The sensor locations and measured

wet-out times are denoted on each figure. The sensors are numbered in the order that

they are scanned by the computer measuring system. As can be seen from the figures, the
FDEMS sensors can detect the location of the resin flow-front to within 5s of the measured

infiltration time. The accuracy of the FDEMS measurements can be improved by increasing

the scanning rate of the data acquisition system.

Center Port Injection

A schematic diagram of the center port injection experiment along with the preform and

fluid data axe shown in Fig. 15. Resin enters the cavity through a port in the center of

the plastic top plate, infiltrates the preform, and exits through the vents in the sides of the
mold.

The sa_ne finite element mesh that was generated for the single side port resin infiltration

model was used for the center port model. On the first attempt at modeling the center

port injection experiment, the measured E-glass fabric warp and fill direction permeabilities

at 43% fiber volume fraction were input for each element. The resulting model predicted

flow-fronts were considerably slower than the recorded flow-fronts. After an examination of

the data and the flow fixture, we concluded that when the resin entered the mold under

pressure the plastic top plate was deflecting. This caused an increase in the cavity depth, a

decrease in the fiber volume fraction and a corresponding increase in the fabric permeabilities.

Considering both the deflection and the nonuniform thickness of the plastic top plate, it was

estimated that the depth of the cavity at the center of the fixture was about 12% greater

368



than the designedcavity depth of 0.15 in. This resulted in a decrease in the fabric fiber

volume fraction to 38%. When the model was rerun using the E-glass fabric warp and fill

direction permeabilities at 38% fiber volume fraction, the predicted flow-fronts agreed well
with the recorded flow-fronts.

Comparisons between the model predicted and recorded flow-fronts are shown in Figs.

16-18. Again, the time that the image was captured on video tape is denoted on each figure.

As can been seen from the figures, the model predicted flow-fronts with the adjusted fabric

permeabilities agreed well with the recorded flow-fronts at the three infiltration times. Note

that the flow patterns are circular due to the nearly equal permeabilities in the fabric warp

and fill directions.

Grids showing the positions of the FDEMS sensors have been overlaid on Figs. 17 and
18. The locations and wet-out times of the sensors at the flow-front are denoted on each

figure. As was shown in the side port experiments, the FDEMS sensors can accurately detect
the location of the resin flow-front.

SUMMARY AND CONCLUSIONS

A two-dimensional RTM process simulation model was developed which can be used to

describe the infiltration of resin into a dry textile preform, and cure of the resin saturated

preform. The model can be utilized in the development of optimal cure cycles and in mold

design by specifying the location of resin injection parts which result in complete wet-out

of a complex shape preform. Frequency dependent electromagnetic sensors (FDEMS) have

been developed for in situ monitoring of the RTM process. FDEMS sensing can be used to

detect the position of the resin front inside the mold during infiltration and to measure the

resin properties during cure.

A series of flow visualization experiments were performed to obtain data which can be

used to verify the sensor and the model. The results of these tests showed that FDEMS can

accurately detect the location of the flow-front in the mold during infiltration, and that the

model predicted flow-front patterns agreed well with the recorded flow-front patterns.

In-plane fabric permeabihties were measured using the steady-state technique. When the

warp and fill direction permeabihties at the measured fiber volume fraction of the E-glass

preform were input into the RTM simulation model, agreement between the model predicted

and measured flow patterns was good. However, in the center port injection experiment,

the permeabilities were adjusted due to excessive deflection of the plastic top plate. The

center port injection experiments will be repeated using auxiliary supports to minimize the

deflection of the top plate.

In future studies, the visualization experiments will be repeated using different fabric

preforms and epoxy resin as the infiltrating fluid. Once the two-dimensional model has been
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verified, the model will be extended to simulate resin transfer molding of three-dimensional

complex shape preforms.
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RTM COMPUTER MODEL
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Figure 1. Schematic diagram of the RTM computer model.
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Figure 2. Physical arrangement of the FDEMS sensors and measuring system.
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PRESSURE INJECTION
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Figure 3. Pressure injection of liquid resin into a flat preform.
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Figure 4. Resin infiltration of a complex shape preform by the resin film infusion process.
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Figure 5. Permeabihty test fixture.
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Figure 6. Equipment used in the flow visualization experiments.
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FLOW VISUALIZATION FIXTURE
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Figure 7. Location of the FDEMS sensor array in the visualization fixture.
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Figure 8. Installation of FDEMS mounting plugs into the bottom plate of the mold.

374



0.8

C
O

*5 0.6

U_

0

_, 0.4
r-,

LL

0.2

Preform Data

Style 162

Plain Weave

E - glass

• _------lr__

, I _ I , t , i

0 50 100 150 200 250

Applied Compaction Pressure (Psii_

Figure 9. Compaction characteristics of style 162, plain weave, E-glass fabric.

1 E-05

1 E-06
0
r-

t_

ffl

.D

_ 1E-07
n

1 E-08 _ I
0.36 0.38

Preform Data

Style 162
Plain Weave

E - glass

"'-mL. ii

• "'"----.m.,_" ---. m

Warp Direction Fill Direction
Fluid: Corn oil Fluid: Corn oil

k , I L I , I , I , I J ]

0.4 0.42 0.44 0.46 0.48 0.5 0.52

Fiber Volume Fraction

0.54
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Figure 11. Single side port injection experiment.

Figure 12. Comparison between the model predicted and recorded flow-front at an infiltration
time of 20s.
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Figure 13. Comparison between the model predicted and recorded flow-front at an infiltration
time of 30s.

Figure 14. Comparison between the model predicted and recorded flow-front at an infiltration

time of 45s.
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Figure 15. Center port injection experiment.
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Figure 16. Comparison between the model predicted and recorded flow-front at an infiltration
time of 12s.
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Figure 17. Comparison between the model predicted and recorded flow-front at an infiltration
time of 30s.

Figure 18. Comparison between the model predicted and recorded flow-front at an infiltration

time of 78s.
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