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Summary

A collection of analytical studies is presented related to unconstrained and constrained
aircraft energy-state modeling and to spacecraft motion under continuous thrust. With
regard to aircraft unconstrained energy-state modeling, the physical origin of the singular
perturbation parameter that accounts for the observed two-time-scale behavior of aircraft
during energy climbs is identified and explained. With regard to the constrained energy-
state modeling, optimal control problems are studied involving active state-variable
inequality constraints. Departing from the practical deficiencies of the control programs for
such problems that result from the traditional formulations, a complete reformulation is
proposed for these problems which, in contrast to the old formulation, will presumably
lead to practically useful controllers that can track an inequality constraint boundary
asymptotically, and even in the presence of two-sided perturbations about it. Finally, with
regard to spacecraft motion under continuous thrust, a thrust program is proposed for
which the equations of two-dimensional motion of a space vehicle in orbit, viewed as a
point mass, afford an exact analytic solution. The thrust program arises under the
assumption of tangential thrust from the costate system corresponding to minimum-fuel,
power-limited, coplanar transfers between two arbitrary conics. The trajectory equation
describing the above exact analytic solution is identical in form with the trajectory equation
corresponding to Keplerian motion (motion with zero thrust). This solution can be used to
satisfy boundary conditions corresponding to arbitrary coplanar transfer and escape
problems. The thrust program can be used not only with power-limited propulsion
systems, but also with any propulsion system capable of generating continuous thrust of
controllable magnitude, and, for propulsion types and classes of transfers for which it is
sufficiently optimal the results of this report suggest a method of maneuvering during
planetocentric or heliocentric orbital operations, requiring a minimum amount of
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computation, and thus uniquely suitable for real-time feedback guidance implementations.
The results pertaining to the thrust program and to the exact analytic solution of the
equations of motion are summarized in Appendix H, and then generalized to a much wider
class of thrust programs, given the name the "Keplerian class", in Appendix I, supplied at
the very end of this report. It should be emphasized that the Appendices (with the exception
of A and C) are lan integral part of the research reported in the fourth chapter of this report.
Specifically, any reader who knows anything about Keplerian motion (spacecraft motion in
the absence of thrust) can get a preliminary idea about the primary contribution of Chapter
four by examining just two Tables, namely, Table H.1 (page 135) of Appendix H, and
Table 1.1 (page 139) of Appendix L.
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Nomenclature

For Chapter IV, and the Appendices:

= time

= angular momentum per unit mass

= radial velocity component

= radial distance from center of gravitational attraction
= argument of latitude

= radial thrust acceleration component

= transverse thrust acceleration component

= nondimensional time

= nondimensional angular momentum per unit mass
= nondimensional radial velocity component
nondimensional radial distance

= nondimensional speed of the vehicle

= flight path angle

= nondimensional radial thrust acceleration

= nondimensional transverse thrust acceleration
= semimajor axis of a conic

= eccentricity of a conic

= orientation of a conic (on a given plane)

= generalized eccentric anomaly

= generalized hyperbolic anomaly, Hamiltonian
= throttling parameter

= generalized eccentricity of a transfer trajectory
generalized orientation of a transfer trajectory
value of a quantity at reference radius R,

value of a quantity at the initial time =0
= value of a quantity at the final time T=T,
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CHAPTER 1

Introduction

In spite of all the recent technological breakthroughs regarding the speed of
numerical computing, and the latest advances in new computational techniques, analytical
methods still continue to play an essential role in problems related to aircraft and spacecraft
trajectory optimization and optimal guidance, and to flight mechanics in general. One
reason for this is that there is always much physical insight to be gained from any analytical
procedure that extracts as much information as possible from the differential equations
governing a problem, even without attempting to solve them. For example, in systems
exhibiting multiple-time-scale behavior, the fundamental physical process that gives rise to
such behavior can sometimes be uncovered and understood by an analysis of the governing
differential equations. A second reason is certainly that all real physical problems are first
reduced to mathematical formulations or models before any attempt is made toward their
solution. Formulating a real physical problem in precise mathematical language is
equivalent to asking precise questions, and one cannot expect to obtain the right answers
unless one asks the right questions. Analytical techniques can sometimes be useful and
result in further progress just by helping one ask the right questions. Finally, a third reason
for the importance of such methods is that the real-time solution of the common two-point
boundary value problems encountered in the field of aircraft and spacecraft trajectory
optimization still remains a dream. Accordingly, the numerical computation of optimal
trajectories and optimal feedback guidance laws has still to be aided and supplemented
considerably by analytical methods.

The major objective of this report is the application of such methods to the areas of
aircraft and spacecraft trajectory optimization related to energy-state modeling and Non-
Keplerian orbital motion.

A systematic approach is presented in the second chapter for identifying the
perturbation parameter in singular perturbation analyses of aircraft optimal trajectories and
guidance. The approach is based on a nondimensionalization of the equations of motion. It
can be used to evaluate the appropriateness of forced singular perturbation formulations that
were used in the past for transport and fighter aircraft. It can also be used to assess the



applicability of energy-state approximations and singular perturbation analyses for
airbreathing, transatmospheric vehicles with hypersonic cruise and orbital capabilities. In
particular, the family of problems related to aircraft energy climbs is considered. For
energy climbs constrained to a vertical plane it is shown that the singular perturbation
parameter can logically be taken as the maximum allowable longitudinal load factor of the
vehicle. Two-time-scale behavior is suggested when this load factor is sufficiently less than
one.

In the third chapter the focus is on optimal control problems involving active state-
variable inequality constraints. Such problems arise naturally in the context of aircraft
trajectory optimization whenever functions of the state variables (such as dynamic pressure,
aerodynamic heating rate, etc.) are constrained along a trajectory. Traditional analytical
techniques that work fairly well in the absence of such constraints break down when such
constraints are present, and therefore new methods are needed for an understanding of -
these problems. Departing from this premise, a transformation technique is introduced in
the third chapter that splits the class of all piecewise continuous (in time) controllers that
track a given hypersurface in the state space of a dynamical system into two disjoint
classes. The first class contains all controllers that track the hypersurface in finite time. The
second class contains all controllers that track the hypersurface asymptotically. Four
theorems are presented that describe the two classes. The results are applied to the study of
optimal control problems involving active state-variable inequality constraints. The
controllers obtained from the traditional formulation of such problems are typically finite-
time and one-sided, that is, they break down when a disturbance throws the system toward
the prohibited side of a state-constraint boundary. These features tend to make such
controllers quite unattractive from a practical point of view. This report proposes a
reformulation of such problems in which the optimization is carried out only with respect to
asymptotic controllers. The reformulated problem leads to controllers that are
approximately optimal, asymptotic, but still one-sided. However, if the state constraint is
regarded as a soft constraint, then one can show that there may exist controllers that are
asymptotic, two-sided, and result in the same optimal value of the performance index
corresponding to the original problem, that is, they are practically optimal, but at the
expense of violating the state constraint.

The topic in the fourth chapter is orbital motion under continuous thrust. A
continuous thrust program is presented for which the equations of two-dimensional motion
of a space vehicle in orbit, viewed as a point mass, afford an exact analytic solution. The



thrust program is proportional to an arbitrary throttling parameter, and arises from the
optimization problem corresponding to minimum-fuel, power-limited, coplanar transfers
between two arbitrary conics. It is shown that, for this problem, the assumption that the
thrust is tangent to the flight path results in the complete analytic solution of the system of
state-costate equations governing the optimal trajectories. This approximation of tangential
thrust is made only in the costate equations, affecting only optimality, resulting in the
elimination of the costates, and giving rise to the thrust program, for which the state
equations can be solved analytically with no further approximations. The most striking
aspect of the motion suggested by this solution is the fact that it is described by a trajectory
equation identical in form to the one corresponding to Keplerian motion (motion with zero
thrust)! The difference is that, in the latter the angular momentum is a constant, while in the
former it is a linear function of time, with slope equal to the throttling parameter. This
similarity allows one to speak of the two motions by using more or less the same
mathematical vocabulary. The transverse (horizontal) component of the thrust program is
inversely proportional to the radial distance from the inverse-square attractive center, while
the radial (vertical) component is such that the thrust is in the flight-path direction. The
constant of proportionality (throttling parameter) appearing in the thrust program can be
appropriately selected to satisfy the boundary conditions corresponding to arbitrary
coplanar transfer and escape problems. To document these facts, and demonstrate the
existence of such particular solutions, several examples are given of such maneuvers.
Questions concerning the optimality of such trajectories are also dealt with, and hints are
provided, suggesting that there should be at least some classes of transfers for which the
resulting trajectories are sufficiently optimal, both for power-limited and constant ejection
velocity types of propulsion. The results pertaining to the thrust program and to the exact
analytic solution of the equations of motion are generalized to a much wider class of thrust
programs, given the name the "Keplerian class", in Appendix 1.



CHAPTER 11

Aircraft Energy-State Modeling and Singular Perturbations

2.1 Introduction

The methods of matched asymptotic analysis in singular perturbation theory are
based on the presence of small parameters in the differential equations of motion, that give
rise to multiple time-scale behavior. It has been noted by several authors!? that, in spite of a
wide number of papers attesting to the applicability of singular perturbation methods to
optimization problems in aircraft flight mechanics, few have been successful in first casting
the equations of motion in a singular perturbation form. Exceptions are Refs. 1-4. Two
methods of analysis for time-scale separability are proposed in Ref. 1. Both of these
methods are based on an estimation of the state variables’ relative speeds. In Ref. 2 a
rescaling to nondimensional variables is recommended. However, it is noted that the proper
scaling transformation is not obvious, even if the time-scale separation of the variables is
well-known from analysis or experience. Both of these papers (and in particular Ref. 1)
provide extensive references to earlier studies which employ so-called forced singular
perturbation formulations, in which the perturbation parameter €, nominally equal to one, is
artificially introduced as a bookkeeping parameter, in a formal expansion of the solution
about € = 0. In particular, there exists a large number of publications on the optimization of
aircraft energy climbs (see for example Refs. 5-8), none of which identify an appropriate
perturbation parameter in terms of the relevant problem parameters. This disparity is
particularly disturbing, especially considering the number of years that have passed since
such analytical techniques were first introduced in the flight mechanics literature. Note in
contrast, that there have been applications of singular perturbation theory to other areas of
flight mechanics, in which the perturbation parameter was clearly identified in terms of the
relevant problem parameters. For instance, with regard to aero-assisted orbit transfer, the
perturbation parameter happens to be just the ratio of the atmospheric scale height to the
minimum trajectory radius (see for example Refs. 9, 10). In any singular perturbation
analysis, it is advantageous to identify the perturbation parameter € in terms of the relevant

problem parameters (which in general include the boundary conditions), so that the



physical process that gives rise to the two-time-scale behavior is clearly understood. Then,
the range of parameter values for which the perturbation analysis is possible can be easily
identified. In fact, knowledge of time-scale separability present in the system dynamics,
and success in exploiting this characteristic to obtain approximate solutions, cannot in itself
be a rigorous justification for artificially introducing €.

In this chapter an attempt is made to partially rectify the situation described above by
presenting a systematic (albeit still ad hoc) approach for identifying the singular
perturbation parameter € through nondimensionalization of the problem variables. Attention
is focused on nonlinear optimization problems in flight mechanics, though most of the
considerations that are presented apply in other fields as well. The main motivation for
collecting and stating these considerations is to define the thought process by which it is
possible to arrive at a suitable scaling of the aircraft energy climb problem. Of particular
interest, from the point of view of future potential applications, is an assessment of energy-
state approximations and singular perturbation analyses for airbreathing, transatmospheric
vehicles with hypersonic cruise and orbital capabilities.

2.2 Subsonic-Supersonic Regimes, Flat Earth Approximation

Consider atmospheric flight of a conventional aircraft, viewed as a point mass, in a
vertical plane over a flat Earth. The equations governing such flight can be reduced to a
three-state model in mass specific energy E, flight path angle y, and altitude h. The vehicle

mass, m, is assumed to be constant. The equations are:

dE _ V(T-D) 2.1)
dt m

ﬂ=( L )_(gwsyj 2.2)
dt mV Vv

‘;—t’ ='Vsiny (2.3)

where L, D and g denote the lift, the drag and the (constant) gravitational acceleration. It is
assumed that the atmosphere is stationary, and that the thrust, T, is directed along the flight
path. The specific energy (mechanical energy per unit mass of the vehicle) E and the speed
V are related by:



2

E= yi— +gh 2.4)

and E rather than V has been employed as a state variable.
For a singular perturbation analysis, Eqgs. (2.2) and (2.3) are commonly written as:

€ﬂ=( L )_(gcos’y) 2.5)
dt mV A"

dh
e— =Vsi 2.6
a my (2.6)

where ¢ is artificially introduced, and its nominal value is said to be equal to 1.0. The main
purpose of the present chapter is to avoid an artificial introduction of € at the outset, thus,

Eqgs. (2.2) and (2.3) will be retained, while Eqgs. (2.5) and (2.6) will be used only as a
guide for the natural introduction of €.

2.2.1 Nondimensional Form

The first step in seeking a natural introduction of the perturbation parameter € is to put
Eqgs. (2.1) through (2.3) in nondimensional form. To this end one may start by defining the
set S:

S={t,,Ey,hy, Vo, T, Dy Lo } 2.7

The elements of the set S are at this point arbitrary positive quantities, and the only
restriction that one imposes upon them is that:

t, has dimensions of time

E, has dimensions of energy per unit mass

h, has dimensions of length

V, has dimensions of speed

Ty, Do, and L, have dimensions of force

Using the elements of S to define the nondimensional quantities:

=— 2.8
\4 v (2.8)



=L . pL2. [_L 2.9)
T, L

Egs. (2.1) through (2.3) can be put into the following nondimensional form:

dE t,V,

—=V(TT,-DD, )| 22 2.10
dt (T 0)[E0m) 10
Q_:[L) Lot, _(cos‘y) gty 2.1
dt \VAmvV, V AV,

dh [Vt ), .

— =2V 2.12
" ( b, J sin’y (2.12)

The goal is now to put Egs. (2.10) through (2.12) in the traditional singular perturbation
form. Multiplying both sides of Eqgs. (2.11) and (2.12) by (h, / V, ;) results in:

h, ﬂ___(i) Loh, _(cosy) gh,
Voto Jdt AV A mV V A V¢

By m=Vsin*{
Vot, ) dt

Comparing the set of Egs. (2.10), (2.13), and (2.14), with the set of Egs. (2.1), (2.5) and
(2.6), it is evident that one can make the two sets similar by imposing the following four

conditions on the elements of the set S:

(2.13)

(2.14)

T, =D, (2.15)
Tote¥o (2.16)
E,m
L, hg =1 2.17)
mYV,
gh,
2.0 1 2.18
vz (2.18)



If one defines € as:

hO
=0 2.19
Vot (2.19)
then, Egs. (2.10), (2.13) and (2.14) assume the form:
dE
—=V(T-D 2.20
5= V(1-D) (2.20)
dy (L- cos‘y)
et AP B 2.21
£ T ( v (2.21)
dh
— = Vsi 22
€ ar sin’y (2.22)

To summarize, it was shown in the present section that it is possible to introduce a
parameter € naturally into the equations of motion (Egs. (2.1) - (2.3)) by first introducing a
set of arbitrary positive quantities S (see Eq. (2.7)) to scale the variables of interest, and
then by imposing four conditions (Egs. (2.15) - (2.18)) on these quantities so that the
resulting nondimensional equations assume the traditional singular perturbation form (Eqs.

(2.20) - (2.22)). Note that only one of the arbitrary quantities in S is uniquely determined at
this point. Combining Egs. (2.17) and (2.18) it follows that L, is given by:

L,=mg (2.23)

2.2.2 Specifying a Particular Nondimensional Form

As shown in the previous subsection, only four conditions are imposed on the seven
elements of set S in transforming the equations of motion to the traditional singular
perturbation format. This means that one can specify three of the elements of S to fit one's
convenience and then determine the remaining four using Eqs. (2.15)-(2.18). The first
conclusion therefore is that in general the value of € is quite arbitrary. For example, by
choosing h,, V,, and t, in two different ways € can be made arbitrarily small or large. The
separability of the time scales on the other hand is a property of the system and not of the
particular nondimensional form of the equations of motion that is chosen. One therefore
should expect that if the system does indeed possess the property of time scale separability,



it will exhibit it no matter what the actual value of € is. This is precisely the reason for the
success of so many singular perturbation treatments of the past in which € was introduced
artificially and its nominal value was said to be "fixed" at one.

Although there is no unique way of specifying a particular nondimensional form of
the equations of motion, one can argue that there is at least one choice for the elements of
set S that results in additional physical insight. First, in order to maintain the relationship in
Eq. (2.4) in the transformed variables, a fifth condition is introduced:

E, =gh, (2.24)

which together with Eq. (2.18) implies:
2
E=+h (2.25)

Using Egs. (2.16) and (2.24) in Eq. (2.19), it follows that € can be written as:

L (2.26)
mg
Now, only two among the seven elements of set S need to be specified. Then, the five
conditions, Eqgs. (2.15) - (2.18) and (2.24), uniquely determine the remaining elements.
Eq. (2.26) implies that € depends only on T, and is independent of the value of the
remaining elements of S. The question therefore arises as to whether there is a particular
choice of T, for which the resulting value of € can be used as a strict criterion for the
applicability of a singular perturbation analysis to Egs. (2.20)-(2.22). The answer to this
question is negative in general, because, in a given time interval, it is both the relative
magnitudes of the three quantities:

dE dy dh

at 4t 4t

and the boundary conditions of interest that determine the validity of a singular
perturbation analysis. Specifically, for an aircraft to exhibit the well-known two-time-scale
behavior in a given time interval, it is necessary that for some choice of control the
relations:

dE ,, dy
— = 2.27
dt « dt ( )



dE dh
= 22 2.28
dt « dt ( )

be valid in that interval, and that the required change in E be sufficiently large to permit the
boundary layer responses in h and 7 to reach their equilibrium values. Hence, it will be
assumed that the boundary conditions are such that the resulting change in E is sufficiently
large. Then, the conditions in Eqs. (2.27) and (2.28) further require that the net change in
E during the boundary layer response is sufficiently small to permit approximating E as a
constant (to zero order in €) in the boundary layer analysis. In addition, the aim here will be
only to identify whether this two-time-scale property is a consequence of the inherent
dynamics of the aircraft, and not whether it is a consequence of using a high gain control
solution for L. Therefore, it will be assumed that the control L resulting from the boundary-
layer analysis is of order one in Eq. (2.21).

Under the above assumptions, there is a choice for T, for which the value of € can be
used as a criterion for the existence of time intervals in which two-time-scale behavior is
exhibited. If the choice of T, is such that dE/dt in Eq. (2.20) is at most of the same order of
magnitude as £dy/dt and edh/dt in Egs. (2.21) and (2.22), then, a value of € sufficiently
less than one indicates the possible existence of such intervals. By suitably choosing V,, one
can restrict V to be of order one. Then, by selecting the flight condition where the
difference between thrust and drag, T-D, reaches a maximum, and by choosing T to be

equal to this difference:

T, =(T-D),, (2229)

one can guarantee that dE/dt is of order one, and both dy/dt and dh/dt are of order 1/¢. For
this choice of T, € is given by:

_(T-D),

1

(2.30)
mg

and is equal to the maximum longitudinal load factor of the vehicle.
Eq. (2.30) actually represents an upper bound for € (i.e. €<g,) since it is obtained by

selecting the flight condition where the difference between thrust and drag, T-D, reaches a
maximum. The logical choice for V,, is the speed at this flight condition. One can also adopt
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the less conservative viewpoint of evaluating € along the energy climb path that represents
the reduced solution (the solution obtained for € = 0). The value of € as a function of E can
then be used as a measure to distinguish energy levels at which a singular perturbation
analysis may be appropriate from other energy levels at which it may not be valid.

It is important to emphasize here that having a high-gain control solution for lift, L,
does not change the above conclusion, since high lift results in further time-scale separation
between the flight path angle dynamics and the energy dynamics. It is precisely for this
reason that the aim was only to identify whether the two-time-scale property is a
consequence of the inherent dynamics, and not whether it is a consequence of using a high
gain control solution for lift. It was done with the hope that this would lead to a conclusion
independent of the performance index. One might also wish to exclude the situation
wherein the open loop dynamics are not two-time-scale, but the closed-loop dynamics are
two-time-scale. This would be the nonlinear counterpart to the so-called "cheap control
problem" in linear quadratic optimization!!.

Much can be anticipated from Eq. (2.30) for conventional aircraft without exact
numerical evaluation. The quantity (T-D)_, divided by mg is approximately equal to siny,_
where ¥, is the maximum climb angle that can be maintained at a given energy level
without loss of airspeed. It follows therefore that €,<1 for all such aircraft types. For
transport aircraft siny,,, is approximately 0.1, while for many fighter aircraft siny,, is
approximately 0.8 or less. This suggests that the forced singular perturbation ‘analysis used
in past studies of optimal aircraft trajectories is valid for most conventional subsonic and
supersonic aircraft.

A second upper bound for € can also be evaluated in terms of the quantities (T/mg),...
and (L/D),,, for a given aircraft. Since L is approximately equal to mg along the reduced

solution corresponding to an energy climb path, it follows that:
E<E, (2.31)

where g, is defined as:

Estimates of €, are given in Table 2.1.

11



Table 2.1 Estimation of ¢, based on Eq. (2.32)

Parameter Transports Fighters
(T/mg),,, 0.25 0.90
(L/D),., 13-15 4-7

& 0.17-0.18 0.65 - 0.76

2.3 Hypersonic Regime

Consider the flight of a hypersonic and possibly transatmospheric vehicle, viewed as
a point mass, in a vertical plane over a spherical, non-rotating Earth, of gravitational
strength 1. The equations governing such flight can be reduced to a four-state model in E,
m, v and radial distance from the center of the Earth, r. The equations are:

dE _ V(nT-D) (2.33)
dt m
dm o —#(s,v,n) (2.34)
dt
d_'yz( L )_(ucoiy)+(Vcosy) (2.35)
dt mV Vr r
dr
— = Vsi 2.36
o siny (2.36)

where T is now the maximum available thrust at a given speed and altitude. The control
variables are L and 1, where 0 < n < 1 is introduced -as a nondimensional throttling

variable. E and V are now related by:

2
E= Yz_ _k (2.37)
Ir

Eqgs. (2.35) and (2.36) now assume the form:

ed_Y=( L )_(“°°§7)+(VC°57) (2.38)
dt mV Vr r
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dr
€— = Vsin 2.39
it Y (2.39)

and again in order to avoid the artificial introduction of €, Eqgs. (2.38) and (2.39) will serve
only as a guide for the natural introduction of .

2.3.1 Nondimensional Form

In order to put Egs. (2.33) through (2.36) in nondimensional form one can now
define the set of arbitrary positive quantities:

S ={tg.Eq,mg, 14, V., £0, T, Dy Lo} (2.40)

and impose the restrictions that:
t, has dimensions of time
E, has dimensions of energy per unit mass
m, has dimensions of mass
1, has dimensions of length
V, has dimensions of speed
f, has dimensions of mass per unit time
Ty, Dy, and L, have dimensions of force
Using the elements of S to define the nondimensional quantities:

f:i ; E:E s m:ﬂ ; r:i s Vzl (241)
to 0 m, Ty v
=L, 2T. p.B. [_L (2.42)
fo T, D, L,

Eqs. (2.33) through (2.36) can be put into the following nondimensional form:

d_E = V(nTTO - DDO) Vo (2.43)
dt m E,m, '
dm f,t

— = 20 f(r v, (2.44)
dt [mo ) (Vo)
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dy (L Y Loty | _[cosy | Kt +(Vcos’y) V,t, (2.45)
dt  \mV m,V, Vit | V,rl r I,

dt 1,

The goal is again to put Eqgs. (2.43) through (2.46) in the traditional singular perturbation
form, thus, multiplying both sides of Egs. (2.45) and (2.46) by (r,/ V, t, ) results in:

r, |dy L Y L,z cosy | M (Vcosyj "4
—0_ =i _ - A7
(Voto]dT [mV)[movg) (Vr2 )(V§r0J+ r @40

Lo |97 v 2.48
[Votojd’r sy (249

Comparing the set of Eqs. (2.43), (2.44), (2.47) and (2.48) with the set (2.33), (2.34),
(2.38) and (2.39) results in the following five conditions on the elements of set S:

T,=D, (2.49)
TotoVo _ (2.50)
E,m,
foto _y 2.51)
m,
Loly _ (2.52)
m,V,
T
=1 2.53
Vi, (2.53)
By defining € as:
r
g=—2 2.54
Vi, ( )



Eqs. (2.43), (2.44), (2.47) and (2.48) assume the traditional singular perturbation form:

g€ _Vv(T-D) (2.55)
dt m

‘Z_T;-f(r, V.m) | (2.56)
= (o T
£%=Vmw (2.58)

2.3.2 Specifying a Particular Nondimensional Form

For the hypersonic case, only five conditions on the nine elements of set S are needed
in order to put the equations of motion in the traditional singular perturbation form. Thus,
one can specify four of the elements of S to fit one's convenience and then determine the
remaining five using Eqs. (2.49)-(2.53).

Again, in order to maintain the relationship in Eq. (2.37) in the transformed variables,
a sixth condition is introduced:

E, =& (2.59)
Iy

which together with Eq. (2.53) gives:

V2

= 2.60
E > (2.60)

|

If one thinks of r, as a radial distance, then Eq. (2.53) restricts V, to be the circular orbital
speed at r,. Similarly, Eq. (2.52) restricts L, to be the centripetal force that a point mass m,
would experience in a circular orbit at r,. Using Egs. (2.50), (2.53), and (2.59) one
obtains:

T, r(z)

Hm,

£= (2.61)
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Hence, by picking three among the nine elements of set S arbitrarily, the six conditions
Egs. (2.49)-(2.53), and (2.59) uniquely determine the remaining elements.

The question arises again as to whether there is a particular choice for these three
elements for which the resulting value of € can be used as a criterion for the applicability of
a singular perturbation analysis to Egs. (2.55)-(2.58). The right-hand-sides of Egs. (2.55)
and (2.58) can bé made of the same order of magnitude by choosing the ratio T, /m, as:

I°—=("T"D) (2.62)
m, M /e '

Choosing 1, as the sea level radius g, r and V are of order one. Also, for these choices of
T, /m, and r,, dE/dt is of order one, and both dy/dt and dr/dt are of order 1/e. By choosing
f, as the value of f at the flight condition where the ratio (NT- D)/m is a maximum, dm/dt
can also be made of order one. With the above choices of T, /my, 1,, and f,, € becomes:

e = (i)(ﬂﬂ) (2.63)
p N m

The right-hand-side of Eq. (2.63) is the maximum longitudinal load factor of the
vehicle in units of sea-level g's, and actually represents an upper bound for € since it is
obtained by selecting the flight condition where (n'T- D)/m reaches a maximum. One can
again adopt the less conservative viewpoint of evaluating € along the energy climb path that
results from the reduced solution (the solution obtained with € = 0). The value of € as a
function of E can then be used as a measure to distinguish energy levels where a singular
perturbation analysis may be appropriate, from other levels where it may not be valid.

A hypersonic flight vehicle employing an airbreathing propulsion system and sized
for acceleration to orbital velocity necessarily employs a multimode propulsion system. An
example might include turbojet, ramjet, scramjet, and rocket modes. Each mode of
propulsion when considered in its operating Mach regime can be characterized by a
corresponding €. Available models of this vehicle type exhibit large values of excess thrust
at low hypersonic Mach numbers. In fact, Eq. (2.63) will produce an € that is greater than
one over such flight phases. Experience with hypersonic vehicle dynamics reported in Ref.
12 indeed suggests that the assumed time scale separation is not valid in these phases.
However, as will be seen in the next section, over most of the trajectory corresponding to

the reduced solution Eq. (2.63) results in an € that is less than one, just as in the flat Earth,

subsonic-supersonic case.
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2.4 Numerical Validation

It was shown in the preceding sections that for aircraft energy climbs that take place
in a vertical plane, the singular perturbation parameter € can logically be identified as the
maximum longitudinal load factor of the vehicle, measured in units of sea-level g's. In
order to further explore the implications of this result, numerical evaluations of € will be
presented in this section for several types of vehicles. As stated earlier, it will be assumed
that the required change in specific energy is sufficiently large to permit the boundary layer
responses in altitude and flight path angle to reach their equilibrium values.

For a given aircraft, it may be sufficient to evaluate a single upper bound for €, valid
for the entire envelope, in order to provide a hint regarding possible two-time-scale
behavior. If the resulting value of this upper bound is sufficiently less than one, and if the
boundary conditions are appropriate, then two-time-scale behavior is implied for any
energy climb that the aircraft is allowed to perform. If however the resulting value of the
upper bound turns out to be greater than one, then no conclusion can be drawn. The way to
proceed in the latter case would be to evaluate a less conservative (smaller) upper bound for
€ and apply the same reasoning. Unfortunately, the less conservative the upper bound, the
more computation one has to perform in order to evaluate it. In particular, € in Eq. (2.30)
or Eq. (2.63) can be evaluated as a function of energy E, using all the assumptions made in
the evaluation of reduced solutions in aircraft energy climbs (y=0, L=mg etc.). By
evaluating in this sense, and at each energy level the absolute maximum value of the
longitudinal load factor one obtains a curve C on the ¢-E plane. The interesting properties
of this curve are that for a given aircraft it need only be constructed once and that it lies
above any other curve that may be evaluated similarly, but along the actual reduced solution
corresponding to the specific problem of interest. In other words, points on curve C
represent upper bounds for € at the corresponding energy levels. The portions therefore of
curve C where ¢ is sufficiently less than one immediately show the energy levels where
two-time-scale behavior (boundary-layer transitions along constant E) can be expected. If
there are any portions of curve C where € is greater than one, then no conclusions can be
drawn as to the possible two-time-scale behavior at the corresponding energy levels. In the
latter case one has again to evaluate a still less conservative upper bound for € at these
energy levels. Such less and less conservative upper bounds would of course eventually
lead to the maximum value of the longitudinal load factor evaluated as a function of E along
the reduced solution corresponding to a specific problem.
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If one is interested in the possible two-time-scale behavior of a vehicle along a
particular trajectory (corresponding to a specific problem) then, the least conservative upper
bound for € would be the maximum longitudinal load factor encountered along that (exact)
trajectory. Such a test for time-scale separability would require computation of the (exact)
trajectory first and would not be very helpful. Hence, it makes much more sense to start
with a more conservative (greater) upper bound and to proceed with less and less
conservative upper bounds.

Numerical evaluations of € are presented in Figs. 2.1 through 2.8 for four types of
vehicles. For each type there is a plot showing the variation of the maximum longitudinal
load factor of the vehicle with energy E, and one or more plots showing the variation of the
longitudinal load factor with E along the reduced solution corresponding to a specific
optimization problem. The odd-numbered figures are the energy-climb figures for the four
vehicles. They distort the fact that the altitude profiles contain jumps, because they only
needed to be constructed roughly, since they only served for the evaluation of € as a
function of the energy E, given in the even-numbered figures.

Figs. 2.1 and 2.2 show the results for an F-8 fighter'>. The two optimization
problems considered for this case were minimum time to a specified energy and minimum
time to a specified downrange position. The reduced solutions corresponding to these
problems are obtained by maximizing (with respect to V) at each energy level the quantities
(T-D)V for the former and [(T-D)V1/(V,-V) for the latter. In this case V is the maximum
possible cruising speed of the aircraft and D is calculated at L=mg. Fig. 2.1 shows the
actual paths in the envelope corresponding to these reduced solutions and to the maximum
longitudinal load factor of F-8. Fig. 2.2 shows the results for € evaluated along these
climb paths. Since the maximum longitudinal load factor of F-8 remains below 1.0 in Fig.
2.2, it is reasonable to assume that for any optimization problem, if the required energy
gain is sufficient, the transitions to the reduced solution will take place at nearly constant E,
exhibiting the well known boundary layer structure.

Figs. 2.3 and 2.4 show similar results for an F-15 fighter'4. Again, the problems of
minimum time to a specified energy and minimum time to a specified downrange position
were considered. A maximum dynamic pressure constraint of 1500 Ibf per square feet is
imposed on the climb paths in each case. Due to the large thrust to weight ratio of F-15, the
¢ levels in Fig. 2.4 are much higher than those of F-8 (i.e. in comparison with Fig. 2.2). In
particular, there is a small region at low energy where € exceeds one, implying that time-

scale separation at these energy levels may not be appropriate for these problems.
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Figs. 2.5 and 2.6 show the results for a conventional transport!s. In this case,
however, the two optimization problems considered were minimum fuel to a specified
energy and minimum fuel to a specified downrange position. The reduced solutions
corresponding to these problems are obtained by maximizing (with respect to V and 1) at
each energy level the quantities [(T-D)V)/f for the former and [((T-D)V/(fV-£,V) for the
latter. Here V, represents the most fuel efficient cruising speed of the aircraft and f, is the
fuel consumption rate at this cruising flight condition’. The magnitude of € in Fig. 2.6
remains small in comparison to that in Figs. 2.2 and 2.4. Two-time-scale behavior for the
entire transport aircraft envelope is therefore suggested.

Finally, Figs. 2.7 and 2.8 show the results for a hypersonic vehicle model, used by
NASA and termed the "Langley Accelerator”s. The only optimization problem considered
in this case was minimum fuel to a specified energy, the reduced solution corresponding to
which is obtained by maximizing the quantity [(T-D)V]/(mf) at each energy level (mass is
not constant in this case). A maximum dynamic pressure constraint of 2000 Ibf per square
feet is imposed on the climb paths for this case. This particular vehicle model employs a
multimode propulsion system, sized for acceleration to orbital velocity, and consisting of
turbojet, ramjet, scramjet, and rocket modes. Optimal switching between propulsion modes
was not included in the generation of Figs. 2.7 and 2.8. Instead, within allowable Mach
regimes the cycle that maximizes [(T-D)V])/(mf) and (MT-D)/m was selected. The points of
cycle transitions are shown in the figures. In Fig. 2.8, € is plotted against the speeds at
which the constant energy contours intersect the zero altitude axis. The reason for this is
that E is negative in this case so that its size is no longer intuitively obvious. Thus, sea-
level speed was used as the abscissa, because at hypersonic speeds practically all the
energy of the vehicle corresponds to kinetic energy. The calculated value of & will likely be
reduced if a practical method for cycle transition is employed. Note that as the energy
increases the boundary of the envelope is approached and ¢ goes to zero. This is a basic
characteristic of all aircraft (see also Figs. 2.2, 2.4, and 2.6), suggesting that transitions to
the reduced solution can be treated as boundary layers with relatively greater success at
higher energy levels. The physical explanation for this rests on understanding the behavior
of the difference between thrust and drag. At low energy levels both the speed and altitude
are low, resulting in high thrust and low drag, so that the difference between thrust and
drag is high. This large amount of excess power can be used to effect a change in energy
even during a transition. However, at higher energy levels, either speed or altitude or both
are high, and the corresponding difference between thrust and drag is low. Thus,
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transitions to the reduced solution at higher energy levels occur for the most part by
interchanging kinetic for potential energy (or vice versa), with the total energy remaining
more nearly constant. The expression found for € (see Eqgs. (2.30) and (2.63)) captures and

quantifies this effect in a straightforward manner.

2.5 Conclusions

A systematic procedure has been introduced to identify a singular perturbation
parameter in the differential equations of motion for both the conventional (subsonic-
supersonic, flat Earth) and the transatmospheric (hypersonic, spherical Earth) flight
regimes. The procedure uses a set of arbitrary scaling constants to nondimensionalize all
the variables of interest. Nondimensionalization alone is not sufficient to clearly identify if a
system will exhibit two-time-scale behavior. However, there is a useful choice of the
scaling constants that leads to the conclusion that two-time-scale behavior can be expected
when the maximum longitudinal load factor is sufficiently less than one. The important
point here is that this statement is valid independent of the performance index that is being
optimized.

This explains the past successes in singular perturbation treatments of aircraft energy
climbs, despite an inability to explicitly identify a perturbation parameter. These
observations also apply to the family of future hypersonic vehicles. If such a vehicle is
employed as a passenger transport, its acceleration will necessarily be constrained in the
interest of human comfort. To constrain the maximum longitudinal load factor of such a
vehicle to be sufficiently less than one would imply two-time-scale behavior for any type of
energy climb that such a vehicle would be allowed to perform.

20



CHAPTER II1

State-Constrained Energy-State Modeling

3.1 Introduction

S'tate-variable inequality constraints are commonly encountered in the study of
dynamic systems. The study of rigid body aircraft dynamics and control is certainly no
exception. For instance, a maximum allowable value of dynamic pressure is usually
prescribed for aircraft with supersonic capability. This limit is required to ensure that the
vehicle's structural integrity is maintained. Given a typical state-space description of the
vehicle dynamics, this limit constitutes an inequality constraint on the vehicle state. Such
dynamic pressure bounds are commonly encountered during fuel-optimal climb for
supersonic transports'®, for rocket powered launch vehicles such as the U.S. space
shuttle®, and for single-stage-to-orbit air-breathing launch vehicles?'.

State-variable inequality constraints have been studied extensively by researchers in
the field of optimal control. First-order necessary conditions for optimality when general
functions of the state are constrained have been obtained?22¢. However, the direct
construction of solutions via this set of conditions proves difficult. Moreover, the
controllers derived from such traditional formulations of the problem suffer from serious
practical flaws. They typically tend to track the hypersurface representing a state-constraint
boundary in a finite time, which makes the traditional asymptotic boundary layer theory
non-applicable (see below), and they break down whenever a disturbance causes the
system to violate an active state-constraint. Accordingly, most practitioners seeking an
open-loop control solution rely on direct approaches to optimization that employ penalty
functions for satisfaction of state-variable inequality constraints?. As a rule however,
algorithms employing such methods are computationally intense and slow to converge.
Consequently, they are not well-suited for real-time implementation.

From a singular perturbations point of view?627, in the absence of a state-variable
inequality constraint (i.e. when no constraint is active), the initial boundary-layer solution
for the class of systems being considered is an infinite-time process. A solution is sought
which asymptotically approaches the reduced solution (solution with e=0). However, when
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a state-constraint is active in the reduced solution, the boundary-layer problem can be of
finite-time in the stretched time variable?82. Thus, traditional techniques concerning the
asymptotic stability of the boundary-layer system are not applicable, and cannot be used to
construct an approximate boundary-layer solution. The presence of an active state-variable
inequality constraint also introduces the possibility of discontinuous costate variables at the
juncture betweeh constrained and unconstrained arcs. A Valentine transformation can be
used to convert the constrained problem to an equivalent unconstrained problem of
increased dimension®. Smoothness is regained in the process, but at the expense of
introducing a singular arc along the state-constraint boundary3?*' and to little or no
advantage when seeking a solution for real-time implementation.

As an alternative, this chapter proposes a complete reformulation of optimal control
problems involving active state-variable inequality constraints. Since in practice it is always
the asymptotic controllers that have the most desirable properties, maybe the optimization in
such problems should be carried out not over the class of all controllers, but only over the
class of asymptotic controllers that track a given active state-constraint boundary. It is
shown in Section 3.2 that a transformation technique can be used to isolate and describe
completely this class of asymptotic controllers. If a minimum over the class of all
controllers exists, then the reformulated problem is guaranteed to have an infimum. The
results in Section 3.3 suggest however that this infimum for the reformulated problem
corresponds to a finite-time controller and is not achieved over the class of all asymptotic
controllers. The situation is somewhat reminiscent of H-infinity control theory for linear
systems in which one seeks a strictly proper, stabilizing controller to minimize the H-
infinity norm of a closed-loop transfer function. The minimum of this norm over all strictly
proper, stabilizing controllers does not exist. Its infimum, however, does exist and
corresponds to a proper controller. Thus, just as in H-infinity theory, the question arises
naturally in the present case as to how one can find an asymptotic controller that somehow
approximates this infimum. Although there are no general answers yet, a procedure is
presented in Section 3.3 that does supply one with insight at least for a simple example.
The procedure leads to a controller that is approximately optimal, asymptotic, but still one-
sided.

Finally, if the state-constraint is regarded as a soft constraint, then an example shows
that there may exist controllers that are asymptotic, two-sided, and result in exactly the
same optimal value of the performance index corresponding to the original problem, that is,
they are practically optimal, but at the expense of violating the state-constraint. Such
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controllers, however, do not correspond to stationary solutions of the optimization
problem. Thus, at the present, a systematic procedure for finding them does not exist and
remains a topic for future research. Preliminary results on the topic covered in this chapter
can be found in Ref. 32.

3.2 Construction of Arbitrary Nonlinear Feedback Control Laws for
a Dynamical System, that Track a Given Hypersurface

Consider the dynamical system:

dx

d—t=f(x,y,u) : x(ty) =X, (3.1)
dy
5 o Eyn) s y(t) =y, (3.2)

where x, f are vectors of the same dimension, and y, g and u are scalars. It will be of
interest to describe the set C of all piecewise continuous (in time) control laws u(x(t),y(t),t)
that track a given hypersurface in the state space of the above system, given by the scalar
equation:

S(x,y)=0 (3.3)

that is, if u=u(x,y,t) is a specific control law belonging to C, then the system of Egs. (3.1),
(3.2), driven by u(x,y.t) for t > t, (and assuming that S(X,¥,) is not zero) will eventually
reach the hypersurface given in Eq. (3.3) and stay on it thereafter. A control law can drive
the system onto the hypersurface either in finite time or asymptotically. Accordingly, the set
C is the union of two disjoint sets F and A. The set F contains all control laws that track the
hypersurface in finite time. The set A contains all control laws that track the hypersurface
asymptotically. The purpose in this section is to give a complete description of the sets F
and A. '

Let Z be the set of all piecewise differentiable, scalar functions of the real variable o,
defined and invertible for all & in [0,1], and satisfying the boundary conditions:

z(0)=0 ; 2(1) = -S(x,.¥,) (34)
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Assume that the range of S is contained in the range of z for all z in Z. Then, consider o as
an independent variable and make the transformation from y to o

z(o) + S(x,y)=0 (3.5)
Differentiating Eq. (3.5) with respect to time and using Eqgs. (3.1) and (3.2) results in:

gzdo 3

dS
= = =0 3.6
1o dt +ax f(x,y,u)+ g(x,y,u) (3.6)

dy

Now, let do/dt play the role of a new control, B, by defining:

do
—= 3.7
m (3.7)

then, Eq. (3.6) becomes:

as

dz S Ery)=0 (3.8)

as
E&ﬁ+5;f(x,y,u)+

Assume now that the hypersurface given by Eq. (3.3) is first order in u, that is, the total
time derivative of S(x,y) is explicitly dependent on u. If this is not the case, the results of
this section can be generalized to the case where the hypersurface given by Eq. (3.3) is
higher order in u. Also, assume that Eq. (3.5) is invertible in y, and that Eq. (3.8) is
invertible in u. These assumptions result in the two equations:

y =h(x,z) (3.9)

u= k(x,z,gz—ﬁ) (3.10)
da

for y and u respectively. The system of Egs. (3.1) and (3.2) has now been transformed
through Egs. (3.5)-(3.10) to the equivalent system:

%’:— = f(x,h(x,z(a)),k(x,z(a),%ﬁ)) (3.11)
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— =B (3.12)

with initial conditions x(ty)=x, and o(t,)=1.

3.2.1 Finite-Time Tracking

Theorem 3.1. For any given finite time t, and any function z(c) in Z, there exists
a control law u=u(x,y,t) in F that drives the system of Egs. (3.1) and (3.2) from its initial
state at t=t, onto the hypersurface given by Eq. (3.3) at t=t, and keeps it on the hypersurface

thereafter.
Proof 3.1. Let t, be a finite time and z(ct) be a function in Z. One can use z(a) to

obtain the equivalent transformed system of Egs. (3.11), (3.12). Then, one can use as the
control B the function:

1

B=- fort,<t<t, (3.13)
=t

B=0 fort.<t (3.14)

leading to the time variation for o

t,—t

o= forty<t<t, (3.15)
ti—t,

oa=0 fOI'tf<t (316)

Thus, o is driven from 1 to 0, in t, < t <t and stays at zero for t, <t Accordingly,
due to the boundary conditions (Eq. (3.4)) on the function z(o), the original system of
Eqgs. (3.1), (3.2), is driven from its initial state at t=t, onto the hypersurface given by Eq.
(3.3) in ty <t <t, and stays on the hypersurface for t, < t. The feedback controller u(x,y,t)
that will perform this task for the system of Egs. (3.1), (3.2) can be found from Eq.
(3.10). B is given by Eqgs. (3.13), (3.14), z is equal to -S(x,y) from Eq. (3.5), and since
z(a) is invertible on [0,1], dz/dot can be expressed as a function of z and therefore of
-S(x,y) (Q.E.D.). The procedure is best illustrated through an example.

25



Example 1
Consider the system:

dx 3.17)
E:y—u" ; x(to)=x0
d ,
d—f=u : ¥(to) = Yo (3.18)
and assume that it is desired to track the straight line:
y-1=0 (3.19)
in a specified final time t,. As the function z(ct) one can select:
1-y,
z{a)=| —=2 [In(1+ ) (3.20)
In2

Note that z(0)=0, and z(1)=1-y, as required by Eq. (3.4). From Eq. (3.20) one is led to the

transformation:

[l“—%)xn(1+a)+y—1=o (3.21)
In2

Differentiating Eq. (3.21) with respect to time, one obtains:

(I‘_Yo)(_ﬁ_) tu=0 (3.22)

In2 140

resulting in the transformed system:

2
dx_ 1-(ﬂ)1n(1+a)-[(1’—y°)(ij] (3.23)
dt In2 In2 1+0
do '
= _ 3.24
- p (3.24)

with initial conditions x(t,)=x, and a(t,)=1. Now, if one uses the control B given in Eq.
(3.13), then, from Eq. (3.22) one obtains:
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-y, I-y
u=———"——exp<—In2 (3.25
ln2(tf—-t0) p{ i (l—yo)} )

This open-loop control can be shown to drive the system of Egs. (3.17), (3.18) from its
original state at t=t, onto the line y=1 at t=t,. To obtain a closed-loop (feedback) controller

one simply replaces y, by y and t; by t in Eq. (3.25) to obtain:

1-y
= 3.26
e -1 (20

which again drives the system to y=1 at t=t,.

Theorem 3.2. Let u=u(x,y,t) be any control law in F that drives the system of
Egs. (3.1), (3.2) from its initial state at t=t, onto the hypersurface Eq. (3.3) at t=t, and
keeps it on the hypersurface thereafter. Then, there exists a function z(a) in Z, such that,
when the system of Egs. (3.1), (3.2) is transformed using z(ct) to the system given by
Egs. (3.11), (3.12), the control B for the transformed system corresponding to u(x,y,t) is
given by Egs. (3.13), (3.14).

Proof 3.2. The function z(at) for 0 < o < 1 is found by solving the system of

differential equations:
X o (1~ to)f(xyu(x, 1) (3.27)
do £
1 |(8z)_9S 3s
- — |=—f(x,y,u(x,y, —glx,y,u(x,y, 3.28
(tf —toJ(da) LA t))"Layg(x y.u(x,y.t)) (3.28)

subject to the boundary conditions:

x(a=1)=x, ; z(o=1)=-5(x,,Y,) (3.29)

where y in Egs. (3.27), (3.28) is a function of x and z through Eq. (3.9) and t in u(x,y,t) is
a function of o through Eq. (3.15), that is,

t=t, —aft, —t,) (3.30)
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Note that the function z(ct) found from the solution of Egs. (3.27) through (3.29)
satisfies Eq. (3.5) for all t > t, (¢ and t are related by Eq. (3.15)). Thus, it also satisfies the
boundary condition z(0)=0, since att =t o. and S(x,y) are both equal to zero (Q.E.D.).

_ Theorems 3.1 and 3.2 indicate that once the control f for the transformed system of
Egs. (3.11), (3.12) is fixed as in Egs. (3.13), (3.14), there is a complete correspondence
between functions in Z and piecewise continuous control laws u(x,y,t) in F that track the
hypersurface given by Eq. (3.3) in a finite time t,. That is, for every element of Z there
exists an element of F and, more importantly, for every element of F there exists an element
of Z. The correspondence therefore established between F and Z through the selection of 8

as in Eqs. (3.13), (3.14) is onto.

3.2.2 Asymptotic Tracking

Theorem 3.3. For any function z(&) in Z, there exists a control law u=u(x,y,t) in
A that drives the system of Egs. (3.1), (3.2) from its initial state at t=t, onto the
hypersurface given by Eq. (3.3) asymptotically.

Proof 3.3. Let (o) be a function in Z. One can use z(0) to obtain the equivalent
transformed system of Egs. (3.11), (3.12). Then, using the control B given by:

B=-a (3.31)

leads to the exponential time variation for o:
a=¢e" (3.32)

Thus, o is driven exponentially from 1 to 0. Accordingly, due to the boundary
conditions (Eq. (3.4)) on the function z(), the original system of Egs. (3.1), (3.2), is
driven asymptotically from its initial state at t=t, onto the hypersurface given by Eq. (3.3).
The feedback controller u(x,y,t) that will perform this task for the system of Egs. (3.1),
(3.2) can be found from Eq. (3.10). B is given by Eq. (3.31), z js equal to -S(x,y) from
Eq. (3.5) and since z(e) is invertible on [0,1], dz/do. can be expressed as a function of z
and therefore of -S(x,y) (Q.E.D.). Again, the procedure can best be illustrated through an

example.
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Example 2
Consider again the system:

E=y—u2 ; x(to) =X, (3.33)
d
d—il=u s Y(to)=YO (3.34)

and assume that one wishes to track asymptotically the straight line:

y-1=0 (3.35)

As the function z(ct) one can again select:

z(a):(l_yo)ln(Ha) (3.36)
In2

satisfying z(0)=0, and z(1)=1-y, as required by Eq. (3.4). From Eq. (3.36) one is led to

the transformation:

(l—y°)ln(l+a)+y—l=0 (3.37)
In2

Differentiating Eq. (3.37) with respect to time one obtains:

(I‘_Yo)(i) +u=0 (3.38)

In2 Al+ao

resulting in the transformed system:

2
&_ (L‘L)ln(l ra) _[(l_m)(_ﬁ_ﬂ (3.39)
dt In2 In2 I1+a
do _ (3.40)
dt
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with initial conditions x(t,)=x, and a(t,)=1. If now one uses the control B given in Eq.
(3.31), then, from Eq. (3.38) one obtains:

(3.41)

where k is defined as:

(3.42)

This open loop control can be shown to drive the system of Egs. (3.33), (3.34) from its
original state at t=t, asymptotically onto the line y=1. To obtain a closed-loop (feedback)

controller one simply replaces y, by y in Eq. (3.41), to obtain:

u=iZ¥ (3.43)

which again drives the system of Eqs. (3.33), (3.34) asymptotically toward y=1. Note that
as expected, in the asymptotic case u does not depend explicitly on t.

Theorem 3.4. Let u=u(x,y,t) be any control law that drives the system of Egs.
(3.1), (3.2) from its initial state at t=t, onto the hypersurface given by Eq. (3.3)
asymptotically. Then, there exists a function z(@) in Z, such that, when the system of Egs.
(3.1), (3.2) is transformed using z(at) to the system given by Egs. (3.11), (3.12), the
control B for the transformed system corresponding to u(x,y,t) is given by Eq. (3.31).

Proof 3.4. The function z(c) for 0 < o < 1 is found by solving the system of

differential equations:
ag(— =—f(x,y,u(x,y,t)) (3.44)
do
a(ac%) = g—if(x,y, u(x,y,t))+ g—i g(x,y,u(x,y,t)) (3.45)

subject to the boundary conditions:

x(a=1)=x, ; z(ae=1)=-5(x,.¥,) (3.46)
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where y in Egs. (3.44), (3.45) is a function of x and z through Eq. (3.9), and tin u(x,y,t)
is a function of a through Eq. (3.32), that is,

t=1n(-1-) (3.47)
a

Note that the function z(a) found from the solution of Egs. (3.44) through (3.46)
satisfies Eq. (3.5) for all t > t, (ot and t are related by Eq. (3.32)). Thus, it also satisfies the
boundary condition z(0)=0, since as t approaches infinity & and S(x,y) both tend to zero
(Q.E.D.).

Theorems 3.3 and 3.4 indicate that once the control B for the transformed system of
Egs. (3.11), (3.12) is fixed as in Eq. (3.31), there is a complete correspondence between
functions in Z and piecewise continuous control laws u(x,y,t) in A that track the
hypersurface given by Eq. (3.3) asymptotically. That is, for every element of Z there exists
an element of A and, more importantly, for every element of A there exists an element of Z.
The correspondence therefore established between A and Z through the selection of B as in

Eq. (3.31) is onto.

3.3 Significance for Optimal Control Problems Involving Active
State-Variable Inequality Constraints

The ideas presented in Section 3.2 can be appropriately utilized in the study of
optimal control problems involving active state-variable inequality constraints. A common
feature of such problems is that when a portion of the optimal trajectory rides the
hypersurface representing a state constraint boundary, the optimal transition to this
hypersurface from an initial point that does not lie on it occurs in finite time. Consequently,
the corresponding optimal feedback controllers for such problems, that can be obtained by
well-known analytical or numerical methods, suffer from two flaws that tend to eliminate
almost completely their practical usefulness. First, such feedback controllers are finite-time,
meaning that, for two-time-scale systems traditional asymptotic boundary layer theory is
not applicable. Second, if a disturbance throws the system instantaneously toward the
prohibited side of the hypersurface, the feedback scheme breaks down and there is no
"optimal” way of returning to the hypersurface2s.

Asymptotic controllers on the other hand, capable of tracking from both sides a
hypersurface representing a state constraint boundary, presumably won't suffer from either
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of the above two flaws. This observation, and the ideas presented in Section 3.2 suggest
that once one knows that a portion of the optimal trajectory for a problem rides such a
hypersurface, one can change one's point of view and try to optimize the system over all
asymptotic controllers capable of tracking that hypersurface from both sides.

~ Consider therefore that one wishes to minimize the performance index:

t

T=(x(t,).y(t,))+ JL(x,y,u)dt (3.48)

to

subject to the dynamical equations:

dx

5 f(x,y,u) (3.49)
Y gl @50
the boundary conditions:
x(t,)=%, 5 Y(tg)=yo 5 t, fixed ; t, free (3.51)
and the state-variable inequality constraint:
S(x,y)<0 (3.52)

As in Section 3.2, x, f are vectors of the same dimension, and L, S, y, g and u are
scalars. Again, it will be assumed that:

S(Xpyo) < 0 (3.53)

and that the optimal trajectory reaches the hypersurface:

S(x,y)=0 (3.54)

at a finite time t=t, and stays on it for t > t,. Thus, in order to avoid the problems with the

finite-time controllers mentioned above, one would now like to optimize J over the class of
all asymptotic controllers, which has already been denoted by A, capable of tracking the
hypersurface given by Eq. (3.54) from both sides.
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Based on the above observations, a new way of looking into the problem can now be
formulated in two steps: In the first step (Section 3.3.1) the optimization is carried out over
all asymptotic controllers, but the state constraint is retained. This however would lead at
best to an asymptotic controller that is approximately optimal, does not violate the state
constraint, but is one-sided, that is, it breaks down on the prohibited side of the constraint
boundary. Since this one-sidedness would tend to eliminate the practical usefulness of such
a controller, in the second step (Section 3.3.2) the state constraint is discarded, and by
means of a simple example it is shown that it is possible to find an asymptotic, two-sided
controller that although (unfortunately) violates the state constraint, it results in exactly the
same optimal value of the performance index, corresponding to the optimal, finite-time,
one-sided controller for the original problem (that does not violate the constraint).

3.3.1 First Reformulation: Optimization over all
Asymptotic, One-Sided Controllers

Let z be an arbitrary function in the set of functions Z defined in Section 3.2. The

transformation reads:

z(o)+S(x,y)=0 (3.55)
with the function z(ot) subject to the boundary conditions:
2(0)=0 ;  z(1)=-5(xo,¥,) (3.56)
This leads as in Section 3.2 (see Egs. (3.5) through (3.12)) to:

dz

aS aS
L R+=2 = =0 3.57
3 B+ ™ f(x,y,u)+ 3 g(x,y,u) ( )

and to the transformed system:

y =h(x,z) (3.58)

dz
= Pl 3.59
u k(x,z, o B) (3.59)
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dx dz
—d—t——f(x,h(x,z(a)),k(x,z(a),aﬁ)) (3.60)
do.

- _[3 (3.61)

with initial conditions x(t,)=x, and o.(t;)=1. The performance index to be minimized

assumes the form:

L

I= <I>(x(tf ) h(x(tf ). z(cx(t, )))) + JL(X, h(x,z), k(x, z,% B)) dt (3.62)

to

As seen in Section 3.2 (Theorems 3.3 and 3.4), once the control B for the
transformed system of Egs. (3.60), (3.61) is fixed at B=-a, there is a complete
correspondence between functions z(0) in Z and piecewise continuous control laws
u(x,y,t) in A that track the hypersurface given by Eq. (3.3) asymptotically. That is, for
every element of Z there exists an element of A and, more importantly, for every element of
A there exists an element of Z. Therefore, to find the "best" asymptotic controller, it is
natural to fix the control B at:

B=—a (3.63)

and to then try to determine the "best" function z(®) in Z that minimizes J. This leads

directly to the off-line optimization problem:

1

Minimize:  J = ®(x(0),h(x(0),0))+ J‘(é)L(x,h(x,z), k(x,z,—owv))do (3.64)
0
subject to:
dx 1
o —(&-)f(x,h(x,z),k(x, z,-0v)) _ (3.65)
dz
o v (3.66)
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~2(a) <0 (3.67)

and to the boundary conditions x(1)=x,, z(0)=0, and 2(1)=-S(x,,y,). Note that the state
constraint is still being retained through Eq. (3.67). This point is important, because, if Eq.
(3.67) is not imposed, then the problem presumably will not have a solution. One can see
from Eq. (3.64) that for every function z(o) in Z that satisfies Eq. (3.67) there corresponds
a number J (z). Thus, one can define the set of real numbers:

J=1{1J,(2): zis in Z, and inequality (3.67) is satisfied } (3.68)

and state the off-line optimization problem, given by Eqgs. (3.64) through (3.67), by asking
for the minimum of J. Although it is not known at the present if and exactly when such a
minimum exists, it is possible to state the following theorem that provides one with an
important partial answer:

Theorem 3.5.1f the original problem given by Egs. (3.48) through (3.52),
involving an active state variable inequality constraint, has a minimum, then the off-line
optimization problem given by Eqs. (3.64) through (3.67) has an infimum.

Proof 4.5. Assume that the problem given by Egs. (3.48) through (3.52) has a
minimum, which will be denoted by J_, . This immediately implies that the set J is bounded
below by J
bounded below has an infimum, J has an infimum (Q.E.D.).

that is, J ;. < J,(z) for all z in Z. Since any set of real numbers that is

min? * “'min

Example 3
To illustrate the above idea one can apply it to the following problem:
Minimize: = j(l —y+u’)dt (3.69)
0
subject to:

dy
L=y ; 0)=0 3.70)
" y(0) (
y—-1<0 (3.71)

The solution to this problem for 0 <t <2 can be shown to be2s:
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y=—%+t; u=—s+1 (3.72)

leading to the finite-time controller:

u=(1-y)" | (3.73)

Although this controller is optimal, it is clearly useless from a practical point of view since
it breaks down when y exceeds 1. It cannot be used to track the line y=1 in the presence of
two-sided perturbations about y=1. At t = 2, y reaches the value y = 1. Fort> 2,y and u
stay constant at 1 and O respectively and there is no further contribution to the performance
index J. In order to optimize J over all asymptotic controllers that track y = 1 and satisfy
Eq. (3.71), one can now use the transformation:

z(a)+y—-1=0 (3.74)
z(0)=0 ; z(1)=1 (3.75)
which leads to:
&g iu=0 (3.76)
da

and to the transformed optimization problem:

Minimize: I= J.(z(a) + (%)2 B ]dt 3.77)
4
subject to:
%‘:-‘ =B:  of0)=1 (3.78)
-2(0)<0 (3.79)

Using now the control:

B=-a (3.80)
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leads to the off-line optimization problem for the function z(c):

1
Minimize: if =j(£+av2)da (3.81)
(04
subject to:
dz
—=v; 0)=0 ; =1 (3.82)
" 2(0) 2(1)
-z(0) <0 (3.83)

The Hamiltonian associated with this problem is:

H=Z+av?+Av-mz (3.84)
(04

where 1 is a Lagrange multiplier. This results in the optimality condition for v:

A
=—— 3.85
Vg (3.85)
and in the costate equation for A:
(3 =1 +1M (3.86)
do (o
The solution for A is:
A =In—+na (3.87)

where A is an integration constant. Combining Eqs. (3.85) and (3.87) with Eq. (3.82) one
obtains the differential equation for z:

dz _ _(_1_) h,tél _n (3.88)
do 20 ol 2
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which has the general solution:

2
j LI (3.89)

B being a seconfi integration constant. A quick inspection now reveals that there are no
values of A, B, 11, for which the function z(a) given by Eq. (3.89) can satisfy both of the
boundary conditions z(0)=0, z(1)=1. Therefore, the off-line optimization problem posed by
Eqs. (3.81) through (3.83) has no minimum. As guaranteed however by Theorem 4.5, this
problem does have an infimum, since it is bounded below by J_,.. where J . is the

minimum value of the performance index in Eq. (3.69), that is,

2

2
)= 2“’(1 +L- t)dt _4 (3.90)
4 3
0

In order to see what kind of controller u the function z(ct) found in Eq. (3.89) implies, one
can use Egs. (3.76), (3.80), and (3.88) to find:

1 ne™
=——(t+InA])-— 391
u 2( n|A) > (3.91)

For 1=0, comparing with Eq. (3.72), it is seen that Eq. (3.91) implies the optimal, finite-
time controller found before. Indeed, Eq. (3.91) can be shown to lead to Eq. (3.72) if the
boundary conditions y(0)=0 and y(2)=1 are imposed and the equation dy/dt=u is
integrated. There is no contradiction however with either Theorems 3.3 or 3.4, since there
is no function z in Z corresponding to the finite-time controller u given in Eq. (3.91).

The above result implies that the _minimum value of J, J_, = 4/3, found in Eq. (3.90)
is not only a lower bound of J, but the actual infimum itself. This situation is somewhat
reminiscent of H-infinity control theory for linear systems in which one seeks a strictly
proper, stabilizing controller to minimize the H-infinity norm of a closed-loop transfer
function. The minimum of this norm over all strictly proper, stabilizing controllers does not
exist. Its infimum does exist, however, and-corresponds to a proper controller. Thus, just
as in H-infinity theory, the question arises naturally in the present case as to how one can
find an asymptotic controller that somehow approximates this infimum. Although there are
no general answers yet, a procedure will now be presented that does supply some insight,
at least for the above example.
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First, one can show using Eq. (3.88), that, for the off-line optimization problem
posed by Egs. (3.81) through (3.83), the following integral (n=0 when the trajectory does

not ride the constraint):

1 1 2

J' vido = j [i) In®
20
0 0

representing the "total energy" stored in the signal v(ct), diverges. This suggests that if one

é’doc (3.92)
o

imposes the isoperimetric constraint:

J’vzda —k (3.93)

0

on the off-line optimization problem posed by Egs. (3.81) through (3.83), where k is a
given, finite, strictly positive number, one may have a hope of finding a function z(@) in Z,
that is, one that does satisfy the boundary conditions z(0)=0, z(1)=1, and the state
constraint, Eq. (3.83). The Hamiltonian associated with this new problem, posed by Egs.
(3.81) through (3.83), and Eq. (3.93) will read:

H=-(Z;+(u+a)v2+kv—nz 4 (3.94)

where | is a constant Lagrange multiplier. For each value of k there corresponds a specific
value of U and vice versa. The corresponding optimality condition for v now becomes:

A

V=

The costate equation for A remains unchanged as in Eq. (3.86) and leads to the same
solution for A given in Eq. (3.87), while the differential equation for z now reads:

dz 1

Al__me 3.96
da 2(u+a)lnlal 2(n+a) 529

With =0 Eq. (3.96) leads to the solution:
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a

1 1
(@)= | g

0

de (3.97)

satisfying the boundary condition z(0)=0. The boundary condition z(1)=1 is satisfied by
the choice of A (as a function of p) that guarantees that:
1 1
1=- d§ (3.98)
u +§ ‘ ‘

Finally, the particular value of i is evaluated from Eq. (3.93) once a value for k has been
specified. The state constraint, Eq. (3.83), will still have to be satisfied, but forgetting
about that for a moment, it is possible to show that, for nonzero |, the improper integrals
on the right-hand-sides of Egs. (3.97) and (3.98) do exist. Here, a small indication will be
supplied to convince the reader that this is indeed so: Consider the value of k corresponding
to the value p=1. Then, the integral on the right-hand-side of Eq. (3.98) can be evaluated
easily® and, Eq. (3.98) can be solved for A to yield:

(24+7*)

InjA|= -
12In2

(3.99)

The corresponding asymptotic controller u can be found from Egs. (3.76), (3.78), (3.80),
(3.96), (3.99), and the fact that p=1. The result is:

-t 2
ne— o [24*T (3.100)
2(1+e™){ 121n2

It can be shown that this controller drives y asymptotically from y=0 at t=0 to y=1 as t
approaches infinity. This fact, however, is already guaranteed by Theorem 3.3. To
construct an asymptotic feedback controller, one will have to use Eq. (3.100) to integrate
the equation dy/dt=u. This will lead to an expression for y as a function.of t. Elimination of
t between this expression and Eq. (3.100) will lead to the desired asymptotic feedback
controller. Or, alternatively, one can use the transformation defined by Eq. (3.74) with
z(o) supplied by Eq. (3.97) and express a as a function of y. Then, using Egs. (3.96) and
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(3.76) with B=-o should result in the same asymptotic feedback controller as before.
Although the procedure cannot be carried out analytically for either case, it can be carried
out numerically.

It will now be shown that, if one does not impose the state constraint, Eq. (3.67), on
the off-line optimization problem, Eqs. (3.64) through (3.67), then this problem may not
have a minimum. Indeed, consider again Example 3, and the associated off-line
optimization problem without the state constraint, that is, Egs. (3.81) and (3.82), but not
Eq. (3.83). Consider now the control:

if O<t<c (3.10D)

u(t)=—(b—1)e " if c<t (3.102)

where b is a positive parameter that exceeds 1, and c=b2. This control does violate the state
constraint, Eq. (3.71), by driving y (see Eq. (3.70)) from y=0 at t=0 to y=1 as t
approaches infinity according to:

y(t)= if O<t<c (3.103)

=Y

y(t)=1+(b-1)e "9 if c<t (3.104)

The function z(ax) corresponding to Egs. (3.101) through (3.104) can be found from Egs.
(3.32), (3.47), and (3.74) as:

z(o) = 1+1“T°‘ if 0<In(l/a) <c (3.105)

z(o)=—(b-1)e‘x if ¢<In(l/a) (3.106)

Substituting from Eqgs. (3.101) through (3.104) into Eq. (3.69), one can evaluate the
corresponding value of the performance index as a function of b, which turns out to be:

R (3.107)
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From Eq. (3.107) it is seen that as b tends to infinity, J tends to minus infinity,
meaning that the problem imposed by Egs. (3.81) and (3.82) does not have a minimum.
Note, however, that there is a value of b, for which the corresponding value of J is the
same as the optimal value of J (see Eq. (3.90)) for the problem posed by Egs. (3.69)
thréugh (3.71), with the state constraint included! This value of b can be found by solving
the cubic polynomial equation:

——2—+——2b+—=—— (3.108)

The result is3:

b=1+\ﬁ+1/—7—+}}—1——1f—7— (3.109)
6 108 6 108

which is approximately equal to:
b=1.30497 ' (3.110)

The maximum value of y is always equal to b, meaning that, if one regards the constraint
given by Eq. (3.71) as a soft constraint, then one can recover the optimal value of J with
an asymptotic, two-sided controller, at the expense of violating the constraint by no more
than 0.30497.

3.3.2 Second Reformulation: (Optimal) Asymptotic, Two-Sided
Controllers that Violate the State Constraint

The above results hint toward the formulation of the following second off-line
optimization problem: One again uses the transformation defined by Eqgs. (3.55), (3.56),
(3.61), (3.63) and by:

a=e . da=-odt (3.111)

Then, two functions ¥ and M are selected, and the following companion problem is cast:
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Minimize: I="¥(x(0),h(x(0),0)) + j M(x,z,v)do (3.112)

subject to the isoperimetric constraint (the original performance index now plays the role of
an isoperimetric constraint):

®(x(0),h(x(0),0))+ J. (é)L(x,h(x,z),k(x,z,—ow))da =J (3.113)

0

and the dynamics:

dx 1

o —(a)f(x,h(x,z),k(x,z,—av)) (3.114)
dz

o v (3.115)
x(D=xq 5 2(0)=0;  z(1)=-5(x,.y,) (3.116)

Note that there is no state-variable inequality constraint anymore! Specifically, with
this second reformulation one hopes to find controllers that although will violate the given
state constraint, will result in the same optimal value of the original performance index,
corresponding to the problem posed by Egs. (3.48) through (3.52), which has been
denoted on the right-hand-side of Eq. (3.113) by J_, .

3.4 Conclusions

The class of all piecewise continuous (in time) controllers that track a given
hypersurface in the state-space of a dynamical system can be split into two disjoint classes.
The first class contains all controllers that track the hypersurface in finite-time. The second
class contains all controllers that track the hypersurface asymptotically. This splitting of the

two classes can be used to reformulate optimal control problems involving active state-
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variable inequality constraints, so that, in the reformulated problem the optimization is
carried out only over the class of asymptotic controllers.

The original problem leads to optimal controllers that are finite-time and one-sided.
The reformulated problem leads to controllers that are approximately optimal, asymptotic,
but still one-sided. However, if the state-constraint is regarded as a soft constraint, then
one can find cordtrollers that are asymptotic, two-sided, and result in the optimal value of
the performance index corresponding to the original problem. Thus, they are practically
optimal, but at the expense of violating the state-constraint. From a singular perturbations
point of view this suggests that, such controllers can be used in a boundary-layer system,
to track the reduced solution corresponding to a specific problem, when this reduced
solution happens to ride a state-constraint boundary. However, such controllers do not
correspond to stationary solutions of the optimization problem, so at the present, a
systematic procedure for finding them does not exist and remains a topic for future

research.



CHAPTER IV’

Spacecraft Motion under Continuous Thrust

4.1 Introduction and Motivation

Exact analytic solutions are scarce in the field of Space Mechanics, but not as scarce
as in other fields. Until most recently3+3¢ there have been only three cases in this field in
which the equations governing the two-dimensional translational motion of a point mass,
under the influence of inverse-square gravitational forces, and in the presence or absence of
continuous thrust, have been analytically integrated or reduced to quadratures. The first
case® pertains to Isaac Newton's celebrated solution of the two-body problem and hardly
needs any comment. The corresponding motion has been called Keplerian, as a tribute to
Johannes Kepler and his laws of planetary motion. The second case?®, which is not so
well-known, corresponds to Euler's reduction to quadratures of the problem of a point
mass moving on a given plane, and in the vicinity of two fixed, inverse-square centers of
gravitational attraction. Contrary to the first case, the second case has to date largely
remained just a mathematical contribution, without any practical applications resulting from
it. Both of the above cases relate to the natural motion of a point mass in the absence of
thrust. By contrast, the third case relates to the two-body, planar motion of a point mass,
under the action of constant radial thrust. The reduction to quadratures corresponding to the
third case was first given by Tsien®, and a more detailed treatment was supplied by
Battin®%. It must be noted here that one can find, in general, many ad hoc thrust programs
for which the equations of motion can be reduced to quadratures. However, the practical
usefulness of the corresponding solutions usually tends to be minimal due to serious flaws,
such as the inability to satisfy given boundary conditions, excessively large thrust levels,
noneconomical fuel consumption, etc. In fact, the third case happens to be more or less just
such a case, and as far as the author knows, it is the only such case that has received some
attention in the literature. The thrust program (constant radial thrust) used by Tsien is
quite ad hoc, and accordingly there is little that can be done with it during actual orbital
operations. For example, the angular momentum of a -vehicle about a planet cannot be
changed using radial thrust! The only problem that can be treated using Tsien's solution

* This Chapter and the Appendices have been sole-authored by Nikos Markopoulos.
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turns out to be the problem of escape from a circular orbit. Due to the radial character of the
thrust such escape usually turns out to be markedly non-optimal®. Tsien, being fully aware
of these facts, treated also in the same paper the problem of escape from a circular orbit,
using constant transverse (horizontal) thrust, and concluded by observing that the latter was
much more economical than the former. The equations of motion however cannot be
reduced to quadratures for the latter type of thrust.

Tsien’s paper turned out to be just one among a series of papers, that appeared during
the same period, in which the authors focused primarily on the problem of optimal escape
from a circular orbit, and compromised in obtaining only approximate analytic solutions,
but at the significant advantage of using more reasonable (and useful) thrust programs. The
papers by Benney*, who assumed tangential thrust, by Lawden*-4, who determined the
optimum thrust direction for minimizing expenditure of rocket propellant, and by Long*,
who studied the possibility of escaping along hyperbolic orbits, are among the notable ones
in this series. A recent review written by Lawden3s supplies an extensive reference list on
this subject.

Lawden* 2 found that, for all practical purposes, optimum thrust is in the flight-path
direction, as assumed by Benney®. Such thrust will usually be referred to as "tangential” in
this chapter. However, as in the solution found by Tsien®, corresponding to constant
transverse thrust, the detailed solutions for the flight path and mass loss obtained by
Benney* and Lawden*!“2 apply only to cases of large or small thrust. Moreover, in the case
of small thrust, the solutions obtained are valid only in the initial and intermediate portions
of the escape trajectory. As noted by Lawden*?, the assumptions required to obtain such
solutions are invalid in the final portion of the trajectory, as escape speed is approached and
the instantaneous or osculating ellipse can no longer be considered close to a circle. More
recently, Boltz?, rather than considering a constant value of the tangential thrust
acceleration, assumed that the ratio of the thrust to vehicle weight in orbit is fixed. His
approximate analytic solution obtained with this constraint is valid for any constant value of
this ratio and describes the motion along the full extent of the escape trajectory.

This chapter shows how to use the tangential thrust assumption, that apparently
played a key role in many studies in the past, to propose a continuous thrust program for
which the equations of two-dimensional motion of a space vehicle in orbit afford an exact
analytic solution. To come up with this thrust program, the following important aspect of
optimal control theory is utilized: Optimal control formulations are extremely useful not
only because they result in control programs that are optimal, but also because they result in
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control programs period! For a given problem, a control program representing the absolute
- optimum can usually be obtained only by solving a two-point boundary value problem by
numerical methods. Sometimes however, it turns out to be advantageous to sacrifice
(hopefully a small) part of optimality, by means of a reasonable approximation, for the sake
of obtaining a control program that is simple enough to afford an analytical description, yet
at the same time sophisticated enough to have the ability to steer the system in its state-
space in a satisfactory manner. An approximation altering the state equations results in state
trajectories that are approximate. An approximation on the other hand altering the costate
equations affects only optimality! It results in state trajectories that are exact, but nearly-
optimal at best!

The optimization problem that will be used to apply the above idea is one that has an
analytically most convenient performance index. The problem of minimum-fuel, power-
limited transfers between two coplanar (Keplerian) conics comes with a quadratic
performance index in the control (thrust acceleration) and has proven in the past to be
amenable to analytical treatment. For transfers between arbitrary elliptical orbits this
problem has been traditionally attacked using the so-called averaging method*-!, which is
based on the assumption, that, when the duration of transfer is long enough the orbital
elements are slowly changing, so that, over any given revolution around a planet their
changes can be computed using rates of change averaged over the mean anomaly. This
averaging solution provides many useful insights when both the initial and final conics are
ellipses of low eccentricity, but, as its underlying assumption implies, its accuracy
decreases as the eccentricities of the elliptical orbits increase (and the motion around the
planet becomes highly nonuniform with time), and it breaks down when the vehicle does
not revolve around the planet, that is, when either the initial, or final conics, or both are
hyperbolic. Also, the averaging eliminates any information about the dependence of the
solution on the true anomaly. A different approach is clearly needed if one is to improve on
the accuracy of the averaging method, and to also account for the cases in which either one
or both of the initial/final conics are hyperbolic. Numerical optimizations#454749-5! for such
problems tend to suggest that there exists a large subclass of power-limited transfers
between two coplanar elliptic orbits, corresponding méinly to cases where the changes in
orientation and eccentricity are small, for which, as the transfer duration increases, the
thrust levels decrease, and the direction of the optimal thrust acceleration tends to coincide
more and more with the direction of the tangent to the optimal flight path throughout the
transfer. This last observation once again suggests that tangential thrust is the rule rather
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than the exception in spaceflight. Although there exist cases in which the thrust is markedly
nontangential, it seems that such cases arise primarily from a requirement to satisfy given
boundary conditions in a prescribed time duration, and only secondarily from optimality.

~ With this last remark, one can embark on the analysis. The solution of any problem
starts before its formulation, so, first, in Section 4.2, the relevant equations of motion are
written in a new state-space format, for which the right-hand-sides of the equations assume
quite a simple form, free of highly nonlinear trigonometric or transcendental functions. The
proposed thrust program is introduced in Section 4.3, and the corresponding exact analytic
solution of the equations of motion is then immediately supplied in Section 4.4. An
important quadrature is performed in detail in Section 4.5 taking advantage of the fact that
the trajectory equation that was obtained in Section 4.4 is identical in form to the trajectory
equation corresponding to Keplerian motion. The fact that the thrust program proposed in
Section 4.3 is not ad hoc is documented in Section 4.6, where it is shown that one can
obtain this thrust program by using the tangential thrust assumption in ore costate equation
corresponding to the problem of power-limited optimization. This problem of power-
limited optimization is formulated in Section 4.6.1, after which the consequences of the
tangential thrust assumption are followed in Section 4.6.2. The corresponding
transversality conditions are derived from scratch in Section 4.6.3, and they are combined
with the tangential thrust assumption in Section 4.6.4. All this leads to the thrust program
proposed in Section 4.3, for which the state equations can be solved analytically and
exactly, leading to the solution supplied in Section 4.4. Section 4.6 concludes with a
preliminary check of the near-optimality of the tangential thrust assumption (in 4.6.5).
Section 4.7 casts the boundary conditions in a ready-to-use form. These boundary
conditions are manipulated further in the next three sections during the treatment of general
transfer and escape problems. Examples are also given in Sections 4.8, 4.9, and 4.10
corresponding to specific transfer and escape problems, in which the existence of particular
solutions for such problems is demonstrated for several cases. The existence of one-
segment solutions, that is, solutions on which the throttling parameter A (see
Nomenclature) has a single value is discussed in Section 4.11, along with some geometric
facts pertaining to (one-segment) transfer trajectories. Section 4.12 documents the
practically important fact that, using multiple segments, a given coplanar transfer can in
principle be performed in an arbitrarily large preassigned duration. Questions about the
optimality of the transfer trajectories, both from the point of view of power-limited and
constant ejection velocity propulsion systems are discussed in Section 4.13. Section 4.14
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constitutes a short deviation from the main subject and supplies a (hopefully reasonable)
prediction for the initial values of the costates for the associated rendezvous problem
pertaining to power-limited optimization. After a brief summary in Section 4.15, the
chapter concludes with some comments in Section 4.16. Preliminary results on the topic
presented in this chapter and the Appendices have been published in Ref. 52 (See also Ref.
53).

4.2 Equations of Motion
Written in polar coordinates, the equations of two-dimensional motion for a space

vehicle, viewed as a point mass, and moving in the vicinity of an inverse-square
gravitational center of attraction (a planet, the sun, etc.) are:

d’rR dey

(F )Y &)= “n
d1R2(98) | gE 42
dt[R (dtﬂ @2

where, R and 0 specify the position of the vehicle (see Fig. 4.1), tis the real time, p is the
strength of the inverse-square center, and E; and E, are respectively the sums of the radial
(vertical) and transverse (horizontal) components per unit mass of any non-gravitational
forces acting on the vehicle. For the purposes of the present work, the only non-
gravitational force acting on the vehicle will be the thrust, specified by its components
(controls) per unit mass E; and E,.

The goal now is to cast Egs. (4.1) and (4.2) into a simple state-space form. It turns
out to be advantageous for this purpose to define the relevant state variables in such a way
that the resulting state equations do not contain any (highly nonlinear) transcendental
functions and can be written only in terms of rational functions of the state variables.
Although there are many ways of accomplishing this, one simple way is to introduce the
angular momentum per unit mass of the vehicle, M, and the vertical component of its
velocity X, defined by: |

M=R2(d—e) LS 4.3)
dt dt

and use M, X, R, and 0 as the governing state variables.
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It would also be convenient to have the state equations in nondimensional form, so,
for this purpose, one can select an arbitrary distance R, and denote the gravitational
acceleration and circular orbital velocity at that distance by g, and V,, that is:

N -
g = R_z ’ Vs - gsRs (44)
By defining now the nondimensional variables:
=1 |5 ; £,=§l; £e=&; r=£; x=—)-(—; h=_ (4.5)
R, g g R, v RV,

and using h, x, r, and © as the new (nondimensional) state variables, one can write
Egs. (4.1) and (4.2) in the following equivalent nondimensional state-space form (see Fig.
4.1):

dh
—=T¢ 4.6
ot ° (4.0)
2 —
9£=(h : ’]+gr 4.7)
dt r
dr
—=X 4.8
= (4.8)
dé _h
= 4.9)
dr o
4.3 The Proposed Thrust Program
Consider the thrust (acceleration) program given explicitly by the components:

g =A% . o A 4.10)

h r

where A is an arbitrary constant that will be called the thrortling parameter. It is
straightforward to show that the thrust acceleration corresponding to this program has
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magnitude equal to A/(rcosy) and acts always tangentially to the vehicle's path. Equation
(4.10) therefore implies a special type of tangential thrust. Also, it is clear that the
mechanical energy per unit mass of the vehicle (considered as a point mass) is a strictly
increasing function of time for A > 0 and a strictly decreasing function of time for A < 0.
When A = 0 there is no thrust and the motion is Keplerian (see Appendix A). It will be
shown in the next section, that Eqgs. (4.6) through (4.9) afford an exact analytic solution
when their right-hand-sides are forced with the thrust (acceleration) components given in
Eq. (4.10). This chapter shows how one can come up with this thrust program and use the
corresponding exact analytic solution to satisfy boundary conditions for problems of
practical interest.

4.4 An Exact Analytic Solution

Substituting the thrust acceleration components proposed in Eq. (4.10) into the right-
hand-sides of Eqs. (4.6), (4.7), the state equations assume the form:

%=A @.11)
3—:=(h2§r]+% | 4.12)
%q (4.13)
gzrlz (4.14)

The exact analytic solution of the system of Egs. (4.11) through (4.14) is derived in
Appendix B. One can verify easily by direct differentiation that this exact analytic solution
is given by the following four quadratures:

h=At+h, (4.15)
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= 2rA+Bsin(6-C)

4.16
- (4.16)
2
r= b “4.17)
1+ Bcos(6-C)
1 1 [ 2Ade
2 -2 4.18
h* h? J.[I+Bcos(6—C)]2 (4.18)

o

where hy, B, C, and 6, are the four (exact) constants of integration associated with the
system of Egs. (4.11) through (4.14). The procedure carried out in Appendix B also
implies the uniqueness of the expressions given in Eqgs. (4.15) through (4.18), that is, that
every particular solution of the system of Eqgs. (4.11) through (4.14) corresponds to a
particular set of values for the constants hy, B, C, and 6,. Note that the constants h, and 6,
are equal respectively to the initial values (at 1=0) of the angular momentum h, and the
argument of latitude 6. Note also that Eq. (4.18) is obtained by combining Egs. (4.11),
(4.14) and using Eq. (4.17) to substitute for r, which leads to (the throttling parameter A is
always assumed nonzero):

e _ [1+Bcos(6 - C)]2
dh Ah’

4.19)

Equation (4.17), describing the trajectory of the vehicle, is identical in form with the
trajectory equation corresponding to two-body Keplerian motion (see Appendix A). Thus,
the trajectory equation corresponding to Keplerian motion can be uncovered in the presence
of continuous, nonzero thrust!

There is of course an important difference between the two kinds of motion.
Keplerian motion takes place in the absence of thrust, and along it the angular momentum h
is just a constant. On the other hand, the motion described by Eqgs. (4.15) through (4.18)
takes place in the presence of continuous tangential thrust (as specified in Eq. (4.10)), and
along it h is a linear function of time (see Eq. (4.15)).
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Based on the above observation, the explicit integration of Eq. (4.18), that depends
strongly on the value of the constant B, will be performed in some detail in the next section
by generalizing the concepts of eccentric and hyperbolic ‘anomalies encountered in
Keplerian motion. The trajectory described by Eqgs. (4.15) through (4.18) will from now
on be called the transfer trajectory, or just the transfer.

4.5 Generalized Eccentric and Hyperbolic Anomalies

4.5.1 Preliminaries

Recall the expression for r given in Eq. (4.17) and denote 0 - C by &:

E=6-C (4.20)
Then, Eq. (4.17) can be written as:
2
N (4.21)
1+ Bcos§

The angular momentum h appearing in Eq. (4.21) is the linear function of time given
by Eq. (4.15). In order to find the relationship between the time 1 and the argument of
latitude 6 along the transfer trajectory one must integrate equation (4.14). In this case
however, since h is a linear function of time, and since the interest is on motion with
nonzero A, it is more convenient to find the relationship between h and 6. Then, the
relationship between 7 and 6 can be deduced. Thus, combining the equations:

®_b ., d_, (4.22)
dt r dz
and using:
dé=do ; €, =6,-C (4.23)

one finds after substituting from Eqs. (4.21):

&

i2=_12. J 2AdG (4.24)
hg : 1+Bcos§
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The constants B and C appearing in Eq. (4.17) play qualitatively the same role as the
eccentricity and orientation constants e and ® do in Keplerian motion** (see Appendix A).
The vehicle, while on the transfer trajectory, can execute full revolutions around a planet
only if B is less than one. B can always be taken as nonnegative by appropriately adjusting
the constant C (just as e can always be taken as nonnegative by appropriately adjusting the
orientation ® of a conic). Note that escape from a given orbit can be accomplished for any
value of B, since the angular momentum h, and accordingly the radial distance r can be
made to grow without bound if the thrust is kept "on" for a sufficient duration of time.

Based on the above observations, one can call the constants B and C the generalized
eccentricity and the generalized orientation of the transfer trajectory respectively. The
constants B and C are global characteristics of the transfer trajectory, that is, they are
associated with every point of the transfer trajectory. If at any point along the transfer the
thrust is suddenly reduced to zero, the eccentricity e and orientation @ of the ensuing
Keplerian motion are not equal to B and C respectively. This follows by equating the
expressions for x and r of Eqgs. (4.16), (4.17) with the corresponding expressions for x
and r of Eq. (A.5) (of Appendix A), valid for Keplerian motion, and by remembering that
the throttling parameter A is nonzero. Note however, that, for small A, the (Non-
Keplerian) constants B and C are approximately equal to the (instantaneous Keplerian)
constants e and .

Carrying the above analogy further facilitates the evaluation of the integral appearing
in Eq. (4.24). Traditionally, the corresponding integral for Keplerian motion is evaluated
by defining the so-called eccentric and hyperbolic anomalies*, depending on whether the
eccentricity e is less than or greater than one respectively. By analogy, it is possible to
evaluate the integral in Eq. (4.24) by defining generalized eccentric and hyperbolic
anomalies, depending on whether B is less than or greater than one. In the borderline cases
in which B=0, or B=1 the evaluation of the integral simply yields>*:

1

h?

if B=1, then: -1-117 = Flg_ - A[tan(%—j - tan(%"):l - (%)[tan’(%) — tan’(%"-)] (4.26)

Such borderline cases represent only mathematical but not "real” possibilities, and it

if B=0, then: — = %-m(e-eo) (4.25)
0

is only for reasons of mathematical completeness that one considers them at all. In practice,
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when a vehicle is executing an actual transfer, or coasting along a conic, the probability that
e or B is exactly equal to any particular value is practically zero. Borderline cases can
therefore also be considered as limiting cases, in which the results are first worked out in
general (for e or B less than or greater than one) and then the limit is taken in which e or B

tends to zero, one etc.

4.5.2 Generalized Eccentric Anomaly

Consider first those transfer trajectories on which 0 < B < 1. For all these trajectories

one can define the generalized eccentric anomaly E by:

_ / _ 2
osE = CosE-B : dt = _&dﬁ (4.27)
1-BcosE 1-BcosE

The expression on the right in Eq. (4.27) relates the differentials d and dE. One can make
the convention that E is zero when & is zero and vice versa. Then, E goes through n radians
exactly when § goes through = radians. This means that one can keep track of the number

of times a vehicle revolves around a planet (during a given transfer) by just keeping track of
E and forgetting about & (or 0). Using standard trigonometric identities®* one can show

that;

2 .
sink = V1-B sinE : tan(éj = flﬂ. tan(E) (4.28)
1-BcosE 2 1-B 2

Also, using Eq. (4.27) one can write the transfer trajectory equation (4.17) as:

h2
r= [l 5 J(l —BcosE) (4.29)

The inverse of expressions in Eqs. (4.27) and (4.28) can be found as:

,/ _n?
cosE = C_OS&_-EE : dE = I—Bdé (4.30)
1+ Bcos§ 1+ Bcos§
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2 -
sing = Y1—B sing tan(g'-) - ,/ﬂ tan(é) 431)
1+ Bcos§ 2 1+B 2

while the initial and final values of E, E, and E,, are given by:

COSEO = ioii-l-_B- : COSEf = £9§_§ii_B_ (432)
14+ Bcos&, 1+ Bcos&,
Eq. (4.24) can then be written as:
1 1 2A f
ETR T _[ (1- BeosE)dE (433)
0 E,
which after a straightforward integration results in:
1. 1 2A[E-E,-B(sinE-sinE)] “38)

h hg (1 _ B2 )3/2
4.5.3 Generalized Hyperbolic Anomaly

For transfer trajectories on which B > 1 one can define the generalized hyperbolic
anomaly H by:

_ B-coshH B’-1

= ; d§ = ————dH (4.35)
BcoshH—vl BcoshH-1

cos§

The expression on the right in Eq. (4.35) relates the differentials d§ and dH. One can again
make the convention that H is zero when & is zero and vice versa. Using standard

hyperbolic identities® one can show that:

2 _ .
BcoshH —1 2 V B-1 2

Using Eq. (4.35), the transfer trajectory equation (4.17) can now be written as:
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2
r= (Bzh— 1J(BcoshH -1) (4.37)

The inverse of expressions in Egs. (4.35) and (4.36) can be found as:

2—
coshH=S085+B gy VBT (4.38)
1+ Bcos§ 1+ Bcos§

R2_ 1 B -
sinhH = Mm_g : tanh(EJ = M tan(g) (4.39)
1+ Bcos§ 2 B+1 2

while the initial and final values of H, H, and H,, are given by:

coshH, = cos§, +B ; coshH, = cos, +B (4.40)
1+ Bcos&, 1+ Bcos&,
Eq. (4.24) can then be written as:
1 1 t
— = _2A - I(BcoshH -1)dH (4.41)
h® hy (B’-1)
Ho
which after a straightforward integration results in:
1_1 2A[H-H, - B(sinhH - sinh H,)] 4.42)

h2 BZ + (Bz— 1)3/2

4.5.4 Examples of Motion under the Proposed Thrust Program

At this point one can begin to consider some preliminary examples depicting the kind
of motion described by the trajectory equation (4.17), in conjunction with Egs. (4.25),
(4.26), (4.34), and (4.42) derived in this section. Figures 4.2 through 4.4 show examples
of transfer trajectories (plots of Eq. (4.17)) that start from the perigee of the same initial
elliptical orbit and correspond to different values of the throttling parameter A and to
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different duration 7,. Figure 4.5 shows a similar case for which the initial conic is a
hyperbola. In each figure the final conic, corresponding to the motion that follows after the
thrust is turned off at T=1,, is also plotted. It is seen from Eqgs. (4.17), (4.25), (4.26),
(4.34), and (4.42) that a vehicle can escape the gravitational field of a planet even along a
transfer trajectory for which the generalized eccentricity B is less than one, providing that
the thrust is kept "on" for a sufficient duration of time. Note that the distance from the
planet r becomes infinite on a transfer trajectory (for any B) when, and only when the
angular momentum h becomes infinite. This happens when the right-hand-side of the
applicable one among Eqgs. (4.25), (4.26), (4.34), or (4.42) becomes zero at some 6.

Figure 4.4 shows an escape trajectory on which B < 1.

4.6 The Origin of the Thrust Program

In this section a connection will be developed between the thrust program proposed in
Section 4.3, and the problem of optimal, power-limited, coplanar motion. It will be shown
that, the thrust program proposed in Eq. (4.10) can be obtained by making the tangential
thrust assumption and by imposing the transversality conditions in the costate system
corresponding to the problem of power-limited, minimum-fuel transfers between two
coplanar conics.

A Mayer type formulation of the above problem is the most convenient one, and for
this, one will have to add to the system of Eqgs. (4.6)-(4.9) the equation governing the
performance index:

a _1,,
- -2—(£r +€;) (4.43)

The final value of J (at a fixed final time T,) is a direct (nondimensional) measure of
the fuel consumption for power-limited propulsion systems*-5! (see Appendix C for more
details). Note that the variation for the mass of the vehicle during a maneuver is fully taken
into account by means of Eq. (4.43) (see Eq. (C.5) of Appendix C).

4.6.1 The State-Costate System for Power-Limited Optimization

The Hamiltonian associated with the system of Eqgs. (4.6) - (4.9), and (4.43)is:

2_.
H=r1¢g,P, +(h : rJPx +¢,P +xP +£2Pe +%(ef+e§)Pj (4.44)
r r
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In order to have minimum fuel consumption one must minimize J;- Jo, o1 maximize -J, + J,.
-The cost ] is an ignorable coordinate, meaning that the corresponding costate P, is constant
(Specifically, the Hamiltonian does not depend explicitly on J). Moreover, examination of
the transversality conditions in Section 4.6.3 will further dictate that (see Eq. (4.98)):

P =-1 (4.45)

With this result, the optimal controls can be found by setting the partial derivatives of H
with respect to €, €, in Eq. (4.44) equal to zero. The result is:

e, =P ; g=r1P (4.46)

Substituting these controls back into Eq. (4.44) the Hamiltonian can be written as (using
P, =-1):

H =L(2p2 4 p2 hz"rp p+1p (4.47)
_E(r 24 x)+ 5 4+ X r+r—29 .

Using this expression for the Hamiltonian, the differential equations governing the
optimal trajectories can be found from:

g _oH . dP__ oM (4.48)
dt OoP dr s

where s and P denote the state and costate vectors respectively. Explicitly, the result is the
following tenth order system for the state and costate equations:

d
dh _ op (4.49)
at | oh
2

%{h ;fJ+px (4.50)

T r
dr
- = 451
dt X ( )
dé h
8 _h 4.52)
dt r? (

59



= -2-(Pf +1°P}) (4.53)
(zf;x —_P (4.55)
%‘- =-rP} + 3h:4P" - 2::" + 223})" (4.56)
Edf;_e -0 (4.57)
%12_1 - (4.58)

Note that Egs. (4.49) through (4.52) are just the state equations (4.6) through 4.9),
with the controls substituted in from Eq. (4.46). It can be verified that this tenth order
system has the following three first integrals:

H' = const. ; P, =const. ; P, =const.= -1 (4.59)
and a fourth integral* given by:
2rP. +hP, —xP, =3H'1-5J+A, (4.60)

where A, is an integration constant. These four integrals can in principle be used to reduce
the order of the system to six, involving the variables h, x, 1,6, P,, and P,.

An important point that can be made regarding the state-costate system of Eqgs. (4.49)
through (4.58) is the relative simplicity of the right-hand-sides of these equations. Note that
these equations contain no trigonometric functions. A quick inspection reveals that the
number of basic operations (addition, subtraction, multiplication, and division) that need to
be performed to compute the right-hand-sides of Egs. (4.49) through (4.58) is about half
times the number of basic operations that need to be performed to compute the right-hand-

60



sides of the same equations, but written using traditional state variables, like the set (V, Ys
I, 8) or the orbital elements. Pursuing this argument further, one can conclude that the
computer running time required for the numerical solution of a two-point boundary value
problem using Eqs. (4.49) through (4.58) should be about half, compared to the running
time required for the numerical solution of the same problem using the traditional state
variables (V, ¥, r, 8) or the orbital elements.

4.6.2 The Tangential Thrust Assumption and its Implications

One can now pursue the consequences of the assumption that the thrust along an
optimal trajectory is approximately tangent to the direction of the optimal flight path. This
assumption will be referred to as "the tangential thrust assumption". In terms of the state
and costate variables, the tangential thrust assumption means that along an optimal
trajectory the relationship:

P rx
X = =1tan 4.61
g T (4.61)

is approximately valid. Note that y is the flight path angle, formed by the path of the vehicle
and the local horizontal direction. It will be assumed, as Eq. (4.61) implies, that the tenth
order system of Eqs. (4.49)-(4.58) behaves in practice as a ninth order system, meaning
that one will have to drop one of these equations out. As it turns out, one can combine Egs.
(4.54) and (4.61) and solve for P, as a function of the states. Then, P, can be found by
resorting back to Eq. (4.61), and P, can be found from Eq. (4.55) by differentiating the
expression for P,. Accordingly, one won't need Eq. (4.56), which will be the one equation
to be dropped out. Thus, using the tangential thrust assumption, one can replace the system
of Egs. (4.49)-(4.58) by the system:

PTX = % (4.62)

rey

j_f: =P, (4.63)
2

%}=(hr3 fj+p, (464
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dr
= = 4.65
dt X ( )

G

—=— 4.66
dt ( )
1

o E(P,f +1°P}) (4.67)

b 2R Py (4.68)
dt r r

b P, (4.69)
dt

P _p (4.70)
dt

P o (4.71)
dr

Note here that: i) Eq. (4.62) is just the tangential thrust assumption. ii) All the
remaining equations (4.63)-(4.71) are the same as the original equations (4.49)-(4.55), and
(4.57), (4.58), except equation (4.68), which was obtained from Eq. (4.54) by changing
its right-hand side using the tangential thrust assumption. iii) The optimal Hamiltonian H*
given in Eq. (4.47), and the constant A, defined in Eq. (4.60) are no longer first integrals
of Egs. (4.62)-(4.71). iv) P, and P, are still constant and P, = -1.

One can now show the primary analytical result of this chapter, and also of this
report, which can be summarized in the following statement:

For the problem of transfers between two arbitrary conics, if one enforces the
transversality conditions exactly, then Eqs. (4.62)-(4.71) can be reduced to quadratures
without any further approximations.

By defining the transformation:
Q=r’P, (4.72)
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and then, by using Egs. (4.65), (4.68) one finds that:

%% =P, (4.73)

Since Py is constant, the solution of Eq. (4.73) is simply:

Q=-P,1+A (4.74)

where, A is an integration constant. Combining now Egs. (4.72), (4.74) and (4.63) one
obtains:

h_Q=-P1+A 4.75)
dt

the solution of which is:

2
P,1

h=- +AT+h, (4.76)

where, h is another constant of integration, equal to the value of the angular momentum h
at time 1=0. Using Egs. (4.72), (4.62), and then carrying out the differentiation in Eq.
(4.69) one can express the costates P, P,, and P, in terms of the state variables, the time,
and the three constants Py, A, and h, as:

_Qx _Q . =X _b(g) 4.77
=2 =2 3_&}6(9 ]h @.77)

The costate variable P, represents the sensitivity of the minimum cost to the initial
value of the state component 6. By examining the first variation of the (augmented) cost in
Section 4.6.3, it will be shown that for transfers "from" or "to" a circular orbit the exact
value of Py is zero. This is not surprising, since for such problems, due to the initial
circular symmetry, the initial value of the state component © has no effect on the minimum
value of the cost. It will also be shown in Sections 4.6.3 and 4.6.4, by enforcing the

transversality conditions and by using the expressions for the costates given in Eq. (4.77),
that for transfers between two arbitrary conics, P, is zero as a direct consequence of the
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tangential thrust assumption. With zero P, the variable Q from Eq. (4.75) is just equal to
the constant A, and the expressions for the costates given in Eq. (4.77) reduce to:

2
p=2 ; p=% ; P,=-(h3r)(ﬁ) (4.78)

* " h = r h

Using the expre‘ssions for P, and P, from Eq. (4.78) one can now go back and obtain the
corresponding explicit thrust acceleration components, by substituting into Eq. (4.46). The

result is:

e =X . g =2 (4.79)

But this is none other then the thrust (acceleration) program proposed in Eq. (4.10)!

Therefore, one can state that:

The thrust program proposed in Eq. (4.10) can be obtained by making the tangential
thrust assumption in one costate equation and by imposing the transversality conditions for
the problem corresponding to power-limited, minimum-fuel, coplanar transfers between

two arbitrary conics.

Note that the asterisks have been omitted from €, and &, in Eq. (4.79), since these
thrust acceleration components are consequences of the tangential thrust assumption and
can be near-optimal at best.

Now that the thrust program is "fixed" and the same as the one proposed in Eq.
(4.10), the exact analytic solution of the state equations is also "fixed" and the same as the
one given in Section 4.4. For Q = A = constant, Egs. (4.75), (4.76) lead to:

oA 5 h=At+h, (4.80)
dt

These equations are the same as Eqgs. (4.11) and (4.15) of Section 4.4. Using the
expression for P, given in Eq. (4.78), Eqs. (4.64), (4.65) assume the form:

2-—
9‘._(1‘ f]+£‘ : dar _. (4.81)

dt h dr



which are the same as Egs. (4.12), (4.13) of Section 4.4. The solution of Eqs. (4.81) is:

. 2
e 21 A +Bsin(6-C) : h (4.82)

r=
h 1+ Bcos(6 - C)

which is none other than the one given in Eqgs. (4.16), (4.17) of Section 4.4. The last state
equation that remains to be integrated is Eq. (4.66), which is the same as Eq. (4.14) and
can be reduced to quadrature as in Eq. (4.18), or integrated as in Section 4.5.

Denoting by h, the value of the angular momentum h at the final time T, one can write
the constant A, playing the role of a throttling parameter, and appearing in the linear
variation of h (Egs. (4.15), (4.80)) as:

A=Dimh (4.83)
T

Combining Egs. (4.79) and (4.83), the two thrust acceleration components along a
transfer can be written explicitly as:
€ = (hf — ho)x : £, = (hf — ho) (4.84)
T:h T, T
By replacing h, by h and 7, by the "time to go" 1,7 in Eq. (4.84) one obtains the following

explicit, closed-loop, finite-time, exact feedback guidance law:

(h; —h)x - (h—h)

e'z(tf—‘c)h ; " (r,-7)r

(4.85)
During an actual transfer this law will guide a vehicle from the initial conic to the desired
final conic, providing that the transfer starts from the "correct" point on the initial conic.
Since this happens to be a finite-time feedback guidance law, it is bound to suffer from
saturation problems (in the presence of disturbances) as the final time T = T, is approached.
In such a case, the reasonable thing to do would be to switch to the open-loop law of Eq.
(4.84) as late as possible on the transfer, but before the final time T = T, is reached.

As expected, there is a partial loss of controllability that goes along with the tangential
thrust assumption, and it will be shown when examining the boundary conditions that, if
the initial and final conics do not intersect, then, a one-segment solution for a particular
transfer problem, that is, a transfer trajectory on which the throttling parameter A has a
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single value may in general exist only for particular values of the (fixed) final time t,. For
escape problems on the other hand a solution may exist (in principle) for any value of 1,
because the final value of the angular momentum h,, or the orientation difference @, - @,
between the initial and final conics may be left free. A one-segment solution however does
not exist, and a (one-segment) transfer trajectory cannot be found, when the initial and final
conics intersect (see Theorem 4.1 of Section 4.11, and Appendix F). However, even in
such a case, a transfer can still be accomplished using two separate transfer trajectories, that
is, by first transferring to an intermediate conic (that does not intersect either the initial or
the final conic), and then by transferring to the desired final conic (see Sections 4.11, 4.12

for more details).

4.6.3 Derivation of the Transversality Conditions

For transfer or escape problems the state of the vehicle at the initial and final times is
only partly specified. Accordingly, the boundary conditions have to be supplemented by
the so-called transversality conditions, arising from the requirements of optimality, in order
to provide one with enough conditions for a particular solution. The exact form of the
transversality conditions will be given in this Section, and then combined with Eq. (4.77)
of Section 4.6.4, in order to show the result P, = 0, which led to Eq. (4.78) and the thrust
program proposed in Eq. (4.10).

There are several methods that can be used to derive the transversality conditions for
the problems of interest. The one that will be used here is very straightforward, and it is
based on a direct examination of the first variation of the (augmented) performance index.
Recall that the performance index is just the negative of the final value of J, that is, -J,.
Augmenting this by the dynamics of the problem one obtains the augmented performance
index I:

T
I=—J, + _[ P(f —§)dt (4.86)

To
The costate (Lagrange multiplier) vector P is a row vector with components Py, P,, P, Py,
and P,. The vector of dynamics f is a column vector with components the right hand sides
of Egs. (4.6)-(4.9) and (4.43). The vector s is also a column vector with components the
left-hand sides of Eqgs. (4.6)-(4.9) and (4.43). Using the Hamiltonian H=Pf, Eq. (4.86)

can be written as:
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I=-], +I[H(s, P,u)-Ps]dt (4.87)

%o

The components of the control vector u are just the two components of the thrust
acceleration, €, and &,. The initial time 7, and the final time 1, are always fixed.

Assume now that the value of the augmented performance index I given in Eq. (4.87)
is the optimal one, that is, it corresponds to the optimal choice of the control u. Then, if the
optimal control is perturbed by a small amount du to u+3u, the augmented performance
index I is correspondingly perturbed to I+Al, given by:

I+Al=-J, -8J, +f[H(s+5s,P,u +8u)—P(s+8)]dr (4.88)

4

where, the perturbations in the state components resulting from the perturbation in u have
been denoted by &s, and where:

& = s(ﬁ) _4(8) (4.89)
dt dt

From Eqgs. (4.87) and (4.88), the total variation of I is:

Al =-8J + J [AH - P§]dt (4.90)

To

The first variation of 1 is that part of Al corresponding only to the first order change of H
in the small quantities &x, du:

Ol =-8J; + j [6H - P&s]dr (4.91)

To

Integrating the second term in the integral by parts and expressing 8H in terms of 8s and du

one can write Eq. (4.91) as:
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T

S1=—8J, — P,8s, + P85, + _[ (QIL 15)55+ 9 50 |ar 4.92)
ds ou

To

where, the subscripts 0 and f were used to denote the values of the costates P and the
variations s at the initial and final time respectively. The natural choice for the costate

functions P at this point is:

p = — — 4.93
P = (4.93)

based on which 81 from Eq. (4.92) can be written as:

S1= 8], — P,5s, +P,8s, + J %Iiau dt 4.94)
u

Since the original choice of u was assumed to be the optimal one, 31 should vanish for
arbitrary perturbations u about u. From Eq. (4.94) a necessary condition for this is:

H_, (4.95)
du

In view of Eq. (4.95) and the requirement that 8l be zero, one obtains from Eq. (4.94):

81 = —8J, — P,8s, + P,ds, (4.96)

The conditions given by Egs. (4.93) and (4.95) are necessary for optimality. The
explicit form of Egs. (4.93) and (4.95) has already been obtained in the text. Eq. (4.95) is
just the optimality condition used in obtaining Eq. (4.46), while Eq. (4.93) represents the
costate equations (4.54)-(4.58). Here, Eq. (4.96) will be further manipulated into a form
that will readily yield the transversality conditions for any problem that one wishes to
study. First, one can write Eq. (4.96) explicitly, using the components of P and s at the

initial and final times as:

81 = —(1+P, )8, - P, 8h, — P, 8x, — P, Or, — P, 36,
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+P, 8], + P, h, + P, 8x, + P, 51, + P, 86, (4.97)

The initial value of the cost is zero (J=0), meaning that 0J, = 0. The final value of the
cost is free (since the aim in the optimization problem is to find the optimal final value),
meaning that:

P,=-1 (4.98)

Note that this proves the result claimed in Eq. (4.45). Now Eq. (4.97) is reduced to:

Ol = P,,,8h, + P, ;8x, + P, r, + P, 80, ~ P, &h, — P.0x, ~P 8r, —P,86,  (4.99)

For transfer problems the variations 8h, 8x, 8r, and 86 are not in general independent
of each other, neither at the initial nor at the final time. However, in all such problems, the
vehicle, before the initial and after the final times is assumed to coast along conics (circles,
ellipses, parabolas, or hyperbolas), defined by their orbital elements h, (angular
momentum), e; (eccentricity), and @, (orientation) (i is O or f). For all such problems the
variables that will be prescribed or left free at the initial or final time are h, e, ® and 6,. To
derive the transversality conditions one will therefore have to cast the remaining part of the
first variation of I given in Eq. (4.99) in terms of the independent variations 8h,, Se,, dw,
and 8, rather than the dependent variations 8h,, &x,, 8r,, and 6,. Toward this end one can
first observe that at any point along a conic (corresponding to Keplerian motion) the radial
distance r and the radial component of the velocity x are given by (see Eq. (A.5) of
Appendix A):

2 . -
o h . xocsin(6-0) (4.100)
1+ecos(6— ) h

Differentiating Eq. (4.100) one finds that, to first order, variations in x and r corresponding
to small variations 8h, e, dw, and &0 are given by:

h? - 2
r = 2gh X i ) ge + X (56 - 80) (4.101)
h h%e h
202 _(p2 _ Y h? —
Be=-Xon+ ST00-0) o ") (5050 (4.102)
h exh'r hr
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Writing these expressions for x and Jr at the initial and final times, one can substitute into
Eg. (4.99) and obtain the desired form of the remaining part of ol

81 =K, ,5h, — K, Sh, + K8, — K 8¢, + Kgo80, — K06, — K080, + K800, (4.103)

where the van'ab}es K are defined as:

2.2 2 2 2
- er’—(h"-r r(h"=r
Kh =Ph +M : Kc _ ( — ) Px _ ( - )Pr (4.104.a)
h exh'r eh
2_ 2 2_ 2
K,=p,+0=Tp +Xp ., g =-D-Ip X p (4.104.b)
hr h hr h

and the additional subscript O or f represents corresponding values at the initial or final
time. .

For any transfer problem of interest Eq. (4.103) can be used to pick the desired
transversality conditions at will. First, for all transfer problems the eccentricities of the
initial and final conics are always fixed, meaning that, de, and de, in Eq. (4.103) will
always be zero. Then, whenever one of the six quantities hy, ©,, 8, h,, @, and 6; is left
free in a problem, the coefficient of the corresponding variation of that quantity in Eq.
(4.103) is set equal to zero, resulting in a transversality condition. For example, if for a
given problem the angular momentum at the initial and final times is left free, the
requirement that 8I=0 results in the two transversality conditions K=K, =0. This result
has an interesting implication when combined with the fourth integral of motion given in
Eq. (4.60). It implies that the constant A, is zero, and that the exact optimal cost for all such

problems is given by:

. _3H'1,

J 4.105)
P= (

In all the (transfer) problems that will be considered here the argument of latitude 6
will be free both at the initial and final times. From Eq. (4.103), this means that one will
always have at least the two transversality conditions:

2 2
if 0,is free, then: P, + h;]' fip, +25p, =0 (4.106)
T ,
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where i is O or f. Also, the angular momentum of the initial conic will always be specified,
meaning that 8hy=0. Taking the above considerations into account, using Eqgs. (4.106), and
defining the difference in the orientation between the initial and final conics by Q:

Q=0;-0, ; O0Q=060,-00, (4.107)

one can reduce Eq. (4.103) to (with zero 8¢, and 8e,):

Sl = — (th + 21, Prfh— X; Py )Shf - P,5Q (4.108)

f

For some of the problems the final value of the angular momentum h will be left free,
meaning that, for such problems one will always have the additional transversality

condition;

if h, is free, then: P, + 21 Pffh— P (4.109)

f

Finally, for problems in which the orientation difference Q between the initial and

final conics is left free one will also have the transversality condition:

if Q is free then P, =0 (4.110)

At the limiting case in which at least one of the eccentricities associated with the initial
or final conics tends to zero, this last category of problems includes the very important
subclass of transfers from or to a circular orbit. For all the problems in this subclass the
exact optimal value of P, is zero.

In concluding this section one must note that the transversality conditions obtained
here were all exact and also necessary for a (power-limited) trajectory to be optimal.

4.6.4 Application of the Transversality Conditions

Sections 4.6.1 and 4.6.3 have supplied the exact first-order necessary conditions for
optimality for the problem corresponding to power-limited orbital motion. The goal is of
course to use the solution uncovered in Section 4.4 and try to satisfy as many first-order
conditions as possible. Note that, along a trajectory violating even a single first-order
condition, the first variation of the (augmented) performance index fails to be identically
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zero. The hope therefore is that, if any first-order condition is violated by the solution
uncovered in Section 4.4, the violation will be small, resulting in nearly-optimal trajectories
(see also Section 4.6.5 for more on this subject). Thus, this section will combine the
results of Sections 4.6.2 and 4.6.3 in order to uncover explicitly the form that the
u'ahsversality conditions assume under the tangential thrust assumption. As seen in Section
4.6.3, there will always be at least two transversality conditions, given in Eq. (4.106).
Thus, substituting for the costates from Eq. (4.77) into Eq. (4.106) one obtains:

2yy2 2yy2
(rovo)pe=0; (rfh‘sz ]Pe=() (4.111)

2
hO f

where V, V, are the (nondimensional) speeds of the vehicle at the initial and final times
respectively. Note that, in terms of the state variables h, x, and r, the (nondimensional)
speed of the vehicle, V, is given by (see Fig. 4.1):

hz 1/2
v:(x2+—2-) (4.112)
I

Since for obvious reasons the terms within the parentheses cannot be zero at the endpoints
of a transfer, Eq. (4.111) implies that the two transversality conditions in Eq. (4.106) can
be satisfied by the solution corresponding to the tangential thrust assumption only if one
selects P, as:

P,=0 (4.113)

This result was used as the justification in Section 4.4.3 for reducing Eq. (4.77) to
Eq. (4.78). If one now substitutes for the costates from Eq. (4.78), and also takes into
account Eq. (4.112), then, Eq. (4.109) assumes the form:

Alvi_2|o (4.114)
2 f
hf f

But on the final conic, the following two well-known3* relations of Keplerian motion are
valid (see Appendix A):

= hf=af(1—cf) (4.115)
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a,in Eq. (4.115) is the semimajor axis of the final conic. If the final conic is an ellipse, then
3 is positive and e, is between 0 and 1. If the final conic is a hyperbola, then a, is negative
and e is greater than 1. If the final conic is a parabola, then a, is infinite, e, is 1, and h, is
finite34. Substituting from Eq. (4.115) into Eq. (4.114), Eq. (4.109) can now be written as:

hé(eg-l)=o (4.116)
f

The throttling parameter A cannot be taken equal to zero, since in such a case the
thrust is zero and there can be no transfer. Also, the angular momentum of the final conic h,
is always finite. Accordingly, from Eq. (4.116), the only way in which the transversality
condition given in Eq. (4.109) can be satisfied by the solution corresponding to the
tangential thrust assumption is by selecting the final eccentricity e, as:

e =1 4.117)

But problems for which e, =1 are just escape problems! Therefore, leaving the final value
h, free, combined with the solution found using the tangential thrust assumption, suggests
an escape problem! (from an arbitrary conic).

This section now concludes by summarizing the important results from the present
and the last section:

(1) For problems in which the angular momentum at the initial and final times is left
free the exact optimal (power-limited) cost is given by Eq. (4.105).

(ii) For all the transfer problems in which either the orientation difference between
the initial and final conics is left free or either one of the conics (or both) is circular the
exact optimal value of P, is zero (see Eq. (4.110)).

(i11) For transfer problems between two arbitrary conics, in which the orientation
difference between the conics is fixed, the costate P, is also zero, but as a consequence of
the tangential thrust assumption (see Eq. (4.113)).

(iv) Leaving the angular momentum at the final time free implies that the eccentricity
of the final conic should be fixed at 1, and, fixing the eccentricity of the final conic at 1
implies that the angular momentum at the final time may be left free (see Eq. (4.117)).

Note that (i) and (ii) are independent of the tangential thrust assumption, while (iii)
and (iv) are consequences of the tangential thrust assumption.
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4.6.5 How Good is the Tangential Thrust Assumption?

One will sooner or later have to go back and check the validity of the tangential thrust
assumption if one is to be able to say anything at all about the possible near-optimality of
the thrust program proposed in Eq. (4.10). Recall that the tangential thrust assumption was
used in three steps: The first two steps consisted of dropping out Eq. (4.56) representing
the costate equation for the radial distance r, and changing the right-hand-side of Eq. (4.54)
representing the costate equation for the angular momentum h. This led to the expressions
for the costates P, P,, and P, given in Eq. (4.77). Then, enforcing the transversality
conditions (see Sections 4.6.3 and 4.6.4) "fixed" the value of the costate P, at zero and
simplified the costate expressions for P, P,, and P, as in Eq. (4.78). A preliminary check
of the validity of the tangential thrust assumption should therefore consist of a comparison
of the left and right-hand-sides of Egs. (4.54) and (4.56), with P, = 0, and using the
expressions for the costates P,, P,, and P, found in Eq. (4.78). Differentiating the
expressions for the costates P, and P, in Eq. (4.78), and using Egs. (4.78), and (4.49)
through (4.51), one finds that, for P, = 0, Eq. (4.54) is always satisfied, while the left and
right-hand sides (LHS, RHS) of Eq. (4.56) assume the form:

2Ax 3Ahx A? A?

LHS of Eq. (4.56); ——+—7F——~ 4.118.a

of Eq. (4.50) hee  * W ( )
2

RHS of Eq. (4.56): — %AT" MELLL (4.118.b)
T r r

Thus, Eq. (4.56) is satisfied only when (A%h%?) is zero. In other words, when (A%h%r?) is

very nearly zero, the thrust program proposed in Eq. (4.10) is very nearly optimal (in the
power-limited sense), because, in such a case, every single first-order necessary condition,
except Eq. (4.56), is satisfied exactly, while Eq. (4.56) is satisfied very nearly. Note that
the term -(A%hr?) causing the disagreement in Eq. (4.118.a) is second order in the
throttling parameter A compared to the remaining terms. Since the throttling parameter A is
inversely proportional to the transfer duration (see Eq. (4.83)), for long duration transfers
this term is negligible, the optimal thrust is approximately tangential, and the thrust
program proposed in Eq. (4.10) is practically optimal! The result in Eq. (4.118) also
suggests that the assumption that the optimal thrust is approximately tangent to the optimal
flight path is more consistent with transfers that are performed far away from a planet and
on which the average levels of the magnitude of the angular momentum remain high. This
observation is clearly in agreement with one's intuition.
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As the duration of transferring between two given conics tends to infinity, and the
thrust levels go to zero (see Eq. (4.83)), the solution supplied in Section 4.4,
corresponding to the thrust program proposed in Eq. (4.10), asymptotically tends to the
optimal solution for power-limited transfers. In fact, in such a case, both the optimal
solution and the solution of Section 4.4 tend to Keplerian motion, for which the cost is
zero! Note that it has been well-established in the literature, that, for power-limited

transfers between two given conics the optimal cost is inversely proportional to the transfer
duration*s!. Assuming that the angular momentum h,, the eccentricity e,, and the
orientation @, of the initial conic are always fixed, and that a transfer is performed using a
one-segment transfer trajectory, that is, a trajectory on which the throttling parameter A has
a single value, one can distinguish between the following three classes of transfers in
conjunction with the near-optimality of the thrust program proposed in Eq. (4.10) and the
corresponding exact analytic solution given in Section 4.4 (see Sections 4.7 through 4.12
for a justification):

(1) For "pure" transfer problems the shape, size, and orientation of the final conic are
always of interest. This means that the angular momentum h,, the eccentricity e,, and the
orientation @ of the final conic are always fixed. For such problems, due to the loss of
controllability suffered because of the tangential thrust assumption, the duration of (a one-
segment) transfer cannot be preassigned. Solutions exist only for a finite set of values of
the transfer duration. Accordingly, one is not free to perform the (one-segment) transfer in
arbitrarily large time intervals, using arbitrarily small thrust levels. Once the initial and final
conics are fixed, the minimum amount of fuel that is required to perform a one-segment
transfer using the thrust program proposed in Eq. (4.10) is also fixed.

(ii) An important exception in case (i) corresponds to the subclass of transfers
between two coplanar circular orbits. This turns out to be an interesting singular case (see
Section 4.8). If both the initial and final conics are circles, then, one-segment transfer
solutions between the conics do not exist. However, if the eccentricity of the final conic is
slightly off zero, then there exists a very large number of solutions! Specifically, as the
eccentricity of the final conic tends to zero and the final conic tends to a perfect circle, the
number of possible solutions increases without bound, and one can in such a case find
solutions corresponding to arbitrarily large transfer durations! Thus, in this case the amount
of fuel required for a transfer can (in principle) be reduced by as much as desired (within
the operating limits of the power-limited propulsion system), as long as one picks the
solution corresponding to a "large enough" transfer duration.
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(iii) Escape problems are a special kind of transfer problem in which the interest is
in escaping the gravitational field of a planet. Accordingly, the size of the final parabolic
trajectory is of little importance and one can now get away (in practice) by specifying only
the eccentricity (e, = 1) of the final parabolic trajectory and by leaving its angular
momentum h; free. Because of this, one can now freely preassign the duration of
transferring to the final parabola, and thus, for such problems, one can (in principle) make
the amount of the required fuel very small by picking a large enough transfer duration. A
variation on these problems is the one for which the angular momentum of the final
parabola is specified, but its orientation ; is left free. This situation is not as practical as
the previous one because there is usually a need to specify the orientation ®; and exit (for
example) a planet's sphere of influence with a heliocentric speed having a preassigned
direction. A very interesting property of the thrust program proposed in Section 4.3 is the
fact that the corresponding exact analytic solution of Section 4.4 satisfies the corresponding
transversality condition for both of the above cases. This was shown in some detail in
Section 4.6.4.

It will be shown in Section 4.12, that the difficulty in preassigning large transfer
durations, associated with one-segment transfers, can be bypassed by allowing multiple-
segment transfers, that is, transfers composed of a finite number of segments, on each one
of which the throttling parameter A assumes a specific value. If multiple-segment transfers
are allowed, then one can in principle still use the thrust program proposed in Eq. (4.10)
and preassign arbitrarily large durations for each individual segment of a transfer between
any two given coplanar conics! This result is of great practical importance, because it
implies that if one is willing to compromise with respect to the transfer duration and "wait
longer" one can still reduce the fuel consumption to very small levels using a power-limited
propulsion system and the guidance corresponding to the exact analytic solution of Section
4.4 (see Section 4.12 for more details).

4.7 Boundary Conditions

The boundary conditions for any transfer problem arise from the requirement that the
state of the vehicle be continuous at the initial and final times. A "split second" before the
initial time T = O the vehicle coasts along a Keplerian conic, specified by its orbital elements
h,, e,, and w,. A "split" second after T = 0 the thrust is turned on, and the vehicle is on the
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transfer trajectory, specified by its integration constants A, B, and C. Similarly, a "split
second"” before the final time 1 = T, the thrust is turned off, and a "split" second after T = T
the vehicle coasts along a Keplerian conic, specified by its orbital elements h;, e, and w,.
Combining Eqs. (4.16), (4.17), describing the transfer trajectory, and Eq. (A.5),
describing a Keplerian conic (see Appendix A), one finds that the following conditions
should be satisfied at t=0and 1= 1,:

h? hg
[ = = (4.119)
l+e, COS(eo —(00) 1+BCOS(60 —C)
Xy = e, sin(6, — ;) - 21yA +Bsin(6, - C) (4.120)
h, h,
2 2
. h{ _ h; 4.121)
1+e,cos(6, - ;) 1+Bcos(6, - C)
- e, sin(8; - ©,) _ 2r; A +Bsin(6; - C) (4.122)
h, h,
In addition, one always has the explicit expression for the throttling parameter A:
A=Di—h (4.123)
T¢

found in Eq. (4.83) from the requirement that h=h, at t=0, and h=h, at =T,

The final condition arises from the requirement that at the final time t=t,, one among
Egs. (4.25), (4.26), (4.34), and (4.42) of Section 4.5, relating h with 8 along the transfer
trajectory, should be satisfied. Only one among these equations applies along a particular
transfer, according to whether B=0, B=1, 0<B<1, or B>1 respectively. Note that (see
Section 4.5) there is a one-to-one correspondence between the generalized eccentric or
hyperbolic anomalies E or H, and the argument of latitude 8 or &, where £=6-C. Note also,
that the generalized hyperbolic anomaly has been denoted by H, since there is no danger of
confusion with the Hamiltonian H given in Eq. (4.44) which does not play an important
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role in this chapter. The conditions given in Egs. (4.119) through (4.123) can only specify
the final values E,, or 6, up to a multiple of 2, that is, one can write:

E,=E,+2kn; 6,=0,+2kn (4.124)

where k=0,1,2,3,4,...etc, and E; and 8, are between 0 and 2n. Using Eq. (4.124), one
can write Egs. (4.25), (4.26), (4.34), and (4.42) of Section 4.5 at the final time 7=7;in a

unified fashion as:

T.(h; +hy) 1

i) For B=0 -—(0—-6,)=k 4.125.a
(1) For amthzh? 27 O = 0) | ( )
i) ForocBar el *;hg)b 4 BOinEq —sinEy)- (B =By) _ (4.125.b)
47thgh; 2n
3 3
-_— + -
GinForp=t  (Perho) (7730 +30im%) (4.125.0)
4mthgh; 12w
(vForB>1  Tilltho)b BlsinH, —sintly)-(H, - Bo) _g (4.125.d)
41thgh; 2w
where, b in Egs. (4.125.b) and (4.125.d) is defined respectively as:
1;:(1..132)3'2 or  b=(B? -1)3’2 (4.126)
and y,, y, in Eq. (4.125.c) are defined as:
yf = tan(%—f-) ) y0 = tan[%) (4.127)

Note that k in Egs. (4.125.a), (4.125.b) is a nonnegative integer, related directly to
the number of revolutions around the planet during the transfer. For the case in which B is
less than one, among all the particular solutions satisfying Eqs. (4.119) through (4.123)
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only the ones for which the left-hand-side of Egs. (4.125.a) or (4.125.b) is a nonnegative
integer are acceptable. It is clear from Egs. (4.125) that the time of transfer T, and the

number of revolutions around the planet during the transfer are intimately connected with

each other.

4.8 Transfer from a Circular Orbit to an Arbitrary Conic

For this class of problems the quantities that are fixed at the initial and final times are
hy, €y, by, e, and @ (®, is not defined). The initial conic is assumed to be a circle, meaning
that the initial eccentricity is zero. With no loss of generality, due to the circular symmetry
of the initial conic, one can assume that the orientation of the final conic is zero. It will also
be assumed that h, is different than h,. Explicitly, one has:

&=0; ®=0; h #h, (4.128)

Taking the above into account, and according to whether h; is greater or less than h,, Egs.
(4.119), (4.120) yield:

A>0: 1, =h?; eo—c=—12‘- . B=2hlA (4.129.2)

A<O: 1, =h?; eo—c=§ ; B=—2h2A (4.129.b)

Using Egs. (4.129) into Egs. (4.121), (4.122) one obtains, for both positive or negative
A, the conditions:

e,cos®, = 2hjAsin(6, —6,) (4.130)

e;sin6; =2r, A - 2hgAcos(8; —8,) (4.131)

Note that a solution does not exist if ¢~=0, that is, if the final conic is also a circular
orbit. It will therefore be assumed that e, >0. The singular case e~0 will have to be treated

as a limiting case in which e, is taken as very small. Egs. (4.130), (4.131) can be combined
and solved for the sine and the cosine of 6:

79



2A(h? - hje, cos®, )(e; +2h;Asin6, )

sin@, = = (4.132)
(e, +2h3Asin®,) + 4hjA% cos’ 6,
2A(h}-h} 8, )(2h2A cosb
cos, = ( i COSZ O)( 071 00° 0) (4.133)
(e +2h}Asin®,) +4hyA” cos’ 6,
Using now the trigonometric identity:
sin’@, +cos’ 6, =1 (4.134)

and substituting from Egs. (4.132), (4.133) into Eq. (4.134) one obtains a condition for
the starting value of the argument of latitude 6, on the initial circular orbit. Using standard

trigonometric identities®, this condition can be put in the form of a fourth order polynomial
equation:

b,y +b,y’ +b,y’ +by+b, =0 (4.135)

where the unknown y is defined as:

y= tan(%&) (4.136)

The coefficients of Eq. (4.135) are given explicitly in Appendix D. Note that, due to the
identity expressed in Eq. (4.134), the expressions for the sine and the cosine of §; given in

Eqgs. (4.132) and (4.133) can be considerably simplified and written as:

2 .
Sin@, = (e g 2A)2+ h]sin@, 4.137)
h; —hge, cosf,
2
cos8, = 105950 (4.138)

h? —hje, cos,

The solution methodology for a given problem proceeds in the following fashion:
One assumes a value for the final time T, and evaluates A from Eq. (4.123), and B from Eq.

(4.129)..B cannot be zero. Then, solving the polynomial equation (4.135) one finds all the
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real roots y, and determines the corresponding starting points 6, on the initial circular orbit.
Any such 8, can be taken (at first) with no loss of generality to be between 0 and 27, that
is, 0£6,<2n. For every such 8,, Eqgs. (4.137), (4.138) fix the corresponding 6, up to a
multiple of 2rt. That is, 0, = 6,+2kn, with 0<6,<2m, and k=0,1,2,3,...etc. If B>1, then
k=0 and one checks whether the left-hand-side of Eq. (4.125.c or d) is zero. If B<1, then
one checks whether the left-hand-side of Eq. (4.125.b) is equal to zero or a positive
integer. If not, one repeats the procedure with a new value of T Therefore, one way of
finding all the possible solutions for a given problem is to plot the left-hand-side of Eq.
(4.125) as a function of 1,, and for all the real roots of Eq. (4.135). The values of T, (for
0<B<1) for which this plot intersects any positive integer (k=1,2,3,...), plus the values of
T, (for B>0) for which it intersects zero (k=0) represent the candidate solutions to a given
problem. For k=0 the starting point on the initial circular orbit is either 8,, or 6,-21. Each
such candidate value of 1, is a real solution only if the transition from the starting point to
the final point can be made without going through a value of 6 at which the angular
momentum h, evaluated through the applicable one among Eqs. (4.25), (4.26), (4.34), and
(4.42), becomes infinite. For each such value of T, representing a real solution the
corresponding value of k fixes both the value of 6, and the number of full revolutions
around the planet during the transfer. The transfer problem is then completely solved, that
is, everything related to the transfer can be easily calculated.

One may argue that the problem with the above procedure is that, to find all the
possible solutions, one will have to plot Eq. (4.125) for T, between 0 and ! However,
after working on specific problems for a while, it becomes apparent that, except for the
case of transfers between a circular and a very nearly circular orbit, the interval of values of
T, for which Eq. (4.135) has real roots is very limited. However, it has not been proven in
this chapter that solutions for much higher values of T, do not exist, and this topic may
deserve some further consideration in the future. An example of a transfer between a
circular and a very nearly circular (e,=0.05) orbit is given in Figs. 4.6 and 4.7. From Fig.
4.6 it is seen that there are 9 solutions for this example. The actual transfer (Eq. (4.17))
corresponding to the solution with k=10 is plotted in Fig. 4.7. It is interesting to remark
here that if one starts reducing the eccentricity of the final orbit toward zero, then, both the
number of solutions and the corresponding transfer durations greatly increase. This fact is
vividly depicted in Figs. 4.8 through 4.11, for which €, is equal respectively to 0.01,
0.005, 0.001, and 0.0005. Since h, is still equal to 2, Figs. 4.8 through 4.11 basically
correspond to (practically) the same transfer problem defined in Fig. 4.6. Thus, in practice,
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for the case of transfers between two coplanar circular orbits, by playing around with the
(very small) value of e, one can find (one-segment) transfer solutions of arbitrarily large
transfer duration. This result has important practical implications from the point of view of
power-limited optimality and fuel consumption and more will be said on it in Section 4.12.
Thé case of transferring between two coplanar circular orbits, along with a complete
mathematical depcription of what happens as e, tends to zero, is given in Appendix D. Note
that when e, = 0 Eq. (4.135) has no real solution. In fact, when e, is exactly equal to zero,
to satisfy this polynomial equation one must perform the transfer in infinite time using zero
thrust. The case with e, = 0 is thus clearly a singular case. Figures 4.12 through 4.17
supply three examples of transfers (Eq. (4.17)) to elliptic orbits of low and high
eccentricities and to a hyperbolic conic. It appears that, as the eccentricity of the final conic
increases, the number of (one-segment) solutions decreases (very fast), but does not go to
zero. As long z;s the final conic does not intersect the initial conic (see Section 4.11) there

always seems to be at least one (one-segment) solution.

4.9 Escape from a Circular Orbit

Escape problems are just a special case of transfer problem, in which the primary aim
is to escape from the gravitational attraction of a planet®. This can be done by transferring
to an open conic for which the eccentricity e, is greater than or equal to one*. For e>1 the
vehicle escapes with finite speed at infinity*. For e=1 the vehicle escapes with zero speed
at infinity*. Accordingly, from an energy point of view, the cheapest way to escape is by
transferring to a conic for which e=1. The actual final value h, of the angular momentum of
the vehicle is not important and can be left free. Then, as was seen in Section 4.6.4, as
long as e=1, the corresponding transversality condition (Egs. (4.109), (4.116)) is
automatically satisfied. Thus, for an escape problem from a circular orbit, it will be
assumed that the quantities that are fixed at the initial and final times are h,, €,, e=1, and
0=0; ®, is not defined, while h, is left free. The important difference between such
problems and the transfer problems considered in Section 4.8 is that now, solutions may
exist (in principle) for any value of 7, This is so, because the free final value of the angular
momentum h, now plays (technically) the same role that the time of transfer T, played in
Section 4.8. Physically, escape can be achieved at any desired final time by appropriately
selecting the constant A, so that the mechanical energy (per unit mass) of the system is
increased at the correct (mean) rate. Thus, the solution methodology for a given escape
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problem is basically identical to the one given in Section 4.8. The difference is that instead
of plotting the left-hand-side of Eq. (4.125) as a function of T, one now plots it as a
function of h,. Figure 4.18 supplies the plot of the left-hand-side of Eq. (4.125) for such an
escape problem. The transfer trajectory (Eq. (4.17)) corresponding to point S in Fig. 4.18,
with k=3, is plotted in Fig. 4.19, along with the initial (circular) and the final (parabolic)

conic.

4.10 Transfer Between two Arbitrary Conics,
and Escape from an Elliptic Orbit

The more general problems relating to transfers between two arbitrary conics and to
escape from an elliptic orbit can be treated basically in exactly the same way as the
corresponding problems of Sections 4.8 and 4.9. However, the corresponding algebra is
considerably more involved.

For this class of problems the quantities that are always fixed at 1=0 and at 1=t are
respectively hy, e, ®,, and e,. For transfer problems h, and ©; are also fixed, and (one-
segment) solutions exist only for particular values of T;. For escape problems the initial
conic is assumed to be an ellipse (e,<1), by is free, e=1, and (one-segment) solutions (in
principle) exist for any value of 1,. With no loss of generality one can always assume that
®,=0, that is, the orientation of the initial conic is zero. From Eqs. (4.119) through (4.122)

one then obtains:

e,c0s8, = Bcos(6, ~ C) (4.139)
€,sin6 = 2r, A + Bsin(6, - C) (4.140)
e cos(8; — ;) = Beos(6, - C) (4.141)
& sin(6, — ®,) = 2r, A +Bsin(8, - C) (4.142)

From Egs. (4.139) and (4.141) B can be expressed as:
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e,cos8, _ e cos(6, —w,)

= = 4.143
cos(8,-C)  cos(6; —C) ( )

With no loss of generality one may assume that 0SC<2n. The equality on the right in Eq.
(4.143) can be solved for the tangent of C to yield:

e, cos8, cosB, — e, cos(6; — ®,)cos6,

tanC = (4.144)

e, cos(8, — , )sinB, — e, cos8, sinO,

Equation (4.144) supplies two roots for C in 0<C<2n. The possible solution(s) for C are

the one(s) for which B is nonnegative. The remaining steps are algebraically quite intense.
First, substituting from Eqs. (4.143), (4.144) into Eqs. (4.139)-(4.142) one can solve for
the sine and the cosine of 6; as:

sin9f=%; cosef=% (4.145)

3 3

where the quantities N, N,, and N, are given by:

N, = 2h2Asin8, + (1 + €, cos8, )(e, cosw; —¢,) (4.146)
N, =2h2Acos@, — (1+¢,cos8, e, sin®, (4.147)

N, = (2h?A +e,e, sin, )(1+ ¢, cos8, ) — 2hgAe, cos(8, — o) (4.148)
Then, using the trigonometric identity:
sin’ @, +cos’ 6, =1 (4.149)

and substituting from Eqs. (4.145)-(4.148) into Eq. (4.149) results in a condition for the
starting point 8, on the initial conic. Using standard trigonometric identities®, this condition
can again (see Eq. (4.135)) be put in the form of a fourth order polynomial equation:

b,y' +b,y’ +b,y’ +by+b,=0 (4.150)
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where the unknown y is (see Eq. (4.136)) defined as:

y= tan(%] 4.151)

The coefficients of Eq. (4.150) are given explicitly in Appendix E.

Note that for €, = o, = 0 the results of the present section reduce to the corresponding
results of Section 4.8, valid for transfers and escapes from a circular orbit.

The solution methodology for a given transfer or escape problem is more or less
identical to the one given at the end of Section 4.8, with the analogies involved being too
obvious to go through in detail once again. The left-hand-side of Eq. (4.125) can always be
plotted as a function of 7, or h, to determine the candidate solutions. However, due to the
well-defined orientation difference between the initial and final conics, there arises in this
case another possibility for escape problems that is worth exploring. If one chooses to
leave this orientation difference free, then one may consider escape problems with fixed T,
and h;. Recall that in such a case the exact optimal value of P, is zero (see Eq. (4.110)),
that is, Py is not zero just because of the tangential thrust assumption. For escape problems
in which @ is left free the candidate solutions are determined by plotting the left-hand-side
of Eq. (4.125) as a function of ,, and only for 0S®,<27.

A transfer example between two elliptic orbits, involving no orientation change, is
supplied in Figs. 4.20, 4.21. One must note here that for transfers between two coplanar
elliptic orbits having the same orientation the number of (one-segment) solutions and the
corresponding transfer durations greatly increase as the final eccentricity e, approaches the
initial eccentricity e,. This situation is similar to the one corresponding to transfers between
two coplanar circular orbits (see Section 4.8), and is depicted clearly in Figs. 4.22, 4.23.
The solution search conducted in Figs. 4.22, 4.23 corresponds practically to the same
transfer problem. An actual transfer corresponding to either Fig. 4.22 or Fig. 4.23 is not
shown. Figures 4.24, 4.25 supply a transfer example between two elliptic orbits, involving
a large orientation change. Figures 4.26, 4.27 supply a transfer example from an elliptic
orbit to a hyperbolic trajectory, while Figs. 4.28, 4.29 supply a transfer example between
two hyperbolic trajectories. The jump of magnitude 1.0 that appears whenever the left-
hand-side of Eq. (4.125) is plotted is due to the fact that all such plots are done with
0<8,<2m, and 0<6;<271. A maneuver such as the one given in Fig. 4.29 could play an

important role during a planetary encounter, in which, having control over the vector of
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heliocentric velocity of a vehicle at the exit of a planet's sphere of influence (Jupiter for
example) is most desirable for setting up the next (planetary) encounter (with Saturn,
Uranus, Neptune, etc.).

Figures 4.30 and 4.31 supply two solutions for an escape problem from an elliptic
orbit for which the orientation of the final parabolic trajectory is left free. The solution that
is cheaper, both in the power-limited and the constant ejection velocity sense, is the one
given in Fig. 4.30, corresponding to ®; = 0 (see Table 4.1, Section 4.13). Note that the
plot of the left-hand-side of Eq. (4.125) as a function of @, is not shown for this problem.

This section concludes on the note that, as long as the final conic does not intersect
the initial conic, there always seems to be at least one (one-segment) solution for the

corresponding (transfer or escape) problem.

4.11 Existence of One-Segment Solutions,
and some Geometric Considerations

The search in the previous three sections was for one-segment solutions to given
transfer or escape problems, that is, trajectories on which the throttling parameter A had a
single value. An n-segment solution (n=1,2,3,...) will henceforth denote a trajectory on
which the value of A switches n-1 times in 0<1<7,. Note that there is really no reason to
refer to escape problems explicitly, since escape problems are just a special kind of transfer
problem. Thus, for simplicity, one-segment solutions will henceforth be referred to just as
"transfers”, or as "one-segment transfers”. Before discussing the existence of such
transfers it will be helpful to adopt some notational conventions. For any transfer problem
the word "from" will always be associated with the initial conic (at the initial time) and the
word "to" with the final conic (at the final time). The quadruplet (h,e,»,0) will be used to
denote a (Keplerian) conic with orbital constants h, e, and o, with 8 fixing the point of
departure "from" or arrival "to" the conic. If the conic is a circle the second entry will be
zero and the third entry will be a dash. Sometimes the fourth entry may be omitted and a
conic be denoted by the triplet (h,e,®). Similarly, a one-segment transfer with constants
A=0, B, C, and time duration T, > 0, will be denoted by the quadruplet (A,B,C,1)), or by
the triplet (A,B,C).

Let now P be any point on a transfer trajectory (A,B,C), and leth, x, 1, 0 be the state
components at P. If the thrust were suddenly turned off at P, the motion that would follow
after P would be Keplerian. The orbital elements of this Keplerian motion define the so-
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called* instantaneous conic (h,e,m) at P. One can also define the associated conic at P to be
the conic (h,B,C). The associated conic (h,,B,C) at =0 will be called the initial associated
conic and the associated conic (h,B,C) at T=T, will be called the final associated conic.
Figures 4.32 and 4.33 show the initial (ACO) and final (ACf) associated conics for the
transfer examples given in Figs. 4.21 and 4.25.

It is now possible to supply a few lemmas, related to the geometry of motion and the
existence of one-segment transfers. It will henceforth be tacitly assumed that the motion
along any transfer is performed under the thrust program proposed in this chapter (Eq.
(4.10)), and that the initial and final conics are different. A detailed proof for a lemma will
be supplied only when absolutely necessary. The proof of the following four lemmas is
elementary.

Lemma 4.1. A one-segment transfer trajectory (A,B,C,t,) can never intersect
itself.

Lemma 4.2. If (A,B,C,1) is a transfer from conic (hy,e,,0,8,) to conic
(h,e,0,9;), then (A,B,C,1)) is also a transfer from conic (-h,e,,0,,8,) to conic
(-hg,€0,®4,6,)-

Lemma 4.3.1If a vehicle takes off at T = O from a point K of a circular orbit
(hy,0,~,8,) along a one-segment transfer trajectory (A > 0,B,C,1,), and if at time T > O the
vehicle is at point L, then, the distance KL is equal to (e/2A), where e is the eccentricity of
the instantaneous conic at L (see Fig. 4.34).

Lemma 4.4. Consider a vehicle that takes off at T = 0 from a conic (hy,e,,®,,0,)
along a one-segment transfer trajectory (A > 0,B,C,t,), and draw a vector with origin at the
center of the planet, of magnitude (B/2A) and direction C-(1/2). Let K be the endpoint of
this vector. Then,

(1) If M is the point of departure of the vehicle from conic (hy.e,.0,,0,), then the
distance MK is equal to (e,/2A) (see Fig. 4.35).

(i) If at time T > O the vehicle is at point L, then the distance KL is equal to (e/2A),
where e is the eccentricity of the instantaneous conic at L (see Fig. 4.35).

The proof for Lemma 4.1 is obtained by considering the trajectory equation (Eq.
(4.17)). The proof for Lemma 4.2 is obtained by considering Egs. (4.119)-(4.122). The
proof for Lemmas 4.3 and 4.4 is obtained by considering Egs. (4.130), (4.131), (4.139)-
(4.142), dropping the subscript f from Egs. (4.141), (4.142), and using the law of

cosines3,
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Lemma 4.5. A one-segment transfer (A,B,C,T,) from conic (hy,e,,®,,0,) to conic
(hye,®,0;) does not exist if at least one among the following two equalities is valid:

hg _ b

h,=h, ; =
0T q-el 1-ef

(4.152)

Proof 4.5. If the equality on the left is valid then A=0 and the motion is Keplerian.
If the equality on the right is valid then the orbital energy of the two conics is the same?*
(see Egs. (A.7), (A.9)), contradicting the fact that for nonzero A the orbital energy either
increases or decreases (strictly monotonically) on a one-segment trajectory (Q.E.D.).

Note that if at least one among the equalities given in Eq. (4.152) is true, then the
initial and final conics intersect. This fact, combined with one's previous experience with
specific examples, leads one to suspect that Lemma 4.5 is most probably a particular case
of a more general result: One-segment solutions actually don't exist when the initial and
final conics intersect. For example, consider the problem of transfer between two
hyperbolic conics (see Fig. 4.36) having the same eccentricities, different (but both
positive) angular momenta, and opposite orientations (®; = ®, - ). It appears that it is
impossible to construct a one-segment transfer trajectory that joins these two conics. Due to
the tangential character of the thrust, the vehicle, approaching from leg a of the initial
hyperbola cannot transfer to leg d of the final hyperbola unless it executes at least one full
revolution around the planet. But this implies an initial capture, energy loss, and a negative
value of A. The subsequent transfer to leg d of the final hyperbola implies a final escape,
energy gain, and a positive value of A.

Lemma 4.6. The instantaneous conic (h,e,®) and the associated conic (h,B,C) (at
the same instant) have always two and only two points in common. At any instant of time
along a transfer (A,B,C,1,) the vehicle occupies one of those two points and has velocity
that is tangential to the instantaneous conic.

Proof 4.6. (h,e,w) and (h,B,C) are two conics having the same angular momentum
but different eccentricities and orientations (Q.E.D.).

The following lemma can be proved by considering Eq. (4.17).

Lemma 4.7. A one-segment transfer (A,B,C,1,) from conic (hy,e,,0,0,) to conic
(h,e,0,0;) has no common points with either the initial, (hy,B,C), or the final, (h;,B,C),
associated conic for0 < T <1,

A fact that is intuitively obvious, but the proof of which is not trivial, is provided by

the lemma that follows.
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Lemma 4.8. Let (A,B,C,1,) be a one-segment transfer from conic (hy,e4,0,,6,) to
conic (hge,®,8;), and let 1, and 7,+dT be two inﬁnitesimal'ly separated time instants in
0<7<7;. Then, the instantaneous conic (h,,e,,0,,0,), and the instantaneous conic
(h;+Ah,e,+Ae,00,+Aw,0,+A0), associated with the transfer trajectory at the instants 1, and
T,+d7 respectively, can have at most one common point.

Proof 4.8. The trajectory equations corresponding to the two instantaneous conics
are given by:

I
1+e,cos(6-w,)

(4.153)

2
r= (b, +4h) (4.154)
1+ (e, + Ae)cos(6 - 0, — Aw)

To first order in dt the changes in the orbital elements h,, e,, and ®, can be found as3:

Ah = Adt (4.155)

_ 2A[eI +cos(8, ~ o, )]
= 3

Ae dr - (4.156)

_ 2Asin(6, - o))
- eh,

A®

dt (4.157)

Equating the right-hand-sides of Egs. (4.153), (4.154), using Egs. (4.155)-(4.157),
and expanding in Taylor series the terms sin(A®) and cos(A®) one finds that to first order
in dt the following equality must be valid:

[cos(0-8,)-1]dr=0 (4.158)

for arbitrary, but infinitesimally small dt. This implies that the two conics can have at most

one common point, corresponding to 8=8, in 0<6<27 just as the lemma claims (Q.E.D.).
Along a one-segment transfer trajectory the mechanical energy and angular

momentum (per unit mass) associated with the instantaneous conic either increase (A > 0)
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or decrease (A < 0) strictly monotonically with time. Thus, Lemma 4.8 implies the lemma
that follows, which is basically a companion to Lemma 4.7.

Lemma 4.9. A one-segment transfer (A,B,C,1,) from conic (hy,e,,0,,8,) to conic
(he,,0,,8,) has no common points with either (hy,eq,,,6,) or (hye,0.6,) for 0 < T < 1,.

~ Lemmas 4.7 and 4.8 suggest that for A > 0 a one-segment transfer trajectory always

stays "outside" the initial and the initial associated conics, and "inside" the final and the
final associated conics. Analogous observations can be made also for A < 0. When the
initial and final conics do not intersect the allowable space for the transfer trajectory has the
shape of a "ring" (see Figs. 4.32, 4.33). However, as the initial and final conics come
closer and closer toward intersecting each other, this allowable space is constrained
considerably (see Fig. 4.33), and after the intersection it is cut-off, that is, it looses its
"ring" character.

The above considerations, and in particular Lemmas 4.7, 4.8, and 4.9, point toward

the following underlying theorem:
Theorem 4.1. Consider the problem of transferring from conic (hy,e,,©,,8,) to

conic (h,e,,®,0,) using the thrust program proposed in Eq. (4.10) and the corresponding
exact analytic solution of Section 4.4. Then,

(i) If (hy,ey®,0,) and (hye,®,,6;) have more than one common point (that is, if
they intersect), then a one-segment transfer solution does not exist.

(ii) If (hy,eq,wy,0,) and (hge.,0.6,) have only one common point (a point of
tangency) then there exists at most a single impulsive one-segment transfer solution,
performed at the point of tangency of the two conics, for which A is infinitely large, 1, is
infinitely small, and A7, is finite and equal to hy-h,,

The proof of Theorem 4.1 is rather lengthy and is given in Appendix F wirhout using
any of Lemmas 4.7, 4.8, or 4.9. In fact, the proof given in Appendix F can also be
considered to be an indirect proof for Lemmas 4.8 and 4.9.

Before closing this section one can also state the following conjecture, that the author
feels is true, having to do with the existence of one-segment and two-segment solutions.

Conjecture. Consider the problem of transferring from conic (hy,€y,0,,8,) to conic
(hye,,0,0,) using the thrust program proposed in Eq. (4.10) and the corresponding exact
analytic solution of Section 4.4. Then,

(i) A two-segment transfer solution always exists.
(ii) A one-segment transfer solution (A,B,C,t,) with finite A and 7, > 0 exists if and

only if (hy,e,.®,,6,) and (h,e,®,6;) have no common point.
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Note that in case (i) above the selection of the intermediate instantaneous conic at the
point where the switching of the value of A occurs is not unique but will most probably
have to be decided on the basis of optimality. Figures 4.37 and 4.38 supply two examples
of two and three-segment transfers respectively. Figure 4.37 corresponds to a situation
similar to the one given in Fig. 4.36. In Fig. 4.38 there is an intermediate transfer segment,
KS, which is shown with dotted line, which corresponds to zero thrust (A=0) and

Keplerian motion along a circular orbit.

4.12 When is it Possible to Preassign Arbitrarily Large Transfer Durations?

If multiple-segment transfers are allowed, the answer to the above question is:
Always. Before expanding on this issue however, and explaining its practical importance,
it is insightful to make a few comments concerning the behavior of the thrust acceleration
along a one-segment transfer. Recall that the angular momentum of the vehicle is given by
h =rVcosy, where, V is the speed of the vehicle, given by Eq. (A.8) in Appendix A. Using
the components given in Eq. (4.10), the thrust acceleration corresponding to the proposed
(tangential) thrust program can be written as:

£=+/e’ +¢] _AV__A (4.159)

h  rcosy

Squaring and differentiating the right-hand-side of Eq. (4.159), and then using Eqgs. (4.11)
through (4.14), the first and second time derivatives of (€2/2) can be found as:

2 2 2 2 2.
A Ax o (d e __AX (4.160)
dti 2 h°r dt"\ 2 /| _, h°r

where, the second derivative was evaluated at the points where x is zero. From Eq. (4.160)

one can conclude that the thrust acceleration has a (local) maximum at the successive
perigees and a local minimum at the successive apogees of an (osculating) one-segment
transfer trajectory. Figures 4.39 and 4.40 supply the variation of (€2/2) with T and 6
respectively for the transfer example of Fig. 4.2. Note how the variation in Fig. 4.39
resembles a series of impulses delivered at the successive perigees of the (osculating)
transfer trajectory.

Using Eq. (159), and the expression for A found in Eq. (4.83), the power-limited
cost associated with a one-segment transfer can be written as:
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1 T 2 T
1 A’ dt h,-h dt
JPL = —Jezd‘t = — 3 T = ( f 20) J ) 7 (4161)
2 2 Jrfcos’y 21; r'cos’y
0 0 0

This expression can be further manipulated into:

2
h;-h
Jo = (_.f_21—°)— X (average value of — 1
f

1’ cos’y

along the transfer] (4.162)
The average value of (1/r2cos?y) along a one-segment transfer remains a well-behaved
quantity as the duration of transfer 1, tends to infinity. Thus, as 1, tends to infinity, the
power-limited cost associated with a one-segment transfer tends to zero. This behavior
compares well with the behavior of the optimal cost, since it is well-known*5!, that the
optimal power-limited cost for a given transfer problem is inversely proportional to the
transfer duration, and tends to zero as the transfer duration tends to infinity. For a multiple-
segment transfer the power-limited cost is given by a summation of terms similar to the one
appearing on the right-hand-side of Eq. (4.162). Thus, for a multiple-segment transfer, if it
is still possible to preassign large durations for each individual segment, then, the total fuel
consumption can still be made very small, but at the expense of waiting longer for
completing the (overall) transfer. Thus, whether it is possible to preassign arbitrarily large
transfer durations or not is an important practical issue. By recalling the results of Sections
4.6.5, and 4.8 through 4.10, one can now distinguish between the following three cases:

(i) Escape problems: For all such problems it is possible to use a one-segment
transfer trajectory. Because the final value of the angular momentum hy is left free, the time
duration T, for transferring to the final parabolic trajectory can in principle be freely
preassigned. As this time duration tends to infinity the one-segment transfer and the
corresponding power-limited cost asymptotically tend to the optimal transfer and the
optimal power-limited cost respectively.

(ii) Transfer between two coplanar circular orbits: For this problem it is
still possible to use a one-segment transfer trajectory. A small transfer duration T, in this
case does not exist. However, a large transfer duration T, can still be preassigned (see
Section 4.8 and Appendix D). Again, as this time duration tends to infinity this one-
segment transfer and the corresponding power-limited cost asymptotically tend to the
optimal transfer and the optimal power-limited cost respectively.

92



(iii) Transfer between two arbitrary conics: For this problem it is not in
general possible to use a one-segment transfer trajectory. However, it is in principle
possible to perform the overall transfer using a multiple-segment transfer trajectory, for
which one can still preassign arbitrarily large durations for each segment. For example, a
vehicle can first transfer to an intermediate closed orbit in time 1,;, and then, after coasting
for some time 1, on this intermediate closed orbit, it can transfer to the desired final conic
in time 7T, where, the sum of 1, T,, and T is equal to 17,. The fact that the angular
momentum, the eccentricity, and the orientation of the intermediate closed orbit may be left
free is what makes it possible to preassign arbitrarily large durations 1, and T,,. This of
course is not the only way to perform a transfer between two arbitrary conics in an
arbitrarily large duration, and, with a little imagination, the reader can come up with some

more ways for himself.

4.13 Optimality of the Trajectories

In this section, hints will be provided, suggesting that there should be cases in which
the (tangential) thrust program proposed in this report (see Egs. (4.10), (4.159)) results in
sufficiently optimal trajectories, both for power-limited (PL) and constant ejection velocity
(CEV) systems.

The thrust program was obtained by using the tangential thrust assumption in the
problem corresponding to minimum-fuel PL transfers. Numerical optimizations#445.47.49-51
for such problems tend to suggest strongly, that there exists a large subclass of PL
transfers between two coplanar elliptic orbits, corresponding mainly to cases where the
changes in orientation and eccentricity are small, for which, as the duration of transfer
increases, the thrust levels decrease, and the direction of the optimal thrust acceleration
tends more or less to coincide with the direction of the tangent to the optimal flight path
throughout the transfer. This leads one to expect that this thrust program (Egs. (4.10),
(4.159)) should turn out to be sufficiently optimal for at least some of these cases. An
important subclass of such problems is the one corresponding to transfers between two
circular orbits, and in this class, as was seen in Section 4.8, this thrust program is capable
of resulting in solutions of very large duration. Also, as was seen in Sections 4.9 and 4.10,
for escape problems from an arbitrary elliptical orbit, if one leaves either the angular
momentum hy, or the orientation ®, of the final parabolic trajectory free, then one has the

freedom to preassign the duration of the maneuver, making the thrust levels as small as one
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wishes. To summarize, it appears that the best starting point for evaluating the performance
of the thrust program (Egs. (4.10), (4.159)) in the PL sense is to compare the exact optimal
PL cost with the PL cost corresponding to the thrust program given in Egs. (4.10),
(4.159), first, for long duration escape problems from an arbitrary elliptical orbit, then, for
long duration transfers between two coplanar circular orbits, and then, for transfers
between two copanar, nonintersecting elliptical orbits having the same orientation.

Based primarily on the results of Section 4.6.5, one could go as far as to conjecture
here that, for power-limited, long duration (more than three or four revolutions around the
planet) escape problems, and for long duration transfers between two coplanar circular
orbits, the exact analytic solution of Section 4.4 must be very close to the exact optimal
solution.

A really interesting question is the optimality of the thrust program given in Eqgs.
(4.10), (4.159)I with regard to other than power-limited propulsion systems. The costs
corresponding to PL and CEV systems along any maneuver lasting for a time duration T;

are given respectively by*648:

Ty

Tr 2
I, = J—;—d‘c ; Ty = J gdt (4.163)
0

0

Table 4.1 supplies the PL and CEV costs for all the transfer trajectories given in the
examples, as well as the corresponding initial and final values of the (nondimensional)
thrust acceleration (Eq. (4.159)) €, and &, for each trajectory. These costs were obtained by
numerically evaluating the integrals in Eq. (4.163) along the (exact analytic) trajectories
using a Simpson's Multiple-Segment 1/3 routine®.

The PL cost in Table 4.1 is given for any future comparisons with the optimal costs
corresponding to the exact optimal PL transfers. The CEV cost is given because it will now
be compared with the cost corresponding to Hohmann (HM) and Biparabolic (BP)
transfers3448 between the same initial and final conics for some of the examples. The
Hohmann transfer is basic in the theory of impulsive transfers*+ and for coplanar orbits
having the same orientation is performed' (see Fig. 4.41) via two impulsive, tangential
speed changes (AV's) at the perigee of the initial orbit and the apogee of the final orbit34.48,
The perigee and apogee of an HM transfer orbit thus coincide with the perigee of the initial
and the apogee of the final orbit, respectively. The BP transfer (see Fig. 4.42) is performed
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Table 4.1 PL and CEV costs along the transfers

Transfer & & IpL Jeev

Fig. 4.2 5.9500e-3 2.9355¢-3 1.5369¢-4 1.2861e-1
Fig. 4.3 2.5500e-2 9.6038e-3 7.3223e-4 1.6795e-1
Fig. 4.4 5.9500e-2 7.0071e-3 3.9537e-3 4.1077e-1
Fig. 4.5 1.5610e-2 2.4088e-2 3.7966e-3 3.0343e-1
Fig. 4.7 6.1139¢-3 1.5127e-3 8.9225¢-4 5.0001e-1
Fig. 4.13 3.6210e-2 9.0432e-3 5.4860e-3 5.0993e-1
Fig. 4.15 1.0542e-1 5.5871e-2 1.7064e-2 3.9424e-1
Fig. 4.17 1.0131e-1 3.4644e-2 2.0457e-2 5.9559%-1
Fig. 4.19 2.9601e-2 2.6492¢-3 5.0593e-3 7.8669e-1
Fig. 4.21 5.9693e-3 1.9951e-3 1.4626¢-4 1.6022e-1
Fig. 4.25 7.7549¢-3 1.1576e-3 3.0947e-4 1.7577e-1
Fig. 4.27 7.2092e-3 6.4353e-3 2.6292¢-3 4.5698¢-1
Fig. 4.29 2.8987e-2 3.4832e-2 1.3490e-2 8.1437e-1
Fig. 4.30 5.0729¢-3 1.3587¢-3 5.7875e-4 3.7680e-1
Fig. 4.31 1.5905e-2 7.4914e-4 6.4252e-4 3.7963e-1
Fig. 4.37 1.5000e-1 7.6719%-2 6.7975e-2 1.1451e+0
Fig. 4.38 9.8358e-3 5.7974e-3 1.6055¢e-3 4.7716e-1

by transferring to an (outgoing) parabola with an impulsive, tangential AV at the perigee of
the initial orbit, then transferring to an (incoming) parabola at infinite distance from the
planet (which takes zero cost) and then transferring to the final orbit with an impulsive,
tangential AV applied at the perigee of the final orbit*t. The BP transfer is only of
theoretical importance because it takes infinite time to perform. Due to the impulsive
character of the thrust, from Eq. (4.163), the cost for a HM or BP transfer is just the sum
of the two impulsive speed changes required to perform the transfer. Table 4.2 compares
the HM and BP costs for the transfers corresponding to Figs. 4.7, 4.13, 4.15, 4.21, and
4.38 with the CEV cost corresponding to the present thrust program (second column),
which is reproduced from Table 4.1. For Figs. 4.7, 4.13, 4.15, and 4.21 the HM cost is
the minimum CEV cost possible* and one can see that the cost corresponding to the present
thrust program is about 10 to 20 percent more than the HM cost for Figs. 4.7, 4.13, and
4.15, 120 percent more for Fig. 4.21, but mostly less than the BP cost, except for Fig.
4.21. For Fig. 4.38 the BP cost is the minimum CEV cost possible*® and, instead of the
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HM cost, Table 4.2 supplies the symmetric AD cost which corresponds to the sum of two
impulsive, tangential AV's, the first accelerating, the second decelerating, applied at the
apogees of the initial and final elliptic orbits respectively. The transfer trajectory in this case
is a circular orbit. This symmetric AD transfer, contrary to the BP transfer, is quite a
prabtical one*, and one can see from Table 4.2 that the cost corresponding to the present
thrust program for Fig. 4.38 is about 10 percent more than the corresponding symmetric
AD cost.

Table 4.2 Hohmann and Biparabolic CEV_costs*

Transfer Present J gy Hohmann Biparabolic
Fig. 4.7 5.0001e-1 4.4868e-1 6.2132e-1

Fig. 4.13 5.0993e-1 4.2351e-1 5.6080e-1
Fig. 4.15 3.9424e-1 3.5130e-1 5.1015e-1
Fig. 4.21 1.6022¢-1 7.3568e-2 9.8042e-2
Fig. 4.38 4.7716e-1 4.3246e-1* 9.8718e-2

The above comparisons were supplied with the hope that they may convince some
investigators that the near-optimality of the proposed thrust program in the CEV sense may

deserve some further consideration.

4.14 The Rendezvous Problem

This last section constitutes a small deviation from the main subject (of transfers) and
discusses the possibility of using the results of Section 4.6.2 for predicting the initial
values of the costates corresponding to the problem of power-limited, minimum-fuel,
coplanar rendezvous. For these problems the position of the vehicle on the initial and final
conics is fixed. This is equivalent to specifying the state of the vehicle at the initial and final
times completely, that is, the quantities hy, X, 1o, 8, by, X, I, and 8, are fixed. Thus, for
this problem, there are no transversality conditions, and the value of the (constant) costate
P, is in general not zero, since the initial position of the vehicle can be expected to have an
effect on the optimal value of the cost. The tangential thrust assumption was
(mathematically at least) consistent with the transfer and escape problems, because,
although the order of the original system of state-costate equations was reduced by one,
two transversality conditions were satisfied by fixing the value of one constant of
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integration (namely P,) at zero. The tangential thrust assumption is, however, inconsistent
with the rendezvous problem, since the eight boundary conditions are in general completely
arbitrary, and one cannot expect to satisfy all of them simultaneously with fewer than eight
constants of integration. However, one can assume, that if the duration of the maneuver is
long, then the optimal thrust for the most part of the trajectory (away from the endpoints) is
approximately tangential, and that for such long duration problems, the initial position of
the vehicle probably has litrle effect on the optimal value of the cost. This means that one
can combine Eq. (4.78), which was obtained using the tangential thrust assumption and
zero Py, with Eq. (4.83), and predict the initial values of the costates:

h,-h h,-h
Pxo _ Xo(th 0) : Ph(] =( frzr 0) (4.164)
ots ots
2
P, =_(ho‘;ro)(hf-ho] ; P,=0 (4.165)
Iy h,T,

These expressions for the costates may be used as reasonable guesses during a numerical
optimization scheme aiming at the exact optimal solution of such problems.

4.15 Summary

This chapter has documented a case in which a mathematical model representing a
meaningful physical system affords a closed-form solution. Recall that Keplerian two-body
motion that takes place in the absence of thrust gives rise to a trajectory equation describing
a conic (section). It was shown in the present chapter that the same trajectory equation (Eq.
(4.17)) can be uncovered even in the presence of (a particular form of) nonzero, continuous
thrusting terms. The difference is that in the former type of motion the angular momentum
is a constant, while in the latter type of motion it is a linear function of time, with slope
equal to a throttling parameter. Moreover, the corresponding thrusting terms are not really
ad hoc, but arise from the optimization problem corresponding to power-limited, minimum-
fuel, coplanar orbital motion. The assumption of tangéntial thrust plays a remarkable
catalytic role in this problem, since it allows one to change the right-hand-side of only one
costate equation (which affects only optimality), eliminate completely the costates by
expressing them as functions of the states and a throttling parameter, and obtain the thrust
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program for which the equations of motion can be solved exactly and analytically. 1t has
been demonstrated in this chapter that it is, in principle, possible to solve arbitrary
(coplanar) transfer and escape problems using this solution, for which one can preassign
arbitrarily large durations. Transfers between two conics that intersect cannot be performed
using a one-segment transfer trajectory. They can always be performed however using
multiple-segment transfer trajectories, although the corresponding procedure is not unique.
Hints were also given in the chapter suggesting that there should be cases in which the
thrust program results in sufficiently optimal trajectories, both for power-limited and
constant ejection velocity propulsion systems.

4.16 Concluding Remarks

Although the coverage in this chapter appears to be rather extensive, the work done is
far from being complete. Above all, how the thrust program will perform in each and every
particular case is far from having been documented, or even understood. Of primary
interest for the future would be a more complete investigation of the transfer and escape
problems studied above, and especially of the near-optimality of the thrust program in a
general setting. It appears that, both Keplerian motion (zero thrust), and the kind of Non-
Keplerian motion (nonzero thrust) documented in this chapter afford a common
mathematical description. Physically, however, and philosophically, there is a significant
difference between the two kinds of motion. Keplerian motion is guided by Nature, and
requires no human effort. It represents a fundamental behavior of Nature. The kind of
motion uncovered in this chapter on the other hand will have to be guided by humans, and
there is nothing fundamental about it. This brings in a host of practical problems that need
to be taken care of before a vehicle can actually be made to trace a path corresponding to
such motion. With no misconceptions about this point, the main purpose of the present
chapter on the practical side, was only to demonstrate, beyond a reasonable doubt, that the
analytical results presented here may be of some help during actual planetocentric or
heliocentric orbital operations. Thus, this report presents this thrust program and the
corresponding exact analytic solution of the governing equations of motion, with the hope
that its complete features will be more extensively investigated, its near-optimal or non-
optimal aspects as relate to different types of propulsion fully uncovered, and its full
domain of practical applicability, if any, clearly identified.
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CHAPTER V

Conclusions and Recommendations

T he research in this report concentrated in three areas related to aircraft and
spacecraft trajectory optimization and optimal guidance. Specifically, the attention was
focused on the areas of unconstrained and constrained aircraft energy-state modeling and

spacecraft motion under continuous thrust.

5.1 Aircraft Unconstrained Energy-State Modeling

The research in the area of aircraft unconstrained energy-state modeling has
uncovered a systematic procedure for identifying the singular perturbation parameter in the
differential equations of motion governing both conventional (subsonic-supersonic, flat
Earth) and transatmospheric (hypersonic, spherical Earth) flight. A set of arbitrary scaling
constants was used during the procedure to nondimensionalize all the variables of interest.
Then, aided by a useful choice of the scaling constants, the conclusion was reached that
two-time-scale behavior of the corresponding aircraft can be expected when the maximum
longitudinal load factor during a maneuver remains sufficiently less than one. The
important point was the validity of this statement regardless of the performance index being
optimized. This explicit identification of the singular perturbation parameter also explained
the past successes of singular perturbation treatments of aircraft energy climbs.

A possible extension of this work would be a similar investigation of the existence of
conditions under which the aforementioned differential equations exhibit three-time-scale
behavior. It is straightforward to extend the procedure used in the second chapter by
introducing two singular perturbation parameters instead of one, of which, one may be
designated as €, and the other as &,. A useful choice for the scaling constants, combined
with the values of these singular perturbation parameters, would then serve again as a
means to uncover conditions under which three-time-scale behavior can be expected. For
example, one could use such a procedure to investigate under what conditions, if any, are
the energy, altitude, and flight-path angle dynamics of aircraft separated from each other,
giving rise to three-time-scale behavior. Since it is well-known that usually the altitude and
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flight-path angle dynamics are highly coupled, such a study would be of some importance
if it succeeded in uncovering the underlying reason for this coupling in terms of explicit
physical parameters, or in predicting the existence of possible cases for which the coupling
is absent, giving rise to three-time-scale behavior.

5.2 Aircraft State-Constrained Energy-State Modeling

The research in the area of aircraft state-constrained energy-state modeling has so far
shown that a transformation technique can be used to isolate and describe completely the
class of asymptotic controllers that track a given state-constraint boundary. This result
provided the incentive for proposing a reformulation for optimal control problems
involving active state-variable inequality constraints, so that, in the reformulated problem
the optimization is carried out only over the class of asymptotic controllers. The original
problem leads to optimal controllers that are finite-time and one-sided. The reformulated
problem leads to controllers that are approximately optimal, asymptotic, but still one-sided.
If however the state constraint is regarded as a soft constraint, then one can find controllers
that are asymptotic, two-sided, and result in the same optimal value of the performance
index corresponding to the original problem, that is, they are practically optimal, but at the
expense of violating the state constraint. From a singular perturbations point of view this
suggests that such controllers can be used in a boundary-layer system, to track the reduced
solution corresponding to a specific problem, when this reduced solution happens to ride a
state-constraint boundary. However, such controllers do not correspond to stationary
solutions of the optimization problem, so at the present, a systematic procedure for finding
them does not exist.

This last remark also suggests the primary recommendation for future research with
regard to this area. Although a procedure was introduced in Section 3.3.2 that would
presumably result in controllers that are asymptotic and two-sided, it is still not clear how
to pick the two functions ¥ and M (see Section 3.3.2) when formulating the related
companion problem. If a meaningful way of picking these functions can be found, this
formulation can be applied to supersonic or hypersonic energy climbs, for which part of the
trajectory lies on a state-constraint boundary representing a constant value of dynamic
pressure, aerodynamic heating rate etc. The resulting controllers will be nonlinear,
practically optimal, asymptotic, and capable of tracking such boundaries from both sides. A
first step toward this direction would be to try to find (by trial and error) an asymptotic,
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two-sided controller, that for a simple model representing an aircraft energy climb will
guide a vehicle along a constant dynamic pressure constraint boundary, and will result in
the same optimal value of the performance index (minimum time for example)
corresponding to the problem in which the dynamic pressure constraint is explicitly

imposed.

5.3 Spacecraft Motion under Continuous Thrust

In the area of spacecraft motion under continuous thrust the primary result of this
report has been a generalization of the exact analytic solution of the orbital equations of
motion corresponding to Keplerian two-body motion (that takes place in the absence of
thrust) to a type of motion performed under a special kind of continuous thrust. The most
significant result of this report is most probably the fact that the trajectory equations
corresponding to the two types of motion have identical form. The difference is that, in
Keplerian motion the angular momentum is a constant, while in the type of motion
uncovered in this report it is a linear function of time, with slope equal to a throttling
parameter. A very important aspect of this work was the fact that the thrust program used
for the exact analytic solution of the equations of motion was not really ad hoc, but arose
from the optimization problem corresponding to power-limited, minimum-fuel, coplanar
orbital motion. It has been demonstrated in the fourth chapter that it is in principle possible
to solve arbitrary (coplanar) transfer and escape problems using this solution, for which
one can preassign arbitrarily large durations. Transfers between two conics that intersect
cannot be performed using a one-segment transfer trajectory. They can always be
performed, however, using multiple-segment transfer trajectories, although the
corresponding procedure is not unique. Hints were also given in the fourth chapter
suggesting the existence of cases for which the thrust program results in sufficiently
optimal trajectories, both for power-limited and constant ejection velocity propulsion
systems.

There are several suggestions for future research in this area. First, one may try to
establish the near-optimality or non-optimality of the exact analytic solution uncovered in
Section 4.4 in a full setting, by evaluating the exact optimal cost for a given maneuver and
by comparing it to the cost corresponding to this exact analytic solution.

For power-limited propulsion systems the above would be a rather formidable task,
since it would require repeated numerical solution of two-point boundary value problems
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for evaluating the power-limited optimal trajectories between many pairs of conics, and the
corresponding (exact optimal) costs. At this point however, this task appears to be more
significant in a mathematical, rather than in a practical sense, because, as argued upon in
Section 4.12, the time duration for any type of (coplanar) escape or transfer problem, using
the proposed thrust program, can be preassigned to be arbitrarily large. This implies (see
Section 4.12) that the corresponding fuel consumption can (in principle) be made arbitrarily
small if one is willing to compromise with regard to the time duration it takes to perform
such a maneuver! Such a situation may appear as overly restrictive but it really isn't!
Balancing the fuel consumption for a maneuver against the time it takes to perform the
maneuver is nothing new in spaceflight. The Hohmann transfer, which has been routinely
used during the past thirty years in actual orbital operations, is a good example. Once the
initial and final elliptical orbits are fixed, the time duration for a Hohmann transfer is fixed
and cannot be preassigned! The Bielliptic transfer, which in practice can be used as an
approximation to the Biparabolic transfer, represents just another such example, in which
"reducing the fuel consumption further" means that one "has to wait longer" for completing
the transfer.

For constant ejection velocity propulsion systems the situation may be somewhat
easier to deal with, since there are many cases of transfers for which the optimal constant
ejection velocity cost, impulsive in character, can be calculated with relative ease.

Another recommendation for future research would be a continuation of the work
started here on the existence or non-existence of one-segment solutions. Theorem 4.1 of
Section 4.11 started at first as a conjecture, and then was rigorously proven in Appendix F.
Similarly, one now has the conjecture on the existence of one or two-segment solutions
given at the end of Section 4.11 that awaits to be shown true or false.

Still other possible recommendations for future research would include an extension
of the work to the case of three-dimensional motion, and a regular perturbations point of
view of the solution uncovered in Sections 4.3 and 4.4. Although three-dimensional
transfers cannot be performed by using exclusively tangential thrust, the set of state
variables introduced in Section 4.2 can be generalized to the case of three-dimensional
motion, after which, the three-dimensional power-limited optimization problem can be cast,
and the structure of the corresponding costate equationé examined. Viewing the solution
uncovered in Sections 4.3 and 4.4 as the lowest order solution of the state-costate
equations corresponding to a regular perturbation expansion would first require the
nontrivial task involving a clear identification of a regular perturbation parameter.
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APPENDIX A

Main Features of Two-Body Keplerian Motion

This Appendix is supplied for a direct comparison between the main features of
Keplerian motion, that takes place in the absence of thrust, and the motion uncovered in
Section 4.4, that takes place in the presence of continuous thrust, specified by the thrust
acceleration components proposed in Eq. (4.10).

The term "two-body Keplerian motion" refers to the translational motion that a space
vehicle (considered as a point mass) executes in the vicinity of a spherical, homogeneous
planet, in the absence of any thrusting forces. The only force acting on the vehicle during
such motion is the inverse-square gravity from the planet. This translational motion is
confined to a plane, and is fully described by Egs. (4. 6) (4.9), with the thrust components
g, and &, set equal to zero:

j_ftl —0 | (A1)
3_: - hzr; r (A2)
g—i =X (A.3)
% = r% (A4)

The solution of the differential equations describing such motion was first given, of course,
by Isaac Newton?¥, and in terms of the variables used in Ecis. (A.1) through (A.4) can be
summarized as:

: 2
h =const. ; X=M ;or= h (A.5)
h 1+ecos(6 - )
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In Eq. (A.5) e and © are two integration constants, and the angular momentum h,

which stays constant, plays the role of a third integration constant. The fourth integration
constant relates the time 7T to the argument of latitude 6 and can be uncovered by using the

expression for r from Eq. (A.5) and reducing Eq. (A.4) to a quadrature:

h®de
T=
[1+ecos(8 - 0)]

5 + const. (A.6)

According to the trajectory equation for r given in Eq. (A.5), the motion takes place
along a conic?. The constant e is just the eccentricity of the conic. Fore=0or0<e <1
the conic is respectively a circle or an ellipse, and the corresponding trajectory is closed and
usually called an orbit. For e = 1 or e > 1 the conic is respectively a parabola or a
hyperbola, and the corresponding trajectory is open®. The evaluation of the integral in Eq.
(A.6) depends strongly on whether e is less than or greater than one, or equal to zero or
one. The constant ® represents the orientation of the conic. If one imagines a vector
pointing from the center of the planet toward the point on the conic where r is a minimum
(the perigee), then o is just the angle, measured anticlockwise, from the fixed direction in
space (where all the latitude angles are measured from - see Fig. 4.1) to that vector.

An important parameter associated with a conic is its semimajor axis a. The
semimajor axis is a direct measure of the mechanical (kinetic plus potential) energy per unit
mass of the vehicle’. Because the inverse-square gravity field generated by the planet is
conservative the mechanical energy per unit mass of the vehicle stays constant during the
motion™. Specifically, this mechanical energy is related to the semimajor axis a by the well-

known energy integral®*:

v-2__1 (A7)
a

In Eq. (A.7) V is the speed of the vehicle, which in terms of the state variables used in Egs.
(A.1) through (A .4) is given by:

2

V2= x2 +-hT (A.8)
r

The semimajor axis a is related to the angular momentum h and the eccentricity e through*:

104



h? = a(1 —ez) : (A.9)

When the conic is a circle or an ellipse e is less than one and a is positive. Specifically,
when e is zero the conic is a circle and a is just the radius of the circle. When the conic is a
hyperbola e is greater than one and a is negative. When the conic is a parabola e is equal to
one and a is infinite* (but the angular momentum h is always finite).

105



APPENDIX B

Derivation of the Exact Analytic Solution
of the System of Egs. (4.11) - (4.14)

The development in this Appendix is valid for nonzero A (the case with zero A
corresponds to Keplerian motion and was summarized in Appendix A). The solution of Eq.
(4.11) is obviously the linear variation for the angular momentum h supplied in Eq. (4.15).
Consider now the system of Egs. (4.12), (4.13), and define the transformation:

w=2 . 93=l(§g=lA=1 (B.1)
A dt A\dt/ A

Using w rather than 7 as the independent variable, this system assumes the form:

2.2
§%=é¥§1+$ (B.2)
di:v-=x (B.3)

p=2 (B.4)
w

the system of Egs. (B.2), (B.3) can be written as:

dP  A’w’-r

W W ®2

a(lf_=wp (B.6)
w

One can now define two new variables K and z, by:
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K=— : z=— (B.7)

Replacing r by z, and using z as the independent variable, the system of Egs. (B.5), (B.6)
transforms into:

- A?)K?
dp _ Q__)S (B.8)
dz (2z-P)z
9K = 2K (B.9)
dz 2z-P
Finally, using the transformation:
s=_2K (B.10)
2z—-P
the system of Egs. (B.8), (B.9) assumes the analytically soluble form:
dS (z-A%)\,
— =1 . (B.11)
dz [ 4z’ )
K _g (B.12)
dz

The general solution of Eq. (B.11) can be found by a simple integration®. The result is:

47?
2
= — B.13
Dz? +2z-A? ( )
where D is an integration constant. Using this result, Eq. (B.12) can be written as:
dK Y’ 4z’
| =t B.14
(dz) Dz? +2z- A’ E19

More will be said about Eq. (B.14) at the end of this Appendix. First, Eq. (4.14) in

the main text can be rewritten as a simple quadrature:
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B=J-(;hz—)d1:+F (B.15)

where F is an integration constant. Tracing the transformations back, Eq. (B.15) can
further be written as:

A
6=ij dz+F (B.16)
[m/l)z2 +22—A2 )

Note that the double sign in front of the integral is due to the fact that both signs have been
kept when taking the square root of S in Eq. (B.13). Evaluation of the integral®® in Eq.
(B.16) for any value of D, and for nonzero A (zero A corresponds to Keplerian motion)

leads, for both signs, to the expression:

A2

= B.17
£ 1+ Bcos(6 - C) ®B-17)

where B is a nonnegative constant defined by:
B=+1+DA’ (B.18)

and C is a constant which can be written always as a linear function of the constant F.
Since z is just equal to rA%h?, Eq. (B.17) can be written as:
h2
r=
1+ Bcos(8 - C)

(B.19)

which just happens to be the transfer trajectory equation, Eq. (4.17). Differentiating Eq.
(B.19) one can easily find the corresponding expression for x given in Eq. (4.16).

The last equation that remains to be integrated is Eq. (B.14). However, a simple
inspection reveals that this integration has in fact been already carried out (in disguise) in
Section 4.5 of the main text, by defining more useful variables, such as the generalized
eccentric and hyperbolic anomalies, etc. There is therefore no need to integrate Eq. (B.14).
This completes the exact analytic solution of Egs. (4.11) through (4.14).
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APPENDIX C

Power-Limited Propulsion Systems

Power-Limited propulsion systems basically correspond to electric propulsion, and
generate thrust by accelerating particles through an electromagnetic or electrostatic
field*+¢31. There is usually a propellant feeding mechanism that supplies the particles, and
an electrical generator that generates the electric field that accelerates the particles. The
primary characteristic of such systems is that the above two mechanisms operate (ideally)
independently of each other. For example®!, if a nuclear reactor heats a working fluid, as in
an electrothermal device, changing the operating temperature of the reactor regulates the
mass flow rate of the particles -dm/dt. If a solar cell accelerates ions, as in an electrostatic
Jevice, changing the operating voltage of the cell controls the ejection speed of the ions c.
T'hus, it is possible in principle to modify both the ejection speed ¢ and the mass flow rate
-dm/dt, and therefore to control independently the thrust T and the power P, given by the

2Xpressions:

T=-91. . P=—1(d—m)c2 (C.1)
dt 2\ dt

The above expressions can be obtained by considering the state of the vehicle and the
oropellant at times t and t+dt, and by performing a momentum and energy balance. That the
>ower in Eq. (C.1) is indeed the power supplied by a power-limited thruster can be further
rgued upon as follows. The power P supplied by such a thruster can be written as*:4:

P=UI (C.2)

vhere U is the beam voltage and 1 is the beam current. If a particle of mass m, charge q,
ind negligible initial velocity is accelerated through a potential difference U it acquires
cinetic energy equal to (mc?/2), where c is the ejection speed. Accordingly, the following
wo relations are valid:

2
R S ™
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Substituting from Eq. (C.3) into Eq. (C.2), one obtains the expression for the power given
in Eq. (C.1). As the name implies, the power that can be supplied by such propulsion
systems is limited, that is, there is a maximum level of power P_ . that cannot be
exceeded*s!, In the T vs (-dm/dt) operating domain constant power is represented by the
parabola:

T= 2PGEE) (C.4)
dt
The two relations in Eq. (C.1) lead to:
L 2
IS S (C.5)
m; m, 2P
t

0

where o=T/m is the thrust acceleration, given by:
o? = E2 +E2 (C.6)

The initial mass m, is given, and in order to minimize the fuel consumption one must
maximize the final mass m,. Therefore, it is required to operate with maximum power
P=P_,_during the entire maneuver, which leads to the minimization of the quadratic

performance index:

K=%jwm (C.7)

In practice®, there is usually a minimum ejection speed c,;, and a maximum mass
flow rate (-dm/dt)__ . These constraints however need not be taken into account explicitly
during a formulation of the corresponding optimal control problem, since by selecting the
time duration for a maneuver appropriately one can ensure that these limits are not violated.
The primary reason that one can usually do this is the fact that the optimal thrust
acceleration levels and the optimal cost K, are inversely proportional to the time duration

of a maneuver.
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Nondimensionalizing o and K as (see Eqgs. (4.4) and (4.5)):

K o
JF;VS : g:—s ; €2=gl+¢l (C.8)

where J; represents the final value of the variable J (the initial value of J can be taken as

zero), leads to Eq. (4.43), describing the time evolution of the cost J (t) along a maneuver.
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APPENDIX D

Coefficients of Polynomial Eq. (4.135), and an Explicit

Solution'for Transfers Between Coplanar Circular Orbits

The coefficients of the fourth order polynomial equation (4.135) are given by the

following expressions:

(=€ +4hjA%(1-¢7)—4h{A® —8hoh{A%e, (D.1)
b, =b, =8hlAe, . (D.2)
b, =2[e? +4njA*(1+e?)—4h}A’] (D.3)
b, =e? +4hjA%(1-e})—4h{A” +8heh!A’e, (D.4)

D.1 Long Duration Transfers Between two Coplanar Circular Orbits

Consider the case in which the final orbit is circular, that is, e; = 0. In such a case the
polynomial Eq. (4.135) has no real roots, and can be satisfied only if A is zero. But when

A is zero the motion is Keplerian and (assuming that the initial and final circular orbits are
different) there can be no transfer. Thus, mathematically, the case with e; = 0 is a singular

case. In practice however, the transfer between two circular orbits can be performed by
selecting a very small e,. This immediately implies that the time duration for such a transfer
will be large, that is, for the problem of transferring between two coplanar circular orbits
long duration is implied if one uses the thrust prograni proposed in Eq. (4.10) and the
corresponding exact analytic solution of Section 4.4. Small e, implies large T; and small A.
Thus, keeping only the lowest order terms in A and e;, the coefficients given in Egs. (D.1)

through (D.4) assume the form:
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=b, =k, =e¢f+4(hg—h{)A> ;  b,=b,=k,=8h2Ae, (D.5)

and now, the quartic polynomial Eq. (4.135) can be simplified as:

k,y“+k2y3+2k,y2+k2y+k,=o (D.6)

Equation (D.6) can be easily factored as:

(v + 1)k, y? +k,y+k,)=0 (D.7)
from which one concludes that in such a case there can be at most two real solutions for y,
and this happens only when the discriminant:

A, =k; —4k] (D.8)
is nonnegative. Substituting from Eq. (D.5) into Eq. (D.8), this condition can be stated
explicitly as:

A, =-4[16(n} - hy)’A -8(b5 +h)ae} +ef| 2 0 (D.9)

Whenever the above condition is satisfied there are two real roots for y, corresponding to
the initial value 6, of 6, which determine the starting point on the initial circular orbit.

These two real roots are given by:

-k, £ W/k; -4k’ (D.10)

2k,

Y2 =

For a given (small) e, real solutions for y exist only for 1,, < T; < Ty, Where 1, and 1, are
the two values of the final time T, for which A, becomes zero. Figures 4.6 and 4.8 through
4.11 depict this situation very clearly. Using the expression supplied in Eq. (D.9), and
assuming that the angular momenta h; and h, of the initial and final circular orbits are
always strictly positive, the two values 7, and T, can be found as:

(i) Forh;>h,and A >0:

1. = 2(h? _hfz))(hr - hO) . _ 2(hf+h§)(hf— ho)
nn= e, ) Ty = e,

(D.11.a)
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(ii) Forh,<h,and A <0:

_ 2(h§_h?)(ho"hf) .
T = . > T = .
f f

(D.11.b)

Equation (D.11.a) is in complete agreement with the situation depicted in Figs. 4.6,
and 4.8 through 4.11. With hy = 1 and h, = 2, one obtains from Eq. (D.11.a) 1, = 6/, and
1, = 10/e,. With e, = 0.05 these relations yield 1, = 120 and 1, = 200, in complete
agreement with Fig. 4.6. Similar results can be validated for Figs. 4.8 through 4.11.

If now one preassigns a (large) value for the transfer duration T,, in order to make the
final eccentricity as small as possible, one should obviously choose the (double) root for y
corresponding to t,,. Thus, in such a case, the final eccentricity e; and the corresponding

value of the throttling parameter A are given by:

2(h?=hi)(h,—h -
e = ( £ o)(hf 0) ; A=hf hy = ff > (D.12)
T, T 2(hf—h0)

Using this expression for A, and keeping in mind that A, is zero, the (double) root for y
from Eq. (D.10) can be found as:

y:——-——:] (D.13)

Since y is equal to tan(8/2) (see Eq. (4.136)), the initial value of the argument of latitude is
simply:

n
0, == D.14)
0=3 (

The final value of the argument of latitude can be found substituting the above results for A
and 6, into Eqs. (4.137) and (4.138). The result is:

0, =0,+2kn ; ef,,=§ . (D.15)

Now, what about (the integer) k? k fixes the number of revolutions about the planet during
the transfer. The value of k is the one for which Eq. (4.125.b) is satisfied. For (long
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duration) transfers between two coplanar circular orbits Eq. (4.125) decouples from the
rest of the problem. Using Eqs. (4.129) and (D.12), the generalized eccentricity of the
transfer trajectory is:

B+ N0

+ (D.16)
hf —hg

Using now Egs. (D.14) through (D.16), and (4.126) one concludes from Eq. (4.125.b)
that k is:

47hlh?

‘= 7 (h, +h0)[1_

5 372
4
h, €; 2} (D.17)

Any nonnegative integer value of k is acceptable. Thus, for large 1, if T, is arbitrarily
preassigned, then, Eq. (D.17) is approximately satisfied. In fact, by playing around with
the values of 7, and e,, connected through Eq. (D.12), one can satisfy Eq. (D.17) exactly,
that is, one can make Eq. (D.17) result in an integer value for k. For very large 1, one can
also simplify Eq. (D.17) as:

_ 1,(h; +hy,)

k=——1Ct__0/ D.18
41h}h? (D-18)

D.2 Summary

To summarize, consider the problem of transferring from an initial circular orbit
(€,=0) with angular momentum h,, to a final coplanar circular orbit (e=0) with angular
momentum hy, using the thrust program proposed in Eq. (4.10) and the corresponding
exact analytic solution supplied in Section 4.4. The solution can be summarized as follows:

(a) One preassigns a large transfer duration T,

(b) Eg. (D.12) then fixes the final (small) eccentricity ¢; and the throttling parameter
A to be used for the transfer.

(c) The value of the right-hand-side of Eq. (D.17), truncated to the nearest integer,
supplies the number of revolutions k about the planet during the transfer. By selecting 1,
appropriately one can satisfy Eq. (D.17) exactly by making its right-hand-side come out
squal to an integer.

115



(d) The transfer starts and ends at the same argument of latitude after k full
revolutions about the planet.

(¢) The generalized eccentricity and orientation constants B and C of the transfer
trajectory are given by Eq. (4.129).

(f) The transfer trajectory is given by Egs. (4.17) or (4.29), where the angular
momentum depends on the generalized eccentric anomaly E through Eq. (4.34).

(g) If 1, is large enough, further simplifications are obtained by considering B as
being approximately equal to zero. In this case the transfer trajectory is simply r = h?, while
the angular momentum h along the transfer is given by Eq. (4.25). Thus, for large enough
1, one obtains the following spiral, representing the one-segment transfer trajectory:

h

D.19
1-2Ah;(6-86,) -1

r=h’=

(h) Also, when 1, is large enough and B can be approximated by zero, the power-
limited cost along the transfer is approximately given by Eq. (G.19.c) of Appendix G:

h,-h 1 1
PG5 ") (R IR S D.20
o [ 61, )(hg h?) ( )

This expression for the power-limited cost compares well with the exact optimal

power-limited cost supplied in Table 5.7 of Ref. 51. Based primarily on the results of this
Appendix, and of Section 4.6.5, one could conjecture that for long duration transfers
between two coplanar circular orbits the solution delineated in steps (a) through (h) above
is the optimal power-limited solution, and the cost given in Eq. (D.20) is the optimal
power-limited cost for all practical purposes.

116



APPENDIX E

Coefficients of Polynomial Eq. (4.150)

The coefficients of the fourth order polynomial equation (4.150) are given by the

following expressions:
by =(1-¢,)’(e? +e? - 2e,e, cos ;)

~(1-e,)"(2h]A +ee,sin, )+ 4h¢A%(1 - e cos’e, )

+2hgAe, (1-e,)(2sinw, — 4h?Acosw, - e e, sin 20, ) (E.1)
= 4hgA(l1-e,)(e, cosw; — e, ) +4hiA%e? sin 2w,

+4hiAe (1-e,)(2h}A + e e, sin, )sine, (E.2)
% =(1-e3)(ed +e? - 2¢e.e, cos ®,) - (1€} )(2h?A +ege, sin a)f)2

+2hiAe e, (2sinw, — 4h?A cosw, — e,e, sin 2a,)

+4hyA? (1+e? cos? @, — 2¢? sin? ;) (E.3)
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le =4hjA(1+e,)(e, cos; —e,)— 4hyA’e] sin20,

‘ +4h2Ae, (1+¢,)(2h2A +e4e, sinw, Jsinw, (E4)
be = (1+¢,) (€2 +€2 — 2e e, cose, )
~(1+¢,) (2h?A +eesin 0),)2+ 4hjA*(1-e? cos’, )

~2h2Ae,(1+€,)(2sin®, — 4hiAcoso, — e e, sin2e, ) (E.5)

Note that for e, = ®; = O the expressions in Egs. (E.1) through (E.5) reduce to the
corresponding expressions given in Egs. (D.1) through (D.4), valid for transfer and escape

problems from a circular orbit.

118



APPENDIX F

Proof of Theorem 4.1, Section 4.11

This Appendix supplies the detailed proof of Theorem 4.1 (page 89) of Section
4.11, which is reproduced here for convenience to the reader:

Theorem 4.1. Consider the problem of transferring from conic (hy,e0,04,8,) to
conic (hye,,»,,0,) using the thrust program proposed in Eq. (4.10) and the corresponding
exact analytic solution of Section 4.4. Then,

(1) If (hy,e0,000,8,) and (hye,,®,,8,) have more than one common point (that is, if
they intersect), then a one-segment transfer solution does not exist.

(i) If (hy.eq,0,,8,) and (hg.e,,®,,8,) have only one common point (a point of
tangency) then there exists at most a single impulsive one-segment transfer solution,
performed at the point of tangency of the two conics, for which A is infinitely large, 7, is
infinitely small, and A, is finite and equal to h-h,,

Proof 4.1. Since only the relative (and not the absolute) orientation of the two conics
on the plane affects the problem, there is no loss of generality in taking ®, as zero. First,
one can show part (i) using contradiction. Assume that, contrary to the claim made in the
theorem, the initial and final conics intersect and a one-segment transfer trajectory
(A,B,C,1) joining the conics with T, > 0 does exist. Then, by equating the right-hand-sides

of the trajectory equations:
2 2
r=— Mo . By (F.1)
1+e,cos0 1+e,cos(6 - ;)

corresponding to the two conics, one obtains the equation:

hf — h +(hfe, — hie, cosw, )cos® - hle, sinw, sin® = 0 (F.2)

Using now the definition for y, and the identities:

_u?
y=tan(g) ; sin® = liyz ; cosf = :+y (F.3)
y y

~
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Eq. (F.1) can be manipulated into the form:

a,y’+2ay+a,=0 (F4)

where the quantities a,, a;, and a, are given by:
a, =h}(1-¢,)—h2(1-e,cos®;) ; a, =-hje sinw, ; a,=hi(l1+e,)—hg(1+e cosw,)
(F.5)
Equation (F.4) is a quadratic polynomial equation in the unknown y (corresponding

to 0), and since by assumption the initial and final conics intersect, it should have ar least
one real solution. Accordingly, the discriminant A of Eq. (F.4), given by:

A=aj-an, (F.6)

should be nonnegative. Substituting from Eq. (F.5), this necessary condition can be

written explicitly as:

A =h{ (e —1)+hg(e? —1)+2hjh}(1-ege, cosw,) 2 0 F.7)

Keeping in mind that the initial and final conics have a common focus, one can now
conclude that:

(i) If the initial and final conics have only one point in common (a point of
tangency), A should be zero, resulting in one real solution for y (of multiplicity two).

(ii) If the initial and final conics have two points in common (that is, if they
intersect), A should be strictly positive, resulting in two distinct real solutions for y.

(iii) Two (different) conics (with a common focus) can have no more than two points

in common.
Since by assumption a one-segment transfer trajectory (A,B,C,t,), with 1,> 0,

joining the initial and final conics exists, the quantities appearing in Eq. (F.7) are all
dependent on the characteristics A, B, C, and 1, > 0 of this one-segment transfer trajectory,
through the boundary conditions given in the main text by Egs. (4.139) through (4.142)

and also through one among Egs. (4.25), (4.26), (4.34), or (4.42), written at the final time
1. To prove the theorem one must uncover this dependence explicitly and show that A is

strictly negative, contradicting the necessary condition given in Eq. (F.7). With this in
mind, one can first use the definitions:
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£, =6,-C ; £ =6,-C (F.8)
and write Eqgs. (4.141), (4.142) as:

e, cos(§, +C—w,)=Bcosk, (F.9)

e, sin(§; +C - ;) =2r;A +Bsin§, (F.10)

Now, Eqgs. (F.9) and (F.10) can be solved for esinw,, ecosw,, and the square of e, to

yield:
e, sin®; = BsinC - 2r;Acos(&; + C) (F.11)
e;cos®@; = BcosC +2r,Asin(§, + C) (F.12)
e; =B’ +4A’r} + 4ABr, sin&, (F.13)

Using Eqgs. (F.12), (F.13), and the definitions:

Po=hy p; =h; (F.14)

one can write the discriminant A given in Eq. (F.7) as:

A=p? (ef) - 1) +p: (B2 - 1) +2p,p; +4ABp;r, sin&, —2B(e, cosC)p,p;

+4A'pyr; — 4A (e, cosC)p,p,r sink; — 4A(e, sinC)pyp,r, cosE,  (F.15)
In an analogous manner, one can write Egs. (4.139), (4.140) as:

€ocos(&, + C) =Bcos, (F.16)

€osin(§, + C)=2r,A +Bsin&, (F.17)
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and solve Egs. (F.16) and (F.17) for e sinC, e,cosC, and the square of ¢, to obtain:

e,sinC =2r,Acosg, (F.18)
e,cosC=B+2r,Asing, : (F.19)
el =B’ +4A%) +4ABr,siné, (F.20)

Using Egs. (F.18) through (F.20), one can further write the discriminant A given in Eq.
(F.15) as:

A= (pf - po)2 (B2 - 1) +4A (P?rtz) + Pgrg ~ 2pPoPsTol¢ COS(&{ -& ))

+4AB(pf —Po )(pfro sin&, — pot; Sinﬁf) (F.21)

Note that the radial distances r, and r; at the initial and final times can be expressed more
explicitly using the trajectory equation (Eq. (4.21)) and the definitions given in Eq. (F.14)
as:

Po . P¢
r=—Po . o P F.22
® 1+Bcos&, * 1+Bcos§, (F.22)

To proceed further with the proof one must now express more explicitly the six
quantities r, 1, 1,8in&, r,cos,, rsing,, and rcosk,. This step however depends strongly
on whether the generalized eccentricity B of the transfer trajectory is zero, one, between
zero and one, or greater than one. One therefore has to consider the following four possible

cases:

F.1 First case: B = 0

In this case, from Egs. (4.139) and (4.140) onre can deduce the following two
possibilities for the starting point 6, on the initial conic:

if A > 0 then (90:-’2E ; if A < O then eo=—g (F.23)

122



From Eq. (F.22), with B = 0 one obtains:
Io=Po Ty =Py (F.24)
Also, one can define the change A6 or AE in the argument of latitude during the one-
segment transfer as:
AB=6,-6,=6,-C+C-06,=E -& =AE (F.25)
Note that, since the transfer duration is strictly positive, that is, T, > 0, one must necessarily

have A6 > O for the transfer. Along such a one-segment transfer, with B = 0, Eq. (4.25) is

valid. Using the definitions given in Egs. (F.14) and (F.25), one can write Eq. (4.25) at
the final time 7, as:

1.1 2AAD (F.26)
Pr  Po
By defining the quantity D as:
D=1-2Ap,A6 (F.27)
p; can be written from Eq. (F.26) as:
p, = % (F.28)

The last step consists of substituting from Eqgs. (F.24) and (F.28) into the expression for A
given in Eq. (F.21). With B = 0, and for both possibilities given in Eq. (F.23), one can
write the result as:

21,8 2
A=o E@[(é@) _ sin? (éﬁ)] (F.29)
D' |\ 2 2

For A8 > O the following inequality is always valid:

46 > sin (_Aﬁ) (F.30)
2 2
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Accordingly, from Eq. (F.29), the discriminant A must be strictly negative (A < 0),
contradicting the necessary condition A > 0 found in Eq. (F.7). This concludes the proof of

part (i) for B =0.

F.2 Second case: B =1

In this case, to facilitate the algebra, one can again define the two quantities:

—tan(80) _ (Q]
yo—tan(z) ; yo=tan| (F31)

Using Eq. (F.31), and some standard trigonometric identities®, one can express the six
quantities 1, 1, 1,8in&,, r,cos&, rsink,, and rcosg; as (recall that B = 1):

1+y: 1-v2
ro=%&) . rysing, =Py, rocosgo=-p°(—y°—) (F.32)
1+y? 1—v?2
I, =2_f(_.2_.¥_f_) : I, sin&, =pyY; rf(;()sgf =ﬂ—2—£) (F.33)

Along such a one-segment transfer, with B = 1, Eq. (4.26) is valid. Using the definitions
given in Eqgs. (F.14) and (F.31), one can write Eq. (4.26) at the final time T as:

11 A
—=—=A(y-o)- i %) (F.34)

By defining the quantity D as:
D =3- Apy(¥ = ¥o)(3+Y: +¥:¥o +5) (F.35)

p; can be written from Eq. (F.34) as:

3p,
= 2Po (F.36)
Pr D

The last step consists of substituting from Egs. (F.32), (F.33) and (F.36) into the
expression for A given in Eq. (F.21). With B = 1, one can write the result as:
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A=~ w—zhg[tan(i)— tan(-gin (F.37)
D 2 2

For B = 1, a full revolution around the planet during a one-segment transfer is not possible,
because 0, or § go through a value at which r becomes infinite, as can be seen from Eq.
(4.21). Thus, along such a transfer 0 < & - &, <2n, and the following statement is always

true:
tan(%) # tan(éz—") (F.38)

Accordingly, from Eq. (F.37), the discriminant A must be strictly negative (A < 0),
contradicting the necessary condition A > 0 found in Eq. (F.7). This concludes the proof of
part (i) forB=1.

F.3 Third case: 0 < B < 1

In this case, the generalized eccentric anomaly E, introduced in Section 4.5.2, rather
than 0 or &, is the "natural” angular coordinate to use in the expression for A. By defining

the quantities:

372

b=(1-B?)" ; AE=E, -E, (F.39)

and using the results of Section 4.5.2, one can express the six quantities r,, r,, rsing,
r,cos&,, rsing,, and rcos, as:

po(1-BcosE,) . sinE Po(cosE, -B

I, = 0( b2/3 0) ; Tysin éO = % ; I, coséo = 0( b2/30 ) (F40)
p;(1-BcosE sinE cosE, -B

Ie= f( p2/3 » Iy sm&, = pfbx/3 L, Iy COS&,— = pf( b2/3f ) (F41)

Along such a one-segment transfer, with 0 < B < 1, Eq. (4.34) is valid. Using the
lefinitions given in Eqs. (F.14) and (F.39), one can write Eq. (4.34) at the final time T, as:
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1 1 2A[AE-B(sinE, —sinE,)]

;r. = ;0_ - - (F.42)
By defining the quantity D as:
D = b-2Ap,[AE - B(sinE, —sinE, )| (F.43)
p, can be written from Eq. (F.42) as:
p =2t (F.44)

D

The last step consists of substituting from Egs. (F.40), (F.41) and (F.44) into the
expression for A given in Eq. (F.21). One can write the result as:

218(1_ R? 2 ‘
L leA hé(1-B )[(%E_) _sinz(ﬁ)} (F.45)

D’ 2

Since the transfer duration is strictly positive, that is, T, > 0, it must necessarily be true that
A8 =6, -8, >0, which in turn implies that A§ = §.- §, >0 and AE > 0. Moreover, for
AE > 0 the following inequality is always valid:

AE > sin(éE) (F.46)
2 2

Accordingly, from Eq. (F.45), the discriminant A must be strictly negative (A < 0),
contradicting the necessary condition A >0 found in Eq. (F.7). This concludes the proof of
part (i) for0<B < 1.

F.4 Fourth case: B > 1

In this case, the generalized hyperbolic anomaly H, introduced in Section 4.5.3,
rather than 0 or £, is the "natural” coordinate to use in the expression for A. By defining

the quantities:

372

b=(B>-1) ;  AH=H,-H, (FAT)
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and using the results of Section 4.5.3, one can express the six quantities 1, 1, r,sing,
r,cosE,, rsing,, and rcosk; as:

Po(BcoshH, ~1 ) sinhH Po(B —coshH
T = 0( b2’ : ) ; Tpsing, = £ " L5 recosg, = 0( IR 0) (F.48)
BcoshH; -1 . sinhH p¢(B—coshH
rf = pf( b2/3 f ) ; rf sin gf - Ef_b]Tf ; rf COng — f( b2/3 f) (F.49)

Along such a one-segment transfer, with B > 1, Eq. (4.42) is valid. Using the definitions
given in Egs. (F.14) and (F.47), one can write Eq. (4.42) at the final time T, as:

1 _ 1 2A[AH-B(sichH, —sinhH,)|

—_——— (F.50)
Pr Po b
By defining the quantity D as:
D =b+2Ap,[AH - B(sinh H, — sinhH, )] (F.51)
p; can be written from Eq. (F.50) as:
p; = 5P, (F.52)

D

The last step consists of substituting from Eqs. (F.48), (F.49) and (F.52) into the
expression for A given in Eq. (F.21). One can write the result as:

21.8/p2 _ 2

D2

Since the transfer duration is strictly positive, that is, T, > 0, it must necessarily be true that
A8 =6, - 6, >0, which in turn implies that A& =&, - £, >0 and AH > 0. Moreover, for
AH > 0 the following inequality is always valid:

sinh(ﬂ) > AH (F.54)
2 )72
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Accordingly, from Eq. (F.53), the discriminant A must be strictly negative (A < 0),
contradicting the necessary condition A 2 0 found in Eq. (F.7). This concludes the proof of
part (i) for B > 1.

At this point, the proof of part (i) of Theorem 4.1 is complete. Now that part (1) has
been proven, the validity of part (ii) becomes intuitively obvious, and can be argued for in
the following way: First; assumning that the initial and final conics are tangent to each other,
one will have to agree that the existence of an impulsive transfer solution at the point of
tangency is obvious. All one has to do for such an impulsive transfer is use the correct
amount of €7, at the point of tangency (with € infinitely large, T, infinitely small, and €7,
finite) and change the speed of the vehicle (tangentially to both conics) by the desired
amount (AV). That there can be no other impulsive transfer is also obvious, since the
orbital speeds associated with the two conics at the point of tangency are unique, resulting
in a unique AV requirement. Thus, the only thing that is left to complete the proof for part
(ii) is to show that there can be no finite time (nonimpulsive) transfer in such a case. But
this is again (almost) obvious, since, for a finite time transfer, the discriminant A found in
Egs. (F.29), (F.37), (F.45), and (F.53) is strictly negative, contradicting the requirement
that it be zero (see Eq. (F.7)), coming from the assumption that the initial and final conics

have one common point.

Q. E. D.
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APPENDIX G

Explicit Expressions for the Power-Limited Cost

Along a One-Segment Transfer Trajectory

I this Appendix the goal is to obtain a workable approximation for the power-
limited cost associated with a one-segment transfer trajectory, valid in the limit of long
transfer duration and very low thrust (small throttling parameter A). Recall the expression
for the (nondimensional) speed of the vehicle given by Egq. (A.8.) in Appendix A.
Differentiating this expression and 1/r with respect to time, and using Egs. (4.11) through
(4.13) one obtains :

=2 (G.1)

Let now S be the (nondimensional) mechanical energy (kinetic plus potential) of the
vehicle. Explicitly, S is:
Vi1

S=—___=2 (G.2)
2 r

Using Eq. (G.1), and substituting for the thrust acceleration program from Eq. (4.159), the
time derivative of S can be found as:

ds _AV?
dt h

eV (G.3)

Equation (G.3) expresses a familiar result. It simply states that the work done per unit time
by the thrust program proposed in Eq. (4.10) is equal to the time rate of change of the
mechanical energy of the vehicle. Along a (one-segment) transfer trajectory dh = Adr, so
‘hat Eq. (G.3) can be rewritten as:

VZ

= — G4
ds (h]dh G4)
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The power-limited cost associated with a (one-segment) transfer is given by:

w2 2 2
JPL=j%—dt = %j AV 4= ——J——dh (G.5)

0 0

and, using Eq. (b.4), it assumes the form:

S

A [dS
JPL = —Z-JT (G6)

So

Integrating by parts in Eq. (G.6) one obtains:

h,

A(S, S,) A([Sdh
Jp=—| - +-J > (G.7)
2{h, h,) 2Jn

ho

and, substituting from Eq. (G.2), J can be written as:

hg hy
2
_A[S S +§J'V§h_é dh (G.8)
h, h, 4 h 2J rh

h ho

1]

Using the definition of J,, given in Eq. (G.5), one can further simplify Eq. (G.8) as:

S. S ¢ dh
J. =A 20 A G.9
FL (hf ho) rh? G9)

From Egs. (A.7) and (G.2) S is equal to -1/(2a), where, a is the instantaneous
semimajor axis along the transfer trajectory. Combining this with Eq. (A.9), one obtains:

S=-—=—— (G.10)

where of course e and h are the (instantaneous) eccentricity and angular momentum along
the transfer trajectory respectively. Using Eq. (G.10), one can write Eq. (G.9) as:
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h,

Afej—1 el-1 dh

== - -Al= G.11

FL 2( h} h} rh? (G.1D)
h,

Consider now a (one-segment) transfer trajectory on which B is zero. On such a
transfer trajectory r is equal to h? (see Eq. (4.17)), and Eq. (G.11) becomes:

h

2 2_ .
if B=0, then; JpL=%(e‘h—3l—e°h; IJ-A & (G.12)
f 0

hgy

which after a simple integration results in:

2 2_
if B=0, then: J, =é(3ef3 L 3603 1) (G.13)
6\ h; h,

When B is nonzero things are more complicated. With £=6-C (see Eq. (4.20)), and
d€=d6, one can now use Eqgs. (4.11) and (4.14) and write Eq. (G.11) as:

&
Aflel-1 el-1 rdé
| [ S —Azj— (G.14)
oL 2( h? h3 J h? :

[

When B=1, one can introduce the variable y=tan(£/2), and, noting that:

2 2 h*(1+y?
= 2% . oW __n _h(+y) (G.15)
(1+y?) 1+Bcos§ 1+cosE 2
one can substitute in Eq. (G.14) and write the power-limited cost as:
Afe2-1 el-1] Tdy
if B=1, then: Jo =7 5= - 22— —AZJ— (G.16)
2 by hy h

Similarly, when 0 <B < 1, or B > 1, one can introduce respectively the generalized
eccentric and hyperbolic anomalies, use the results of Sections 4.5.2 and 4.5.3, and write
the power-limited cost as:
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E

2_ 2_ 2

if 0 <B <1, then: JPL:%(efh3l_eoh3l]_\/A 2IE (G.17)
AR 0 1-B 4 h

A

if B>1 then:  J, = —( (G.18)

" H
ef—l_ef’;—l] A* (dH
2

B b _\/13.2_1H h

Although the expression for the power-limited cost found in Eq. (G.13) is exact only
when B=0, this expression is also approximately valid when B is small:

if B=0, then:  J = (hfﬁ o )[3 - 1.3 = 1} (G.19.2)
i f 0

For transfers from a circular orbit (see Section 4.8) ¢, is zero, and if ¢ is not very
large, then B is quite close to zero (see Figs. 4.7, 4.13, 4.15, 4.17, and 4.19). In this case
Eq. (G.19.2) assumes the form:

— 2—
if e,=0,B=0, then: I, = [-%—1‘&](%3%3—1] (G.19.b)
i 0 f

Transfers between two coplanar circular orbits (see Appendix D) correspond to the
limiting case of very small e.. On such transfers B is indeed very small (see Fig. 4.7), and

in this case Eq. (G.19.b) assumes the form:

ife;=e;=0,B=0,then: J, = (M){% - -1—3] (G.19.¢)
61, NAhy hg

The validity of the approximation expressed in Eq. (G.19) is checked in Table G.1

that follows, by comparing the power-limited cost evaluated from Eq. (G.19.b) with the
exact power-limited cost (see Table 4.1) for some of the transfers (the ones from a circular
orbit). The second and third columns of Table G.1 supply the throttling parameter A and
the generalized eccentricity B for the corrésponding transfer. The approximate power-
limited cost, evaluated from Eq. (G.19.b), is given in the fourth column, and it is

compared with the exact power-limited cost given in the fifth column, reproduced from the
fourth column of Table 4.1.
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Table G.1 Approximate power-limited cost using Eq. (G.19)

Transfer A B JpL (Eq. (G.19)) I, (Table 4.1)
Fig. 4.7 6.1139¢-3 1.2228e-2 8.9257e-4 8.9225¢-4
Fig. 4.13 3.6210e-2 7.2420e-2 5.5579¢-3 5.4860e-3
Fig. 4.15 1.0542e-1 2.1084e-1 2.0017e-2 1.7064e-2
Fig. 4.17 1.0131e-1 2.0261e-1 2.2436e-2 2.0457e-2
Fig. 4.19 2.9601e-2 5.9202e-2 5.0924e-3 5.0593e-3

It is apparent from Table G.1 that the approximation expressed by Eq. (G.19.b) is
indeed valid for low thrust levels (small A) and small B. Thus, for transfers from a circular
to a nearly circular orbit, since both A and B are small, Eq. (G.19.b) is valid. For low-
thrust transfers however from an arbitrary conic, B in general need not be small (see Fig.
4.2 for example), and Eq. (G.19) needs to be corrected. For the cases in whichO0<B < 1,
or B > 1, this correction can be obtained by noting that Eqgs. (4.34) and (4.42), supplying
the dependence of the angular momentum h on the generalized eccentric and hyperbolic
anomalies E and H respectively, can be approximated as:

small A, O0<B<1L (G.20)

small A, B> 1 (G.21)

Now, substituting from Eqs. (G.20) and (G.21) into Eq. (G.17) and (G.18) respectively,
one obtains for both of the above cases the approximate expression:

] (G.22)

2 2_ 2_HRp?_
if A is small enough, then: J,,,_z(h‘ h°)(3e' 2B -1 3¢~2B -1

61, LH hg

Note that Eq. (G.19) corresponds to a special case in Eq. (G.22), for which B=0. By
a continuity argument it is also obvious that the approximation expressed in Eq. (G.22)
should also be valid when B=1. Thus, Eq. (G.22) is a single, general approximation, valid
for low-thrust, long duration, one-segment transfers.
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One must be careful however when using Eq. (G.22), because, for the case in which
both the initial and final conics are noncircular, low-thrust, long duration, one-segment
transfers between the conics may not exist. It appears that, when 0 < B < 1, Eq. (G.22) is
valid for low-thrust, many revolution, one-segment transfers, that is, transfers on which
E-E, is large. When on the other hand B > 1, Eq. (G.22) is most probably valid for low-
thrust, one-segment transfers on which H,-H, is small. This condition seems to be
necessary if the term -B(sinhH-sinhH,) that was omitted when writing down Eq. (G.21) is
to be unimportant along a transfer. Table G.2 that follows supplies all the cases of transfers
among the examples, for which the power-limited cost evaluated from Eq. (G.22) (fourth
column) compares well with the exact power-limited cost (fifth column) associated with the

same one-segment transfer.

Table G.2 Approximate power-limited cost using Eq. 22

Transfer A B Jp. (Eq. (G.22)) J; (Table 4.1)
Fig. 4.2 3.5000e-3 7.0000e-1 1.5969¢-4 1.5369e-4
Fig. 4.4 3.5000e-2 7.0120e-1 3.9261e-3 3.9537e-3
Fig. 4.7 6.1139e-3 1.2228e-2 8.9283¢-4 8.9225e-4
Fig. 4.13 3.6210e-2 7.2420e-2 5.6132e-3 5.4860e-3
Fig. 4.19 2.9601e-2 5.9202¢-2 5.1264e-3 5.0593e-3

For the cases of course in which B > 0 and the approximation supplied by Eq. (G.22)
is not good one can always evaluate the power-limited cost associated with a one-segment

transfer trajectory using the exact expressions given by Egs. (G.16) through (G.18).

134



APPENDIX H

Comparison Between Keplerian Motion and the

Motion Uncovered in Section 4.4

ch]erian conics corresponding to Keplerian motion (see Appendix A), and two-
dimensional transfer trajectories, corresponding to the motion uncovered in Section 4.4,
have in this report been unified into a single descriptive scheme, exemplified by a common
trajectory equation. This Appendix supplies an elementary comparison of the two types of
motion, which can be summarized as in Table H.1 that follows.

Table H.1 Comparison between Keplerian motion and Present motion

Type of motion: Keplerian Present (Section 4.4)
Thrust acceleration: =0 €= (tangential)
rcosy
Angular momentum: h=h, = constant h=At+h,
h2 h2
Trajecto uation: r= r=
ey e 1+ecos(6 - o) 1+ecos(6 - )

In Keplerian motion the thrust acceleration is zero and the angular momentum of the
vehicle (considered as a point mass) about the planet is constant. In the type of motion
uncovered in Section 4.4 the thrust acceleration is tangential and equal to A/(rcosy), where
A is a constant (the throttling parameter), and the angular momentum of the vehicle about
the planet is a linear function of time. For both types of motion the trajectory equation has
the same identical form! Just as Keplerian motion, the motion uncovered in Section 4.4
corresponds to an exact analytic solution of the equations of motion. Note that the
generalized eccentricity and orientation constants B and C of a transfer trajectory have in
Table H.1 been denoted as e and © respectively, to make clear the analogy with the
eccentricity and orientation constants corresponding to Keplerian motion. The reader is
advised to compare Table H.1 with Table I.1 (page 139) of Appendix 1.
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APPENDIX I

The Keplerian Class of Thrust Programs

Let Q be an arbitrary, explicit, differentiable function of the nondimensional time
variable 1. For any such function Q one can form the thrust program given explicitly by the

components:

£ =

b4 k4

xQ 2rQ . =2 I
=+ g = (L1)

where the dot'denotes differentiation with respect to T. Q will be called the thrortling
function. Note that when Q is a constant, say equal to a throttling parameter A, one obtains
from Eq. (1) the thrust program proposed in Eq. (4.10) of Section 4.3 in the main text.
The totality of thrust programs defined by Eq. (I.1) will be given the name the Keplerian
class. The Keplerian class is a rather privileged class of thrust programs, because for all its
members the corresponding equations of motion afford a rather simple exact analytic
solution. Specifically, if the right-hand-sides of Eqgs. (4.6), (4.7) are forced with the
components of the thrust acceleration vector given in Eq. (1.1), then the exact solution of
Egs. (4.6) through (4.9) is given by the following four quadratures:

T

h=h,+ IQd‘c (1.2)
0
<= 2rQ+Bsin(6-C) L3)
h
h2
= 4
' 1+ Bcos(6~C) a4
far | d0
1
— = L5
.([h’ a[[l+Bcos(9—C)]2 @)

where h,, B, C, and 6, are four arbitrary constants of integration. This result can be easily.
verified by differentiating Eqs. (1.2) through (I.5) with respect to 7, taking into account Eq.
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(I.1), and by checking that Eqs. (4.6) through (4.9) are identically satisfied. Egs. (I.2)
through (1.5) reduce to Egs. (4.15) through (4.18) when Q=A=constant. Note that if Qis
not explicit in 1, then Eqs. (1.3), (1.4) still constitute two exact quadratures, while obtaining
two more quadratures in such a case may or may not be possible depending on the
functional dependence of Q. Note also that again, as in Eq. (4.17), Eq. (1.4) describing the
trajectory is identical in.form with the trajectory equation corresponding to two-body
Keplerian motion! Thus, the constants B and C can again be called the generalized
eccentricity and the generalized orientation respectively, since they play qualitatively the
same role as the eccentricity and orientation constants e and ® do in Keplerian motion.

Apart from its kinship with Keplerian motion, the importance of the motion arising
under the Keplerian class of thrust programs comes partly from the following claimss: If the
throttling function Q is small, and if the time derivatives of the throttling function d"Q/dt"
n=1,2,3... are much smaller than the throttling function itself, then the corresponding
motion under Keplerian thrust, described by Egs. (I.2) through (I.5), can presumably be
expected to be nearly-optimal when performed with a power-limited propulsion system.
This claim can be argued upon by examiningss the costate system of Eqgs. (4.54) through
(4.56), and the transversality conditions, Eqgs. (4.106), (4.109), (4.110), under the
assumption that the optimal power-limited thrust is approximately Keplerian. Note that for
long duration maneuvers one can easily find members of the Keplerian class for which the
above conditions on the throttling function Q are satisfiedss. In particular, one can introduce
four classes of such members each one of which is suitable for treating a special type of
finite-time problem that may be encountered during orbital operations. These four classes
will be given the names the Tangential, the Linear, the Quadratic, and the Cubic class, and
correspond to the (Keplerian) thrust programs for which the throttling function Q is
respectively a zero, first, second, and third degree polynomial of time T.

A thrust program will be called tangential if and only if the corresponding thrust
acceleration vector is tangent to the vehicle's flight path for all time 1 for which the thrust
program is defined.

Note now that:

(1) The throttling function Q, and the corresponding thrust program, depend on one,
two, three, and four arbitrary constants for the Tangential, the Linear, the Quadratic, and
the Cubic (sub)classes of (Keplerian) thrust programs respectively.

(i) When dQ/dr is small compared to Q, that is, when Q is slowly varying, then the
corresponding thrust is nearly-tangential.
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(i) A Keplerian thrust program is tangential if and only if it is a member of the
Tangential (sub)class.

(iv) For the Tangential class of thrust programs Q is a zero degree polynomial,
namely a constant.

(v) The class of thrust programs proposed in Eq. (4.10) of Section 4.3 was none
other than the Tangential (sub)class of (Keplerian) thrust programs.

(vi) Chapter IV of this report treated in some detail the motion that can be executed
under the Tangential class of thrust programs.

It can be verified’ that near-optimality (in the power-limited sense) and controllability
appear as two opposing trends as one goes from the (simplest) Tangential class toward the
(most sophisticated) Cubic class of thrust programs. One can satisfy the first-order
necessary conditions for optimality extremely well using the Tangential class (see Section
4.6.5), but the vehicle is not completely controllable under the corresponding thrust
programs (see for example Theorem 4.1 of Section 4.11, and Appendix F). On the other
hand, using the Cubic class one may not be able to satisfy the first-order necessary
conditions as well, but the vehicle is much more controllable under the corresponding
thrust programs>s. In fact, it is straightforward to show the following theorem about
controllability with regard to the Cubic class (the proof is given in Ref. 55):

Theorem. If h, h,, 1, 1, and 1, - 1, are all strictly positive, then, any given initial
state (hy,X4,I0,0,) at a given initial time =1, can be driven to any given final state
(hs,x,1,,0)) at a given final time 7=, by a thrust program belonging to the Cubic class.

The four subclasses introduced above are suitable for treating the following finite-
time problems (Note that hy, €, ®,, €; and ®, are always fixed):

(a) Escape problems: For all such problems 6, 8, and h; are all left free. The
time duration T, of the maneuver is fixed. The throttling function Q should depend on (at
least) one arbitrary constant. The Tangential class of thrust programs for which the
throttling function is an arbitrary constant is uniquely suitable for treating these problems.

In this report this was done in Sections 4.9 and 4.10.
(b) Transfer problems: For these problems 8, and 6, are left free, but h; is fixed.

The time duration 7, of the maneuver may be fixed or free. If 1, is left free then Q should

depend on (at least) one arbitrary constant, meaning that the Tangential class is the suitable
one to choose in such cases. This was done in this report in sections 4.8 and 4.10. If 7, is

fixed then Q should depend on (at least) two arbitrary constants and the Linear class may be

ased.
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(c) Mixed Transfers-Rendezvous: For these problems h, is fixed, and only one
among 6, or 6, is left free, while the other is fixed. The time duration T, of the maneuver
may be fixed or left free. If 1, is left free then Q should depend on (at least) two arbitrary
constants, meaning that the Linear class is the suitable one to choose in such cases. If 1, is
fixed then Q should depend on (at least) three arbitrary constants and the Quadratic class

may be used.
(d) Rendezvous Problems: For these problems 0y, 6;, and h, are all fixed. The

time duration 7, of the maneuver may be fixed or left free (in practice it is usually desirable
to have a fixed 1,). If 1, is left free then Q should depend on (at least) three arbitrary
constants, making the Quadratic class the suitable one to choose in such cases. If 1, is fixed
then Q should depend on (at least) four arbitrary constants and the Cubic class may be
used.

This Appendix concludes by supplying a comparison between Keplerian motion and
the motion arising under Keplerian thrust, which can be summarized as in Table 1.1 that
follows. The reader is advised to compare Table 1.1 with Table H.1 (page 135) of

Appendix H.
Table 1.1 Comparison_between Keplerian _motion
and motion under Keplerian thrust
Type of motion: Keplerian Present
Thrust: Zero Keplerian
Thrust acceleration: £=0; g=0 € = X—Q% ; €= 9.
r
Angular momentum: h =h, = constant h=h,+ J.Qd‘c
[0}
h? h?
Trajectory equation: r= r=
oIy eq 1+ecos(0 - w) I+ecos(0-w)

Note once more that the generalized eccentricity and orientation constants B and C in
=q. (I.4) have in Table 1.1 been denoted as e and ®» respectively, to make clear the analogy
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with the eccentricity and orientation constants corresponding to Keplerian motion. The
detailed theory introducing the Keplerian Class of thrust programs is given in Ref. 55. For
applications corresponding to the Keplerian Class of thrust programs the reader is referred
to Ref. 56 and to the proceedings of the AIAA Astrodynamics Conference of 1995.
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Figure 4.2 Example of transfer between two elliptic orbits.
El: h=1, ,=0.7, ®,=0°, E2: h=1.2568, =0.7097, ©=0.195°,
T: A=0.0035, B=0.7000, C=0.3370°,6,=0°, 6~=1160°, 1=73.361.
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Figure 4.3 Example of transfer between two elliptic orbits.
El: hy=1, €,=0.7, ©,=0°, E2: h=1.4114, ¢=0.6468, ©=0.731°,
T: A=0.015, B=0.7002, C=1.444°, 6,=0°, 6,=280°, 1=27.426.
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Figure 4.4 Example of elliptic to hyperbolic transfer.
El: hy=1, €,=0.7, ©,=0°, H2: h=2.1077, e~1.0768, ©=66.547°,
T: A=0.035, B=0.7012, C=3.366", 8,=0°, 8,=196°, 1=31.648.
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Figure 4.5 Example of hyperbolic to hyperbolic transfer.
HI: hy=1, e;=1.01, ©,=0°, H2: h=1.3951, e~1.5071, ©=344.030°,
T: A=0.03, B=1.3164, C=341.640°, 8,=-150°, 8,=90°, 1=13.169.

155



14
13
12

11

6 . .
100 150 200

Figure 4.6 Solution search for a circular to circular transfer.
CO: hy=1, €,=0, Cf: h=2, e=0.05, ®=0" (Cf is very nearly circular).

Figure 4.7 Transfer corresponding to point S (with k=10) in Fig. 4.6.T: A=6.1139X107,
B=1.2228X107, C=279.312°,0,=189.312°, 6,=104.105°, 1=163.563.
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Figure 4.8 Solution search for the same circular to circular transfer
as in Fig. 4.6, but with smaller e;. CO: hy=1, e,=0, Cf: h=2, €~0.01, 0=0°.
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Figure 4.9 Solution search for the same circular to circular transfer
as in Fig. 4.6, but with smaller e,. CO: hg=1, e,=0, Cf: h=2, ¢=0.005, ©=0°.
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Figure 4.10 Solution search for the same circular to circular transfer
as in Fig. 4.6, but with smaller e,. CO: hj=1, e,=0, Cf: h=2, ¢=0.001, ®=0°.
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Figure 4.11 Solution search for the same circular to circular transfer
as in Fig. 4.6, but with smaller e,. CO: h=1, e,=0, Cf: h=2, ¢=0.0005, ©=0°.
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Figure 4.12 Solution search for a circular to elliptic transfer.
CO0: hy=1, e,=0, Ef: h=2, ¢=0.35, ©=0°.
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Figure 4.13 Transfer corresponding to point S (with k=2) in Fig.4.12. T: A=3.6210X1072,
B=7.2420X102, C=309.249°, 6,=219.249°, 0;=100.446°, 1=27.617.
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Figure 4.14 Solution search for a circular to elliptic transfer.
CO: hy=1, e,=0, Ef: h=1.5, ¢=0.7, ®=0°.

Figure 4.15 Transfer corresponding to point S (with k=1) in Fig. 4.14.
T: A=0.10542, B=0.21084, C=353.501°, 6,=263.501°, 6,=92.785°, 1=4.743.
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Figure 4.16 Solution search for a circular to hyperbolic transfer.
CO0: hy=1, e,=0, Hf: h=2, e=1.1, ©=0°.

Figure 4.17 Transfer corresponding to point S (with k=1) in Fig. 4.16.
T: A=0.10131, B=0.20261, C=312.109", ,=222.109°, 6,,=98.861°, 1=9.871.
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Figure 4.18 Solution search for an escape from a circular orbit at 1=100.
CO: hy=1, e,=0, Pf: h=free, e=1, ®=0".

Figure 4.19 Transfer corresponding to point S (with k=3, h=3.9601) in Fig. 4.18.
T: A=2.9601X102, B=5.9202X10, C=346.123°, 6,=256.123°, 6,,=90.863°, 1=100.
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Figure 4.20 Solution search for an elliptic to elliptic transfer.
EO: he=1, €;=0.9, 0,=0°, Ef: h=2, 0.8, 0=0".

Figure 4.21 Transfer corresponding to point S (with k=0) in Fig. 4.20.
T: A=7.3577X103, B=0.87362, C=358.544°, 8,=129.783°, 8,=253.156°, 1=135.913.
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Figure 4.22 Solution search for an elliptic to elliptic transfer involving a small
change in eccentricity. EO: h=1, €,=0.9, 0,=0°, Ef: h=2, e=0.895, 0=0".
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Figure 4.23 Solution search for (practically) the same elliptic to elliptic transfer
as in Fig. 4.22. EO: hy=1, ,=0.9, w,=0°, Ef: h=2, €=0.898, w=0".

164



0.6

LHS of Eq. 4.125) |
0.4 .. ............ .

02 ............

06 z 5 S
20 40 60 80 100

Figure 4.24 Solution search for an elliptic to elliptic transfer with orientation change.
EO: hy=1, ,=0.9, 0,=0°, Ef: h=2, ¢=0.8, ©=30°.

Figure 4.25 Transfer corresponding to point S (with k=0) in Fig. 4.24.
T: A=1.5121X107?, B=0.83962, C=352.146°, 6,=149.252°, 0;=195.104°, 1=66.134.
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Figure 4.26 Solution search for an elliptic to hyperbolic transfer.
EO: by=1, ¢,=0.8, 0,=0°, Hf: h=2, e=1.5, ®=30".
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Figure 4.27 Transfer corresponding to point S (with k=1) in Fig. 4.26.
T: A=2.0519X102, B=0.86914, C=349.330°, 6,=198.586°, 6,=153.967°, 1=48.736.
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Figure 4.28 Solution search for a hyperbolic to hyperbolic transfer.
HO: hg=1, e=1.1, ©,=0°, Hf: h=2.3, e~3.4, ©=320".

Figure 4.29 Transfer corresponding to point S (with k=0) in Fig. 4.28.
T: A=5.2151X102, B=2.8264, C=319.870°, 6,=-149.782°, 0,=50.642°, 1=24.928.
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Figure 4.30 Escape from an elliptic orbit at 7=200, first solution (; is free).

EO: hy=1, e,=0.8, 0,=0°, Pf: h=3, e=1, ®=0.3562°, T: A=0.01, B=0.76944,
C=355.827°, §,=149.787°, 6,=104.974°, k=2, 1=200.
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Figure 4.31 Escape from the same elliptic orbit (as in Fig. 4.30) at T=200, second
solution (@, is free). EO: h=1, e,=0.8, ®,=0°, Pf: h=3, e=1, ©=51.459°, T: A=0.01,
B=0.78853, C=0.5593°, 6,=56.212°, 8,=192.057°, k=1, 1=200.
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Figure 4.32 The two associated conics (dotted lines) at the initial and final times,
for the transfer given in Fig. 4.21. ACO: hy=1, €,=0.87362, 0,=358.544°,
ACf: h=2, e=0.87362, 0,=358.544°.

Figure 4.33 The two associated conics (dotted lines) at the initial and final times,
for the transfer given in Fig. 4.25. ACO: hs=1, €,=0.83962, 0,;=352.146°,

ACF: h=2, =0.83962, 0=352.146".
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vehicle path

Figure 4.34 The geometry of departure from a circular orbit (Lemma 4.3).

vehicle path

Figure 4.35 The geometry of departure from an arbitrary conic (Lemma 4.4).
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Figure 4.36 Two hyperbolic trajectories having opposite orientation.
A one-segment (transfer) solution cannot exist in such a case.

-5 5

Figure 4.37 A two-segment transfer between two hyperbolic orbits for a case similar
to the one given in Fig. 4.36. HO: h;=1.7604, e,=1.2297, 0,=180°, Hf: h=1.7604,
e~1.2297, ©=0° TI1: A=-0.15, B=0.3, C=180", 6,=90°, 6,=270°, 1=5.0690, T2:
Symmetric to T1 about 6=90° with A=0.15 (Note: In Table 4.1, Section 4.13, the costs are
the total costs, while &, and &, correspond only to T2).
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Figure 4.38 An example of a three-segment (thrust(T 1)-coast(C2)-thrust(T3)) transfer
for changing the orientation of an elliptic orbit by 90 degrees. E0: h=1, ,=0.9, 0,=0°, Ef:
h=1, ¢=0.9, ®=90°, T1: A=6.3771X102, B=1.4030, C=302.441°, 6,=172.904°,
8,=212.441°, 1,,=36.327, T3: Symmetric to T1 about 6=225° with A=-6.3771X10?, C2
(dotted line) is just a circular (Keplerian) segment with A=0 (Note: In Table 4.1, Section
4.13, the costs are the total costs, while &, and &, correspond only to T1).
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Figure 4.39 Variation of one-half times the square of the (nondimensional) thrust
acceleration with (nondimensional) time for the transfer example of Fig. 4.2.
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Figure 4.40 Variation of one-half times the square of the (nondimensional) thrust
acceleration with the argument of latitude for the transfer example of Fig. 4.2.
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Figure 4.41 The Hohmann transfer (H) between two coplanar
elliptical orbits having the same orientation.

-—

2

Figure 4.42 The Biparabolic transfer (P1), (P2) between two coplanar
elliptical orbits having the same orientation.
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