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SUMMARY

A miniature multichannel pressure measurement module measuring 5.5 cm in length by 2.5
cm in width by 3 cm in height was developed with accuracy to +/-0.1% F.S., independent of the
tunnel operating temperature. This instrumentation has been designed for use in the NASA 0.3
Cryogenic Tunnel and in the National Transonic Facility (NTF) operational environments. The
prototype module, intended for installation in cryogenic wind tunnel models, consists of 16 silicon
pressure sensing microsensors, each with an onboard temperature sensor, arranged in two parallel
rows, with two CMOS multiplexing dice, and an instrumentation amplifier in a DIP package. The
selection of custom circuitry designed for cold performance and the careful choice of packaging
materials with low thermal expansion coefficients and materials properties favorable for cryogenic
applications have contributed to reliability and repeatability. The experimental module has been
thermally cycled dozens of times during cryogenic pressure calibrations and tunnel runs.
Subsequent pressure calibrations performed at 90-day intervals over the past year all fall within a
+/-0.1% overall error window for the combined errors of thermally induced offset drift and
sensitivity.

INTRODUCTION

There are currently 17 cryogenic wind tunnels (ref. 1) (see Appendix A) in operation
worldwide. Most operate in a temperature range of -190 C to +70 C. The coldest temperature
falls approximately 140 deg. C below the lowest mil-spec temperature for the performance rating
of electronic components. Most electronic integrated circuits will cease to function at cryogenic
temperatures due to limitations in materials properties. The failure mechanism may be due to
mechanical contraction of conductors such as a track separation on the substrate or the sensor chip
interconnect metallization. At some temperature below -55 C, many integrated circuits cease to
function due to the effects of charge carrier freezeout which results from insufficient dopant levels
which in the case of sensors, will manifest as a severe drift and nonrepeatability in calibration.
Another limiting factor may be due to the use of elastomeric materials for die or substrate
attachment that tend to become rigid and brittle at cryogenic temperatures.

CRYOGENIC PRESSURE SENSING DICE

Each of the silicon pressure sensors employed in the present instrument has a square profile
2.54 millimeter on each side and is 0. 3 millimeter high (see fig. 1). There are four diffused
(boron) resistance bridge elements, two acting in compression and two acting in tension, integral to
the etched membrane used for sensing pressure. There is also one additional bridge element on the
die rim, insensitive to pressure, which provides a temperature measurement of each sensor die
used for temperature compensation. In order for the silicon pressure sensing dice to operate
properly below -100 C, it is necessary that the dopant impurity level be on the order of
1E20 atoms of boron per cubic centimeter (see fig. 2) (ref. 2). This dopant level ensures that the
sensors do not suffer from charge carrier freezeout due to low charge carrier mobility. The
piezoresistive pressure sensors are influenced by the thermal offset and sensitivity shifts



(see fig. 3) (ref. 3) in the bridge resistors, and h=avily influenced by mechanical mounting effects
between the die and substrate due to temperature-dependent differences in coefficient of thermal
expansion between the die and substrate materials, all of which contribute to the sensor overall
thermal offset drift. Plots of individual sensors mounted by the preferred method of field-assisted
bonding (ref. 4) to a Pyrex 7740 substrate yield smoothly varying, repeatable offset (see fig. 4)
and sensitivity curves (see fig. 5).
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Fig. 1. The top view of the die shows the location of the port and the placement of the
resistors. The effective circuit is the typical wheatstone bridge configuration.



10!

ﬁ:&m a Sample 6
Boron atoms added

-2
10 per CC of melt = 1.3 x 10'
Resistivity in
Ohm-Centimeter
M. Sample 7
A Ad  Boron atoms added
103 perCColmen-i.axwzo

Piezoresistive
sensitivity

Boron atoms added

o ——C) .
perOColmelt-i.Sx1¢"

104
0 +225 +25 -100 -150 -175 -190
Temperature °C

Fig. 2. Charge carrier density vs. temperature.

T-75°C

15

T -50°C

T-26°C
D

T 0°C

T 28°C
—

T8¢,
T 75°C
T 100°C

1.0

T175C

. | I |

108 10'7 1018 1018
Dopant density

Fig. 3. Piezoresistance coefficient vs. temperature.

102



10 o CRYOESP 16 CH 1
08 | ot
0.6 jue
04 | x
02 |-

Voits 00 _5
02
04 |

0.6 fum

08 j

10 ] | | | | | | ] ] J

<200 -170 -140 -110 -80 -50 -20 10 40 70 100

Degrees C

Fig. 4. Channel 1 offset hysteresis plot, each symbol is a different thermal cycle.
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Fig. 5. Channel 1 sensitivity hysteresis plot, each symbol is a different thermal cycle.

CIRCUITRY FOR CRYOGENICS APPLICATIONS

The ideal pressure sensing geometry for model pressure instrumentation would consist of a
custom VLSI array of sensors with onboard multiplexing, amplification, and the means for laser
trimmed thermal compensation delivered from the silicon foundry, ready for integration in a
module. Excellent single-channel sensors are currently available, and these same dice can be
assembled in a hybrid package in such a way as to achieve essentially the same results. The



method of joining the sensor dice rigidly to the substrate without using epoxy die attach materials
has resulted in an improvement in the thermal repeatability of these sensors at room temperature
and particularly at cryogenic temperatures. First, the important step was development of annealed,
metallized, and drilled Pyrex substrates in the precise geometry and the development of precise
fixturing to hold the sensors and substrate together so joining could be accomplished by field-
assisted bonding. Cryogenic tests were conducted to determine multiplexer switching and
instrumentation amplifier gain performance (see figs. 6 and 7). The tests indicated amplifier
linearity and repeatability without thermal distortion by the signal conditioning system.
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Fig. 6. Multiplexer “on” resistance vs. temperature.
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MATERIALS AND PROCESSES FOR CRYOGENIC TEMPERATURES

The requirement for structural integrity in electronic packaging is met by the use of metallic
materials with low coefficients of thermal expansion such as Kovar. The coefficient of thermal
expansion of Pyrex 7740 glass matches that of silicon well enough to tolerate thermal cycling in
properly annealed substrates (ref. 6). The Pyrex substrate is first metallized with
Titanium/Tungsten for the adhesion layer, and then a 1.5-micrometer layer of gold is deposited for
good conductivity. The circuitry pattern is then etched to produce low-resistance, high-quality
tracks. The silicon pressure sensors are bonded to the metallized substrate by field-assisted
thermal bonding. This process, otherwise referred to as Mallory bonding by the electronics
industry, takes place at 375 C. It is performed under high vacuum with an applied field strength of
1E6 volts per meter on the silicon sensors Pyrex interface. After bonding, the sensor substrate is
then attached to the tubing plate using a thin sheet of thermosetting polyamide film (see fig. 8).

The modified polyamide material remains flexible at - 196 C and provides a compliant bond
between these two surfaces. The electrical interconnection of the sensor circuitry to the substrate is
made using a thermo-ultrasonic wedge-ball bonding machine with substrate heating applied.

Fig. 8. The pressure sensors are bonded to a metallized Pyrex substrate. One of the
sensors is shown in this cutaway drawing.

PC INTERFACE AND A/D CONVERSION

A modified commercially available 12-bit data acquisition interface card is used to scan the
pressure inputs. Since the instrumentation module is equipped with its own instrumentation
amplifier and multiplexing circuitry, the interface could be streamlined by connecting the
instrumentation amplifier output directly to the sample-and-hold input on the PC card with coaxial
cable (see fig. 9). This improves the signal-to-noise ratio since all millivolt level signal leads are
contained within the instrument module and are just a few centimeters in length. Similarly, the
multiplexing switches are also within the module. Linking the address and enable lines from the
remote module to the timing circuitry on the PC card via line drivers and receivers ensures quiet



taken are first stored to RAM, then saved to diskette and displayed as real-time engineering units
on the monitor. The data rate and sample time interval for a data record is pre-set by the scanning
software parameters. The menu-driven software provides for access to data files for storage, recall
of sensor calibration files, and for real-time display.

.

Thermal | R .

controller ! Pressure channels | |
[}

and multiplexer

Address and
enable bus

Address bus

1
{
1
| | | substrate
Pressure !
controller | ]
] |
] : Amplifier
! | substrate
1
}

Keyboard

Fig. 9. PC interface with pressure/temperature calibration system.

CALIBRATION SYSTEM

A system capable of controlling temperatures from -184 C to +220 C and pressures from 0 to
344.74 Kpa was used to calibrate the sensing module. A thermocouple accurate to within
+/ 0.1 deg. C of reading was used to calibrate the temperature of sensors within the module.

DISCUSSION OF DATA

Due to the parallel circuit of the sensor supply bus which necessitates constant voltage
excitation, and sensor resistance which decreases as temperature decreases, the sensors are more
sensitive with decreasing temperature (see fig. 5). The hysteresis, however, is less than the
resolution of the encoder. The offset plot for channel 1 (see fig. 4) shows this for several thermal
cycles; a different symbol is used for each thermal cycle. The comparison of offset variation from
channels 1-8 is shown in figure 10. The sensitivity plots for channels 1-8 reveal how sensors in
one multplexer row vary in sensitivity (see fig. 11).
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ERROR ANALYSIS

The measurement of calibration pressure is accurate to within +/-0.01% of full scale
(344.74 Kpa). The set point resolution is 3.447 Pa. Helium is used as the calibration gas. The
uncertainty of the temperature controller is +/-0.5 deg. C with a temperature deviation of
+/0.1 deg. C after stabilization. The repeatability following a temperature reset is +/-0.25 deg. C.
The uncertainty of the analog-to-digital conversion system used to scan the pressure module is
+/0.01% E.S. The overall error of the multichannel pressure sensing system, based on several
pressure and temperature calibrations repeated within 1 year, is 0.1% F.S. for -196Cto +100 C
over the differential pressure range - 101.35 Kpa. to + 241.32 Kpa.

CONCLUSION

A miniature multichannel pressure measurement module measuring 5.5 cm. in length by
2.5 cm in width by 3 cm in height has been designed, developed, fabricated, calibrated, and
cryogenically tested in cryogenic wind tunnel trial applications. It is accurate to within +/-0.1% of
F.S. error band in the pressure range of -101.35 Kpa. to 241.32 Kpa. and over the temperature
range from -195.6 to +100 deg. C.
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Appendix A

Current Cryogenic Wind Tunnels

Test Section Size Speed or Stagnation Stagnation Running
- h, w, | Pressure,
Organization Tunnel Test Gas ( r‘: ) Mach Range w" Temperature Time
e ——— e e e
g CARDC closed circuit, fan | nitrogen 0.1 x0.1 upto 0.4 atmospheric (?) 79-320K ?
closed circu . . . .
RAE-Bedord | co et | nivogen | 03x03x15 | upto25mis | atmospheric | soK-ambient | e
E 0.11x0.11x0.25
niversity . ) (reguiar) . typical
'g Suoumampg\ closed circuit, fan | nitrogen 0.14x0.11 x0.41 14-72mys atmospheric 79-380K 1hou’ry
(MsBs)
8 T2 nitrogen 0.37x0.39x 1.32 up o
g ONERA/CERT dt:ssdc-_rcun. fchair | solid adaptvewalts | 0310 16-50 95K-ambiert | 400sec +
[V
ETW GmbH PETW nitrogen 0.23x0.27x0.78 0.35-1.0 125-45 90 - 313K typically
closed circuit, fan continuous 1 hour
1.2, 1.35 fixed
nozzies
DLR - Koln KKK nitrogen 24x24x54 up to 0.38 upto 1.12 100 - 300K up to
closed circuit, fan several hours
DLR - Go ttingen| Ludwieg tube nitrogen 0.40x0.35x20 025-1.0 upto 10 120 K - ambient about 1 sec
NAL closed circuit, fan | nitrogen 0.1x01x0.3 up to0 1.02 upto 2 90 K - ambient more than
2 hours
University of closed circuit, fan | nitrogen 0.1x0.1x03 upto 3 nvs upto 2 100 K - ambient upto2
§ Tsukuba hours
University of | closed circuit, fan | nitrogen 05x05x1.2 7-65m/s 1.22-8.10 112 K - ambient 30 min at
Tsukuba max R
NDA closed circuit, nitrogen 0.30 x 0.06 x 0.72 up t0 0.83 upto 1.77 108 K - ambient | up to 100 min
centrifugal fan
University of | closed circuit, fan | nitrogen 1.2x060x1.0 0-8mys atmospheric 80 - 300K several
Hiinois minutes
§ NASA Langley o3m TCT nitrogen 0.33x0.33x 1.42 0.05- 1.0+ 11-62 78 - 340K up to several
§ closed circuit, fan solid adaptive walls hours
5 | nasa Langley US. NTF nitrogen 25x25 7.62 02-1.20 1.0-89 78 - 340K up to several
closed circutt, fan siotted hours
TsAGI T-04 nitrogen 02x02x0.74 0.1-1.15 1-85 100 - 300K 1.5 hours
dosed circuit, rich air perforated
< induction
3 ITAM MT-324 nitrogen 02x02x08 upto 0.2 atmospheric 80 - 300K several hours
o} closed circuit, fan
PMI-K closed cireuit, fan | mixure of 0.22 cirgular 05-10m/s 1-10 130 - 300K ?
gasses open jet
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