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ABSTRACT

Signal-processing theory for the TurboRogue receiver is presented. The signal form is
traced from its formation at the GPS satellite, to the receiver antenna, and then through the
various stages of the receiver, including extraction of phase and delay. The analysis treats the
effects of ionosphere, troposphere, signal quantization, receiver components, and system noise,
covering processing in both the “code mode” when the P code is not encrypted and in the “P-
codeless mode” when the P code is encrypted. As a possible future improvement to the current
analog front end, an example of a highly digital front end is analyzed.
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SYMBOL DEFINITIONS

A_,A,,A, = early, prompt, and late correlation amplitudes, measured

Ac = amplitude factor defined in Eq. (4.23)

An = maximum correlation amplitude, Eq. (7.1) or Eq. (7.20)

ap = P-code chip value, + 1

Ap(D) = P-code Fourier component, Eq. (2.6)

Ax = ami)litude factor defined by Eq. (5.7)

C = quantized counterrotation phasor, Eq. (4.2)

c = coefficient of fundamental in quantized counterrotation sinusoid
f = frequency

fq = Doppler-shifted baseband frequency

fh = nominal downconversion frequency

fr, = L-band carrier frequency

f, = P-code chip rate = 1/T),

Ga(vg) = effective complex filter introduced by antenna

G®) = composite bandpass amplitude, Eq. (3.12)

Gg(fy) = effective aggregate complex filter introduced by receiver before sampler
G,(f) = effective aggregate filter introduced by GPS satellite

H(f,f’) = definition in Eq. (4.16)

kg = Boltzmann's constant

kp = constant in equation to convert from correlation amplitudes to residual delay
l = lag offset relative to model delay

L. = SNR loss due to quantization of counter-rotation sums, Eq. (7.6)
Ly = SNR loss due to sampling quantization, Eq. (7.7)



R (1)

R, (t,7)

Sc
Si(t)
SNRjq
SNRy
SNRy
Sp(f)
Sr(®)
St(t)
Sx

]

model delay offsetting 1.1 during cross-correlation of L1 and L2

(Ns—1)/2

number of chips in accumulation

number of sample points in accumulation interval

P-code sequence

average noise power entering the sampler, per quadrature component

total noise power at RF at insertion

average baseband signal power per quadrature component before receiver filtering

proportionality constant accounting for sampling quantization in low-SNR limit

ratio of code and P-codeless SNRs, Eq. (7.26)

time-averaged P-code autocorrelation function, Eq. (2.14)

autocorrelation function for P code, Eq. (2.12)

sample interval = (20.456)-1 us

definition in Eq. (4.8)

ideal unfiltered L-band signal, Eq. (2.15)
"18-ms" voltage SNR

voltage SNR, Eq. (7.5)

maximum voltage SNR for L1*L2 correlation, Eq. (7.23)
P-code power spectrum, Eq. (2.11)

signal received by the TR antenna, Eq. (2.19)
transmitted L-band signal, Eq. (2.18)
definition of Eq. (5.4)

accumulation interval

true time

true time at interval center
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Tp = (10.23)1 pus = P-code chip interval

tr = receiver time as indicated by sampler

Ts = system temperature

vy (tr) = correlation sum, Eq. (4.5)

Vi = quantized baseband voltage representing signal after sampling, k = 1 for L1 and
k=2forL2

Vm(tr, ) = model signal generated by receiver, Eq. (4.1)

V(t) = complex voltage representing signal at baseband, Eq. (3.2)

w = effective double-sided noise bandwidth

X = quantized value for quantity x

X1, X2 = quantity x for L1 and L2, respectively

Greek

ol = loss in signal power due to receiver filtering

Agy = difference of instrumental phase between L1 and L2, defined by Eq. (5.5)
Aoy = bandpass average of AQy

il = noise added to signal, at baseband before sampler

A7) = triangle function

OA = 1- o amplitude error, Eq. (7.15)

Cn = RMS noise on either component of baseband signal before sampling
C. = 1-o delay error, Eq. (7.19) or Eq. (7.20)

o, = 1-c error on correlation sum

Gy = 1-0 system-noise error in phase, Eq. (7.14)

T = combined delay, Eq. (2.20)

v = combined delay, Eq. (3.7)
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-S>

measured value for total delay, Eq. (6.9)

aggregate group delay, Eq. (3.14)

group delay due to ionosphere

geometric delay from satellite to receiver

composite instrumental group delay

model group delay generated by receiver

actual value for P2 group delay derived from P2-P1 group delay, Eq. (6.24)

measured value for P2 group delay derived from P2-P1 group delay, Eq. (6.23)

residual delay = difference of aggregate group delay and model delay, Eq. (4.24)
and Eq. (5.9)

error in receiver clock relative to true time, Eq. (3.5)
measured value for residual delay, Eq. (6.7)
error in GPS satellite clock relative to true time

tropospheric delay

actual value for phase delay, Eq. (6.6)
measured value for phase delay, Eq. (6.5)

aggregate phase delay, Eq. (3.16)

actual value for L2 phase delay derived from L1*L2 phase, Eq. (6.19)
measured value for L2 phase delay derived from L.1*L.2 phase
measured value for total P2-P1 group delay, Eq. (6.20)

actual value for total P2-P1 group delay, Eq. (6.21)

Doppler-shifted frequency at RF, Eq. (3.3)

actual value for total carrier phase, Eq. (6.4)

~ measured value for total carrier phase, Eq. (6.3) or Eq. (6.11)
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aggregate baseband carrier phase, Eq. (3.15)

difference of aggregate baseband phase and model phase, Eq. (4.10) or Eq. (5.8)
ionospheric phase shift

downconversion phase, Eq. (3.1)

drift in downconversion phase relative to fpt, Eq. (3.1)

composite instrumental phase shift excluding T; term

bandpass average of Qg

measured value for total C/A carrier phase

actual value for total L2 carrier phase derived from L1*L2 carrier phase and C/A
carrier phase, Eq. (6.17)

measured value for total 1.2 carrier phase derived from L1*¥L2 carrier phase and
C/A carrier phase, Eq. (6.16)

model carrier phase generated by receiver

measured value for residual phase, Eq. (6.1)

phase instability introduced by satellite, excluding frequency reference
actual value for L1*L.2 carrier phase, Eq. (6.14)

measured value for L1*L2 carrier phase, Eq. (6.13)

"correction” term in @f 5, Eq. (6.18)

ensemble average over both noise and code

ensemble average over noise, 7

ensemble average over possible code values
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SECTION 1
INTRODUCTION

This report presents the nonrelativistic theory for signal processing in the TurboRogue
(TR) receiver. The signal form is traced from the Global Positioning System (GPS) satellite to
the receiver antenna, and then through the various stages in the receiver, including extraction of
phase and delay. The analysis includes the effects of the ionosphere, the troposphere, discrete
sampling, instrumentation, and system noise. The theory covers processing in the "code mode"
when the P code is known and in the "P-codeless mode" when the P code is encrypted.

Section 2 analyzes the GPS signal by performing a spectral decomposition and
autocorrelation of the ideal P code and propagating the signal from the GPS spacecraft to the
receiver, with the inclusion of both troposphere and ionosphere effects. Section 3 analyzes
receiver front-end processing, tracing the signal from reception at RF to sampled form at
baseband. Section 4 presents correlation theory for the code mode when the sampled signal is
cross-correlated with a model signal generated by the receiver on the basis of feedback in phase
and delay. Section 5 presents correlation theory for the P-codeless mode in which the L1 and L2
signals are cross-correlated. Section 6 describes extraction of the phase and delay observables in
both the code mode and P-codeless mode and presents the corresponding theoretical expressions
containing the various terms contributing to each observable. Section 7 analyzes the effects of
system noise, including signal-to-noise ratios (SNRs), phase errors, and delay errors for both the
code mode and the P-codeless mode.

As an example of a possible future improvement to the current analog front end,
Appendix A presents the theory for a particular design of a highly digital front end. Appendix B
analyzes the effects of two-level and three-level quantization in the analog-to-digital conversion
of the received signal and of three-level quantization of the counterrotation sinusoids.

Appendix C presents noise correlation analysis, including correlation of noise between samples
and correlation of noise on correlation sums with different lags. Appendix D analyzes the
correlation of noise between the quadrature components of the baseband signal. Appendix E
formulates the correlation function for the clear/acquisition (C/A) channel.
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SECTION 2
THE GPS SIGNAL

2.1  Ideal P Code!

The ideal, unfiltered P code, which is generated at a rate of f, = 10.23 MHz, consists of a
pseudorandom sequence of chips, each with a value -1 or +1 and a width of T, = 1/f, =
(10.23)-1 us, as illustrated by plot (a) in Fig. 2-1. A particular P-code sequence can lge expressed
in its ideal form as

P(t) = ), 2 B(t-tp) 1)

n

where the time argument t is true time, B(t) is the chip function shown in Fig. 2-2, and the
coefficients a, are the chip values of -1 or +1. As indicated by Eq. (2.1), the chip centers fall at
true-time values t,, which are equally spaced and given by

T
ty=nTp,- 7" 2.2)

in which n is an integer whose range is sufficient to cover the time interval of interest. As
implied in this time relation, the rising edge of a chip that falls at an integer-second boundary
will be aligned with that boundary when the GPS clock has zero error with respect to true time.
Satellite clock error will be accounted for below.

The chip values a,, will be approximated as random variables with zero mean:

<an>=0 23)
and with no correlation between different chips:
<82 >p=Ojn 24)

where < >, indicates an ensemble average over possible chip values and djn is the Kronecker
delta function. A given P-code sequence is generated for one week before the sequence is
repeated. As developed below, the code sequences leaving the GPS satellites do not have the
ideal form in Eq. (2.1) but are filtered to some degree.

An expression similar to Eq. (2.1) also describes a C/A-code sequence with its chip
width of (1.023)-1 us and a sequence repetition interval of a millisecond. With regard to
correlation analysis, processing of the P and C/A data are very similar. As outlined in
Appendix E, however, the short (1-ms) repetition interval for the C/A sequences becomes a
complication, but most aspects of the results remain the same.

1 For an explanation of symbols used in this document, see page v, “Symbol Definitions.”
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Figure 2-1. Illustration of the Autocorrelation of a P-Chip Sequence

2-2



+1

Tp = (10.23) T s
Figure 2-2. The P-Chip Function
2.2  Spectral Analysis of the Ideal P Code

A Fourier transform of a given P-code sequence, over the chips in an "accumulation
interval" with center at true time t and length T, is given by

t+ T
Ap(f )= f P(t) e2mift dt (2.5)
t-T/2

As assumed below, the accumulation interval will correspond to a correlation interval (e.g.,
18 ms) applied during data reduction. With the use of Eq. (2.1), the transform is given to
excellent approximation by

N,
in(rmfT, } : :
Apf)=T, im_f;_T_PZ ay e-2miftx
P K (2.6)

where the sum over k applies only to chips within the transform interval and N¢ is the total
number of chips in the interval. (A box will be used to enclose equations of particular
significance.) This equation is not exact since the two end chips in the transform interval may
not fall completely in the interval. This effect is negligible since the interval contains so many
chips (e.g., about 180,000 in 18 ms). The frequency components will vary from correlation
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interval to correlation interval as a function of the particular values for ay (i.e., the particular
P-code sequence within the interval), but will have zero mean over many intervals. The power
spectrum, however, averages to a (sinx/x)2 form, as shown below.

Based on Eq. (2.6), the correlation between spectral components at different frequencies
is given by
5 Sin(TTy) sm(nf Tp)

<Apf f' Tp
Ap®) Ap(f)>, = RIT, Rf T,

Z <aar>) e 2mi(ft;-fty) @.7)

By using the assumption in Eq. (2.4) and the definition of ty in Eq. (2.2), one obtains

[ NC
<A;(f)Ap(f')>p= sz Sln(npr) Sln(n'f Tp) eni(f'_f)TPE ezni (f-fl)kTp (2.8)

One can show that the sum becomes

Nc . ]
eni(f-f)TpZ 02 (f-F KT, = 2mi(E-£)t Sm[Ncn(f"f )Ty 2.9)
- sin[m(-f ) T,)

where t is true time at the middle of the interval. This equation can be substituted in Eq. (2.8) to
yield

sin(nfT,) sin(nf'T,) sin[N.w(E-f)T,)

<AHE)AN(E)>, = T2 e2mi (-1t : ,
Ao ®AE> =" mfly  mf'T,  sin[rE-£)Ty)

(2.10)

One can show (see Subsection 4.3) that the sinx/siny function can be accurately approximated by
a sum of Dirac delta functions with a spacing of 10.23 MHz, provided N, is very large. Thus, the
correlation between frequency components is substantial only when f - f'=n*10.23 MHz, where

n is an integer.

The power spectrum is obtained by setting f = ', which gives

Sp()=T,T

sin(‘n:pr)]2

TFT, @2.11)

where the total accumulation time is given by T=N.T,, Thus, on average the power spectrum
of the ideal P code is a (sinx/x)2 function with a first zero crossing at (Tp)

2.3 Autocorrelation of the Ideal P Code

The autocorrelation function of the ideal P code is defined by



Rp(t,T) = <P() P(t+7)>,) 2.12)

Autocorrelation of an example P-code sequence is illustrated in Fig. 2-1. Plot (b) offsets the
P-code sequence in plot (a) by a selected delay T, while plot (c) shows the product of plot (a) and
plot (b). Plot (d) shows the autocorrelation function obtained by averaging plot (c) over all
possible P-code sequences. Plot () shows the particular "noise” sequence that separates plot (c)
from plot (d). As implied, the "noise" sequence averages to zero over all possible P-code
sequences.

For 0 <1 < T}, the autocorrelation function has a period Ty, as a function of time and a
value of either O or 1, as illustrated in plot (d) for a particular value of 7. For T =0, the
autocorrelation function in plot (d) would be 1.0 at all times. For T > T, the autocorrelation
function would be zero.

Averaging over a time interval containing a very large number of chips produces the
time-averaged autocorrelation function

Ti2
Ry (1) %f R(t,7) dt @2.13)
T/2

Since the width of the positive pulses in plot (d) decreases as T increases according to Tp - 7, the
time-averaged autocorrelation function becomes

R,(1) = AD) (2.14)

where A(T) is the triangle function shown in Fig. 2-3. The Fourier transform of a triangle
function is (sinx/x)? function like that in Eq. (2.11), as one would expect.

If all P-code frequency components were present in the signal (i.e., an ideal P code), this
exact triangle function would describe the amplitude response produced by correlating the
received GPS signal with an ideal model code. As shown below, filtering modifies the triangle
response and smooths the sharp corners.

24  The Received Signal

This subsection develops the spectral form of the GPS signal arriving at the receiver,
including geometric, tropospheric, and ionospheric effects.

The form for the ideal unfiltered P code is given by Eq. (2.1). When modulated on an
ideal carrier at L. band, the ideal P signal becomes

Si(t) =P(t) cos(2mfLt) (2.15)

where f1, is the L-band frequency. The L2 signal is constructed solely of a P signal of this form
while the L1 signal is a sum of such a P component and a similar C/A component. The C/A
component is the same form as Eq. (2.15), but has a C/A pseudorandom sequence in place of P(t)
and a carrier 90° out of phase with the P component (see Eq. (E.14) in Appendix E of this



document). The C/A component is transmitted with a power nominally 3 dB greater than the
L1-P component.

The spectral decomposition of the P code can be written as
P(t)= f Ap(f) e2miftdf (2.16)

where the Fourier components are given in Eq. (2.6). This expression can be used to recast the
ideal unfiltered L-band signal in Eq. (2.15) in the form

Si(t)= j Ap(f)eZrif+Dtdf +c.c. (2.17)

where c.c. denotes complex conjugate of the first term. The relation, Ap(f )=A ( f), which is
valid for a real signal like P(t), has been used to obtain this formulatlon In add1t10n an
amplitude factor of 1/2 has been neglected since subsequent signal amplification at the spacecraft
will lead to an overall gain factor as modeled below.

]
us

Figure 2-3. The Time-Averaged Autocorrelation Function for the P Code



The signal leaving the spacecraft is filtered so that only the main lobe and a fraction of
the first sidelobes remain. If Gg(f) represents the effective aggregate (complex) filter and
amplification introduced by the spacecraft, the transmitted signal as it leaves the spacecraft can
be cast in the form

St(t) = I Gs() Ap(f)e2mllir DE+TI+0s] df + c.c. (2.18)

-00

where @s represents phase instability in the satellite frequency system, excluding the frequency
reference. The spacecraft filter is reportedly a six-pole Chebychev with 0.01-dB ripple and a
3-dB double-sided bandwidth of about 36 MHz. A clock offset T, has been included to represent
the error in the satellite clock relative to true time. (Satellite time = true time + T;.) For
simplicity, this expression neglects the multiplicative data-bit factor contained in the actual GPS
signal. The following analysis assumes that a correlation interval is less than a data-bit width
and that data-bit synchronization has been established. In this case, the data-bit factor would
only change the analysis by a multiplicative sign factor throughout the equations.

In transit to the ground, the signal is retarded by a geometric delay, Tg, and a tropospheric
delay, 7, and is advanced in phase by an ionospheric phase shift, .. After incorporation of these

effects, the received signal arriving at the receiver antenna at true time t can be written in the
form

Sr(t) = j Gs(f) Ap(f)e2rilliir DE-D+es+od df +c.c. (2.19)

where the combined delay is given by
T=Tg+ Tt-Ts (2.20)

Decreases in signal strength in transit are absorbed in Gg. The RF signal in Eq. (2.19) is
collected by the receiver antenna for processing.






SECTION 3
FRONT-END PROCESSING

This section analyzes the steps in the TurboRogue front end that take the signal from
reception at RF down to its form after baseband sampling. The current analog front end is
analyzed in this section and an example of a highly digital front end is analyzed in Appendix A
of this document.

3.1  Functional Description of the Analog Front End

The receiver antenna collects the GPS signal as input to the analog processing, as shown
in Fig. 3-1. The output from the antenna is passed through an RF bandpass filter spanning 1075
to 1725 MHz to eliminate out-of-band RF interference (RFI). The signal is then amplified by a
gallium-arsenide field-effect transistor (GaAs FET). System temperature, which includes all
noise sources, is nominally 200 K for L1 and 225 K for L2. The resulting signal is power
divided into L1 and L2 branches and each branch is downconverted to baseband with a
quadrature mixer in a double-sideband mode with a fixed-frequency local-oscillator (LO) signal.
The four resulting baseband signals are each passed through a low-pass seven-pole Butterworth
filter with a single-sided bandwidth of 9.6 MHz, as plotted in Fig. 3-2. The four filtered signals
are then each hard limited and "sign" sampled (1-bit quantization) at a rate of 20.456 MS/s.
(MS/s will be used to denote 106 samples per second.) The same L1 samples are processed by
the digital signal processor to obtain both the C/A and the P observables.

To carry out this processing, three frequencies are required: the "sample-clock” rate at
f, = 20.456 MHz and two LO (downconversion) signals, fy; = 1575.112 MHz for L1 and fp; =
1227.36 MHz for L2. The frequency-and-timing subsystem generates 20.456 MHz from a
5-MHz reference and then generates the two LOs by simple multiplication of the sample-clock
rate. That is, the L1 LO is generated by the multiplication 77f (which equals f1; - 308 kHz) and
L2 by 60f; (which equals 1, - 240 kHz, where f;; and f1, are the zero-Doppler carriers at RF).

Care must be taken in selecting the sampling frequencies and downconversion
frequencies. The sampling frequency must be essentially incommensurate with the code chip
rate (i.e., 20.456 MHz vs. 10.23 MHz) so that discrete-sampling errors will be negligible.
Theoretical verification of the adequacy of 20.456 MHz is presented below in Subsection 4.3.
To produce positive baseband carrier frequencies, each downconversion frequency is offset from
its respective carrier (by 308 kHz for L1 and 240 kHz for L2). The large resulting positive
baseband carrier frequencies reduce to negligible levels the errors caused by the three-level
quantization of counterrotation sinusoids applied in subsequent processing. Subappendix B.2
estimates the errors introduced by carrier counterrotation.

3.2  Mathematical Model for the Analog Front End

As described in the preceding subsection, the receiver front end passes the received signal
represented by Eq. 2.19 through amplifiers and filters and downconverts from L band to
baseband. This subsection models the composite effect of the antenna and front-end steps as a
linear process that can be formulated as a single overall complex system filter and a single
effective phase and frequency shift representing the downconversion process.



RF | L1,12

fL, = 1575.42 MHz
BP FILTER
BW = 550 MHz flo = 1227.6 MHz
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L1 L2
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N e — -————
MIXER LO MIXER LO
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Figure 3-1. Block Diagram for the Analog Front End
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Downconversion can be modeled in the following way: Let the downconversion phase at
the mixer be denoted by ¢n. Because the frequency reference of the receiver is very stable,
downconversion phase can be represented by a time function with the ostensibly linear form

¢On = fpt + Qng 3.1

where f}, is the nominal downconversion frequency and @n¢ is a slowly varying drift relative to
the nominal linear function associated with f,. The quadrature mixer multiplies the (real)
received RF voltage by cos @y and by sin @y, a process that can be modeled in complex form as a
multiplication by e-2%1¢», When the expression in Eq. (2.19) is multiplied by e-2%i¢s, the
multiplication and integral can be interchanged in both the first term and the c.c. term so that the
multiplication is applied separately to each frequency component. For each frequency
component, one obtains a small difference frequency from the first term and a large sum
frequency from the c.c. term. Since the large sum-frequency term is eliminated by filters
following the mixer, only the difference frequency term must be retained in the analysis.

The preceding e-2%i¢» model for downconversion from RF assumes perfect 90° separation
of the sine and cosine mixing signals. In practice, the analog front end will produce sinusoids
that deviate from perfect 90° separation. This offset from 90° will be called the quadrature-
separation error. A quadrature-separation error introduces incoherency between the two final
complex correlation sums obtained by processing the two quadrature components. Relative to a
perfect amplitude of 1.0, the lowered output amplitude would be cos (A8/2), where A8 is the
quadrature-separation error in radians. When A9 is 16°, the voltage signal-to-noise ratio (SNR)
is reduced by about 1%. According to D. J. Spitzmesser (Spitzmesser, 1994), the quadrature-
separation error for the TurboRogue receiver is about 5° or less, which would cause an amplitude
loss of about 0.1% or less. This result indicates that the quadrature-separation error for TR is of
little ultimate importance and it will therefore be ignored in the following analysis.

Antenna gain and possible antenna filtering, phase shifting and delays will be modeled by
a complex antenna filter, G,, that is a function of RF frequency. Similarly, all amplification,
filtering, phase shifts, and delays due to the front end will be modeled with a single complex
filter, Gg. This front-end filter consists of a product of the filters at successive stages as well as
phasors representing other phase shifts and delays. Frequency-component identification for the
front-end filter, however, will be specified by means of a Doppler-shifted baseband frequency,
and, as a consequence, a translation is required to make an association with the corresponding RF
frequency preceding downconversion. This convention is motivated by the fact that the
dominant filter is the "narrow" Butterworth filter applied at baseband.

As indicated in Fig. 3-1, each L-band channel has two quadrature components and each
of these components has a separate Butterworth filter. According to Spitzmesser (Spitzmesser,
1994), the four Butterworth filters are not identical but are matched to within about 7% with
respect to bandwidth. To account for the differences, a detailed analysis would provide a
separate function for each of these filters. One can show, however, that the final effective filter
for a given L-band channel is a straight average of the two Butterworth filters for that channel.
Thus, for simplicity in analysis without sacrifice of accuracy, it will be assumed at this point that
the two Butterworth filters for a given L-band channel are identical, each with a response equal
to the average of the two actual filters.

Another potential concern is how well delay and phase shifts are matched between sine
and cosine components in their paths from the RF branching point to baseband sampling.
According to Spitzmesser (Spitzmesser, 1994), the path length for each component is only about
20 cm, and the two paths are matched to about 3 cm (0.1 ns). The relative path difference within
the quadrature mixer before mixing is about 0.1 cm or less, and the corresponding relative phase
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shift is about 0.1 cm/20 cm = 0.005 cycles (1.8°) The relative phase shift after mixing is about
300 kHz * 0.1 ns = 30 pcycles. These relative phase and relative delay values are too small to
cause significant loss of amplitude. Observed delay will contain the average of the two
component delays and this implicit average delay, combined with other delays, will be either
calibrated, differenced out, or estimated in subsequent processing. Thus, none of these effects is
of ultimate importance and for this reason, none will be separately modeled.

The preceding discussion indicates that the antenna and front end can be modeled by
inserting the antenna filter and the composite receiver filter into the integrand of Eq. (2.19) and
multiplying by e-27i¢n | Since filtering in the front end removes the sum-frequency term
resulting from the c.c. term, the complex voltage (real and imaginary) at baseband becomes

V() = f Gr(fg) Ga(V) Gs(f ) Ap(f ) e2mi [(f+D)(E-T) + Qs+ G- o1l df + 1 (3.2)

-00

where the Doppler-shifted frequency at RF corresponding to f, the baseband variable of
integration, is given by

Va=(fr+ )1 -1+ Qs+ @ (3.3)

in which the top dot denotes time derivative. The corresponding baseband frequency is given by
fd= Vq- fh (3-4)

The complex term 1 represents all noise, after the downconversion and filtering operations,
including the noise picked up by the antenna and the noise added by the receiver. Almost all of
the noise contributed by the receiver is added at RF. Analyses of the effects of the noise term are
presented in Section 7, Appendix C, and Appendix D of this document.

3.3  Mathematical Model for the Sampled Signal

The baseband signal theoretically represented by Eq. (3.2) is hard limited and sign
sampled at a sample rate of 20.456 MHz. Timing for the sampler is derived from the receiver
clock, which will have an offset from true time. True time t and receiver time ty (as indicated by
the sampler) will be related by

tr=t+ Tr (35)

where Ty is the error in the receiver clock. A quantized complex sample value at time t; will be
denoted by V(tg). For a particular time ty , the theoretical form for the voltage V is obtained by
substituting ty - T in place of true time t in the right-hand side of Eq. (3.2).

As discussed in Appendix B for low SNR signals, the sampled voltage after averaging
over noise is approximately proportional to the signal component divided by the root-mean-
square (RMS) noise. Thus, when the complex voltage in Eq. (3.2) is subjected to two-level
quantization in each quadrature component and then to an ensemble average over noise, 1, the
theoretical form for the averaged complex voltage becomes
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<V(ta)>, = g—M f Gr(f)) GA(Va)Gs (£ ) Ap(f )e2mlfL+ Dt -T)+ 05 +0e- ol df (3.6
n -0Q

where the tilde on V denotes amplitude quantization, <>, denotes average over noise and Gy, is
RMS noise on either quadrature component. (It will be assumed that RMS noise is the same 1%or
the two components. The fact that this assumption is only approximately valid does not change
the results of the following analysis, since only single-sample SNR matters in 1-bit sampling,
and single-sample SNR is the same for the two components.) Delay has been redefined to
incorporate the sampler clock error that enters when true time is replaced with sampler time:

T=T+R=Tg+T- T+ & €M)

As derived in Appendix B, the proportionality factor qu accounts for sampling quantization and
is given by

qu= 12 (3.8)

for two-level quantization.

3.4  Reformulation of the Sampled Signal

Subsequent analysis can be clarified by explicitly defining and collecting terms of like
nature in the signal component. First expand the ionosphere phase about the carrier frequency

Qo(fL+1) = Qe(fL) + %f& f (39

which becomes
Qe(fL+f) = Qe(fL) - Tef (3.10)

where T, is the group delay due to the ionosphere. Next, reformulate and consolidate the
bandpass filters

Gr(fy) Ga(Vg) Gs() = G(f)e-2mi€1i-91) (3.11)
where the composite bandpass amplitude is defined as
G(f) =|Gr(fo) Ga(vy) Gs()| (3.12)

and Ty is the overall instrumental group delay, including spacecraft, antenna, and receiver. The
frequency-dependent term ¢r is the instrumental phase effect that remains after removing the
linear phase-versus-frequency function associated with 1. Note that the bandpass amplitude, the
instrumental phase, and the effective instrumental delay can potentially depend on Doppler shift,
as indicated in Eq. (3.11) by the Doppler-shifted arguments, f4 and v 4.
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The effective delay introduced by the Butterworth filter described in Subsection 3.1 is
about 77 ns for the P code. This delay is the approximate theoretical value for the Butterworth
filter itself and does not include other instrumental delays introduced by the front end.

When Egs. (3.10) and (3.11) are substituted in Eq. (3.6), the noise-averaged baseband
signal becomes

< V(tr)>, = g—MeMi ¢a f G(F) Ay(F) e 2milfle- T)+o1] df (3.13)
n

where aggregate group delay is defined by
Ta=Tg+Ti-Ts+ TR+ Te + T (3.14)
and aggregate baseband carrier phase by
Q2 =fL(tr-Tg) - P (3.15)

in which aggregate phase delay is given by

To = Tg + T - Ts +Tr - [ @5 + Qc(fL)] (3.16)

All time-varying quantities are evaluated at sample time, tg.

Equation (3.13) indicates that the baseband signal consists of a product of a carrier factor
with a rate of f (1 —T¢) - fi and a code factor involving an integral over the Fourier components
of the P code. This formulation has representative variables for the major effects encountered in
processing GPS signals. Note, however, that a bandpass-averaged instrumental phase shift
emerges from the integral, and, furthermore, the best definition of an effective instrumental delay
can be application dependent.
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SECTION 4
CORRELATION IN THE CODE MODE

When the P code is known, the receiver correlates the baseband samples with a model
signal consisting of the appropriate P-code sequence, offset by a model delay, and a carrier
phasor incorporating a model phase. Model phase and model delay are supplied in real time as
feedback by delay- and phase-locked loops operating on correlation output. This report will not
treat feedback theory, but will assume that model phase and model delay are adequately provided
by loops operating on correlation output. Correlation analysis for the C/A code, which is slightly
different than P-code analysis, is presented in Appendix E.

4.1  Model Signal

The model signal generated by the receiver at receiver (sampler) time tg has the form
Vin(tr.!) = P(tr-Tm-I5) C(@rm) 4.1)

where P is the ideal P-code function in Eq. (2.1), Ty, is the feedback model for total group delay
at time tg, [ is a lag offset relative to the model delay, s is the sample interval of (20.456)1 s,
and @n, is the feedback model for phase at time tg. Note that the receiver generates the code
sequence as a function of tg , as though t; were true time. The model signal is generated for each
of three lags (-1, 0, +1) in the TurboRogue receiver. As a function of time, the generated model
code consists of the sequence of -1s and +1s specific to the satellite being tracked, but with
effectively instantaneous transitions between chips (i.e., with no filtering), as implied by

Egs. (2.1) and (4.1). Further, the P-code sequence is generated with a delay that is effectively
exactly equal to the model delay generated by the feedback loops. Over a correlation interval of
18 ms, the receiver generates both the model delay and the model phase as linear time functions.

The model signal contains both sine and cosine components in order to provide _

quadrature counterrotation of the carrier of the sampled signal. The complex quantity, C , is a
quantized counterrotation phasor defined by

C(Qrm) = COS(Pm) - 1 SIN(Prm) (4.2)

where the tildes indicate three-level quantization, as explained in Appendix B. The quantized
phasor can be expanded in terms of the harmonics of the fundamental in the form

C(@m) = ¢1e-28i¢n + harmonics (4.3)

where ¢; = 1.176 is the coefficient of the fundamental for the chosen three-level quantization.

Remembering that P(t) is real, one can take the complex conjugate of Eq. (2.16),
substitute the result in Eq. (4.1), and obtain a useful form for the receiver model in terms of
frequency components:
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Van(tss 1) = E(om) f A (E') e 2 G- Tae19) df' (44

-00

where A p(f) represents the Fourier components in Eq. (2.6) pertaining to the particular code
sequence within the correlation interval. Note that the receiver time argument in Eq. (4.1) has
been substituted directly in Eq. (2.16) without including the difference, Tz, between receiver time
and true time. This procedure is based on the fact that the receiver generates its P code exactly as
represented in Egs. (2.1) and (2.16) but on the basis of its own time scale: receiver time. No
bandpass filtering is included in this equation because the receiver generates a P-code sequence
that is essentially an ideal sequence.

4.2 Correlation Sum

At each sample point, the receiver generates the model signal in Eq. (4.1) and multiplies
it by the sampled signal. For each lag value, the resulting product is accumulated for all points
within a correlation interval to obtain a correlation sum, computed as

N
ut)= Y, Wtatks) Vin(tetks, 1) 4.5)
k=-N

where V is the complex sampled signal, tg is now the receiver time at the center of the sum
interval, and the index k covers the sample points within the correlation interval. The correlation
interval, whose length (integration time) will be denoted by T, is 18-ms long and contains about
360,000 sample points for the current implementation of the TurboRogue receiver. In Eq. (4.5),
it is assumed without significant loss of generality that the interval contains an odd number of
samples with the total number given by N =2N + 1. The integration time is related to total
number of samples by T = N s. Since the sampled signal and model signal are complex, the
correlation sums are complex.

4.3 Correlation Function

The correlation function is obtained by taking an ensemble average of the correlation
sums in Eq. (4.5) with respect to all possible noise patterns and P-code sequences. An ensemble
average over noise gives

N
< (te)>y = D, < W(tr+ks)>, Vin(trtks, [) 4.6)
k=-N

where <>y denotes the noise average. On the right side, the noise average has been
interchanged with the sum and applied to the only factor containing noise, the sampled signal.
After substitution of Egs. (3.13), (4.3), and (4.4), and application of an ensemble average over
code, Eq. (4.6) becomes
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<uy(te)>= ¢y ‘é—“rf G() <Apf) AyE")>, Sc df df' 7

-00 -00

where

N
Sc= z e2Mi[Qa- Qm+ (F-f') (tr+ks) -fTa+ f'@m+15) + ¢1] (4.8)
k=-N

in which the phase and delay functions are evaluated at time ty + ks. The unlabeled brackets <>
denote ensemble average over both noise and code, while < >, denotes ensemble average only
over code. To reach this form, the sum and integrals have been interchanged and only the
Fourier components within the integral have been treated as random variables subject to the
ensemble average over code. Further, only the fundamental of the counterrotation phasor in

Eq. (4.3) has been retained under the assumption that the higher harmonics are filtered out by the
sum over the correlation interval.

Counterrotated phase in Eq. (4.8) can be expanded about the center time to yield
Qaltr+ks) - Pm(ta+ks) = Qg+ Qgks (4.9)
where the phase difference at interval center tg is defined by
Q4= Qa(tr) - Om(tr) (4.10)

and where @4 is the feedback error for phase rate across the interval (i.e., the last equation but
with top dots). Similarly, the delay terms in Eq. (4.8) can be expanded to yield

£,(tatks) - ' T(tatks) = f [Ta(te) +Taks] - ' [Tm(te) +Tmmks ] (4.11)
which becomes
fT,(te+ks) - ' T(te+ks) = FTa(ts) - £ Tn(te) + (F-f ) Toks 4.12)

where, in the last equation, it has been assumed that the model delay rate very accurately tracks
actual delay rate. One can show that this approximation is acceptable for even the worst-case
errors in delay rate (<5 ns/s).

When Egs. (4.9) and (4.12) are substituted in Eq. (4.8), one obtains

N
S.~ e2mi[@a+ (- ) tr-fTat ' @m+1s) + @1 2 e2mi [(f-£')(1- ) +Qd| ks (4.13)
k=N

where T, and T, are now evaluated at interval center. The sum in this equation can be evaluated
in a manner similar to the derivation of Eq. (2.9), which yields
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Sc = e2mi[@e+ (- ) tr-fTat £ Gm+19)+ 0] sinN S”[(f',f')( 1 '.ia)f(bd] J (4.14)
sin{ 7 [(F-£')(1-T,) +@gls ]

where N is the total number of sample points in the interval.

When Eq.(4.14) and the expectation value in Eq. (2.10) are substituted in Eq. (4.7), one obtains

<ul (tR)> = clg_MTg eZni(pdf f H(f, f') eZni[(f— fl)TR-fTa+fl(Tm+ls)+q)I] dfdf' (415)
n

where the two-dimensional "filter" function is defined as

Sin(mfT,) sin(rf Tp) sin[Nem(E-f )Ty sin|NemIE-£)(1-T)+@al s]
nfT,  mfT,  sin[n@-f)T,) sin[m[E-£)(1-1)+Qals]

H(, f) = G(f) (4.16)

Equation (3.5) has been used to replace tr-t with Tg.

In order to schematically illustrate the nature of the "sinx/siny" functions in Eq. (4.16),
Fig. 4-1 plots Eq. 4.16 as a function of f - f' for an unrealistically small correlation interval
(N =22) and for an excessive sample rate of 22.456 MS/s. These plots show that both of the
two sinx/siny functions are "comb" functions consisting of a sequence of equally spaced peaks,
with a peak spacing of 10.23 MHz for the first sinx/siny function and about 22.456 MHz for the
second. Peak height is given by the number of chips (N = 10) for the first sinx/siny function and
by the number of samples (N = 22) for the second. For both, the width is 1/T, where T is the
length of the correlation interval. For an actual correlation interval (e.g., T = 18 ms and a P
sample rate of 20.456 MHz), these peaks become extremely high (e.g., about 105 larger than
intervening peaks) and extremely narrow relative to the chip rate and sample rate (e.g, 55 Hz
versus 10.23 MHz). For the example shown in Fig. 4-1, note that only the "origin" peaks at
f-f'= 0 line up between the two sinx/siny functions in Eq. (4.16), while the other peaks do not
line up. This absence of peak coincidence away from f-f'=0, which is a consequence of the
effective incommensurability between 10.23 Mhz and 22.456 MS/s, leaves only the origin peaks
to make a significant contribution to the integral. If only the origin peaks are significant, the
system has been successfully designed so that discrete sampling effects are negligible.

For the actual sample rate of 20.456 MS/s, one can also show that only the origin peaks
are significant. For zero Doppler, the commensurability ratio for the sample rate and chip rate
reduces to

f_ s _ 10230000 _ 5115 @17
fs T, 20456000 10228 :
after common factors have been removed. Given this result, one can easily show for zero
Doppler that the first coincidence of peaks for |f-f'| above zero occurs at
|f—f'| =5115*%20.456MHz = 10228 *10.23MHz (4.18)
or equivalently
|f- f'| = 104.63244 GHz (4.19)
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For |f - '] to be this large, the magnitude of either f or f' must be greater than about 52 GHz.
Because of the filtering effect of G and the two sinx/x functions at high frequencies in Eq. (4.16),
this particular coincidence peak and other coincidence peaks at even higher multiples are reduced
to negligible influence in the integral. For example, for a first coincidence peak with f' =

52 GHz, the sinx/x filter supplies an attenuation of about 0.00006 (-84 dB). One can show that
an amplitude error of 0.00006 leads to a delay error on the order of 1 mm:.

Inserting nonzero values of Doppler (represented by delay rate, T, ) will improve effective
incommensurability. Delay rate for ground-based receivers, for example, is less than 3 ps/s.
One can show that a Doppler effect this size will shift the peaks of the sinx/siny function by an
amount too small to align any peaks that were not already aligned for zero Doppler. More
importantly, Doppler shifting will dealign peaks that would have been coincident (but are not at
the origin) for zero Doppler and thereby reduce commensurability effects to even smaller levels.
On the basis of Eq.(4.16), one can easily show that Doppler reduces the amplitude of a given
product of coincident peaks by a factor of about wAf1,Ti or more, where Ty is the integration
interval and where Af = |f - f '] is the frequency difference at the peak. For the very small
Doppler value of 1.5 Hz (1, = 1 ns/s) and the short integration time of 1 s, for example, the
reduction factor is equal to 327 at the first coincident peak at 104 GHz. Thus, even for very
small Doppler values, the commensurability error is greatly reduced by the Doppler effect.

The preceding analysis indicates that commensurability of sample rate and chip rate will
introduce delay errors on the order of 1 mm for the worst case of zero Doppler and even smaller
delay errors when Doppler is included.

When in lock, the rate-error term @4 in Eq. (4.16) is not large enough to cause peaks to
completely dealign, but can cause amplitude loss. This loss is accounted for below in the final
form for the correlation function.

When the number of sample points Ny is very large, and when the sample rate and the
chip rate are essentially incommensurate, as indicated, the above considerations show that the
product of the two sinx/siny functions reduces to a spike function at f-f' = 0. By approximating
the two sinx/siny functions by sinx/x functions near f-f' = 0 and approximating the first of these
two sinx/x functions by a Dirac delta function (assuming N, is very large), one can show that this
product can be accurately approximated, within the significant ranges of the two sinx/x filters in
Eq. (4.16), by

sin[Nem (-1 )Tp] sin[Ngr[(f-f ) (1 -Ta) +@dls]

sin(N T gs)
‘ of-f 4.20
sin[n@-)Tp]  sin[m[(f-1' )(1-T2)+dls] ' e

Nt @48

~Ns
TP

where &(f - ') is the Dirac delta function, given in this case by the limit

Sin[NeT (f - £1) Ty

8¢-f)= T, LIM G VT,

; Ng—oo 4.21)

When Egs. (4.16) and (4.20) are substituted in Eq. (4.15), the correlation function
becomes
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AT [sin@mfTE
- 2mig T P o 2milf (- Is) - i
<uy(ta)>= Age2mi d[ G(f) RET, } e 2milf(u-19) -l df (4.22)
where the amplitude factor is defined by
A.=N Ty %_M M (4.23)

n | (de

in which the expression T = N; s has been used to simplify on the basis of correlation sum length.
In this expression, difference phase, @4, is defined by Eq. (4.10) and residual delay by

Tr = Ta(tr) - Tm(twr) (4.24)

with both time tagged at the center of the correlation interval. Note that an additional phase shift
can emerge from the integral in Eq. (4.22) to contribute to phase. This result for the cross-
correlation function is very similar to the form that would be obtained in analog processing and
therefore indicates successful removal of discrete-sampling effects.

4.4 Discussion of the Correlation Function

As one would expect, correlation amplitude Eq. (4.22) increases in proportion to N, the
number of sample points in the correlation sum. As discussed in Appendix B of this document,
the multiplicative factor gy and the RMS noise 6y, account for sampling quantization. The
factor c; represents the amplitude increase due to three-level quantization of the counterrotation
sinusoids. A sinx/x multiplicative factor models the amplitude loss due to feedback error in
carrier-phase rate across the correlation interval. Rate feedback is accurate enough to keep
amplitude loss resulting from this effect at an acceptable level. (Typically, this loss is negligible,
but can reach 0.2 dB under worst-case dynamics.) A multiplicative phasor based on @4 accounts
for most of the feedback error in carrier phase at interval center. (A small additional carrier-
phase effect can emerge from the correlation integral to contribute to the model for residual
phase.) Typically, tracking error, including the contribution from the integral, is very small
(< 0.02 cycle) but might reach 0.1 cycle under extreme dynamics.

The integral across the passband yields a complex correlation response that is a function
of model delay 7T, and lag ! and provides a measure of the alignment of the model P code with
actual P code. The integrand contains the system filter in Eq. (3.12) resulting from spacecratft,
antenna and receiver, and a (sinx/x)? function representing the average power spectrum of the
pure P code. This integral peaks in magnitude when the model delay, including lag offset,
closely approximates the actual delay. After the correlation sums have been obtained from the
correlation process, residual delay, T, can be estimated through analysis of the variation of
amplitude with lag, as discussed in the next section. Typically, feedback is accurate enough to
keep the model P code aligned with the incoming P code to better than 0.001 P-chip so that a
given lag (the "prompt") produces an amplitude very near the peak of the correlation function.
Correlation amplitude for L1-P is plotted in Fig. 4-2(a) as a function of model delay on the basis
of the bandpass function for the current analog front end described in Subsection 3.1. The model
delay in these plots is referenced to true delay. (That is, a model delay of zero corresponds
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approximately to zero residual delay.) Asymmetry in the amplitude-versus-delay response in this
example is caused by the nonlinear phase-versus-frequency response of the receiver's baseband
Butterworth filter. If the system filter passed all the frequency components of an ideal P code,
the amplitude-versus-delay response would have the exact triangle shape shown in Fig. 2-3.
Filtering rounds the sharp corners and broadens the response to the form shown in Fig. 4-2(a).
Fig. 4-2(b) presents the corresponding phase-versus-delay response, which is nearly constant
around zero residual delay. For purposes of illustration, the phase at zero delay in this plot has
been offset from zero. In practice, this phase offset does not appear in the measured correlation
sums corresponding to Eq. (4.22) since the phase-locked loop removes it along with all other
phase offsets. Fig. 4-2(c), which presents the derivative of P correlation amplitude with respect
to delay, is used in Subsection 6.1.2.

For comparison, Fig. 4-3(a) plots C/A correlation amplitude as a function of model delay,
given a pure (sinx/x)2 power spectrum for the C/A code. (As discussed in Appendix E, code
self-noise can cause significant deviations from this (sinx/x)? spectrum.) The C/A response is
almost a perfect triangle, since the Butterworth filter is so broad relative to the C/A spectrum.
Slight rounding near the peak and slight ringing near +1 c-chip is barely discernible. Fig. 4-3(b)
presents the corresponding phase-versus-delay response. Similar to the P result, the phase at zero
residual delay has been offset from zero. Note the slight ringing caused by the loss of sidelobes
above the tenth sidelobe as a result of the Butterworth filter. Fig. 4-3(c), which presents the
derivative of C/A correlation amplitude with respect to delay, is analogous to Fig. 4-2(c).
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SECTION §
CROSS-CORRELATION IN THE P-CODELESS MODE

When the P code is encrypted, the L1-P and L2-P channels can be processed in a "P-
codeless mode" that cross-correlates the two channels and thereby takes advantage of the fact the
P-code sequence is the same on the two channels. In the following analysis, P-codeless
operations will be denoted by L1*¥L2. For each sample point, the sampled voltages from the two
channels are multiplied together, with one channel offset by a feedback model delay. The carrier
of the product is counterrotated on the basis of feedback model phase, and the result is summed
over a correlation interval of 18 ms. The resulting correlation sums are analyzed to generate the
next values for phase and delay feedback and to extract the difference phase and difference delay
between the L1-P and L2-P signals. The primary disadvantage of operating in the P-codeless
mode is that SNR is lower and output observables are noisier.

5.1 Correlation Sum

For each lag value, the receiver generates the following cross-correlation sum over a
correlation interval of length T:

N
W= Y, Vi(te+ks-Lys-1Is) Vo(tet+ks) C@m) (5.1)
k=-N

where V and V; are the (complex) sampled voltages for the L1 and L2 channels, respectively; C
is the counterrotation phasor in Eq. (4.2); ©m is model phase at time tz +ks; Ly is the model
delay fed back by the tracking loop; and [ is one of the three correlation lags (-1, 0, +1). Again,
the total number of samples in the sum is odd and given by N = 2N + 1; the correlation time is
given by T = Nj s; the time tag t is at the center of the sum interval; and the index k covers the
points in the interval. A theoretical expression for the noise-averaged value for the L1 or L2
baseband signal can be obtained from Eq. (3.13) by attaching the appropriate channel subscript to
each channel-specific symbol.

The delay difference between the L1 and L2 channels is primarily due to the ionosphere
and is therefore a relatively small, slowly varying difference. Based on analysis of the
amplitude-versus-lag dependence of cross-correlation sums, the receiver feeds back a slowly
varying model delay, Ly, that is needed to place the maximum correlation response at the prompt
lag. Because the L2 channel experiences a larger ionospheric delay than the L1 channel, the
model delay is applied to the L1 channel so that lagging will be in the right direction to bring the
two channels into delay alignment. Unlike the model delay applied to the code in the code mode,
the model delay applied to L1 in the P-codeless mode can only be changed in steps of a sample
interval, which is given by s = (20.456 MHz)-1. Since the ionospheric delay difference between
L1 and L2 is typically 100 ns or less, Ly is typically O, 1, or 2 (in units of sample interval, s).

As shown below, phase of the V ¥V 2 product is equal to L1 phase minus L2 phase. The
phase-rate difference between L1 and L2 is equal to an LO term of 68 kHz plus a Doppler term
that is about 1 kHz or less in magnitude for earth-fixed receivers. To track L1*L2 phase, TR first
computes a rapidly varying (fast) model phase by scaling, according to frequency (i.e., by
34/154), the C/A feedback phase obtained on the basis of a phase-locked loop tracking C/A
phase. Because of the influence of the ionosphere, L1*L2 phase exhibits a slow drift relative to
scaled C/A phase, with a differential rate that is usually less than 0.1 Hz for an earth-fixed
receiver. This slow differential drift is tracked by a secondary phase-locked loop. Total model
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phase @, used for feedback is computed as the sum of the scaled C/A phase and a correction
based on the output of the secondary loop.

5.2 Correlation Function

As in the case of known code, the correlation function for L1*L2 is obtained by applying
an ensemble average over both noise and code to the correlation sum. Such an analysis is
initiated by applying an ensemble average over noise (from both channels) to Eq. (5.1). Since
noise is uncorrelated between the L1 and L2 channels, the ensemble average over the two noise
components decouples, leading to separate averages for the two sampled voltages:

N
<uytd>y= Y, <Viltatks-Lys-I9>n, < V5 (et ks)>p,Com) (5.2)
k=-N

where sum and averages have been interchanged. Eq. (3.13) can be substituted twice in

Eq. (5.2), once for each averaged voltage, with appropriate labeling for channel-specific
quantities. After the additional substitution of Eq. (4.3) in Eq. (5.2), the result can be averaged
over code to yield

<uy(te)>= ¢ %‘M—j Gif)Gaf' ) <Ap(f) Ap(E')>, Sy df df’ (53)
where
N
Sy= 2 e2i[Qal - - Pm+ (F-F)tr + k) + ' T2 -£(Tal + Lxs+ 1)+ Api] 549
k=-N

in which differenced instrumental phase is defined by
AQ = @u - O (5.5)

Again, <> denotes an average over both noise and code. Phase and delay values for L1 and L2
(i.e., with subscripts al and a2) are evaluated at the time arguments tr +ks - Lxs - I's and
tr+k s, respectively. Harmonics of the counterrotation function in Eq. (4.3) have been
neglected under the assumption that they will average to negligible levels after the correlation
sum.

By comparing Eqgs. (5.3) and (5.4) with Egs. (4.7) and (4.8), one can see that an analysis

very similar to that in the last section (5.1) can be applied to derive the following correlation
function:
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=]

. sin(mfTy)]% . .
= 2n DN TP a2mi[f@e-1s) +AQ
<y (tr)>= Age I‘Pdf G )G () R, } e2mi[ s 1] df (5.6)
where the amplitude factor is defined by
Ag=N,T,c; 20 G SINTQT) (5.7)
OniOn2  me T
In this expression, the difference phase is defined by
Pd= Pa1(tr)- Pa2(tr)- Qm(tr) (5.8)
and residual delay by
Tr = Tap (te) - Tal(te) - Ly (5.9)

with both time tagged at the center of the correlation interval, as indicated. To arrive at Eq. (5.6),
use has been made of the fact that T,; and T, are nearly equal, usually differing by less than

0.1 ns/s at midlatitudes at present. In addition, a phase effect of the form @a1(/s + Lys) and a
corresponding delay effect of the form Ta1(Is + Ly s), where both are caused by lagging of the L1
samples, have been neglected under the assumption that corrections can be applied during
processing, if necessary, to remove these accurately modeled effects. (The rates in these
corrections can be accurately obtained from the C/A channel.)

5.3 Discussion of the L1*L2 Correlation Function

The L1*L2 correlation function is so similar to the code correlation function in Eq. (4.22)
that much of the discussion in Subsection 4.4 applies here, and only the differences need to be
outlined. Note that the filters from both channels are present in the L1*L2 correlation integral,
rather than the filter for a single channel. This difference in filtering is important for high-
accuracy modeling but does not change the essential character of the correlation integral.
Because a product of channels is involved, amplitude in the L1*L2 correlation function is scaled
downward by the RMS noise from both channels rather than only one. As discussed in
Subsection 7.2.1, this effect greatly reduces the SNR for the L1*L.2 mode of operation relative to
the known-code mode.

The residual delay in Eq. (5.9) is equal to the difference in the L1-P and L2-P delays
minus the model delay, Ly, applied to the L1 channel. Since this model delay must be quantized
in steps of s, it is adjusted to the value that provides the best possible alignment under the
circumstances, namely the alignment that places largest amplitude at the prompt (center) lag of
the three correlator lags. Unlike the very small residual delay for code-mode processing, residual
delay for the L1*L2 channel can be as large as half a lag (about 25 ns).

The major component of residual phase is given theoretically by Eq. (5.8) and is equal to

the difference of the L.1-P and L2-P phases minus the model phase. Thus, the phase being
tracked consists of the various terms arising from Eqgs. (3.15) and (3.16), but differenced between
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channels. As in the code-mode correlation function, a small instrumental-phase component can
emerge from the correlation integral as a result of the bandpass-phase effect, but this effect will
be small if the receiver filters are matched between the L1 and L2 channels. That is, in the P-
codeless mode, the bandpass phase Ay is a difference between channels. If the system filters are
closely matched, nonlinear phase-versus-frequency variations and receiver delays tend to cancel
between channels (i.e., AQr = 0 and ATy = 0) and therefore are significantly reduced relative to the
case of code-mode operation. Even if the filters are exactly matched, however, the difference in
the baseband rates for L1 and L2 will prevent exact cancellation.

For the TR receiver, one obtains the theoretical amplitude-versus-delay response shown
in Fig. 5-1(a), assuming the dominant filter shape for both the L1 and L2 channels is the
baseband Butterworth filter described in Subsection 3.1. Fig. 5-1(b) presents the corresponding
phase-versus-delay response. As can be seen, phase around zero delay is nearly constant. For
purposes of illustration, a phase offset of about 0.0053 cycles has been introduced at zero delay,
as in the corresponding code-mode plot. Again, this offset would be removed in practice by the
phase-locked loop and would not appear in the correlation sums.
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SECTION 6
OBSERVABLE EXTRACTION

6.1 Code Mode
6.1.1 Phase Extraction

A measured value of residual phase is obtained by applying an arctangent operation to the
components of the complex correlation sum for the prompt lag (I = 0):

¢, = arctan[IM(ug), RE (ug)] (6.1)

where RE and IM respectively denote real and imaginary parts, and where "hat" over ¢ is used in
Eq. (6.1) and on other observables to denote a measured value computed on the basis of
correlation data. As implied by Eq. (4.22), measured residual phase is, on average, theoretically
given by

</([\)r> =g+ —(61 6.2)

where @4 is the difference phase in Eq. (4.10) and where @ is the "bandpass-averaged value" for
nonlinear instrumental phase not accounted for by ;.

Measured phase at the center of the correlation interval is computed as the sum of
measured residual phase and the model (feedback) phase at interval center:

() = Qute) + O (63)

By computing measured phase in this manner, tracking error is essentially eliminated as an error
source in the measured delay. The resulting 20-ms phase values are fit with a quadratic function
over successive 1-s intervals in order to reduce data volume and improve statistics. Thus, an
aggregate phase value is extracted every second, with a time tag at the center of the 1-s interval.
For an earth-fixed antenna, dynamics over a second are typically sufficiently restrained to allow
a quadratic to supply an adequate fit.

A theoretical expression for the average value of measured phase is obtained by
combining Egs. (3.1), (3.15), (3.16), (4.10), (6.2) and (6.3), which yields

¢(tr) = < P(t)> = (fi-fi)te - Ppa- fi(Tg+T- Ts+T) + Qs+ Qe(fL) + @y (6.4)

where all quantities are time tagged at interval center, tz. As implied by this equation, the
intentional offset in the downconversion frequency, fy, —fy, which is accurately known, must be
removed from measured phase in order to obtain a phase-delay estimate that is nearly free of
instrumental rate offset. Measured phase delay is therefore extracted with the operation

To(tn) = [(fi- i) tr - A(tw) /1, 6.5)

Based on Egs. (6.4) and (6.5), the theoretical estimate for measured phase delay, on average, is
given by
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To(tr) = <Ty(tr)> = Tg+ Te-Ts + Tr + [@na- 1 - Os- Pelfi) ]/ (6.6)

where all quantities are evaluated at the center of the correlation interval and where the
ionospheric phase, @, is evaluated at frequency fy, (i.e., at fy; or fi ). Thus, measured phase
delay contains the following terms: geometric delay, troposphere delay, satellite-clock offset, a
receiver-clock offset, a downconversion phase drift relative to nominal LO offset, bandpass-
averaged receiver phase, a satellite phase offset, and ionospheric phase.

6.1.2 Delay Extraction

Correlation sums are accumulated over 1 s before being analyzed to extract residual
delay. On the basis of these 1-s sums, measured residual delay can be computed from observed
correlation amplitudes using the equation

Ai-Al

T, =kp A

(6.7)

where A_, Ag, and A, are the correlation amplitudes for the early, prompt, and late lags (I = -1,
0, +1), respectively, and k;, is a computed constant (see next paragraph) that gives residual delay
the units of chips. The amplitude for each lag is computed on the basis of the real and imaginary
components of the correlation sums with the projection operation:

Ay = cos¢; RE[u;] + sin@; IM[u;] (6.8)

where @ is residual phase computed for the prompt lag according to Eq. (6.1). Based on the
assumption that residual phase is essentially the same for all lags, this algorithm estimates
amplitude for the early and late lags as the projection along the "direction" in the complex plane
computed from the higher-SNR prompt lag. For the prompt lag, the algorithm yields the root-
sum-square (RSS) of the real and imaginary components. When residual phase is large (e.g., 45
degrees), both components of a complex correlation sum influence the computed amplitude in a
weighted fashion, with the largest component possessing the greatest weight. Furthermore, for
the two important side lags, the noise on those correlation sums enters the computed delay in a
linear fashion, and a better estimate is therefore obtained at low SNR values.

Either observed response or theoretical calculation based on an estimated system
bandpass filter can be used to calculate the constant k;, under the assumption that the residual
delay is very small (i.e., small enough to make the amplitude difference in Eq. (6.7)
approximately proportional to residual delay). Since the accuracy required for ky, is not
demanding, the theoretical approach has been used. Based on amplitude derivatives shown in
Fig. 4-2(c) at the 50-ns side lags, the P-channel result is a k;, value of 0.37 for the TurboRogue
receiver. (Specifically, the theoretical value for k, is approximately 0.9/(1.28 + 1.15), where 0.9
is the prompt amplitude obtained from Fig. 4-2(a) and the two values in the denominator are the
derivatives at 50 ns.) The allowed error in this constant can be relatively large as long as the
residual delay is small. For example, an error of 10% (i.e., about 0.04) causes an error of only
0.0001 p-chip (0.3 cm) in delay when the residual delay has a steady-state value of 0.001 chip.
Because of the C/A-phase-driven feedback, steady-state residual delay is primarily due to the
influence of the ionosphere and can reach 0.001 p-chip in extreme cases for an earth-fixed
receiver, given a secondary 1-s loop of first order for tracking delay variations relative to C/A-
derived fast feedback.
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Residual delay values computed with Eq. (6.7) will correspond to the measure of delay
that equalizes the early and late amplitudes. In the current version of the TR receiver with its
unsymmetric bandpass filter in the analog front end, the resulting delay is not exactly equal to the
delay that produces peak amplitude. For the highly digital front end described in Appendix A of
this document, these two measures of delay would be more nearly equal due to the greater filter
symmetry found in that implementation. (Either measure of delay could theoretically be used in
GPS applications since they differ only by an additive constant that can be removed either by
double differencing or by calibration.)

Once residual delay has been extracted, 1-s measured delay is computed as the sum of
measured residual delay and model delay at interval center:

T(tr) = T(tr) + T (6.9)

As with measured phase, this process essentially removes any tracking error in measured delay.
The expectation value of measured residual delay is represented theoretically by Eq. (4.24). A
theoretical expression for the average value of measured delay is obtained by combining

Egs. (3.14), (4.24), and (6.9), which yields

T(t) = <T> =T =Ty + Ty - Ts + Tr + Te + T (6.10)

where all quantities are time tagged at the center of the 1-s interval, tr. Thus, measured delay is
the sum of the following terms: geometric delay, troposphere delay, satellite-clock offset,
receiver-clock offset, ionospheric delay, and receiver delay.

To compress data volume and collect statistics, these 1-s delay values can be combined
over longer time intervals by a least-squares fit or carrier-aided averaging.

6.2 P-Codeless Mode
6.2.1 Phase Extraction

In the P-codeless mode, measured residual phase, @ , is estimated by first adding the
imaginary components of the correlation sums across the three lags and then normalizing to units

of cycles:
= u 6.11
® 2T AY El: : (10

where Af is a 3-lag-sum amplitude mapped from C/A amplitude. Unlike the code mode,
addition across lags makes sense here since the noise on the sums is uncorrelated between lags
(see Subappendix C.3.2). Furthermore, unlike prompt amplitude, effective amplitude for the sum
is nearly independent of residual delay, which can be as large as 0.25 p-chip when in the P-
codeless mode. As a result, effective SNR on the composite is about 1.7 to 3 dB better than the
SNR on the prompt lag alone. A small correction is needed to account for the slight dependence
of phase on lag (about 0.015 cycles/lag, see Subsection 5.2) caused by applying lags to L.1 with
its sizable baseband carrier frequency (about 308 kHz). The effect of these phase shifts can be
accurately modeled and removed on the basis of observed L1 carrier frequency, thereby
referencing measured phase to the prompt lag.
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As implied by Eq. (5.6), measured residual phase is, on average, theoretically given by
<@, >=qq+ A9, (6.12)

where @q is the difference phase given by Eq. (5.8) and where AQ, is the bandpass-averaged
value for instrumental phase, exclusive of instrumental delay effects, differenced between L1 and
L2. Measured phase for the L1*L2 channel at the center of the correlation interval is computed
as the sum of measured residual phase and model (feedback) phase:

Ox(tr) = Om(te) + Or (6.13)

Again, by computing measured phase in this manner, tracking error is essentially eliminated. A
theoretical expression for the average value of measured phase is obtained by combining
Egs. (5.8), (6.12), and (6.13), which yields

Ox(tr) = <Ox> = Pq1 (tr) - Paa(tr) + AQy (6.14)

This equation can be reformulated through use of Egs. (3.1), (3.15), and (3.16):
Px(te) = (AfL - Afp)tr - AQpg - AfL(Tg+1) + fia(TRy-T8) - fLi(Thi-T8) + AQs + Age +Ag;  (6.15)

where the superscript p refers to P channel, where all quantities are time tagged at interval center,
and where A denotes a difference between the L1-P and L2-P channels, in the order L1 minus
L2. As one would expect, differenced phase is the same general form as the single-channel
phase in Eq. (6.4) but with each term differenced between channels.

To obtain an estimate of L2 phase, the measured difference phase obtained from the
operation in Eq. (6.13) is subtracted from the L1 phase simultaneously measured in the
C/A channel:

Pr2=Or1 - Ox (6.16)

where ¢ denotes C/A channel and x denotes L1*L2 processing. Based on Eq. (6.4) as applied to
the C/A channel and on Eq. (6.15), this measured phase, on average, is represented theoretically
by

OF2 = <PL2> = (fua - fr)tr - Phaz- Fia(Tg + T - o + The) + OB + Qelfid) + Oh + Y (6.17)

where the "correction” term is defined by

v = -fua (R - ) + (01 - OB1) + (0 - O - Agy) (6.18)

All quantities are evaluated at interval center, tg, and it has been assumed that the following
quantities are essentially identical for the L.1-C/A and the L1-P channels: carrier frequency,
receiver LO phase, receiver-clock error, geometric delay, tropospheric delay, and ionospheric
phase. In practice, the satellite-clock error and satellite phase offset will be different for L1-C/A
and L1-P, and these differences have been accounted for in Eq. (6.18), with a superscript to
denote C/A or P channel. Similarly, Eq. (6.18) accounts for receiver instrumental phase.
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Comparison of the theoretical expressions for L2 phase in the code mode, Eq. (6.4), and in the P-
codeless mode, Eq. (6.17), shows that, under the specified assumptions, measured L2 phase
should be identical in the two modes except for the terms in .

L2 phase delay is calculated as prescribed by Eq. (6.5), with L2 values for f; and f,. The
resulting phase delay, on average, is represented theoretically by

Th(tr) = <Tg(tr)> = Tg + Tt - By + Tho + [Pz~ O~ @& - Pe(fio) - Y)/fra (6.19)

where all quantities are evaluated at interval center. Except for the instrumental terms, this
expression is identical to Eq. (6.6).

6.2.2 Delay Extraction

The P-codeless technique extracts early, prompt, and late amplitudes from the correlation
sums on the basis of the algorithm described in Subsection 6.1.2. Fig. 5-1 presents the
theoretical dependence of amplitude on delay for L1*L2, given a 9.6-MHz Butterworth filter.
Residual delay for L1*L.2 cannot be extracted with sufficient accuracy by means of the
algorithm, Eq. (6.7), used in the code mode because the misalignment of the L1-P and L2-P
correlation is not necessarily small and can be as large as 0.5 sample interval (about 25 ns).
Instead, as illustrated in Fig. 6-1, a normalized difference of the early and late amplitudes
(defined as the balance ratio) drives a table lookup of the residual delay. The numerical values in
the table can be obtained through modeling and/or calibration of the amplitude response. For
highest accuracy, separate calibration of this table is required for each receiver. The calibration
is carried out by forcing the table lookup to produce the same measured values for P2 - P1 delay
as the code mode. To illustrate the shape of the table-lookup function, Fig. 6-2 presents
theoretical results for residual delay as a function of the balance ratio, given the 9.6-MHz
Butterworth filter defined in Subsection 3.1. It is estimated that the accuracy of this table lookup
can fall between 2 and 10 cm, depending on the effort applied to calibrate the table.

Total measured P2 - P1 delay with a time tag at interval center is computed by adding the
resulting residual delay to the feedback model delay Ly:

Ty =Tr +Lys (6.20)

A theoretical expression for the averaged value of measured difference delay is obtained by
combining Egs. (5.9) and (6.20), which yields

Te = <T> = Ta(tr) - Tat (tr) (6.21)
Substituting Eq. (3.14) twice, each time with appropriate subscript, yields

Tx =By - W+ By - Ty + Ter - Tt + - H (6.22)
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where the superscript p refers to P channel and where all quantities are evaluated at interval
center, tr. It is assumed the geometric and tropospheric delays are identical for the two channels
and have differenced out. In order, the remaining terms are the difference delays due to satellite
code clocks, receiver sampler clocks, ionosphere, and instrumental delays. For accurate
measurements of the ionospheric delay difference, calibrations are generally required to remove
the overall delay contributed by terms other than the ionosphere.

L2-P group delay is estimated by adding the measured L1*L2 delay to the concurrently
measured C/A group delay:

Tp2=Tefat+ Tx (6.23)

A theoretical expression for this measured delay is obtained by combining Eqs. (6.22) and (6.10)
(with a subscript to represent L.1-C/A):

Ty = <Tpa> = Tgt Ty~ T+ Ty +Tez + T+ Ta (6.24)
where the correction term is defined by
Ta= (1§ - 1§) - (7f - Tf) (6.25)

All quantities are evaluated at interval center, tr. It has been assumed that the receiver-clock
error and ionospheric delay are the same for L1-C/A and L1-P. Note that the P-codeless group
delay for L2-P in Eq. (6.24) has the same form as the code-mode measurement of the same
quantity in Eq. (6.10), except for the differences in Eq. (6.25) due to satellite clocks and receiver
delays. In practice, the L1-C/A and L1-P codes (i.e., "satellite clocks") can be misaligned by a
few nanoseconds as they leave the satellite, and the TR instrumental delay can be on the order of
1-ns smaller for C/A than for P. In practice, careful calibration of these two offsets should be
carried out if one requires an accurate correspondence between the L2-P delay from the code
mode and the L2-P delay from the P-codeless mode.
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SECTION 7
SYSTEM-NOISE ANALYSIS

71  Code Mode
7.1.1 Signal-to-Noise Ratio

The signal-to-noise-ratio analysis presented in this section is based on the analog front
end described in Section 3, with two-level sampling. The voltage SNR for a complex correlation
sum is defined as the maximum correlation amplitude (i.e., RSS of components for prompt lag)
divided by the RMS noise on either component. For perfect lock in phase and delay in which
residual phase, phase rate, and delay are all equal to zero, Eq. (4.22) predicts that the maximum
amplitude Ay at the prompt lag is given by

Am—NsTpclo_nI G(f) npr e I_df_ 7.D

where 8@, is the nonlinear phase-frequency response of the receiver filter but with an integral-
averaged value subtracted (by the DPLL) so that the integral is real.

The integral, which is a measure of the maximum correlation of the filtered baseband
signal with the pure P-code sequence generated by the receiver, is approximately proportional to
the square root of signal power at baseband. Based on this proportionality, one can set up the
following relationship between the correlation integral and signal power:

00 . 2
& G(f) Sln(npr)} e2midor df = 204P; (7.2)

where 0121 is proportional to the average noise power Py entering the sampler after receiver
filtering, and where Py is the signal power per quadrature component that would have entered the
sampler if the receiver had not filtered out any frequency components of the signal. The factor of
2 under the square root accounts for the two quadrature components, while the factor o¢

accounts for loss in signal power due to receiver filtering. Numerical calculations indicate that
o is approximately 0.9 for the P channels and 0.99 for the C/A channel, given the analog front
end described in Section 3. This method of representing the maximum correlation has been
adopted in order to explicitly formulate Eq. (7.1) in terms of a measure of signal power that is
independent of the shape of TR filters and to explicitly account for the loss due to receiver
filtering.

When Egq. (7.2) is substituted in Eq. (7.1), the maximum amplitude becomes

Aw= Nsc;quA/ 29%13 (73)
N



The ratio, o Ps/Py, can be thought of as the single-sample power SNR per quadrature component
at baseband after accounting for filtering but neglecting quantization loss.

Maximum voltage SNR is computed by dividing maximum amplitude by the RMS
noise, Gy, on the either component of the complex sum:

SNRy = AM (7.4)

u

Based on Egs. (7.3) and (C.25), the maximum voltage SNR in the case of quadrature sampling
becomes

afPS

SNRV = LC Ls 2 NS
Pn

(7.5)

where Ny is the number of samples correlated, not counting samples lost during the dead time
between correlation intervals, and where the factors L. and L are the losses due to quantization
of counterrotation sinusoids and sampling quantization, respectively. The loss caused by three-
level quantization of the counterrotation sinusoids is defined as

L.=-=L176 _ 96 ,
=5 is (7.6)

or 0.35 dB. The sampling quantization loss is defined by
5T O'ﬁ' (1.7

Based on Egs. (B.15) and (B.16), this loss is

L= \[%' =0.798 (7.8)

or 2 dB for the two-level sampling implemented in the current TR receiver.

The term Ny in Eq. (7.5) can be thought of as the SNR increase due to Ny independent
samples. Ideal sampling is assumed; i.e., the sample rate and bandpass are such that the noise on
sample points is essentially independent between points. For nonquadrature sampling, the result
in Eq. (7.5) decreases by 1]% . Total processing loss due to the receiver is approximately equal to
L.LVos V18720 or 0.96 x 0.798 x V0.9 x ¥18/20 = 0.69 (3.2 dB), where 18/20 accounts for
samples lost during the dead time.

A nominal SNR for the TurboRogue receiver in the L1-P channel is calculated as
follows: The total noise power at RF at insertion