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ABSTRACT

Signal-processing theory for the TurboRogue receiver is presented. The signal form is
traced from its formation at the GPS satellite, to the receiver antenna, and then through the
various stages of the receiver, including extraction of phase and delay. The analysis treats the
effects of ionosphere, troposphere, signal quantization, receiver components, and system noise,
covering processing in both the "code mode" when the P code is not encrypted and in the "P-
codeless mode" when the P code is encrypted. As a possible future improvement to the current
analog front end, an example of a highly digital front end is analyzed.
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Roman

A_,Ao,A + =

A c =

A m =

an .-

Ap(f) =

Ax =

=

C 1 ----

f =

fd

fh =

fL =

fp =

GA(Vd) -"

G(f) =

=

Gs(f ) =

-

kB =

kp =

l =

Lc =

Ls =

SYMBOL DEFINITIONS

early, prompt, and late correlation amplitudes, measured

amplitude factor defined in Eq. (4.23)

maximum correlation amplitude, Eq. (7.1) or Eq. (7.20)

P-code chip value, + 1

P-code Fourier component, Eq. (2.6)

amplitude factor defined by Eq. (5.7)

quantized counterrotation phasor, Eq. (4.2)

coefficient of fundamental in quantized counterrotation sinusoid

frequency

Doppler-shifted baseband frequency

nominal downconversion frequency

L-band carrier frequency

P-code chip rate = 1/Tp

effective complex filter introduced by antenna

composite bandpass amplitude, Eq. (3.12)

effective aggregate complex filter introduced by receiver before sampler

effective aggregate filter introduced by GPS satellite

definition in Eq. (4.16)

Boltzmann's constant

constant in equation to convert from correlation amplitudes to residual delay

lag offset relative to model delay

SNR loss due to quantization of counter-rotation sums, Eq. (7.6)

SNR loss due to sampling quantization, Eq. (7.7)
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Lx

N

Nc

Ns

P(t)

PN

P_q

Ps

qM

Rcx

Rp(_)

Rp(t,q;)

S

Sc

Si(t)

SNR2o

SNRv

SNRx

Sp(f)

SR(t)

ST(t)

Sx

T

t

= model delay offsetting L1 during cross-correlation of L1 and L2

= (Ns- 1)/2

= number of chips in accumulation

= number of sample points in accumulation interval

= P-code sequence

= average noise power entering the sampler, per quadrature component

= total noise power at RF at insertion

= average baseband signal power per quadrature component before receiver filtering

= proportionality constant accounting for sampling quantization in low-SNR limit

= ratio of code and P-codeless SNRs, Eq. (7.26)

= time-averaged P-code autocorrelation function, Eq. (2.14)

= autocorrelation function for P code, Eq. (2.12)

= sample interval = (20.456) -1 [as

= definition in Eq. (4.8)

= ideal unfiltered L-band signal, Eq. (2.15)

= "18-ms" voltage SNR

= voltage SNR, Eq. (7.5)

= maximum voltage SNR for LI*L2 correlation, Eq. (7.23)

= P-code power spectrum, Eq. (2.11)

= signal received by the TR antenna, Eq. (2.19)

= transmitted L-band signal, Eq. (2.18)

= definition of Eq. (5.4)

= accumulation interval

true time

true time at interval center
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Tp =

t R --

Ts =

Ul (tR) =

_¢k =

Vm(tR, I ) =

V(t) =

W =

=

Xl, X2

(10.23) -1 Its = P-code chip interval

receiver time as indicated by sampler

system temperature

correlation sum, Eq. (4.5)

quantized baseband voltage representing signal after sampling, k = 1 for L1 and
k = 2 for L2

model signal generated by receiver, Eq. (4.1)

complex voltage representing signal at baseband, Eq. (3.2)

effective double-sided noise bandwidth

quantized value for quantity x

quantity x for L1 and L2, respectively

Greek

(Zf

AgI

A_oi

1"1

A('_)

(_A

(_x

(_u

T

= loss in signal power due to receiver filtering

= difference of instrumental phase between L1 and L2, defined by Eq. (5.5)

= bandpass average of Aq0i

- noise added to signal, at baseband before sampler

= triangle function

= 1- cr amplitude error, Eq. (7.15)

= RMS noise on either component of baseband signal before sampling

= 1-c_ delay error, Eq. (7.19) or Eq. (7.20)

= 1-c_ error on correlation sum

= 1-_ system-noise error in phase, Eq. (7.14)

= combined delay, Eq. (2.20)

= combined delay, Eq. (3.7)
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q;a

"_e

'l;g

q7I

'1;m

"l;p2

^

"_p2

"1;r

'_R

_r

_s

"_t

"_tp

"X

_Cx

Vd

q_

= measured value for total delay, Eq. (6.9)

= aggregate group delay, Eq. (3.14)

= group delay due to ionosphere

= geometric delay from satellite to receiver

= composite instrumental group delay

= model group delay generated by receiver

= actual value for P2 group delay derived from P2-P1 group delay, Eq. (6.24)

= measured value forP2 group delay derived from P2-P1 group delay, Eq. (6.23)

= residual delay = difference of aggregate group delay and model delay, Eq. (4.24)
and Eq. (5.9)

= error in receiver clock relative to true time, Eq. (3.5)

= measured value for residual delay, Eq. (6.7)

= error in GPS satellite clock relative to true time

= tropospheric delay

= actual value for phase delay, Eq. (6.6)

= measured value for phase delay, Eq. (6.5)

= aggregate phase delay, Eq. (3.16)

= actual value for L2 phase delay derived from L l'L2 phase, Eq. (6.19)

= measured value for L2 phase delay derived from LI*L2 phase

= measured value for total P2-P1 group delay, Eq. (6.20)

= actual value for total P2-P1 group delay, Eq. (6.21)

= Doppler-shifted frequency at RF, Eq. (3.3)

= actual value for total carrier phase, Eq. (6.4)

= measured value for total carrier phase, Eq. (6.3) or Eq. (6.11)
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= aggregate baseband carrier phase, Eq. (3.15)

= difference of aggregate baseband phase and model phase, Eq. (4.10) or Eq. (5.8)

= ionospheric phase shift

= downconversion phase, Eq. (3.1)

= drift in downconversion phase relative to fht, Eq. (3.1)

= composite instrumental phase shift excluding 171 term

= bandpass average of (PI

= measured value for total C/A carrier phase

= actual value for total L2 carrier phase derived from LI*L2 carrier phase and C/A

carrier phase, Eq. (6.17)

= measured value for total L2 carrier phase derived from LI*L2 carrier phase and

C/A carrier phase, Eq. (6.16)

= model carrier phase generated by receiver

= measured value for residual phase, Eq. (6.1)

= phase instability introduced by satellite, excluding frequency reference

= actual value for LI*L2 carrier phase, Eq. (6.14)

= measured value for LI*L2 carrier phase, Eq. (6.13)

"correction" term in x= (PL2, Eq. (6.18)

= ensemble average over both noise and code

= ensemble average over noise, 7/

= ensemble average over possible code values
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SECTION 1

INTRODUCTION

This report presents the nonrelativistic theory for signal processing in the TurboRogue
(TR) receiver. The signal form is traced from the Global Positioning System (GPS) satellite to
the receiver antenna, and then through the various stages in the receiver, including extraction of

phase and delay. The analysis includes the effects of the ionosphere, the troposphere, discrete
sampling, instrumentation, and system noise. The theory covers processing in the "code mode"
when the P code is known and in the "P-codeless mode" when the P code is encrypted.

Section 2 analyzes the GPS signal by performing a spectral decomposition and
autocorrelation of the ideal P code and propagating the signal from the GPS spacecraft to the
receiver, with the inclusion of both troposphere and ionosphere effects. Section 3 analyzes
receiver front-end processing, tracing the signal from reception at RF to sampled form at
baseband. Section 4 presents correlation theory for the code mode when the sampled signal is
cross-correlated with a model signal generated by the receiver on the basis of feedback in phase
and delay. Section 5 presents correlation theory for the P-codeless mode in which the L1 and L2

signals are cross-correlated. Section 6 describes extraction of the phase and delay observables in
both the code mode and P-codeless mode and presents the corresponding theoretical expressions
containing the various terms contributing to each observable. Section 7 analyzes the effects of

system noise, including signal-to-noise ratios (SNRs), phase errors, and delay errors for both the
code mode and the P-codeless mode.

As an example of a possible future improvement to the current analog front end,
Appendix A presents the theory for a particular design of a highly digital front end. Appendix B
analyzes the effects of two-level and three-level quantization in the analog-to-digital conversion
of the received signal and of three-level quantization of the counterrotation sinusoids.
Appendix C presents noise correlation analysis, including correlation of noise between samples
and correlation of noise on correlation sums with different lags. Appendix D analyzes the

correlation of noise between the quadrature components of the baseband signal. Appendix E
formulates the correlation function for the clear/acquisition (C/A) channel.
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SECTION 2

THE GPS SIGNAL

2.1 Ideal P Code 1

The ideal, unfiltered P code, which is generated at a rate of fp = 10.23 MHz, consists of a
pseudorandom sequence of chips, each with a value -1 or +1 and a v_idth of Tp = 1/fp =
(10.23) -1 Its, as illustrated by plot (a) in Fig. 2-1. A particular P-code sequence can be expressed
in its ideal form as

P(t) = _ an B(t-tn) (2.1)
n

where the time argument t is true time, B(t) is the chip function shown in Fig. 2-2, and the
coefficients an are the chip values of-1 or +1. As indicated by Eq. (2.1), the chip centers fall at
true-time values tn, which are equally spaced and given by

Tp (2.2)
tn=nTp- _ -

in which n is an integer whose range is sufficient to cover the time interval of interest. As
implied in this time relation, the rising edge of a chip that falls at an integer-second boundary
will be aligned with that boundary when the GPS clock has zero error with respect to true time.
Satellite clock error will be accounted for below.

The chip values an will be approximated as random variables with zero mean:

<an>p=O (2.3)

and with no correlation between different chips:

<aj an>p= _jn (2.4)

where < >p indicates an ensemble average over possible chip values and _'nj is the Kronecker
delta function. A given P-code sequence is generated for one week before the sequence is

repeated. As developed below, the code sequences leaving the GPS satellites do not have the
ideal form in Eq. (2.1) but are filtered to some degree.

An expression similar to Eq. (2.1) also describes a C/A-code sequence with its chip
width of (1.023) -1 Its and a sequence repetition interval of a millisecond. With regard to
correlation analysis, processing of the P and C/A data are very similar. As outlined in

Appendix E, however, the short (1 -ms) repetition interval for the C/A sequences becomes a
complication, but most aspects of the results remain the same.

1 For an explanation of symbols used in this document, see page v, "Symbol Definitions."
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Figure 2-1. Illustration of the Autocorrelation of a P-Chip Sequence
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Figure 2-2. The P-Chip Function

2.2 Spectral Analysis of the Ideal P Code

A Fourier transform of a given P-code sequence, over the chips in an "accumulation
interval" with center at true time t and length T, is given by

t+T/2

Ap(f) = f P(t) e-2rdft dt
Jt-T/2

As assumed below, the accumulation interval will correspond to a correlation interval (e.g.,

18 ms) applied during data reduction. With the use of Eq. (2.1), the transform is given to
excellent approximation by

(2.5)

Nc

sin(rcfTp)
Ap(f) = lp _ _ ak e-2_iftk

k
(2.6)

where the sum over k applies only to chips within the transform interval and Nc is the total
number of chips in the interval. (A box will be used to enclose equations of particular

significance.) This equation is not exact since the two end chips in the transform interval may
not fall completely in the interval. This effect is negligible since the interval contains so many
chips (e.g., about 180,000 in 18 ms). The frequency components will vary from correlation
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intervalto correlationintervalasa functionof theparticularvaluesfor ak(i.e.,theparticular
P-codesequencewithin the interval),butwill havezeromeanovermanyintervals. Thepower
spectrum,however,averagesto a (sinx/x)2form,asshownbelow.

BasedonEq. (2.6),thecorrelationbetweenspectralcomponentsat differentfrequencies
is givenby

,f<A_( )Ap(f )>p= Tp2
sin(nfTp) sin(nf' Tp)

nfTp nf'Tp E
j,k

i

<aj ak>p e2ni(ftJ -ftk) (2.7)

By using the assumption in Eq. (2.4) and the definition of tk in Eq. (2.2), one obtains

Nc

sin(nfTp) sin(nf' Tp) E
<A_(f)Ap(f')>p= T 2 rcfTp gf'Tp eni(f-f)TP k

e2ni (f-f)kTv (2.8)

One can show that the sum becomes

Nc

eni(( -f)TpE e2ni (f-f')k% = e2ui(f-f ')t
k sin[rc(f-f')Tp]

sin[NcrC (f-f')Tp]
(2.9)

where t is true time at the middle of the interval. This equation can be substituted in Eq. (2.8) to
yield

<A_(f)Ap(f')>p= Tp2 e2ni(f-f') i sin(gfTp) sin(rcf'Tp) sin[Ncrc(f-f')Tp]
7_fTp _f'Tp sin[rt (f-f')Tp]

(2.10)

One can show (see Subsection 4,3) that the sinx/siny function can be accurately approximated by
a sum of Dirac delta functions with a spacing of 10.23 MHz, provided Nc is very large. Thus, the
correlation between frequency components is substantial only when f-f'= n*10.23 MHz, where
n is an integer.

The power spectrum is obtained by setting f = f', which gives

m m [sin(/tfTp)] 2

Sp(f)=lpl[- ---_p -1 (2.11)

where the total accumulation time is given by T = NcT,, Thus, on average, the power spectrum

of the ideal P code is a (sinx/x) 2 function with a first zero crossing at (Tp) q.

2.3 Autocorrelation of the Ideal P Code

The autocorrelation function of the ideal P code is defined by
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Rp(t,x) - <P(0 P(t+x)> 0 (2.12)

Autocorrelation of an example P-code sequence is illustrated in Fig. 2-1. Plot (b) offsets the
P-code sequence in plot (a) by a selected delay x, while plot (c) shows the product of plot (a) and

plot (b). Plot (d) shows the autocorrelation function obtained by averaging plot (c) over all
possible P-code sequences. Plot (e) shows the particular "noise" sequence that separates plot (c)
from plot (d). As implied, the "noise" sequence averages to zero over all possible P-code
sequences.

For 0 < z < T , the autocorrelation function has a period Tp as a function of time and a• p . .
value of either 0 or 1, as allustrated in plot (d) for a particular value of x. For x = 0, the

autocorrelation function in plot (d) would be 1.0 at all times. For t: > Tp, the autocorrelation
function would be zero.

Averaging over a time interval containing a very large number of chips produces the

time-averaged autocorrelation function

T/2
1 Rp(t, x) dt (2.13)

Since the width of the positive pulses in plot (d) decreases as "_increases according to Tp - _, the
time-averaged autocorrelation function becomes

Rp(X) = A(_) (2.14)

where A('0 is the triangle function shown in Fig. 2-3. The Fourier transform of a triangle
function is (sinx/x) 2 function like that in Eq. (2.11), as one would expect.

If all P-code frequency components were present in the signal (i.e., an ideal P code), this
exact triangle function would describe the amplitude response produced by correlating the
received GPS signal with an ideal model code. As shown below, filtering modifies the triangle
response and smooths the sharp comers.

2.4 The Received Signal

This subsection develops the spectral form of the GPS signal arriving at the receiver,
including geometric, tropospheric, and ionospheric effects.

The form for the ideal unfiltered P code is given by Eq. (2.1). When modulated on an
ideal carrier at L band, the ideal P signal becomes

S_ (t) = P(t ) cos(2 rt fLt) (2.15)

where fL is the L-band frequency. The L2 signal is constructed solely of a P signal of this form
while the L1 signal is a sum of such a P component and a similar C/A component. The C/A
component is the same form as Eq. (2.15), but has a C/A pseudorandom sequence in place of P(t)
and a carrier 90 ° out of phase with the P component (see Eq. (E. 14) in Appendix E of this
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document).TheC/A componentis transmittedwith apowernominally3 dB greaterthanthe
L1-Pcomponent.

Thespectraldecompositionof thePcodecanbewrittenas

P(t) = I_ Ap(f) e2nift df
(2.16)

where the Fourier components are given in Eq. (2.6). This expression can be used to recast the
ideal unfiltered L-band signal in Eq. (2.15) in the form

S i (t) = f_ Ap(f)e2_i(fL+ f)t df + c.c.
(2.17)

where c.c. denotes complex conjugate of the first term. The relation, A_(f) = Ap(-f), which is
valid for a real signal like P(t), has been used to obtain this formulation. In addition, an
amplitude factor of 1/2 has been neglected since subsequent signal amplification at the spacecraft
will lead to an overall gain factor as modeled below.

3)= . ILlS

-Tp 0 Tp 1:

Figure 2-3. The Time-Averaged Autocorrelation Function for the P Code
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Thesignalleavingthespacecraftis filteredsothatonly themainlobeandafractionof
thefirst sidelobesremain. If Gs(f) representstheeffectiveaggregate(complex)filter and
amplificationintroducedby thespacecraft,thetransmittedsignalasit leavesthespacecraftcan
becastin theform

ST(t) = I_ Gs (f)Ap(f)e2gi[(fL+ f)(t +_s)+cPs] df + c.c.
(2.18)

where q_s represents phase instability in the satellite frequency system, excluding the frequency
reference• The spacecraft filter is reportedly a six-pole Chebychev with 0.01-dB ripple and a
3-dB double-sided bandwidth of about 36 MHz. A clock offset "_shas been included to represent
the error in the satellite clock relative to true time. (Satellite time = true time + %.) For

simplicity, this expression neglects the multiplicative data-bit factor contained in the actual GPS
signal. The following analysis assumes that a correlation interval is less than a data-bit width
and that data-bit synchronization has been established. In this case, the data-bit factor would
only change the analysis by a multiplicative sign factor throughout the equations.

In transit to the ground, the signal is retarded by a geometric delay, '_, and a tropospheric
• .g .

delay, _t, and is advanced in phase by an ionospheric phase shift, _0e. After incorporation of these
effects, the received signal arriving at the receiver antenna at true time t can be written in the
form

oo

SR(t) = Gs(f)Ap(f)e2ni [(fL+ f)(t-'0+Cps+¢Pe] df + c.c.

cx_

(2.19)

where the combined delay is given by

q; = _g + "l;t- %s

Decreases in signal strength in transit are absorbed in Gs. The RF signal in Eq. (2.19) is
collected by the receiver antenna for processing.

(2.20)
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SECTION 3

FRONT-END PROCESSING

This section analyzes the steps in the TurboRogue front end that take the signal from
reception at RF down to its form after baseband sampling. The current analog front end is
analyzed in this section and an example of a highly digital front end is analyzed in Appendix A
of this document.

3.1 Functional Description of the Analog Front End

The receiver antenna collects the GPS signal as input to the analog processing, as shown

in Fig. 3-1. The output from the antenna is passed through an RF bandpass filter spanning 1075
to 1725 MHz to eliminate out-of-band RF interference (RFI). The signal is then amplified by a

gallium-arsenide field-effect transistor (GaAs FET). System temperature, which includes all
noise sources, is nominally 200 K for L1 and 225 K for L2. The resulting signal is power
divided into L1 and L2 branches and each branch is downconverted to baseband with a

quadrature mixer in a double-sideband mode with a fixed-frequency local-oscillator (LO) signal.
The four resulting baseband signals are each passed through a low-pass seven-pole Butterworth
filter with a single-sided bandwidth of 9.6 MHz, as plotted in Fig. 3-2. The four filtered signals
are then each hard limited and "sign" sampled (1-bit quantization) at a rate of 20.456 MS/s.
(MS/s will be used to denote 106 samples per second.) The same L1 samples are processed by
the digital signal processor to obtain both the C/A and the P observables.

To carry out this processing, three frequencies are required: the "sample-clock" rate at
fs = 20.456 MHz and two LO (downconversion) signals, fhl = 1575.112 MHz for L1 and fh2 =
1227.36 MHz for L2. The frequency-and-timing subsystem generates 20.456 MHz from a
5-MHz reference and then generates the two LOs by simple multiplication of the sample-clock

rate. That is, the L1 LO is generated by the multiplication 77fs (which equals fL1 - 308 kHz) and
L2 by 60fs (which equals fL2 - 240 kHz, where fL1 and fL2 are the zero-Doppler carriers at RF).

Care must be taken in selecting the sampling frequencies and downconversion
frequencies. The sampling frequency must be essentially incommensurate with the code chip
rate (i.e., 20.456 MHz vs. 10.23 MHz) so that discrete-sampling errors will be negligible.
Theoretical verification of the adequacy of 20.456 MHz is presented below in Subsection 4.3.
To produce positive baseband carrier frequencies, each downconversion frequency is offset from
its respective carrier (by 308 kHz for L1 and 240 kHz for L2). The large resulting positive
baseband carrier frequencies reduce to negligible levels the errors caused by the three-level
quantization of counterrotation sinusoids applied in subsequent processing. Subappendix B.2
estimates the errors introduced by carrier counterrotation.

3.2 Mathematical Model for the Analog Front End

As described in the preceding subsection, the receiver front end passes the received signal
represented by Eq. 2.19 through amplifiers and filters and downconverts from L band to
baseband. This subsection models the composite effect of the antenna and front-end steps as a
linear process that can be formulated as a single overall complex system filter and a single
effective phase and frequency shift representing the downconversion process.
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Figure 3-1. Block Diagram for the Analog Front End
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Downconversion can be modeled in the following way: Let the downconversion phase at
the mixer be denoted by q%. Because the frequency reference of the receiver is very stable,
downconversion phase can be represented by a time function with the ostensibly linear form

q_h -- fht + q)hd (3.1)

where fh is the nominal downconversion frequency and q)hc is a slowly varying drift relative to
the nominal linear function associated with fh- The quadrature mixer multiplies the (real)
received RF voltage by cos Cphand by sin q_h, a process that can be modeled in complex form as a
multiplication by e-2ni_P h. When the expression in Eq. (2.19) is multiplied by e-2_icP h, the
multiplication and integral can be interchanged in both the first term and the c.c. term so that the
multiplication is applied separately to each frequency component. For each frequency
component, one obtains a small difference frequency from the first term and a large sum
frequency from the c.c. term. Since the large sum-frequency term is eliminated by filters
following the mixer, only the difference frequency term must be retained in the analysis.

The preceding e-2nitP h model for downconversion from RF assumes perfect 90 ° separation
of the sine and cosine mixing signals. In practice, the analog front end will produce sinusoids
that deviate from perfect 90 ° separation. This offset from 90 ° will be called the quadrature-
separation error. A quadrature-separation error introduces incoherency between the two final
complex correlation sums obtained by processing the two quadrature components. Relative to a
perfect amplitude of 1.0, the lowered output amplitude would be cos (A0/2), where A0 is the
quadrature-separation error in radians. When A0 is 16 °, the voltage signal-to-noise ratio (SNR)
is reduced by about 1%. According to D. J. Spitzmesser (Spitzmesser, 1994), the quadrature-
separation error for the TurboRogue receiver is about 5 ° or less, which would cause an amplitude

loss of about 0.1% or less. This result indicates that the quadrature-separation error for TR is of
little ultimate importance and it will therefore be ignored in the following analysis.

Antenna gain and possible antenna filtering, phase shifting and delays will be modeled by
a complex antenna filter, GA, that is a function of RF frequency. Similarly, all amplification,
filtering, phase shifts, and delays due to the front end will be modeled with a single complex
filter, GR. This front-end filter consists of a product of the filters at successive stages as well as
phasors representing other phase shifts and delays. Frequency-component identification for the
front-end filter, however, will be specified by means of a Doppler-shifted baseband frequency,
and, as a consequence, a translation is required to make an association with the corresponding RF
frequency preceding downconversion. This convention is motivated by the fact that the
dominant filter is the "narrow" Butterworth filter applied at baseband.

As indicated in Fig. 3-1, each L-band channel has two quadrature components and each

of these components has a separate Butterworth filter. According to Spitzmesser (Spitzmesser,
1994), the four Butterworth filters are not identical but are matched to within about 7% with

respect to bandwidth. To account for the differences, a detailed analysis would provide a
separate function for each of these filters. One can show, however, that the final effective filter
for a given L-band channel is a straight average of the two Butterworth filters for that channel.
Thus, for simplicity in analysis without sacrifice of accuracy, it will be assumed at this point that
the two Butterworth filters for a given L-band channel are identical, each with a response equal
to the average of the two actual filters.

Another potential concern is how well delay and phase shifts are matched between sine
and cosine components in their paths from the RF branching point to baseband sampling.
According to Spitzmesser (Spitzmesser, 1994), the path length for each component is only about
20 cm, and the two paths are matched to about 3 cm (0.1 ns). The relative path difference within

the quadrature mixer before mixing is about 0.1 cm or less, and the corresponding relative phase
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shift is about 0.1cm/20cm = 0.005cycles(1.8°) Therelativephaseshift aftermixing is about
300kHz * 0.1ns= 30gcycles. Theserelativephaseandrelativedelayvaluesaretoo smallto
causesignificantlossof amplitude.Observeddelaywill containtheaverageof thetwo
componentdelaysandthis implicit averagedelay,combinedwith otherdelays,will beeither
calibrated,differencedout,or estimatedin subsequentprocessing.Thus,noneof theseeffectsis
of ultimateimportanceandfor thisreason,nonewill beseparatelymodeled.

Theprecedingdiscussionindicatesthattheantennaandfront endcanbemodeledby
insertingtheantennafilter andthecompositereceiverfilter into the integrandof Eq. (2.19)and
multiplying by e-2niq °h . Since filtering in the front end removes the sum-frequency term
resulting from the c.c. term, the complex voltage (real and imaginary) at baseband becomes

V(t) = f_ GR(f_ GA(Vd) Gs (f) Ap(f ) e2_i [(fL+f)(t-x) + _°s+_°e-_°hldf + q
(3.2)

where the Doppler-shifted frequency at RF corresponding to f, the baseband variable of
integration, is given by

Vo = (fL+ f)(1 -'i:) + % + _e (3.3)

in which the top dot denotes time derivative. The corresponding baseband frequency is given by

fd = Vd- fh (3.4)

The complex term 3"1represents all noise, after the downconversion and filtering operations,
including the noise picked up by the antenna and the noise added by the receiver. Almost all of
the noise contributed by the receiver is added at RF. Analyses of the effects of the noise term are

presented in Section 7, Appendix C, and Appendix D of this document.

3.3 Mathematical Model for the Sampled Signal

The baseband signal theoretically represented by Eq. (3.2) is hard limited and sign

sampled at a sample rate of 20.456 MHz. Timing for the sampler is derived from the receiver
clock, which will have an offset from true time. True time t and receiver time t_ (as indicated by

the sampler) will be related by

tR = t + "_g (3.5)

where "cgis the error in the receiver clock. A quantized complex sample value at time tR will be

denoted by V((tg). For a particular time t_, the theoretical form for the voltage V is obtained by
substituting tR - q:Rin place of true time t in the right-hand side of Eq. (3.2).

As discussed in Appendix B for low SNR signals, the sampled voltage after averaging
over noise is approximately proportional to the signal component divided by the root-mean-
square (RMS) noise. Thus, when the complex voltage in Eq. (3.2) is subjected to two-level
quantization in each quadrature component and then to an ensemble average over noise, 31, the
theoretical form for the averaged complex voltage becomes
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N qMf_ GR(fd) GA(Vd)Gs (f) Ap(f )e2ni[(fL+ f)(tR_ X,)+ % + _pe_%] df (3.6)

where the tilde on V denotes amplitude quantization, < >n denotes average over noise and csn is
RMS noise on either quadrature component. (It will be assumed that RMS noise is the same for
the two components. The fact that this assumption is only approximately valid does not change
the results of the following analysis, since only single-sample SNR matters in 1-bit sampling,
and single-sample SNR is the same for the two components.) Delay has been redefined to
incorporate the sampler clock error that enters when true time is replaced with sampler time:

I;'= 1;+ 'I:R= 'l:g+ 'rt- "Cs+'I:R (3.7)

As derived in Appendix B, the proportionality factor qM accounts for sampling quantization and
is given by

qM = _ (3.8)

for two-level quantization.

3.4 Reformulation of the Sampled Signal

Subsequent analysis can be clarified by explicitly defining and collecting terms of like
nature in the signal component. First expand the ionosphere phase about the carrier frequency

O%
%(fL+f) = %(fL) + _- f (3.9)

which becomes

q)e(fL+f) _ %(fL)- %f (3.10)

where '1_e is the group delay due to the ionosphere. Next, reformulate and consolidate the
bandpass filters

GR(fd) GA(Vc0 Gs(f) = G(f)e-2_i(f_'-'P I) (3.11)

where the composite bandpass amplitude is defined as

G(f) =-IGR(fo) GA(Vd) Gs(f)l (3.12)

and '171is the overall instrumental group delay, including spacecraft, antenna, and receiver. The
frequency-dependent term q0_is the instrumental phase effect that remains after removing the
linear phase-versus-frequency function associated with "q. Note that the bandpass amplitude, the
instrumental phase, and the effective instrumental delay can potentially depend on Doppler shift,
as indicated in Eq. (3.11) by the Doppler-shifted arguments, fd and Yd.
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Theeffectivedelayintroducedby theButterworthfilter describedin Subsection3.1 is
about77 nsfor theP code.This delayis theapproximatetheoreticalvaluefor theButterworth
filter itself anddoesnot includeotherinstrumentaldelaysintroducedby thefront end.

WhenEqs.(3.10)and(3.11)aresubstitutedin Eq. (3.6),thenoise-averagedbaseband
signalbecomes

< VC(tR)>q = qM e2zi (Pafoo G(f)Ap(f)e 2ni[f(ta- _a)+(pd df

(Yrl .1-oo

(3.13)

where aggregate group delay is defined by

_a =- 'lTg + _t - "l;s + 'ITR + "1;e + '_I (3.14)

and aggregate baseband carrier phase by

q)a -- fL(tR-'C_) - q_h (3.15)

in which aggregate phase delay is given by

"1_ ---- 'lTg -I- '1_t - 17s +'Ca- fI_l[q)s + (De(fL)]
(3.16)

All time-varying quantities are evaluated at sample time, tg.

Equation (3.1.3,) indicates that the baseband signal consists of a product of a carrier factor

with a rate of fL(1 - "c_) - fh and a code factor involving an integral over the Fourier components
of the P code. This formulation has representative variables for the major effects encountered in

processing GPS signals. Note, however, that a bandpass-averaged instrumental phase shift
emerges from the integral, and, furthermore, the best definition of an effective instrumental delay
can be application dependent.
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SECTION 4

CORRELATION IN THE CODE MODE

When the P code is known, the receiver correlates the baseband samples with a model

signal consisting of the appropriate P-code sequence, offset by a model delay, and a carrier
phasor incorporating a model phase. Model phase and model delay are supplied in real time as
feedback by delay- and phase-locked loops operating on correlation output. This report will not
treat feedback theory, but will assume that model phase and model delay are adequately provided
by loops operating on correlation output. Correlation analysis for the C/A code, which is slightly
different than P-code analysis, is presented in Appendix E.

4.1 Model Signal

The model signal generated by the receiver at receiver (sampler) time tR has the form

N

Vm(tR, l ) = P(tR-'Cm -/s) C((pm ) (4.1)

where P is the ideal P-code function in Eq. (2.1), Xm is the feedback model for total group delay
at time tR, l is a lag offset relative to the model delay, s is the sample interval of (20.456) -1 gs,
and q)m is the feedback model for phase at time tR. Note that the receiver generates the code
sequence as a function of tR, as though tR were true time. The model signal is generated for each
of three lags (-1, 0, +1) in the TurboRogue receiver. As a function of time, the generated model
code consists of the sequence of-ls and +Is specific to the satellite being tracked, but with
effectively instantaneous transitions between chips (i.e., with no filtering), as implied by

Eqs. (2.1) and (4.1). Further, the P-code sequence is generated with a delay that is effectively
exactly equal to the model delay generated by the feedback loops. Over a correlation interval of
18 ms, the receiver generates both the model delay and the model phase as linear time functions.

The model signal contains both sine and cosine components in order to provide N

quadrature counterrotation of the carrier of the sampled signal. The complex quantity, C, is a
quantized counterrotation phasor defined by

N

C((pm) =- c-_((Pm) - i sin(q)m) (4.2)

where the tildes indicate three-level quantization, as explained in Appendix B. The quantized
phasor can be expanded in terms of the harmonics of the fundamental in the form

C((pm) = Cl e-2ni(pm + harmonics (4.3)

where c 1 = 1.176 is the coefficient of the fundamental for the chosen three-level quantization.

Remembering that P(t) is real, one can take the complex conjugate of Eq. (2.16),
substitute the result in Eq. (4.1), and obtain a useful form for the receiver model in terms of
frequency components:
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(4.4)

whereAp(f) representstheFouriercomponentsin Eq. (2.6)pertainingto theparticularcode
sequencewithin thecorrelationinterval. Notethatthereceivertime argumentin Eq. (4.1)has
beensubstituteddirectlyin Eq. (2.16)withoutincludingthedifference,xR, between receiver time
and true time. This procedure is based on the fact that the receiver generates its P code exactly as
represented in Eqs. (2.1) and (2.16) but on the basis of its own time scale: receiver time. No
bandpass filtering is included in this equation because the receiver generates a P-code sequence
that is essentially an ideal sequence.

4.2 Correlation Sum

At each sample point, the receiver generates the model signal in Eq. (4.1) and multiplies
it by the sampled signal. For each lag value, the resulting product is accumulated for all points
within a correlation interval to obtain a correlation sum, computed as

N

u/(tR) = _ V(t.+ks) Vm(t.+ks, l) (4.5)

K=-N

where _/is the complex sampled signal, t_ is now the receiver time at the center of the sum
interval, and the index k covers the sample points within the correlation interval. The correlation
interval, whose length (integration time) will be denoted by T, is 18-ms long and contains about
360,000 sample points for the current implementation of the TurboRogue receiver. In Eq. (4.5),
it is assumed without significant loss of generality that the interval contains an odd number of
samples with the total number given by Ns = 2N + 1. The integration time is related to total
number of samples by T = Ns s. Since the sampled signal and model signal are complex, the
correlation sums are complex.

4.3 Correlation Function

The correlation function is obtained by taking an ensemble average of the correlation
sums in Eq. (4.5) with respect to all possible noise patterns and P-code sequences. An ensemble

average over noise gives

N

<Ul(tR)>rl = Z <V(tR+ks)>rl Vm(tR+ks, l) (4.6)
k= -N

where < >n denotes the noise average. On the right side, the noise average has been
interchanged with the sum and applied to the only factor containing noise, the sampled signal.
After substitution of Eqs. (3.13), (4.3), and (4.4), and application of an ensemble average over
code, Eq. (4.6) becomes
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G(f) <Ap(f) A_(f')>p S cdf df'
(4.7)

where

N

Sc = Z e2ni [(Pa- (Pm+ (f- f') (tR+kS) - f%+ f'(Xm+/S) + q0,] (4.8)
K=-N

in which the phase and delay functions are evaluated at time t R + ks. The unlabeled brackets < >
denote ensemble average over both noise and code, while < >p denotes ensemble average only
over code. To reach this form, the sum and integrals have been interchanged and only the

Fourier components within the integral have been treated as random variables subject to the
ensemble average over code. Further, only the fundamental of the counterrotation phasor in
Eq. (4.3) has been retained under the assumption that the higher harmonics are filtered out by the
sum over the correlation interval.

Counterrotated phase in Eq. (4.8) can be expanded about the center time to yield

%(tR+ks)- q_n(tR+ks) = q)d+ _dkS (4.9)

where the phase difference at interval center ta is defined by

q)d = q)a(tR) - Cpm(tR) (4.10)

and where % is the feedback error for phase rate across the interval (i.e., the last equation but
with top dots). Similarly, the delay terms in Eq. (4.8) can be expanded to yield

f%(t.+ks) - f' "Cm(tR+ks ) = f [%(t_) + "_aks] - f ' ['Cm(tg) +'_mks] (4.11)

which becomes

f'Ca(tg+ks) - f"Cm(t.+ks) = f'Ca(tR) - f"Cm(t.) + (f-f')_aks (4.12)

where, in the last equation, it has been assumed that the model delay rate very accurately tracks

actual delay rate. One can show that this approximation is acceptable for even the worst-case
errors in delay rate (<5 ns/s).

When Eqs. (4.9) and (4.12) are substituted in Eq. (4.8), one obtains

N

Sc = e2ni[cpd+ (f-f')tR-f'_a+ f'('Cm+/S) + q0I] Z

k=-N

e2ni [(f-f')(1- _a) +qod] ks (4.13)

where I; a and _m are now evaluated at interval center. The sum in this equation can be evaluated
in a manner similar to the derivation of Eq. (2.9), which yields
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Sc = e27ri[(pd+(f.f,)tR_f_a+f,(_m+/S)+(p_] sin[NsrC[(f-f')(1-+.a)+(pd]s]

sin[r: [(f-f')( 1 -'i:a)+(pd]S]
(4.14)

where Ns is the total number of sample points in the interval.

When Eq.(4.14) and the expectation value in Eq. (2.10) are substituted in Eq. (4.7), one obtains

<Ul(tR)>=ClqMT2e2giCpd(_f_ H(f'f')e2gi[(f-f')_R-f_a+f'(_m+ls)+cpl]dfdf'GrlJ-_ (4.15)

where the two-dimensional "filter" function is defined as

sin(rcfTp) sin(rtf'Tp) sin[Ncn(f-f')Tp] sin[Nsrc[(f-f')(1-+.a)+_0d]s] (4.16)

H(f, f')- G(f) rtfTp _f'Tp

Equation (3.5) has been used to replace tR- t with "OR.

In order to schematically illustrate the nature of the "sinx/siny" functions in Eq. (4.16),
Fig. 4-1 plots Eq. 4.16 as a function of f - f' for an unrealistically small correlation interval

(Ns = 22) and for an excessive sample rate of 22.456 MS/s. These plots show that both of the
two sinx/siny functions are "comb" functions consisting of a sequence of equally spaced peaks,
with a peak spacing of 10.23 MHz for the first sinx/siny function and about 22.456 MHz for the

second. Peak height is given by the number of chips (Nc = 10) for the first sinx/siny function and
by the number of samples (Ns = 22) for the second. For both, the width is 17T, where T is the

length of the correlation interval. For an actual correlation interval (e.g., T = 18 ms and a P
sample rate of 20.456 MHz), these peaks become extremely high (e.g., about 105 larger than
intervening peaks) and extremely narrow relative to the chip rate and sample rate (e.g, 55 Hz
versus 10.23 MHz). For the example shown in Fig. 4-1, note that only the "origin" peaks at
f-f'= 0 line up between the two sinx/siny functions in Eq. (4.16), while the other peaks do not

line up. This absence of peak coincidence away from f- f' = 0, which is a consequence of the
effective incommensurability between 10.23 Mhz and 22.456 MS/s, leaves only the origin peaks
to make a significant contribution to the integral. If only the origin peaks are significant, the
system has been successfully designed so that discrete sampling effects are negligible.

For the actual sample rate of 20.456 MS/s, one can also show that only the origin peaks
are significant. For zero Doppler, the commensurability ratio for the sample rate and chip rate
reduces to

s 10230000 5115

fs Tp 20456000 10228
(4.17)

after common factors have been removed. Given this result, one can easily show for zero
Doppler that the first coincidence of peaks for If-f'l above zero occurs at

f - f'] = 5115 * 20.456MHz = 10228 * 10.23MHz (4.18)

or equivalently

If- f '1 = 104.63244 GHz (4.19)

4-4



suo!lound _u!s/xu!s o_ jo uo!:_ealsnI[ I o!letuoqos "1-17o:mg!_[

Og 017 O_ 0E O[ 0
Og-

I I I I I I i i I I I i [ I I I I i I I I

- __(ZHl_ 9_17";;)=s . _ ] -............... i o i i 0E-
- (ss_)_s/ (_s_zz)m.s_ °ooo i i -
_ . oo i i -

i Oo i i
- o o i i -
...............................................!................................................!...................................=---.o........i..................................................:............................................... 0-[-

a oo a- i o o i -
-- i • • o o i • _e --

• £ 0 • :e
0 : •" _ 0 0 : :.•0 : 'O • . .

o
- :o
.................o.....o...............--.._...................................................._................................................. 01;
_ 0 0 0

_ o 0 _
o

_ o o I1.

gg i d o0

2- .................._ ......................i..................[_(zHI,_ _;;'0[) = ,L ................................................................................................................O;
d

_- ] (dJ-_U)LI_'S / ( J_uO [ )U!S _

- i i i I I i i I i i i i i i i i i i I i i I i O_

\



For If- f 'l to be this large, the magnitude of either f or f' must be greater than about 52 GHz.
Because of the filtering effect of G and the two sinx/x functions at high frequencies in Eq. (4.16),

this particular coincidence peak and other coincidence peaks at even higher multiples are reduced
to negligible influence in the integral. For example, for a first coincidence peak with f' =

52 GHz, the sinx/x filter supplies an attenuation of about 0.00006 (-84 dB). One can show that
an amplitude error of 0.00006 leads to a delay error on the order of 1 mm.

Inserting nonzero values of Doppler (represented by delay rate, "_a) will improve effective
incommensurability. Delay rate for ground-based receivers, for example, is less than 3 gs/s.
One can show that a Doppler effect this size will shift the peaks of the sinx/siny function by an
amount too small to align any peaks that were not already aligned for zero Doppler. More
importantly, Doppler shifting will dealign peaks that would have been coincident (but are not at
the origin) for zero Doppler and thereby reduce commensurability effects to even smaller levels.
On the basis of Eq.(4.16), one can easily show that Dqppler reduces the amplitude of a given
product of coincident peaks by a factor of about 7_A f'caT_ or more, where TI is the integration
interval and where Af = If- f'l is the frequency difference at the peak. For the very small
Doppler value of 1.5 Hz ('_a = 1 ns/s) and the short integration time of 1 s, for example, the
reduction factor is equal to 327 at the first coincident peak at 104 GHz. Thus, even for very
small Doppler values, the commensurability error is greatly reduced by the Doppler effect.

The preceding analysis indicates that commensurability of sample rate and chip rate will
introduce delay errors on the order of 1 mm for the worst case of zero Doppler and even smaller
delay errors when Doppler is included.

When in lock, the rate-error term (Pd in Eq. (4.16) is not large enough to cause peaks to

completely dealign, but can cause amplitude loss. This loss is accounted for below in the final
form for the correlation function.

When the number of sample points Ns is very large, and when the sample rate and the
chip rate are essentially incommensurate, as indicated, the above considerations show that the
product of the two sinx/siny functions reduces to a spike function at f-f' = 0. By approximating
the two sinx/siny functions by sinx/x functions near f-f' = 0 and approximating the first of these
two sinx/x functions by a Dirac delta function (assuming Nc is very large), one can show that this
product can be accurately approximated, within the significant ranges of the two sinx/x filters in
Eq. (4.16), by

sinINjt(f-f' )Tp] sin[Nsrt[(f-f )(1-'i:a)+(0d]S] = N__ssin(NsTt(OdS) 5(f-f)

sin[re (f- f )Tp] sin[Tz [(f-f' )(1-'i:a)+ ¢pd]S] Tp Nsrt (0dS
(4.20)

where 5(f- f') is the Dirac delta function, given in this case by the limit

[sin[Ncn(f-f') Tp]] Nc--+°° (4.21)a(f-f') = Tp LIM - _-_ ? ;__pp ,

When Eqs. (4.16) and (4.20) are substituted in Eq. (4.15), the correlation function
becomes
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• sin(_;fTp) 2 .
e2Zl_°d G(f) - -- - e-2nl[f(_r-/s)-_ °I]df

<Ul(tR)> = Ac oo _fTp (4.22)

where the amplitude factor is defined by

qM sin(_ +dT)

Ac- NsTpCl _ 7rq_dT
(4.23)

in which the expression T = Ns s has been used to simplify on the basis of correlation sum length.
In this expression, difference phase, q0d, is defined by Eq. (4.10) and residual delay by

q;r= "Ca(tR)- %(tR) (4.24)

with both time tagged at the center of the correlation interval. Note that an additional phase shift
can emerge from the integral in Eq. (4.22) to contribute to phase. This result for the cross-
correlation function is very similar to the form that would be obtained in analog processing and
therefore indicates successful removal of discrete-sampling effects.

4.4 Discussion of the Correlation Function

As one would expect, correlation amplitude Eq. (4.22) increases in proportion to Ns, the
number of sample points in the correlation sum. As discussed in Appendix B of this document,
the multiplicative factor qM and the RMS noise _n account for sampling quantization. The
factor Cl represents the amplitude increase due to three-level quantization of the counterrotation
sinusoids. A sinx/x multiplicative factor models the amplitude loss due to feedback error in
carrier-phase rate across the correlation interval. Rate feedback is accurate enough to keep
amplitude loss resulting from this effect at an acceptable level. (Typically, this loss is negligible,
but can reach 0.2 dB under worst-case dynamics.) A multiplicative phasor based on q0d accounts
for most of the feedback error in carrier phase at interval center. (A small additional carrier-
phase effect can emerge from the correlation integral to contribute to the model for residual
phase.) Typically, tracking error, including the contribution from the integral, is very small
(< 0.02 cycle) but might reach 0.1 cycle under extreme dynamics.

The integral across the passband yields a complex correlation response that is a function
of model delay "_m and lag l and provides a measure of the alignment of the model P code with
actual P code. The integrand contains the system filter in Eq. (3.12) resulting from spacecraft,
antenna and receiver, and a (sinx/x) 2 function representing the average power spectrum of the
pure P code. This integral peaks in magnitude when the model delay, including lag offset,
closely approximates the actual delay. After the correlation sums have been obtained from the
correlation process, residual delay, % can be estimated through analysis of the variation of
amplitude with lag, as discussed in the next section. Typically, feedback is accurate enough to
keep the model P code aligned with the incoming P code to better than 0.001 P-chip so that a
given lag (the "prompt") produces an amplitude very near the peak of the correlation function.
Correlation amplitude for L1-P is plotted in Fig. 4-2(a) as a function of model delay on the basis
of the bandpass function for the current analog front end described in Subsection 3.1. The model
delay in these plots is referenced to true delay. (That is, a model delay of zero corresponds
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approximatelyto zeroresidualdelay.) Asymmetryin theamplitude-versus-delayresponsein this
exampleis causedby thenonlinearphase-versus-frequencyresponseof thereceiver'sbaseband
Butterworthfilter. If thesystemfilter passedall thefrequencycomponentsof an ideal P code,
the amplitude-versus-delay response would have the exact triangle shape shown in Fig. 2-3.
Filtering rounds the sharp comers and broadens the response to the form shown in Fig. 4-2(a).

Fig. 4-2(b) presents the corresponding phase-versus-delay response, which is nearly constant
around zero residual delay. For purposes of illustration, the phase at zero delay in this plot has
been offset from zero. In practice, this phase offset does not appear in the measured correlation
sums corresponding to Eq. (4.22) since the phase-locked loop removes it along with all other

phase offsets. Fig. 4-2(c), which presents the derivative of P correlation amplitude with respect
to delay, is used in Subsection 6.1.2.

For comparison, Fig. 4-3(a) plots C/A correlation amplitude as a function of model delay,

given a pure (sinx/x) 2 power spectrum for the C/A code. (As discussed in Appendix E, code
self-noise can cause significant deviations from this (sinx/x) 2 spectrum.) The C/A response is

almost a perfect triangle, since the Butterworth filter is so broad relative to the C/A spectrum.
Slight rounding near the peak and slight ringing near +1 c-chip is barely discernible. Fig. 4-3(b)
presents the corresponding phase-versus-delay response. Similar to the P result, the phase at zero
residual delay has been offset from zero. Note the slight ringing caused by the loss of sidelobes
above the tenth sidelobe as a result of the Butterworth filter. Fig. 4-3(c), which presents the
derivative of C/A correlation amplitude with respect to delay, is analogous to Fig. 4-2(c).
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SECTION 5

CROSS-CORRELATION IN THE P-CODELESS MODE

When the P code is encrypted, the L1-P and L2-P channels can be processed in a "P-
codeless mode" that cross-correlates the two channels and thereby takes advantage of the fact the

P-code sequence is the same on the two channels. In the following analysis, P-codeless
operations will be denoted by LI*L2. For each sample point, the sampled voltages from the two
channels are multiplied together, with one channel offset by a feedback model delay. The carrier
of the product is counterrotated on the basis of feedback model phase, and the result is summed
over a correlation interval of 18 ms. The resulting correlation sums are analyzed to generate the

next values for phase and delay feedback and to extract the difference phase and difference delay
between the L1-P and L2-P signals. The primary disadvantage of operating in the P-codeless
mode is that SNR is lower and output observables are noisier.

5.1 Correlation Sum

For each lag value, the receiver generates the following cross-correlation sum over a
correlation interval of length T:

N

u/(tR) =

k=-N

Vl(t_+ ks -Lxs- Is) V2(t.+ ks) C(q)m) (5.1)

N

where V1 and V2 are the (complex) sampled voltages for the L1 and L2 channels, respectively; C

is the counterrotation phasor in Eq. (4.2); q0mis model phase at time t, + ks; Lx is the model
delay fed back by the tracking loop; and l is one of the three correlation lags (-1, 0, +1). Again,
the total number of samples in the sum is odd and given by Ns = 2N + 1; the correlation time is
given by T = Ns s; the time tag tR is at the center of the sum interval; and the index k covers the

points in the interval. A theoretical expression for the noise-averaged value for the L1 or L2
baseband signal can be obtained from Eq. (3.13) by attaching the appropriate channel subscript to

each channel-specific symbol.

The delay difference between the L1 and L2 channels is primarily due to the ionosphere
and is therefore a relatively small, slowly varying difference. Based on analysis of the

amplitude-versus-lag dependence of cross-correlation sums, the receiver feeds back a slowly
varying model delay, Lx, that is needed to place the maximum correlation response at the prompt
lag. Because the L2 channel experiences a larger ionospheric delay than the L1 channel, the
model delay is applied to the L1 channel so that lagging will be in the right direction to bring the
two channels into delay alignment. Unlike the model delay applied to the code in the code mode,
the model delay applied to L1 in the P-codeless mode can only be changed in steps of a sample
interval, which is given by s = (20.456 MHz) -1. Since the ionospheric delay difference between
L1 and L2 is typically 100 ns or less, Lx is typically 0, 1, or 2 (in units of sample interval, s).

As shown below, phase of the V l'V2 product is equal to L1 phase minus L2 phase. The

phase-rate difference between L1 and L2 is equal to an LO term of 68 kHz plus a Doppler term
that is about 1 kHz or less in magnitude for earth-fixed receivers. To track LI*L2 phase, TR first
computes a rapidly varying (fast) model phase by scaling, according to frequency (i.e., by
34/154), the C/A feedback phase obtained on the basis of a phase-locked loop tracking C/A
phase. Because of the influence of the ionosphere, LI*L2 phase exhibits a slow drift relative to
scaled C/A phase, with a differential rate that is usually less than 0.1 Hz for an earth-fixed
receiver. This slow differential drift is tracked by a secondary phase-locked loop. Total model
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phaseq0musedfor feedbackis computedasthesumof thescaledC/A phaseandacorrection
basedon theoutputof thesecondaryloop.

5.2 Correlation Function

As in the case of known code, the correlation function for LI*L2 is obtained by applying
an ensemble average over both noise and code to the correlation sum. Such an analysis is
initiated by applying an ensemble average over noise (from both channels) to Eq. (5.1). Since
noise is uncorrelated between the L1 and L2 channels, the ensemble average over the two noise
components decouples, leading to separate averages for the two sampled voltages:

N

<ul(tR)>rl = 2 <VCl(tR+ks-Lxs-/s)>rl,<VC;(tg+ks)>rl2C(q 0m) (5.2)
K=-N

where sum and averages have been interchanged. Eq. (3.13) can be substituted twice in
Eq. (5.2), once for each averaged voltage, with appropriate labeling for channel-specific
quantities. After the additional substitution of Eq. (4.3) in Eq. (5.2), the result can be averaged
over code to yield

<U/(tR)> = Cl qMlqM2 f_ I_ Gl(f)G2(f' ) (Ap(f) A_(f')>p Sx df df'_ll 1 _ll 2 (5.3)

where

N

Sx-
k=-N

e2ni [q0al -q0a2 -¢Pm + (f- f')(tR + ks) + f'Xa2 - f('_al + Lxs +/s)+ zStpI] (5.4)

in which differenced instrumental phase is defined by

Aq_ - q_. - q012 (5.5)

Again, <> denotes an average over both noise and code. Phase and delay values for L1 and L2
(i.e., with subscripts al and a2) are evaluated at the time arguments tR + k S - Lxs - I s and
tR + k s, respectively. Harmonics of the counterrotation function in Eq. (4.3) have been
neglected under the assumption that they will average to negligible levels after the correlation
sum.

By comparing Eqs. (5.3) and (5.4) with Eqs. (4.7) and (4.8), one can see that an analysis
very similar to that in the last section (5.1) can be applied to derive the following correlation
function:
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oo

<u/(tR)> = Axe2niq °d Gl(f)G2(f)[sin(/1;fTp)]2e2ni[f(_r-/S) +Aq°I] df

_oo [ nfTp ] (5.6)

where the amplitude factor is defined by

Ax _ NsTp Cl q___M1qm sin(_ _0dT)

url 1(_rl2 _d T
(5.7)

In this expression, the difference phase is defined by

qld= q0al(tR)- q0a2(tR)-q0rn(tR) (5.8)

and residual delay by

'l:r= q:a2(tR) - 'l:al(tR) - Lxs (5.9)

with both time tagged at the center of the correlation interval, as indicated. To arrive at Eq. (5.6),
use has been made of the fact that %1 and %2 are nearly equal, usually differing by less than
0.1 ns/s at midlatitudes at present. In addition, a phase effect of the form %1 (l s + Lx s) and a
corresponding delay effect of the form qTal(l S + L x s), where both are caused by lagging of the L1
samples, have been neglected under the assumption that corrections can be applied during
processing, if necessary, to remove these accurately modeled effects. (The rates in these
corrections can be accurately obtained from the C/A channel.)

5.3 Discussion of the LI*L2 Correlation Function

The LI*L2 correlation function is so similar to the code correlation function in Eq. (4.22)
that much of the discussion in Subsection 4.4 applies here, and only the differences need to be
outlined. Note that the filters from both channels are present in the LI*L2 correlation integral,
rather than the filter for a single channel. This difference in filtering is important for high-

accuracy modeling but does not change the essential character of the correlation integral.
Because a product of channels is involved, amplitude in the LI*L2 correlation function is scaled
downward by the RMS noise from both channels rather than only one. As discussed in

Subsection 7.2.1, this effect greatly reduces the SNR for the LI*L2 mode of operation relative to
the known-code mode.

The residual delay in Eq. (5.9) is equal to the difference in the L1-P and L2-P delays
minus the model delay, Lx, applied to the L1 channel. Since this model delay must be quantized
in steps of s, it is adjusted to the value that provides the best possible alignment under the
circumstances, namely the alignment that places largest amplitude at the prompt (center) lag of
the three correlator lags. Unlike the very small residual delay for code-mode processing, residual
delay for the LI*L2 channel can be as large as half a lag (about 25 ns).

The major component of residual phase is given theoretically by Eq. (5.8) and is equal to
the difference of the L1-P and L2-P phases minus the model phase. Thus, the phase being
tracked consists of the various terms arising from Eqs. (3.15) and (3.16), but differenced between
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channels.As in thecode-modecorrelationfunction,asmall instrumental-phasecomponentcan
emergefrom thecorrelationintegralasaresultof thebandpass-phaseeffect,but thiseffectwill
besmall if thereceiverfilters arematchedbetweentheL1 andL2 channels.That is,in theP-
codelessmode,thebandpassphaseAM is adifferencebetweenchannels.If thesystemfilters are
closelymatched,nonlinearphase-versus-frequencyvariationsandreceiverdelaystendto cancel
betweenchannels(i.e.,Aq_= 0 andA'_-- 0) andthereforearesignificantlyreducedrelativeto the
caseof code-modeoperation.Evenif thefilters areexactlymatched,however,thedifferencein
thebasebandratesfor L1 andL2 will preventexactcancellation.

For theTR receiver,oneobtainsthetheoreticalamplitude-versus-delayresponseshown
in Fig. 5-1(a),assumingthedominantfilter shapefor boththeL1 andL2 channelsis the
basebandButterworthfilter describedin Subsection3.1. Fig. 5-1(b) presentsthecorresponding
phase-versus-delayresponse.As canbeseen,phasearoundzerodelayis nearlyconstant.For
purposesof illustration,aphaseoffsetof about0.0053cycleshasbeenintroducedat zerodelay,
asin thecorrespondingcode-modeplot. Again,thisoffsetwouldberemovedin practiceby the
phase-lockedloop andwouldnotappearin thecorrelationsums.
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SECTION 6

OBSERVABLE EXTRACTION

6.1 Code Mode

6.1.1 Phase Extraction

A measured value of residual phase is obtained by applying an arctangent operation to the

components of the complex correlation sum for the prompt lag (/= 0):

A

q_r= arctan[IM(u0), RE (uo)]
(6.1)

where RE and IM respectively denote real and imaginary parts, and where "hat" over q) is used in
Eq. (6.1) and on other observables to denote a measured value computed on the basis of
correlation data. As implied by Eq. (4.22), measured residual phase is, on average, theoretically
given by

A

< q)r> =(Pd + q)I (6.2)

where q_d is the difference phase in Eq. (4.10) and where _ is the "bandpass-averaged value" for

nonlinear instrumental phase not accounted for by "q.

Measured phase at the center of the correlation interval is computed as the sum of
measured residual phase and the model (feedback) phase at interval center:

A A

q)(tR) = q)m(tR)+ q_r (6.3)

By computing measured phase in this manner, tracking error is essentially eliminated as an error
source in the measured delay. The resulting 20-ms phase values are fit with a quadratic function
over successive 1-s intervals in order to reduce data volume and improve statistics. Thus, an
aggregate phase value is extracted every second, with a time tag at the center of the 1-s interval.
For an earth-fixed antenna, dynamics over a second are typically sufficiently restrained to allow
a quadratic to supply an adequate fit.

A theoretical expression for the average value of measured phase is obtained by
combining Eqs. (3.1), (3.15), (3.16), (4.10), (6.2) and (6.3), which yields

A E

(D(tR) = <q)(tR)> = (fL-fh)tR- _hd- fL('ITg-[-Tt-'Ts'I-TR) + (Ds "+" q)e(fL) + q)I (6.4)

where all quantities are time tagged at interval center, tR. AS implied by this equation, the
intentional offset in the downconversion frequency, fL- fh, which is accurately known, must be
removed from measured phase in order to obtain a phase-delay estimate that is nearly free of
instrumental rate offset. Measured phase delay is therefore extracted with the operation

A A

X_0(tR)= [(if- fh)tR- (P(tR)]/fL (6.5)

Based on Eqs. (6.4) and (6.5), the theoretical estimate for measured phase delay, on average, is
given by
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Xcp(tR) = <'_cp(tR)> = 'lTg+ '_t- 17s + "ITR+ [q0hd- _I- (PS- q)e(fL)]/fL (6.6)

where all quantities are evaluated at the center of the correlation interval and where the
ionospheric phase, q0e,is evaluated at frequency fL ( i.e., at fL1 or fL2)- Thus, measured phase
delay contains the following terms: geometric delay, troposphere delay, satellite-clock offset, a
receiver-clock offset, a downconversion phase drift relative to nominal LO offset, bandpass-
averaged receiver phase, a satellite phase offset, and ionospheric phase.

6.1.2 Delay Extraction

Correlation sums are accumulated over 1 s before being analyzed to extract residual

delay. On the basis of these 1-s sums, measured residual delay can be computed from observed
correlation amplitudes using the equation

"_r= kp A+ - A_ (6.7)
AO

where A_, A0, and A+ are the correlation amplitudes for the early, prompt, and late lags (l = -1,
0, +1), respectively, and kp is a computed constant (see next paragraph) that gives residual delay
the units of chips. The am-plitude for each lag is computed on the basis of the real and imaginary
components of the correlation sums with the projection operation:

A A

Al = cosq3r RE[u/] + sinq0r IM[u/] (6.8)

A

where q0r is residual phase computed for the prompt lag according toEq. (6.1). Based on the
assumption that residual phase is essentially the same for all lags, this algorithm estimates
amplitude for the early and late lags as the projection along the "direction" in the complex plane
computed from the higher-SNR prompt lag. For the prompt lag, the algorithm yields the root-
sum-square (RSS) of the real and imaginary components. When residual phase is large (e.g., 45
degrees), both components of a complex correlation sum influence the computed amplitude in a
weighted fashion, with the largest component possessing the greatest weight. Furthermore, for
the two important side lags, the noise on those correlation sums enters the computed delay in a
linear fashion, and a better estimate is therefore obtained at low SNR values.

Either observed response or theoretical calculation based on an estimated system
bandpass filter can be used to calculate the constant k under the assumption that the residualP .
delay is very small (i.e., small enough to make the amphtude difference in Eq. (6.7)

approximately proportional to residual delay). Since the accuracy required for kp is not
demanding, the theoretical approach has been used. Based on amplitude derivatives shown in
Fig. 4-2(c) at the 50-ns side lags, the P-channel result is a kp value of 0.37 for the TurboRogue

receiver. (Specifically, the theoretical value for kp is approximately 0.9/(1.28 + 1.15), where 0.9
is the prompt amplitude obtained from Fig. 4-2(a) and the two values in the denominator are the
derivatives at +50 ns.) The allowed error in this constant can be relatively large as long as the
residual delay is small. For example, an error of 10% (i.e., about 0.04) causes an error of only
0.0001 p-chip (0.3 cm) in delay when the residual delay has a steady-state value of 0.001 chip.
Because of the C/A-phase-driven feedback, steady-state residual delay is primarily due to the
influence of the ionosphere and can reach 0.001 p-chip in extreme cases for an earth-fixed
receiver, given a secondary 1-s loop of first order for tracking delay variations relative to C/A-
derived fast feedback.
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Residualdelayvaluescomputedwith Eq. (6.7)will correspondto themeasureof delay
thatequalizestheearlyandlateamplitudes.In thecurrentversionof theTR receiverwith its
unsymmetricbandpassfilter in theanalogfront end,theresultingdelayis not exactlyequalto the
delaythatproducespeakamplitude.For thehighly digital front enddescribedin AppendixA of
this document,thesetwo measuresof delaywouldbemorenearlyequaldueto thegreaterfilter
symmetryfoundin thatimplementation.(Eithermeasureof delaycouldtheoreticallybeusedin
GPSapplicationssincetheydiffer only by anadditiveconstantthatcanbe removedeitherby
doubledifferencingor by calibration.)

Onceresidualdelayhasbeenextracted,1-smeasureddelayis computedasthesumof
measuredresidualdelayandmodeldelayat intervalcenter:

A A

x(tR) = Zm(tg) + "l:r (6.9)

As with measured phase, this process essentially removes any tracking error in measured delay.
The expectation value of measured residual delay is represented theoretically by Eq. (4.24). A
theoretical expression for the average value of measured delay is obtained by combining
Eqs. (3.14), (4.24), and (6.9), which yields

A

T(tR) = ('_ = "_a -= "l;g + t; t - "I;S+ '_R "_ Te + '_I (6.10)

where all quantities are time tagged at the center of the 1-s interval, tR. Thus, measured delay is
the sum of the following terms: geometric delay, troposphere delay, satellite-clock offset,

receiver-clock offset, ionospheric delay, and receiver delay.

To compress data volume and collect statistics, these 1-s delay values can be combined
over longer time intervals by a least-squares fit or carrier-aided averaging.

6.2 P-Codeless Mode

6.2.1 Phase Extraction

A

In the P-codeless mode, measured residual phase, q)r, is estimated by first adding the
imaginary components of the correlation sums across the three lags and then normalizing to units
of cycles:

(6.11)

where A_ is a 3-lag-sum amplitude mapped from C/A amplitude. Unlike the code mode,
addition across lags makes sense here since the noise on the sums is uncorrelated between lags
(see Subappendix C.3.2). Furthermore, unlike prompt amplitude, effective amplitude for the sum
is nearly independent of residual delay, which can be as large as 0.25 p-chip when in the P-
codeless mode. As a result, effective SNR on the composite is about 1.7 to 3 dB better than the
SNR on the prompt lag alone. A small correction is needed to account for the slight dependence
of phase on lag (about 0.015 cycles/lag, see Subsection 5.2) caused by applying lags to L1 with
its sizable baseband carrier frequency (about 308 kHz). The effect of these phase shifts can be
accurately modeled and removed on the basis of observed L1 carrier frequency, thereby
referencing measured phase to the prompt lag.
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As implied by Eq. (5.6),measuredresidualphaseis, onaverage,theoreticallygivenby

A

< (Pr > = q)d + A (DI (6.12)

where q)d is the difference phase given by Eq. (5.8) and where A_p_is the bandpass-averaged
value for instrumental phase, exclusive of instrumental delay effects, differenced between L1 and
L2. Measured phase for the LI*L2 channel at the center of the correlation interval is computed
as the sum of measured residual phase and model (feedback) phase:

A A

q_x(tR) = q)m(tR) + _Pr (6.13)

Again, by computing measured phase in this manner, tracking error is essentially eliminated. A
theoretical expression for the average value of measured phase is obtained by combining
Eqs. (5.8), (6.12), and (6.13), which yields

A

q_x(tR) = <_0x> = (Pal (tR) -_pa2(tR) + A(pI (6.14)

This equation can be reformulated through use of Eqs. (3.1), (3.15), and (3.16):

q)x(tR) = (AfL - Afh)tR - Aq)hd- AfL('Cg+'Ct) + fL2(q_2-'lT_2) - fLl('l_Pl-q_l) "Jr" Aq)S -[- Aq) e -t- A_o I (6.15)

where the superscript p refers to P channel, where all quantities are time tagged at interval center,
and where A denotes a difference between the L1-P and L2-P channels, in the order L1 minus

L2. As one would expect, differenced phase is the same general form as the single-channel

phase in Eq. (6.4) but with each term differenced between channels.

To obtain an estimate of L2 phase, the measured difference phase obtained from the
operation in Eq. (6.13) is subtracted from the L1 phase simultaneously measured in the
C/A channel:

A X I", c IX

q)L2-" q)L1- q)X (6.16)

where c denotes C/A channel and x denotes LI*L2 processing. Based on Eq. (6.4) as applied to
the C/A channel and on Eq. (6.15), this measured phase, on average, is represented theoretically

by

A X

(P_2 = < q)L2 > = (fL2 - fh2)tR - (Phd2- fL2(q;g + 'lTt - q;P2 + q;P2 ) + (P_2 + (Pe(fL2) + _P + _1/ (6.17)

where the "correction" term is defined by

= -fgl(_l - _1) -I- (q)_l - q)_l) + (q)-'-_l - _II2- Aq)I) (6.18)

All quantities are evaluated at interval center, tR, and it has been assumed that the following
quantities are essentially identical for the L1-C/A and the L1-P channels: carrier frequency,
receiver LO phase, receiver-clock error, geometric delay, tropospheric delay, and ionospheric
phase. In practice, the satellite-clock error and satellite phase offset will be different for L1-C/A
and L1-P, and these differences have been accounted for in Eq. (6.18), with a superscript to
denote C/A or P channel. Similarly, Eq. (6.18) accounts for receiver instrumental phase.
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Comparisonof thetheoreticalexpressionsfor L2 phasein thecodemode,Eq. (6.4),andin theP-
codelessmode,Eq. (6.17),showsthat,underthespecifiedassumptions,measuredL2 phase
shouldbe identicalin thetwo modesexceptfor thetermsin _.

L2 phasedelayis calculatedasprescribedby Eq.(6.5),with L2 valuesfor fL andfh. The
resultingphasedelay,onaverage,is representedtheoreticallyby

^X

"C_(tR) = <'_p(tR)> = "l_g+ "_t- _2 + '17P2+ [ q)hd2- _II2- q_2 - (De(fL2) - I[/]/fL2 (6.19)

where all quantities are evaluated at interval center. Except for the instrumental terms, this
expression is identical to Eq. (6.6).

6.2.2 Delay Extraction

The P-codeless technique extracts early, prompt, and late amplitudes from the correlation
sums on the basis of the algorithm described in Subsection 6.1.2. Fig. 5-1 presents the
theoretical dependence of amplitude on delay for LI*L2, given a 9.6-MHz Butterworth filter.
Residual delay for LI*L2 cannot be extracted with sufficient accuracy by means of the
algorithm, Eq. (6.7), used in the code mode because the misalignment of the L1-P and L2-P
correlation is not necessarily small and can be as large as 0.5 sample interval (about 25 ns).
Instead, as illustrated in Fig. 6-1, a normalized difference of the early and late amplitudes
(defined as the balance ratio) drives a table lookup of the residual delay. The numerical values in

the table can be obtained through modeling and/or calibration of the amplitude response. For
highest accuracy, separate calibration of this table is required for each receiver. The calibration
is carried out by forcing the table lookup to produce the same measured values for P2 - P1 delay
as the code mode. To illustrate the shape of the table-lookup function, Fig. 6-2 presents
theoretical results for residual delay as a function of the balance ratio, given the 9.6-MHz
Butterworth filter defined in Subsection 3.1. It is estimated that the accuracy of this table lookup
can fall between 2 and 10 cm, depending on the effort applied to calibrate the table.

Total measured P2 - P1 delay with a time tag at interval center is computed by adding the

resulting residual delay to the feedback model delay Lx:

A A

"Cx= Xr + Lxs (6.20)

A theoretical expression for the averaged value of measured difference delay is obtained by
combining Eqs. (5.9) and (6.20), which yields

A

"Cx= <'_x> = "_a2(tR) - '_al (tR) (6.21)

Substituting Eq. (3.14) twice, each time with appropriate subscript, yields

(6.22)
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Figure 6-1. Table Lookup Operations for the LI*L2 Delay
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where the superscript p refers to P channel and where all quantities are evaluated at interval
center, tR. It is assumed the geometric and tropospheric delays are identical for the two channels
and have differenced out. In order, the remaining terms are the difference delays due to satellite
code clocks, receiver sampler clocks, ionosphere, and instrumental delays. For accurate
measurements of the ionospheric delay difference, calibrations are generally required to remove
the overall delay contributed by terms other than the ionosphere.

L2-P group delay is estimated by adding the measured LI*L2 delay to the concurrently
measured C/A group delay:

A A /x

"UP2 = "Uc/a + "Cx (6.23)

A theoretical expression for this measured delay is obtained by combining Eqs. (6.22) and (6.10)
(with a subscript to represent L1-C/A):

A

'17p2 = <'l_p2> = _g+'[t-'I;Ps2 +'17_2 +_e2 +_2 + Xa (6.24)

where the correction term is defined by

qTa = ('UPl - "U_l) - ('I;P 1 - "17[1) (6.25)

All quantities are evaluated at interval center, tR. It has been assumed that the receiver-clock

error and ionospheric delay are the same for L1-C/A and L1-P. Note that the P-codeless group
delay for L2-P in Eq. (6.24) has the same form as the code-mode measurement of the same
quantity in Eq. (6.10), except for the differences in Eq. (6.25) due to satellite clocks and receiver
delays. In practice, the L1-C/A and L1-P codes (i.e., "satellite clocks") can be misaligned by a
few nanoseconds as they leave the satellite, and the TR instrumental delay can be on the order of

1-ns smaller for C/A than for P. In practice, careful calibration of these two offsets should be
carried out if one requires an accurate correspondence between the L2-P delay from the code
mode and the L2-P delay from the P-codeless mode.
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SECTION 7

SYSTEM-NOISE ANALYSIS

7.1 Code Mode

7.1.1 Signal-to-Noise Ratio

The signal-to-noise-ratio analysis presented in this section is based on the analog front
end described in Section 3, with two-level sampling. The voltage SNR for a complex correlation
sum is defined as the maximum correlation amplitude (i.e., RSS of components for prompt lag)
divided by the RMS noise on either component. For perfect lock in phase and delay in which
residual phase, phase rate, and delay are all equal to zero, Eq. (4.22) predicts that the maximum
amplitude AM at the prompt lag is given by

I_ -sin(nfTP)]2 ,_: _..
qM G(f) --- I e_'_"_ '_ df

AM= NsTpCl_-- rcfTp J
(7.1)

where &p_ is the nonlinear phase-frequency response of the receiver filter but with an integral-
averaged value subtracted (by the DPLL) so that the integral is real.

The integral, which is a measure of the maximum correlation of the filtered baseband
signal with the pure P-code sequence generated by the receiver, is approximately proportional to

the square root of signal power at baseband. Based on this proportionality, one can set up the
following relationship between the correlation integral and signal power:

I_ [sin(TtfTP)]2 ,_: _.. ,__
Tp G(f)/- -- -i e .... widf =
cyn [ nfWp ] V PN

(7.2)

where cy_ is proportional to the average noise power PN entering the sampler after receiver
filtering, and where Ps is the signal power per quadrature component that would have entered the
sampler if the receiver had not filtered out any frequency components of the signal. The factor of
2 under the square root accounts for the two quadrature components, while the factor o_
accounts for loss in signal power due to receiver filtering. Numerical calculations indicate that
_f is approximately 0.9 for the P channels and 0.99 for the C/A channel, given the analog front
end described in Section 3. This method of representing the maximum correlation has been
adopted in order to explicitly formulate Eq. (7.1) in terms of a measure of signal power that is
independent of the shape of TR filters and to explicitly account for the loss due to receiver
filtering.

When Eq. (7.2) is substituted in Eq. (7.1), the maximum amplitude becomes

. /r-__ fPs
AM= NsCl qM- v _.

(7.3)
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Theratio, ot_Ps/PN,canbethoughtof asthesingle-samplepowerSNRperquadraturecomponent
atbasebandafteraccountingfor filtering butneglectingquantizationloss.

Maximum voltageSNRis computedby dividing maximumamplitudeby theRMS
noise,_u, on theeithercomponentof thecomplexsum:

SNRv= A___M (7.4)
(Yu

Based on Eqs. (7.3) and (C.25), the maximum voltage SNR in the case of quadrature sampling
becomes

I SNRv = LcLsfif °_ 0_fPs--,_,s _ I (7.5)

where Ns is the number of samples correlated, not counting samples lost during the dead time
between correlation intervals, and where the factors Lc and Ls are the losses due to quantization
of counterrotation sinusoids and sampling quantization, respectively. The loss caused by three-
level quantization of the counterrotation sinusoids is defined as

Lc =q-_-Cl _ 1.176_ -0.96 (7.6)

or 0.35 dB. The sampling quantization loss is defined by

Ls __ qM

cry, (7.7)

Based on Eqs. (B.15) and (B.16), this loss is

Ls = _ = 0.798 (7.8)

or 2 dB for the two-level sampling implemented in the current TR receiver.

The term Ns in Eq. (7.5) can be thought of as the SNR increase due to Ns independent
samples. Ideal sampling is assumed; i.e., the sample rate and bandpass are such that the noise on

sample points is essentiallyindependent between points. For nonquadrature sampling, the result
in Eq. (7.5) decreases by V2. Total processing loss due to the receiver is approximately equal to
Lc Ls f_f l'O-g/-fig or 0.96 x 0.798 x 04-0-ff.9x _ = 0.69 (3.2 dB), where 18/20 accounts for

samples lost during the dead time.

A nominal SNR for the TurboRogue receiver in the L1-P channel is calculated as
follows: The total noise power at RF at insertion (i.e., including antenna gain but before front-
end amplification) is given by

i

PN = kB TsW (7.9)

where kB is Boltzmann's constant, Ts is system (total) noise temperature, and W is the effective
double-sided noise bandwidth. For a nominal system temperature of 200 K and a noise
bandwidth of 19.2 MHz, the noise power becomes
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I

PN= 1.38 x 10"23w/K-Hz x 200 K x 19.2 MHz (7.10)

0I"
)

PN= 5.3 x 10 q4 watts (7.11)

The noise bandwidth of 2*9.6 MHz = 19.2 MHz reflects the ultimate double-sided passband of
the front end.

According to GPS specifications, nominal signal power collected by an antenna with
0-dB gain is -163 dBW for the L1-P signal so that the signal power at insertion at RF for a
3-dB-gain antenna is

P's = 10 q6 watts (7.12)

Since the receiver amplifies signal and noise by the same factor in transit from RF to baseband,
and since downconversion does not change the ratio of signal to noise, the baseband power ratio
in Eq. (7.5) is the ratio of the numbers from Eqs. (7.11) and (7.12):

)

P_A= ms = 0.0019 (7.13)
PN p_

For a 1-s integration time consisting of 50 intervals of 18-s duration and a sample rate of about
20 MS/s, Eq. (7.5) predicts a nominal TurboRogue voltage SNR of about 190, given the losses
specified above. For the latest version of TurboRogue, typical zenith SNRs for L1-P are about
600, which is larger due to the effect of a 7-dB antenna gain at zenith, 110-K system temperature,
and higher-than-nominal signal strength. (Signal strengths are reportedly 3 to5 dB greater than
nominal.)

Similar calculations can be carried out for the C/A and P2 channels. As a consequence of
differences in transmitted power, the nominal C/A SNR is approximately "_- higher and the

nominal L2-P SNR approximately _ lower than the L1-P result.

7.1.2 System-Noise Error in Phase

The noise on the correlation sums propagates to noise in extracted phase. By propagating
noise through the arctangent operation in Eq. (6.1), one can show that the system-noise error in
phase (1 _, in cycles) is given by

1 I (7.14)% = 2_; SNR20

where SNR20, as computed in Eq. (7.5), is the 18-ms voltage SNR entering the arctangent. For a
1-s observable, the phase error can be computed by substituting the SNR from Eq. (7.5) in
Eq. (7.14) but increasing the error by an additional factor of 1.5. The factor of 1.5 is the
degradation suffered relative to a straight average when a quadratic fit is applied to fifty 20-ms
phase values extracted by the phase-locked loop over the second. Based on the nominal 1-s SNR
of 190 presented in the Subsection 7.1.1, the system-noise error in L1-P phase therefore becomes
0.00126 mcycles (0.024 cm) for a 1-s integration time.
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After further increasingtheintegrationtimeby meansof anadditionalquadraticfit over
NT seconds(NT> 2), thesystem-noiseerroris decreasedby afactorof _ / 1.5. The

additional factor of 1.5 is the degradation due to the second quadratic fit.

7.1.3 System -Noise Error in Group Delay

System-noise error in delay is calculated by propagating errors through Eqs. (6.7) and

(6.8). To first order, one can easily show onthe basis of Eq. (6.8) that the amplitude errors for
the side lags are independent of the error in q)r, with RMS values given by

.^2 A 2
(y2 = (SlnCpr) (y2 + (COSCpr) CY2 (7.15)

which leads to

2 2
C_a= Cu (7.16)

where CYuis the 1-_ error in either component of the complex correlation sum. This result
assumes negligible correlation between the noise on the quadrature components of the correlation
sums as derived in Eq. (C.23).

Noise on the three amplitudes propagates through Eq. (6.7) to create a delay error given
by

8xr=kp 8A+-SA- x 8Ao (7.17)
A0 - r-A00

where 8 denotes deviation from the actual value. Because residual delay, %, is small during in=
lock code-mode operation, the 8A0 term in this expression can be neglected. The RMS of the
delay error in Eq. (7.17) becomes

_x "- _ kP_0 [ 1-A(2)]1/2 (7.18)

where A is the correlation of noise between lags with l - l"= 2 (see Eq. (C-26)). If the prompt lag
has peak amplitude, Eqs. (7.4), (7.16), and (7.18) can be used to show

(7.19)

again with units of chips. The correlation, A(2). has been set to zero, as explained in
Subsection C.2.2. For the nominal 1-s SNR of 190 obtained above for L1-P and kp = 0.37, the
delay error is equal to approximately 0.0028 p-chip (8.3 cm) for the L1-P channel for a 1-s
integration time. For the aforementioned observed zenith SNR of 600, the delay error is 2.6 cm.

If delay is averaged over a longer time interval of length NT seconds by means of carrier-
aided averaging, the error decreases by a factor of _/N-T. For 5 min, the error is a factor of 34-3-0-0
smaller or 0.15 cm for the maximum observed SNR.
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7.2 P-Codeless Mode

7.2.1 Signal-to-Noise Ratio

The definition of signal-to-noise ratio for the LI*L2 channel is the same as that for the
code channels presented in Subsection 7.1.1. By using an analysis that parallels the steps in that
subsection, one can derive a corresponding expression for LI*L2 voltage SNR. Based on
Eqs. (5.6) and (5.7), maximum correlation amplitude is given by

f_ [sin(_fTp)]2AM=NsTpCl _rllqM1_2qM2 Gl(f)G2(f) [ _ -] e 2xiaq_I df
(7.20)

Analogous to Eq. (7.2), the correlation integral is related to satellite power by

_Tp (oo r, _., [sin(_fTp)] 2 ,a/4(xfPslPs2

(_lCrrl2/_o ° Gl(f)_2kl)[ _ ] e2_i59I df= v p---_p_
(7.21)

where C2.k is proportional to the average noise power PNK entering the sampler for channel Lk
after recewer filtering, where Psk is the average signal power at baseband for the P signal in
channel Lk, as defined following Eq. (7.3). The phase, _Stp_,corresponds to the definition for
Eq. (7.1) but is based here on the difference of receiver phase between P channels. Again, tzf
represents the loss due to receiver filtering. Numerical evaluation based on the adopted
Butterworth filter described in Subsection 3.1 indicates that tx,f is approximately equal to 0.9.

When Eq. (7.21) is substituted in Eq. (7.20), the maximum amplitude becomes

Psi Ps2AM = Ns Cl qMlqM2 4 _fpN1PN2 (7.22)

Note that Eq. (7.22) has a factor of 4 under the square root rather than the factor of 2 in Eq. (7.3).
This increase accounts for the fact that four quadrature components contribute to the LI*L2
correlation rather than two.

Maximum voltage SNR found at perfect alignment of the L1 and L2 signals is obtained
by substituting Eqs. (7.22) and (C.35) in Eq. (7.4), which yields

SNRx = Lc L's_/2 Ns (xf --Ps'Ps2I (7.23)PN1PN2

where all quantities have the same definitions as in Subsection 7.1.1, and the subscript numbers
refer to the L1-P and L2-P channels. Since the counterrotation sinusoids are again quantized to
three levels, the quantization loss, Lc, again has the value derived in Eq. (7.6). The sampling

quantization loss, however, is given by

i

Ls = qM1qM2
_, t_, 2 (7.24)
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Basedon theresultsin Eqs.(B.15)and(B.16),this lossbecomes

L's= 2 = 0.637
rc (7.25)

given two-level sampling quantization in both the L1 and L2 channels.

The nominal LI*L2 SNR for the TurboRogue receiver with the analog front end can be
calculated on the basis of the parameter values in Subsection 7.1.1. When the power ratio for P1
in Eq. (7.13) and the above losses are substituted in Eq. (7.23), the maximum voltage SNR on the
prompt lag for a 1-s integration is approximately 4.7 where the value for Ps2/PN2 has been set
equal to 1/2 of the same quantity for L1 to reflect the nominal decrease in transmitted power for
L2. Three-lag combining improves the effective SNR by 1.8 dB for phase (see Subsection 7.2.2),
which changes the above SNR value to 5.8 for phase tracking and estimation.

Actual SNRs are considerably better than these nominal SNRs. With the current version
of TR, the peak observed 1-s SNRs are approximately 75 instead of 4.7, and 90 instead of 5.8.
As mentioned in Subsection 7.1.1, the increase is a result of lower system temperature, higher
antenna gain, and larger-than-nominal source strength than assumed in the nominal calculation.

A useful ratio of SNRs is defined by

Rcx- SNR_-_xNRV2 (7.26)

where SNRvk is the 1-s voltage SNR at the prompt lag for channel Lk in the code mode and
SNRx is the 1-s voltage SNR at the prompt lag in the P-codeless mode. This ratio, which is a
good check of receiver health, should be nearly constant over a satellite pass. Eqs. (7.5) and
(7.23) lead to the expression

Rex= Lc2_TU6_SfNs (7.27)

which becomes

Rcx = 0.96 V2 x 0.9 x 20.456 x 10 6 MS/s x 0.018 s x 50 ---5500 (7.28)

for the TurboRogue receiver. It has been assumed that a 1-s integration contains fifty 18-ms
intervals. Observed ratios will deviate slightly from this approximate value. Unlike the
assumption behind this result, noise is slightly correlated between 20.456-MHz sample points.
Further, the observed ratio is based on an estimate of peak prompt LI*L2 amplitude, which is
obtained by combining correlation amplitudes for the three lags and is therefore corrupted by
errors in modeling amplitude dependence on lag. (In practice, the amplitude at the prompt lag in
the LI*L2 channel is not peak amplitude; peak amplitude must be inferred from the three
amplitudes.) Preliminary measurements have produced an observed ratio of approximately 5000
(C.E. Dunn, 1994).
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7.2.2 System-Noise Error in Phase

As discussed in Subsection 6.2.1, residual phase is extracted by means of a sine phase
extractor applied to the sum of the Q correlation sums for the three lags. Relative to peak
amplitude, the combined amplitude is approximately 1.0 + 2*0.563 = 2.13, given side
amplitudes of about 0.563, as suggested in Fig. 5-1. Since noise on the correlation sums is
uncorrelated between lags (see Subappendix C.3.2 of this document), noise on the combined
sums is q-3-larger than the noise for any given lag. Thus, combining lags improves voltage SNR
by about 2.13/1.732 = 1.23, or 1.8 dB, relative to the phase error at the peak amplitude alone.
(Since the prompt lag is not necessarily at peak amplitude, combining lags generally improves
SNR by even more than 1.8 dB relative to the prompt-lag SNR--by as much as another 1.2 dB
for a total gain as large as 3 dB.) To compute system-noise error in phase, voltage SNR from
Eq. (7.23) can be substituted in Eq. (7.14) and adjusted by the 1.8-dB SNR increase. Based on
the nominal 1-s SNR of 4.7 computed at the correlation peak amplitude in Subsection 7.2.1, the
1-s system-noise error in LI*L2 phase becomes 0.028 cycle or 0.67 cm for a 1-s integration time,
after the aforementioned 1.8-dB increase in SNR. (There is no loss of 1.5 for LI*L2 phase since
C/A-aided averaging compresses LI*L2 phase rather than a quadratic fit.) Again, in practice,
actual errors are considerably smaller than this nominal error. For the zenith SNR of 90 quoted
in Subsection 7.2.1 for phase, the 1-s error is approximately 0.04 cm.

7.2.3 System-Noise Error in Delay

As discussed in Subsection 6.2.2 and illustrated in Fig. 6-1, delay extraction is based on a
prompt-amplitude-normalized difference of early and late amplitudes. For the purpose of
estimating system-noise error in delay, the table lookup in Fig. 6-1 can be approximated by

Eq. (6.7) with a kp value of. 0.37. When the system-noise errors in amplitude are propagated
through Eq. (6.7), one obtams the error presented in Eq. (7.17). The RMS (i.e., 1-_) error is
obtained by squaring the error in Eq. (7.17), averaging over noise, and taking the square root.
Since the amplitude errors due to the system noise are uncorrelated between lags, the 1-_ delay
error becomes

=k _A A/ 2 +[_0A-] 2(_X PAoV
(7.29)

in units of p-chips.

This expression for delay error is a weak function of the imbalance between early and late
amplitudes. An upper limit for a given SNR is obtained by letting A÷ = A0. Based on the
amplitude-versus-delay plot in Fig. 5-1, the delay error in this case becomes

k 1.15 v,_+0.51
(Yx-< PSNRx "" (7.30)

in units of p-chips, where 1.15 accounts for the decrease of the prompt amplitude relative to peak
amplitude and 0.51 is approximately the maximum value for the normalized difference of the
early and late amplitudes. Eqs. (7.4) and (7.16) have been used to convert to SNRx, the peak 1-s
SNR. Thus, an upper limit on delay error is given by

_-c < 0.67
- SNRx (7.31)
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in unitsof p-chips. Theapproximatekp valueof 0.37hasbeenassumed.

When theaveragingintervalhasalengthof NTseconds,theerroris reducedby afactor
of _/N-T • For a 5-min integration and the nominal 1-s SNR of 4.7 computed in Subsection 7.2.1,

this upper limit for system-noise error in delay becomes

fix < 0.67 1
- 4.7 3¢-3-0-6 (7.32)

or

fix < 0.0082 p-chip (25 cm) (7.33)

The corresponding lower limit on delay error (i.e., when early amplitude equals late amplitude) is
about 29% smaller than this value. When computed on the basis of the aforementioned observed
maximum delay SNR of 75, this nominal delay error reduces to 1.6 cm.

7-8



APPENDIX A

EXAMPLE OF A HIGHLY DIGITAL FRONT END

The front end presented in the text can be improved through greater use of digital
processing to offer greater stability, lower cost, improved delay accuracy, smaller size, and less
weight. As an example of a possible future improvement relative to the analog front end,
therefore, a highly digital front end has been designed for the TurboRogue receiver. This
appendix functionally and analytically describes for that particular front-end design the
processing that takes the signal from reception at RF down to its sampled form at baseband. The
proposed front end is based on downconversion sampling, a technique in which the signal is
sampled at RF with a rate commensurate with a selected midband RF frequency, thereby causing
that particular frequency component to be aliased to zero frequency. The spectrum surrounding
the selected component is aliased to baseband as though it had been downconverted with a
mixing signal having the selected frequency. In this manner, sampling and downconversion
from RF are carried out in one step, avoiding the mixer and filter associated with standard
downconversion. In the design proposed here, the effective LO frequencies and the final
baseband sample rates are the same as those in the analog front end described in the text.

A.1 Functional Description of a Highly Digital Front End

A high-level functional block diagram of the example front end is shown in Fig. A-1.
The RF signal collected by the antenna is passed through an "anti-RFI" filter that is sufficiently
wide to pass both the L1 and the L2 bands. After broadband amplification, the signal is power-
divided into L1 and L2 branches, and each branch is passed through a filter (defined as channel
filter) centered at the appropriate L-band carrier. Width of these filters depends on the
application, with narrow widths selected to provide good RFI rejection and wider widths to allow
better delay calibration. (The narrower widths will also provide slightly better SNR performance
because of the "oversampling effect" (Beaulieu, 1988) in the case of 1-bit sampling.) Figure A-1
is an example of a wide filter where the width is set equal to the largest advisable value, namely,
the sample rate for each quadrature channel. After filtering, each channel is sign sampled (1-bit

quantization) at RF at a very high rate (900.064 MHz for L1 and about 981.888 MHz for L2)

The sample points are passed to an alternate-sample demultiplexer (demux) that separates
the C (defined as cosine) samples from the S (defined as sine) samples, thereby producing two
data streams, each at half the original rate. A sign correction is applied to alternate samples on
each stream to remove the sign flips described below. A sum-and-dump operation (22 points for

L1 and 24 points for L2) is then applied to reduce the data rate to 20.456 MHz per quadrature
component for both the L1 channel and the L2 channel. As a result of the sum-and-dump
operation, the number of bits required to represent the samples is increased from 1 to 6. For
example, sum-output values can range between -22 and +22 for the L1 channel, in principle.
Since the TR baseband processor is designed to accept only two- or three-level samples, the 6-bit
samples are requantized to three levels: (-1, 0, +1). This requantization requires specification of
two integer discriminator values that set the decision levels for transforming each sum value to
-1, 0, or +1. These discriminator values are set to values that minimize SNR loss and are
consequently a function of channel bandwidth. When the largest advisable channel bandwidth is
selected (e.g., 450 MHz for L2), the SNR loss duq tq requantization is minimized when the
discriminator levels are set so that Z < - 3 _ - 1 ;[Zl< 3 _ 0 and E > 3 _ + 1.
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Figure A-1. Block Diagram for the Example of a Highly Digital Front End
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A.2 Explanation of the Highly Digital Front End

As mentioned above, the two RF sample rates are set to values nearly commensurate with
their respective carriers so that each carrier will alias to nearly zero frequency as a result of
sampling. Thus, the sampling process also is a downconversion process. In addition to being

nearly commensurate with the carrier, the sample rate is selected so that the sample points
alternate between quadrature components of the signal.

These features of sampling downconversion are schematically illustrated in Fig. A-2 for
the L2 channel. In this example, the sample clock has a rate of Fs = 4/5 fh, where fh is the desired
effective downconversion frequency. (In TR, the effective downconversion frequency is close to
the carrier frequency, with an offset of 308 kHz for L1 and 240 kHz for L2, as in the analog front
end.) Figure A-2 shows the location of several sample points on a sinusoid with a frequency of
fh. For that particular frequency, the alternate points labeled "C" for cosine all have the same

amplitude value except for an alternating sign flip. Thus, after a correction for the sign flips, the
C samples for the fh component are equal to a constant or, as commonly described, alias to zero
frequency. The same observations can be made for the indicated alternate sine CS" ) points.
Figure A-2 also illustrates thequadrature relationship of altemate points. Note that adjacent C
and S points differ by a quarter of a cycle in the fractional cycle. This relative phase of a quarter
cycle reveals the quadrature relationship between pairs of adjacent sample points, as
mathematically shown in the next subsection (A.3). In this manner, RF sampling produces the

two quadrature channels as interleaved samples.

A similar graphical analysis can be applied to a frequency component displaced from fh.
For the (zero-Doppler) carrier frequency fL, for example, such an analysis would show the
sample points shifting in phase relative the cycle boundaries in a way that makes the frequency
based on observed sample values appear to be fL- fh. Thus, all frequency components in the
sampled band will effectively be lowered in value by fh. A schematic illustration of the
frequency-domain consequences of sampling downconversion is shown in Fig. A-3. (This figure
neglects the distortion inflicted on the noise spectrum by the subsequent two-level amplitude
quantization described below.) Note that this method results in a so-called "double-sideband"
downconversion, in which half of the baseband spectrum has negative frequency. These
characteristics of sampling downconversion are demonstrated mathematically in the next
subsection.

As implied by Fig. A-1, the frequency subsystem has to generate only three frequencies,
the ultimate baseband sample rate (commonly referred to as sample clock) of fs = 20.456 MHz
and two RF sample clocks obtained by simple multiplication of fs: Fs = 44fs for L1 and 48fs for
L2. As in the analog front end, fs is offset from 20.46 MHz by 4 kHz in order to ensure effective
incommensurability with the P chip rate. Also paralleling the analog implementation, the 4-kHz
offset produces an offset in both of the effective downconversion frequencies (relative to the
zero-Doppler carrier). Again, the three required offsets can all be changed by one adjustment in
fs, without changing any multipliers.

The example implementation shown in Fig. A-1 assigns each channel filter the largest
advisable width, namely a width approximately equal to the RF sample rate per quadrature
channel. In selecting these filter widths, one finds that there is a trade-off between RFI rejection
and receiver-induced errors in phase and delay. If the L1 filter width is reduced from 450 MHz
to 50 MHz, for example, then the effects of RFI outside that 50-MHz band will be greatly
reduced. (In addition, subsequent oversampling at a 450-MHz rate would help to recover some
of the SNR loss caused by two-level quantization.) Accuracy, on the other hand, would be
degraded, since analog filters introduce errors and instabilities in phase and delay that increase as
bandwidth decreases. Such errors can be reduced by stable designs and calibration, but they can
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bemorereliably reducedby increasingthebandwidth. Forexample,thedelaythrougha
450-MHzButterworthfilter is afew nanoseconds,dependingon thenumberof poles. Giventhe
reasonablegoalof 5%calibrationandstability, onecouldreducethechannel-filterdelayerrorto
theorderof 0.2ns. In contrast,thedelayerrorwouldbeaboutninetimeslargerfor a50-MHz
filter.

A.3 Mathematical Model for Sampling Downconversion

This subsection presents a mathematical formulation of the sampling downconversion
process outlined in the previous subsections. After application of the antenna filter and the
complex channel filter, Gc, to the received signal in Eq. (2.19), the RF voltage becomes

oo

VF(t) = e 2ni(fLt-fi-x Gc(Vd) GA(Vd) Gs(f)mp(f)e2gi[f(t-x)+ cPs+ cPe] df + c.c. + "qF

-oo

(A.1)

where rlF is the RF noise passed by the channel filter and where the argument, vd, given by
Eq. (3.3), is the Doppler-shifted frequency component at RF corresponding to f. The carrier
factor has been pulled outside of the integral so that it can be reformulated in a manner that
anticipates downconversion:

VF(t)= e2_i[fht+(fL-fh)t-fI:qf__ Gc(Vd)GxGs(f)Ap(f)e2ni[f(t-'0+CPs+q%]df+c.c.+ TIF
(A.2)

where fh is the anticipated effective downconversion frequency for either L1 or L2 as discussed
in the preceding subsection and as defined in Fig. A-1.

The next step in processing is to sign-sample each of the two channels at RF. Following
the analysis in Subsection 3.3 for sign sampling in the analog front end, one obtains the
following expression for a sample after an ensemble average over noise:

f_

<_/F (tl_) >n-- qM e 2_i [fhtm,+(fl.-fh)tRk-fu_'] [ GC (VcOGAGs (f)Ap(f)e 2hi [f¢_-'f)+ (Ps+ q0e]df
L=

-I- C.C. (A.3)

where t_ represents the kth sample time according to the RF sampler clock. The approximately
equal sign denotes the neglect of the higher order terms produced by sign sampling, as discussed
in Appendix B of this document. For the example design in Fig. A-I, omission of the higher
order terms is an excellent approximation since the wide noise bandwidth results in a very small
single-sample SNR (e.g., S/_ < 0.04). Again, delay has been redefined, as in Eq. (3.7), to
incorporate the sampler clock error that enters when true time is replaced with sampler time.

Only the L2 samples will be analyzed in detail since the L1 analysis follows an identical
course. In the proposed implementation, the RF sample rate for L2 is 4/5 fh. The sample rate
becomes 981.888 MHz since fh = 60*20.456 MHz. The sample times can be represented in
terms of this sample rate by
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k-1,2,3,
These sample times will be separated into alternate points:

t_. = 2n 51
4fh

and

51
f_ = (2n-l) 4 fh

in which n = 1, 2, 3 .... and where the superscript C denotes cosine (real component) and the
superscript S denotes sine (imaginary component).

For the C samples, t_ is replaced with t_n in Eq. (A.3) to yield

(A.4)

(A.5)

(A.6)

oo

<VCF (t_) >q --- q_y_Me2_i[2.5 n +(fL- flOt_n- fL'( Gc(Vd) GgGs(f ) Ap(f )e 2_i [f(t_.-x' )+ 9s+ tPe] df
(Yrl -_,,

+ c.c. (A.7)

which can be rewritten as

<%(t_n)>_ ----(1) n qM e2_i[(fe_ fh)t_a_fe£]f °°- _ Gc (Vd) GA Gs(f)Ap(f)e 2_i[f(t_"-g')+ 9s + 9el df
-oo

+ c.c. (A.8)

where "_' and _e are evaluated at time t_n. Thus, except for a sign flip on altemate samples, the
carrier of the C samples is effectively downconverted by frequency fn, as indicated by the
disappearance of the fnt term in phase. After the receiver removes the sign flip, the C samples
can be rewritten as

<VCF(t_)> n = 2 qM Re[Gc(Vd) GaGs(f)Ap(f)e2gi[(fL'fh)t_n- fL'(+f(t_-'f)+gs+ge]] df (A.9)

where Re[ ] denotes real component.

In a similar fashion, one can show that the S samples are given by
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q- C.C.

S

where "c' and Re are evaluated at time tRn. Since sign flips, (-1) n, are
since

e2ni (-1.25) = -i

Eq. (A. 10) becomes

(A.10)

removed in processing and

(A.11)

F
--/ [(fL- h)tRn- fLY + f(tG-'( )+ q_s + q_e]] df<VF(t_.)_rl = 2 qM im[Gc(Vd)GAGs(f)Ap(f)e2Z i f
(YnL

(A.12)

where Im[ ] denotes imaginary part.

Except for the small separation of the C and S sample times, Eqs. (A.9) and (A.12) are
the real and imaginary parts of the same quantity. This time separation, AtF, is equal in
magnitude to the sample spacing at the initial RF sample rate (fs = 4 fh / 5 = 48 * 20.456 MHz
for L2) and is close to a nanosecond (about 1.0184 ns for L2) for the proposed implementation.
As shown in the next two paragraphs, the effect of the time difference is negligible in carrier
phase and is known and removable in group delay. Thus, when the samples represented by Eqs.
(A.9) and (A. 12) are combined as a complex number, they can be regarded as a complex sample
of the baseband signal, with a sample rate of 24*20.456 MHz per quadrature component for L2.

The effects of the time separation of the C and S components can be modeled as follows:
The carrier phase terms in the S-sample expression in Eq. (A. 12) are defined by

q_c(tG) - (fL- fh)tG - fL'C'(tG) + q)s(t_n) + q)e(t_n) (A.13)

and can be rewritten in terms of the C-sample times as

$ C

(Pc(tRn) = q¥(tRn ) - mq)F (A.14)

where the S "phase error" is given by

aq0F= (fL-fh-fL ' + +s++e)atF (A.15)

Since fh is offset by 240 kHz from the carrier for the L2 channel, since the maximum Doppler
shift for an Earth-orbiting satellite is on the order of 50 kHz, and since the maximum ionosphere
rate is on the order of 1 Hz at L band, this phase error for L2 is bounded by

Aq0F < (240 kHz + 50 kHz+ 1 Hz) x lns (A.16)
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whichgivestheupperlimit

IAq_ < 3 x 10-4cycles (0.07mm) (A.17)

Note thatthis phaseerroris nearlyconstant,with atime-varyingcomponenton theorderof
50kHz*l ns= 50_tcyc= 0.012mm or less. A similarnegligibleerrorcharacterizestheL1
channel.Thus,theC andSsamplesareessentiallysimultaneouswith respectto phase.

Thetermsin thephaseof Eq.(A.12)thatcanpotentiallyeffectmeasuredgroupdelaycan
berewrittenin termsof C-sampletimesas

t_. - z'(th) ---t_n - "C'(t_n) - A'CF (A.18)

where the S "delay error" is given by

zx F= (1 - 4') (A.19)

Since maximum delay rate is on the order of 40 ].ts/s for the extreme case of an Earth-orbiting
receiver, the contribution of the delay-rate term to this error is negligible (on the order of
4 × 10 -14 seconds). Thus, the S delay error is a constant bias equal to the sample spacing (-1 ns).

This is the delay error that would be present in the S data if one processed the S samples as
though they had been recorded at the C-sample times. As explained below, the C and S sample
pair is processed as though both components were recorded at the C sample time. The single
delay value that is extracted from this combined data will be an average of the C-sample delay
and the biased S-sample delay. Consequently, the measured delay will be offset from "true
delay" by a constant bias equal to A'CF/2 (0.5555 ns for L1 and 0.5092 ns for L2). In
applications involving extremely accurate clock synchronization, this delay bias might be
important, but it can be accurately corrected, if necessary. In applications using double
differencing to remove receiver "clock" effects, this error differences out and is of no

consequence.

The above analysis shows that C and S sample pairs can be processed as simultaneous
quadrature samples at time t_, provided a small, accurately known delay correction is applied
to measured group delay after the data is processed. Thus, in the analysis that follows, adjacent
C and S samples will be modeled as simultaneous quadrature samples. A composite expression
for the complex sampled signal is obtained by replacing t_ by t_ in Eq. (A.12) and forming a
complex quantity with the real part occupied by Eq. (A.9) and the imaginary part occupied by the
adjusted version of Eq. (A. 12). Such a combination yields

< _F (t_)_r I = qM Gc(Vd) GAGs(f)Ap(f)e2_it(fL+ f)(tE-x')+CPs + _e-_Oh] df (A.20)

where the factor of two has been absorbed in the receiver filter term Gc. The downconversion

phase containing fh has been placed in tph, as defined in Eq. (3.1), but evaluated at time t_ with
tPhd set equal to zero.

By comparing Eq. (A.20) and Eq. (3.6), one sees that sampling downconversion can
produce a sampled signal that has the same basic form as a signal subjected to the analog
downconversion, filtering, and sampling described in Subsection 3.3. In the proposed sampling
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downconversionapproach,however,thenoisebandwidthandthesampleratearemuchlarger
(e.g.,490.944MHz percomponentfor L2 versus20.456MHz). Thenextsubsectionmodelsthe
sum-and-dumpoperationusedto reducethehigh initial datarateto 20.456MHz.

A.4 Mathematical Model for the Sum-and-Dump Operation

The sum-and-dump step compresses successive groups of NR points (22 for L1 and 24 for

NR-1

V(tR)---- E VF(t_)
k=0

L2) to one point using the operation

(A.21)

where tR is the center of the sum interval. The average value of this sum is found by taking an
ensemble average over noise:

NR-1

(A.22)<V(tR)> n = _ < %(th_)>_
k=O

(A.23)

Next, represent time relative to interval center, tR, by

t_s= tR+ (k - NR/2+ 1/2)S'

where s' is the RF sample separation given by s' = 2/Fs (approximately 2 ns). Now expand the

time-dependent phase quantities in Eq. (A.20) about center time to obtain

(A.24)

(fL+ f)(t_k- X' )+_ +%-% =

[fL+ f][ tR- X'( tR)] + _ (tR) + q)e(tR) - %(tR) + fa[k -NR/2+ 1/2] S'

where fd is the Doppler-shifted baseband frequency defined in Eq. (3.4). When Eq. (A.20) and
(A.24) are substituted in Eq. (A.22) and the sum and integral interchanged, one can show

< _/(tR) >rl = NR qM GR(fd) GAGs(f)Ap(f)e 2zi[(fL+ f)(tR-'f) + q_s+ q_e-<Phldf

oo

(A.25)

where all phase terms are now evaluated at time tR and where the receiver filter is defined for this

implementation by

. , sin[NRgfdS']
GR(fc0 = LicI, Vd)

(A.26)

The relation
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NR-1

E e2_ifs (k-NR/2+ 1/2) _ sin[NR_fs]
sin[nfs]

k=O

(A.27)

has been used to evaluate the sum over time.

The sum over NR samples increases the range of sample values from two possible values
(-1 and +1) to - NR to + NR, thereby increasing the number of bits required to represent a sample
from 1 to 6. Since the TR digital signal processor will only accept two- or three-level
quantization, the sum output is requantized to three levels (-1, 0, +1), as described in
Subappendix B. 1.4. In the low-SNR limit that applies to TR processing, this requantization does
not change the ensemble-averaged form for the signal found in Eq. (A.25), except for a scale
factor. Three-level requantization causes a loss in voltage SNR of about 10% (0.9 dB).

Note that the theoretical expression for the ensemble-averaged baseband samples is the
same form for the analog front end modeled by Eq. (3.6) and the digital front end modeled by
Eq. (A.25) except for a scale factor. For this reason, the analysis in the text applies directly to
digital-front-end samples.
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APPENDIX B

QUANTIZATION EFFECTS

B.1 Sampling Quantization

Amplitude quantization carried out during the analog-to-digital conversion of the signal
can introduce distortions and decrease SNR. Two-level and three-level quantization are analyzed

in this appendix.

B.I.1 Basic Principles

The complex analog voltage at baseband in Eq. (3.2) can be expressed in terms of its real

and imaginary parts by

V = Vx + iVy 03.1)

and in terms of signal and noise by

V = (S x+rlx) + i (Sy-I-Yly) 03.2)

where S and 1"1represent the signal component and noise components, respectively, with x and y
denoting real and imaginary parts, respectively. The following analysis applies to both real or
imaginary parts but will be labeled x.

In its ideal form, sampler quantization of voltage can be modeled by a quantization
function Q(Vx) that is a piecewise-constant function of input voltage Vx. Illustrations of the
quantization function are shown in Fig. B-1 for two-level and three-level quantization, with
quantized output voltage Vx plotted as a function of input voltage. Discriminator levels that
determine quantization boundaries are placed at the voltage values that cause the minimum SNR
loss, based on the assumptions of low single-sample SNR (e.g., <0.1) and Gaussian noise. For
two-level sampling, the single discriminator level is at zero voltage. For three-level sampling,
the two required levels are approximately -0.61 ¢_ and +0.61 crn, as illustrated in Fig. B-1 and
discussed in Subsection B. 1.3, where ¢_ is the varlance of either noise component.

In the presence of Gaussian noise with a standard deviation of cyq for each quadrature
component, the expectation value for the quantized voltage at a particular sample point can be
computed as

N< Vx >n = Q(Vx) P( Vx, Sx) dVx 03.3)

where < >n denotes the ensemble average over noise, and where the probability density function
is given by

1 e- (Vx- s x)2]2o "2

P( Vx, Sx) - 272E ¢Yn 03.4)
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in which Sx is the value of the real component of the signal at the particular sample point under
consideration. For the low single-sample SNRs, Sx/on, expected for the TR receiver, the
expectation value of a quantized sample is linear with respect to the signal Sx and can be
approximated by

< Vx>rl = qM S__x 03.5)
oo

where the proportionality factor qM is specific to the quantization function. Values for qM are
derived below for two-level and three-level quantization.

The variance of the noise on the quantized voltage is defined by

2ov 03.6)

which, in the case of low SNR, can be approximated by

2 2

03.7)

where fix is sampled noise. Thus, the variance of the noise on the sampled voltage is
approximately equal to the variance of the noise sampled without signal and is given by

0 2 = Q2(Vx) P( Vx, O) dVx
11

where S x has been set to zero.

The single-sample voltage SNR after quantization is defined by

< (Zx> 
SNRs -

O_
V

which is approximately given by

N

<Vx> 
SNRs - --

O_

03.8)

03.9)

03.10)

in the low-SNR limit. Expressions for SNR are developed below for two-level and three-level

quantization.

B.1.2 Two-Level Quantization

The sampler converts the filtered baseband signal to a two-level (1-bit) form, with a
quantization function defined by
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Q(v) = +1, v>o 03.11)

Q(v) = -1, V < 0 03.12)

This quantization algorithm is sometimes referred to as sign sampling since the single bit
representing the sample is the sign of the voltage at the sample point. When system noise greatly
exceeds the signal, two-level sampling causes negligible distortion on average, of the signal
component of the sampled voltage, but does decrease SNR by approximately 20%, as outlined in
the next paragraph.

For two-level quantization, Eq. 03.3) reduces to

Sx

l< Vx >n = _ e -z2/2 dz 03.13)

If the SNR is low (i.e., Sx/Crn < 1), this integral can be expanded in the form

6 [CYTI]
03.14)

When SNR is so low that the S 3 term can be ignored, the sampled signal will be given on average
by the linear form of Eq. 03.5) with

qM = _ 03.15)

Since the quantization level is either + 1 or -1, the variance of the sampled noise computed in
Eq. (B.8) becomes

03.16)

Substitution of these results in Eq. 03.10) shows that the single-sample SNR after sampling is
related to the SNR before sampling, Sx/Crn, by

SNRs = "1/-_- Sx
V n ¢_n 03.17)

Thus, the voltage SNR is decreased by approximately 20% by two-level sampling.

In the strongest P channel, L1-P, the largest analog SNR, S x/cYn, is approximately 0.17
near maximum antenna gain (about 7 dB with the choke-ring antenna). Thus, the cubic term in
Eq. (B. 14) contributes less than 0.5 % to the sampled signal. Tests and theory indicate that this
worst-case cubic term leads to negligible errors in phase and to less than 1-cm errors in P delays.
If necessary, the S 3 delay error could be further reduced on the basis of concurrently observed
SNR.

For the C/A channel, Sx/cYn can be as large as 0.25 for the TR receiver, so that the cubic
term becomes relatively large (e.g., 1% of the linear term). A calibration attempt has suggested
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thattheworst-caseS 3 error in delay for C/A delay3is less than 2 cm, but the effect was too small
to measure in the attempted scheme. Again, the S error in phase is negligible. In principle, a
correction based on concurrently observed SNR could be applied to reduce the S3 delay error, but
such a correction is not applied in the current software.

B.1.3 Three-Level Quantization

When an analog signal is subjected to three-level sampling, the quantization function is

Q(V) = +1, v > D 03.18)

Q(V) = 0, IvI < D 03.19)

Q(v) = -1, v < -D 03.20)

given by

where D is a positive discriminator parameter. For this quantization function, the expectation of
the sampled voltage in Eq. 03.3) reduces to

II 1<Vx >rl = 2--_ e-Z2/2 dz - e-Z2/2 dz
U

03.21)

where

z_ - D- Sx 03.22)
O R

and

-D-Sx
zL = 03.23)

(Y_I

Calculation of the first, second, and third derivatives of Eq. (B.21) with respect to S/o R

leads to the expansion

<Vx> =_2_e-U2/2[Sx-(16u2)/Sx/3]
/ J

(B.24)

where

u = D 03.25)
O R

Thus, the proportionality factor in Eq. (B.5) becomes

qM = _ e -u2/2 (B.26)
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Note thatEq. (B.24)reducesto Eq. 03.4)for u = 0, asonewouldexpect. Forthediscriminator
level thatcorrespondsto u = 0.612,Eq.(B.24)becomes

fSx/ l<Vx>n =0.662 _-n-0.105 1]
03.27)

which indicates that the proportionality factor becomes qM = 0.662.

Comparison of Eq. (B.27) with Eq. (B. 14) indicates that the linear term is 17% smaller

for three-level sampling than for two-level sampling. As shown below, this loss in amplitude is
more than offset by a decrease in RMS noise. In addition, the cubic term is a factor of 1.6 less

corrupting for three-level sampling, which indicates that the resulting phase and delay errors will
be correspondingly lower.

For three-level sampling, the variance of the sampled noise in Eq. (B.8) reduces to

cy2_ 2 |e_Z2/2dz

L
03.28)

When u = 0.612, one obtains

2

_. = 0.5405 03.29)

By combining the linear term in Eq. (B.27) and this estimate of noise, as prescribed in
Eq. (B. 10), one obtains the single-sample SNR

SNRs = 0.900 Sx 03.30)
(Y_I

This result shows that three-level sampling of an analog signal causes a voltage SNR loss of
approximately 10% in the case of low SNR. Thus, as indicated by Eqs. (B. 17) and (B.30), three-
level sampling provides about 13% better voltage SNR (approximately 1 dB) than two-level
sampling.

By using the above expressions, one can show that the assumed discriminator level of
u = 0.612 minimizes SNR loss. Form the single-sample SNR by extracting the leading term of
Eq. (B.24) and dividing by the square root of Eq. (B.28). The resulting function is maximized
when u is approximately equal to 0.612.

B.1.4 Highly Digital Front End

In the highly digital front end presented in Appendix A, two-level sampling is carried out
at RF at a very high rate (about 450 MS/s for L1 and about 490 for L2). The samples are then
subjected to a sum-and-dump operation to reduce the rate to 20.456 MS/s and increase SNR.
The sum, which covers 22 points for the L1 channel and 24 for L2, increases the number of bits
required to represent a sample to a relatively high value (6 bits). To keep a minimum-bit design
in the digital baseband processor, the sum output values can be requantized to three levels, -1, 0,
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and+ 1, with the integer discriminator level set as closely as possible to the value that minimizes

SNR loss. As mentioned above, the optimum discriminator level settings are approximately
-0.61 cr and +0.616 for ordinary three-level sampling of an analog voltage. Integer discriminator
levels can be set in analogy with ordinary sampling. Given the RF-filter bandwidths in Fig. A-I,
for example, noise is uncorrelated between samples, the RMS value for noise leaving the sum is
{N-, where N is the number of points (22 or 24) in the sum. As an ap_proximation, therefore, the
requantization discriminator parameter can be computed as 0.612 VN, which equals 2.871 for L1
and 2.998 for L2. These values are both rounded to 3, the nearest integer, which leads to
discriminator values of -3 and +3 for both the L1 and the L2 channels, given the implementation

in Fig. A-1. Since the number of points in the sum is even for both L1 and L2, all sum values are
even, and only the sum values of -2, 0, +2 are requantized to zero; all other sum values become
either - 1 or +1.

The cubic effect introduced by the initial two-level sampling at RF is very small for both
channels due to the very low single-sample SNR caused by the very wide noise bandwidth (e.g.,
450 MHz) entering the RF sampler. Thus, even though the initial two-level sampling degrades
the SNR by 20%, the initial 1-bit samples are, on average, essentially linear with respect to the
input signal. To first approximation, the N-point sum, on average, preserves this linearity. As an
approximation, therefore, the effects of integer requantization can be modeled as a three-level
quantization of an analog signal with an SNR equal to the SNR of the integer samples leaving the
sum. This model should closely approximate the amplitude and noise effects of requantization.

When the effects of three-level requantization are combined with the effects of the initial
two-level sampling at RF, therefore, one obtains the following approximate expression for the
SNR for each 20.456-MHz sample:

SNRs-- 0.9001/_-ox
V_q

03.31)

where Sx/_q is the single-sample SNR that would have been obtained by sampling at 20.456

MHz with an "infinite" number of quantization levels, _ is the loss due to the initial two-level

sampling, and 0.900 is the loss caused by three-level requantization. The combined effect
becomes

SNRs = 0.72 Sx (B.32)
t_q

Thus, the combined SNR loss due to both quantization steps in the example digital front end is
about 28% in voltage SNR or 2.9 dB. If the bandwidth of the filter preceding the RF sampler is
greatly reduced (e.g., from 450 MHz to 90 Mhz) so that the signal is greatly oversampled, much
of the SNR loss caused by the initial two-level sampling can be "regained."

In analogy with the initial two-level quantization, a cubic term is introduced by the three-
level requantization. An approximate analysis will be carried out through analogy with the
results presented in the preceding subsections. Since the single-sample SNR at requantization is
about the same as the single-sample SNR at the point of two-level quantization in the analog
front end (see Subsection B.1.3), the S 3 effect is about 1.6 times smaller for the digital front end

due to the smaller coefficient of the cubic term at requantization (compare Eqs. B. 14 and B.27).
Thus, the S 3 error is estimated to be about a factor of 1.6 smaller for the digital front end than for

the analog front end (see Subsection B. 1.2).
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B.2 Three-Level Quantization of Counter-Rotation Sinusoids

The model phasor of Eq. (4.2) is quantized on each component to three levels in the

TurboRogue receiver. As illustrated in Fig. B-2, the quantization consists of amplitude values
equal to -1, 0, or +1 with subcycle divisions of 1/8, 3/8, 1/8, 3/8 cycle. This quantized form for a
sinusoid greatly simplifies the hardware but causes a slight increase in SNR. If one Fourier
decomposes the three-level sinusoid, the coefficient of the fundamental (i.e., the desired

counterrotation sinusoid) is 1.176, which is 17.6% higher than for an unquantized sinusoid. This

increase in amplitude is canceled by greater effective noise, which increases by a factor of
(see Subappendix C.2.1). The net effect is a decrease in voltage SNR of about 4% (-0.35 dB)

due to three-level quantization. Greatly reduced complexity in the hardware justifies this small
sacrifice in SNR.

Higher harmonics are introduced by three-level quantization of the counterrotation
sinusoids. If the baseband carrier frequency is sufficiently high, these unwanted harmonics are
reduced to a negligible level by the filtering effect of the correlation sum. A high baseband
frequency is produced by offsetting the downconversion frequency. For example, the L1
baseband frequency is on the order of 300 kHz, and its third harmonic is on the order of 900 kHz.
This harmonic is counterrotated to about 600 kHz by the baseband processor. A 20-ms
correlation sum would then reduce its amplitude by a factor greater than 2*600 kHz * 0.02 s =
24,000 relative to the primary signal. At this reduced level, the third-harmonic term would
introduce a phase error less than 7 l.tcycles. Even greater reduction in error will result from

averaging over longer time intervals (e.g., 1 s). Thus, harmonics introduced by three-level
quantization are reduced to negligible levels in measured phase. It is assumed that the incoming
signal has no tones at the harmonic frequencies.
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APPENDIX C

NOISE-CORRELATION ANALYSIS

C.1 Correlation of Noise Between Samples

Let Rn(x) be the analog autocorrelation function for each of the two components of the
complex noise, rl, on the baseband signal in Eq. (3.2). If the receiver in the ideal case is
characterized by a rectangular bandpass with a two-sided bandwidth equal to W, the analog
autocorrelation function of the noise produced by double-sideband downconversion will be given

by

sin[n Wx ] (C.1)

after normalization to one at x = 0. For this ideal configuration, the sample rate fs is equal to W

in a Nyquist implementation, and the zeros of the analog autocorrelation fall at sample-interval
separations of 8x = 1/W = 1/fs. Thus, the ideal autocorrelation function is equal to one at the
origin and zero at other sample spacings, indicating that noise on a given sample is uncorrelated
with the noise on any other sample. The actual bandpass is not rectangular, but the system
implementation is sufficiently close to ideal to allow this model to serve as an approximation for
noise analysis.

The autocorrelation function for two-level sampled noise (van Vleck and Middleton,

1966) can be expressed in terms of the analog autocorrelation function as

P,_(x) = 2 sin-l[Rq (x)] (c.2)

This relation shows that the digital autocorrelation is equal to one at the origin, with nulls at the
same points as in the analog case. Thus, the noise is still uncorrelated between different samples
after two-level sampling. A similar conclusion applies to three-level quantization.

As analyzed in Appendix D of this document, the two quadrature noise components are
assumed to be uncorrelated with one another and to have the same noise characteristics. With

these assumptions and the features of the digital autocorrelation functions described above, one
can easily show that the sampled complex noise satisfies the relations

< Tl_(tj)_tk)>_ = 2t_ _Sjk (C.3)

N

< l](tj ) l](tk) >rl = 0 (C.4)

where the tilde denotes sampling quantization of each component and o_ is the RMS value of

sampled noise for each component. Expressions for o_. can be found in'_qs. (B. 16) and (B.29)
for two- and three-level quantization, respectively.
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C.2 CodeMode

C.2.1 Two Complementary Correlations for the Noise on the Correlation Sums

Two complementary correlations are derived to begin assessment of the noise on the
complex correlation sums. The first calculation determines the complex interlag correlation

pl(l, l') - <(u/- <u/>)(@- <u_,>)> (C.5)

and the second the complementary correlation

t32(l, l') =-- <(U/ - _U l >)(Ul'- <_U/'>)> (C.6)

where < > indicates an ensemble average over both noise and code.

For weak signals, the first correlation is approximated by

pl(I, I') = <u 1Ul,> (C.7)

Substituting the definition of correlation sum in Eq. (4.5), one obtains

P 1(/,/') = Z <V(tj )V¢_tk) Vm(tj, / )V_(tk, l') >

j,k

(c.8)

where, for brevity, tk refers to tR + ks. For a small single-sample SNR, the sampled voltage is
mostly noise, and Eq. (C.8) becomes

131(I'/') = Z <n_(tj)_*(tk) >_ <Vm(tj, / )V_(tk, l' )>p

j,k

(C.9)

where the noise and code averages have now decoupled. In the case of ideal sampling, Eq. (C.3)
reduces this equation to

131(l,I')= 2(_Z <Vm(tk, l) Vm(tk, /')>p (C.IO)
k

When the correlator model in Eq. (4.1) is substituted, one obtains

131(/, l') = 2(_Z C(¢pnO 2<p(tk-'Cm-/s) P(tk-'Cm-/'s )>p
k

(C.11)

The expectation value in this equation can be expressed in terms of the P-code
autocorrelation function as defined in Eq. (2.12), which yields

131(/,/') -'_20_Z C--.(qOnO2Rp(tk-'rm-Is, /s-/'s)
k

(C.12)
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Forthree-levelquantization,onecaneasilyshowthatthemagnitudeof thequantizedcounter-
rotationphasoris equalto

C(q_n)2= 1.5+ squarewave (C.13)

wherethe squarewavehasafrequencyequalto four timesthecarrierrate. In thesumovertime,
this squarewavewith afrequencyon theorderof 1.2MHz is typically orthogonalto the
autocorrelationfunctionwith its frequencyof about10.23MHz, particularlywhenDoppler
shifting is incorporated.Thus,Eq. (C.12)becomes

pl(/,/') = 30_ Rp(tk-'_m-/S,ls-/'S)
k

(C.14)

As indicated in Eq. (2.14), the time average of the P-code autocorrelation function is a triangle
function, so that Eq. (C. 14) becomes

Pl(/, 1' ) = 3Ns_2A(l-I' ) (C.15)

where Ns is the number of samples in the correlation sum, and A is the triangle function shown in

Fig. 2-3.

If the counterrotation phasor were not quantized, the phasor magnitude in Eq. (C. 13)
would be equal to one for all time points and the coefficient in Eq. (C. 15) would be 2 rather than
3. This comparison shows that three-level quantization of the counterrotation sinusoids increases
the variance of the sum noise by a factor of 1.5.

Analogous to the preceding analysis, the second interlag correlation in Eq. (C.6) reduces
to

p2(/,l' )= _ <_(tj)_(tk)> n < Vm(tj, / )Vm(tk,/' )>p

j,k

(C.16)

Because of Eq. (C.4), one obtains

p2(l, l' ) = 0 (C.17)

which shows that this correlation is zero for all lag combinations.

C.2.2 Interlag Correlations and RMS Sum Noise

Let xl and Yl be the real and imaginary components of the complex sum noise, ut - < Ul >.
Eqs. (C.5) and (C. 15) show that averages of the products of these components satisfy the
following two relations:

<(Xl Xl'_> + <Yt Y/'>= 3Nso_A(I -l' ) (C.18)

< xl'Yl >- <(Xl Yl'> = 0 (C.19)
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while Eqs.(C.6)and(C.17)show

<( Xl Xl '> - < YZ Yl '_> = 0 (C.20)

<(x/,y/_> + <_Xl yl'_> = 0 (C.21)

Eqs. (C. 18) and (C.20) can be combined to yield

<X/Xl,_> = <Yl Yl'_ > = 1.5 Nsa2A(l -l') (C.22)

while Eqs. (C.19) and (C.21) show

<Xl Yl') = 0 [ (C.23)

This last equation indicates that the noise on the complex correlation sum is uncorrelated
between real and imaginary components, regardless of lag.

For l = l ', Eq. (C.22) leads to the result that the variance of the noise on either component
of the correlation sum, which is defined by

cy2= <x/2>: <y2> (c.24)

is given by

2
_2 = 1.5 6_. Ns

(c.25)

and is therefore the same for all lags. The RMS sampled noise cy_-is given by either Eq. (B.16)
or Eq. (B.29), depending on the number of quantization levels. Ns is the total number of samples
in the correlation sum. As mentioned above, the factor of 1.5 represents the increase in noise
variance due to three-level quantization of the counterrotation sinusoids.

For either component, the normalized correlation of noise between lags is obtained by
dividing Eq. (C.22) by Eq. (C.25), which gives

_2<x/Xl,_>= 1 <y/yz,>= A(I -l') I(Yu (32
(C.26)

Thus, the normalized correlation of the sum noise between lags is given by the triangle function
obtained by autocorrelating the pure P-code (see Subsection 2.3). Consequently, the normalized
correlation of noise between adjacent lags is approximately 0.5; for a lag separation of 2 or
greater, the correlation is nearly zero.
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C.3 P-Codeless Mode

C.3.1 Two Complementary Correlations for the Noise on the Correlation Sums

The two complementary correlations in Eqs. (C.5) and (C.6) derived above for code-

mode operation must be rederived for P-codeless operation. Based on Eq. (5.1), the correlation
in Eq. (C.7) becomes

Pl(/, l') -- <_ Vl(tj-/s) VC_(tj) C(tj) _/l(tk-/'s) VC2(tk) C*(tk)>

j,k

(c.27)

where the ensemble average is over noise on L1 and L2 and over the P code. For brevity, tk
refers to tR + k S and I represents L + l. The counterrotation phasor, C, has now been explicitly

labeled with the appropriate time argument instead of the corresponding phase argument. Since
noise dominates in the limit of low single-sample SNR, this expression becomes

Pl(/, l') = <E _l(tj-/s) rl_2(tj) C(tj) _l(tk- l's) _2(tk) C*(tk)_

j,k

(c.28)

where the ensemble average is now only over noise. Separating the ensemble averages for L1
noise and L2 noise leads to

pl(1, l') = E < _l(tj-Is) _'l(tk- l's) _rll < Tl_2(tj)rl2(tk)>n2 C(tj) C*(tk)

j,k

(C.29)

By substituting Eq. (C.3) twice with appropriate subscripts, one obtains

pl(I, I') = E 20218j-l,k-l' 2022_1qj C(tj)C*(tk)
j,k

(c.30)

Because of the Kronecker delta functions, this expression is nonzero only when l is equal to I ',
and in that case, the double sum collapses to a single sum:

pl(l,l') =4_1l, I, 0 2 2111 (Y_'2 E C(tk)[2 (C.31)
k

If one uses Eq. (C. 13) and assumes the square wave averages to zero, one obtains

pl(l, l') = 6 Ns O21 O228l, I' (C.32)

where Ns is again the number of points in the correlation sum.

In analogy with the derivation in Subsection C.2.1, one can easily show that the second
correlation, P2, defined in Eq. (C.6), is equal to zero for all lag combinations, as in Eq. (C. 17).
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C.3.2 Interlag Correlations and RMS Sum Noise

By using Eqs. (C. 17) and (C.32), and following the derivation in Subsection C.2.2, one

can show that the components of the complex sum noise for LI*L2 satisfy the following
relations:

2 2
<Xl Xl'_> = <Y/Yl'> = 3 Ns_'l 6_"2 _l,l' (C.33)

and

I <xlyl'> =0 ] (C.34)

This last equation indicates that the noise on the complex correlation sum is uncorrelated
between real and imaginary components, regardless of lag. Equation (C.33) shows that the noise
on the real and imaginary components of the correlation sums is respectively uncorrelated
between lags and that the variance of the noise on either component of a correlation sum is given
by

2 2
_u2 = 3 Ns cry"1 _'2 (C.35)

Again, the RMS sampled noise _. is given by either Eq. (B.16) or Eq. (B.29), depending on the
number of quantization levels. As in Eq. (C.25), this variance is increased by a factor of 1.5 by
the three-level quantization of the counterrotation sinusoids. A factor of 2 is introduced by

correlating one quadrature signal with another, as opposed to correlating a quadrature signal with
a model code.

For either component, the normalized correlation of noise between lags is obtained by
dividing Eq. (C.33) by Eq. (C.35), which gives

I
1 < Yt Yl'_> "_ 51,l' I

<xl xl,>--- (C.36)
I

These results allow a comparison of sum-noise correlations in the P-codeless mode and

code mode. Equation (C.36) shows that sum noise is uncorrelated between any two separate lags
in the P-codeless mode. In the code mode, on the other hand, Eq. (C.26) shows that sum noise is
uncorrelated between any two lags with a separation greater than one sample but is strongly
correlated (0.5) between adjacent lags.
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APPENDIX D

QUADRATURE NOISE STATISTICS

This appendix analyzes the statistics of the noise on the two quadrature components of
the baseband signal, including the correlation between those components.

Analogous to Eq. (2.17), the noise at RF before filtering can be written as

oo

NR(t) = A_(v)e 2nivt dv + c.c. (D.1)

where c.c. denotes the complex conjugate of the first term, v is the RF frequency (i.e., fL + f in
Section 2), and A n is the Fourier distribution of the noise at RF before any receiver filtering.
Note that v instead of f is now used as the independent frequency variable. In the front-end
processing that takes the signal to baseband, the noise component is subjected to the same
filtering and downconversion as the signal, as modeled in Subsection 3.1. After front-end
processing, the (real) RF noise in Eq. (D. 1) is transformed to complex baseband noise given by

oo

rl(t) = GR(V) An(v) e 2r_i[vt- tph] dv (D.2)

where % is downconversion phase and GR is the complex system filter for the receiver. The
same operations that transformed Eq. (2.19) to Eq. (3.2) have been applied to the noise in

Eq. (D. 1), except for the antenna filter. This equation implicitly assumes that sine
downconversion phase is exactly 90 ° out of phase with the cosine phase. An offset error in sine

phase can be modeled as described below.

The cosine component of the baseband noise in Eq. (D.2) can be modeled as

tic(t) = _-J0 GR(V)A_(v)e2ni(vt-tph) dv + c.c.

Similarly, the sine component of the baseband noise can be modeled as

(D.3)

foo

rls(t) = 1J0 GR(V)Arl(V)e2_i(vt-tph+ 0)dv + c.c. (D.4)

where 0 is a phase offset ideally equal to 0.25 cycles when the downconversion phase for the
sine component is exactly 90 ° away from the downconversion phase for the cosine component.

The normalized cross-correlation function for the two components is defined by

R×(t-t' ) = !_2 < tic (t) rls (t')>n (D.5)
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whereit is assumedthatthenoisepoweris thesamefor thetwo componentsandwhere_n is the
RMSnoisefor eithercomponent.(In practice,theRMSnoisecanbedifferentfor thetwo
components,but suchadifferencehasnoeffecton thefinal resultfrom codecorrelationaslong
asthereceiveramplitude-versus-frequencyandphase-versus-frequencyprofilesalongthetwo
componentpathsarethesame.This insensitivityto relativegainis aconsequenceof two-level
sampling,which makestheper-sampleSNRtheimportantquantityin TR digital signal
processing.)If Eqs.(D.3)and(D.4)aresubstitutedin Eq.(D.5) andtheaveragingoperationand
theintegralsareinterchanged,oneobtains

Rx(t-t') - 1 GR(V)GR(V')<An(v)An(v' )>_ e2ni(vt-tph+V't'-tpia+ 0) dv dr'
4_

+ l___l__ GR(V)GR(V' ) (ArI(v)A_( V' )_q e2ni(vt - tph-V't'+ cph-0) dv dv'
4_ 2

+ c.c. (D.6)

where c.c. denotes complex conjugation of both of the first two terms. If the RF noise is
stationary, one can show

<An(v)Arl(v' )>n = 0 when v, v' > 0 (D.7)

and

<A_(v)A_(v')_ = 1No(V)_(V_V') (D.8)

where No is the noise power spectrum at RF before receiver filtering. With this definition of No,
the total noise power at RF, including both positive and negative frequencies, is NoW, where W
is the full noise bandwidth.

When Eqs. (3.1), (D.7), and (D.8) are substituted in Eq. (D.6), one obtains

1 IGR(V)[2N0(v)cos[2n(V-fh)(t-t ') -0] dv
Rx(t-t')- 4_

(D.9)

The use of the linear form of downconversion phase in Eq. (D.9) assumes that, over a correlation
interval, nonlinear time variations in downconversion phase are negligible, so that the
"drift," q0hd,disappears in the difference even when t is not equal to t'. Define the quadrature
phase error A0 as the deviation of the quadrature phase shift 0 from 90 °:

0 = 0.25 + A0 (D. 10)

Eq. (D.9) can now be rewritten in terms of this phase error as
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(D.11)

Whenthequadraturechannelsareexactly90° outof phase(A0 = 0), Eq. (D.11)showsthatthe
two quadraturecomponentswill beuncorrelatedfor all valuesof t andt' if andonly if thenoise
spectrumafterreceiverfiltering is symmetricaboutthedownconversionfrequency.For
example,if thenoisespectrumis fiat andthecompositefilter of thereceiveris symmetricabout
fh, thetwo quadraturecomponentswill haveindependentstatistics,andprocessingboth
componentswill improveSNRby 3dB relativeto processingonly one.

A similar analysisshowsthatthevariancefor eitherof thebasebandquadraturenoise
componentsis givenby

oo

_2=- 2 1 IGR(V)IZNo(V) dv<rio > = <rls2 > = _- (D.12)

When the spectrum after receiver filtering can be approximated by a rectangle with a double-
sided noise bandwidth of W, the noise variance on each quadrature component becomes

o2 = IlGRI2NoW (D.13)

The factor of 1/4 (or 1/2 for on) arises from quadrature-component extraction in Eqs. (D.3) and
(D.4) and is of no ultimate consequence since the same factor would enter both the signal and the
noise.

Given Eq. (D.13) and the assumption of a rectangular spectrum, the correlation between

quadrature components in Eq. (D. 11) becomes

Rx(t-t' )= sin[nW(t-t')] sin(AO)
nW(t-f)

(D.14)

where it is assumed that the downconversion frequency fh is at passband center. This result can

be used to place an upper limit on quadrature phase error. For the worst case of t - t' = 0, the
correlation is equal to A0 (in radians) when A0 is small. For example, to keep intercomponent
correlation below 0.05, the quadrature phase error must be less than 0.05 radians (about 3

degrees).

When the digital front end discussed in Appendix A is analyzed, one finds by a similar
analysis that the correlation between the noise on the quadrature components can be reduced to a
negligible level by making the composite bandpass, including digital filtering, symmetric about
the effective downconversion frequency. However, because the quadrature components are

generated through sampling rather than by downconversion through use of an LO signal,
quadrature phase error, A0, is not a problem in the digital front end.
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APPENDIX E

THE C/A CORRELATION FUNCTION

Derivation of the C/A correlation function closely parallels the derivation for P.
Differences are a result of the cyclic nature of the C/A code. The spacecraft generates the C/A
code at a rate of 1.023 × 106 c-chips/s by filling every millisecond with the same sequence of

1023 chips, where each 1-ms sequence begins at an integer multiple of 1 ms, GPS satellite time.
The ideal unfiltered C/A code can be modeled as

C(t) = f Cs(t-t')lll(t') dt' (E.1)

where Cs(t) is the sequence of 1023 chips. Cs(t) can be represented by a form similar to

Eq. (2.1):

512

Cs(t)= _ bjB'(t-tj) (E.2)

j=-512

where B' is a function like that in Fig. 2-2, but with a width of Tc = (1.023) -1 kts; where the

coefficients bj are the ostensibly random chip values of-1 or +1, and where

tj = j Tc (E.3)

Note that the center chip, 513, has been placed at tj = 0. The sampling function is defined by

•-1- oo

III(t) - Z 8 (t - (k + 0.5)T1)
(E.4)

where T1 = 1 ms, and 8(t) is the Dirac delta function.

Paralleling the P-code derivation, the Fourier transform of the ideal C/A code over an
accumulation interval of width T and center t is given by

t+T/2t

A(f) = / C(t)e -2nift dt

'-Jt-T/2
(E.5)

The Fourier transform of the single 1023 sequence is given by

As(f) = Cs(t)e -2hilt dt

J-Tfl2

(E.6)

which becomes
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As(f) = T sin/ff Tc _ bj e-2rifq (E.7)
-c gfTc .

J

where tj is at the center of the jth chip given by Eq. (E.2). The Fourier transform of the sampling
function is given by

t+T/2t

W(f) = / III(t)e -2nift dt

'-Jt-T /2

which becomes

(E.8)

W(f) = e -2nif_ sin(N1/tfT1)
sin(rifT1) (E.9)

where N1 = T/T1 is the number of 1023 sequences repeated over the transform interval T.

Based on the convolution theorem, the Fourier transform of the C/A code is given by

A(f) = As (f) W(f) (E. 10)

so that the power spectrum becomes

[sin(Nl_fT1).] 2
IA(f)12 = Ias(f)12[ sin(rcfT1) ] (E.11)

In the limit of large N1, one can show

sin(NlgfT1)] 2 N1
-j = _'_'n_ 5(f- n/T1) (E.12)

so that the power spectrum becomes

iA(f)l 2 __.iAs(f)l 2 N1
n_ 15(f- n/T1) (E.13)T1

where As(t) is given by Eq. (E.7). Thus, the C/A power spectrum is approximately equal to the
power spectrum of the 1023 sequence multiplied by a sum of delta functions that select points at
multiples of 1 kHz.

The ideal, unfiltered C/A signal at RF can be represented by

S,(t) = C(t) sin(2rcfLt) (E. 14)

From this point, modeling of spacecraft and receiver-front-end processing parallels the analysis
of Subsection 2.4 and Section 3 and will not be repeated here.
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Correlationanalysis,however,shouldtakeintoaccount"codenoise",definedasthe
deviationof resultsfrom theC/A codefrom theresultsfrom a longrandomsequence.Unlike the
Pcode,theshortrepetitionintervalandnatureof theC/A codemakesthelongrandom-sequence
approximationfairly inaccuratefor theC/A code,at leastwith respectto theamplitude-vs-lag
dependenceof thecorrelationfunction. SincetheC/A codehasonly 1023separatechipsfor any
correlationintervalgreaterthan1ms,onewouldexpectthecodenoiseeffect to bemuchlarger
for C/A thanfor P. For example,if theC/A chipswereindependentof oneanother,C/A code
noisewould theoreticallycauseafractionalamplitudeerrorattheearlyor late lag ontheorderof
0.5/10"O-0_= 0.015, on average,relativeto peakamplitude,givenanaccumulationinterval
greaterthan1msand500-nslags. (In practice,sincetheC/A codeis not atruly random
sequence,themagnitudeof this correlationturnsout to beapproximatelyequalto either0.03or
0.0007,dependingon theC/A sequence.)Ontheotherhand,for theP codewith 50-nslags,the
correspondingfractionalamplitudeerroris on theorderof 0.5/1/200,000= 0.001,givenan18-
msaccumulationintervaland50-nslags. SincethemaximumvoltageSNRobtainedby TR for
an 18-msintervalis about100,theminimumfractionalamplitudeerrordueto systemnoiseis
about0.01. Thus,while P-codeselfnoiseis very smallcomparedto systemnoiseandis
thereforenegligible,C/A-codeselfnoisepotentiallycanbeanimportanterror source.

To obtain a correlation function for C/A that accounts for code noise, one can perform an
analysis similar to the analysis in Section 4, including an ensemble average over noise, but
omitting the ensemble average over code. Such an analysis yields the following approximation
for the C/A correlation function:

+oo

u/(tR) ----A'c e2nitpd G(f) [A(f)l 2 e-2hi [ f("l:r_/b) - tpx]df

_oo TTc
(E.15)

where b is the lag-offset interval for C/A and

A'c = Ns TcCl qM sin(rc_dT)

On _OdT
(E.16)

and where the power spectrum A(f) 2 is given by Eq. (E.11). As suggested by Eq. (2.11), the
product, T Tc, dividing A(f) 2 in Eq. (E. 15), normalizes the power spectrum so that it corresponds
to a (sinx/x)2 function that equals 1.0 at the origin. Note that this equation is the same as
Eq. (4.22) for the P code if the normalized power spectrum corresponds to a (sinx/x)2 function.

Substitution of Eq. (E. 13) in Eq. (E. 15) yields

u/(tR)= e2ni{PdZ G(fn)[As(fn)12e-2ni[ f"(xr-/b)-_p'(fn)]
n T1Te

(E.17)

where fn - n/T1 and where the satellite-specific "1023" Fourier component As is given by
Eq. (E.7) in terms of specific C chips. The power spectrum is again normalized to correspond to
a (sinx/x)2 function that equals 1.0 at the origin. Thus, the C/A correlation function can be
computed as a sum over frequency points with 1-kHz spacing. The factor of 1/Tbwhich is equal
to the 1-kHz separation between frequency points, can be viewed as a replacement for df in the
conversion from integral to sum.
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Basedon theprecedingequations,onecanuseeachsatellite-specific1023codesequence
to accuratelymodel theeffectsof C/A codenoise. For example,if oneusesEq. (E.13)to obtain
thepowerspectrumof satellite1basedon 1-msof code,oneobtainstheprofusionof noisy 1-
kHz pointsshownin Fig. E-1.Basedon thenormalizationfor IAs(f)l2 shown in Eq. (E. 17), this
spectrum has been normalized so that the power would approach 1.0 at zero frequency, were it
not for code noise. A more informative picture is gained by averaging this noisy spectrum over

larger frequency bins. For an averaging interval of 35 kHz, for example, one obtains the spectra
plotted in Figs. E-2(a), E-2(b), and E-2(c) for satellites 1, 15, and 22, respectively. These
satellite examples each correspond to one of only three values for the code-induced fractional
amplitude errors found at the early and late lags, namely, the Butterworth-filtered values
approximately equal to -0.0007 (satellite PRNs 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 16, 18, 19,
20, 23, 25 through 32); +0.0315 (7, 15, 17, 21, 24); and -0.0318 (8, 22), with all based on "500-

ns" lags. (Alternately expressed, the correlation of adjacent chips across 1023 chips is
approximately equal to twice the respective values just quoted.)

The spectra in Figs. E-2(a), (b), and (c) can be substituted in Eq. (E. 17) to produce the
amplitude-versus-delay responses plotted in Figs. E-3(a), (b), and (c). To better display the code-
induced amplitude error, however, these responses are each plotted relative to the code-noise-free
response (i.e., long-random-sequence approximation) in Fig. 4-3(a). The three aforementioned
fractional amplitude errors are evident at delay values of + 0.25 c-chip ("500 ns").

For TR, C/A code noise is not a significant error source for phase and delay
measurements. Code noise has a negligible effect on phase since phase is extracted from the
prompt lag, where signal and model are very nearly aligned to eliminate code sign. Furthermore,
given the early-minus-late algorithm for extracting C/A delay, as shown in Eq. (6.7), code noise
has no effect on delay either, since it changes the amplitude of the early and late lags by the same
amount. Thus, although code noise is potentially an important error source for C/A, it causes no
degradation in phase and delay when TR uses the processing algorithms presented in this report.
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