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Abstract

In this paper we present a novel method for solving optimization problems governed by

partial differential equations. Existing methods use gradient information in marching toward

the minimum, where the constrained PDE is solved once (sometimes only approximately) per

each optimization step. Such methods can be viewed as a marching techniques on the intersection

of the state and costate hypersurfaces while improving the residuals of the design equation per

each iteration. In contrast, the method presented here march on the design hypersurface and

at each iteration improve the residuals of the state and costate equations. The new method

is usually much less expensive per iteration step, since in most problems of practical interest

the design equation involves much fewer unknowns than either the state or costate equations.

Convergence is shown using energy estimates for the evolution equations governing the iterative

process. Numerical tests shows that the new method allows the solution of the optimization

problem in cost equivalent to solving the analysis problem just a few times, independent of the

number of design parameters. The method can be applied using single grid iterations as well as

with multigrid solvers.
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1 Introduction

In the last few years there has been a growing interest in the numerical solution of optimization

problems governed by large scale problems. This new interest is a direct result of the improvement

in computer technology. Probably the most challenging problems are those which involve complex

governing equations such as the Euler, Navier-Stokes, Acoustic wave, and Maxwell's. Some global

quantities governed by the solutions of such equations are required to be minimized (maximized)

in terms of some prescribed design variables. The resulting mathematical problem is formulated

as a constrained optimization problem which can sometimes be viewed as a control problem. Most

existing algorithms use gradient information for reaching the minimum, possibly together with

preconditioners for accelerating convergence.

Efficient gradient calculation can be done using the adjoint equations, and in area of aerody-

namics design, this approach was first suggested in [J]. There the steepest descent method was

employed there and the adjoint equations were used for efficient calculation of gradients. In this

approach, each optimization step requires the solution of the state and costate equations and an

efficient implementation is achieved by using multigrid methods for both equations. No acceleration

of the optimization process was involved in this work.

The one shot method proposed in [T1] for control problems, also uses the adjoint method to-

gether with multigrid acceleration for state and costate, but also include an acceleration of the

minimization process. Its development so far has been for problems with elliptic partial differential

equations as constraints. The main idea is that smooth perturbations in the data of the prob-

lem introduce smooth changes in the solution, and highly oscillatory changes in the data produces

highly oscillatory changes in the solution. Moreover, highly oscillatory changes are localized. These

observations enable the construction of very efficient optimization procedure, in addition to very

efficient solvers for the state and costate variables. Design variables that correspond to smooth

changes in the solution are solved for on coarse levels and those corresponding to highly oscilla-

tory changes are solved for on appropriate finer grids. The resulting method can be viewed as a

preconditioning of the gradient descent method where the new condition number is independent

of the grid size, and is of order 1. Thus, within a few optimization iterations one reaches the

minimum. The method was first developed for a small dimensional parameter space, where the

optimization was done on the coarsest grid, yet converging to the fine grid solution IT1]. Later

in [TKS1], [TKS2] the method was applied to cases of a moderate number of design variables and

where the optimization was done on few of the coarsest grids. The extension of these ideas to the

infinite dimensional parameter space was done in [AT1],[AT2] where both boundary control as well

as shape design problems were treated. In [AT1],[AT2] an important new analysis for the structure

of the functional near the minimum was introduced. That analysis also enables the construction

of efficient relaxation for multigrid methods and preconditioners for single grid techniques. More-

over, it can give essential information about the structure of the minimum including the condition

number for the optimization problem, the well-posedness (ill-posedness) of the problem, and can



suggestappropriateregularizationtechniques.Experimentswith the oneshot methodfor finite
dimensionalandinfinite dimensionaldesignspacesshowedthat the convergencerate is practically
independentof the numberof designparameters.

The necessityof usingmultigridalgorithmsin theoneshotmethodsis certainlya disadvantage
sincein manyengineeringapplicationsthe underlyingsolversdonot usemultigrid methods.This
drawbackhasled to inquiriesin otherdirections,but still aimingat algorithmsthat solvethe full
optimization problemin oneshot,i.e., in a costnot muchlargerthat that of solvingthe analysis
problem.

Thefirst observationmadewasthat thesolutionwhenusingthe adjointmethodis an intersec-
tion point of threehypersurfacesdescribingthe stateequation,costate-stateequationand design
equation(togetherformingthe necessaryconditionsof the minimizationproblem). The adjoint
methodcanbeviewedasmarchingon theintersectionof the hypersurfacescorrespondingto state
and costatevariables,in the directionof the intersectionwith the designhypersnrface.Sincein
most applicationsthe numberof designvariablesis significantlysmallerthan the numberof state
or costatevariables,marchingin the designhy.persurfaceis amuchlessexpensiveprocessthan the
adjoint method,andmayserveasa solutionprocessfor theoptimizationproblem.

Methodsthat marchonthedesignhypersurface,arenotbasedongradientsandtheir convergence
propertiesaredifferent.In this paperweconstructandanalyzemethodsof this typeby embedding
the necessaryconditionsinto an evolutionequationso that the solutionevolvesin the design
hypersurface.Energyestimatesareusedto proveconvergence.

Thenewmethodswhicharestableapproximationsto evolutionprocessescanbeacceleratedus-
ing multigrid or otheraccelerationtechniques.Numericalresultsfor modelproblemsarepresented
and demonstratethe effectivenessof themethod.It is shownthat the full optimizationproblemis
solvedin a computertime equivalentto just a fewsolutionsof the analysisproblem.The method
seemsto convergein arate independentof the numberof designvariables.

2 On Adjoint Methods

We consider the following constrained minimization problem

min E(u, ¢(u)) (1)
U

L(u, ¢) = 0 (2)

where L(u, .) is a partial differential operator (possibly nonlinear) defined on a Hilbert space 7-/of

functions defined on a domain _. The design variable is assumed to be in some other Hilbert space

/4, for example, functions defined on the boundary 0_, or part of it.

The (formal) necessary conditions are

L(u, ¢) = 0

L_A + E¢ = 0

L_,_ + E,_ = 0

State Equation

Costate Equation

Design Equation

(3)
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and weassumetheexistenceof solutionsfor both the stateand costateequations.
It canbe shownthat thegradientof E(u, ¢(u)) is given by

.4(u)= L:,A(¢,u) + E_(u,¢(u)) (4)

where ¢(u),)_(¢, u) are the solution of the state and costate equations. The quantity -A(u) can

serve as a minimization direction (steepest descent).

The adjoint method consists of solving the state and costate equations at each update step of

the design variables. Thus is can be viewed as an approximation to the following evolution process.

L(u, ¢) = 0 (5)

L;a + E, = 0 (6)

g/_ + L;_ + E_ = 0 (7)

where d_U represent the derivative of u with respect to the pseudo-time variable introduced into

the problem. The actual iteration method is obtained by replacing du with (u '_+1 - u'_)/cSt, for a

sufficiently small 5t

The full algorithm can be viewed as a solver for the equation

.4(u) = 0 (s)

for the variable u. A crucial quantity to consider for analyzing the efficiency of different algorithms

is the mapping

u _ A(u) (9)

For problems arising from partial differential equation this mapping is a differential or a pseudo-

differential operator and bad conditioning is anticipated. Preconditioning of basic iterative methods

such as the steepest descent, is needed.

The one shot methods [T1],[TKS1],[AT1],[AT2] were aiming at a preconditioning of the gradient

algorithm in such a way that an order one condition number is obtained. In such a case the number.

of minimization step required to reach the minimum is independent of the size of the problem, i.e.,

the number of unknowns for u. This approach was found to be very successful for elliptic equations.

The idea is to exploit the locality of high frequencies in the algorithm, as well as the fact that high

frequencies in the design variables are related to high frequencies of the state variable and vice

versa. Finite and infinite dimensional design spaces have been considered with application to

aerodynamics problems, and other shape design problems.

Another possible direction, which was not explored, is to construct single grid preconditioners

based on the form of the symbol of the operator A. This idea will be discussed elsewhere.
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Figure 1: ttypersurfaces for state, cost, ate and design equations

3 The New Approach

The solution of the minimization problenl is tlle intersection point of tlLe hypersurfa,ces defined

by state, costate, and design equations, see figure l. Gradient descent melhods for constrained

optimization problems march along the intersection of the stale and ('()state hyi)ersurfaces. Each

slep in such a process requires the solution of two ]argo scale problelns, nameIy, the discretized

PDEs. Since in many applications lhe number of unknowns in either the stale or coslale equations

is significantly larger than that in the design equation, marching on the hypersurface defined t)y

the design equation is a much less expensive process than that of marching along lhe stale and the

coslate hypersurfaces. This is the main idea of the new approach.

Ea(:h step in the minimization algorithms presented here improve the solution of tile state and

costale equations, for example, by improving the distance to the hypersurfaces defined by the slate

and cost.ate equations. In addition each step is such lhat the approximate solution lies on the design

hypersu trace.

The construction of algorithnts that march along the design hypersurface and converge to tlle

minimum of lhe oplinfization problem can be done for a wide class of problems governed by PDE.

The approach taken here is to look at iterative methods for" the solution of the state and costate

equations as a stable approximation to the evolution equations governed by the constrained PDE.

The construction of the method is done in two ._teps. In the first lhe stationary PDE (the necessary

conditions) is embedded into an evolution PDE for which the solution evolves in the design hyper-



surface, and an energy estimate ensuring convergence is derived. The second step involves a stable

and consistent discretization of the pseudo-time dependent problem which is usually straightfor-

ward.

A technical difficulty which needs some explanation is related to the problem of staying on the

design hypersurface. Assume that we are given an iterative method for calculating the solutions

of the state and costate equations. Let the change produced in ¢ and A be (_ and A respectively.

In order to remain on the design hypersurface it is necessary to calculate a change in u, namely, fi

such that

A(u+ + X)=0 (10)

An approximation to this equation is

OAfi O.A- O.A- (11)
= -5V¢ - -by 

This representation is useful when 0._ is an invertible operator. Note that the solution of this

equation involves a system whose size is identical to that of the number of design variables, which

is significantly smaller than that of the state or the costate equations. While the operator _ +

o._ A is invertible, it is not convenient to work with; however A,_ o._ is simple and easy=-_-_

to manipulate.

In practice, A,, may not be invertible and the update of the u requires a different process. In

problems arising from partial differential equations in which the design variables are defined on

the boundary only, the design equation is an additional boundary condition for the system, for the

extra unknowns, namely, the design variables. In that case per each iteration step of the method

presented here require the simultaneous solution of the three boundary conditions for the state

equation, the costate equation and the design equation. These three conditions together involve

only a fraction more work than that of the boundary conditions for the state and costate equations.

In cases where the set of the three boundary conditions cannot be solved for the boundary state,

costate, and design variables, one should include equations from the interior. This is a typical case

when considering systems of partial differential equations in several dimensions.

In case that the linearized operator L¢ is coercive and the design equation can be solved for the

design variables, keeping the state and costate variables fixed, one can view the method presented

here as an approximation to the following time dependent problem

d
+ L(u, ¢) = 0 (12)

dAdt + L_'A + E¢ = 0 (13)

L_,A + E,_ = 0 (14)

where the last equation is essentially an extra boundary condition for the design variables.



4 Examples

In this section we show a few examples of using the idea outlined in the previous section. We prove

an energy estimate for each of the examples, ensuring convergence.

Example I: Distributed Control Let fl C _'_ and consider the optimization problem

1 1a
min _/n(¢- ¢')2dx + _ _u 2 (1.5)

subject to

A¢ = u f_ (16)¢ = 0 0fl

The necessary conditions are

{ A¢=u fl

A_+¢=¢* n
au-A=0 fl

¢ = 0 on
A =0 0fl

(17)

Consider the pseudo-time embedding

_ =/x_+¢-¢* ndt

an-A=0 fl

¢ = 0 0_
A=O OFt

(18)

We show that the error term in ¢, A, u, tend to zero as t approaches infinity. These error terms

satisfy the same equations as their corresponding quantities ¢, A, u but with zero source terms. So

without loss of generality we consider our problem with ¢* = 0.

The proof uses Poincare's inequality in the form

t10112_<C(llV¢ll _ + (_ ¢d8) 2) C > 0 (19)

where r c 0g_, and C > 0 is a constant independent of ¢ E HI(_). The norm used above and in

the rest of the paper is the L2 norm on ft. The use of this theorem will be for functions vanishing

on part of the boundary denoted by F.

For this example we take F = 0_ since the boundary condition for the errors in both ¢ and

A is zero on 0_. Multiplying the first two equations in (17) by ¢ and A respectively we get using

integration by parts and the Poineare inequality

1 yt.(o.ll¢ll2+ IIAll2) = _,,llV¢ll 2_ llV.Xll2 _<_C(,,11¢112+ IIAII_)2
(20)



for some constant C > 0, independent of ¢,A.

This implies that a[l¢[[ 2 + [IA[[2 decay exponentially with rate exp(-Ct). That is, the pseudo-

time embedding converges to the minimum, at a rate determined by the constant C.

Example II: Boundary Control

The next example is of a boundary control. Let £ C _, F1 UF2 = 0£, F1 NF2 = 0 and

consider

1 1

m_n _ j(0rl(¢_ ¢*)2dx + _o. j_0rl u2 (21)

subject to

0¢ _- u rl

=0 r_

(22)

The necessary conditions are

A¢= 0 f_

AA=0 fl

_=u 0f_

0A ¢*+¢= rl
au + A = 0 F1

¢= 0 £2

A=O F2

(23)

The time embedding used for this problem is

+¢= rl
_u + A = 0 rl

¢=0 £_

A=O r2

(24)

In this case the use of Poincare's inequality is done for r = r2. Similarly to the previous

example it can be shown that

ld 2
{_(allOll + ll_'[I _) = -°llVCll 2 -IIV'_ll 2 < -C(all¢ll = + II'_11_) (25)

with a different constant than that of example I. Again this estimate implies the exponential decay

of errors. Thus, convergence of ¢ and A is ensured, and therefore also of u from the Neumann

boundary condition for ¢.



Example III: System of First Order

Let x E ._d, A1,...,Ad be symmetric constant matrices, ¢ = (¢1,-..,¢n) defined on £_ C __d.

We introduce the decomposition of ¢]oe = (¢+, ¢0, ¢-) as follows. Let A = (A1,..., Ad) and n be

the outward normal to the boundary 69_. The matrix A. n is symmetric and therefore has real

eigenvalues and a complete set of eigenvectors. Let ¢ = (¢-,¢0, ¢+) be a decomposition into the

direct sum of the subspaces of A • n corresponding to negative, zero and positive eigenvalues. For

simplicity we also assume that A • n has zero eigenvalues on isolated points on the boundary 0_.

Consider the following problem

where ¢ is the solution of

m_n _ (¢_ - g)2ds 4- -_a u2ds (26)
1 1

d 06

_j=I Aj_ = O £

(A.n)+¢+ = u rl (27)

(A.n)+¢+ = 0 F2

where £1 U £2 = Ofl,F1 rq F2 = 0 We further assume that there exist a constant K > 0 such that if

¢_ = 0, A+ = 0 for a time interval larger than K then ¢ = A = 0.

The necessary conditions for the above optimization problem are

_d A o¢_
j=l J 0"_ -0 fl
_d A oh- z_.,j=l j_-_j = 0 fl

(A. n)+¢+ = u £1

(A. n)___ + 7¢ = _g rl
A+ + a71u = 0 £1

(A-n)+¢+ = 0 F2

(A-n)_A_ = 0 F2

(28)

where 17is an arbitrary positive number. We use it to derive the convergence estimate. Consider

the following time embedding

d&+_1:lAj0_j =0

d A d oh- _j=l Aj _ = 0
(A-n)+¢+ = u

(A. n)_ __ + r/¢ = r/g

_+ + arlu = 0

(A-n)+¢+ = 0

(A • n)_),_ = 0

For anMysis of the behavior of the errors we take g = 0 and

1_,(11¢112+ 11,_11_) = < (A. n)+¢+,¢+ > + <
< (A. n)+A+, A+ > - <

£

£

£1

rl (29)

£1

£2

F2

using integration by parts we obtain

(A. n)_¢_, ¢_ > -
(30)

(A. n)_A_,A_ >



wherethe normsdenoteL2 norms on fl and < .,. > denotes inner products on the boundary 0ft.

Eliminating the u from the boundary condition we obtain the following boundary condition that

must be satisfied by ¢, A

(A. n)_A_ + 7¢- = 0 rl (31)

A++ _a(A. n)-l¢+ = 0 rl (32)

Substituting these into the energy estimate we obtain

21_(llCll2+ iiAIl_)= < (A. n)_ - (A- n)-1¢_,¢_ >r_ -

<(A'n)+-_(A'n)+IA+,A+ >r_

< (A-n)_¢_, ¢_ >r2 - < (A. n)+A+, _+ >r_

(33)

The conditions

(A. n)_ - _2(A. n)-__1 _< 0 (34)
(A. n)+ _- _-(A- n)+ 1 > 0

imply that the changes in energy are non-positive. That is, it is either decreasing or stabilized.

Stabilization of the energy can occur only for the value zero, since otherwise it means that there

exists a non zero solution to the evolution equation such that ¢_ and A+ are zero for all times.

This is in contradiction to the assumption about the constraint PDE.

Since 77was arbitrary in this analysis, we can choose it small enough so that the first condition

holds. Then if a is large enough the second condition will hold as well. Thus, we obtain convergence

if a is not too small.

5 Numerical Results

In this section we demonstrate the effectiveness of the methods discussed here for an optimization

problem governed by inviscid incompressible flow. Let _ - {(x,y)lO <_ x <_ 1,0 _< y _< 1} ,

F1 ={(x,O)lO_<x_< 1},F:={(x,1)[O__x <_ 1}

The minimization problem is given by

subject to

1 1

m_n _ frl (¢- ¢0)2dx +-_frlu2dx (35)

A¢= 0 fl

°¢=u F1On

¢ = g(x) r2

and all functions are assumed to be periodic in the x direction.

(36)



5.1 Finite Dimensional Design Space

We assume that u has the form

q

_jfj(z) (37)
j=l

where c_j are constants to be determined and fj(x) are prescribed functions. The necessary con-

ditions for this problem are easily derived and we use the following time embedding as a solution

process

_¢ - A¢ = o
dA - AA = 12
a¢ F1
_-_n=u

aA
-_ +¢ = 60 rl

A=O F1

¢= g F2

.[_ fj(x)A(x,O)dx + rlo_j = 0 j = 1,...,q

(38)

This time dependent process was approximated by Jacobi relaxation, where at each time step all

boundary conditions are satisfied. Residuals history is given in fig 2 and shows that the convergence

rate is independent of the number of design variables.

5.2 Infinite Dimensional Design Space

In this case we look for u in a function space, namely, L2(0, 1).

stationary solution of the following time evolution equation which was used in the computation.

_¢- A¢ = o

A -/',A = 0 fl
nC--U r 1

¢ = g(x) F1

-_+ ¢= ¢0 rl

_(x, 0) + nu(x) = 0 rl
A=O I_2

The necessary conditions are

(39)

This time dependent process was approximated by Jacobi relaxation, where at each time step all

boundary conditions are satisfied. Residuals history is given in fig 3 and shows that the convergence

rate is independent of 77. It can be seen from that figure that the number of iteration for the analysis

problem and for the full optimization problem are not much different.
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Figure 2: Residuals History for analysis and full optimization method, grid 32x32, r] = 0.
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6 Conclusions

In this paper we have introduced pseudo-time methods for the efficient solution of optimization

problems governed by partial differential equations. In these methods the marching toward the

solution of the optimization problem is done on the design hypersurface rather than the intersection

of the hypersurfaces for state and costate equations. Very efficient solvers are obtained as indicated

from the proofs as well as from the numerical examples included. The methods allow the solution of

the full optimization problem in a computational cost similar to that of solving the constrained PDE.

The methods do not require gradient calculation however, it is essential to use it with the adjoint

equations. The methods offer an alternative to gradient descent methods. Their implementation is

straightforward and can be done using multigrid algorithms or single grid iteration.
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