N95- 31240

The Personal Software Process:
Downscaling the factory? ~(-6/

Daniel M. Roy
Software Technology, Process and People (STPP)
20 Forest Rd. Bradford Woods, PA 15015
(412) 934 0943 E-mail: dmr@sei.cmu.edu
(Visiting scientist, SEI)

Abstract: It is argued that the next wave of software process improvement
(SP1) activities will be based on a People-centered paradigm. The most
promising such paradigm, Watts Humphrey's Personal Software Process
(PSP) is summarized and its advantages are listed. The concepts of the PSP
are shown to also fit a down-scaled version of Basili’s experience factory. The
author’'s data and lessons learmed while practicing the PSP are presented
along with personal experience, observations and advice from the perspective
of a consultant and teacher for the Personal Software Process.

PRECEDING pagE BLAN

SEW Proc K NOT Firiep SEL-94-006

s 91

1 Toward a People-centered SPI1 paradigm

The Capability Maturity Model (CMM) and CMM-based SPI paradigms have had a profound
impact on the organizational practices within the software industry [Herbsleb-94). Other SPI
paradigms such as the experience factory have been demonstrating the value of experiment
based software improvement for over 15 years [IEEE-94]. In spite of these progress, we tech-
nologists, process advocates and other change agents still have to fight an entrenched and
pernicious resistance.

To better ascertain what to do about this, we must understand where we have been and where
we want to go next. As Basili puts it in [Basili-89]:

‘We have evolved from focusing on the project, e.g. schedule and re-
source allocation concerns, to focusing on the product, e.g. reliability
and maintenance concemns, to focusing on the process, e.g. improved
methods and process models’

However, addressing the practitioner’s resistance from healthy skepticism to outright obscu-
rantism is not a technical problem; it is a human concern. Perhaps accelerated progress re-
quires that we now continue the evolution by focusing on the People, e.g. individual education
and practices based on individual self improvement.

Maijor relatively new concepts such as the CMM or the experience factory are both intellectu-
ally satisfying and daunting to practice at the individual level. As a programmer, | may well un-
derstand the importance of the practices of the subcontract management KPA while at the
same time failing to relate to any of them in my individual work. As a reuse technologist, | may
be totally convinced that my company should operate as an experience factory while at the
same time having no idea how to incorporate the concepts in my day to day practice.

Conversely, | may be highly skeptical of ‘their’ SCEs, ‘their’ pilot project, and God knows what
other latest fad. | will remain unconvinced until ‘they’ show me that it will really work for me. |
may have heard good things about clean room, | may even have watched a convincing pre-
sentation at the Software Engineering Workshop about it. If | have never personally experi-
enced it, it will remain alien to me, something even vaguely frightening that | will keep resisting.
In the word of a most famous (and anonymous) Chinese proverb:

‘I hear and | forget, | see and | remember, | do and | understand’

A more personal and more practical approach to software improvement where the individual
practitioner learn by doing, may be needed to accelerate the transition of better engineering
practices throughout our organizations.

SEW Proceedings 92 SEL-94-006

2 The Personal Software Process

As students, we typically practice on toy problems in programming language classes. Our ad
hoc processes are sufficient to produce moderate size programs quickly and get a passing
grade. As programmers we quickly discover that these student practices do not scale up but
what can we do?. The product must be out the door if we want to work on the next one. There
is very little time to experiment with something unproven.

The personal software process was developed by Watts Humphrey to indoctrinate students
(in university and industry alike) in the use of large scale methods based on the CMM. To
quote Watts in [Humphrey-95], the PSP...

‘.. scales down industrial software practices to fit the needs of small scale
program development. It then walks you through a progressive sequence of
software processes that provide a sound foundation for large-scale software
development’

Using fairly simple and well proven engineering principles, the PSP student plans his work,
enacts a well defined process, building the product while gathering data, and performs a post
mortem that seeds the next improvement cycle. This personal approach to software improve-
ment offers the following advantages:

* By having to adhere to more disciplined practices, students learn a lot about
process, engineering, and software improvement. Most becomemotivatedto
learn even more about their field

* By gathering their own private data, students quickly build a significant
experience base which allow them to set new goals, perform the next
experiment and check the results against the goals

* Since the data is personal and private, PSP practitioners need no convincing
from anyone about the value of a process step or a technology. They know
whether it works for them or not based on their own quantitative results

e Armed with their own productivity and quality statistics, practitioners of the
PSP are better able to make commitments they can meet. They can also
better resist unreasonable commitment pressures

The PSP course leads the student to the gradual application of software engineering discipline
through a set of 10 assignments:

Average and standard deviation using linked list
Physical line counter

Object LOC counter (build on 2)

Linear regression using linked list (build on 1)

Standard distribution (integration by the method of Simpson)

IR T

Linear correlation (build on 5)

SEW Proceedings 93 SEL-94-006

7. Confidence intervals (build on 5 & 6)
8. Sorting a set of numbers in ascending order
9. Performing statistical fit tests on the above data

10.Computing muti-linear regression coefficients (by solving a system of linear
equations)

These simple exercises were found to have the following advantages:

¢ Simplicity without being trivial.
* Fostering reuse and good object oriented development practices
¢ Gradually building a small PSP support toolset

The PSP data shown on the transparencies was collected during Watts Humphrey’s Spring 94
course for the Master of Software Engineering at CMU.

SEW Proceedings 94 SEL-94-006

3 Personal data, experience, and lessons learned

Several PSP reports have to be written as part of the course detailing:

» Evolution of size and time estimates accuracy

¢ Pareto charts and checklist for defects

¢ Defect injection and removal trends

* Cost per defect type and injection/removal phases
* Process development process for PSP reports

¢ Detailed process analysis such as A/F ratio

¢ Lessons learned

¢ Future steps

The large number of graphs could not be reproduced here or even shown during the talk.
Watts Humphrey's data analysis diskette (which can be obtained with the book [Humphrey-
95]) includes an optimum set of Excel templates and macros for PSP data analysis. | found it
very useful to track my progress and accelerate the routine of the post mortem analysis.

A central part of my talk dealt with the application of the concepts of experience factory to my

PSP results. The experience gathered can be summarized as follow:

* The accuracy of my time and size estimates improved from +-40% to +-20%
over the 10 assignments of the PSP.

¢ The PSP linear regression model helped me increase the accuracy of my
size estimates. The muilti linear coefficients computed by program 10 offer
great potential to similarly increase the accuracy of my time estimates.

* The percentage of development time spent compiling decreased from 15%
to 5%.

* My productivity during the development phase remained at 20 LOC/hr.

* | made a humiliating number of syntax errors with a language | know well until
| truly inspected my code BEFORE compiling it.

* My error injection rate decreased from 180/kLOC to 30/kLOC and from 4
defect/hr to less than 1 detect/hr.

* From assignment 4 on, the sum of my code reuse and code developed for
reuse stayed at about 80%.

o Defect fix cost varied from 1 min/defect to 8 min/defect depending on phase
injected/removed.

» The process development process | enacted to develop a report
development process for my PSP experience reports was an overkill. But |
learned a lot trying that hard.

Building on this experience, | have applied the GQM paradigm to the definition of my next pro-

cess improvement steps:

SEW Proceedings SEL-94-006

95

* Reduce my error injection rate to less than 20 defects/kLOC
¢ Improve my error detection processes
» Keep design and code inspection yields above 50%
» Keep formal pre-compile inspection yield above 80%
« Strive for zero compile error
« Improve my testing process to a yield over 50%
* Keep containing costs
» Keep personal and informal review rates above 200 LOC/hr
« Keep formal inspection rates above 100 LOC/hr
* Increase reuse
« Either assemble 80% of the software out of reusable components
« Or make reusable components out of at least 50% of the new code

¢ Formalize the experience gathered with the PSP by applying experience
factory concepts

SEW Proceedings 96 SEL-94-006

4 Teaching the PSP

SEI has already conducted one ‘Train the trainer’ course In Pittsburgh from October to Decem-
ber 1994. | taught the 2 lectures on design in that occasion. Besides the usual lessons learned
from our own lectures, 1 think all instructors agreed that:

¢ The PSP is not your usual “teach and run” course
e Serious commitment is necessary from both student and sponsor
* A qualified instructor is necessary to get long term results

The PSP is about behavioral change. It is not a typical lecture course. It is a 200 hr intensive
educational experience. The lectures are but the tip of the iceberg. The instructor must spend
a significant amount of time tutoring the student in the correct implementation of the organiza-
tion’s process. The students don’t just sit there either, they write working programs. These pro-
grams have to be reviewed and corrected. The process must be analyzed and feedback must
be given. The PSP is more like a complete training program (in the sense of the CMM level 2
KPA) and typically spans 20 weeks. Strong commitments are necessary:

e from the student to honestly work the exercises, improve his process, and to
finish the course

« from the sponsor to allow the time necessary for the lectures and for part of
the implementation of the programs (typically shared 50/50 between sponsor
and student)

Best resuts are seen when the sponsor treats the PSP assignment as any other (assuming
correct project tracking and oversight practices). This means that the student’s assignments
are integral part of the workday and are part of his deliverables.

The PSP also requires a dedicated and qualified instructor with demonstrated programming
and software management experience. Based on historical data, the effort necessary to cor-
rectly teach the PSP is roughly:

¢ | ecture preparation: 2-4hrs/lecture
e Tutoring: 5-10 hrs/student
* Program & process analysis: 2-10 hrs/student

Anything less has a great chance of failing to make a lasting difference in the disciplined, qual-
ity-driven individual practices demonstrated in the PSP course.

SEW Proceedings 97 SEL-94-006

5 Conclusions

The PSP gives me the opportunity to improve the quality of the software | produce by offering
a framework for objective measurement and improvement of my practices. However, the ac-
curacy and the consistency of the data gathering process is paramount. Watts made this point
very clear throughout the course. Nevertheless, it took me quite a while to truly understand
why. | believe that a strict data inspection process should be enacted and particularly strongly
enforced at the beginning of a PSP course to ensure that all students start on the right foot. |
also believe that the postmortem phase should be expanded to include the systematic analysis
and archiving of lessons learned with the assignment at hand. | have modified my own PSP
accordingly.

| believe that the PSP is not only about scaling down the CMM. It can aiso be seen as a scaled
down experience factory. It is because the PSP encompasses such an elegant synthesis of
large scale methods that it will power the next wave of software practice improvement.

By practicing the PSP, | have leamed a great deal about enacting, improving and even devel-
oping personal processes. | have carried the very simple principles of the PSP and the process
development methodology described in chapter 13 of [Humphrey-95] to other processes:

® The organization of my work day

* A consulting personal process

¢ A process to perform Rate Monotonic Analysis

¢ A family of processes to write papers and reports.
These have been very exciting first steps.

SEW Proceedings 98 SEL-94-006

6 Bibliography

[Basili-94] Victor Basili et. al., ‘The Experimental Paradigm in Software Engineering’, Experi-
mental Software Engineering issues, Springer-Verlag, 1994.

[Herbsleb-94] James D. Herbsleb and David Zubrow, ‘Software Process Improvement: An
Analysis of Assessment Data and Outcomes’, Technical report CMU/SEI-94-TR7, September
1994.

[IEEE-94] IEEE, ‘IEEE Computer Society Award for Software Process Achievement, Nomina-
tion of 1994 Award Winner', Information bulletin, May 1994.

[Park-92] Robert E. Park, ‘Software Size Measurement: A Framework for Counting Source
Statements’, Technical report CMU/SEI-92-TR-20, September 1992.

[Humphrey-95] Watts S. Humphrey, ‘A discipline for Software Engineering’, Addison Wesley,
January 1995.

SEW Proceedings SEL-94-006

99

l'llllWl'l

Carnegre Meton Univers ey
Software Enginesring Institute

The PSP: Downscaling
the factory?

Daniel M. Roy, SEL workshop, December 1994

Software Engineering Institute
Carnegie Mellon University
Pittsburgh PA 15213

Sponsored by the U.S. Department of Defense

|'|W]'|'|

Camege Melon Unweraity
Software Engineering institute

Agendal

The Personal Software Process (PSP)
Some preliminary resuits
SEL experience factory

Scaling down the models: The experience workshop

1. Prelunmary work offered for miormal review.

SEW Proceedings 100 SEL-94-006

|'|'|,|'|’|’|

Carnegie Melon Universay
Software Engﬂmﬂng Institute

The Personal Software Process

Programming language class practices do not scale up

Corporate wide efforts encounter increasing resistance
on the way down.

The PSP:

“Scales down industrial software practices to
fit the needs of small scale program
development. It then walks you through a
progressive sequence of software processes
that provide a sound foundat/on for large-scale

software development.”
2 I. Waus phrey, “A of software engi 2", Addison Wesley, December 1994
f:_' Softwuo Englnoorlng Institute
KPAs scaled down for the PSP
OPTIMIZING P Process change management
- : ogy innovation
quantitative feeapach ” D® Defect prevention
%m: detalled : Process measursment & analysis
process and product
measures collected
DEFINED ™2 Poer wviews
standard, consistem SC-mergroup-ooordination-
process; PE Software product engineering
management & I Integrated software management
enginesring sctivities o-Fraining-program-
Integrated 2D Organization process definition
PT Organizstion process focus
B.EEEAIAELE Ct-Softwears-contiguration-management-
.| or-Softwars-quality-assurance-
::::W process; Si-Golware-suboontract-management-
project Softwere racking and oversight
management : Software ::",.3 :ahmhlngg g
L MORNG
INITIAL + None
ad hoc, chaotic

SEW Proceedings 101 SEL-94-006

——
_'—__= g;moulhlm University
e r—

ftware Engineering Institute

The PSP Evolution!

Org. (CMM)

Project process
Team process

Cyclic PSP PSP3
yehe Cyclic development
PSP2.1
Personal PSP2 Design templ
quality Code reviews esign tempates
management Design reviews
)
PSP1.1
PSP1
Personal Size estimating | 125k planning
planning Test report €| Schedule planing
T
)
PSPO PSPO.1
. Current process| Coding std, PIP
Baseline PSP Time/Defect Size measuremen
recording & std I
3 1. Waus Humphiey, A of soltware g". Addisoe Wesley, December 1994,

Untversty
Sottware Engineering Institute

e ma—.
T — Melon
p————, Camegee
e ——

The Experience Factory context!

Project Organization Experience Factory

Characterize Projecvenvironment characteristics
environment >

Set goals
Processes, tools, components, models

Choose process 7

Executfon plans

Project analysis, process modification
Execute proce:

Data, lessons learned
Collect data

4 1. From "The Expenmentat Paradigm in Sofiware. E Software g issues™, , Basili, Selby, Springer-Verlag

SEW Proceedings 102 SEL-94-006

Camegw Melon Urwversay
Software Engineering lnstitute

The Experience Factory structurel

|'|’|’|’|/|'|

Project Organization Experience Factory
Products, models Analysis
Data, lessons learned y

| 7
Direct feedback

Products Experience Tailor

lessons learned, data Base Generalize

Formalize

Models, baselines .
g— Synthesis
tools, consuiting
5 1. From “The Expenmental Paradigm in Soltwarc E £ Soltware Engit 1ssues™, R . Basili, Selby, Spnger-Verlag

Camegie Mellon Universty
Software Engineering institute

The PSP assignments as experiments

l'llm’l’l'l

Goal:
+ Actual staff-hours will be within 20% of estimates

80% of the time.

Questions:

+ How do | predict my effort now?

+ How do | measure the actual effort?

+ How do | track actual against estimates?

» What is the dispersion now?

+ Ifl had a data base of these, | could get statistics

Metrics:

 Estimate in mn before, measure actuals during

+ Compute linear regression and confidence intervals
from the data base. Accuracy is given by stats.

SEW Proceedings 103 SEL-94-006

— S—
Rt Camerpe Mellon Liwversity
% Software Engineering Institute

| Actual Size Range
|
900 -
800 + /'
700 + /
600 J — Max |
Q 500 + " / i
y ———— Min
9 400 + / \\‘ /
’ A
300 - \\ N / vg |
2004/ % \\ /
T
100 +—~ T— Y
0 ——»4>¥—/:+ - e ———— ‘
— |
Program Number ‘
9 - B B L L -) |
_'g mmnglnurlng Institute
Size Estimating Error Range
500 ;
400 ¢
o 300 + Class
o
w200 + Max
* 100 + Min
0 - 14> v—éové
>\ //\ /\/
-100 1
1 2 3 45 6 7 8 910
Program Number
SEW Proceedings 104 SEL-94-006

o —
= —d Carmegie Meton University
T—====" Software Engineering Institute

f Time Estimating Accuracy - %

Error
500
‘ i
|~ 400 T\
, O LA .
L@ 300 4%/ \\ Class
P2 l \
@ 200 | Max
E ‘ v \\ ’ J
| B 100 - " | ———— Min |
’ o - / L ’
‘ N 0 L e — - H—%?é
| : /\/\/—
| -100 I
t 12 3 4 56 7 8 9 10
Program Number
—=. m:?emEnglnunng Institute
[
! Productivity Range
-
'l 90 -+
{ 80 <>\ {
70 +
- N\ M
3 601 _\ ax
g 50 + Min |
© 40 1 A ‘
har - Avg
30 0~ /’\/
20 ¢ ;
/\\ . \/
10 + - \/
0 T— t et y
— OO T O~ O o Q
Program Number

SEW Proceedings 105

SEL-94-006

=
k2

Camegie Mellon Uiniversity
Software Engineering Institute

Defects Found in Test - Range

|
!

180 - \
160 + /|
i
140 4/ | — N
o J
g 120 1 5 Max l
L X 1 |
g 100 + Min
| g 80
B 60 T Avg
Q
: 40
; 20 +
| 0 +——— = + + 4
: — N M T W 0w~ 0 E
_ Program Number
® U
;i Camege Mellon University
— Software Engineering institute
Size prediction model (dmr data)
Size prediction mode!
1
1
@ -
8 ax —
3
" /
&
—
20 T T
0t c)</
[L]
¢+ + + + t 1 + + }
0 100 200 A0 Q0 500 600 700 800 900
Actual LOC
SEW Proceedings 106

SEL-94-006

|'|||(|l|,|'|

Carnegis Mellon Univers ty
Software Engineering institute

Cost of error (dmr data)

Time fo fix detect

Time (mn)

©

e ——— Camegie Mellon Universty
———_ Software Englnoorlng Institute

Defects analysis (dmr data)

Syntax ernors

Expresson tormat

% Typos
30 - Wrong enttier ;3:
24%

2 25
[
b3 Reserved word
32 ! 6%
°
é 15 N
210"

[} v

lnsnuc?»on tormar
2 8 8 ﬁ

2 8 g 2

SEW Proceedings 107

SEL-94-006

Rouse (%)

Camegie Melion Unwersiy
S==—=" Sottware Enginsering institute

Ada PSP: Some experience artifacts

“I hearand | forgetf | see and | remember, | do
and | understand”

A lot of very useful process data:

predicted and actual time per phase

error classes and distribution

linear regression models for size and cost estimates
trend analysis graphs on all of the above

post mortems and reports as experience base

a deeper understanding of PSI that carries beyond
software development

A lot of new goals and ideas to try next

12 1. Anoaymous Chincse proverd

SEW Proceedings 108 SEL-94-006

il

Camnege Melion University
Software Engineering Institute

Some of my next goals:

Reduce my total defect injection rate to less than 20 per
KLOC.

Optimize my set of inspection processes to reduce their
cost to less than 1 inspection staff-mn per SLOC while
keeping yield above 80%

Either build with reuse (at least 80% of total SLOC) or
build for reuse (at least 50% of the new code is reusable)

Revisit the PSP in the light of the CMM and I1SO 9000-3

Recast the PSP in the experience factory mold

Sarnage Madoo Urmersty

|'|||'|’|||'|

PSP: The experience workshop

Plan/Do Check/Act

Characterize | Projectenvironment | Process Ana-

project characteristics lysis & design

Set goals

. Proces; tools
Review process
and tools R
) Experience Formalize
S]
s .

Project| plans & reports) Generalize

E Project tracking,
Xecute proce: —
process modification Monitoring

Do Post mortem
t rt Data, PIP, revised

estimates
Lessons leamed, components, models

SEW Proceedings 109 SEL-94-006

e S—
e S—
e ——
—Smm————— Camegie Mekon Ureversit
— E—
—
——

Software Engineering Institute

Conclusion

The PSP represents an elegant synthesis of proven concepts
(CMM, experience factory) scaled down to the individual level.

Preliminary PSP results are encouraging. Team data is needed.
Until now:
“We have evolved from focusing on the project, e.g.
schedule and resource allocation concerns, to
focusing on the product, e.g. reliability and
maintenance concerns, to focusing on the process,
e.g. improving methods and process models™

Future progress may well hinge on focusing on the People.

15 1. From "Software Development: A Paradigm for the Future™, Victor R. Basili. Proc. 13th Int’| Computer Software & Applications Conf. Orlande FL. Sep 89

e S— Cairegie Mellon Unversity
———=== Software Engineering Institute

PSP Status
The PSP was developed by Watts Humphrey

Several industrial organizations are now introducing
PSP methods (DEC, HP, TI) with encouraging results

SEl is offering train the trainer courses

Several universities are teaching the PSP (CMU, U. of
Mass., Howard U., Embry-Riddle U., McGill, and others)

The textbook “A Discipline for Software Engineering”

and support diskette are available from Addison
Wesley.

SEW Proceedings 110 SEL-94-006

Camegee Mellon Unversity
Software Engineering Institute

|'|‘|(|’|’|'|

Questions

For more information or off-line discussion contact:

Daniel Roy

20 Forest Rd

Bradford Woods PA 15015
(412) 934 0943
dmr@sei.cmu.edu

SEW Proceedings 111 SEL-94-006

SEW Proceedings 112 SEL-94-006

Ry

Session 3: Certification

Applying Program Comprehension Techniques to Improve
Software Inspections
Stan Rifkin, Master Systems Inc.

An Experiment to Assess the Cost-Benefits of Code Inspections in Large-Scale
Software Development
Harvey Siy, University of Maryland

A Process Improvement Model for Software Verification and Validation
Jack Callahan, NASA Independent Software Verification and Validation Facility

PRECLOING PAGE BLANK NOT FILWMED

SEW Proceedings 113 SEL-94-006

SEW Proceedings SEL-94-006

114

