
N95- 31240

The Personal Software Process:

Downscaling the factory?

Daniel M. Roy

Software Technology, Process and People (STPP)

20 Forest Rd. Bradford Woods, PA 15015

(412) 934 0943 E-maih dmr@sei.cmu.edu

(Visiting scientist, SEI)

i

Abstract: It is argued that the next wave of software process improvement
(SPI) activities will be based on a People-centered paradigm. The most
promising such paradigm, Watts Humphrey's Personal Software Process
(PSP) is summarized and its advantages are listed. The concepts of the PSP
are shown to also fit a down-scaled version of Basili's experience factory. The
author's data and lessons learned while practicing the PSP are presented
along with personal experience, observations and advice from the perspective
of a consultant and teacher for the Personal Software Process.

P_ECF.J)tt_GPAGE BL.Z_K NOT F
SEW Proceedifi_ '_f,'_t_O 91 SEL-94-006

1 Toward a People-centered SPI paradigm

The Capability Maturity Model (CMM) and CMM-based SPI paradigms have had a profound

impact on the organizational practices within the software industry [Herbsleb-94]. Other SPI

paradigms such as the experience factory have been demonstrating the value of experiment

based software improvement for over 15 years [IEEE-94]. In spite of these progress, we tech-

nologists, process advocates and other change agents still have to fight an entrenched and

pernicious resistance.

To better ascertain what to do about this, we must understand where we have been and where

we want to go next. As Basili puts it in [Basili-89]:

'We have evolved from focusing on the project, e.g. schedule and re-

source allocation concerns, to focusing on the product, e.g. reliability

and maintenance concerns, to focusing on the process, e.g. improved

methods and process models'

However, addressing the practitioner's resistance from healthy skepticism to outright obscu-

rantism is not a technical problem; it is a human concern. Perhaps accelerated progress re-

quires that we now continue the evolution by focusing on the People, e.g. individual education

and practices based on individual self improvement.

Major relatively new concepts such as the CMM or the experience factory are both intellectu-

ally satisfying and daunting to practice at the individual level. As a programmer, I may well un-

derstand the importance of the practices of the subcontract management KPA while at the

same time failing to relate to any of them in my individual work. As a reuse technologist, I may

be totally convinced that my company should operate as an experience factory while at the

same time having no idea how to incorporate the concepts in my day to day practice.

Conversely, I may be highly skeptical of 'their' SCEs, 'their' pilot project, and God knows what

other latest fad. I will remain unconvinced until 'they' show me that it will really work for me. I

may have heard good things about clean room, I may even have watched a convincing pre-

sentation at the Software Engineering Workshop about it. If I have never personally experi-

enced it, it will remain alien to me, something even vaguely frightening that I will keep resisting.

In the word of a most famous (and anonymous) Chinese proverb:

'1hear and I forget, ! see and I remember, I do and I understand'

A more personal and more practical approach to software improvement where the individual

practitioner learn by doing, may be needed to accelerate the transition of better engineering

practices throughout our organizations.

SEW Proceedings 92
SEL-94-006

2 The Personal Software Process

As students, we typically practice on toy problems in programming language classes. Our ad

hoc processes are sufficient to produce moderate size programs quickly and get a passing

grade. As programmers we quickly discover that these student practices do not scale up but

what can we do?. The product must be out the door if we want to work on the next one. There

is very little time to experiment with something unproven.

The personal software process was developed by Watts Humphrey to indoctrinate students

(in university and industry alike) in the use of large scale methods based on the CMM. To

quote Watts in [Humphrey-95], the PSP...

'... scales down industnal software practices to fit the needs of small scale

program development. It then walks you through a progressive sequence of

software processes that provide a sound foundation for large-scale software

development'

Using fairly simple and well proven engineering principles, the PSP student plans his work,

enacts a well defined process, building the product while gathering data, and performs a post

mortem that seeds the next improvement cycle. This personal approach to software improve-

ment offers the following advantages:

• By having to adhere to more disciplined practices, students learn a lot about
process, engineering, and software improvement. Most becomemotivatedto
learn even more about their field

• By gathering their own private data, students quickly build a significant
experience base which allow them to set new goals, perform the next
experiment and check the results against the goals

• Since the data is personal and private, PSP practitioners need no convincing
from anyone about the value of a process step or a technology. They know
whether it works for them or not based on their own quantitative results

• Armed with their own productivity and quality statistics, practitioners of the
PSP are better able to make commitments they can meet. They can also
better resist unreasonable commitment pressures

The PSP course leads the student to the gradual application of software engineering discipline

through a set of 10 assignments:

1. Average and standard deviation using linked list

2. Physical line counter

3. Object LOC counter (build on 2)

4. Linear regression using linked list (build on 1)

5. Standard distribution (integration by the method of Simpson)

6. Linear correlation (build on 5)

SEW Proceedings 93 SEL-94-006

7. Confidence intervals (build on 5 & 6)

8. Sorting a set of numbers in ascending order

9. Performing statistical fit tests on the above data

10.Computing muti-linear regression coefficients (by solving a system of linear
equations)

These simple exercises were found to have the following advantages:

* Simplicity without being trivial.

• Fostering reuse and good object oriented development practices

• Gradually building a small PSP support toolset

The PSP data shown on the transparencies was collected during Watts Humphrey's Spring 94

course for the Master of Software Engineering at CMU.

SEW Proceedings 94
SEL-94-006

3 Personal data, experience, and lessons learned

Several PSP reports have to be written as part of the course detailing:

• Evolution of size and time estimates accuracy

• Pareto charts and checklist for defects

• Defect injection and removal trends

• Cost per defect type and injection/removal phases

• Process development process for PSP reports

• Detailed process analysis such as A/F ratio

• Lessons learned

• Future steps

The large number of graphs could not be reproduced here or even shown during the talk.

Watts Humphrey's data analysis diskette (which can be obtained with the book [Humphrey-

95]) includes an optimum set of Excel templates and macros for PSP data analysis. I found it

very useful to track my progress and accelerate the routine of the post mortem analysis.

A central part of my talk dealt with the application of the concepts of experience factory to my

PSP results. The experience gathered can be summarized as follow:

• The accuracy of my time and size estimates improved from +-40% to +-20%
over the 10 assignments of the PSP.

• The PSP linear regression model helped me increase the accuracy of my
size estimates. The multi linear coefficients computed by program 10 offer

great potential to similarly increase the accuracy of my time estimates.

• The percentage of development time spent compiling decreased from 15%
to 5%.

• My productivity during the development phase remained at 20 LOC/hr.

• I made a humiliating number of syntax errors with a language I know well until
I truly inspected my code BEFORE compiling it.

• My error injection rate decreased from 180/kLOC to 30/kLOC and from 4
defect/hr to less than 1 defect/hr.

• From assignment 4 on, the sum of my code reuse and code developed for
reuse stayed at about 80%.

• Defect fix cost varied from 1 min/defect to 8 min/defect depending on phase

injected/removed.

• The process development process I enacted to develop a report
development process for my PSP experience reports was an overkill. But I
learned a lot trying that hard.

Building on this experience, I have applied the GQM paradigm to the definition of my next pro-

cess improvement steps:

SEW Proceedings 95 SEL-94-006

• Reduce my error injection rate to less than 20 defects/kLOC

• Improve my error detection processes

• Keep design and code inspection yields above 50%

• Keep formal pre-compile inspection yield above 80%

• Strive for zero compile error

• Improve my testing process to a yield over 50%

• Keep containing costs

• Keep personal and informal review rates above 200 LOC/hr

• Keep formal inspection rates above 100 LOC/hr

• Increase reuse

• Either assemble 80% of the software out of reusable components

• Or make reusable components out of at least 50% of the new code

• Formalize the experience gathered with the PSP by applying experience
factory concepts

SEW Proceedings 96 SEL-94-006

4 Teaching the PSP

SEI has already conducted one 'Train the trainer' course In Pittsburgh from October to Decem-

ber 1994. I taught the 2 lectures on design in that occasion. Besides the usual lessons learned

from our own lectures, I think all instructors agreed that:

• The PSP is not your usual "teach and run" course

• Serious commitment is necessary from both student and sponsor

• A qualified instructor is necessary to get long term results

The PSP is about behavioral change. It is not a typical lecture course. It is a 200 hr intensive

educational experience. The lectures are but the tip of the iceberg. The instructor must spend

a significant amount of time tutoring the student in the correct implementation of the organiza-

tion's process. The students don't just sit there either, they write working programs. These pro-

grams have to be reviewed and corrected. The process must be analyzed and feedback must

be given. The PSP is more like a complete training program (in the sense of the CMM level 2

KPA) and typically spans 20 weeks. Strong commitments are necessary:

• from the student to honestly work the exercises, improve his process, and to
finish the course

• from the sponsor to allow the time necessary for the lectures and for part of
the implementation of the programs (typically shared 50/50 between sponsor
and student)

Best resuts are seen when the sponsor treats the PSP assignment as any other (assuming

correct project tracking and oversight practices). This means that the student's assignments

are integral part of the workday and are part of his deliverables.

The PSP also requires a dedicated and qualified instructor with demonstrated programming

and software management experience. Based on historical data, the effort necessary to cor-

rectly teach the PSP is roughly:

• Lecture preparation: 2-4hrs/lecture

• Tutoring: 5-10 hrs/student

• Program & process analysis: 2-10 hrs/student

Anything less has a great chance of failing to make a lasting difference in the disciplined, qual-

ity-driven individual practices demonstrated in the PSP course.

SEW Proceedings 97 SEL-94-006

5 Conclusions

The PSP gives me the opportunity to improve the quality of the software I produce by offering

a framework for objective measurement and improvement of my practices. However, the ac-

curacy and the consistency of the data gathering process is paramount. Watts made this point

very clear throughout the course. Nevertheless, it took me quite a while to truly understand

why. I believe that a strict data inspection process should be enacted and particularly strongly

enforced at the beginning of a PSP course to ensure that all students start on the right foot. I

also believe that the postmortem phase should be expanded to include the systematic analysis

and archiving of lessons learned with the assignment at hand. I have modified my own PSP

accordingly.

I believe that the PSP is not only about scaling down the CMM. It can also be seen as a scaled

down experience factory. It is because the PSP encompasses such an elegant synthesis of

large scale methods that it will power the next wave of software practice improvement.

By practicing the PSP, I have leamed a great deal about enacting, improving and even devel-

oping personal processes. I have carried the very simple principles of the PSP and the process

development methodology described in chapter 13 of [Humphrey-95] to other processes:

• The organization of my work day

• A consulting personal process

• A process to perform Rate Monotonic Analysis

• A family of processes to write papers and reports.

These have been very exciting first steps.

SEW Proceedings 98
SEL-94-O06

6 Bibliography

[Basili-94] Victor Basili et. al., 'The Experimental Paradigm in Software Engineering', Experi-

mental Software Engineering issues, Springer-Verlag, 1994.

[Herbsleb-94] James D. Herbsleb and David Zubrow, 'Software Process Improvement: An

Analysis of Assessment Data and Outcomes', Technical report CMU/SEI-94-TR7, September

1994.

[IEEE-94] IEEE, 'IEEE Computer Society Award for Software Process Achievement, Nomina-

tion of 1994 Award Winner', Information bulletin, May 1994.

[Park-92] Robert Eo Park, 'Software Size Measurement: A Framework for Counting Source

Statements', Technical report CMU/SEI-92-TR-20, September 1992.

[Humphrey-95] Watts S. Humphrey, 'A discipline for Software Engineering', Addison Wesley,

January 1995.

SEW Proceedings 99 SEL-94-O06

Camegu _ U_y

Soflwwo En_noorlng Instttuule

The PSP: Downscaling
the factory?

Daniel M. Roy, SEL workshop, December 1994

Software Engineering Institute
Carnegie Mellon University
Pittsburgh PA 15213

Sponsored by the U.S. Department of Defense

software Eeg_rUtg he=throe

Agenda 1

The Personal Software Process (PSP)

Some preliminary results

SEL experience factory

Scaling down the models: The experience workshop

I. P1r_m _b2r ,_. o_r_ed for ,,_ronmj ¢=_,ac,w

SEW Proceedings 100 SEL-94-006

C,v,_,_e Momon Ur.,,,*._y

Software Engineering Institute

The Personal Software Process

Programming language class practices do not scale up

Corporate wide efforts encounter increasing resistance
on the way down.

The PSP:

"Scales down industrial software practices to
fit the needs of small scale program
development. It then walks you through a
progressive sequence of software processes
that provide a sound foundation for large-scale
software development."1

I WalL_ Hompl_cy. "A ¢luc:plim¢ of soft_mc ¢_git_Jln$", _dd:sor, WrJJcy, Dcc_'ld_ct 1994

w
F.ng_k_i kmHute

KPAs scaled down for the PSP
OPTIMIZING

continuousty#_-ov_g _;
quantft_ive feedbmok

I_cUctal)le _; deUdle_
Ixocess end product
memluru collected

DEFINED
mn_ conshmt
process;
nameg_l &
enoIm4emHa actlvltkm
Inmgrmd

Pc Process change mansgamnt
':z Technology CnnovatkDn

Dr, Defect prewentlon

o. _a_atynw.,om._
PA Procus mmsumment & mnJysls

IPRPwr mv_

m,mSogt_ewoproduct englneering

e_
Po OrgmkNIon process d_

_ oql,,nuu0o,pro=,n focus

c prel
_r _ project traddng m_l owr_IgM

INITIAL "Now
ad _ ¢l_aoUc

SEW Proceedings 101 SEL-94-006

Cam_,_ M=lo_ Un_.er=.ty

Software Enginoorlng Instflttcle

The PSP Evolution 1

Cyclic PSP

Personal
quality
management

Personal
planning

Baseline PSP

Org. (CMM)

Project process

I PSP3 Team processCyclic development

t

Code reviews Design templates

Design reviews I

PSP1
Size estimatin
Test report

e_
Current proces_

I TimeJDefect
[recording & std

PSP1.1

Task planning
Schedule planing

PSP0.1

Coding std, PIP
Size measuremer

I Wni,_ Hia_plw_y, "A d=_plbe¢ o(_lwin: ¢ngli_c:nng'. AddiL.qOnWesley, Dc,_.mb¢_" I_4,

I

m

C*ra_p* M*loe tJe_mmW

So_e Engln_rlng Instltule

The Experience Factory context 1

Project Organization

Characterize J

environment J

Set goals I

Choose process] :

_ut_n plans

Execute proces_:

Collect data J

Experience Fa.__._.ctory

Project/environmentcharacteristics

)rocesses,tools,components,models

_rojectanalysis,processmodification

Data,lessonslearned

I. Flora _ Eapcrm_..nml _lpn m _hwnr_ EnS,utecrmg, E.,_pe-nmcni=l So(.v'=r= Fu_iner..'img u_ues'. P*omb*clL B,tsdi, SelI_. $pnit$_-Vcrla_

SEW Proceedings 102
SEL-94-006

C=='_=g_ Melon Un_e_y

Software Engineering tnstJtute

The Experience Factory structure I

Project Organization

Products, models
Data, lessons learned '

Direct feedback

Products

lessons learned, data

Models, baselines

tools, consulting

Experience Factory

E:Ps:erience/ _ai/°r ,ize

I From 'TE¢ E per encn_d Paradq_r, m Sofcwar¢ EalCmecnng. E=pcn mcneal Soft_r¢ Eng,e_mg ,sa_5". Rom_. B_I*, Sdby. S I_ngc_-Vezlag

w

Camegm_ Un_'s4y
Soffwsre Engineering InsBtute

The PSP assignments as experiments

Goal:

• Actual staff-hours will be within 20% of estimates
80=/o of the time.

Questions:

• How do I predict my effort now?
• How do I measure the actual effort?

• How do I track actual against estimates?
• What is the dispersion now?
• If I had a data base of these, I could get statistics

Metrics:

• Estimate in mn before, measure actuals during
• Compute linear regression and confidence intervals

from the data base. Accuracy is given by stats.

SEW Proceedings 103 SEL-94-006

_ Can_._e M_n Unr,er_ty

Software Engineering Institute

900 T

800 T

700

600

500

0 400

3OO

200

100

0

Actual Size Range

/
I /

/

\

-____ _

Program Number

Max

Min

Avg i

_ cm.p, M_m u.,.w_ySolltware Engineering Institute

Size Estimating Error Range

500

400

300

,_, 200

100

0

-100

!

1 2 3 4 5 6 7 8 9 10

Program Number

Class

Max

Min

SEW Proceedings 104
SEL-g4-006

_ CImpede M_l_ _erl_
Software Engineering Instltule

Time Estimating Accuracy- %
E rro r

3O04OO!_,,,]

U_ "

-100 ±

1 2 3 4 5 6 7 8 9 10

Program Number

Class

Max

Min

_ C,m_e MelonUr_n_So/tware Engineering Instllute

100

90

8O

70

6O
-1- 5O

0 40

3O

2O

Productivity Range

10

0 -i I } -{---- I I I p I

Program Number

Max

Min

Avg

SEW Proceedings 105 SEL-94-006

. creep, _don Un_ee_
Software Engineering institute

Defects Found in Test - Range

180

160

140

0 120
--J

_" 100

13 80

"$ 60

40

20

I'1

/'"I

/ ',,

, , ',\ //

,_ \/ \

Program Number

Max

Min

Avg

_ MWJo_t._w* m

Size prediction model (dmr data)

_T
J

°t
_0

_4oQ

I0o

_e i_edic_on model

_-j

IO0 200 300 ,tOO 500 b00 700 800 900

Aclm_l LOC

SEW Proceedings 106
SEL-94-006

m

w

Cost of error (dmr data)

11me to k c_ec!

T_f

Camegm _ Ut_ev_-s4y

Software Engineering InsUlute
%

Defects analysis (dmr data)

SEW Proceedings 107 SEL-94-O06

m

senlm F._c_g _tou

w

Reuse trends (dmr data)

!

2 3 4 S b 7

m

._m En_ _ Inmnme

Ada PSP: Some experience artifacts

"1hear and I forget. I see and i remember, I do
and I understand "1

A lot of very useful process data:
• predicted and actual time per phase
• error classes and distribution

• linear regression models for size and cost estimates
• trend analysis graphs on all of the above
• post modems and reports as experience base
• a deeper understanding of PSI that carries beyond

software development

A lot of new goals and ideas to try next

I, ,,_omTmo_ Clzm_c Ipw,_b

SEW Proceedings 108
SEL-94-006

Cameg,e Mellon Unf_e_J4ty
Software Engineering Institute

Some of my next goals:

Reduce my total defect injection rate to less than 20 per
KLOC.

Optimize my set of inspection processes to reduce their
cost to less than 1 inspection staff-mn per SLOC while
keeping yield above 80%

Either build with reuse (at least 80% of total SLOC) or
build for reuse (at least 50% of the new code is reusable)

Revisit the PSP in the light of the CMM and ISO 9000-3

Recast the PSP in the experience factory mold

Cameg_ M_k_ Ur,_dy

Software Engineering Institute

PSP: The experience workshop

Plan/Do ChecldAct

Characterize t Project/environment Process Ana- I

project J characteristCs_l lysis & design I
Set goals J
Review process L_ f

and tools I _Experience_ I

ectl IBase (PSP

I data base I J
Proj plans I & reports)) I

Execute proces_ _ P::'r_:tJon I 1
,,,I p " " I Monitoring I /

Do Post mortem _ _ /
I Data, PIP, revised _ J

k estimates

"_ssons learned, components, m_ls _ '_

Formalize
Tailor
Generalize

SEW Proceedings 109 SEL-94-006

eg Melon Umv_"sity

Conclusion

The PSP represents an elegant synthesis of proven concepts

(CMM, experience factory) scaled down to the individual level.

Preliminary PSP results are encouraging. Team data is needed.

Until now:

"We have evolved from focusing on the project, e.g.
schedule and resource allocation concerns, to

focusing on the product, e.g. reliability and
maintenance concerns, to focusing on the process,

e.g. improving methods and process models "1

Future progress may well hinge on focusing on the People.

15 I From '_5oftwAr¢ Development A paradigm for _¢ Fmurc", Vlclo(R B_llh Pro(13th [n['l Computer Soflwat¢ & Apphcac)o_s C0_f Oda_d_ FL. Sep 89

C_ _KJ_ Melon UnNer_ty

Software Engineering Institute

PSP Status

The PSP was developed by Watts Humphrey

Several industrial organizations are now introducing
PSP methods (DEC, HP, TI) with encouraging results

SEI is offering train the trainer courses

Several universities are teaching the PSP (CMU, U. of

Mass., Howard U., Embry-Riddle U., McGUl, and others)

The textbook "A Discipline for Software Engineering"

and support diskette are available from Addison

Wesley.

SEW Proceedings 110
SEL-94-006

Mel_n U_ive_i?y

Software Engineering Institute

Questions

For more information or off-line discussion contact:

Daniel Roy

20 Forest Rd

Bradford Woods PA 15015

(412) 9340943

dmr@sei.cmu.edu

SEW Proceedings 11 1 SEL-94-006

SEW Proceedings 112
SEL-94-006

Session 3: Certification

Applying Program Comprehension Techniques to Improve
Software Inspections

Stan Rifkin, Master Systems Inc.

An Experiment to Assess the Cost-Benefits of Code Inspections in Large-Scale
Software Development

Harvey Siy, University of Maryland

A Process Improvement Model for Software Verification and Validation
Jack Callahan, NASA Independent Software Verification and Validation Facility

PREC_.D!_G P_G£ l_.M,_ NOT F_t_ED

SEW Proceedings 113
SEL-94-006

SEW Proceedings 114
SEL-94-006

