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ABSTRACT

Three independent studies have been conducted for assessing the

impact of rocket launches on the earth's environment._'2'3 These

studies have addressed issues of acid rain in the troposphere,

ozone depletion in the stratosphere, toxicity of chemical rocket

exhaust products, and the potential impact on global warming

from carbon dioxide emissions from rocket launches. Local, re-

gional, and global impact assessments were examined and com-

pared with both natural sources and anthropogenic sources of

known atmospheric pollutants with the following conclusions:

• Neither solid nor liquid rocket launches have a sig-

nificant impact on the earth's global environment,

and there is no real significant difference between

the two.

• Regional and local atmospheric impacts are more

significant than global impacts, but quickly return

to normal background conditions within a few hours

after launch.

• Vastly increased space launch activities equivalent

to 50 U.S. Space Shuttles or 50 Russian Energia

launches per year would not significantly impact

these conclusions.

However, these assessments, for the most part, are based upon

homogeneous gas phase chemistry analysis; heterogeneous chem-

istry from exhaust particulates, such as aluminum oxide, ice con-

trails, soot, etc., and the influence of plume temperature and after-

burning of fuel-rich exhaust products, need to be further ad-

dressed. It was the consensus of these studies that computer mod-

eling of interactive plume chemistry with the atmosphere needs to

be improved and computer models need to be verified with exper-

imental data. Rocket exhaust plume chemistry can be modified

with propellant reformulation and changes in operating condi-

tions, but, based upon the current state of knowledge, it does not

appear that significant environmental improvements from propel-

lant formulation changes can be made or are warranted. Flight

safety, reliability, and cost improvements are paramount for any

new rocket system, and these important aspects cannot be compro-

mised. A detailed environmental cost-benefit-risk analysis must

be conducted before any new chemistry or changes in rocket oper-

ating conditions should be seriously considered for any future

space or defense applications.

This paper presents a summary of the results of environmental

assessments contained in these independent studies.

*Vice President and Senior Staff

**Scientist

INTRODUCTION

These studies were conducted to answer a basic question: As a

result of increased space launch activities, will chemical rocket

propulsion have a major impact on the earth's environment? This

issue was first raised by environmentalists who were particularly

concerned about the deposition of hydrogen chloride (HCI) from

solid rockets into the atmosphere. HCI in the presence of water can

form acid rain (hydrochloric acid) in the launch area as well as

deposit a chlorine-containing gas directly into the ozone layer of

the stratosphere. These issues were of sufficient concern that the

original U.S. Air Force-NASA joint program office for the Ad-

vanced Launch System (ALS) would not consider solid rockets for

that application unless the propellants were reformulated to pro-

duce less than one percent by weight of HCI in the exhaust plume,

compared to the 21 percent for current propellants. As a result,

several alternative propellants that were perceived to be more

environmentally acceptable were formulated in the laboratory and

tested in subscale motors under U.S. Air Force-sponsored "clean

propellant" programs. Initially, existing solid propellant formula-

tions were modified to reduce the HCI content in the exhaust

plume; later formulations included totally new propellants that

contained non-chlorine oxidizers (these propellants were referred

to as "totally clean" propellants). All of these so--called "clean"

propellants have some serious drawbacks in one or more impor-

tant propellant characteristics: losses in performance (specific

impulse or density); difficulties in processing and/or reduced

physical properties and aging characteristics; humidity sensitiv-

ity; increased safety hazards during propellant processing or use;

limited ballistic tailoring; and reduced bonding capability. More-

over, many have significant increases in costs over contemporary

solid propellants using ammonium perchlorate (AP) as the oxidiz-

er. The chemistry of solid rocket propellants is the single most

important factor in determining the performance, safety, repro-

ducibility, reliability, and cost of a solid rocket propulsion system.

Departing from a well-established experience base, along with the

lack of understanding of the real environmental impact of chemi-

cal rocket exhaust, dictated the need to fully examine this issue

before changes in solid rocket propellant chemistry were war-

ranted.

It was decided to examine the environmental impact of all rocket

propellants, both solid and liquid. Table I lists the propellant com-

binations that were examined and the major exhaust products from

these propellants. The first propellant in the table is the standard

solid rocket propellant used in all space launch vehicles incorpo-

rating solid rocket boosters (SRBs) today; all current space launch

solid propellants use a rubber binder containing aluminum as the

primary fuel and AP as the oxidizer. The second formulation in the

table is a "clean" propellant that replaces a portion of the AP

oxidizer with sodium nitrate. As this propellant burns, most of the
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Prooellant System Maior Exhaust Products

Ammonium perchlorata . HCI, AI20 3, CO 2, CO*, N2. H2*, H20
Aluminum

Ammonium perchlorata . NaCI, AlsO 3, CO z, CO*, N 2, H=*, HzO
Sodium nitrate
Aluminum

Ammonium perchlorate . MgO, MgCI z, CO2, CO*, Nz, Hz*, H20
Magnesium

Ammonium nitrate .... AlsO 3 or MgO, N z, CO z, CO*, Hz*, H20
Magnesium or aluminum

Liquid oxygen ....... H20, Hff
Liquid hydrogen

Liquid oxygen ....... CO*, CO2, hydrocarbons, HzO
Hydrocarbon

N_O4 .............. N2, NOx, CO*, CO 2, H20
Dimethylhydrazlne

*Mostly consumed dudng afterbuming

Table I.
Chemical Propulsion Components

and Exhaust Species

HC1 produced is scavenged inside the combustion chamber to

form sodium chloride (NaCI), common table salt, as a combustion

product rather than HC1. The third propellant is also a "clean"

propellant and is sometimes referred to as the "Maalox rocket.'"

This propellant replaces the aluminum fuel with magnesium to

produce the oxide of magnesium metal (MgO) rather than alumi-

num oxide. Magnesium oxide in the presence of water forms mag-

nesium hydroxide, which is a strong base. Magnesium hydroxide

is the primary ingredient in Maalox for neutralizing stomach acid

(which is also HC1). The magnesium oxide in the rocket exhaust

neutralizes the HCI in the plume as it mixes with the water in the

ambient air and the water that is produced as part of the combus-

tion process, forming a magnesium chloride (MgCI__) salt in place

of HCI. The fourth propellant is referred to as a "totally clean"

propellant because it replaces all of the AP oxidizer with an ammo-

nium nitrate oxidizer to prevent any chlorine-containing com-

pounds from being formed. There are several candidate nitrate

oxidizers available, and many more energetic nitrate oxidizers are

in laboratory development, but the exhaust gas chemistry pro-

duced is quite similar to the one shown in the table. The last three

propellants are all-liquid rocket propellants used in various space

launch vehicles; the simplest chemistry is produced from liquid

hydrogen and liquid oxygen that forms water as the primary com-

bustion product with considerable free hydrogen (H2) present, as

the engines are generally run fuel-rich for improved reliability and

performance, h should be noted that all of the propellant combina-

tions produce large quantities of water and most produce carbon

monoxide (CO); carbon dioxide (CO2), and free hydrogen (H2) in

the exhaust plume. The storable bipropellant system using nitro-

gen tetroxide (N204) and unsymmetrical dimethylhydrazine

(UDMH) also produces free nitrogen and oxides of nitrogen. The

environmental impact assessment that was made assumed that all

of the hydrogen and carbon monoxide produced below an altitude

of 25 kilometers was converted to water and carbon dioxide as a

result of afterburning with the ambient air.

STRATOSPHERIC OZONE DEPLETION

Figure I depicts the various atmospheric zones surrounding the

earth. The stratosphere located approximately 13 to 50 kilometers

above the earth is particularly important to our environment be-

cause it contains a low concentration of ozone (03) that acts as a

protective shield from damaging ultraviolet radiation from the

sun.

Fig. 1. Stratospheric Ozone Effects

Figure 2 presents the chemical and photochemical processes that

are important in the formation ofozone from molecular oxygen in

the stratosphere and the reactions associated with ozone destruc-

tion. "_The process is very dynamic in that ozone is continuously

being produced and destroyed by naturally occurring photochemi-

cal processes in the stratosphere.
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Fig. 2. Natural Stratospheric Ozone Pathways
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Figure 3 summarizes the naturally occurring ozone-depleting

chemistries into nitrogen, hydrogen, oxygen and chlorine) It is

important to note that all are catalytic cycles in that the ozone-de-

pleting species is regenerated such that it can re-enter the cycle to

destroy additional ozone molecules. The asterisk on the chart re-

flects those ozone-depleting chemistries that are affected by rock-

et propulsion, i.e., nitrogen, hydrogen, and chlorine. It is interest-

ing to note that chlorine chemistry is responsible for the least

amount of ozone destruction. The reason chlorine chemistry has

been of most concern is because it is the one that human activity

has contributed to most.

25 to 30 km Altitude (%) Total Stratosphere (%)

Nitrogen"

"NO * 03 _ NO= + 02 70 32

NO 2 * O _ NO + 02

Hydrogen"

OH ÷ 03 _ HO2 ÷ 02 10 26

O. HO2-_OH. O2

_HO + O _,HH + O 3 -+ HO ÷ 02

.o2
Oxygen

O + 03 -_ 202 10 23

Chlorine °

_CI + 03 --_ CIO ÷ 02 10 19

CIO + O-_ CI ÷ O 2

• _levlm! to ©hemlCld_nuHa,_n exlwusl

Fig. 3. Relative Importance of Various Catalytic
Stratospheric Ozone Depletion Cycles

Analysis of more recent data obtained from aircraft flying in the

lower part of the stratosphere has cast some doubt on the predomi-

nance of nitrogen oxide reactions to ozone destruction in the lower

stratosphere, s In the spring of 1993, for the first time, atmospheric

researchers were able to obtain data from an instrument-laden

aircraft that observed all the important families of radicals that

affect ozone, i.e., chlorine, bromine, nitrogen, and hydrogen. A

new instrument measured hydroxyl (OH) and hydroperoxyl (HOe)

radicals as the aircraft crisscrossed the stratosphere. The data ob-

tained indicated that the hydrogen radical family may be a more

important natural loss process for ozone than the nitrogen oxide

cycles. These conclusions were also supported by more recent

computer models that include heterogeneous chemistry; computer

models used in the past based upon homogeneous chemistry alone

predicted that nitrogen oxides were the predominant ozone de-

struction mechanism.

Figure 4 pictorially represents the differences between an all-li-

quid propulsion system and the Space Shuttle, which uses both

solid rocket and liquid propulsion. The exhaust products of inter-

est--HCl, H:O, and He_eposited in the troposphere by either

vehicle are of little concern because He afterburns to H20, and both

HCI and H:O are quickly removed by raining out in the tropo-

sphere. Approximately two-thirds of the exhatlst produced from

the Space Shuttle SRBs is deposited in the troposphere, and the

remainder is exhausted into the stratosphere where the boosters

burn out. It is also important to note that the exhaust products

produced--H:O, He. and HCI_o not react directly with ozone;

Exhaust Product Activation

H2 + OH -> H20 * H

H20 + 0 ID -> 20H

OH + HCl -> H20 + C}

l l--i_L Hal

STRATOSPHERE

13 km

Ozone Depletion Reactions

14, OH, Cl + 03 -> 02(catalytic)

AlI-Llqulds

TROPOSPHEREt I I I "2° C,=ula_. Into
H2 Troposphere

Out of

Atmosphere

Rempvsl Removal

HCI deposited in troposphere Is quickly removed

Water deposfled In troposphere Is not an Issue

Most H 2 deposited in the troposphere mixes with the air to form H20

Fig. 4. Mechanisms of Potential Effect of
Rocket Exhaust on Ozone

the ozone-reactive species (H, OH, C1) must be released from the

molecules in the plume before any ozone destruction can occur.

Much of the HC1 and water deposited into the lower portion of the

stratosphere is removed by circulation into the troposphere, and

considerable hydrogen deposited in the upper stratosphere is re-

moved by escaping into the mesosphere.

Figure 5 depicls the molar concentration of important exhaust

gases and where they are deposited from the Space Shuttle SRBs

and the Space Shuttle main engines (SSMEs). Ozone-reaction

chemistry is controlled by the molar concentration of the reacting

species and the chemical reaction kinetics associated with releas-

ing the reactive species and its subsequent reaction with ozone. It

was assumed that all of the rocket exhaust produced in the strato-

sphere stayed there to react with ozone and none of it circulated

into the troposphere or escaped into the mesosphere. It should be

noted from Fig. 5 that, even though the SRBs do generate a consid-

erable amount of HCI, from a molar basis, water and hydrogen are

the major exhaust products. Even though the SSMEs produce only

water and hydrogen, the SRBs, because of their much higher thrust

level, deposit nearly as much water and hydrogen into the strato-

sphere as the SSMEs; most of the SSME exhaust is deposited

above the stratosphere.

SRBExhaust SSMEExhaust
Species Species

i _+7 [] HC!
_÷7

le+7

0e+0
Troposphere Strldosphere Me'Ira-, Tropo_ptmre Strstol_phenl MeltO-,

Ionosphere Ionosphere
Dmpoldllon LOeMlon Deposition LO_ltlon

Fig. 5. Space Shuttle Exhaust Species

Much of the environmental concern with solid rocket motors was a

by-product of associating solid rocket-produced HCI with chloro-

fluorocarbons (CFCs). Figure 6 presents a schematic representa-
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Fig. 6. Effects of CFCs on Ozone
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tion of the CFC problem. CFCs are very chemically stable com-

pounds used in refrigeration, air conditioning systems, aerosol

products, imd many cleaning solvents. These compounds are man-

made chemicals thai wcrc designed to bc chemically inert for the

intended applications. As a result, there arc no natural processes in

the troposphere that will break down these chemicals until they

reach the stratosphere, where photolysis by ultraviolet radiation
releases chlorine atoms frt)n3 the CFCs. The released chlorine then

enters into a catalytic ozone destruction cycle. One of the major

problems with CFCs is the long life and tremendous reservoir of

these materials in discarded automobiles, refrigerators, air condi-

tioners, ctc., that provide a source of these chemicals to eventually

enter the stratosphere for huudrcds olycars. Unlike HC1, which is

washed out and removed as the stratospheric air circulates into the
tr()posphcrc, CFC,, are inert to mo:.,t chemical prclcesses in the

troposphere. II is interesting to note from Fig. 6 thai the chlorine

released in Ihc ,.Irato,,phcre from CFC,, is eventually removed by

the reactiou (_1"chlorine with stratospheric methane I(> form HCI,

which can then circulate to the troposphere and be removed. As

can bc sccn from Fig. 6, there is it significaut difference between

CFCs and ttCI from solid rocket exhaust. Ii1 fact. Ih¢[ormtlii+m of

//C/is the primary removal procc.x._/_r chlmim" ,hm/s rcle,._ed

./}'()t)l ('F('s in the stratosphere. Conventional wisdom indicates

that all CFCs that arc released to the atmosphere will eventually

make it Io the st ratosphcre, and will remain in the stralospherc until

their chlorine is rclcascd by pholodissociation frorn sunlight (a

pr(:.ccss that cannot bc awfidcd) in the form of active chlorine (CI)

atoms; the released chlorine atoms will continue to catalytically

dcstr.y ozone until the chlorine is lied up in a reservoir specie or

can bc removed by forming HCI+ However, HCI deposited directly

into the slralospherc from rockets must undergo a chemical re,re-

lion before the ozone destroying chlorine atoms can bc released.

HCI is not subject to pholodissociation. As a result, some of the

HCI deposited dircctly into the stratosphere may never release any

chh)rinc I",cforc it has the opp(Irlunity to circulate back into the

troposphere where it is readily rained out. Furthermore, HCI is a

naturally (x:curring chemical in the earth's atmosphere, with a

large natural reservoir of HCI in the troposphere and stratosphere

in contrast to the unnatural molecules of CFCs thai were engine-

ered by man.

Figure 7 is a projection of the cumulative global stratospheric

chlorine burden in parts per billion (ppb) over a 75-year time

frame from 1979 to 2054, assuming that the Montreal Protocol ban

on the production of Class 1 ozone depleting chemicals (ODCs) is

effective by 1996 as planned/' Superimposed on this chart is the

contribution to stratospheric chlorine in the form of hydrogen

chloride from all rocket launches which represents a steady-state

contribution of chlorine from HCI of approximately 0.003 ppb.

This assumes a world launch rate of solid rockets equivalent to one

Space Shuttle launch every month/This launch rate represents a

constant 40 percent increase in HCI deposited in the stratosphere

from solid rocket launches over what was actually achieved in

1993.

CUMULATIVE STRATOSPHERIC CHLORINE EQUIVALENT (ppb)
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Fig. 7. Levels of Chlorine in Stratosphere Will
Decrease Slowly Under Montreal Protocol

Figure g depicts the relative annual contributions from various

sources to the stratospheric chlorine burden, x Industrial halocar-

bon_tcrived chemicals, primltrily CFCs, producing 300 kilotons

per ye,']r, are a major contributor to stratospheric chlorine and are

the principle source of anthropogenic chlorine. Natural sources,

primarily methyl chloride (CH_CI) from the oceans and burning

vegetation, were estimated to add an additional 75 kilotons of

chii:.rinc to the stratosphere. Volcanoes Can inject HCI directly into

the stratosphere, and when major volcanic activity occurs, such as

the 1991 Mount Pinatubo eruption in the Philippines, it tends to

10+1_0 0 _

i 1,0000 -
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+o
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(h_ocarbon+
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Fig. 8. Relative Annual Contributions
to Stratospheric Chlorine
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overshadow all other sources during the rather short period of time

of volcanic activity. Volcanoes are very random and sporadic

sources of chlorine, but it was estimated that on a long-term aver-

age, volcanoes could inject anywhere from 100 to 1,000 kilotons

of chlorine in the form of HCI directly into the stratosphere on an

annual basis? The chlorine burden from SRBs producing HC1

adds less than 1 kiloton of chlorine to the stratosphere per year

based upon a flight rate of nine Space Shuttles and six Titan IV

launches per year. It should also be noted from Fig. 8 that, if we are

successful in eliminating all CFC production by 1996 as mandated

by the Montreal Protocol, we will still be adding 150 kilotons of

chlorine to the stratosphere some 50 years later as a result of the

long life and huge reservoir of these chemicals.

It should be noted in Fig. 8 that more recent data (represented by

the cross-hatched area) obtained from volcanic activity indicate

that only a small fraction of the HCI emitted from a volcano ever

reaches the stratosphere as hydrogen chloride gas.l° Data obtained

from Mount Pinatubo, along with detailed computer modeling

studies, indicated that less than 1 percent of the HCI gas emitted

from the vent of the volcano reached the stratosphere in that form;

more than 99 percent of the HC1 is rained out of the stratosphere by

the huge quantities of steam and water contained in the volcanic

cloud. The quantities of steam emitted from the volcano produce

roughly 1,000 times as much water as HCI while the volcanic

cloud rises and cools. Nevertheless, the Mount Pinatubo eruption
in June 1991 is estimated to have released 4.5 million metric tons

of HCI. Assuming only 1 percent of the HCI reached the strato-

sphere, it would still result in injecting 45 kilotons of chlorine into

the stratosphere, which is equivalent to approximately 545 flights

of the U.S. Space Shuttle.

More recent data obtained from measurements taken by strato-

spheric aircraft (represented by the cross-hatched area) have also

indicated less methyl chloride in the stratosphere than was origi-

nally thought.1_ As shown in Fig. 8, more recent data would reduce

the stratospheric loading of methyl chloride from oceans and bio-

mass burning from 75 kilotons to approximately 15 kilotons per

year. These more recent data would indicate that natural sources of

chlorine are considerably lower than was originally believed. If

chlorine contributions from CFCs are as high as predicted (300

kilotons per year), then these anthropogenic contributions to

stratospheric chlorine would be the major source of chlorine in the

stratosphere. In any event, the 0.79 kilotons per year of chlorine

from rocket launches remains small compared to CFCs or natural

sources of chlorine.

Figure 9 presents a Pareto chart of the stratospheric ozone-deplet-

ing chemistries and the portion that can be attributed to chemical

rockets. As can be readily seen, rocket contribution to stratospher-

ic ozone depletion is extremely small, representing approximately

0.03 percent of the ozone depletion from all other sources. There-

fore, based upon the current state of knowledge, it certainly would

not appear to be technically or financially responsible to spend

large sums of money trying to reduce the contribution of chemical

rockets to destruction of stratospheric ozone.

There have been several numbers published in the literature for the

magnitude of stratospheric ozone depletion due to solid rockets

over the past few years. These numbers are not inconsistent, but

ALLSOURCES

4o(/] t0._os) _ 1

ii:lJ. i i i,o.o.i
0

Nitrogen Hydrogen/ Oxygen Chlorlr_

Oxides Hydroxyl

Specie=
Note: Numbers In pwrlnthem |m cont rlbutk_Is from chemtcml propulsion

Rockets

Fig. 9. Chemical Removal of Stratospheric Ozone

represent different sets of conditions as shown in Fig. 10) 2Based

on a twa--dimensional (2-D) atmospheric computer model calcu-

lating local ozone depletion at a 40--kilometer altitude in the region

(I ,000 km by 1,000 km) above the launch site, long-term steady-

state stratospheric ozone depletion approaching 0.25 percent

would be calculated. This same analysis through the entire region-

al ozone column over the launch site reduces the ozone loss to less

than 0.1 percent, which is further reduced to approximately 0.006

percent on a global scale. The global ozone depletion numbers

presented in Fig. 9 are based upon first order approximations that

are roughly five times more conservative than the 2-I:) models

would predict, resulting in the 0.03 percent number shown. Since

global stratospheric ozone depletion calculations based on these

more sophisticated 2-D models (0.006 percent) have underpre-

dicted ozone losses by a factor of two over the past few years, it is

most probable that ozone depletion from rocket launches would

not exceed a steady-state reduction of more than 0.012 percent

based on the assumed yearly flight rate of nine Space Shuttles and

six Titan IV vehicles.

i 0.2

9

t I I ,¢o.1% I

i I I _ _ Assuming g Shuffle i

I I _ _ and 6 Tlton IV Launches I

0.0

Regional st 40 km Regional Column Global Global

(2-0 models) (2-0 models) (2-0 models) (1 st orcle¢ SlPf)rox)

Location

Fig.-10. Stratospheric Ozone Impact Due
to Solid Rocket Motor Exhaust

There have been news media reports linking the ozone reduction in

the stratosphere to rocket launches, and solid rocket motors in

particular. It is clear that 0.006 to 0.012 percent reductions cannot

be measured, especially when the natural annual variations in the

northern hemisphere have varied over 20 percent, as shown in Fig.

1I. Figure I I covers a 33-year period from 1957 to 1991.t3

7



Desusonalized Monthly Means --

I 1 [ i I I J
|g60 19E5 lg_: 1975 1960 19115 19g0 1995

YNr

Fig. 11. Large Natural Variations in
Stratospheric Ozone

Some people have been concerned that rockets may be creating an

ozone hole directly over the launch site arcas. As shown in Fig. 12,

a typical Space Shuttle trajectory is not even close to being verti-

cal, and, in fact, by the time the SRBs burn out near thc top of the

stratosphere, the Space Shuttle has as much down-range as verti-

cal altitude.

60 ........

2O

c [ I I I 1 I I
0 2o 4o 6o 80

Rltn_ (km)

Fig. 1:_. Typical Space Shuttle Trajectory

I
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Atmospheric scientists (Karol, Ozolin, and Rozanov _'_)from the

Main Geophysical Observatory in Russia have examined the im-

pact of rocket launches on local stratospheric ozone above the
launch site. These Russian scientists concluded that 50 launches

per year of either the U.S. Space Shuttle or Russian Energia would

not significantly impact local or global ozone depletion in the

stratosphere. Scaling the Russian data to an equivalent launch

model consisting of nine Space Shuttles and six Titan IV launches

per year results in good agreement with NASA's projection of

0.0065 percent global ozone depletion. Similar analysis conducted

by the European Space Agency for the Ariane V, 3 when scaled to

the same equivalent launch model, produced comparable results.

The Russian Scientists conducted time-dependent analytical cal-

culations of local ozone depletion in the rocket plume as it mixes

with the ambient air as the vehicle flies through the stratosphere.

Calculations were conducted for both the U.S. Space Shuttle (S)

and the Russian Energia(E) vehicle, as shown in Fig. 13. Figure 13

presents results at 40-- and 16-kilometer altitudes for both vehicles

up to one day after launch. 2Ozone destruction in the near field of

the rocket plume can bc very severe (>90 percent) within just a few

minutes 'after the launch vehicle enters the stratosphere; however,

the ozone concentration is totally restored to background levels

from natural mixing of the plume with surrounding air in this very

localized area within a few hours after launch. It is also interesting

to note that the magnitude of local ozone destruction is basically

the same for the U.S. Space Shuttle with its SRBs and the all-liquid

Russian Energia vehicle that does not produce any chlorine--con-

taining compounds in the exhaust. The only difference noted be-

tween the two vehicles is that the non-chlorine Energia destroys

ozonemore quickly, but recovers faster, than the Space Shuttle;

this recovery time difference is attributed to the HCI, as shown in

Fig. 13.
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Fig. 13. Shuttle and Energia Impact on Local Ozone

The Russian atmospheric scientists Kar01 et a1.14analyzed two sets

of conditions to determine the local impact of NO, and chlorine

production from the Space Shuttle vehicle. Figure 14 presents the

impact on local column ozone changes comparing the baseline

calculations shown in Fig. 13 (Scenario A) assuming HC1 and NO,,

are the primary ozone_lepleting chemistries in the plume with a

second scenario (Scenario B) with decreased NO, production and

all chlorine from the SRBs in the form of chlorine gas (Clz) rather

than HCI. As shown in Fig. 14, total column ozone destruction at

any given time is less than 8 percent and is restored to normal

background levels within a few hours after launch. The production

of C12 rather than HCI results in slightly more ozone destruction,

but does not significantly affect the recovery time.

Computer modeling work conducted by Denison et al. at TRW _5

suggests that HCI from solid rocket plumes may be quickly con-

vened to C12 at high altitudes from afterburning. The TRW paper

describes model calculations examining th e local effects of solid

rocke(exhaust on stratospheric ozone at different altitudes. The

afterbuming calculations suggest that a significant fraction of the

±
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Fig. 14. Local Column Ozone Changes
From Shuttle Launch

HCI is converted to Ci2 in the hot plume--about 20 percent at an

18-kilometer altitude and as much as 80 percent at 30 kilometers.

Ozone depletion is extensive during the first few minutes follow-

ing a launch, but quickly recovers (within about one-half hour) to

near background levels. It was found that the rate of plume disper-

sion has a very significant effect on local ozone loss, The differ-

ences in plume dispersion rates explains, at least in part, the differ-

ences between the Karol results ]4 and the TRW resultsfl 5 Both

studies indicated local total column ozone depletion less than 10

percent; the major differences noted were in the time it took for

recovery. The TRW results predicted much more rapid loss and

recovery within seconds to minutes while the Karol results indi-

cate somewhat similar impacts with total recovery occurring over

a much longer period of time, i.e., a few hours.

Plume modeling work reported by Dr. R. B. Cohen of the Aero-

space Corporation]6 has also indicated that high temperature after-

burning reactions may rapidly convert the HC1 to active C12 and CI

in the plume in the stratosphere. More recent work done by Ger-

man atmospheric research scientist, Dr. B. C. Kruger from the

Institute for Geophysics and Meteorology at the University of

KlJln, ]7 has examined the influence of chlorine production from

solid-fuel rockets on local ozone depletion in the plume. Dr. Krug-

er's paper is a model study of the impact of the chlorine emissions

from the Space Shuttle SRBs at various altitudes as a function of

distance from the center of the plume as the plume evolves over
time. Chlorine emissions were considered both in the form of HC1

and C12. The cases run were 100 percent HC1, 95 percent HCI and 5

percent CI2, and 50 percent HCI and 50 percent CI2. For the case of

100 percent HC1, Kruger predicts that ozone destruction will begin

between 5 and 10 minutes after launch as the HCI reacts and begins

to release its chlorine. The maximum depletion at 35 kilometers is

about two percent at the center of the plume and lasts for more than

24 hours. At lower altitudes, the ozone depletion is much less--

about 0.19 percent at 28.5 kilometers, and about 0.'_6 percent at

31.9 kilometers in altitude. Maximum column ozone depletion

values given by Kruger are related to what an instrument with a

given field of view (FOV) in orbit would see. In the case of 100

percent HCI, for a true vertical trajectory, the maximum column

ozone decrease seen for a i,664-km 2 (41 km x 41 kin) FOV instru-

ment like the NASA total ozone mapping spectrometer (TOMS)

instrument would be about 0.5 percent. For the case of 50 percent

chlorine and 50 percent HC1, the ozone is virtually depleted at high

altitudes within 10 minutes of the launch. Maximum column

ozone depletion which would be observed by an instrument with a

1,664-km 2 FOV is about 3 percent over the entire FOV. The pre-

dicted column values are somewhat lower than those calculated by

Karol ]4 and predict that the TOMS insmament would not have

sufficient resolution to observe the impact on the local stratospher-

ic ozone column from a Space Shuttle launch.

Thermochemical equilibrium calculations for Space Shuttle SRB

propellant indicate HCI will be produced rather than C12. Exper-

imental sampling of solid rocket combustion gases at ground level

has indicated that HC1 is the major combustion product at a ratio of

approximately 10:1 over CIz. There have not been any plume

chemistry measurements made at stratospheric altitudes. There

are very limited experimental data for determining the effects of

rocket plumes on stratospheric ozone depletion; however, what

data are available telid to support Russian scientific analysis.

Ozone reductions greater than 40 percent were measured in the

exhaust trail of a Titan III SRB at an altitude of ! 8 kilometers

approximately 13 minutes after launch. Is Considerable NOx for-

mation was also detected in the plume and the ozone depletion was

attributed to NOx at that time; chlorine measurements were not

made. NASA has made several measurements of total column

ozone concentration directly over Kennedy Space Center (KSC)

after eight different Space Shuttle launches with the TOMS aboard

the NIMBUS-7 satellite. ]9 No evidence of ozone depletion was

ever detected; however, the measurements that were taken were

generally obtained several hours after launch. These data appear to

be consistent with the Russian scientific calculations ]4 and the

Kruger analysis _7 which would predict that normal background

levels of ozone are restored within a few hours of the launch and

the ozone loss at any given time would be below the threshold of

detectability within the FOV of the TOMS instrument.

Most of the local and global ozone depletion calculations to date

have considered homogeneous gas phase chemical reactions only.

Recent studies of the Antarctic ozone hole have identified the

importance of heterogeneous chemistries on ice crystals in the

polar stratospheric clouds. Decreases in mid-latitude ozone levels

have also been attributed to catalytic activity on the surface of

finely divided particulate matter injected directly into the strato-

sphere from volcanic eruptions. The question arises, "Can finely

divided aluminum oxide (A1203) from SRBs, soot from liquid

oxygen and hydrocarbon boosters, and ice contrails from all

rockets also provide catalytic surfaces for ozone-destroying

chemistries?"

There have been few published calculations for the potential im-

pact of rockets in this area. The limited heterogeneous modeling

of solid rocket plumes by several researchers has indicated that

the effects on local plume chemistry are minor, and, therefore, the

influence on local ozone depletion, if any, appears to be

small. ]5.]7,20.2]The impact on global ozone depletion from rocket-

produced aerosols is even less significant, i.e., could be responsi-

ble for about 1/1,000th of the current ozone depletion associated



withtheunperturbedbackgroundheterogeneouschemistryinthe
absenceofvolcanicaerosols.22

Analysisof data from volcanoes can provide good qualitative

insight as to the potential magnitude of particulate matter from

solid rockets. Figure 15 shows the estimated total integrated sur-

face area of finely divided particulate matter injected into the

stratosphere by the E1 Chichon volcanic eruption in Mexico in

1982. 23 This figure also compares the natural background levels of

stratospheric aerosols to the total quantities of aluminum oxide

deposited by nine Space Shuttle and six Titan IV launches if all of

the A1203 were deposited in the same region as the E1 Chichon

cloud. The rocket contribution does not include any ice or soot

particles from the launch vehicles.
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Fig. 15. Stratospheric Surface Area
Available for Heterogeneous Chemistry

Figure 16 shows the maximum estimated ozone depletion in the

region of the E1Chichon-induced stratospheric cloud as compared

to the estimated ozone depletion from natural aerosols and rockets

producing A1_O3.23"24As can be seen from the figure, the ozone

destruction within the cloud of E1Chichon could be as high as 17

percent, as compared to the SRB contribution of less than 0.0007

percent on the same basis.
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Fig. 16. Estimated Effects of Heterogeneous Chemistry
on Stratospheric Ozone
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The 1991 eruption of Mount Pinatubo in the Philippines was far

more powerful than El Chichon. Atmospheric scientists believe

that the aerosols from this volcano were probably responsible for

the intensification of global ozone thinning noted since the erup-

tion of Mount Pinatubo. 5

ACID RAIN

Since SRBs produce hydrochloric acid in the exhaust plume, there

has been considerable concern over the impact that this acid rain

may have on the global environment, as well as local launch sites.

All rockets produce some acid rain as a result of the formation of

NOx in the near field of the plume from afterburning that forms

nitric acid in the presence of water. The studies presented here only

consider HC1 from solid rockets as a source of acid rain.

Figure 17 depicts the annual U.S. contribution to the global acid

rain problem from various anthropogenic sources, including solid

rockets. 25'26'27As can be seen from the figure, other energy conver-

sion processes such as heating and power production (33,000 ki Io-

tons), transportation (9,100 kilotons), and industrial processes

(6,100 kilotons) clearly overshadow the acid production (3 kilo-

tons) from solid rocket launches. Most of the acid produced from

these industrial activities is in the form of sulfuric acid, with signif-

icant quantities of nitric and hydrochloric acid also produced.

Without considering other countries in the world, rockets are re-

sponsible for less than 0.006 percent of acid rain produced by U.S.
industries alone.
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Fig. 17. Annual Contribution to Acid Rain
(Continental U.S. Data)

Figure 18 reflects sources of hydrochloric acid other than rockets.9

As can be seen in Fig. 18, natural sources of HCI from the oceans

(330,000 kilotons), volcanoes (5,000 kilotons), and coal burning

processes (1,980 kilotons) make solid rockets (3 kilotons) an in-

significant contributor to global atmospheric HCI releases. It is

estimated that launching nine Space Shuttles and six Titan IVs

each year would deposit the same amoimt of HC! into the tropo-

sphere as is produced by the Atlantic ocean each year just east of

the KSC launch site in an area of the ocean represented by a square

less than 30 miles on each side. On a global scale, HCI produced by

rocket launches is less than 0.001 percent of the total HC1 produc-

tion from the ocean alone and only 0. f5 percent of anthropogenic

sources, primarily coal buming power plants in the United States.
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On a local scale, acid rain from SRBs is more significant and does

have near-field acidification effects in the vicinity of the launch

site? RThese effects are limited to a very localized area within less

than one-half mile from the launch pad directly in line with the

SRB flame trenches, as shown in Fig. 19. Some plant and small

fish (minnows) mortalities occur in the lagoon area just north of

the launch pad, less than 0.1 square mile of area (which is much

smaller than the launch pad itself). Catch basins for the sound

suppression water is neutralized after each launch and the pre- and

post-launch environmental conditions are documented on each

Space Shuttle launch.

N

Fig. 19. Acid Rain: Near-Field Deposition Area

TOXICITY

Hydrochloric acid is the most toxic substance associatcd with

cured solid propellants and it is only produced by combustion.

Storable liquid bipropellants consisting of nitrogen tetroxidc

(N,O4) and hydrazine compounds are far more toxic, but have

been safely and routinely handled at various launch sites for de-

cades. As shown in Table 1I, even in very minute concentrations,

these liquid bipropellants can be a significant health hazard while

HCI in minute quantities is only considered a corrosive or irri-

tant? 9

Liquid rocket components--nitrogen tetroxlde (N204) ' dlmethylhydrazlne,

end hydrazln_--are highly toxic, end handling is • local concern

• HCI is the most toxic of the common solid rocket exhaust species

Lethal

Concentration, 50% Additional Concerns at

(Inhaletlon, rats) Very Low Concentration Levels

N204 88 ppm/4 hr Pulmonary edema

Dlmethylhydrazlne 242 ppm/4 hr Suspected carcinogen

Hydrazlne 570 ppm/4 hr Suspected carcinogen

HCI 3,124 ppm/1 hr Corrosive/Irritant

Table II. Propellant and Exhaust Toxicity

Considerable concern has been raised relative to the toxicity and

corrosiveness of the SRB ground cloud as it drifts away from the

launch site. Figure 20 represents one of the rare Space Shuttle

launch plume conditions that drifted inland rather than out over the

ocean after the launch. 3° Bionetics Corporation has periodically

monitored HCI concentrations for NASA and routinely conducts

model calculations on HC1 concentration in the far field of the

Space Shuttle plume, as shown in Fig. 20. It should be noted that

the maximum HC1 concentration in the ground cloud of 0.9 parts

per million is well below the American Conference of Govern-

mental Industrial Hygienists' recommended threshold limit value

(TLV) of 5 parts per million for long-term continuous exposure (8

hours per day_40 hours per week). HC1 concentrations measured

in the path of the Titan III SRB ground cloud as it drifted several

kilometers from the launch site at Vandenberg AFB have also been

well below the 5 ppm threshold limit values, i.e., 0.005 ppm to0.5

ppm. Aircraft fly-throughs of the stabilized exhaust plumes of the

Titan III and Space Shuttle at 1 to 2 kilometers above ground level

have measured HC1 concentrations at the TLV of 5 ppm for I0 to

60 minutes after launch? I

Fig. 20. Toxicity of Shuttle Exhaust Plume
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There have been some published studies that have suggested an

association of aluminum compounds with Alzheimer's disease.

Solid rockets consume less than 0.01 percent of the 69 billion

pounds of aluminum metal produced in the U.S. each year, and

approximately 8 percent of the earth's crust consists of aluminum

compounds, such as oxides, silicates, etc. Furthermore, many

pharmaceuticals, food additives, and health care products (de-

odorants, for instance) contain aluminum compounds. To prevent

people from throwing away their aluminum cookware and stop

drinking from aluminum beverage cans, the U.S. Food and Drug

Administration (FDA), the Alzheimer's Disease and Related Dis-

orders Association, and the U.S. Environmental Protection

Agency (EPA) released statements in 1989 that there was no evi-

dence to support the hypothesis that aluminum contributed to Alz-

heimer's disease.

GLOBAL WARMING

It has been postulated by several scientists that production of cer-

tain gases, such as carbon dioxide (CO2), from the continued bum-

ing of fossil fuels could eventually cause more of the sun's energy

to be trapped in the earth's atmosphere, resulting in global warm-

ing or a greenhouse-type effect. As shown in Fig. 21, the amount

of CO2 produced from chemical rockets is extremely minute, rep-

resenting less than 0.00004 percent of anthropogenic sources of

CO2.27, 32

RELATIVE ANNUAL CONTRIBUTIONS

TO ATMOSPHERIC CO 2

0

Combustion Natural Rockets

THE CONTRIBUTION OF ROCKET EXHAUST CO', TO THt-

GREENHOUSE EFFECZJ_LFTSTGNIFICANT

Fig. 21. Greenhouse Effect Gases

It has also been suggested that particles from rocket launches

could also contribute to global warming conditions or possibly

global cooling. As indicated earlier, aluminum oxide deposited

into the stratosphere by SRBs is so small that it would take nearly

300,000 Space Shuttle launches to equal a volcano the size of El

Chichon.

CONCLUSIONS

Based UPOn our current state Of understanding of the earth's atmo-
sphere, the following conclusions can be drawn relative to the

impact of chemical rocket launches:

12

i. The environmental impact of chemical rocket propulsion is

extremely small, i.e., annual global stratospheric ozone deple-

tion and tropospheric acid rain contributions are estimated to

be less than 0.01 percent.

2. There is no significant difference in local stratospheric ozone

depletion from the U.S. Space Shuttle with its solid rocket

boosters and the all-liquid Russian Energia launch vehicle,

and the impact is small even at launch rates as high as 50 flights

per year of either vehicle.

3. Contrary to manmade CFCs, chemicals released from rockets

are not foreign to the environment, but represent an extremely

small fraction of large natural reservoirs of these materials in

the atmosphere.

4. As a potential source of chlorine in the stratosphere, all rocket

launches combined produce less than 0.25 percent of the chlo-

rine introduced by CFCs on an annual basis. Enactment of the

ban on the production of CFCs by 1996 will eliminate 99.75

percent of the current anthropogenic sources of new chlorine

that could eventually find its way to the stratosphere.

5. The impact on the potential for global warming due to CO2

from chemical rockets is minuscule (less than 0.00004 per-

cent).

6. Local launch site area acidification is minor and manageable.

7. There is no rocket system that is totally "clean," and the envi-

ronmental improvements available appear to be very limited.

The amount of energy released to place objects into earth orbit

will cause some minor damage to the earth's atmosphere inde-

pendent of rocket chemistry.

8. The benefits of obtaining global weather and environmental

data from satellites and space laboratories in earth orbit far

outweigfi the minor environmental impacts of placing these

assets into space.

RECOMMENDATIONS

Recommendations for further work are primarily focused on im-

proved atmospheric computer modeling, en_virpnmental data

gathering, and establishing reasonable environmental criteria for

future |aunch Systems. These following rec0mmendati_ _

summarized: _:

I. More measured data need to be obtained to verify the minimai

impacts ihat are being projected.

2. Atmospheric computer modeling, which includes both homo-
geneous and heterogeneous chemistry, needs to reflect actual

measured conditions for improving confidence in future pro- =

jections and assessing effectiveness of potential mitigating

strategies. These models need to include afterbuming, equi-

librium and non-equilibrium plume chemistry and combined

exhaust gas chemistry from mixed propulsion launch ve- i
hicles.

3. "Clean" solid propellant work should be renamed "alternative

propellants" and continued on a laboratory scale until more

atm0sphedc experimental data are available to verify the

minimal environmental impact conclusions that have been i
drawn to date.

z



4. New launch system development should include criteria for

assessment of the environmental impacts along with safety,

performance, reliability, and cost requirements.

5. A detailed environmental-cost-benefit-risk analysis should

be conducted for any new launch system, and any potential

environmental benefits that are identified should be adequate-

ly demonstrated and verified prior to incorporation into the

launch vehicle.

Based upon the environmental impact studies conducted to date,

there is no reason to modify any launch vehicles or change any

propellant chemistry at this time.
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