
N95- 3222 -

TDA ProgressReport 42-121
May 15, 1995

Multiple Turbo Codes for Deep-Space
Communications

D. Divsalar and F. Pollara

Communications Systems ResearchSection

In this article, we introduce multiple turbo codes and a suitable decoder structure

derived from an approximation to the maximum a posteriori probability (MAP)
decision rule, which is substantially different from the decoder for two-code-based

eneoders. We analyze the effect of interleaver choice on the weight distribution of

the code, and we describe simulation results on the improved performance of these
new codes.

I. Introduction

Coding theorists have traditionally attacked the problem of designing good codes by developing codes
with a lot of structure, which lends itself to feasible decoders, although coding theory suggests that codes

chosen "at random" should perform well if their block size is large enough. The challenge to find practical

decoders for "almost" random, large codes has not been seriously considered until recently. Perhaps the
most exciting and potentially important development in coding theory in recent years has been the

dramatic announcement of "turbo codes" by Berrou et al. in 1993 [1]. The announced performance of

these codes was so good that the initial reaction of the coding establishment was deep skepticism, but

recently researchers around the world have been able to reproduce those results [3,4]. The introduction

of turbo codes has opened a whole new way of looking at the problem of constructing good codes and
decoding them with low complexity.

It is claimed these codes achieve near-Shannon-limit error correction performance with relatively simple
component codes and large interleavers. A required Eb/No of 0.7 dB was reported for a bit error rate

(BER) of 10 -5 [1]. However, some important details that are necessary to reproduce these results were

omitted. The purpose of this article is to shed some light on the accuracy of these claims and to extend
these results to multiple turbo codes with more than two component codes.

The original turbo decoder scheme, for two component codes, operates in serial mode. For multiple-

code turbo codes, we found that the decoder, based on the optimum maximum a posteriori (MAP) rule,
must operate in parallel mode, and we derived the appropriate metric, as illustrated in Section III.

II. Parallel Concatenation of Convolutional Codes

The codes considered in this article consist of the parallel concatenation of multiple convolutional

codes with random interleaver s (permutations) at the input of each encoder. This extends the analysis
reported in [4], which considered turbo codes formed from just two constituent codes• Figure 1 illustrates

66

Acknowledgments

The author would like to thank Vince Pollmeier, Sam Thurman, and Pieter

Kallemeyn for their valuable suggestions and insights for this study. Also, Peter

Wolff's help in using the MIRAGE software set is deeply appreciated.

References

[1] T. W. Hamilton and W. G. Melbourne, "Information Content of a Single Pass of
Doppler Data From a Distant Spacecraft," JPL Space Programs Summary 37-39,

March-April 1966, vol. III, pp. 18-23, May 31, 1966.

[2] S. W. Thurman, "Deep-Space Navigation With Differenced Data Types
Part I: Differenced Range Information Content," The Telecommunications and

Data Acquisition Progress Report _2-103, July-September 1990, Jet Propulsion

Laboratory, Pasadena, California, pp. 47-60, November 15, 1990.

[3] J. R. Guinn and P. J. Wolff, "TOPEX/Poseidon Operational Orbit Determi-
nation Results Using Global Positioning Satellites," AAS Paper 93-573, pre-

sented at the AAS/AIAA Astrodynamics Specialist Conference, Victoria, British

Columbia, Canada, August 16-19, 1993.

65

U

Xli

11

u2

_t++...j
N+

gN

Fig. 1. Exampleof encoder with three codes.

Xlp

_,-X2p

t.-X3p

a particular example that will be used in this article to verify the performance of these codes. The

encoder contains three recursive binary convolutional encoders, with M_, M2 and M3 memory cells,
respectively. In general, the three component encoders may not be identical and may not have identical

code rates. The first component encoder operates directly (or through _rz) on the information bit sequence

u = (Ul,-.., ug) of length N, producing the two output sequences Xl_ and x_p. The second component

encoder operates on a reordered sequence of information bits, u2, produced by an interleaver, 7r2, of
length N, and outputs the sequence X2p. Similarly, subsequent component encoders operate on a reordered

sequence of information bits, u j, produced by interleaver _rj, and output the sequence xjp. The interleaver

is a pseudorandom block scrambler defined by a permutation of N elements with no repetitions: A

complete block is read into the the interleaver and read out in a specified (fixed) random order. The
same interleaver is used repeatedly for all subsequent blocks. Figure 1 shows an example where a rate

r = 1/n = 1/4 code is generated by three component codes with M_ = kI_ = A/3 = M = 2, producing

the outputs x_+ = u, Xtp = u • 9b/ga, X2p = U2 ' gb/ga, and X3p = u3 • gb/ga (here 7rt is assumed to be

an identity, i.e., no permutation), where the generator polynomials ga and !]b have octal representation

(7)oct_z and (5)o_t_z, respectively. Note that various code rates can be obtained by proper puncturing

of Xlp, X2p, X3p, and even x_+ if the decoder works (for an example, see Section IV). The design of the

constituent convolutional codes, which are not necessarily optimum convolutional codes, is still under

investigation. It was suggested in [5] that good codes are obtained if g_ is a primitive polynomial.

We use the encoder in Fig. 1 to generate an (n(N + M), N) block code, where the M tail bits of

code 2 and code 3 are not transmitted. Since the component encoders are recursive, it is not sufficient to

set the last M information bits to zero in order to drive the encoder to the all-zero state, i.e., to terminate

the trellis. The termination (tail) sequence depends on the state of each component encoder after N bits,
which makes it impossible to terminate all component encoders with M predetermined tail bits. This

issue, which had not been resolved in previously proposed turbo code implementations, can be dealt with

by applying the method described in [4], which is valid for any number of component codes.

67

A. Weight Distribution

In order to estimate the performance of a code, it is necessary to have information about its minimum

distance, weight distribution, or actual code geometry, depending on the accuracy required for the bounds

or approximations. The challenge is in finding the pairing of codewords from each individual encoder,
induced by a particular set of interleavers. Intuitively, we would like to avoid joining low-weight codewords

from one encoder with low-weight words from the other encoders. In the example of Fig. 1, the component
codes have minimum distances 5, 2, and 2. This will produce a worst-case minimum distance of 9 for the

overall code. Note that this would be unavoidable if the encoders were not recursive since, in this case, the

minimum weight word for all three encoders is generated by the input sequence u = (00. • • 0000100. • • 000)

with a single "1," which will appear again in the other encoders, for any choice of interleavers. This
motivates the use of recursive encoders, where the key ingredient is the recursiveness and not the fact

that the encoders are systematic. For our example, the input sequence u = (00-..00100100...000)

generates a low-weight codeword with weight 6 for the first encoder. If the interleavers do not "break"
this input pattern, the resulting codeword's weight will be 14. In general, weight-2 sequences with

2 + 3t zeros separating the l's would result in a total weight of 14 + 6t if there were no permutations. By

contrast, if the number of zeros between the ones is not of this form, the encoded output is nonterminating
until the end of the block, and its encoded weight is very large unless the sequence occurs near the end

of the block.

With pernmtations before the second and third encoders, a weight-2 sequence with its l's separated

by 2 + 3tl zeros will be permuted into two other weight-2 sequences with l's separated by 2 + 3ti zeros,

i = 2, 3, where each ti is defined as a multiple of 1/3. If any ti is not all integer, the corresponding encoded

output will have a high weight because then the convolutional code output is nonterminating (until the
2 a

end of the block). If all ti's are integers, the total encoded weight will be 14 + _-:_=1 t_. Thus, one of the
considerations in designing tile interleaver is to avoid integer triplets (tl,t2,t3) that are simultaneously

small in all three components. In fact, it would be nice to design an interleaver to guarantee that the
3

smallest value of _i=1 t.i (for integer ti) grows with the block size N.

For comparison, we consider the same encoder structure in Fig. 1, except with tile roles of ga and

gb reversed. Now the minimum distances of the three component codes are 5, 3, and 3, producing an
overall mininmm distance of 11 for the total code without any permutations. This is apparently a better

code, but it turns out to be inferior as a turbo code. This paradox is explained by again considering

the critical weight-2 data sequences. For this code, weight-2 sequences with 1 + 2tl zeros separating the

two l's produce self-terminating output and, hence, low-weight encoded words. In the turbo encoder,

such sequences will be pernmted to have separations 1 + 2t_, i = 2, 3, for the second and third encoders,
where now each t_ is defined as a umltiple of 1/2. But now the total encoded weight for integer triplets

3
(tl, t2, t3) is 11 + _=_ t_. Notice how this weight grows only half as fast with _=1 t_ as the previously

calculated weight for the original code. If _i3=l t_ can be made to grow with block size by the proper
choice of an interleaver, then clearly it is important to choose componcnt codes that cause the overall

weight to grow as fast as possible with the individual separations ti. This consideration outweighs the
criterion of selecting component codes that would produce the highest minimum distance if unpermuted.

There are also many weight-n, n = 3, 4, 5,..., data sequences that produce self-terminating output

and, hence, low encoded weight. However, as argued below, these sequences are much more likely to be

broken up by the random interleavers than the weight-2 sequences and are, therefore, likely to produce

nonterminating output from at least one of the encoders. Thus, turbo code structures that would have
low mininmm distances if unpermuted can still perform well if the low-weight codewords of the component

codes are produced by input sequences with weight higher than two.

B. Random Interleavers

Now we briefly examine the issue of whether one or more random interleavers can avoid matching small

separations between the l's of a weight-2 data sequence with equally small separations between the l's of

68

its permuted version(s). Consider, for example, a particular weight-2 data sequence {... 001001000...),
which corresponds to a low-weight codeword in each of the encoders of Fig. 1. If we randomly select an

interleaver of size N, the probability that this sequence will be permuted into another sequence of the

same form is roughly 2/N (assuming that N is large and ignoring minor edge effects)• The probability

that such an unfortunate pairing happens for at least one possible position of the original sequence

(... 001001000...) within the block size of N is approximately 1 - (1 - 2/N) N _ 1 - e -2. This implies

that the minimum distance of a two-code turbo code constructed with a random permutation is not likely

to be much higher than the encoded weight of such an unpermuted weight-2 data sequence, e.g., 14 for the
code in Fig. 1. (For the worst-case permutations, the dram of the code is still 9, but these permutations

are highly unlikely if chosen randomly.) By contrast, if we use three codes and two different interleavers,
the probability that a particular sequence (... 001001000...) will be reproduced by both interleavers is
only (2/N) 2. Now the probability of finding such an unfortunate data sequence somewhere within the

block of size N is roughly 1 - [1 - (2/N) 2] N ,_, 4/N. Thus, it is probable that a three-code turbo code

using two random interleavers will see an increase in its minimum distance beyond the encoded weight

of an unpermuted weight-2 data sequence. This argument can be extended to account for other weight-2

data sequences that may also produce low-weight codewords, e.g., (..-00100(000) t 1000...), for the code

in Fig. 1. For comparison, let us consider a weight-3 data sequence such as (... 0011100...), which for our

example corresponds to the minimum distance of the code (using no permutations). The probability that

this sequence is reproduced with one random interleaver is roughly 6/N _, and the probability that some

sequence of the form (... 0011100...) is paired with another of the same form is 1 - (1 -6/N2) y _ 6IN.
Thus, for large block sizes, the bad weight-3 data sequences have a small probability of being matched with
bad weight-3 permuted data sequences, even in a two-code system. For a turbo code using three codes and

two random interleavers, this probability is even smaller, 1 - [1 - {6/N2) 2] N _ 36/N3. This implies that

the minimum distance codeword of the turbo code in Fig. 1 is more likely to result from a weight-2 data

sequence of the form (.-. 001001000...) than from the weight-3 sequence (... 0011100.- .) that produces

the minimum distance in the unpermuted version of the same code. Higher weight sequences have an

even smaller probability of reproducing themselves after being passed through the random interleavers.

For a turbo code using q codes and q- 1 interleavers, the probability that a weight-n data sequence will

be reproduced somewhere within the block by all q-1 permutations is of the form 1- [1 - (t3/Nn-l_q - 1] N
• L / J '

where _ is a number that depends on the welght-n data sequence but does not increase with block size

N. For large N, this probability is proportional to (1/N)"q-_-q, which falls off rapidly with N, when n

and q are greater than two. Furthermore, the symmetry of this expression indicates that increasing either

the weight of the data sequence n or the number of codes q has roughly the same effect on lowering this
probability.

In summary, from the above arguments, we conclude that weight-2 data sequences are an important

factor in the design of the component codes, and that higher weight sequences have successively decreasing

importance. Also, increasing the number of codes and, correspondingly, the number of interleavers, makes
it more and more likely that the bad input sequences will be broken up by one or more of the permutations.

The minimum distance is not the most important characteristic of the turbo code, except for its

asymptotic performance, at very high Eb/No. At moderate signal-to-noise ratios (SNRs), the weight

distribution for the first several possible weights is necessary to compute the code performance. Estimating
the complete weight distribution of these codes for large N and fixed interleavers is still an open problem.

However, it is possible to estimate the weight distribution for large N for random interleavers by using

probabilistic arguments. (See [4] for further considerations on the weight distribution).

C. Design of Nonrandom and Partially Random Interleavers

Interleavers should be capable of spreading low-weight input sequences so that the resulting codeword

has high weight. Block interleavers, defined by a matrix with v_ rows and _ columns such that N = v_ x v_,

may fail to spread certain sequences. For example, the weight-4 sequence shown in Fig. 2 cannot be broken

69

WRITE

O0 000

0 0

i001..-

0000_.
0000_...

i001'

0 0

_000. O0

Fig. 2. Examplewhere a block interleaver fails to
"break" the input sequence.

by a block interleaver. In order to break such sequences, random interleavers are desirable, as discussed

above. (A method for the design of nonrandom interleavers is discussed in [3]). Block interleavers are
effective if the low-weight sequence is confined to a row. If low-weight sequences (which can be regarded as

the combination of lower-weight sequences) are confined to several consecutive rows, then the vc columns

of the interleaver should be sent in a specified order to spread as much as possible the low-weight sequence.

A method for reordering the columns is given in [7]. This method guarantees that for any number of

columns vc = aq + r, (r < a - 1), the minimum separation between data entries is q - 1, where a is

the number of columns affected by a burst. However, as can be observed in the example in Fig. 2, the

sequence 1001 will still appear at the input of the encoders for any possible column permutation. Only

if we permute the rows of the interleaver in addition to its columns is it possible to break the low-weight

sequences. The method in [7] can be used again for the permutation of rows. Appropriate selection of a

and q for rows and columns depends on the particular set of codes used and on the specific low-weight

sequences that we would like to break.

We have also designed semirandom permutations (interleavers) by generating random integers i,

1 < i < N, without replacement. We define an "S-random" permutation as follows: Each randomly

selected integer is compared to S previously selected integers. If the current selection is equal to any

S previous selections within a distance of iS, then the current selection is rejected. This process is

repeated until all N integers are selected. The searching time for this algorithm increases with S and
is not guaranteed to finish successfully. However, we have observed that choosing S < v/N/2 usually

produces a solution in a reasonable time. Note that for S = 1, we have a purely random interleaver. In

the simulations, we used S = 31 with block size N = 4096.

III. Turbo Decoding for Multiple Codes

In this section, we consider decoding algorithms for multiple-code turbo codes. In general, the ad-

vantage of using three or more constituent codes is that the corresponding two or more interleavers have
a better chance to break sequences that were not broken by another interleaver. The disadvantage is

that, for an overall desired code rate, each code must be punctured more, resulting in weaker constituent
codes. In our experiments, we have used randomly selected interleavers and interleavers based on the

row-column permutation described above.

A. Turbo Decoding Configurations

The turbo decoding configuration proposed in [1] for two codes is shown schematically in Fig. 3. This

configuration operates in serial mode, i.e., "Dec 1" processes data before "Dec 2" starts its operation,
and so on. An obvious extension of this configuration to three codes is shown in Fig. 4(a), which also

operates in serial mode. But, with more than two codes, there are other possible configurations, such as
that shown in Fig. 4(b), where "Dec 1" communicates with the other decoders, but these decoders do

70

• • •

Fig. 3. Decoding structure for two codes.

(a)

(c)

• • o

I I I I
TIME

Fig. 4. Different decoding structures for three codes:
(a) serial, (b) master and slave, and (c) parallel.

not exchange information between each other. This "master and slave" configuration operates in a mixed

serial-parallel mode, since all other decoders except the first operate in parallel. Another possibility,

shown in Fig. 4(c), is that all decoders operate in parallel at any given time. Note that self loops are not

allowed in these structures since they cause degradation or divergence in the decoding process (positive

feedback). We are not considering other possible hybrid configurations. Which configuration performs

better? Our selection of the best configuration and its associated decoding rule is based on a detailed

analysis of the minimum-bit-error decoding rule (MAP algorithm), as described below.

B. Turbo Decoding for Multiple Codes

Let Uk be a binary random variable taking values in {0, 1 }, representing the sequence of information

bits u = (ul,..., UN). The MAP algorithm [61 provides the log likelihood ratio Lk, given the received
symbols y:

Lk = log P(uk = lly)

P(uk : 01y) (1)

l E,:_,=I P(YlU)]-Ij#k P(uj)

= og Eu:uk=0 P(Yl u) Hj#k P(uj)

P(-k = l)
+ log P(uk O) (2)

71

ENCODER 1

nli

Yli= p (2u_1) + nli

Ylp= p (2Xlp- 1) + nlp

nlp

Fig. 5. Channel model.

For efficient computation of Eq. (2) when the a priori probabilities P(uj) are nonuniform, the modified

MAP algorithm in [2] is simpler to use than the version considered in [1]. Therefore, in this article, we

use the modified MAP algorithm of [2], as we did in [4].

The channel model is shown in Fig. 5, where the nik's and the npk'S are independent identically

distributed (i.i.d.) zero-mean Gaussian random variables with unit variance, and p = vT2rEb/No is the

SNR. The same model is used for each encoder. To explain the basic decoding concept, we restrict

ourselves to three codes, but extension to several codes is straightforward. In order to simplify the

notation, consider the combination of permuter and encoder as a block code with input u and outputs

xi, i = 0, 1, 2, 3(x0 = u) and the corresponding received sequences yz, i = 0, 1,2, 3. The optimum bit

decision metric on each bit is (for data with uniform a priori probabilities)

u:=l P(y°Iu)P(ylIu)P(y21u)P(y3Iu)

Lk = log _u:u,=0 P(Y °tu)P(y'lu)p(y2lu)P(y31u)

(3)

but in practice, we cannot compute Eq. (3) for large N because the permutations 71"2,7r3 imply that Y2

and Y3 are no longer simple convolutional encodings of u. Suppose that we evaluate P(y_lu), i = 0, 2, 3

in Eq. (3) using Bayes' rule and using the following approximation:

N

P(ulY') _ 1-I/5'(uk) (4)

k=l

Note that P(ulY_) is not separable in general. However, for i = 0, P(uly0) is separable; hence, Eq. (4)

holds with equality. If such an approximation, i.e., Eq. (4), can be obtained, we can use it in Eq. (3) for

i = 2 and i 3 (by Bayes' rule) to complete the algorithm. A reasonable criterion for this approximation= . Define Z_k by
N

is to choose [Ik=l/5i(uk) such that it minimizes the Kullback distance or free energy [8,9]

(5)

where uk E {0, 1}. Then the Kullback distance is given by

eE,\, ,,,L,,

F(Ld = _ N eL,,)I-Ik_ (1+
log N eL,k)p(ulyi)

(6)

72

Minimizing F(I,i) involves forward and backward recursions analogous to the MAP decoding algorithm,

but we have not attempted this approach in this work. Instead of using Eq. (6) to obtain {/5} or,

equivalently, {Lik}, we use Eqs. (4) and (5) for i = 0,2,3 (by Bayes' rule) to express Eq. (3) as

Lk = f(Yl, Lo, L2, L3, k) + Lok + L2k + L3k (7)

where Lok = 2pyok and

f(Yl, Lo, L2, L3, k) = log _-':_u:uk=l P(Yll u) l-Ijck euj(L°j+L_j+L3D

u:uk=0 P(Yll u) Hick euJ(L"'+L2+L:'J}

We can use Eqs. (4) and (5) again, but this time for i = 0, 1, 3, to express Eq. (3) as

Lk = f(Y2, Lo, L1, L3, k) +]-ok + Llk + L3k

and similarly,

(8)

(9)

Lk = f(Ya, !_0, I_1,1_2, k) + Lok + Llk + L2k (10)

A solution to Eqs. (7), (9), and (10) is

Llk = f(yl,LO, L2,L3, k); L2k = f(ye,L0,Ll,L3, k); L3k = f(ya,Lo, L1,L2, k) (11)

for k = 1, 2,-.., N, provided that a solution to Eq. (11) does indeed exist. The final decision is then
based on

~ _ ~

Lk = L0k + Llk + L2k + L3k (12)

which is passed through a hard linfiter with zero threshold. We attempted to solve the nonlinear equations
in Eq. (11) for 1,1, 1,2, and L3 by using the iterative procedure

L(m+U
lk = c_m)f(yl, _ _(m) f(m) k) (13)0, JtJ 2 ,1_ 3 ,

for k = 1,2,..., N, iterating on m. Similar recursions hold for L (m) and L (m) The gain O_rn) should2k 3k "

be equal to one, but we noticed experimentally that better convergence can be obtained by optimizing
this gain for each iteration, starting from a value slightly less than one and increasing toward one with

the iterations, as is often done in simulated annealing methods. We start the recursion with the initial

condition I _0) = [,(2o) = i_(0) = L0. For the computation of f(.), we use the modified MAP algorithm

as described in [4] with pernmters (direct and inverse) where needed, as shown in Fig. 6 for block

decoder 2. The MAP algorithm always starts and ends at the all-zero state since we always terminate

the trellis as described in [4]. Similar structures apply for block decoder 1 (we assumed 7rl = I identity;
however, any 7rl can be used) and block decoder 3. The overall decoder is composed of block decoders

1Note that the components of the l_i's corresponding to the tail bits, i.e., Lik , for k = N + 1,..., N + M, are set to zerofor all iterations.

73

1

3

(m. 1)
2

Y
2

Fig. 6. Structure of block decoder 2.

connected as in Fig. 4(c), which can be implemented as a pipeline or by feedback. We proposed an

alternative version of the above decoder in [10]. At this point, further approximation for turbo decoding

is possible if one term corresponding to a sequence u dominates other terms in the summation in the

numerator and denominator of Eq. (8). Then the summations in Eq. (8) can be replaced by "maximum"

operations with the same indices, i.e., replacing _u:u_=i with max for i = 0, 1. A similar approximationU:_k _

can be used for L2k and L3k in Eq. (11). This suboptimum decoder then corresponds to a turbo decoder

that uses soft output Viterbi (SOVA)-type decoders rather than MAP decoders.

C. Multiple-Code Algorithm Applied to Two Codes

For turbo codes with only two constituent codes, Eq. (13) reduces to

L(m+l) (m) - ~(m)
lk =a 1 f(yl,L0,L2 ,k)

L_ +1) = a_'_) f(y2,Lo,L_m),k)

for k = 1,2,..., N and m = 1,2,..., where, for each iteration, a_ m) and a& m) can be optimized (simulated

annealing) or set to 1 for simplicity. The decoding configuration for two codes, according to the previous

section, is shown in Fig. 7. In this special case, since the two paths in Fig. 7 are disjoint, the decoder

structure reduces to duplicate copies of the structure in Fig. 3 (i.e., to the serial mode).

0 • •

Fig. 7. Parallel structure for two codes.

If we optimize a_ m) and a_ 'n), our method for two codes is similar to the decoding method proposed

in [1], which requires estimates of the variances of /_lk and L2k for each iteration in the presence of

errors. In the method proposed in [2], the received "systematic" observation was subtracted from Llk,

which results in performance degradation. In [3] the method proposed in [2] was used but the received

"systematic" observation was interleaved and provided to decoder 2. In [4], we argued that there is no

74

need to interleave the received " • ,,
systematic observation and provide it to decoder 2, since Lok does this

job. It seems that our proposed method with c_ m) and c_ m) equal to 1 is the simplest and achieves the
same performance reported in [3] for rate 1/2 codes.

D. Terminated Parallel Convolutional Codes as Block Codes

Consider the combination of permuter and encoder as a linear block code. Define P_ as the parity
matrix of the terminated convolutional code i. Then the overall generator matrix for three parallel codesis

G= [I 7riP1 _'2P: 7r3P3]

where 7rz are the permutations (interleavers). In order to maximize the minimum distance of the code

given by G, we should maximize the number of linearly independent columns of the corresponding parity
check matrix H. This suggests that the design of Pz (code) and zr_ (permutation) are closely related, and

it does not necessarily follow that optimum component codes (maximum dmi,,) yield optimum parallel

concatenated codes. For very small N, we used this concept to design jointly the permuter and the
component convolutional codes.

IV. Performance and Simulation Results

For comparison with the new results on three-code turbo codes, we reproduce in Fig. 8 the performance

obtained in [4] by using two-code K = 5 turbo codes with generators (1,gb/ga), where ga = (37)octat
and gb = (21)octal, and with random permutations of lengths N = 4096 and N = 16384. The best

performance curve in Fig. 8 is approximately 0.7 dB from the Shannon limit at BER = 10 -4. We also

repeat for comparison in Fig. 8 the results obtained in [4] by using encoders with unequal rates with

two K = 5 constituent codes (1,gb/ga,gc/ga) and (gb/ga), where ga = (37)octal, gb = (33)octat, and

gc = (25)octal. To show that it is possible not to send uncoded information for both codes, we used an

overall rate 1/2 turbo code using two codes with K = 2 (differential encoder) with generator (gb/g_),
where g_ = (3)octal and gb = (1)octat, and a K = 5 code with generator (gb/ga), where ga = (23)o_tat and

gb -= (33)octet. A bit error rate of 10 -5 was achieved at BSNR = 0.85 dB using an S-random permutation
of length N = 16,384 with S = 40.

A. Three Codes

The performance of two different three-code turbo codes with random interleavers is shown in Fig. 9
for N = 4096. The first code uses three recursive codes shown in Fig. 1 with constraint length K = 3.

The second code uses three recursive codes with K = 4, ga = (13)octal, and gb = (ll)octal. Note that
the nonsystematic version of the second encoder is catastrophic, but the recursive systematic version is

noncatastrophic. We found that this K = 4 code has better performance than several others.

As seen in Fig. 9, the performance of the K = 4 code was improved by going from 20 to 30 iterations.

We found that the performance could also be improved by using an S-random interleaver with S = 31.

V. Conclusions

We have shown how three-code turbo codes and decoders can be used to further improve the coding

gain for deep-space applications as compared with the codes studied in [4]. These are just preliminary
results that require extensive further analysis. In particular, we need to improve our understanding of

the influence of the interleaver design on the code performance and to analyze how close the proposed
decoding algorithm is to maximum-likelihood or MAP decoding.

75

These new codes offer better performance than the large constraint-length convolutional codes em-

ployed by current missions and, most importantly, achieve these gains with much lower decoding com-

plexity.

10-1 CODE RATE = 114

K= 15
GALILEO
CODE

TWO K= 5 CODESn"
LU 10 -3 N = 4096
m TWO K= 5 CODE5 M= 10

(DIFFERENT
RATES)
N = 16,384
M= 20

K = 5 CODES

(DIFFERENT RATES)
N = 4096 TWO K = 5 CODES
M= 10 N= 16,384

M= 20

10-1

10-2

N = 4096

CODE RATE = 1/4

Fig. 8. Two-code performance, r= 114.

K= 15

GALILEO CODE

THREE K = 4 CODES

M= 30

THREE K = 3 CODES

M= 20

THREE K= 4 CODES
M= 20

76

Acknowledgments

The authors are grateful to S. Dolinar for his contributions to the study of the

weight distribution and interleavers 2 and to R. J. McEliece for helpful comments

throughout this study.

References

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon Limit Error-
Correcting Coding: Turbo Codes," Proc. 1993 IEEE International Conference

on Communications, Geneva, Switzerland, pp. 1064-1070, May 1993.

[2] J. Hagenauer and P. Robertson, "Iterative (Turbo) Decoding of Systematic Con-
volutional Codes With the MAP and SOVA Algorithms," Proc. of the ITG Con-

ference on Source and Channel Coding, Frankfurt, Germany, October 1994.

[3] P. Robertson, "Illuminating the Structure of Code and Decoder of Parallel Con-
catenated Recursive Systematic (_Ihlrbo) Codes, Proceedings GLOBECOM '94,

San Francisco, California, pp. 1298-1303, December 1994.

[4] D. Divsalar and F. Pollara, "Turbo Codes for Deep-Space Communications,"
The Telecommunications and Data Acquisition Progress Report 42-120, October-

December 1994, Jet Propulsion Laboratory, Pasadena, California, pp. 29 39,

February 15, 1995.

[5] G. Battail, C. Berrou, and A. Glavieux, "Pseudo-Random Recursive Convolu-
tional Coding for Near-Capacity Performance," Comm. Theory Mini-Conference,

GLOBECOM '93, Houston, Texas, December 1993.

[6] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal Decoding of Lin-
ear Codes for Minimizing Symbol Error Rate," IEEE Trans. Inform. Theory,

vol. IT-20, pp. 284-287, 1974.

[7] E. Dunscombe and F. C. Piper, " Optimal Interleaving Scheme for Convolutional

Codes," Electronic Letters, vol. 25, no. 22, pp. 1517-1518, October 26, 1989.

[8] M. Moher, "Decoding Via Cross-Entropy Minimization," Proceedings GLOBE-

COM '93, pp. 809 813, December 1993.

[9] G. Battail and R. Sfez, "Suboptimum Decoding Using the Kullback Principle,"
Lecture Notes in Computer Science, vol. 313, pp. 93-101, 1988.

[10] D. Divsalar and F. Pollara, "_lhlrbo Codes for PCS Applications," Proceedings of
IEEE ICC'95, Seattle, Washington, June 1995.

2 More detailed results are given in S. Dolinar and D. Divsalar, "Weight Distributions for Turbo Codes Using Random and
Non-Random Permutations," JPL Interoffice Memorandum 331-95.2-016 (internal document), Jet Propulsion Laboratory,
Pasadena, California, March 15, 1995.

77

N95- 32228

TDA ProgressReport42-121 May 15, 1995

Degradation in Finite-Harmonic
Subcarrier Demodulation

Y. Feria and S. Townes

Communications Systems Research Section

T. Pham

TelecommunicationsSystems Section

Previous estimates on the degradations due to a subcarrier loop assume a square-

wave subcarrier. This article provides a closed-form expression for the degradations
due to the subcarrier loop when a finite number of harmonics are used to demod-

ulate the subcarrier, as in the case of the buffered telemetry demodulator. We
compared the degradations using a square wave and using finite harmonics in the

subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using

finite harmonics leads to a lower degradation. The analysis is under the assumption
that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This

assumption is valid for first-order loops.

I. Introduction

In an imperfect subcarrier demodulation, the difference between the phase of the reference signal and

that of the subcarrier of the received signal causes the signal power to degrade while the noise power

remains the same. This degradation is measured as the ratio of the reduced symbol energy-to-noise density

ratio (Es/No), or symbol signal-to-noise ratio (SNR), to the symbol SNR of an ideal demodulation where

the phase difference is zero. The degradations due to the subcarrier loop were previously computed

assuming a square wave [3]. This assumption is inappropriate in the case where only a finite number

of harmonics of the subcarrier are there to be demodulated, as in the buffered telemetry demodulator

(BTD) [2]. This article provides a closed-form expression for computing the degradation due to a finite-

harmonic subcarrier tracking loop. Numerically, we found that, for low loop SNR cases, we actually have

less degradation using a finite number of harmonics than using "all" the harmonics, namely, the square
wave. The degradation due solely to the subcarrier loop using four harmonics is 0.15 to 0.3 dB lower

than that using a square wave for loop SNRs in the range of 14 to 30 dB.

At first glance, the above may seem to contradict the intuition that the more harmonics we use, the

higher the SNR we should get. This intuition is correct when the loop SNR is high, that is, when the jitter

of the phase difference (between the true and the reference phases) is low. At low loop SNRs, however,
we have a different scenario.

To explain this, let us first take a look at how the subcarriers are demodulated. A square-wave
subcarrier is demodulated by multiplying the received signal by a square-wave reference signal. When we

only have a finite number of harmonics of the square-wave subcarrier, the current design for the BTD [2]

78

