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Abstract

Formal specification combined with mechanical verification is a promis-

ing approach for achieving the extremely high levels of assurance required of

safety-critical digital systems. However, many questions remain regarding

their use in practice: Can these techniques scale up to industrial systems,

where are they likely to be useful, and how should industry go about in-

corporating them into practice? This report discusses a project undertaken

to answer some of these questions, the formal verification of the AAMP5

microprocessor. This project consisted of formally specifying in the PVS

language a Rockwell proprietary microprocessor at both the instruction-

set and register-transfer levels and using the PVS theorem prover to show

that the microcode correctly implemented the instruction-level specification

for a representative subset of instructions. Notable aspects of this project

include the use of a formal specification language by practicing hardware

and software engineers, the integration of traditional inspections with for-

mal specifications, and the use of a mechanical theorem prover to verify a

portion of a commercial, pipelined microprocessor that was not explicitly

designed for formal verification.
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Chapter 1

Introduction

Software and digital hardware are increasingly being used in situations where

failure could be life threatening, such as aircraft, nuclear power plants,

weapon systems, and medical instrumentation. Several authors have demon-

strated the infeasibility of showing that such systems meet ultra-high relia-

bility requirements through testing alone [BF93,LS93]. Formal methods are

a promising approach for increasing our confidence in digital systems, but

many questions remain as to how it can be used effectively in an industrial

setting.

This report describes a project, formal verification of the microcode in

the AAMP5 microprocessor, conducted to explore how formal techniques

for specification and verification could be introduced into an industrial pro-

cess. Sponsored by the Systems Validation Branch of NASA Langley and
Collins Commercial Avionics, a division of l_ockwell International, it was

conducted by Collins and the Computer Science Laboratory at SRI Interna-

tional. The project consisted of specifying in the PVS language developed

by SRI [OSR93] a portion of a Rockwell proprietary microprocessor, the

AAMP5, at both the instruction set and register-transfer levels and us-

ing the PVS theorem prover [ORS92, SOR93] to show that the microcode

correctly implemented the specified behavior for a representative subset of
instructions.

The central result of this project was to demonstrate the feasibility of

formally specifying a commercial microprocessor and the use of mechanical

proofs of correctness to verify microcode. This result is particularly sig-
nificant since the AAMP5 was not designed for formal verification, but to

\
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2 Chapter i. Introduction

provide a more than threefold performance improvement while remaining

object-code-compatible with the earlier AAMP2. As a consequence, the

AAMP5 is one of the most complex microprocessors to which formal meth-

ods have been applied.

Besides demonstrating the verification of a subset of AAMP5 microcode,

an equally important accomplishment of the project was the development

of a methodology that can be used by practicing engineers to apply formal

verification technology to a complex microprocessor design. This includes

techniques for decomposing the microprocessor verification problem into a

set of verification conditions that the engineers can formulate and strategies
to automate the proof of the verification conditions.

This methodology was used to formally verify a core set of eleven AAMP5

instructions representative of several instruction classes. Although the num-

ber of instructions verified is small, the methodology and the formal ma-

chinery developed are adequate to cover most of the remaining AAMP5

microcode. The success of this project has lead to a sequel in which the

same methodology is being reused to verify another member of the AAMP

family.

Another key result was the discovery of both actual and seeded errors.

Two actual microcode errors were discovered during development of the

formal specification, illustrating the value of simply creating a precise spec-

ification. Two additional errors seeded by Collins in the microcode were

systematically uncovered by Sl_I while doing correctness proofs. One of

these was an actual error that had been discovered by Collins after first

fabrication but left in the microcode provided to SRI. The other error was

designed to be unlikely to be detected by walk-throughs, testing, or simula-
tion.

Several other results emerged during the project, including the ease with

which practicing engineers became comfortable with PVS, the need for li-

braries of general-purpose theories, the usefulness of formal specification in

revealing errors, the natural fit between formal specification and inspections,

the difficulty of selecting the best style of specification for a new problem

domain, the high level of assurance provided by proofs of correctness, and

the need to engineer proof strategies for reuse.
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Organization of the Report

This report is organized as follows. Chapter 2 provides general background,

describing the participants in the project, the history of the AAMP fam-

ily of microprocessors, the PVS specification language, and a brief survey

of related work. Chapter 3 discusses the goals, organization, and history

of the project. Chapter 4 describes the AAMP5 instruction set (macro)

architecture, the PVS specification of the macroarchitecture, and how the

specification was produced and validated. Chapter 5 provides a similar dis-

cussion of the AAMP5 register transfer (micro) architecture and its formal

specification. Chapter 6 describes the formal verification effort, including

an overview of the general approach to microprocessor verification and the

impact of the AAMP5's pipelining and asynchronous memory interface on

this model, a detailed discussion of our approach, and a summary of the er-

rors found and the scope of the verification performed. Chapter 7 presents

conclusions and lessons learned.
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Chapter 2

Background

2.1 NASA Langley, SRI International, and Rock-
well Collins

NASA Langley's research program in formal methods [Butgl] was estab-

lished to bring formal methods technology to a sufficiently mature level for

use by the United States aerospace industry. Besides the inhouse devel-

opment of a formally verified reliable computing platform RCP [DBC90],

NASA has sponsored a variety of demonstration projects to apply formal

methods to critical subsystems of real aerospace computer systems.

The Computer Science Laboratory of SRI International has been in-

volved in the development and application of formal methods for more than

twenty years. The formal verification systems EHDM and the more ad-

vanced PVS were both developed at SRI. Both EttDM and PVS have been

used to perform several verifications of significant difficulty, most notably in

the field of fault-tolerant architectures and hardware designs. Recently, SI_I

has been actively involved in investigating ways to transfer formal verifica-

tion technology to industry.

Collins Commercial Avionics is a division of Rockwell International and

one of the largest suppliers of communications and avionics systems for com-

mercial transport and general aviation aircraft. Collins' interest in formal

methods dates from 1991 when it participated in the MCC Formal Meth-

ods Transition Study [GBG+91]. As a result of this study, Collins initiated

PRECEDING PAGE BLANK NOT FILMED
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6 Chapter 2. Background

several small pilot projects to explore the use of formal methods, with ver-

ification of the AAMP5 microcode being the latest and most ambitious in
the series.

2.2 AAMP Family of Microprocessors

The Advanced Architecture Microprocessor (AAMP) consists of a Rockwell

proprietary family of microprocessors based on the Collins Adaptive Pro-

cessor System (CAPS) originally developed in 1972 [Roc90, BKM+82]. The

AAMP architecture is specifically designed for use with block-structured,

high-level languages such as Ada in real-time embedded applications. It

is based on a stack architecture and provides hardware support for many

features normally provided by the compiler run-time environment, such as

procedure state saving, parameter passage, return linkage, and reentrancy.

The AAMP also simplifies the real-time executive by implementing in hard-

ware such functions as interrupt handling, task state saving, and context

switching. Use of internal registers holding the top few elements of the

stack provides the AAMP family with performance that rivals or exceeds

that of most commercially available 16-bit microprocessors.

The original CAPS architecture, a multiboard minicomputer, was devel-

oped in 1972 and was quickly followed by the CAPS-2 through CAPS-10. In

1981, the original AAMP consolidated all CAPS functions except memory

on a single integrated circuit. It was followed by the AAMP2, AAMP3,

and AAMP5. Members of the CAPS/AAMP family have been used in an

impressive variety of products as shown in Table 2.1.

The AAMP5 was designed as an object-code-compatible replacement for

the earlier AAMP2 [Roc90], with advanced implementation techniques such

as pipelining providing a more than threefold performance improvement.

The AAMP5 is designed for use in critical applications such as avionics

displays, but is not intended for use in ultra-critical Systems Such as autoland

or fly-by-wire.

2.3 PVS

PVS (Prototype Verification System) [SOR93] is an environment for spec-

ification and verification that has been developed at SRI International's



2.3. PVS

CAPS-4

CAPS-6

CAPS-8

CAPS-7

CAPS-10

AAMP1

AAMP2

AAMP3

AAMP5

Table 2.1: Applications of the CAPS/AAMP Family

1974

1977

Global Positioning System, General Development Model

(GPS GDM)

Boeing 757, 767 Autopilot Flight Director System

1979

1979

1979

1981

1987

(AFDS)

Lockheed L-1011 Active Control System (ACS)

Lockheed L-1011 Digital Flight Control System (DFCS)

NASA Fault Tolerant Multiprocessor (FTMP)

Boeing 757, 767 Electronic Flight Instrumentation System

(EFIS)

Boeing 757,767 Engine Instrumentation/Crew Alerting

System (EICAS)
Navstar Global Positioning System (GPS)

Boeing 747-400 Integrated Display System (IDS)

Boeing 747-400 Central Maintenance Computer (CMC)

Boeing 737-300 Electronic Flight Instrumentation System

(EFIS)

Boeing 737-300 Engine Instrumentation/Crew Alerting

System (EICAS)

Air Transport Traffic Collision Avoidance System (TCAS)

Air Transport TCAS VerticM Speed Indicator (TVI)

Boeing 777 Flight Control Backdrive
Commercial GPS: Navcore I, Navcore II, Navcore V

1992 Boeing 777 Standby Instruments

1993 Global Positioning Systems, Upgrade for AAMP2

Computer Science Laboratory. In comparison to other widely used verifica-

tion systems, such as HOL [GM93] and the Boyer-Moore prover [BM79], the

distinguishing characteristic of PVS is that it supports both a highly expres-

sive specification language and a very effective interactive theorem prover in

which most of the low-level proof steps are automated. The system consists

of a specification language, a parser, a typechecker, and an interactive proof

checker. The PVS specification language is based on higher-order logic with

a richly expressive type system so that a number of semantic errors in spec-

ification can be caught by the typechecker. The PVS prover consists of a

powerful collection of inference steps that can be used to reduce a proof goal

to simpler subgoals that can be discharged automatically by the primitive

proof steps of the prover. The primitive proof steps involve, among other
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things, the use of arithmetic and equality decision procedures, automatic

rewriting, and BDD-based boolean simplification.

2.4 Historical Perspective and the Scale of the

Challenge

Microprogram verification has much in common with processor verification,

in that both relate the programmer's view of a processor to its hardware

implementation. A number of microprocessor designs have been formally

verified [BB94, Hun94, CJB78, Coo86, SGGH94, SB90, Win90]. However,

the AAMP5 is significantly more complex, at both the macro and micro-

architecture levels, than any other processor for which formal verification

has been attempted; it has a large, complex instruction set, multiple data

types and addressing modes, and a microcoded, pipelined implementation.

Of these, the pipeline and autonomous instruction and data fetching present

special challenges. One measure of the complexity of a processor is the size

of its implementation. In the case of the AAMP5, this is some 500,000 tran-

sistors, compared with some tens of thousands in previous formally verified

designs and 3.1 million in an Intel Pentium [Int93].

Microcode verification is not new: it was pioneered by Bill Carter

[LCB74] at IBM in the 1970's and applied to elements of NASA's Stan-

dard Spaceborne Computer [LCB74]; in the 1980's a group at the Aerospace

Corporation verified microcode for an implementation of the C/30 switch-

ing computer using a verification system called SDVS [Coo86]; and a group

at Inmos in the UK established correctness across two levels of descrip-

tion (in Occam) of the microcode for the T800 floating-point unit using

mechanized transformations. Similarly, several groups have performed au-

tomated verification of non-microcoded processors, of which Warren Hunt's

FM8501 [Hun94] and subsequent FM9000 [HB92] are amongthe most sub-

stantial. The problems of pipeline correctness were also studied previously

by Srivas and Bickford [SB90], by Saxe and Garland [SGGII94], Burch and

Dill [BD94], and Windley and Coe [WC94]. A very simple microcoded pro-

cessor design developed by Mike Gordon called "Tamarack" serves as some-

thing of a benchmark for microprogram verification and was considered quite

a challenge not so long ago [Joy88]. PVS is able to verify the microcode of

Tamarack and Saxe's pipelined processor completely automatically in about

five minutes [CRSS94].



Chapter 3

Project Goals and

Organization

Formal verification of the AAMP5 microcode was selected for this project

for a number of reasons. Both Collins and SRI wanted to explore the useful-

ness of formal verification on an example that was large enough to provide

realistic insight, yet small enough to be completed at reasonable cost. Veri-
fication of the AAMP5 microcode fit these criteria well. While the AAMP5

was one of the most complex microprocessors Collins had built, its require-

ments were well understood since it was to be object-code-compatible with

the earlier AAMP2. This allowed the formal methods team to concentrate

on formal specification and verification rather than on designing a new prod-

uct. Also, much of the complexity of an AAMP microprocessor resides in

the microcode, and past experience has shown that this is one of the most

difficult parts of the microprocessor to get right. Success with formal verifi-

cation in other significant projects suggested that this technology might be

ready for application to an industrial microprocessor.

Because of the importance of the AAMP5 to Collins' product line, the

formal specification and verification of the AAMP5 were performed as a

shadow project and did not replace any of the normal design and verification

activities performed on a new microprocessor. This parallel approach also

allowed us to relax some of the steps that would be required on a production

project and focus instead on the application of formal methods. To fit the

scope of the project to the time available, a core set of 13 instructions, each

representative of a class of AAMP instructions, was identified to be specified
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and verified by SRI. An additional set of 11 instructions was identified to be

specified and verified by Collins as time permitted. Even so, it was necessary

to specify the entire AAMP5 architecture and develop the infrastructure

needed to verify the entire instruction set since the core set contained at

least one member from each of the major instruction classes.

Staffing for the project was provided by SRI and Collins, with funding

provided by NASA and Collins. SRI provided one formal methods expert

full time for the project's duration while Collins provided approximately

one full-time equivalent split among several engineers. A project plan was

developed at the start of the project identifying goals, strategies, tasks,

and schedules. This plan was updated periodically and level of effort was

recorded by both SRI and Collins personnel on each task. A summary of

the level of effort is presented in Table 3.1 (page 12).

As shown in Table 3.1, relatively little time was spent on training the

Collins' engineers in PVS. The small amount of structured training needed

was one of the surprises of the project. Early on, SRI conducted a one-week

course on the use of PVS and formal specifications at the Collins Cedar

Rapids facility for the five engineers who would be involved with the project.

The course consisted of five half-day lectures with related lab exercises in

the afternoon. No additional formal training seemed necessary. When new

team members joined the project, they were provided access to the PVS

documentation and trained by inclusion in review of the PVS specifications.

The most effective form of education seemed to be hands-on development

with frequent peer review.

Aside from overall management and education, the project split natu-

rally into three phases: specification of the macroarchitecture (Chapter 4),

specification of the microarchitecture (Chapter 5), and proofs of correct-

ness of the microcode (Chapter 6). The basic process followed in the first

two phases was that Collins would provide design specifications to SRI,

SRI would provide first drafts of PVS specifications to Collins, and Collins

would informally review these specifications and return comments to SRI

for revision. At some point, the Collins team would take the specifications,

prepare them for formal inspections [Fag86], conduct the inspections, cor-

rect the defects found, and send the revised specifications back to SRI. This

approach was chosen both to validate the correctness of the specifications

and to ensure that Collins personnel became actively involved in developing

the PVS specifications. A similar process was followed for performing proofs
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of correctnessof themicrocode,with SRI providingthe first examplesand
strategiesthat Collinswoulduseonsimilar instructions.

Toreducethe potentialfor missingerrorsin themicrocodedueto errors
in thePVSspecifications,independentteamswereassignedto differentpor-
tionsof theproject.Whileall earlydraftsof thespecificationswereproduced
by SKI, differentindividualsat Collinswereassignedto reviewand revise
the macroarchitectureandmicroarchitecturespecifications.Differentteams
werealsousedto inspectthemacroarchitectureand themicroarchitecture.
The microcodeitself wasproducedby a memberof the original AAMP5
teamwithout anyknowledgeof theformalspecificationsandtranslatedinto
PVSby yet anotherindividual. As a result,the processof provingthe mi-
crocodecorrectoftenrevealederrorsin the specifications,but oncea proof

was completed, confidence in the correctness of the associated microcode

was high.
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Table 3.1: Level of Effort

Task

Project Management
[Performed] Start [Stop ]Hours

Planning & Monitoring [ Collins [Jan 93 I Aug 94 [123
Education

I
Specification of the Macroarchitecture (2,550 Lines of PVS)

Initial Development Collins Mar 172

Revision & Extension

Inspection

Resolve Inspection Issues

Revision to Support Proofs

SRI

Collins

SRI

Collins

Collins

Collins

Mar

May

May 93

Sept 93

Feb 94

Mar 94

93 May93

93 May93

93 Sept 93

Sept 93

Feb 94

May94

Aug 94

Specification of the Microarchitecture (2,679 Lines of PVS)

360

289

120

96

64

54

Initial Development

Revision

Collins

SRI

Collins

SRI

May 93

May 93
Feb 94

Feb 94

Feb 94

Aug 94

137

Aug 94

520

160

Feb 94 Aug 94 120

Inspection Collins Mar 94 Aug 94 83

Resolve Inspection Issues Collins Mar 94 Aug 94 66

Translate Microcode to PVS Collins Jun 94 Aug 94 21

Revision to Support Proofs Collins Jun 94 12

Proofs of CorreCtneSS

Development of Correctness Criteria SRI Jun 94 320

Developing Proof Infrastructure SRI 240

Verification of Core Instructions

I Mar 94May 94

SRI [Jun 94

Aug 94

Aug 94 240



Chapter 4

The Macroarchitecture: The

Programmer's View of the
AAMP5

4.1 Overview of the AAMP Macroarchitecture

Important features of the AAMP macroarchitecture include its organization

of memory, process stack, internal registers that affect its observable behav-

ior, instruction set, and support for multi-tasking and error handling. These

are discussed in the following sections. A more detailed discussion can be

found in [BKM+82].

4.1.1 Organization of Memory

The AAMP provides separate address spaces for code memory and data

memory. Whiie not required by the AAMP architecture, code memory is

typically implemented in I_OM. Both code and data memory are segmented,

with code memory organized into 512 code environments, each containing

64K 8-bit bytes of code. Data memory is organized into 256 data environ-

ments, each containing 64K 16-bit words of data. Actual memory addresses

are formed by concatenating a 9-bit code environment pointer (CENV) with

a 16-bit program counter for instruction addresses, or an 8-bit data en-

vironment pointer (DENV) with a 16-bit offset for data addresses. The

processor also provides data-transfer status lines which can be used by an

13



14 Chapter 4. The Macroarchitecture

external memory management unit for protection against improper accesses

to memory, allowing code fetches to be distinguished from data accesses and

executive task accesses to be distinguished from user task accesses.

4.1.2 Process Stack

The process stack is central to the AAMP macroarchitecture, implement-

ing in hardware many of the features needed to support high-level block

structured languages and multi-tasking. Each task maintains a single pro-

cess stack in the task's data environment, illustrated in Figure 4.1. At the

top of the process stack is the accumulator stack used for manipulation of
instruction operands and pointers. Directly below the accumulator stack

is the stack mark of the current procedure. The stack mark contains the

information needed to restore the calling procedure upon return from the

current procedure, to access local variables within the calling procedure, and

to locate the current procedure's header and executable code.

Below the stack mark is the current procedure's local environment con-

sisting of its local variables and any parameters passed from the calling

procedure. A procedure's local environment, stack mark, and accumulator

stack form a stack frame. Beneath the current procedure's stack frame is

the frame of its calling procedure, and so on. Note that the stack grows

downward towards decreasing memory addresses.

4.1.3 Internal Registers

Many of the internal registers maintained by the AAMP are used to define

the process stack. The DENV (data environment) register contains the

pointer to the data environment of the current active task. The TOS (top

of stack) register points to the topmost word in the process stack and the

SKLM (stack limit) register points to the lower limit beyond which the stack

is not allowed to grow. The LENV (local environment) register points to

the local environment of the current procedure and is used in addressing

local variables. The CENV (code environment) and PC (program counter)
registers point to the code environment and address of the next instruction

to be executed. Finally, the AAMP maintains two boolean flags, a USER

flag to indicate whether the processor is in user or executive mode, and the

INTE flag indicating whether or not the maskable interrupt is enabled (see
Section 4.1.5).
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Figure 4.1: The Process Stack

4.1.4 Instruction Set and Memory Data Types

The AAMP instruction set is large and CISC-like. It closely resembles the

intermediate-level output of many compilers, directly supporting high-level

language constructs such as procedure calls and returns. The instructions

vary in length from 8 to 56 bits, although most are only 8 bits long, yielding

improved throughput and code density.

The instruction set supports a variety of data types, including 16- and

32-bit integer, 16- and 32-bit fractional, 32- and 48-bit floating-point, and

16-bit logical variables. The floating-point formats have an 8-bit, excess-128

exponent and, respectively, 24 and 40 bits of fractional mantissa. Addition,

subtraction, multiplication, division, and type conversions are provided for

ali of the arithmetic types. Computational exceptions, such as arithmetic

overflow and divide-by-zero, are detected and handled automatically.
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The original AAMP had 153 instructions. The AAMP5 has 209, which

can be divided into several classes, as shown in Table 4.1. Of these, 72

are Reference or Assign instructions that move data between the top of

the process stack and data memory. The Logical, Arithmetic, Relational,
Type Conversion, Shift, Rotate, and Field classes account for another 81

instructions, each of which performs a prescribed operation on the top few

elements of the process stack and pushes the result back onto the-stack. An

additional 20 instructions deal with program control, such as branch, loop,
call, and return instructions. The remaining 31 instructions are used for

block data memory transfers, pushing literals on the stack, locating operands

in the stack, and miscellaneous functions.

Table 4.1: Instruction Classes

Instruction Class Number of

Instructions

Stack Management 8

Literal Data 8

Reference Data 36

Assign Data 36

Mutual Exclusion Synchronization 1

Operand Location 5

Logical 8

Arithmetic 43

Relational 11

Type Conversion 9

Shift, Rotate, and Field 10

Branch 7Program Control

Block Data

Call 5

Case I

Exception 1

Halt 1

Loop 2

Return 2

Trap 1

12

Miscellaneous 2
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4.1.5 Multi-Tasking and Error Handling

The AAMP stack architecture is designed for real-time multi-tasking appli-

cations, wherein the processor is time-shared among two or more concurrent

tasks. Each task maintains its own process stack in its assigned data en-

vironment. Most multitasking operations, including context switching, are

performed automatically by the AAMP. Since many errors generate a con-

text switch to executive mode, the multi-tasking and error-handling features

of the AAMP are closely intertwined.

Scheduling of user tasks is performed by an executive task assigned to
code environment 0 and data environment 0. During execution, the ex-

ecutive selects one of several user tasks to be activated or resumed, then

executes a RETUI_N instruction from its outer procedure. This causes the

AAMP to transfer control to the selected user task. Normal execution of a

user task can be suspended by an exception, an external interrupt, a trap,

or an outer procedure return.

Exceptions are erroneous events, such as arithmetic overflow, that are

primarily relevant to the currently executing user task. These are handled

by the AAMP within the context of the user task, i.e., a context switch to

the executive is not initiated. When an exception is detected, the exception

error code is placed on the task's process stack and the AAMP calls the

appropriate exception handler.

External hardware interrupts and traps differ from exceptions in that

they are handled in executive mode and initiate a transfer of control to the

executive, which schedules the appropriate interrupt or trap handler. Exter-

nal interrupts may arrive at any time during an instruction execution, and

are recognized on master clock boundaries. Four interrupts are supported.

Reset (RST) and memory transfer errors (XEI_) are processed immediately.

The maskable interrupt (IRQ) and the nonmaskable interrupt (NMI) are

held pending completion of the current instruction.

Traps are handled in a manner very similar to interrupts, initiating a

context switch to the executive, which schedules the appropriate trap han-

dler. Traps come in two varieties. A "hardware" trap is generated when the

AAMP detects an error that must be processed in executive mode, such as

stack overflow. "Software" traps are generated when the user process exe- .

cutes a TRAP instruction to request an executive service such as masking

interrupts or transfering control to another user task. A user task may also
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suspend its execution by executing an outer procedure return. An outer

procedure return from a user task is handled in the same way as a trap.

Finally, normal execution of the executive can be suspended by detection

of an unrecoverable error, such as overflow of the executive stack, while in

executive mode. Such errors initiate a context switch to the executive error

handler. If the executive error handier is undefined or an unrecoverable error

is detected while in the executive error handier, the AAMP is forded into an

idle loop pending a reset.

4.2 The Macroarchitecture Specification

The macroarchitecture specification formalizes an assembly-level program-

mer's view of the AAMP and its instruction set, hiding most of the internal

state and pipelining of the processor. The PVS specification of the AAMP
models the processor as a state machine: the state of the macromachine in-

cludes external memory and the internal state that affects its observable be-

havior, such as the internal registers defining the process stack; the next state

function specifies the effect of executing the "current" instruction pointed

to by the program counter.

An overview of the import chain for the macroarchitecture specification

is shown in Figure 4.2. In PVS, a theory gains access to another theory's

definitions and axioms by importing that theory. Each box in the figure

represents a theory in the specification. Importation of a theory is depicted

by an arrow from the importing theory to the imported theory.

At the topmost level is the normal_macro_machine theory that defines

the behavior of the AAMP in the absence of interrupts and unrecoverable

errors such as stack overflow (handling of these is discussed in Section 4.3).

The next_macro_state function for each instruction class is specified in an

upda'ce theory for that class. Some instructions, such as the branch in-

structions, are simple enough that they can be defined directly in terms

of changes to the macromachine state defined in the macro_state theory.

More complex instructions require additional definitions provided in sup-

porting theories. For example, the assign (assignment) and ref (reference)

instructions import the addressing theory that determines the source or

target data memory address based on the addressing mode of the current

instruction. Instructions that can raise exceptions require the definitions

found in the exceptions theory. CALL, RETURN, and instructions that
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Figure 4.2: Macroarchitecture Specification Hierarchy

require executive services cause the most complex changes to the macrostate

and import a family of theories defining the executive services provided by
the AAMP.

The macro_state theory defines the state of the macromachine and func-

tions useful in manipulating that state. This includes the internal regis-

ters that affect the observable behavior of the AAMP and instantiations

of memory defined in the code_memory and da'ca_emory theories. The

AAffP_bit_vectors theory imports the bit_vectors library, adding to it the

specific bit vectors found in the AAMP such as words and bytes. To simplify

the import chain, the macro_state theory also imports the enumeration of

the instructions, or opcodes, of the AAMP and their attributes. Repre-

sentative samples of this hierarchy are discussed in the following sections,

beginning with the theories lowest in the hierarchy. It should be noted that
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the PVS theories shown in this report have been edited to remove material
not relevant to the text.

4.2.1 Attributes of AAMP Instructions

The opcodes_attributes theory is actually partitioned into a family of
theories, one for each instruction class. The attributes of each instruction

are specified as functions over the uninterpreted type opcodes. Specific

values for each instruction are given in a theory similar to that shown in

Figure 4.3. This theory defines two of the reference instructions, REFS

and REFDL, as constants of type opcodes and defines the attributes of

instruction class, memory data type, address mode, length of the instruction

and immediate data in code memory, and the number of words of address

information expected on the top of the stack prior to execution.

Care must be taken when using this form of specification to ensure that

inconsistent axioms are not introduced. For example, it would be relatively

easy to insert the wrong opcode in an axiom and inadvertently declare that

opcode to have two different values for the same attribute. Originally, the

opcodes category was declared as a PVS enumerated type and the attributes

were specified as case analysis over the constants of the type. This form of

specification ensured that PVS would detect such inconsistencies. However,

early versions of PVS did not provide efficient support for large enumerated

types. As the size of the macro and microarchitecture specifications grew,

the definition of opcodes as enumerated types became cumbersome enough

to justify switching to the declarative style shown in Figure 4.3. More recent

versions of PVS have resolved this issue and provide efficient support for

large enumerated types.

It is also worth noting that the preferred form of specification for the

instruction attributes would be one or more "tables", with PVS internally

generating the axioms describing the tables and checking to ensure their

consistency. Such a construct has been added to the latest version of PVS.
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Defines the attributes of the reference instructions.

opcodes_attributes_reference: THEORY

BEGIN

IMPORTING opcodes

7, REFS - Reference Absolute - Single Word

REFS : opcodes

REFS_class : AXIOM instruction_class_of(REFS) = reference

REFS_mdt : AXIOM memory_data_type_of(REFS) = single

P_FS_amode : AXIOM address_mode_of(REFS) = absolute

REFS_IenEZh : AXIOM length_of_instruction(REFS) = 1

REFS_nstkwds : AXIOM number_of_stack_words(REFS) = I

Y, REFDL - Reference Local Environment - Double Word

REFDL: opcodes

REFDL_class

REFDL_mdt

REFDL_amode

REFDL_length

REFDL_nstkwds

: AXIOM instruction_class_of(KEFDL)

: AXIOM memory_data_type_of(REFDL)

: AXIOM address_mode_of(REFDL)

: AXIOM length_of_instruction(REFDL)

: AXIOM number_of_stack_words(REFDL)

end opcodes_attributes_reference

= reference

= double

= local

= 1

=0

Figure 4.3: PVS Specification of Reference Instructions Attributes

4.2.2 Data and Code Memory

The PVS specification of data memory is shown in Figure 4.4. AAMP data

memory is organized into 256 possible data environments, each containing
64K 16-bit words of data. Data memory itself is defined as a function

from 8-bit data environment pointers to data environments, where each data

environment is another function from 16-bit data environment addresses to

16-bit words of memory. Standard bit vectors used in the AAMP, such as 16-

bit words,are definedinthe imported AAMP_bit_vectors theory,which a/so

definesoperationsover bitvectorssuch as concatenationand extractionof

bits.The specificationof data memory alsointroducesunspecifiedconstants
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Z The data_memory theory defines the AAMP's view of data memory.

Z Data memory is organized into 256 possible data environments,

Z each addressed by an 8-bit data environment pointer.

Z Each data environment contains 64K words of data,

Z each addressed by a 16-bit data environment relative address.-

data_memory: THEORY

BEGIN

IMPORTING AAMP_bit_vectors

A data environment address is a 16-bit word.

data_envaddr: TYPE = word

Z An unspecified constant data environment address

unspecified_data_env_addr: data_env_addr

A data environment is a function from data environment addresses

Z to words of memory.

data_env: TYPE = [data_env_addr -> word]

A data environment pointer is a bit vector of size 8.

data_env_ptr: TYPE = bvec[8]

Z An unspecified constant data environment pointer.

unspecified_data_env_ptr: data_env_ptr

Z Data memory is defined as a function from data environment pointers

Z to data environments.

data_memory: TYPE = [data_env_ptr -> data_env]

Converts a word to a data environment pointer.

word2denv(wd: word): data_env_ptr = wd'(7,0)

Converts a data environment pointer to a word.

denv2vord(denv: data_env_ptr): word = zero_extend[8] (16)(deny)

END data_memory

Figure 4.4: PVS Specification of AAMP Data Memory
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of type data environment pointer and data environment address used in later

theories.

The specification of code memory is similar except that code memory is

organized into 512 possible code environments, each containing 64K 8-bit

bytes.

4.2.3 Macroarchitecture State

The macrostate defines the minimal view of the AAMP's state an application

programmer must understand to write assembly code. Choosing the best

representation is important since its form heavily influences the rest of the

specification. Several models were considered, each with its own advantages

and disadvantages. In the end, we settled on the simple structure shown in

Figure 4.5 (page 24), largely because this seemed to best reflect the view of

the AAMP designers.

macro_state: THEORY

BEGIN

IMPORTING opcodes_attributes, code_memory, data_memory

Z The macro state of the AAMP consists of code memory, data memory,

Z the user/executive mode indicator, the interrupt enabled indicator,

Z the cenv, pc, deny, sklm, lenv, and tos registers.

macro_state: TYPE = [# cmem : code_memory,

dmem : data_memory,

user : bool,

inte : bool,

cenv : word,

pc : word,

deny : vord,

sklm : word,

lenv : word,

tos : word #]

Figure 4.5: The AAMP5 Macrostate (continues)
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Pushes a word on the process stack. If the stack is full,

tos is decremented but the word is not written.

push(wd:word, st:macro_state):macro_state =

IF tos(st) > sklm(st) THEN

st WITH [(dmem)(word2denv(denv(st)))(tos(st)-l) := wd,

(tos) := tos(st)- i ]
ELSE

st WITH [(tos) := tos(st) - 1 ]

ENDIF

END macro_state

Figure 4.5: The AAMP5Macrostate

The macrostate is defined as a record type with several fields. Code

memory and data memory are defined separately, since this is the conceptual

model presented to a programmer. While it is possible for an external

memory unit to implement code and data memory in the same address

space, and even to overlap code and data memory, code memory is normally

implemented in ROM and is physically distinct from data memory.

The remaining items in the macrostate define the CENV, PC, DENV,

SKLM, LENV registers and the USER and INTE flags discussed in Sec-

tion 4.1.3. The macrostate theory also defines a number of auxiliary func-
tions that manipulate the macrostate to make later theories more readable.

For example, push pushes a word on the current process stack.

4.2.4 The Next State Function

The next state function (next_macro_state) takes an arbitrary macrostate

and returns the macrostate that would result after the current instruction

is executed. The next state function is defined for each instruction class in

an update theory for that class. For example, the next state function for

reference instructions is defined in the ref_update theory and for arithmetic

instructions in the arith_update theory.

A portion of the nexzanacro_state function for the REF (reference)

instructions is shown in Figure 4.6 (on page 25). REF instructions

copy words from data memory to the top of the accumulator stack. The

base and offset of the source data is provided by the data_address_base
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Z The ref_update theory computes the next macro state after a REF

X instruction. The new macro state is returned with the addressing

Z arguments popped from the stack, the data values pushed on the

X accumulator stack, and the program counter incremented to point to

Z the next instruction.

ref_update : THEORY

BEGIN

IMPORTING addressing

Z Subtype of macro state in which current instruction is a REF.

ref_state : TYPE =

{st:macro_state]instruction_class_of(current_opcode(st)) = reference

X Source word address base and offset.

base (st:macro_state) : data_env_ptr = data_address_base(st)

offset(st:macro_state) : data_env_addr = data_address_offset(st)

Number of total arguments and address arguments on the stack.

nstackwords(st:macro_state): nat =

number_of_stack_words(current_opcode(st))

naddrwords (st:macro_state): nat =

number_of_addresswords(address_mode_of(current_opcode(st)))

Returns the next macro state on a REF instruction.

next_macrostate(st: ref_state): macro_state =

CASES memory_data_type_of(current_opcode(s%)) OF

Z Move a single word from memory to the stack.

single: push(data_memory_ref(st, base(st), offset(st)),

multipop(st, nstackwords(st))),

Move two words from memory to the stack.

double: push(data_memory_ref(st, base(st), offset(st)),

push(data_memory_ref(st, base(st), offset(st) + I),

multipop(st, nstackwords(st)))),

ENDCASES

WITH [(pc) := next_pc(st)]

END ref_update

Figure 4.6: PVS Specification of Reference Instructions
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and data_address_offset functions defined in the imported addressing

theory. The auxiliaryfunctionsof push, multipop, and data_memory_tel

(definedin the imported macro_state theory) are alsoused to definethe

change tothe macrostate.Note thatthe argument to thenext_macro_state

functionisoftyperef_state. This subtype isdefinedimmediatelyfollowing

the IMPORTING clause. Its use causes PVS to generate a type correctness

condition, or TCC, requiring that the instruction be a reference instruction.

This TCC can be discharged with the PVS theorem prover as an additiona/

check on the consistency of the specification.

arith_update : THEORY

BEGIN

IMPORTING exceptions

Subtype of macro state in which current instruction is an

arithmetic instruction.

arith_state: TYPE =

{st: macro_state[instruction_class_of(current_opcode(st)) = arithmetic}

Returns the exception number associated with an instruction.

Zero is used to indicate the absence of an exception.

exception_number(st:arith_state): below[29] -

LET nstkwds = number_of_stack_words(current_opcode(st)),

ares = top_elements(st,nstkwds)

IN IF current_opcode(st) = ADD THEN

IF overflow(args(O), args(1))

THEN 7 ELSE 0 ENDIF

ELSIF current_opcode(st) = ADDD THEN

IF overflow(args(1) o args(O), args(3) o args(2))

THEN 8 ELSE 0 ENDIF

ELSE 0 ENDIF

Figure 4.7: PVS Specification of Arithmetic Instructions (continues)
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7,Returns the normal result obtained in the absence of an exception.

7, The arguments to the instruction are popped from the stack, the

7,results are pushed on the stack and the program counter advanced to

7, the next instruction.

normal_result (st : arith_state) : macro_state --

LET nstkwds = number_of_stack_words (current_opcode (st)),

args = top_elements(st, nstkwds),

popped = multipop(st, nstkwds)

IN IF current_opcode(st) = ADD THEN

push(args(O) + args(1), popped)

ELSIF current_opcode(st) = ADDD THEN

LET result -- (args(1) o args(O)) + (args(3) o args(2))

IN push(resultS(31, 16), push(result'(15, 0), popped))

ELSE st ENDIF WITH [(pc) := next pc(st)]

7,Returns the next macro state for an arithmetic instruction.

next_macro_state (st : arith_state) : macro_state --

IF exception_number(st) = 0 THEN normal_result(st) ELSE

exception_macro_state (normal_result (st), exception_number (st))

ENDIF

END arith_updat e

Figure 4.7: PVS Specification of Arithmetic Instructions

A more complex example of the next_macro_state function is shown for

the arithmetic instructions in Figure 4.7 (on page 27). Arithmetic instruc-

tions perform a specific operation, such as addition or subtraction, on the

top few elements of the accumulator stack and push the results onto the

stack after consuming the operands. Two functions are used in the defini-

tion of the next_macro_state function for the arithmetic operations. The

exception_number function determines if the instruction will result in an

exception given the current macrostate. The normal_result function de-

fines the change in state returned by the next_macro_state function when

an exception does not occur. If an exception does occur, this state and the

exception number are given as parameters to the exception.macro_state

function, defined in the exceptions theory, that pushes the exception num-

ber on top of the (erroneous) result and invokes the exception handler.

Similar update theories are defined for each instruction class. All the

update theories are imported into the normal_macro.machine theory which

defines the overall behavior of the AAMP in the absence of interrupts and
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unrecoverable user errors. The normal_nacro_nachine theory is shown in

below.

The normal macro machine theory defines the behavior of the AAMP in the

absence of interuptsand unrecoverable user errors. It computes the

next macro state of the microprocessor based on its current state.

normal_macro_machine: THEORY

BEGIN

IMPORTING

arith_update,

call_update,

literal_update,

relational_update,

assign_update,

halt_update,

misc_update,

shift_update

block_update,

return_update,

mutex_update,

brm/tch_update,

trap_update,

ref_update,

next_macro_state(st: macro_state): macro_state =

CASES instruction_class_of(current_opcode(st)) OF

arithmetic : arith_update.next_macro_state(st),

assign : assign_update.next_macro_state(st),

block : block_update.next_macro_state(st),

control : CASES control_class_of(current_opcode(st)) OF

literal

misc

mutex

reference

relational

shift

ENDCASES

branch

call

halt

return

trap

ENDCASES,

: literal_update.next_macro_state(st),

: misc_update.next_macro_state(st),

: mutex_update.next_macro_state(st),

: ref_update.next_macro_state(st),

: relational update.next_macro_state(st),

: shift_update.next_macro_state(st)

: branch_update.next_macro_state(st),

: call_update.next_macro_state(st),

: halt_update.next_macro_state(st),

: return_update.next_macro_state(st),

: trap_update.nextmacro_state(st)

END normal_macro_machine

4.2.5 Constructive vs. Descriptive Specifications

PVS allows a function to be specified constructively by explicitly defining

how the result of the function is to be constructed, or descriptively by stating

a set of properties (axioms) that the function is to satisfy. For example, the
rood function that returns the remainder when a natural number is divided

by another can be specified constructively by giving a recursive definition



4.2. The Macroarchitecture Specification 29

for it, or descriptively by stating several number theoretic properties about

it.

The main advantage of a constructive style of specification is that the

PVS language mechanisms will ensure that the function is not only well-

defined but total. A disdvantage is that it is difficult to leave parts of

the specification deliberately underspecified. A descriptive style is naturally

suited for underspecification, but makes it possible to introduce inconsistent

axioms. In addition, descriptive specifications are sometimes more difficult

to understand to an uninitiated reader than constructive specifications.

One of the early choices facing us was whether to specify the

next_macro_state function in a constructive or a descriptive style. In addi-

tion to the reasons given above, many of the AAMP instructions are similar

enough (for example, a REFS and a REFSL differ only in the addressing

mode) that they could be compactly specified using a constructive style. Fi-

nally, much of the most complex behavior of the AAMP was already specified

using a procedural style that could be easily translated into a constructive

specification. For all of these reasons, the constructive style was initially
chosen for the next.macro_state function.

One result of this choice was to make the effort required to specify a

single instruction quite high since most of the infrastructure for an entire
class of instructions was required to complete the first instruction in that

class. A benevolent side-effect was that this made it easy to specify far more

instructions (108) than the 13 instructions in the original core set.

However, while doing the correctness proofs it became clear that a more

descriptive style of specification in which the change in state was defined

more directly would be helpful as an intermediate step in the proof. For-

tunately, these could be stated as lemmas that could be proven from the

original specification, preserving our investment in the original specification.

An example of the descriptive style of specification is presented for portions

of the REFDL and ADD instructions shown below. (see Section 4.2.6 for a

discussion of the not_staCk_cache_address predicate).
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7. ........................................................................

7.REFDL - Reference Local Environment, Double Word (no stack overflow).

7.The two words located at LENV+F are pushed onto the accumulator stack,

7.where LElrg is the current local environment and F is the least

7.significant four bits of the current instruction byte.
. ........................................................................

REFDL lemma_l : LEMMA

LET F = current_code env(st)(pc(st))-(3,0),

ALS = lenv(st) + bv2nat(F),

AMS = lenv(st) + bv2nat(F) + i,

XLS = current_data_shy(st) (ALS),

XMS = current data_env(st)(AMS)

IN current_opcode(st) = REFDL & tos(st) > sklm(st)+ I &

not_stack_cache_address(st, denv(st)) (ALS) &

not_stack_cacheaddress(st, deny(st)) (AMS) =>

normal_macro_machine, next_macro_st at e(st) =

st WITH [(dmem) (word2denv(denv(st))) (tos(st)-l) := XMS]

WITH [(dmem) (word2denv(denv(st))) (tos(st)-2) := XLS,

(pc) := pc(st) + I,

(tos) := tos(st) - 2]

7.ADD - Tvo's Complement Add, Single Word (no exception).

Z The two words on the top of the stack are added. The resulting

7. sum replaces the two original values on top of the stack.
X

ADD_lemma_l: LEMMA

LET X = current_data_env(st)(tos(st)+1),

Y - current_data_env(st)(tos(st))

IN current_opcode(st) = ADD & arith_update.exception_number(st)=0

normal_macro_machine.next_macro_state(st) =

st WITH [(dmem)(word2denv(denv(st)))(tos(st)+1) := X + Y,

(pc) := pc(st) + 1,

(tos) := tos(st) + 1]

_->

As these lemmas were created, it became evident that they were in

many ways a preferable style of specification. They were more readable,
simpler to validate, and were closer to what a user wanted to know in the

first place. They also made it possible to specify a small portion of the

next_macro__tate function, i.e., to specify one instruction or part of an

instruction at a time. Using this style would have made specifying the core

set of 13 instructions much simpler. However, doing so also would have made

it easier to introduce inconsistencies in the specification, e.g., specifying two

different next states for the same current state. The standard technique

for showing that a set of axioms is consistent is to prove the existence of a
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model satisfying those axioms, which is exactly what was done in proving

that the constructive specification satisfied each lemma. The same effect

could also be achieved by proving that the microarchitecture and microcode

satisfy the macro lemmas. One of the more important lessons learned during

this project was to more carefully consider the trade-offs between these two

styles of specification. The declarative style of specification is better-suited

for reasoning with complex instruction sets.

4.2.6 The Stack Cache Abstraction

As a stack machine, the AAMP performs all data computations and manip-

ulations on operands that have been pushed onto the accumulator stack. To

improve efficiency, the top few words of the stack are actually maintained

in internal registers referred to as the stack cache. Consistency between the

stack cache registers and external memory is maintained through stack ad-

justments that read additional operands into the registers or write operands

out to memory prior to the execution of each instruction. Studies have

shown that for over 90 percent of the instructions executed in a typical

embedded application, no stack adjustments are required. As a result, this

encachement technique allows the AAMP to provide performance that rivals

or exceeds that of most commercially available 16-bit microprocessors.

One of the most interesting issues pertaining to the use of abstraction in

specification arose in modeling the process stack. Conceptually, the process

stack consists of an area of data memory, a stack limit (SKLM) register, and

a logical top-of-stack (TOS) register. In actuality, as shown in Figure 4.8(a)

(and described in Section 5.1.3), the process stack is implemented as an area

of data memory, a stack limit register_ a stack cache that can hold up to nine

of the topmost words of the stack, and a physical top-of-stack (TOS) register

marking the boundary between the portion of the stack implemented in data

memory and the portion implemented in the cache. The logical TOS is the

sum of the physical TOS and the contents of two registers (SV and TV)
hidden from the macro level that define the number of words held in the

stack cache. Conceptually, it is desirable to hide the presence of the stack

cache so that an application programmer does not have to be concerned with

it. In actuality, the stack cache is visible at the macro level in two ways.

For performance reasons, the AAMP does not check memory accesses

to determine if the word being referenced lies in the vicinity of the stack

cache. As a result, REF and ASSIGN instructions that access the region of
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SKLM---_

Logical TOS---_

Physical TOS

(a) Stack Cache Locations

SKLM

(b) Stack Overflow

LogicalTOS
Physical TOS

Figure 4.8: Effects of Stack Cache Abstraction

memory between the physical TOS and the logical TOS may obtain values

different from those held in the stack cache. In practice this does not pose

a problem since well behaved applications do not directly access the process

stack. Since applications writers seldom write assembly code for the AAMP

(recall that it is designed for use with high order, block structured languages

such as Ada), this is primarily a concern for the compiler writers.

The second manifestation of the stack cache arises because the AAMP

signals an overflow when the physical TOS exceeds the stack limit, rather

than when the logical TOS exceeds the stack limit. In effect, the existence

of the stack cache allows a few more words to be written to the process

stack than should strictly be allowed. For example, in a situation shown in

Figure 4.8(b), where the logical TOS is at its limit (SKLM) although the

physical T0S is not, the AAMP5 microcode will not signal an overflow when

an attempt is made to push another word on the process stack. This is also

not a problem in practice since a well behaved program should never cause

a stack overflow, much less depend on one occuring precisely when the stack

limit is reached. In addition, avionics applications routinely demonstrate

through analysis that stack overflow does not occur.

However, these two manifestations of the stack cache made it difficult

to write a precise definition of the AAMP5's behavior without bringing the

details of the stack cache into the macro level specification. To avoid this,
two adjustments were made to the specification of the macroarchitecture.

To reflect the constraint that memory accesses should not be made to the

vicinity of the stack cache, we left the effect of such accesses unspecified as
shown below.
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Z A function that characterizes those addresses currently overlaid by

Z the stack cache.

not_stack_cache_address(st:macro_state, base:data_env_ptr)

(offset:data_env_addr): bool

Stores a word at a specific address. Note that the type of offsets

Z is restricted to the set of words that are not overlaid by stack cache.

data_memory_assign(st : macro_state,

base : data_env_ptr,

offset : (not_stack_cache_address(st, base)),

wd : word): macro_state =

st WITH [(dmem)(base)(offset) := wd]

Z Returns the word pointed to by a base and offset.

data_memory_ref(st : macro_state,

base : data_env_ptr,

offset : (not_stack_cache_address(st, base))): word =

dmem(st)(base)(offset)

The functionsdata_memory_tel and data_memory_assign are used ex-

clusivelyfordirectdata memory accessesat a givenbase (data environment

pointer)and offset.The predicatenot_stack_cache_address isused to de-

finea subtype dependenti on st and base to restrictthe offsetto locations

thatare not overlaidby the stackcache.Sincealldirectmemory references

are definedin terms ofthesefunctions,the effectofreadingorwritingto the

vicinityof the stack cache isleftunspecified.This was made explicitwhen

writingthe descriptivelemmas (Section4.2.5)by incorporatingthe predi-

cate directlyintothe antecedentofthe lemmas for the REF and ASSIGN

instructions.This reflectsthe view of the AAMP designersand documents

a contrainton use ofthe AAMP processor.Italsorelaxesthe specification

that must be satisfiedby the microarchitecture.

The exact definitionof the not_stack_cache_address predicateisleft

unspecifiedin the macroarchitecturesinceitvarieswith the specificAAMP

microprocessor.One approach would be tobe overlyconservativeand define

itat the maximum number of words the stackcache can hold (nineforthe

AAMPS) beneath the logicalTOS. Another approach isto defineitas an

abstractionof the micromachine statethat containsinformationabout the

IDependent subtypes are an important PVS feature allowing a type component to

depend on earlier components.
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stack cache as shown below. Such a specification was used in the proofs of

correctness relating the micro and macro levels.

not_stack_cache_add_ress(ABS(microstate), base)(offset)

(base /= denv(ABS(micro_state))) OR offset >= TOS(micro_state)

(offset < TOS(macro_state) - (SV(macro_state) + TV(macro_state))

0R

Using the physical TOS rather than the logical TOS to detect stack over-

flow was a more difficult problem to resolve. After discussion, the designers

of the AAMP decided they preferred to hide the stack cache as much as

possible from the application programmer and that future versions of the

AAMP would probably use the logical TOS rather than the physical TOS

to signal stack overflow. This, combined with the use of data_memory..vef

and data_memory_assign above, make it possible to restrict the effect of

the stack cache on the macroarchitecture specification to introduction of

the not_stack_cache_address predicate.

Of course,the actualmicrocode for the AAMP5 usesthe physicalTOS

ratherthan the logicalTOS to signalstack overflow. This is dealtwith

in the proofs by (1) showing the correspondence between the two levels

only as long as thereisno stackoverflowand (2) by proving a correctness

statement about the behavior of the stackoverflowconditionas a separate

propertyof the micro machine. In the AAMP5 a stackoverflowcan occur

only during a procedure callor at the beginning of an instructionduring

the execution of a special-purposemicro subroutinethat performs stack

adjustment. (Section5.1.3).The stack overflowcorrectnessconditioncan

be proved as a property ofthe stack-adjustmentmicro-routineindependent

of the instructionbeing verified.

The issuesraisedby the stackcache are an excellentillustrationof the

need forformal,or at leastprecise,specifications.While the need forspeed

makes itunlikelythat the AAMP willbe changed to preventdirectmemory

accessesin the regionof the stackcache,explicitlycapturingthisconstraint

providesimportant documentation forthe usersofthe AAMP, particularly

the compilerwriters.Using the logicalTOS ratherthan the physicalTOS

to signalstackoverflowisa relativelyminor change that may wellbe incor-

porated intofutureAAMPs--this issuehad simply never arose sinceithas

such a benign effect.Both issueswere brought forward by the requirement

to createan abstract,yet precise,specificationof the AAMP macroarchi-

tecture.
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4.3 Interrupts and Unrecoverable User Errors

The AAMP5 provides four hardware interrupts, reset (RST), bus transfer

error (XER), non-maskable interrupt (NMI), and maskable interrupt (IRQ).

Although formal analysis of the interrupt behavior of the AAMP5 was not

included in this effort, the basic framework developed is adequate to al-

low it to be easily added. An external interrupt can arrive and be acted

upon by the processor not just at macroinstruction boundaries but at any

point within a macroinstruction execution cycle. For this reason, a complete

specification of all aspects of the behavior of the AAMP5 in response to an

external interrupt is possible only in a model, eg., micromachine, where time

is represented at the clock cycle level. This topic will be discussed in more

detail in Section 6.6.

4.4 Development of the Macroarchitecture Spec-

ification

This section describes how the macroarchitecture specification was devel-

oped and the techniques used for its validation.

4.4.1 Initial Development

The macroarchitecture specification of the AAMP was developed through

gradual refinement by SRI and Collins and resulted in several iterations,

each incorporating increasing amounts of detail. Since the AAMP5 was to

be object-code compatible with the earlier AAMP2, this work was based

on the AAMP2 Reference Manual [Roc90]. Each iteration was reviewed via

informal walkthroughs by Collins and the comments returned to SRI. This

phase lasted approximately three months, took 532 man hours to complete,

and resulted in a first draft of the specification consisting of 1,595 lines of

PVS organized into 25 theories. Several issues emerged during this period.

As the specification grew in size, an ever increasing portion of it was

devoted to defining the properties of bit vectors, i.e., sequences of bits such

as words of memory and internal registers. Ultimately, these theories evolved

into a reusable library of 2,030 lines of PVS organized into 31 theories. The

bit-vector library was developed at NASA Langley Research Center by Rick
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Butler and Paul Miner. The bit-vector library is specified as a general-

purpose library parameterized with respect to the size of the bit-vectors.

Availability of this library at the start of the project would have greatly

shortened this phase.

Large parts of the specification were simply tables of attributes of the

various AAMP instructions. While the PVS representation of this infor-

mation was readable, a PVS construct explicitly designed to support the

expression of tabular data would have improved their clarity. Such a con-
struct has been added to the latest version of PVS.

4.4.2 Revision and Extension

Once SRI and Collins were satisfied with the overall structure of the specifi-

cation, its completion was taken over by Collins. This was done for several

reasons, the most pragmatic being to allow SRI to move on to the spec-

ification of the micro-a_chitecture. Ownership by Collins also encouraged

transfer of the formal methods technology. There was also growing concern

whether the AAMP domain experts, who were not skilled in PVS, would be
able and willing to read the PVS specification. It was felt the Collins team
was best situated to facilitate this.

Over the next five months, the roles of SRI and Collins on the macroar-

chitecture were reversed, with Collins revising and extending the specifica-
tions and SRI providing informal review. More of the executive service func-

tions were specified and the number of instructions specified was increased

to 108 of the AAMP's 209 instructions. NASA Langley also took over com-

pletion and validation of the bit vector theories. To make the specifications

more accessible to the AAMP domain experts, considerable effort was in-

vested in improving their readability by choosing more meaningful names,

adding general comments, adding comments tracing the specifications back

to the AAMP2 Reference Manual, and ensuring that all functions were writ-

ten as clearly as possible. Approximately 409 man hours were invested in

this effort. At its conclusion, the macroarchitecture specification consisted

of 2,550 lines of PVS organized into 48 theories, not including the bit vectors
library discussed earlier.

4.4.3 Inspection

Formal inspection [Fag86] of the macroarchitecture was felt to be essen-

tial, both to validate the correctness of the specification and to familiarize
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more engineers at Collins with PVS. In preparation for these inspections,

an overview of the specifications was presented in four reviews of two hours

each. At the end of these sessions, the engineers were divided into two teams,

one that would review the macro-level specifications and one that would re-

view the micro-level specifications. Checklists were drawn up for use in the

inspections based on earlier checklists used in inspecting VDM [Jon90] spec-

ifications, the RAISE Method Manual [BG90], and checklists used for code

inspections at Collins.

Eleven inspections were held of the macro level specification covering

thirty-one of the most important theories. Inspectors were required to review

the designated theories ahead of time, using the checklists as guides, and

record all potential defects encountered. Defects were classified as trivial,

minor, and major. Trivial defects were defined as those that did not affect

correctness and for which an obvious solution existed, such as spelling errors.

Minor defects included those that might affect clarity or maintenance but

did not affect correctness. As a rule of thumb, a defect was classified as

minor if two reasonable people could disagree on whether it was a defect.

Major defects were defined as those that affected correctness and obviously

should be corrected. Despite their name, most of the major defects were

very limited in scope and could be corrected in a few minutes. Some of

the errors were misunderstandings by SRI, some were errors in the original

AAMP documentation, and some had been inserted by Collins during the

revisions. During the inspections, each inspector presented the minor and

major defects they had found. While consensus of the team was required for

a defect to be officially recorded, the majority of issues raised were recorded

as defects. Later, each defect recorded was corrected. Total time spent in

preparation by all participants, time spent in inspection, and number of
defects found are shown in Table 4.2.

During the first inspection, team members were still uncomfortable with

PVS; as indicated by the number of hours spent in preparation. This ap-
prehension dissipated quickly and the inspectors settled down to a rate of

approximately 150 lines of PVS and comments per hour of preparation time

(the inspection rate increased during inspections nine through eleven since
these were of simple tables). This rate is probably somewhat high since the

inspectors were well aware that this was a shadow project. On an actual

project, more preparation time would have been required. Even so, 53 minor

(style) defects and 28 major (substantive) defects were discovered in spec-
ifications that had been carefully prepared prior to inspection. As shown
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in Table 3.1, approximately 96 hours were spent conducting the inspections

and 64 hours were spent correcting the defects found.

The ease with which the inspectors became comfortable with PVS was

one of the main surprises of the project. A similar result was observed with a

different team on the inspections of the micro-architecture. Much of this was

due to the time that was spent preparing the theories for inspection. While

the purpose of the inspections was to validate the accuracy of the formal

specifications, issues of style and clarify could dominate an inspection if

a theory was not well organized. On the few occasions that unprepared

theories were submitted to inspection, the result was quick rejection by

the inspection team. Clear organization, standard naming conventions, and

meaningful comments were essential.

Also surprising was the extent to which formal specifications and inspec-

tions complemented each other. The inspections were improved by the use

of a formal notation, greatly reducing the amount of debate over whether an

issue really was a defect or a personal preference. In turn, the inspections

served as a useful vehicle for education and arriving at consensus on the

most effective styles of specification. This is reflected in Tables 4.2 and 5.1

by the lower number of defects recorded in the later inspections.



4.4. Development of the Macroarchitecture Specification 3g

o
.,.._

¢.)

O)

t_

_J

o

iou

o ...-.

o

_ _. o o e_i_ o _ _ _ _ _.

0





Chapter 5

The Microarchitecture: The

Pipelined View of the
AAMP5

The internal microarchitecture of the AAMP5 employs four major, semi-

autonomous, functional units as shown in the block diagram of Figure 5.1.
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Figure 5.1:AAMP5 Block Diagram
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The Data Processing Unit (DPU) provides the data manipulation and

processing functions to execute the AAMP5 instruction set. Instructions

are executed in a series of smaller operations in a pipeline, so that portions

of multiple instructions can execute simultaneously. Included in the DPU

are an ALU, combinational multiplication facilities, barrel shifter, multiport

register file, and address computation hardware, all under microprogram
control.

Instruction fetching is performed by the Lookahead Fetch Unit (LFU) by

maintaining a 4-byte-long instruction queue that it endeavors to keep full.

In addition to prefetching into the instruction queue, the LFU parses the

instruction stream, assembles immediate operands (IM), and provides the

DPU with a microprogram entry point (EP) translated from the instruction

opcode. The LFU also passes the program counter (DP) associated with

the parsed instruction.

The AAMP5 includes 1024 bytes of direct-mapped instruction cache.

Each cache "hit" provides two bytes of code to the LFU in a single clock

cycle. During a "miss," two bytes are fetched from external memory and

provided simultaneously to the Instruction Cache Unit (ICU) storage and

to the LFU for queuing. Because the operational details of ICU are hidden

from the DPU, the LFU and the ICU are shown in Figure 5.1 enclosed

inside a shell with which the DPU interacts directly. We have highlighted

only those signals that are significant for our specification.

The Bus Interface Unit (BIU) performs external fetchs for the LFU, as

well as data reads and writes initiated by the DPU. It supports 24-bits of

word address, a 16-bit data bus, and several control and status signals.

5.1 The Data Processing Unit

The DPU provides the data manipulation and processing functions required

to execute the AAMP5 instruction set. A block diagram of the DPU that

includes most of the details of the DPU is shown in Figure 5.2, which also

includes some of the details of the LFU. The DPU has two main parts: the

datapath and the microcontroller.

5.1.1 The Datapath

The datapath consists of the components that perform the required data

manipulation for instruction execution. It includes a 10-word multi-port
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register file, a 48-bit ALU, shifters, multiplication support, and several reg-

isters. Some of the registers (R and W) are used to hold the operands of

the ALU and some are used to hold the results (T, Q, and M triplets) after

ALU and shift operations.

The ALU and the Reg File (register file) are two of the most complex

units in the DPU. The ALU supports a large number of logical and 2's com-

plement and l's complement arithmetic operations on 48-bit bit-vectors.

Besides the two bit-vector operands, the ALU accepts a carry-in input and

produces a carry-out. The ALU can, if necessary, bypass the operand reg-

isters (R and W) and get its operands directly from the result registers (T,

Q, and M).

The Reg File is a complex multi-port register file that can be read (and

written) simultaneously from (into) up to three registers relative to a read

(write) index controlled by the microcode. It contains bypass logic to use

the write value instead of the contents of a register during a read if there
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is a read-write clash. Six designated registers (STK0 through STK5) in the

register file (along with the T registers) are used to implement the stack

cache as described in section 5.1.3. The remaining registers in the register

file are used as pointers to the code and data memory such as the top-of-

stack and data environment pointer (DENV).

5.1.2 The Microcontroller

The microcontroUer generates the signals that control the movement of data
within the datapath as well as the next microinstruction to be read from

the ROM. It contains the microprogram store, the microsequencer, which

computes the next microaddress, and the microinstruction control registers
(MC0, MC1, and MC2).

Once an instruction moves into MC0, it is interpreted in a two-stage

pipeline The signals for controlling the operations in the first stage are gen-

erated from MC0. The operations performed in the first (setup) data-path

stage typically include setting up the operands for the ALU operation as

well as determining the next microaddress. A subset of the fields of the

microinstruction in MC0 is passed onto MC1, which controls operations in

the second data-path stage. The second (compute) stage typically involves

ALU computation, register write-back and memory operations. Finally, the

jump-address field of MC1 is passed onto MC2 as the target microaddress

of a potential delayed jump, typically used to implement exceptions such as

arithmetic overflow. If a delayed jump is detected (as a function of the ALU

outputs) in the second stage, then both MC0 and MC1 are cleared to abort

the operations normally performed by the MC0 and MC1 microinstructions

and then the microinstruction at the jump address is fetched and loaded

into MC0. The program counter DP is also pipelined using a sequence

of registers so that DPC, DPC1, and DPC2 contain the program counters

corresponding to the instructions in MC0, MC1, and MC2, respectively.

5.1.3 The Stack Cache and Stack Adjustment

As mentioned in section 4.2.6, the DPU holds up to nine words of the top of

the process stack in its internal registers. The T register-triplet always holds

the latest data item, which can be one, two, or three words long, pushed

on to the top of the stack. In other words, if the latest data item pushed

is a triple-word item, then it is held in TO, T1, and T2, with TO holding
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the least significant part. If the data item occupies two words, then they

are held in TO and T1, with T2 being "empty." The rest of the stack cache

elements are stored in the register file with the stack growing from STK0

up to STK5; i.e., STK0 is at the bottom.

The occupancy state of the stack cache that would result if an instruction

were completed is maintained in a pair of registers for each of the AAMP5

instructions being executed in MC0 (SV and TV) and MC1 (SV1 and TV1).

The circuit that maintains the SV-TV registers is shown in Figure 5.3. TV

contains the number of words that would be occupied in the T register triplet

and SV contains the number of registers in the register file that are used for

the stack cache. When an instruction to be executed requires more operands

than are available in the cache, the processor automatically reads additional

locations from memory to the stack cache. Similarly, when an instruction

will place more operands on to the stack than there are empty spaces in the

stack cache, the processor automatically writes the cache register contents

to memory.

SC0 t _I% DJMP 1_._._

To0

= _ SV

SV SVl

SV1

NEXT SV

NEXT TV

Figure 5.3: SV and TV Logic

The process of maintaining the proper number of operands in the stack

cache is called a stack adjustment. Prior to loading into MC0 the first

microinstruction of an instruction, the DPU compares the stack cache oc-

cupancy state corresponding to MC0 against the entry condition code of

the instruction. This code, which is stored for every instruction in a read-

only-memory, gives the stack cache requirements for the instruction. If the

stack cache occupancy is not acceptable, the DPU automatically executes

microcoded push or pop stack adjustments, causing a minimum number of

16-bit words to be written to or read from the active process stack area in

memory to satisfy the entry condition of the instruction.

r-
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5.2 Formal Specification of the Microarchitec-

ture

Since our goal was to verify the microcode residing in the DPU, the formal

specification of the microarchitecture abstracts the internal details of all of

the blocks of the AAMP5 except the DPU. The DPU is specified at the same

level of detail given in the informal microarchitecture documer/t [Roc93].

The rest of the AAMP5 is specified by formalizing the behavior of the other

blocks expected by the DPU. The DPU directly interacts only with the LFU

and the BIU. The ICU is maintained and managed entirely by the LFU and

its effect on the DPU is observed only via the LFU interface. Hence, the

DPU interface specification is divided into two parts: the DPU-LFU part

and the DPU-BIU part.

environment

SVTV pipefine ]

Figure 5.4: Microarchitecture Specification Hierarchy

An overview of the theory hierarchy comprising the microarchitecture

specification is shown in Figure 5.4. Again, an arrow drawn from theory A

to B indicates that A imports B. The hierarchy closely parallels the struc-

tural decomposition of the DPU into smaller circuit blocks in the AAMP5

microarchitecture document [Roc93]. Note that the ALU and the regfile are

treated as black boxes in our specification. Every node in the graph shown

in Figure 5.4 contains the PVS theories associated with a block of the circuit

of the DPU. As described in the next section, each circuit block is specified

by a pair of theories: one that declares the signals generated in the circuit
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block and one containing the axioms that constrain the signals (shown in

Figure 5.4 as shaded boxes for some of the circuit blocks).

The theory-pair at the root, system and system_axioms, denotes the

specification for the entire system. System is constructed from environment,

which combines the DPU-BIU and DPU-LFU interface specifications, and

DPU. The set of basic theories imported by all the theories in the hierarchy

are shown below the dashed line in Figure 5.4. Note that system is imported

by all the axioms theories thereby permitting signals generated in one circuit

block at an arbitrary level to be easily used in another block. Separating

the signal declarations from the axioms constraining their values made it

possible to use signals globally without complicating the name structure of

the signals. In the following sections, we describe the formal specifications

of the DPU, the DPU-LFU interface, and the DPU-BIU interface in more
detail.

5.2.1 DPU Specification

The DPU is constructed by combining the specifications of the datap-

ath, namely regfile, ALU_data_path, and the microcontroUer. The mi-

cropipeline part, i.e., MC0, MC1, and MC2 registers along with the abort

logic, of the microcontroller is specified in the DPU theory. The parts of

the microcontroller determining the next microaddress and the stack occu-

pancy logic are specified in microsequencer, Stack0ccupancyLogic and

SVTVpipeline. The ALU_data_path is decomposed into specifications of the

input registers (ALU_/nput__vegs) of the ALU and the ALU itself (ALU).

In most applications of formal logic for the verification of register-

transfer-level hardware, the design is modeled as a finite state machine with

an implicit clock. The state of the machine consists of the states of the

sequential components, such as registers, in the design. The next state

function defines the new state value at the next cycle of the implicit clock.

The exact style used to specify the state machine implemented by the design

can vary. For the AAMP5, we used a functional style of specification.

In this style, the inputs and outputs of every component are modeled as

signals, where a signal is a function that maps time, i.e., number of cycles

of the implicit clock, to a value of the appropriate type. Every signal that is

an output of a component is specified as a function of the signals appearing

at the inputs to the component. The signal definitions implicitly specify the

connectivity between the components.
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This style should be contrasted with the predicative style [Gor85] that is

commonly used in most HOL [GM93] applications. In the predicative style,

every hardware component is specified as a predicate relating the input and

output signals of the component and a design is specified as a conjunction of
the component predicates, with signals on the internal wires used to connect

the components hidden by existential quantification. We decided to use a

functional style because proofs based on functional specifications tend to be

more automatic than those involving predicative specifications. A proof of

correctness for a predicative style of specification usually involves executing
a few additional steps at the start of the proof to transform the predicative

specification into an equivalent functional style. For a more detailed look at

the two styles and their impact on proofs see [SSR95].

SVTVpipeline: THEORY

BEGIN

IMPORTING micro_instrn_basics, AAMP_bit_vectors, signal

Extract the required control fields from MCO

SCO: signal[SC_field]

TCO: signal[TC_field]

SV, SV1, TV, TVI: signal[bvec[3]]

NEXT_SV: signal [bvec [3]]

NEXT_TV: signal [bvec [3] ]

END SVTVpipeline

Figure 5.5: Signals for the SV-TV Pipeline

As an illustration, a complete specification in PVS of the circuit block

(shown in Figure 5.3) that updates the pipelined stack pointer registers SV,

TV, SV1, and TV1 is given in Figures 5.5 and 5.6. The specification of a

circuit block is divided into two theories: a signals theory and an axioms

theory. The signals theory (Figure 5.5) declares all the signals used to

represent the state of the circuit. For the SV-TV circuit, these consist of

the inputs (the control signals SC0 and TC0 originating from the microin-

struction register MC0) and the outputs at the various registers used in the

circuit. We also include NEXT_SV and NEXT_TV as signals since they are
also used as outputs of the circuit.
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The types of all the signals in the design, except the one used for microin-

structions, are bit-vectors of the actual size used in the design. An AAMP5

microinstruction is 88 bits wide organized into 27 different fields. In our

specification, a microinstruction is represented symbolically as a record type

with enumerated types for the microinstruction fields. The enumerated type
associated with a microinstruction field contains a distinct literal for every

bit-pattern value possible for the field. The microinstruction record type,

the default values for the fields, and related functions are specified in the

theory micro_instrn_basics, which is one of the basic theories imported

by the SV_TV_p±peline theory.

The axioms theory (Figure 5.6) for the circuit defines the values of the

declared signals. Every signal is specified by means of an axiom that con-

strains the way the values of the signals change over time. For example,

the axiom TVax specifies the value of the signal TV to be equal to that of

NEXT_TV delayed by one cycle unless the updating of the signal is disabled

when data hold (DHLD) is asserted to be high.

The axioms and the signals theory import a number of other theories
besides micro_2nstrn_basics described above. AAMP_bit_vectors defines

the different kinds of bit-vectors used in the specification. System is the

top-level theory that imports all the signals declared in different parts of

the circuit so that a signal generated in one circuit block can easily be used

as an input in another block. For example, the signals DJMP and MC0 used

here are generated in another part of the circuit defined by the DPU theory.

For the sake of brevity, certain parts of a circuit, usually those denoting

a combinational block, are abstracted in a single signal specification. For

example, the axiom NEXT_SVax combines the entire combinational logic in
the circuit shown in Figure 5.3 that generates the NEXT_SV signal.

5.2.2 DPU-LFU Interface

The DPU and the LFU undertake a "hand-shake" protocol to accomplish

the proper transfer of information between them. The LFU independently

prefetches instructions into a queue, decodes the instruction in the front of

the queue, and presents the decoded information to the DPU via the signals

EP, DP, and IM described below. The LFU signals the availability of a new

instruction on its output lines by making RDY true. Whenever RDY is true,

the LFU ensures that the following conditions hold:



50 Chapter 5. The Microarchitecture

SVTVpipeline_axioms : THEORY

BEGIN

IMPORTING system

IMPORTING micro_instrn_basics, signal, AAMP_bit_vectors

t: VAR time

Y. Extract the required control fields from MCO

SCOax: AXIOM SCO(t) = SC(MCO(t))

TCOax: AXIOM TCO(t) = TC(MCO(t))

NEXT_SVax: AXIOM NEXT_SV(t) =

(IF DJMP(t) THEN SVl(t)

ELSE CASES SC(MCO(t)) OF

N0_SV : SV(t),

SPUSHI: SV(t) + I,

SPUSH2: SV(t) + 2,

SPUSH3: SV(t) + 3,

SPOP1 : SV(t) - 1,

SPOP2 : SV(t) - 2,

SPOP3 : SV(t) - 3,

SPUSHT: SV(t) + bv2nat(TV(t))

ENDCASES

ENDIF)

SVax: AXIOM SY(t+l) = IF DHLD(t) THEN SV(t) ELSE NEXT_SV(t) ENDIF

SVlax: AXIOM SVl(t+l) = IF DHLD(t) THEN SVl(t) ELSE SY(t) ENDIF

NEXT_TVax: AXIOM NEXT_TV(t) =

IF DJMP(t) THEN TVl(t)

ELSIF TV_TO_O?(TC(MCO(t))) THEN nat2bv[3](O)

ELSIF TV_T0_IF(TC(MC0(t))) THEN nat2bv[3](1)

ELSIF TV_T0_27(TC(MC0(t))) THEN nat2bv[3](2)

ELSIF TV_T0_3?(TC(MC0(t))) THEN nat2bv[3](3)

ELSE TV(t) ENDIF

TVax: AXIOM TV(t+I) = IF DHLD(t) THEN TV(t) ELSE NEXT_TV(t) ENDIF

TVlax: AXIOM TVl(t+l) = IF DHLD(t) THEN TVI(t) ELSE TV(t) ENDIF

END SVTVpipeline_axioms

Figure 5.6: Specification of the SV-TV Pipeline
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1. EP has the entry-point (starting microaddress) of the microcode of

the instruction associated with the value of DP.

2. IM has the first unit of immediate data, if any, of the instruction

associated with the value of DP.

DP is an offset (actually one greater than the real offset since it's "delayed"

by a byte for technical reasons) into the code environment from which the
instruction is fetched. The real address of the instruction is formed as a

concatenation of the code environment pointer in CENV, which resides in

the LFU (but can be read as a register in the register file), and DP.

Once RDY becomes true, the LFU idles, i.e., does not change its out-

pats, although it may be filling up the instruction queue. The idling state

continues until the DPU expresses its intent to consume, or sends a request

to the LFU to discard the current instruction and start fetching from a dif-

ferent target address. The DPU controls the operation of the LFU by means
of the NC field of the microinstruction in MC0. A value of CLR._RDY for

NC means the DPU is ready to consume a new instruction and will cause

the LFU to assemble information about the instruction following DP and

present it the next time RDY becomes true. However, if the DPU instructs

the LFU to retarget its fetching (NC is NANO_SKIP, for instance) then the

new target address (presented by the DPU in TO) gets transferred into the
LFU. After that, the LFU presents the instruction at the new target address

the next time I_DY becomes true. For the protocol to work correctly, the

microcode in the DPU must obey the following conditions:

.

.

The DPU must consume a new piece of information from the LFU

only when RDY is true. That is, if the DPU is ready to issue a

CLR_RDY signal to the LFU when the LFU is not ready with the

required information, the DPU must walt until RDY is true.

Every issue of a request to change the normal sequence of instruction

fetching, such as NANO_SKIP, NANO_CALL, etc., must be followed

by a CLR_RDY. For example, if a NANO_SKIP is issued before the

results of a previous request are consumed, the second request may
override the first one.

Our LFU-DPU interface specification states only those assumptions we

made about the behavior of the LFU in our proofs. It is not a complete
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LFU: THEORY

BEGIN

IMPORTING micro_instrn_basics, AAMP_bit_vectors, signal

IMPORTIHG opcodes, temporalops, MEMORY, system, EPROM_basics

t, tl, t2: VAR time

NC0(t): NC_field = NC(MC0(t))

normal_fetching: signal[bool]

% Invariant constraints on the outputs when LFU is RDY

RDYinv: AXIOM

RDY(t) =>

LET opcode = opcode_at(CENV(t), DP(t), CODE_MEMORY(t))

IN EP(t) = EP_ROM(opcode) &

(has_imm_data(opcode) => IN(t) = first_unit_of_imm_data(t))

CLR_RDY behavior specification

CLR_RDY_no_wait: AXIOM

RDY(t) _ CLR_RDY?(NC0(t)) =>

normal_fetching(t+1)

DP(t+I) = IF RDY(t+I) THEN DP(t)+length_of_instruction(opcode)

ELSE DP(t) ENDIF

CLR_RDY_wait: AXIOM

NOT RDY(t) & normal_fetching(t) & CLR_RDY?(_C0(t)) =>

(EXISTS (tl [ tl > t):

stays_same(NCO(t))(t, tl) =>

stays_same(RDY)(t, tl-l) & RDY(tl) &

normal_fetching(tl) &

DP(tl) = DP(t)+length_of_instruction(opcode) )

SKIP behavior specification

no_change_in_flow(t): bool = ((gC0(t) = CLR_RDY) OR (NC0(t) = N0_NAN0))

NANO_SKIPax: AXIOM

NANO_SKIP?(NCO(tl)) =>

NOT RDY(tl+I) & NOT(normal_fetching(tl+l)) &

(EXISTS (t2 I t2 > tl+l):

stays_high(no_change_in_flow)(tl+l, t2-1)) =>

stays_same(RDY)(tl+l, t2-1) & RDY(t2)

stays_same(normal fetching)(tl+l, t2) & DP(t2) - T0(tl) )

% Idling behavior of LFU

LFUidles(tl, t2): bool =

stays_same(EP)(tl, t2)

& stays same(IM)(tl, t2) & stays_same(RDY)(tl, t2)

stays same(DP)(tl, t2) & stays same(CENV)(tl, t2)

N0_NAN0ax: AXIOM

RDY(tl) & stays_equal_to(MOO, NO_NAN0)(tl, t2) => LFUidles(tl, t2)

END LFU

Figure 5.7: DPU-LFU Interface Specification
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specification of the LFU interface. Section 6.7 discusses a possible approach

for validating these assumptions. Figure 5.7 shows part of the LFU interface

specification.

CODE_MEMORY, declared in the theory MEMORY, denotes the por-

tion of the external memory where the code is stored. Although the AAMP5

microarchitecture does not require external memory to be separated into

mutually exclusive code and data areas, our specification uses two distinct

memory objects, CODE_MEMORY and DATA.MEMORY. Both of these

memories map 24-bit addresses to 16-bit words. All instructions are as-

sumed to be fetched from CODE.MEMORY and all data read/writes are

assumed to only affect DATA_MEMORY. That is, we assume that the

CODE_MEMORY state remains constant. This simplification restricts the

validity of our proofs of correctness of microcode to programs that are not

self-modifying.

The first axiom (RDYinv) states a condition on the LFU outputs that

the DPU can rely on whenever LFU is ready with a decoded instruction. It

states that whenever RDY is true, EP and IM have the appropriate infor-

mation pertaining to the instruction associated with the program counter

DP.

The remaining axioms specify the expected responses to some of the

different instruction-fetching requests originating from the DPU. The axioms

beginning with the prefix CLR_RDY specify the possible LFU behaviors in

response to a request (CLR_RDY) by the DPU to consume an instruction
from the LFU. If the LFU is ready with an instruction when the DPU issues

a CLR_RDY, which is the case covered by the first axiom, the LFU goes into

a state normalAetching where it presents instructions sequentially. Note

that the DP is updated only if the next instruction can be presented in

the following cycle (otherwise, the invariant RDYinv will not be preserved).

If the LFU is not ready with an instruction when NC is CLR_RDY, the

case covered by the second axiom in the set, we assume that the LFU will

eventually present the DPU with a new instruction, provided DPU holds

the NC0 line stable with CLR_RDY.

The behavior specified by the second axiom applies only when the LFU

is in a normal.2etching state. We do not need an analogous axiom for the

case when LFU is not in a normal_:fetching state because the LFU can get

into such a state only after a DPU request, such as NANO_SKIP, that causes

a change in the flow of instruction fetching. The requirement that RDY must

eventually become true in such a state is covered by the axioms constructed
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for those other DPU requests, as we have shown for NANO_SKIP in Fig-

ure 5.7. In addition to ensuring that RDY eventually becomes true, the

NANO_SKIP axiom updates DP to the target address (TO) and makes the

nonnal.2etching signal false. It guarantees the outcome only if the DPU

does not issue another request for a change of instruction flow. That is,

the DPU must keep the NC signal input to the LFU either NO_NANO or

CLR_RDY until RDY becomes true for proper action.

The axiom ND_NAN0ax states that the LFU idles, i.e., the values of EP,

IM, DP and CENV stay the same, once RDY becomes true as long as NC0

stays NO_NANO.

5.2.3 DPU-BIU Interface

BIU : THEORY

BEGIN

IMPORTING system

IMPORTING micro_instrn_basics, AAMP_bit_vectors, signal

IMPORTINGMEMORY, temporalops

t, tl, t2: VAR time

data_mem_unchanged: AXIOM

NDT_ITE(t+I) => DATA_MEMORY(t+2) = DATA_MEMORY(t+I)

read_complete_delayed: AXIGM

READ(tl) & DHLD(tl) =>

EXISTS (t2 ] t2 > tl):

NOT DHLD(t2) _ stays_high(DHiD)(tl, t2-1)

RD(t2) = DATA_MEMORY(tl)(DA(tl)) &

DATA_MEMORY(t2) = DATA_MEMORY(tl)

write_complete_delayed: AXIOM

WRITE(tl) & DHLD(tl) =>

(EXISTS (t2 ] t2 > tl): NOT DHLD(t2)

stays_high(DHiD)(tl, t2-1) &

DATA_MEMORY(t2) ffi

DATA_MEMORY(tl) WITH [(DA(tl)) := WDR(tl)] )

END BIU

Figure 5.8: DPU-BIU Interface Specification
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The DPU interacts with the BIU (Bus Interface Unit) to accomplish

data reads and writes to external memory. In addition to the logic needed

to accomplish data transfers to the external memory, the BIU also contains

logic to arbitrate between the memory requests from the DPU and the LFU.

The BIU is specified similar to the LFU by stating a set of assumptions

made about the behavior of the interaction between the BIU and the DPU.

Memory access requests (READ and WRITE) by the DPU are controlled

by the DB field of the microinstructions in MC0 and MC1 as well as the

abort logic in the DPU. Figure 5.8 shows a portion of the text of the theory

containing the DPU-BIU interface specification. The 24-bit data address for

the memory operation is output on the line DA. WDR contains the data for

a memory write and RD is used to store the read data from the memory.

The BIU indicates the completion of memory operation by means of the

data hold (DHLD) signal. Once a memory access request is made by the

DPU, DHLD is held true until the memory operation is complete.

The first axiom states that DATA_MEMORY remains unchanged unless

there is a pending write request from the DPU. The second axiom asserts

the guaranteed completion of every read request, while the third states a

similar requirement for proper completion of a write request.

5.3 Development of the Microarchitecture Spec-

ification

This section describes how the microarchitecture specification was developed

and the techniques used for its validation.

5.3.1 Initial Development

Development of the microarchitecture specification mirrored that of the
macroarchitecture. As indicated in Table 3.1, initial development of the

microarchitecture specification by SRI took approximately 657 man hours

over 10 months. The specification closely followed the block structure of the

microarchitecture, usually with one theory per component. Surprisingly,

the specification of the microarchitecture without the PVS version of the

microcode was only slightly larger than the specification of the macroar-

chitecture, an indication how much of the complexity of the AAMP5 is
contained within the microcode. Once decisions about the data types to be
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used to model signals and states are made, it should be possible to automat-

ically derive a PVS specification of a hardware design from its description

in a more traditional hardware description language.

Completion of the microarchitecture specification took longer than the

specification of the macroarchitecture for a number of reasons. The AAMP5

microarchitecture document, unlike the AAMP2 Reference Manual, is tar-

geted for an audience that is familiar with the basic architecture of the

AAMP processor family. As a result, SRI had to spend considerable time

becoming familiar with the design. In particular, the interactions between

the DPU and its environment were difficult to specify. Although the design
of the LFU and the BIU were well documented, the interface conditions

that the DPU has to obey to ensure proper LFU and BIU services were not

explicitly stated. This information had to be extracted through reverse en-

gineering of the detailed designs and extensive discussions with the Collins

staff. The time spent on both these efforts could have been substantially re-

duced if formal specification activity were integrated earlier and more closely

into the conventional design cycle.

5.3.2 Revision

To make the specifications acceptable to the AAMP5 designers for inspec-

tion, the initial microarchitecture specifications developed by SRI were in-

formally reviewed by three Collins engineers familiar with both PVS and
the AAMP5 and revised as was done for the macroarchitecture. Since the

initial specifications covered the entire microarchitecture, there was no need

for Collins to extend the specification. Most of the changes consisted of mod-

ifying names to reflect local conventions, adding comments tracing back to

the design documents, and improving the clarity of the specifications. Even

so, this was a sizeable effort, requiring 280 hours spread over seven months.

When completed, the microarchitecture specification consisted of 2,679 lines

of PVS and comments organized into 20 theories.

Revisions were also made later to the microarchitecture specifications

to facilitate proofs, but these were more technical in nature and not as

significant as the ones made to the macroarchitecture specification. Most

involved trading the use of an advanced and expressive construct of the

specification language for a more basic construct to improve the efficiency

of proofs.
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5.3.3 Inspection

Formal inspections of the microarchitecture were conducted just as for the

macroarchitecture. To maximize the independence between the macro and

micro specifications, only one participant from the macroarchitecture inspec-

tions was included in the microarchitecture inspection team. Ten inspections

were held, including two reinspections, covering 15 of the most important

theories. The results are shown in Table 5.1.

Again, the inspectors quickly adapted to PVS, reaching an average in-

spection rate of approximately 290 lines of PVS and comments per hour.

Interestingly enough, the designers of the AAMP5, who were the least fa-

miliar with the PVS language, found the specifications the simplest to read,

consistently turning in the most major defects and the lowest preparation

times. This was a direct result of their detailed knowledge of the AAMP5

and the close correspondence between the AAMP5 design and the specifica-

tions. As with the macroaxchitecture specification, more preparation time

would have been required on an actual project. Sixty-four minor (style)

defects and 19 major (substantive) defects were discovered. As shown in

Table 3.1, 83 hours were invested in conducting the inspections and 66 hours

were spent correcting the defects found.
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Chapter 6

Formal Verification of

AAMP5

In this chapter, we first describe the general correctness criterion that is

commonly used for microprocessor verification. We then describe the im-

pact of pipehning and asynchronous memory interaction on the correctness

criterion and the proof of correctness. That is followed by a description of

the AAMP5 pipeline operation and how the general microprocessor correct-

ness criterion is applied to the AAMP5 pipeline. We then describe how we
mechanized the verification of the AAMP5 and some of the errors discovered

during the mechanization of the proof. We end the chapter with a discussion

of the scope of the formal verification that has been undertaken so far.

6.1 General Microprocessor Correctness

In most mechanical verifications of microprocessors, the general correct-

ness criterion used is based on establishing a correspondence, as shown in

Figure 6.1(a), between the execution traces of two state machines that the

specifications at the macro and micro levels denote. In the figure, E and
next_macro_state denote the micromachine and macromachine state tran-

sition functions, respectively, and the circles and squares denote the macro

and micrornachine states, respectively. The objective of the correctness cri-

terion is to ensure that the micromachine does not introduce any behaviors

not allowed by the macromachine. The macromachine uses two kinds of
abstraction to hide details of the micromachine:

59
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Figure 6.1: General Microprocessor Correctness

• Representation abstraction: Not every component of the micromachine

state is visible at the macro level. Even the visible part of the micro-

machine state can take on quite a different form at the macro level.

For example, the process stack, which is viewed as residing entirely in

the data memory in the macromachine, is actually split between the

memory and internal registers in the micromachine.
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• Temporal abstraction: The macro and the micromachines do not run

at the same speed. For example, while every instruction in the macro-

machine is viewed as being executed atomically in one unit of time,

the same instruction may take a number of clock cycles to complete

in the micromachine. The difference in speed means that the micro-

machine trace may have "intermediate" states for which there are no

corresponding macromachine states.

To deal with representation abstraction it is necessary to define an ab-

straction function (ABS) that returns the macrostate corresponding to the

state of the micromachine at any given time. This function must be sur-

jective to ensure that if the macromachine starts at some initial state, the

micromachine is able to start at a corresponding state. One way to deal

with the consequences of temporal abstraction is to characterize the set of

microstates that have corresponding macrostates as visible states. For ex-

ample, a possible definition of a visible state is one in which an instruction

gets completed and a new instruction begins. In Figure 6.1(a), the visible
states in a trace are those in which an arrow labeled ABS is drawn from the

micromachine trace to the macromachine trace.

Given the notions of ABS and visible state, the correctness criterion

described by Figure 6.1(a) can be stated as follows: "Every micromachine

trace starting with an initial state (SO) that abstracts to a macrostate (sO)

must be abstractable to the macromachine trace starting with the initial

state sO." To prove such a correspondence between two infinite traces, it

is sufficient to prove the commuting property formally stated below and de-

picted graphically in Figure 6.1(b). The commuting property captures the

correspondence between the traces for one step of the macromachine, i.e.,
between two successive visible states. The formalization of the commuting

diagram has two additional preconditions to handle the consequences, de-

scribed in section 4.2.6, of the hiding of the stack cache from the macro level.

Proper_instrns_in_pipe (1;) ensures that the memory address operands (if

any) of every macroinstruction in the pipeline are not within the area over-

laid by the stack cache. No_logical_stack_overflow(t) ensures that the

logical process stack would not overflow as a result of executing the current
instruction.

visible_state(t) &

proper_instrns_in_pipe(t) &

no_logical_stack_overflow(t) =>EXISTS (tp: time I tp > t):

stays low(t+l, tp-1)(visible_state) &

visible_state(tp) & ABS(tp) = next_macro_state(ABS(t))
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David Cyrluk has developed a general framework [Cyr93] for proving

correspondence between state machines in PVS and has shown its appli-

cation for pipelined microprocessors. The characterization of microproces-

sor correctness described here is similar to the visible state approach given

there [Cyr93]. Windley [Win90] also develops a general framework for micro-

processor correctness, although it is not applicable to pipelined processors.

6.2 Impact of Pipelining and Asynchronous

Memory Interface

The basic idea behind pipelining is to increase the instruction execution rate

of a processor by executing different stages of more than one instruction

within the same clock cycle. Thus, although execution of an instruction is

still spread over multiple clock cycles, it is possible to complete up to one

instruction every cycle.

The general correctness criterion shown in Figure 6.1 is still applicable

for pipelined processors with some adjustment as long as instructions get

completed in the same order as they enter the pipeline. An adjustment is

needed to handle the fact that when a new instruction enters the pipeline,

the results of the previous uncompleted instructions may not yet be at their

destinations. The definition of the abstraction function ABS may have to

peek to a future microstate, possibly nonvisible, following the current visible

state (as shown in Figure 6.2) to get correct values for some of the macrostate

components. Typically, the values for all but the program counter must be
obtained from the future state. We refer to the distance into the future

from the current visible state where the information is to be obtained as the

latency for the abstraction function.

In principle, it should be possible to define the abstraction function as
a function of the current visible state alone because the information neces-

sary to compute the result of the to-be-completed instructions is stored in

various hidden registers in the micromachine. In the MiniCayuga verifica-

tion [SB90], which is one of the earliest efforts in the mechanical verification

of a pipelined processor, the abstraction function was defined in this fashion.

However, it is easier and conceptually clearer to define the abstraction in a

"distributed fashion" using the future visible or nonvisible states, which is

the approach taken for the AAMP5. The pipelined verifications described

in [Cyr93], [SGGH94], [TK93], and most recently [WC94], also define the
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Figure 6.2: Impact of Pipelining on Abstraction

abstraction function in a distributed fashion. Burch and Dill use a slightly

different approach in [BD94] to handle the time skew between the two levels.

They "run" the micromachine longer by an appropriate number of cycles by

streaming in NOP instructions before relating the states of the macro and

micromachines.

In Figure 6.2, the distance between two consecutive visible states can

vary for a number of different reasons, although a pipelined design strives

to keep the distance to one cycle as often as possible. For example, an

instruction requiring a memory access may take longer than a register-to-

register instruction, or an instruction that signals an exception may take a

few extra cycles for completion. The distance can usually be expressed as

a function of the class of the new instruction entering the pipeline in the

visible state. For the AAMPS, however, the distance can be arbitrary in

some situations because the DPU relies on two semi-autonomous units (the

LFU and the BIU) for instruction and data fetches. While we do rely on

having the LFU and the BIU guarantee correct services, we cannot make

any assumptions about the time taken for those services (other than that

they are finite) for two reasons. First, the internal details of the LFU and
BIU have been abstracted in the micromachine specification. Second, the

time of service is determined by factors that are not completely under the

control of the DPU.
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6.3 The AAMP5 Pipeline

The reader is advised to refer to Figure 5.2 in section 5.1 while reading

this section. The AAMP5 executes its instructions in a three-stage pipeline

where we identify the stages with the names: fetch, setup, and compute.

The fetch stage consists of the DPU activities that occur prior to the entry
of the first microinstruction of an AAMP5 instruction into MC0. The

setup stage consists of the activities controlled while the microinstruction

is in MC0. The compute stage consists of the activities determined by the

part of the microinstruction that moves from MC0 to MC1. Note that the

register MC2 is only used for delayed jump execution and does not add a

stage under normal instruction execution.

The different components of an AAMP5 instruction enter the DPU

through the following input signals: DP, which is the program counter value

associated with the instruction entering the DPU; EP, which gives the entry

point, i.e., the beginning microaddress, of the microcode of the instruction;

and IM, which is the first unit of immediate data, if any, of the instruction.

A summary of the activities that take place in each of the three pipeline

stages is given below.

Fetch Stage:

• Read the microinstruction at EP from ROM.

• Read the entry condition code for the instruction from SROM

(not shown in Figure 5.2).

• Perform any stack adjustments required.

Setup Stage:

• Compute the stack cache occupancy state (NEXT_SV and

NEXT_TV) that would result if the instruction were performed.

• Read the register file to determine the sources for the ALU input

registers R and W.

• Compute memory sources and destination addresses (needed only

for memory access instructions).

Compute Stage:

• Compute the results of the ALU.
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• Check whether there is going to be a delayed jump, i.e., an excep-

tion, such as an arithmetic overflow, that arises as an outcome of

the ALU computation.

• Initiate writing into the stack cache.

• Initiate memory read/write (needed only for memory access in-

structions).

6.3.1 Normal Pipeline Operation

The DPU logic is designed so that the DPC register always contains the

program counter value associated with the macroinstruction that is being

interpreted in MC0. A similar correspondence holds between DPC1 and
MC1 as well as DPC2 and MC2. We use the macroinstruction associated

with DPC as the reference point and refer to it as the current instruction.

Under normal pipeline operation, i.e., when AAMP5 instructions are being

completed at the rate of one per cycle, the DPU performs the setup stage

of the current instruction along with the compute stage of the previous

instruction and the fetch stage of the next instruction.

fetch Io,_ 11\ I2,, I3_

setup XIo\_Ilx"_I_XI_

compute "_Io "XI1 _I2 _'_i3

0 1 2 3

Time (Cycles)

Figure 6.3: Normal Pipeline Operation

The normal pipeline operation along with the execution trace of the

micromachine is shown in Figure 6.3. A state (square) in the execution

trace (shown at the bottom of Figure 6.3) with a number n in it denotes
the visible state where instruction n is the current instruction. The column

above a state transition arrow shows the instructions in the pipeline and the

stages that are being performed in a given cycle.

We define a visible state as one in which the first microinstruction of a

new AAMP5 instruction is in MC0 and is guaranteed to advance to MC1 in

the next cycle. That is, the left-over effects of the previous instruction are
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guaranteed to be completed in the next cycle. Under this characterization

of the visible state, the latency for the ABS function is exactly one cycle.

During normal pipeline operation, the distance between consecutive visible

states is exactly one cycle. A formal characterization of a visible state is

given below. Visible_state_with(op)(t) defines the condition that must

be satisfied for a micromachine state to be visible with the opcode of the

current instruction being op. The first condition in the conjunction ensures

that MC0 contains the first microinstruction of the microcode corresponding

to op. The remaining conditions ensure that the previous instruction will

complete in the next cycle: DHLD being false ensures that the previous

instruction will not be held due to data memory transfer; nextDJMP(t)

(which is the value of the DJMP register one cycle later) being false ensures

the previous instruction will not cause a delayed jump; entry_cond.met

ensures that the entry conditions of the instruction in MC0 are met by the

stack occupancy state determined by the SV1 and TV1 registers.

visible_state_with(op: opcodes)(t): bool =

MC0(t) = ROM(zero_extend[8](ll)(EP_ROM(op)(t))) &

& NOT(DHLD(t)) & NOT(nextDJMP(t)) & entry_cond_met(op)(t)

visible_state(t): bool =

EXISTS (op: opcodes): visible_state_with(op)(t)

6.3.2 Pipeline Stalling and Delayed Jumps

Given that the AAMP5 pipeline is at a visible state, the pipeline operates

normally (i.e., the distance to the next visible state is one cycle) only if the

following conditions hold:

1. The current instruction, i.e. the one in the setup stage, in the pipeline

is implemented by a single microinstruction.

2. The previous instruction, i.e., the one in the compute stage,

(a) does not cause a delayed jump (nextDJMP, the value assigned to

DJMP in the next cycle, is false), and

(b) will not not cause a data hold (DHLD is false).

3. The LFU is ready with the next instruction (RDY is true).

4. The next instruction will not need a stack adjustment (SADJcondn is

false).
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If any of the conditions listed do not hold, the distance to the next visible

state will be more than one cycle and its value will depend on which of the

conditions in the list are violated. We classify these situations in which the

next visible state is more than one cycle away from the present one as follows:

The behavior resulting from violations of conditions 2(b), 3, or 4 is referred

to as pipeline stalling; in these situations, the micromachine performs a

computation that has no visible effect on the macrostate. Violations <_f

the other two cases (1, 2(a)) are referred to as pipeline extension. In a

pipeline extension, the micromachine components that affect the macrostate

are updated incrementally in two or more cycles. In all these situations, the

compute stage of the previous incomplete instruction is always completed

in the following cycle. Some of the execution traces for pipeline extensions

are shown in Figure 6.4 and those for stalls are shown in Figure 6.5. While

both figures show the traces when the respective situations arise alone, in

practice any combination is possible.

f ,ch i,\ i\ I5
setup 11_,_ib\_12 _13\ _'14

compute_ _I__,b" "I2 13

I 2 3 4

(a)Multi-instructionrnicrocodetrace

fetch I2 I3X _ Xl\

"setup Ii\ I2,,

_ _Nullcompute Io I]

oo° Xn I4
\ \

Xl_, °°° Xa_

_Null "_Xl °°°

I5

h

'x
x_

_000

(b) Execution trace for a delayed jump

Figure 6.4: Execution Traces for Pipeline Extension

Figure 6.4(a) shows the trace for the case where the size of the microcode

is 2. Note that, in general, the distance to the next visible state in this case is
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equal to the size of the microcode for the instruction. The stages associated

with the two microinstructions of the current instruction are labeled (l-a)

and (l-b), in order.

Figure 6.4(b) shows the trace when the current instruction causes a de-

layed jump. The delayed jump is detected only after the current instruction

(I1) is in its compute stage. Once a delayed jump is detected, the MC0 and

MC1 registers are cleared to a NULL microinstruction, which behaves like a

NOP. Any memory operation initiated in the compute stage is aborted when

a delayed jump is detected. The next visible state is reached only after the

preprocessing required to set up the exception handler is completed. In Fig-

ure 6.4(b), the microinstructions that process the delayed jump are labeled

X1 through Xn. I4 denotes the first instruction of the exception handler.

Figure 6.5(a) shows the trace when the pipeline has to be stalled while the

DPU waits (that is, the DHLD input to the DPU is true) for completion of
a data memory access initiated by the current instruction. In this case, after

the compute stage of the previous instruction in the pipeline is completed,

the micromachine state is held constant until the next visible state, when

DHLD becomes false again. The distance to the next visible state is n q- 1,

where n is the duration for which DHLD is held true, which can be arbitrarily

long.

Figure 6.5(b) shows the trace when the LFU is not ready with the

next instruction. In this case, a jump is made to a special microroutine

(MAP_WAIT) that implements a busy wait loop which is exited only when

RDY becomes true again. As in the case of waiting for DHLD, the distance

to the next visible state can be arbitrarily large depending on when RDY

becomes true again.

Finally, Figure 6.5(c) shows the trace when the entry of the next instruc-

tion has to be delayed for a stack adjustment. In this case, the hardware

causes a jump to a special microroutine that moves the appropriate number

of elements between the stack cache and memory. Here, the distance to
the next visible state is a function of the number of elements that need to

be moved. In Figure 6.5(c), SADJi denotes microinstruction ± of the stack

adjustment routine.

6.4 Our Approach to Verification

To prove the general correctness criterion for the AAMP5, shown in Fig-

ure 6.1(b), we have to first define the abstraction function. The components
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Figure 6.5: Execution Traces for Pipeline Stalling
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of the micromachine state that are relevant in determining the corresponding

macrostate are the following:

. The special registers (inside the register file) DENV, CENV, and

SKLM. These map to their corresponding counterparts in the
macrostate.

, The special register TOS in teh register fde, and the registers TV1 and

SV1, which are part of the stack occupancy logic shown in Figure 5.3.
These define the value of TOS in the macrostate.

3. DATA_MEMORY and CODE__MEMORY

.

5.

The DPC register. This is mapped to the macrostate program counter.

The registers TO, T1, T2, and the STKi registers in the register file,

where ± ranges from 0 through SV1. These determine the contents of

the macrostate data memory that are overlaid by the stack cache.

A formal definition of the abstraction function for AAMP5 is shown be-

low. The abstraction is divided into a separate function for each of the

components in the macrostate. Given a time t, an abstraction function

returns a component of the macrostate corresponding to the microstate at

t. Every abstraction function except the one associated with the program

counter actually constructs the macrostate component from the microma-

chine state one cycle later to account for the pipeline latency. The definition

given below is applicable to only those situations where the process stack

at the macro level does not cause an overflow. As was explained in sec-

tion 4.2.6, the correctness of the microcode in the presence of stack overflow

is shown as a separate property.
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ABSpc(t): word = DPC(t)

stack_cache_size(t): nat = bv2nat(SVl(t)) + bv2nat(TVl(t))

ABStos(t): word = TOS(t+l) - stack_cache_size(t+1)

ABSsklm(t): word = SKLM(t+I)

ABSdenv(t): word = DENV(t+I)

ABSlenv(t): word = LENV(t+I)

ABScenv(t): word = CENV(t+I)

i: VAR nat

ith_top_of_scache: [time -> [nat -> word]]

ith_top_of_scache: AXIOM i < stack_cache_size(t) =>

ith_top_of_scache(t)(i) =

IF i < bv2nat(TVl(t)) THEN IF i = 0 THEN TO(t)

ELSIF i = 1 THEN T1(t)

ELSE T2(t) ENDIF

ELSE REG(t)(stack_cache_size(t)-i-l) ENDIF

ABSdmem(t)(dptr: data_env_ptr)(daddr: word): word =

IF bv2nat(daddr) < bv2nat(TOS(t+l)) &

bv2nat(daddr) >= bv2nat(TOS(t+l)) - stack_cache_size(t+l)

THEN LET offset = stack_cache_size(t+l)

- (bv2nat(TOS(t+l)) - bv2nat(daddr))

IN £th_top_of_scache(t+l)(offset)

ELSE DATA_MEMORY(t+I)(dptr o daddr) ENDIF

Every macrostate component, except TOS and dmem, has a direct cor-

respondence with a micromachine component. Since the elements of the

stack cache are viewed as being in the data memory at the macro level, the

macro TOS is smaller than the micro TOS by the size of the stack cache,

i.e., (SV1 + TV1). The locations of dmem correspond to the locations in

DATA_MEMORY except for those that range from the micromachine (TOS

- 1) to (TOS- (SVl+WVl)).

6.4.1 The Verification Conditions

A common strategy used to prove the commuting property of Figure 6.1(b)

is to start from an arbitrary visible state at the lower left-hand corner of

the commuting rectangle, traverse the two possible paths to the top right-

hand corner of the rectangle, then check whether the two states resulting
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from the traversals are equivalent. Traversing the top path, which entails

applying the abstraction function followed by "running" the macromachine

one step, results in the expected state. Traversing the bottom path, which

consists of running the micromachine a multiple number of cycles followed

by an application of the abstraction function, gives the actual state.

In a proof, running the micro and the macromachines can be accom-

plished by rewriting, which consists of unfolding every occurrence of a de-

fined function with its definition until all the functions have been simplified

to primitive expressions. Checking whether the expected and actual states

are equivalent is essentially a problem of checking the equivalence of boolean

or bit-vector expressions since the state of most of the machine components

is modeled as either boolean or bit-vector types. As discussed in section 6.3,

the number of cycles that the micromachine needs to be run depends on

the type of current instruction and whether one or more of the stalling con-

ditions apply. Hence, a proof typically consists of a case analysis on these
conditions.

We used a bottom-up incremental approach to mechanizing the verifi-

cation of the correctness criterion. In this approach, we formulate a set

of properties, called verification conditions, about the execution traces of

the micromachine that can originate from a visible state under restricted

scenarios. The verification conditions are formulated so that the commut-

ing property can be proved by combining the verification conditions using

higher-level proof techniques, such as induction and case-splitting, without

having to reason with the AAMP5 microcode. The formulation of the veri-

fication conditions reflects the initial case analysis that must be performed

in constructing a proof of the commuting property to determine the number

of cycles the micromachine must be run in the proof.

The main reason for taking the bottom-up approach was that the macro

specification, which was primarily written at Rockwell, was still evolving

when the verification task was begun at SRI. Also the amount of rewriting

that would have to be done in a top-down undecomposed approach would

strain the capacity of the PVS rewriter. This increased demand on the

rewriter arises in part from the constructive style of specification that the

macro specification was initially written in, as described in section 4.2.5.

The constructive style increased the depth of the hierarchy in the definition
of the next state function of the macromachine.

The decision to take a bottom-up approach, while chosen for technical

reasons, had several beneficial consequences. The proofs of the verification
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conditions can be constructed fairly automatically because the crucial case-

splitting that determines the number of cycles on the micromachine has

already been done. The Rockwell engineers related much more readily to

the verification conditions than to the general correctness criterion. But,

most important, the approach provided a convenient method for partial

verification of a complex and big design, such as the AAMP5. It was the

quickest and, perhaps, the only way we could have obtained useful feedback

from the verification exercise within the time allotted for the project.

6.4.1.1 Instruction-Specific Verification Conditions

The verification conditions are organized into a number of sets, with a sep-

arate set for each specific instruction and a general set of that consists

of properties common to all instructions. In this section, we discuss the

instruction-specific verification conditions using the ADD instruction for il-

lustration. The set of general verification conditions in discussed in Sec-

tion 6.4.1.2.

The verification conditions 1 for the ADD instruction, assuming there will

be no exception, is shown in Figure 6.6. The exception case has a separate set

of verification conditions. A number of observations are in order regarding

the verification conditions.

The verification conditions state the effect on the state of each of

the micromachine components relevant to the macrostate by the execu-

tion of an instruction, in this case ADD. In Figure 6.6, the predicate

visible_state_with(ADD) (1;) (defined in Section 6.3.1) is included as a

precondition to the verification conditions because we are interested in ana-

lyzing properties of execution traces that start from a visible state where the
instruction of interest is the current instruction. It is important to note that

the expected value for the state of a component is expressed only in terms
of the initial values of the states of the macro-level relevant components.

Thus, although the verification conditions do not relate the microstate to

the macrostate, they are, in effect, making assertions about the intended

changes to the macrostate.

The other precondition, SysInv, in the verification conditions consists

of a set of conditions that are expected to hold in every visible state of the

IThe PVS text of the verification conditions and other formalizations shown in this
report are a slightly edited version of the PVS theories actually used in the proofs.
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Verification conditions for ADD in the absence of exception

ADD_correctness: THEORY

BEGIN

IMPORTING global_assumptions, invariants, reg_file_theorems,

next_instrn_correctness_general, ADD_correctness_setup,

by_rules, more_by_rules

t, tl, t2: VAR time

SVTV_correctness: LEMMA

visible_state_with(ADD)(t) _ SysInv(t) =>

bv2nat(SVl(t+2)) = bv2nat(SVl(t+l))-1 &

bv2nat(TVl(t+2)) = bv2nat(TVl(t+l))

TO_correctness: LEMMA

visible_state_with(ADD)(t) R SysInv(t) =>

TO(t+2) = (siEn_extend[16](48)(ith_top_of_scache(t+1)(1))

+ sign_extend[16](48)(ith_top_of_scache(t+1)(O)))'(15,0)

i: VAB below[lO]

REG_correctness: LEMMA

visible_state_with(ADD)(t) & SysInv(t) =>

REG(t + 2)(i) = KEG(t + l)(i)

DATA_MEMORY_correctness: LEMMA

visible_state_with(ADD)(t) _ SysInv(t) =>

DATA_MEMORY(t+2) = DATA_MEMORY(t+1)

next_macro_instrnentry: LEMMA

visible_state_with(ADD)(t) & SysInv(t) & NOT Soverflow(t + 1) =>

(EXISTS (tp: time J tp > t):

DPC(tp) = DPC(t) + length_ofinstruction(opcode_atDPC(t))

visible_state_with(next_opcode_at_DPC(t))(tp) & SysInv(tp) )

END ADD_correctness

Figure 6.6: Verification Conditions for ADD
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micromachine. SysInv, whose definition is shown below, is a/so included as

a postcondition in the next_macro_instrn_entry verification condition to

ensure that it is preserved at the next visible state.

DJMP and SADJ flip-flops can't be high at instruction entry point

for, if they were, then MCO would be null_MCO, which is not the case

at an instruction entry point.

DJMPinv_ep(t): bool = NOT DJMP(t)

SADJinv_ep(t):bool = NOT SADJ(t)

Y. Constraints on stack occupancy registers SV and TV

SVinv(t) : bool = bv2nat[3] (SV(t)) <= 6

TVinv(t) : bool = bv2nat[3] (TV(t)) <= 3

SysInv(t): bool =

SADJinv_ep(t)a DJMPinv_ep(t) & SVinv(t) _ TVinv(t)

SVTV_correctness states that SV1 should be decreased by one and TV1

should remain unchanged, which reflects the fact that ADD, by popping two

elements and pushing one element, decreases the net size of the process stack

by one. Since the number of microinstructions executed for ADD is one, in

the absence of exception, all the results (except for the next instruction

moving in) would be at their destinations two cycles from the initial visible

state. Thus, every verification condition, except next_macro_instrn_entry,

relates the state of a component at t+2 with those at t÷l. The reason for

using t+l instead oft is to adjust for the one cycle latency for the abstraction
function.

T0_correctness states that the TO register, which holds the top-of-stack,

must contain the result of adding the top two elements of the current process

stack. The function ith_top_of_scache(t)(i), which returns the element

at a given distance i from the top of the stack cache state at time t, is used

to fetch the process stack elements. The required arguments for ADD are

guaranteed to be resident in the stack cache because the entry condition for
the instruction is satisfied in a visible state.

REG_correctness states that the register file must remain unchanged

as a result of ADD. This condition ensures two requirements on the nor-

mal execution of ADD: (1) The contents of none of the special registers

(SKLM, TOS, DENV, CENV) ought to change, and (2) the contents of the

stack cache registers unused by the ADD instruction remains unchanged.

DATA_MEMORY_correctness requires that the contents of the physical mem-

ory remain unchanged. The only time a stack instruction, such as ADD,

can affect physical memory is as a result of a stack adjustment performed
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prior to the entry of the instruction. In our approach, the correctness of

stack adjustment, which is described is section 6.4.1.2, is proved separately.

The next_macro_instrn_entry verification condition ensures that the

next instruction, i.e., the first microinstruction of the next macroinstruction,

moves into MC0 and the processor enters a visible state. Since the distance

to the next visible state is indefinite depending on whether and how long

the pipeline will be stalled (see section 6.3.2), this verification condition,

unlike the rest of the verification conditions for ADD, has to be expressed

as an eventuality property using an existential quantifier. To prove this

verification condition, it is necessary to reason about the stalling behavior of

the pipeline. Since the behavior of the pipeline during stalling is uniform over

all instructions, we separated their formalization into the general verification

conditions discussed in the next section. The general verification conditions

are used as lemmas in proving next_macro_/ns_rn_entry.

6.4.1.2 General Verification Conditions

The general (i.e., instruction-independent verification) verification condi-
tions characterize the behavior of the micromachine when the AAMP5

pipeline stalls. The general verification conditions that characterize three

possible ways in which the pipeline can stall are shown in Figure 6.7.

The DPUJreeze__lemma asserts that the state of every micromachine reg-

ister, including those in the register file, remain unchanged as long as DHLD

is true. The LFU_induced_stalling lemma states a property about the

MAP_WAIT-loop microcode that the DPU executes while the LFU is not

ready with the next instruction. It asserts that if (1) MC0 has the last

microinstruction of an arbitrary macroinstruction (MAP? (MC0 (1:))) and (2)

the LFU is not RDY, then the next time when RDY becomes true, the

relevant information about the next macroinstruction will move into MC0

and DPC. It also asserts that during the time the DPU is waiting for RDY
to become true, the state of every component (except DPC) relevant to the

macrostate remains unchanged. This lemma also includes several ancillary

conditions that were brought out during the proof process. For example,

NOT nex_DJMP (t) and NOT nextDJMP (1;+ 1) are imposed as preconditions

to the lemmas because the MAP_WAIT-loop will be entered only when a

delayed jump does not occur. NOT SADJcondn(t+i+l) is a precondition to
the lemma since the next macroinstruction will move into MC0 when the
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all_but_DPC_and_dmem_stays_same(tl, t2): bool =

SVl(tl) = SVl(t2) _ TVl(tl) = TVI(t2) &

SKLM(tl) = SKLM(t2) _ TOS(tl) = TOS(t2) & LENV(tl) = LENV(t2) &

DENV(tl) = DENV(t2) & CENV(tl) = CENV(t2)

all_but_data_mem_stays_same(tl, t2): bool =

DPC(tl) = DPC(t2) & all_but_DPC_and_dmem_stays_same(tl, t2)

Stalling due to DHLD

DPU_freeze_lemma: LEMMA

stays_high(DHLD)(tl, t2) =>

all_but_data_mem_stays_same(tl, t2+1)

Z Stalling due to LFUnot being ready

LFU_induced_stalling: LEMMA

MAP?(MCO(t)) & NOT RDY(t) & stays_low(RDY)(t, t+i) & RDY(t+i+I)

& NOT nextDJMP(t) & SysInv(t) & NOT nextDJMP(t+l) &

NOT SADJcondn(t+i+l)=>

MCO(t+i+2) = ROM(zero_extend[8](ll)(EP(t+i+l))) &

DPC(t+i+2) = DP(t+i+l) &

all_but_DPC_and_dmem_stays_same(t+l, t+i+2)

NOT nextDJMP(t+i+l) & NOT nextD/MP(t+i+2) & SysInv(t+i+2)

Z Stalling due to stack adjustment

stack_adjust_lemma: LEMMA

MAP?(MC0(t)) & RDY(t) & SADJcondn(t) & NOT nextDJMP(t) &

NOT stack_overflow_condn(t)

=> EXISTS (tp: time [ tp > t):

CENV(tp) = CEIF_(t) &

DPC(tp) = DP(t) &

MCO (tp) = EOM(zero_extend[8] (I 1) (EP (t)) ) &

entry_cond(next_opcode_at_DPC(t))(tp) &

ABSdmem(tp) = ABSdmem(t) &

NOT nextDJMP(tp) & SysInv(tp)

Z A general lemma about _etching next instruction

guaranteed_fetch_of_next_instrn: LEMMA

NOT nextD3MP(t) & NOT nextDJMP(t+l) & SysInv(t)

MAP?(MC0(t)) & NOT stack_overflow_condn(t)

=> (EXISTS (tp: time ] tp > t):

DPC(tp) = DPC(t) + length_of_instruction(opcode_at_DPC(t)) &

MC0(tp) = ROM(zero_extend[8](ll)

(EP_ROM(next_opcodeat_DPC(t)))) &

entry_cond(next_opcode_at_DPC(t))(tp) &

SysInv(tp) & NOT nextDJMP(tp) )

Figure 6.7: General Verification Conditions
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MAP_WAIT-loop is exited, i.e., at t+i+2, only if the next macroinstruc-

tion does not require a stack adjustment. The lemma also ensures that the
invariants will be true at t+i+2.

The stack_adjust/emma states a property about the behavior of the

execution of the stack adjustment microcode. It asserts that if (1) MC0

has the last microinstruction of a macroinstruction (MAP? (MC0 (t))) and (2)

the LFU is RDY with the next instruction, and (3) that instruction needs

a stack adjustment (SADJcondn0:)), then the micromachine will eventually

reach the state in which the following conditions hold:

1. CENV and DPC point to the next instruction.

2. The first microinstruction of the next macroinstruction is back in MC0.

3. The entry condition (entry_cond) for the opcode associated with the
macroinstruction is met.

4. The data memory as viewed by the macromachine (ABSdmem) is un-

changed.

As before, this lemma also includes several preconditions that de-

fine the context in which the stack adjustment microroutine is en-

tered. We have proved this lemma only in the absence of a stack over-

flow. (Section 6.7 discusses the scope of the verification work com-

pleted so far.) These lemmas can be combined to prove a general lemma

guaranteed..fetch_of_next_instrn that guarantees the entrance of the first

microinstruction of the next macroinstruction, whenever the DPU is at the

end of the microcode of an arbitrary macroinstruction.

6.4.2 Bridging the Micro-Macro Gap

The following proof tasks have to be performed to establish the relationship

characterized by the commuting diagram shown in Figure 6.1(b):

1. Micro-leap: Prove the existence of a common time, the next visible

state point, at which all of the verification conditions associated with

a particular instruction will hold simultaneously.
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2. Macro-elevate: Use the abstraction function to prove that the ex-

pected values, guaranteed by the verification conditions, for the

macro-relevant micromachine components indeed correspond to the

macrostate conjectured by the next_macro__tate function.

It is important to observe that neither of the above tasks require any

reasoning about the AAMP5 microcode. The need for a Micro-leap proof

arises primarily to relax the assumption that the DPU is never stalled for

data memory accesses. A Micro-leap proof involves performing a case anal-

ysis on the number of times the DPU would have to be stalled before the

next visible point is reached. Each of these cases can be discharged using

the general verification condition for the appropriate stalling condition.

Macro-elevate involves applying the abstraction function to elevate the

microstate to the macrostate as well as unwinding the next_macro_state

function. The proof effort (rewriting) involved in applying the abstraction

function is not particularly complex because the abstraction function defi-

nition, except for data memory, is straightforward for AAMP5. The effort

required to rewrite the definition of next_macro_tate, however, is quite

complex. This complexity is partly due to the constructive style chosen for

the macro specification, which introduced a significant number of intermedi-

ate definitional layers, and partly because the specification was not written

in a fashion amenable to efficient rewriting. As a result, we decided to

decompose the Macro-elevate step by first formulating a set of macro lem-

mas that characterized the value returned by next_macro_state for each of

the restricted scenarios for which a separate set of verification conditions

was set up. The macro lemma for the ADD instruction for the case where

the instruction does not yield an exception is shown in Section 4.2.5 on

page 4.2.5.

6.5 Mechanization of Proofs of Verification Con-

ditions

In an interactive theorem prover, such as PVS, proof of a goal (i.e., a for-

mula) is constructed by interactively (or automatically) invoking inference

steps to simplify the given goal into simpler subgoals until all the subgoals

are trivially true. At the highest level, the user directs the verification

process by elaborating and modifying the specification, providing relevant
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lemmas_ and backtracking on the fruitless paths in a proof attempt. Given

our style of hardware specification, proof of a formula relating two states of

a state machine that are a fixed distance apart usually follows a standard

pattern consisting of a sequence of proof tasks shown below. Note that every

verification condition in Figure 6.6 except the last one is a formula of this
form.

Quantifier elimination: Eliminate (skolemize) the universally quantified

variable (t) by skolemization and simplify the preconditions. Skolem-

ization consists of replacing the universally quantified variable by a

new constant symbol denoting an arbitrary value for that variable.

This technique is a simple and general way to prove a property for all

values in a set that a variable ranges over.

Unfolding definitions: Simplify selected expressions and defined function

symbols in the goal by rewriting using definitions, axioms or previously

established lemmas in the micromachine specification.

Case analysis: At the end of the unfolding step, the original goal will

have been simplified to an equation on two nested IF-THEN-ELSE ex-

pressions, not necessarily identical, involving user-defined as well as

primitive function symbols. The IF-THEN-ELSEs are introduced by

the unfolding of the defined function symbols. To prove such an equa-

tion, it may be necessary to split the proof, based on selected boolean

expressions in the current goal, and further simplify the resulting goals.

The complexity and the degree of automation of the proof required to

perform the above tasks depend on the level and efficiency of the primitive

proof steps supported by a theorem prover. If the primitive inference steps

are powerful and efficient, then one can use more brute-force and automatic

strategies to perform the unfolding and case-analysis steps. If not, it is

necessary to exercise more intelilgent manu_al control in r the proof to keep

the size and number of cases small. The primitive inference steps of PVS

are implemented using powerful and efficient decision procedures for linear

arithmetic, equality on uninterpreted function expressions, and boolean tau-

tology checking. The primitive steps also use an efficient conditional rewriter

that interacts with the decision procedures to simplify conditions. The fol-

lowing short PVS proof strategy, called the core strategy, can accomplish

the above proof tasks:
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1: ( then*

2: (skosimp*)

3: (auto-rewrite-micro-theories)

4: (repeat (assert))

5: (apply (then* (repeat (lift-if))

6: (bddsimp)

7: (assert))))

Then _ on Line 1 is a strategy constructor that composes a sequence of

commands. The proof command on Line 2 performs the skolemization task.
The command on Line 3 makes rewrite rules out of all the definitions and

axioms in our specification, after which, the command on Line 4 rewrites

all the expressions in the goal until no further simplification is possible.

Assert is the PVS primitive command that performs rewriting as well as

simplifications using arithmetic and equality decision procedures. In the case

of our verification conditions, this rewriting step has the effect of reducing

all expressions into ones that involve only values of signals in the initial

state. The compound proof step on Lines 5 through 7 performs the case-

analysis and further simplification task. The case analysis is performed by

lifting all the IF-THEN-ELSE structures to the top and then simplifying the

resulting expression propositionally (bddsimp). (Apply applies a compound

proof step as an atomic step.)

We have used the core strategy (or slight variants of it) to prove

completely automatically the correctness of several microprocessor designs
that have served as informal hardware verification benchmarks for theorem

provers. See Cyrluk et al., [CRSS94] for more details about application of

this strategy for hardware verification. The core strategy was, however, not

adequate to automate proofs of the AAMP5 verification conditions. The

core strategy is usually successful in constructing a proof if the rewriting

step simplifies the original goal into a relation on expressions involving ei-

ther operations on primitive PVS types that the decision procedures are

capable of handling or user-defined functions that can be left uninterpreted.

The AAMP5 specification, both at the micro and macro levels, uses a

number of complex bit-vector operations, such as concatenation (o), subset-

ring (^), shifting, etc. All bit-vector operations are specified as parameter-

ized functions that are defined recursively in the bit-vector library. The core

strategy, when unsuccessful in proving a verification condition, simplifies the

original goal into equations on bit-vector expressions. These expressions can

be shown to be equivalent only by using properties about the bit-vector op-

erations as lemmas. To automate the bit-vector equivalence checking step
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of the proof, we formulated a number of bit-vector lemmas in the form of

rewrite rules. Most of these lemmas have been proved as theorems by Rick

Butler using the bit-vector library. A subset of these rules can be used to

first attempt to simplify the bit-vector expressions into a common normal

form. If the rules are unsuccessful in normalizing the expressions into a com-
mon form, then another set of rules can be used to convert the bit-vector

equivalence into an equivalence on natural numbers that can most likely be

handled by the decision procedures.

A significant portion of our verification effort was devoted to formulating

the bit-vector simplification rules. The rules formulated are parameterized

with respect to the size of the bit-vectors involved, but are not complete

enough to decide equivalence for all possible bit-vector expressions. They

were able to successfully decide equivalence of expressions in most of our

proofs. Even when they were unsuccessful, we had to perform only a few

standard case-splits manually to complete the proof.

The core strategy can automate the proofs of only those verification

conditions relating micromachine states that are a fixed distance apart. The

general verification conditions do not fall into the above category. The

general verification conditions are proved using induction on the length of

the execution trace that the verification conditions constrain. For example,
the stack_adjust__lemma has to be proved by induction on the number of

stack cache elements that have to be moved to satisfy the entry condition.

Once the proper induction scheme is set up, the core strategy can be used

to complete the proofs of the different cases.

6.6 Verification of Interrupt Handling

Although formal analysis of the interrupt behavior of the AAMP5 was not

included in this effort, the basic framework developed is adequate to allow

it to be easily added. In the following, we sketch a possible approach for

extending this work to include the interrupt behavior of the AAMP5.

An external interrupt can arrive and be acted upon by the processor

not just at macroinstruction boundaries, but at any point within a macroin-

struction execution cycle. For this reason, a complete specification of all

aspects of the behavior of the AAMP5 in response to an external interrupt

is possible only in a model, such as the micromachine, where time is rep-

resented at the clock cycle level. As a specific example, we consider the

response to a reset (RST) interrupt.
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An RST interrupt forces the processor to go through a predefined pro-

cedure has the following requirements:

1. The interrupt is initiated by setting the reset input false. This is

recognized by the AAMP5 in the same clock cycle when the reset

input becomes false.

2. The machine then "idles" until the reset input is released, i.e., set true.

3. Once the reset is released, all other pending interrupts (except bus

transfer error) are ignored.

4. The processor then executes a special microcode routine that initial-

izes the processor and puts it in a state in which it is ready to start

executing macroinstructions.

Each of the requirements in the above list can only be specified as a

constraint on the behavior of the micromachine. The only aspect of the

requirements that can be specified at the macro level is the effect that a

reset must have on the macrostate. Hence, a specification of the effect of

an interrupt is specified in two parts. The first part specifies the temporal

aspects of the interrupt that includes details such as when an interrupt is

recognized and masked. The second part specifies the intended cumulative

effect of the external interrupt on the macrostate by providing a next-state-
function similar to the next-state-function defined for normal instruction

execution. A specification of the requirements on the reset interrupt is given
below.

reset_initiate(t): bool

= IF t = 0 THEN true ELSE (reset(t-l) & NOT(reset(t))) ENDIF

reset_release(t): bool

= NOT(reset(t)) & reset(t+l)

idle_upon_reset:

THEOREM (FORALL tl, t2: reset_initiate(tl) _ stays_low(reset)(tl, t2)

IMPLIES idles(tl, t2) )

reset_complete:

THEOREM (FORALL tl, (t2 [ t2 > tl), (t3 I t3 > t2):

reset_initiate(tl) & stays_low(reset)(tl, t2) & reset_release(t3)

IMPLIES (EXISTS (t4 I t4 > t3):

(visible_state(t4) & ABS(t4) = reset_next_state(ABS(t3)) ) ) )
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Reset_initiate and reset_release define the conditions for initiating

and releasing the reset input. Idle_upon_reset specifies the requirement

that the machine must idle from the time reset becomes false and as long as

reset stays false. Resel;_complete specifies the intended behavior of the ma-
chine after a reset is released. ABS is the abstraction function that extracts

the macrostate, i.e, externally visible part, of the micromachinestate at a

given point in time. Visible_state characterizes the condition when the

micromachine pipeline is executing the macroinstructions normally. ABS and

Visible_state are defined in Section 6. These properties are similar in form

to the verification conditions, shown in later Section 6, that are proved to

establish the correctness of normal instruction execution. Although the in-

terrupt properties have not been mechanically verified, the proof techniques

describe in Section 6 should be directly applicable.

This illustrates how verification of the reset interrupt could be handled.

A complete discussion of interrupt handling would specify the behavior of

the other three interrupts (XER, NMI, IRQ) and how they interact. In

particular, the order in which interrupts are processed and how they affect

each other's behvalor must be dealt with. However, as illustrated for the

reset interrupt, it should be possible to treat this as a separate case from

the specification and verification of the AAMP5's normal behavior.

6.7 Scope of the Verification Performed

The goal of this project was multifold. Besides demonstrating the verifica-

tion of a portion of AAMP5 microcode, we were interested in investigating

how formal verification technology can be packaged so that practicing en-

gineers could use it productively, with some expert help, for verifying a

complex microprocessor design. Hence the contributions of this project ex-

tend beyond what was mechanically verified. In the following, we discuss

the scope and some of the limitations of our verification effort.

1. We developed a methodology for incremental verification of a complex

microprogrammed and pipelined microprocessor design. The method-

ology includes the following three components:

• A style of specification that strikes a good compromise between

the competing demands of efficient verifiability versus readability

by practicing engineers.
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• An approach to systematically decomposing the problem of ver-

ifying the general correctness criterion for a processor specified
at two levels to a set of smaller more automatically provable,

verification conditions.

• A proof strategy that can be used to verify the verification con-

ditions completely automatically or that can be used within a

higher-level proof technique, such as induction, to construct a

proof of the verification conditions.

2. We formalized the verification conditions of a total of eleven instruc-

tions and verified them completely using the core strategy. Seven of

these verified instructions are from the core set and are representa-

tive of several of the main classes--literal data, assign data, reference

data, and branch--of AAMP5 instructions. The rest of the verified

instructions are from a supplementary set that has instructions drawn

from the same class as the core set. One of the instructions from the

supplementary set (AND) was partly verified by one of the Rockwell

staff members (A1 Mass) working on the project.

3. We have developed the basic formal machinery required to specify
the entire macroinstruction set architecture of AAMP5 and used it to

specify over 100 of its instructions.

4. We have derived a set of macro lemmas from the macro specification

that specify the instructions in the core set in a declarative style.

Of the accomplishments listed above, the one whose impact is, perhaps,

the most enduring is the development of the methodology. Not only can a

significant part of the methodology be reused in the verification of another

member of the AAMP5 family of processors, but many of the general ideas

are useful in verifying any complex microprocessor design.

Some of the limitations of the project are the following:

1. The verification conditions that were mechanically verified prove the

correctness of instructions only in the absence of any external inter-

rupts. The framework and the methodology developed here are capa-

ble of formalizing and verifying correctness of instructions in the pres-

ence of interrupts. We have formalized the correctness of the reset

interrupt although it was not included in the report.
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Not every AAMP5 instruction class had a representative among the

instructions that were verified. For example, instructions, such as

CALL, RETURN, belonging to procedure call class were not verified.
One of the reasons the verification did not address stack overflow was

because a stack overflow condition, in general, involves procedure call-

ing. Arithmetic instructions implementing floating point calculations

were not addressed by the verification.

The correspondence between the verification conditions and the macro

lemmas was verified only for the ADD instruction. The strategies used

to perform this proof task for ADD should be applicable for other
instructions.

The proof of correctness is only valid for programs that are not self-

modifying.

The correctness of our verification is predicated on the correctness of

the interface specification, which has been inspected by Collins but

has not been verified with respect to the LFU and BIU. Verification

of the interface specification, which is expressed as properties of the

protocol used by the DPU to interact with its environment, is best

done using state enumeration verification tools, such as CTL model-

checkers [Gup92] on an abstract global state machine of the DPU-BIU-

LFU system. We have verified some the properties in the interface

specification for a simplified model of the DPU-BIU-LFU interface us-

ing Murphi [MD93] and the recently implemented connection between
PVS and a model-checker.

6.8 Errors Discovered by the Verification Effort

Analysis of a system by means of formal methods can reveal errors in two

ways. First, the act of formalizing the system specification by itself forces

a closer scrutiny of the design than would be performed using traditional

methods. Second, mechanizing the proof of correctness has the effect of

"testing" the design for all possible inputs. In the AAMP5 verification

exercise, both the specification and the proof phases revealed errors in the
microcode.

Two errors in the microcode were found while constructing the macroar-

chitecture specification. Both errors were found while trying to formally
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specify the behavior of the AAMP under unusual circumstances that were

not clearly specified in the AAMP2 Reference Manual, prompting a team

member to examine the microcode in the AAMP5. The first was a logic

error that allowed the top of stack register (TOS) to wrap around a data

environment instead of raising a stack overflow. To result in a failure, this

error required the very unlikely combination of an unusual system configura-

tion, an improperly sized stack, and a specific sequence of instructions. The
second error was made precisely because the reference manual was unclear

on how the AAMP should update the local environment register (LENV)

when a procedure call caused a stack overflow. This was implemented by

setting the LENV to its "overflow" value, while the correct behavior was to

leave the LENV unchanged. While this error would have been discovered

during Ada validation testing, the validation suite would not have been ex-
ecuted until after the first AAMP5 chips were in hand. Both errors were

unique to the AAMP5 and corrected before first fabrication.

Errors were also found in the formal specifications through inspections as
discussed in Sections 4.4.3 and 5.3.3. These revealed 28 correctness errors in

the macro specification and 19 correctness errors in the micro specification.

Even so, constructing proofs of correctness found several additional errors

in our specifications. In the initial stages, most of the errors found were

mistakes in our micromachine specification. Some of these were due to

ambiguities or mistakes in the microarchitecture document and the rest were

errors in our transcription of the design document into a formal specification.

One technique used to find errors in our specifications was to assign in-

dependent teams to different portions of the project. For example, different

individuals at Collins were assigned to review and revise the macro and mi-

cro specifications. While this independence undoubtedly introduced some

errors of communication, it also reduced the likelihood of coincident errors

in the macro and micro specifications, greatly increasing our confidence in

the specifications once the proof was actually completed.

More significant were errors discovered in the microcode itself by the

proof process. Since only a small set of instructions were to be formally

verified and because these instructions had already been verified by tradi-

tional methods, it was unlikely that any errors would be found through the

correctness proofs. To address this, two memory calculation errors were

deliberately inserted in the microcode without the knowledge of SKI. The

motivation behind this was not only to check whether the proof process
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would reveal the errors but also to see whether it would provide enough
information to show how the errors could be corrected.

One of the microcode errors was in the ASNDXI instruction, which moves

data in the process stack to a location in memory. The other was in the

REFBXU instruction, which loads data from memory to the top of process

stack. The ASNDXI error was deliberately planted by Collins. The REF-

BXU error was an actual error that had not been detected by traditional

verification methods such as walkthroughs and testing, but was found by

Collins while running samples of application code on early prototypes of

the AAMP5 chip. This error was left in the microcode delivered to SRI to

determine if the proof process would find an error that was discovered late

in the traditional verification process.

The two errors were similar in that they occurred in the calculation of the

memory address and were hard to spot during microcode walkthroughs due

to the pipelining of microinstructions. The address of an AAMP5 memory

location is constructed as a concatenation of a pointer to a data environment

and an offset into the data environment. The ttEFBXU instruction, for

example, uses the top three elements--A, B, and I--of the process stack to

determine the source data address. The least significant byte of B is used

as the data environment pointer part of the address while (A÷I/2) forms

the offset. The error in the microcode had the effect of I being used for the
data environment instead of B.

This error was not detected during simulation due to a fimitation in the

simulator's memory model. The memory model has since been enhanced,

but even with this change, errors such as these could still be missed since a

simulation run can only exercise a small fraction of the input space. One of

the advantages of formal verification is that it has the effect of exhaustive

testing since the proof performs symbolic reasoning for all possible inputs.

An error in the microcode manifests itself during a proof in the form of

a verification condition reducing to a goal that is unprovable. The error in

the REFBXU instruction, for instance, was detected during the proof of the

verification condition that characterized the correctness of the TO register.

The unprovable proof goal that was produced at the end of the application

of the proof strategy described in section 6.5 is shown below.
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[-1] nmod(bv2nat[3](SV(tO)) + bv2nat(TV(tO)) + 5, 6) >= 0

[-2] nmod(bv2nat[3](SV(tO)) + bv2nat(TV(tO)) + 5, 6) < 6

[-3] bv2nat[3](SV(tO)) <= 6

[-4] bv2nat[3] (TV(tO)) <= 3

[-5] (bv2nat(SV(tO)) + bv2nat(TV(tO)) >= 3)

[-6] (bv2nat(SV(tO)) + bv2nat(TV(tO)) <= 6)

[-7] (bv2nat (TV(tO)) = 2)

[-8] islow(REG(tO + l)(bv2nat(SV(tO)) + bv2nat(TV(tO)) - 3) " O)

[1]
[21

[3]

{4}

I .......

nextDJMP (tO)

SADJ(tO)

DJMP (tO)

_iii[8](o)
((DATA_MEMORY(tO + I) (REG(tO + I) (bv2nat[3] (SV(tO)) - I))" (7, O)

o

(TO(tO+ 1) - (15, o)
+

(_ili[13(o)
o REG(tO ÷ I) (bv2nat[3"[(SV(tO)) - 1)

" (15, I))))'(7,o))
= fill[8] (0) o

((DATA_MEMORY(tO + l)(Tl(tO + 1) " (7, O)

o

(TO(tO + 1) " (15, O)

÷

(fili[1](o)

o

REG(tO ÷ l)(bv2nat(SV(t0))- 1)

" (15, 1)))))" (7, 0))

Rule?

A careful reading of the succedent labeled 4, which is the reduced form

of the equation that compares the actual (on the left hand side) and the

expected values (on the right hand side) for the TO register, in the sequent

shows that the equation is false. The two sides are identical except for the

term appearing in the data environment part of the memory address. While

the expected result is supposed to get this from the T1 register (Tl(t0 +

1)'(7, 0)), the microcode actually uses the REG register instead, which
contains the third element from the top-of-stack.





Chapter 7

Conclusions and Lessons

Learned

This section discusses the lessons learned on this project and their implica-
tions for the industrial use of formal methods.

7.1 Feasibility of Formal Verification

The central result of this project was to demonstrate the technical feasibil-

ity of formally specifying the AAMP5 and the use of mechanical proofs of

correctness to verify its microcode and micro-axchitecture. A much larger

fraction of the AAMP instruction set was specified than originally planned,

with 108 of the AAMP's 209 instructions completed. The portion completed

is actually greater than this, since many of the instructions specified are

representative of an entire family of instructions. This is notable since the

AAMP has a ]urge and complex instruction set, providing in hardware many

of the features normally provided by the compiler's run-time environment
and the real-time executive.

All of the micro-architecture needed for formal verification of the mi-

crocode was formally specified. Due to the style of specification chosen,

translation of the microcode into PVS was a simple exercise that should be

easy to automate.

At this time, eleven instructions have been proven correct in the absence

of interrupts. Since these are representative of several major instruction
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classes, most of the low level proof strategies could be reused in verification

of the remaining instructions. The existence of these strategies will also make

it simpler to transfer this technology to Collins. We do not see any technical

obstacles to extending either the specification of the macro-architecture or

the correctness proofs.

7.2 Benefits of Formal Verification

Many benefits were obtained on this project through the use of formal spec-

ifications alone. Our experiences suggest that one of the most important

benefits of formal specification is to precisely define the interface between

users and developers, encouraging the development of a clean interface. For

example, the difficulty of formally specifying when stack overflow is detected

pointed out the need to better hide the stack cache from an application pro-

grammer. The process of completing a formal specification encourages the

specifier to "look in the corners" and consider unusual cases and boundary

conditions that are often sources of errors. To our surprise, this process alone

uncovered two errors in the microcode that had not yet been discovered by

traditional methods. Formal specification also pointed out several situa-

tions that the AAMP2 Reference Manual [Roc90] and the AAMP5 design

documents left unspecified or stated unclearly. This seems to be a general

deficiency of any English specification and not of the AAMP documentation.

The process of performing mechanical proofs has detected several er-

rors in the formal macro and micro-specifications. More importantly, the

correctness proofs systematically found two errors seeded in the microcode.

Our belief is that construction of a proof forces a much more detailed re-

view of the microcode than is achieved through traditional methods such as

walkthroughs.

7.3 Cost of Formal Verification

The cost of developing and validating the macro and micro-architecture

specifications and developing the proofs of correctness were significant, but

many of these expenses have to be attributed to the exploratory nature of

the project. Reuse of specifications, proof strategies, and expertise should

greatly reduce these costs in the future. Some portions of the specification,
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such as the bit vector theories, can be reused across a wide range of hard-

ware applications. For microprocessors in the AAMP family, virtually the

entire macro-architecture specification can be reused. Even for new devel-

opment, the examples created in this project are rich enough to allow the

designers to write similar specifications, eliminating the time spent by SRI

in studying the AAMP5 and by Collins in reviewing and revising the formal

specifications.

A large portion of the time spent on the correctness proofs was invested

in the development of reusable proof strategies rather than just proving the

correctness of the core set of instructions. Also, much of the overhead of

completing the proofs was due to inefficiencies in the implementation of

PVS then available. Improvements to PVS incorporated as a direct result

of this project rectify most of these problems. Even so, formal verification is

likely to remain more expensive than traditional methods. This should not

be surprising. Traditional methods rely on reviews, partial analyses, and

testing a portion of the input space. Proofs of correctness are a rigorous

form of analysis that verifies the design for all possible inputs. To provide

the same level of assurance, traditional methods would be just as, if not

more, expensive than formal methods.

7.4 Transferring Formal Methods to Industry

It is very difficult to inject new methodologies into an industrial setting

since one of the ways industry remains competitive is to use tried and tested

approaches within a well understood problem domain. Despite their name,

formal methods provide remarkably little methodology to guide their use in a

new setting. The difficulties in specifying and verifying a real-time executive

are likely to be very different from those of verifying microcode. Given this,

it seems prudent to plan for costs to be high the first time around and to

expect most of the benefits to appear on subsequent projects of a similar

nature. It is our belief that the groundwork performed on this project will

greatly lower the cost of specifying and verifying another member of the

AAMP family, a hypothesis we plan to demonstrate in the upcoming year.

We did not feel that it was particularly difficult for the engineers at

Collins to learn to use either the PVS language or the theorem prover. In

fact, it was much easier for them to apply formal methods than it was for

the formal methods experts to become knowledgeable about the AAMP5.



94 Chapter 7. Conclusions and Lessons Learned

The real problem was not how to use PVS, but how to build a precise math-

ematical model of our own microprocessor. Even so, widespread acceptance

of a general purpose specification language such as PVS or Z [BMD92] by

practicing engineers is likely to be an uphill battle. A more productive ap-

proach may be to develop specialized notations or models that fit a specific

problem domain and that can automatically be translated into an underly-

ing formalism such as PVS. This would allow the domain experts to work

in a familiar and natural notation while a small group of formal methods

experts (and tools) check their work for consistency and completeness.

In the near term, an important goal on future projects will be to get for-

mai specification integrated into the early design effort. This will eliminate

many of the costs of developing and validating the specifications, particu-

larly if they can be used as the primary specification, not just as an add-on.

Enhancements to PVS could facilitate this. In particular, integrating PVS

with the standard document preparation system used at Collins would allow

us to intersperse the formal specification with the text and diagram style

used currently, i.e., the "specification as a document" concept promoted in

Z and CaDiZ [BMD92].

Validation of formal specifications is essential to have confidence in the

correctness proofs. We found inspections worked well with formal speci-

fications, were quite inexpensive, and provided a natural vehicle for train-

ing. Maximizing the independence of the teams producing the specifications

greatly increased our confidence in both the proofs and the specifications.

When combined with proofs of correctness, this is a very powerful valida-

tion technique that should not be overlooked. Other forms of validation that

could have been used more extensively in this project include early proof

of the type correctness conditions generated by PVS and proving expected

properties, or putative theorems, of the specification. Even our limited expe-

rience with proving putative theorems suggests that this is a useful validation

technique.

Full proofs of microcode correctness are a very rigorous form of analy-

sis, enabling one person to achieve a much higher level of confidence than

can now be achieved by a team. Even so, there is very little in existing

verification practices that would be eliminated by formal proofs. It may be

possible to decrease the time spent on inspections, but some level of peer

review will still be necessary to ensure good style, maintainability, and to

check for issues not modeled in the specifications. It may be possible to

replace some testing with proofs, but testing would not be eliminated since
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it provides an important check on the fidelity of the specifications and low

level properties not modeled in the specification. In the specific case of the

AAMP family, large libraries of simulations and diagnostics have been built

up over the years. These cost very little to modify and execute, so it is

unlikely that any testing would be eliminated on future AAMP projects.

Formal methods provide the means to improve, not replace, existing

practices. Formal specification can play an important role by improving the

precision and clarity of communication, particularly when the specification

language closely matches the problem domain. Formal verification of se-

lected properties can provide validation of the specifications that would be

particularly valuable during early life-cycle activities such as requirements

capture. Finally, formal proofs of correctness provide a rigorous analysis

of the consistency between a specification and its design appropriate when

extremely high levels of assurance are essential or when the complexity of

interacting components is so great that analysis is the only adequate means
of verification.
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