N96-10030

INTRODUCTION TO PENELOPE

David Guaspari

59514 p.9

Odyssey Research Associates

A formal program verification is a (mathematical) proof that a program executed according to its intended model meets some specification. This proves that the algorithm defined by the program is *correct* in the precise technical sense of being consistent with a particular specification. A program correct in this sense is free from a large and important class of errors, even though its behavior may still produce unintended results---either because the implementation of the programming language itself does not match the model of execution, or because the specification does not correctly express the user's intentions.

Penelope is a prototype system for interactively developing and verifying programs that are written in a rich subset of sequential Ada. Penelope can be used to develop a program and its correctness proof incrementally, and in concert with one another. Incrementality is used in a number of ways to help make verification more tractable and more productive. For example, if an already-verified program is modified, one can attempt to prove the modified version by replaying and modifying the original verification.

Penelope's specification language, Larch/Ada, belongs to the family of Larch interface languages. Larch/Ada scales up properly, in the sense that it is demonstrably sound to decompose a system hierarchically and reason locally about the implementation of each piece.

Penelope has been applied in various demonstration projects---for specification (guidance control, distributed operating system), verification (of off-the-shelf code), and formal development (by non-expert as well as expert users). Some features of Penelope have been embodied in AdaWise, a lint-like non-interactive tool that warns of the potential for certain dynamic semantic errors in Ada programs.

Goals of the Penelope project Define the semantics of a large Ada subset Define an Ada specification language (Larch/Ada) Implement automated support for reasoning about spec implementation (Penelope) Apply Penelope Apply Penelope	Goals of the Penelope project Define the semantics of a large Ada subset Define an Ada specification language (Larch/Ada) Implement automated support for reasoning about spec implementation (Penelope) Apply Penelope				ifications and		 		ORM
Goals c Define the semantics c Define an Ada specific Implementation (Penel Apply Penelope Apply Penelope	Goals c Define the semantics c Define an Ada specific Implement automated implementation (Penel Apply Penelope	n the Penelope project	of a large Ada subset	ation language (Larch/Ada)	support for reasoning about spec ope)				l atraduction to Practiope 2
19 <u>1</u>		UOAIS 0	J Define the semantics o	J Define an Ada specific:	Implement automated s implementation (Penels)	J Apply Penelope			1995 Odynery Rezurch Associates, Iac. 1.95 0023 David Guttpari

. .

Dicated parts	
static semantics concurrency	In the Ada culture O Officially: LRM + AI's Add Add Add Add Add Add Add Add Add
Incremances or sequential Aua is clean trong typing in-time constraint checking isciplined use pointers isciplined use of exceptions information hiding tandardizes semantics often left implementation-dependent corners of sequential Ada: the transport of sequential Ada: the transport of sequential ada: the transport of optimization and exceptions	 P Ad noc standard: AUVC Formal definitions Formal definition of sequential Ada80 AdaEd interpreter (in SetL) AdaEd interpreter (in SetL) DDC + CRAI definition of Ada83 (virtually complete) Formal definitions of subsets O ORA O CRA O CRA O CRA O CRA O CRA O CRA O Prospace Corporation Lud ProSpectra
and Aunciden, inc. Increasion to Practope Section to Practope Section 10 Practice Sect	0.033 Olymay Rearch Americate, Inc. Introduction to Printope 6.1.35 0023 Divisi Guageri 6.
Modeling our Ada subset	Subset covered by the model
ate almost all dark corners by static semantic checks or "improper" aliasing or "undisciplined" side effects ww optimizations sanctioned by RM 11.6. resource limitations (storage error, numeric overflow). technique: denotational semantics, predicate fs.	 Nearly all non-pathological uses of the following: All sequential types (including floating point) All sequential statements Exception-raising and -handling Subprograms (including side-effects, recursion, global variables) Generics
usociates, luc. Introduction to Prevelope	01993 Odyway Raz unch Associater, Inc. Introduction to Phrebope 51-95-0021 Divid Guagent

ļ

I

Predicate transformer semantics: symbolic executi	: a "logical" form of tion
?(1) precondition (sc x := x+1; y < x(2) postcondition (9	sought) (given)
Question: What must be true at (1) to guarantee Answer: " $y < x+1$ "	e " $y < x$ " will be true at (2)?
. Answer obtainable by symbolic manipulation: sub \mathbf{x}^{*}	ubstitute "x+1" for "x" in " $y <$
Olyss Odynery Rear unch Associates, Inc. Istroduction to Practope St 95 0073 David Guarpai 10	

Systematically associate computationa	entities with symbolic entities, e.g.:
Computational value answer continuation	Symbolic term {true, false} predicate
Derived predicate transformer semanti sponding denotational model.	can be proven sound for the corre-
01995 Otypesy Rae ach Associates. Inc. 81,95 0023 David Gauged	into the free of t

t a Penelope proof proves	mpiler 6 optimizations	ogram_error ecutions	ror verflow	8	conditions on theories	on allowed compilers: if initial conditions satisfied then conditions satisfied.	Introduction to Practope
What a Pene	 Hypotheses on compiler No section 11.6 optimizati 	 U No optional program_erro Hypotheses on executions 	 O No storage error O No numeric overflow 	Currently unchecked	O Consistency conditions or	For allowed executions on allowed termination implies exit conditions.	01995 Odymery Remarkh Amoriana, Inc. 1995 Odymery Remarkh Amoriana, Inc.

Analogy between predicate transformers	
wlp(S,): predicate->predicate	
which take postcondition to precondition, and continuation semi	antics
M[[S]]: continuation -> continuation	
which takes (post)continuation to (pre)continuation.	
This connection is developed in work by Wolfgang Polak.	
01993 Odyney Reeverh Ausciates. Inc. Introduction to Practope 18.49 4020 Durad Generari	ORM

. ·

D Specifies sequential Ada	 O Assertional (entry-exit, invariants,) O Partial correctness Unit of specification is the compilation unit Annotations of bodies hidden from clients "Two-tiered" semantics 	01995 Odymery Rue and Amerikata, Inc. Introduction to Threfore 51.55 0023 David Gaughari	Informal example of a two-tiered specification	<pre>function plus(x,y: integer) return integer;</pre>	 Mathematical component Defines sort Int, the infinite collection of mathematical integers Defines the basic mathematical consistions on Int (4, * < 1) 	 Demonstration of the second matter and a second of the second of the second of seco	 Behavior of plus Entry: No assumptions about state of parameters Normal exit: Return x+y (mathematical sum), if termination in the state of parameters 	 normal Exceptional exit: raise error iff, on entry x+y < - (2³²) or x+y > 2³² - 1 (all operations mathematical) 	I No side effects e1995 Odyary Ruz ent American In: Introduction to Prentinge
c" floating	nproves ns – approxi- scontinuous	C C C C C C C C C C C C C C C C C C C							
pports a special "asymptotic" floating point semantics	ation in the limit as machine accuracy improves reasoning about approximate operations – approxi- ic. (no epsilons and deltas) ic. errors in specifying and coding with discontinuous as floating point comparisons)	Introduction to Process	wo-tiered specifications:	mponent nent of mathematical definitions	nent ehavior in terms of environment				

	Mathematics defined In Larch Shared Language (LSL)
D	Designed by John Guttag (MIT), Jim Horning (DEC SRC)
٥	Notation for ordinary mathematics
	 O Sorts (sets of values) O Operations on sorts O Logical operations O Strongly sorted (i.e., typed)
D	"Trait" - A modular way to describe theories
	O axiomsO assumptionsO conclusions
۵	Independent of program language
We	have extended Larch
01995	Odynay Resurch Amocuter, Inc. Introduction to Practope 2023 David Guagari

proofs

D

D

D

D

Introduction to Penelope 26	odyseey Research Associates, Inc. 0023 David Gutspari	©1995 SL-95
calars (under development)	Access to undefined s	0
dence	Improper aliasing Incorrect order depend	0 0
operties checked	'n	

Introduction to Penclope 27

> ©1995 Odyney Research Associates, Inc. SI.-95-0023 David Guapari

Allas Warning: A procedure GET_FIELD_INF begin value := FIELD.VALUE; wode := FIELD.WODE; exception end GET_FIELD_INFO;	Jon-Scalar Parameters (cont'd) ^{O(;} ^{INIT_VALUE ; out FIELD_VALUE; VALUE ; out FIELD_VALUE;) is) is}	 Tractabilit Packages Packages Specificat Improved Full suppc Concurrer 	Further Work y of constraint checking, definedness checking i with state ion of termination proofs modularity of for generics foy	r
01993 Odynary Bara uch Auscriates, Inc. 1395 0023 Divid Gutspan	Involuction to Franchipe	0 095 Oyney ReamA	ansisted. Inc. Introduction to Predique	MAR

Session 6: Hardware Systems

Paul Miner, Chair

- The Formal Verification Technology Used on AAMP5, by Mandayam Srivas, SRI International
- * Specification and Verification of VHDL Designs, by Damir Jamsek, Odyssey Research Associates
- Derivational Reasoning System, by Bhaskar Bose, Derivation Systems Inc.

PRECEDING PAGE BLANK NOT FILMED PAGE 138 INTENTIONALLY PLANK